目 錄

<u>章 節</u>	
中文摘要i	
英文摘要ii	
誌謝iv	
目錄v	
表目錄viii	
圖目錄ix	
符號說明xii	
第一章 緒論1	
1.1 研究動機1	
1.2 研究目的2	
1.3 研究範疇4	
第二章 相關理論及研究5	
2.0 摘要5	
2.1 流體在不飽和層中的傳輸行為6	
2.1.1 不飽和層概論6	
2.1.2 勢能8	
2.1.3 流體於不飽和層中的流動9	
2.2 非水相液體於不飽和層中的行為11	
2.2.1 非水相液體的種類11	
222 有機液體的侵入情形 12	

2.3 土壤水保持特性	15
2.3.1 保持曲線之定義	15
2.3.2 遲滯效應	16
2.3.3 殘餘飽和度	17
2.4 比例原則	19
2.5 保持曲線求取方法	21
2.5.1 實驗室相關試驗方法	21
2.5.2 經驗公式	23
2.5.3 保持曲線的應用	24
第三章 研究方法	32
3.0 摘要	
3.1 試驗土壤	32
3.1 試驗土壤	34
3.3 壓力儀實驗裝置及程序	
3.3.1 壓力儀試驗裝置	35
3.3.2 壓力儀試驗程序	38
3.4 渗透儀實驗裝置及程序	42
3.4.1 渗透儀試驗裝置	43
3.4.2 渗透儀試驗程序	43
3.5 比例原則之探討	47
3.6 RETC 程式求取渗透係數	48
第四章 實驗結果與分析	60
4.0 摘要	60
4.1 壓力儀實驗結果	61
4.1.1 水-有機液體保持曲線	61

4.1.2 保持特性與土壤性質的屬	引係62
4.1.3 流體性質對保持特性的景	珍響63
4.1.4 由 RETC 程式預測 K 值.	64
4.2 渗透儀實驗結果	65
4.3 應用比例原則求取滲透係數.	67
4.3.1 由比例原則推保持曲線	68
4.3.2 由 RETC 程式預測 K 值.	69
4.4 綜合比較	69
第五章結論與建議	104
5.1 結論	104
5.2 建議	105
參考文獻	Ma.
附錄 (Appendix) RETC 程式說明及使力	A STATE OF THE STA

表目錄

		<u>貝次</u>
表 2.1	土壤含水比與結構勢能關係的經驗方程式	23
表 2.2	土壤水力傳導係數與含水比關係的經驗方程式	25
表 3.1	實驗使用二種土壤之基本性質	33
表 3.2	試驗液體之重要性質	34
表 3.3	各液體間之比例縮放因子	48
表 4.1	張力為 1.5 bar 時之殘餘體積含液比	63
表 4.2	初始含液比與殘餘含液比之差值	63
表 4.3	初始含液比與最終含液比之差值	63
表4.4	比例原則使用之縮放因子	68
表 4.5	Ottawa Sand 水對空氣 K 值比較	74
表 4.6	Local Sand 水對空氣 K 值比較	59
表 4.7	Ottawa Sand 汽油對空氣 K 值比較	76
表 4.8	Local Sand 汽油對空氣 K 值比較 K 值比較	77
表 4.9	Ottawa Sand 柴油對空氣 K 值比較	78
表 4.10	Ottawa Sand 庚烷對空氣 K 值比較	78
表 4.11	Local Sand 庚烷對空氣 K 值比較	79
表 4.12	Ottawa Sand 水對空氣 K 值比較	80
表 4.13	Local Sand 水對空氣 K 值比較	80
表 4.14	Ottawa Sand 汽油對空氣 K 值比較	81
表 4.15	Local Sand 汽油對空氣 K 值比較	81
表 4.16	Ottawa Sand 柴油對空氣 K 值比較	82
表 4.17	Ottawa Sand 庚烷對空氣 K 值比較	82
表 4.18	Local Sand 庚烷對空氣 K 值比較	83

圖目錄

			頁次
圖	1.1	實驗基本架構	3
圖	2.1	三相存在於孔隙中	26
圖	2.2	液體飽和度與相對滲透係數之關係	26
昌	2.3	LNAPL於地下流動情形	27
圖	2.4	DNAPL 於地下流動情形	28
圖	2.5	傳統的土壤水保持曲線	29
圖	2.6	不同粒徑土壤的保持曲線	29
圖	2.7	保持曲線的遲滯效應	30
邑	2.8	張力平板儀器裝置	30
圖	2.9	壓力儀示意圖	31
圖	2.10	K _r (h)經驗式的預測與實驗結果比照圖	
昌	3.1	實驗基本架構	50
圖	3.2	兩種土樣之粒徑分佈曲線	50
昌	3.3	壓力儀示意圖	51
昌	3.4	不同氣壓下陶瓷片孔隙內凹面變化情形	51
邑	3.5	壓力儀系統配置圖	52
邑	3.6	隔膜貯水儀示意圖	52
邑	3.7	不飽和渗透試驗配置圖	53
圖	3.8	渗透儀裝置主體部分	53
邑	3.9	渗透儀所用陶瓷片及陶瓷頭	54
邑	3.10	渗透儀裝置組裝完成圖	55
邑	3.11	U 型管連接示意圖	56
圖	3.12	渗透儀溢流口管線設置圖	57

圖	3.13	渗透儀溢流口管線設置圖	57
圖	3.14	側壁通氣孔示意圖	58
圖	3.15	水對空氣保持曲線	59
圖	4.1	水對空氣保持曲線(壓力儀)	.84
圖	4.2	汽油對空氣保持曲線(壓力儀)	84
圖	4.3	柴油對空氣保持曲線(壓力儀)	.85
圖	4.4	庚烷對空氣保持曲線(壓力儀)	85
圖	4.5	水對空氣保持曲線(滲透儀)	.86
圖	4.6	汽油對空氣保持曲線(渗透儀)	86
圖	4.7	柴油對空氣保持曲線(滲透儀)	87
圖	4.8	庚烷對空氣保持曲線(滲透儀)	.87
圖	4.9	不同土樣之液體-空氣保持曲線(壓力儀)	.88
圖	4.10	空氣對液體排出曲線之比較(壓力儀)	89
圖	4.11	空氣對液體濕潤曲線之比較(壓力儀)	89
圖	4.12	經驗公式預測之 K 值比較(壓力儀 MDC)	90
圖	4.13	經驗公式預測之 K 值比較(壓力儀 MWC)	90
圖	4.14	水對空氣滲透實驗結果(滲透儀)	.91
置	4.15	汽油對空氣滲透試驗結果(滲透儀)	.91
圖	4.16	柴油對空氣滲透試驗結果(滲透儀)	92
圖	4.17	庚烷對空氣滲透試驗結果(滲透儀)	92
置	4.18	不同液體渗透實驗值比較(對數座標)	93
圖	4.19	不同土壤滲透實驗值之比較(對數座標)	.94
圖	4.20	水對空氣保持曲線與 K 值曲線	95
圖	4.21	汽油對空氣保持曲線與 К 值曲線	95
圖	4.22	柴油對空氣保持曲線與 K 值曲線	96
圖	4.23	庚烷對空氣保持曲線與К值曲線	96

置	4.24	由水-空氣經比例原則推出有機液體-空氣保持曲線	.98
圖	4.25	由有機液體-空氣經比例原則推回水-空氣保持曲線	.98
圖	4.26	RETC經驗公式預估之渗透係數值(比例原則結果推算)	. 99
圖	4.27	水對空氣滲透係數值之比較(對數座標)	100
圖	4.28	汽油對空氣滲透係數值之比較(對數座標)	101
圖	4.29	柴油對空氣滲透係數值之比較(對數座標)	102
置	4.30	庚烷對空氣渗透係數值之比較(對數座標)	103

符號說明

θ: 體積含水比 K(h): 不飽和水力傳導係數

W:重量含水比 K_s: 飽和時水力傳導係數

 $heta_s$. 飽和時體積含水比 $heta_r$. 相對滲透率

 $heta_r$: 殘餘體積含水比 $P_c(S)$: 毛細壓力-飽和度曲線

 δ :接觸角 W_0 : 空壓力儀重

 h_b . 空氣進入值 W_s . 試驗乾土重

S : 飽和度 W₁ _ . 壓力儀+濕土重

Se :有效飽和度 Ww : 水重

λ : Brooks and Corey 參數 V : 套環體積

 Ψ : 結構勢能 ρ_{w} : 水密度

m : Van Genuchten 參數 r : 毛細管半徑

n : Van Genuchten 參數 β : 比例放大因素

α : Van Genuchten 參數 σ : 界面張力