目錄

英	文摘	要	••••	 • • • • • • • •	•••••	 •••••	 	i	l
中	文摘	要	••••	 		 	 	ii	i
誌	謝			 		 	 	ii	i
目	錄			 		 	 	iv	<i>r</i>
圖	目錄			 	•••••	 	 	vii	i
表	目錄		••••	 		 	 	xii	i

一、緒論1
1-1 半導體封裝簡介1
1-2 環氧樹脂簡介
1-2-1 環氧樹脂之介紹5
1-2-2 環氧樹脂之特性6
1-2-3 環氧樹脂之硬化7
1-2-4 環氧樹脂與胺類硬化劑9
1-3 聚亞醯胺簡介11
1-4 矽氧烷簡介14
1-5 含矽氧烷之亞醯胺或環氧樹脂相互間補強材料16
1-5-1 含亞醯胺基環氧樹脂相關文獻16

1-5-2 含矽氧烷聚亞醯胺相關文獻	19
1-5-3 含矽氧烷環氧樹脂相關文獻	21
1-6 氰酸酯簡介	23
1-6-1 氰酸酯介紹	23
1-6-2 氰酸酯合成原理	24
1-6-3 氰酸酯與環氧樹脂之反應機構	25
1-7 研究動機	27
二、實驗	28
2-1 藥品與材料	28
2-1-1 藥品與材料	28
2-1-2 試藥純化	29
2-2 環氧樹脂系統	30
2-3 儀器與設備	31
2-4 單體合成	33
2-5 環氧當量滴定	42
2-6 合成化合物鑑定	44
2-6-1 ¹ H 核磁共振光譜	44
2-6-2 ¹³ C核磁共振光譜	44
2-6-3 紅外線光譜分析	44

2-7 交聯行為分析45
2-7-1 硬化反應配方45
2-7-2 動態 DSC 分析45
2-7-3 交聯過程之 FT-IR 分析46
2-7-4 交聯樣品製作46
2-8 交聯後材料性質測試47
2-8-1 熱膨脹係數測試 (TMA)47
2-8-2 熱重量分析儀分析 (TGA)47
2-8-3 凝膠分率測試 (Gel fraction)47
2-8-4 介電常數測試
三、結果與討論
3-1 合成流程
3-2 單體之鑑定
3-2-1 5,5-(1,1,3,3-tetramethyl-1,1,3,3-disiloxanedialyl)-bis-norbornane - 2,3-dicarboxylic anhydride51
3-2-2 4-(4-hydroxyphenyl)-8-[1-({1-[4-(4-hydroxyphenyl)-3,5-dioxo- 4-azatricyclo[5,2,1,0 ^{2,6}]dec-8-yl]-1,1-dimethylsilyl}oxy)-1,1- dimethylsilyl]-4-azatricyclo[5,2,1,0 ^{2,6}]decane-3,5-dione52
3-2-3 4-[4-(allyloxy)phenyl]-8-{1-[(1-{4-[4-(allyloxy)phenyl]-3,5- dioxo-4-azatricyclo[5,2,1,0 ^{2,6}]dec-8-yl}-1,1-dimethylsilyl)oxy]-1 ,1-di methylsilyl}-4-azatricyclo[5,2,1,0 ^{2,6}]decane-3,5-dione53

3-2-4 4-(3-allyl-4hydroxyphenyl)-8-[1-({1-[4-(3-allyl-4hydroxyphenyl) -3,5-dioxo-4-azatricyclo[5,2,1,0 ^{2,6}]dec-8-yl]-1,1-dimethylsilyl} oxy)-1,1-dimethylsilyl]-4-azatricyclo[5,2,1,0 ^{2,6}]decane-3,5-dion e
3-2-5 N,N'-bis(3-allyl-4-cyanatophenyl)-5,5'-(1,1,3,3-tetramethyl- 1,1,3,3-disiloxanedialyl)-bis-norbornane-2,3-dicarboximide56
3-3 交聯行為討論
3-3-1 動態 DSC 分析
3-3-2 硬化條件61
3-3-3 硬化過程之紅外線光譜分析62
3-4 交聯產物性質測試
3-4-1 凝膠分率測試
3-4-2 熱膨脹係數分析
3-4-3 熱重機械分析
3-4-4 介電常數測試68
四、結論
五、參考文獻

圖目錄

Figure 1-1 Industrial structure of semiconductor1
Figure 1-2 The revenue of global packaging market2
Figure 1-3 IC package and Material properties
Figure 1-4 Chemical structure of Bisphenol A6
Figure 1-5 Curing reaction of three curing agent
Figure 1-6 Reaction mechanism between epoxy monomer and cyanate ester resin
Figure 3-1 ¹ H NMR spectrum of compound I75
Figure 3-2 ¹³ C NMR spectrum of compound I
Figure 3-3 FT-IR spectrum of compound I77
Figure 3-4 MASS spectrum of compound I78
Figure 3-5 ¹ H NMR spectrum of compound II79
Figure 3-6 ¹³ C NMR spectrum of compound II80
Figure 3-7 FT-IR spectrum of compound II
Figure 3-8 MASS spectrum of compound II
Figure 3-9 ¹ H NMR spectrum of compound III83
Figure 3-10 ¹³ C NMR spectrum of compound III
Figure 3-11 FT-IR spectrum of compound III85
Figure 3-12 MASS spectrum of compound III

Figure 3-13	¹ H NMR spectrum of compound IV87	7
Figure 3-14	¹³ C NMR spectrum of compound IV88	3
Figure 3-15	FT-IR spectrum of compound IV89	9
Figure 3-16	MASS spectrum of compound IV90)
Figure 3-17	Mechanism of Claisen rearrangement55	5
Figure 3-18	¹ H NMR spectrum of compound V91	
Figure 3-19	¹³ C NMR spectrum of compound V92)
Figure 3-20	FT-IR spectrum of compound V93	
Figure 3-21	MASS spectrum of compound V94	
Figure 3-22	Dynamic DSC of sample (GA-240/V) \cdot A=100/0 , B=70/30	,
Figure 3-23	C=60/40, $D=50/50$, $E=40/60$, $F=0/100$)
1 iguit 5-25	with different rise temp rate)
Figure 3-24	Dynamic DSC of sample (GA-240/V=70/30) with different rise temp rate	7
Figure 3-25	Dynamic DSC of sample (GA-240/V=60/40) with different rise temp rate	8
Figure 3-26	Dynamic DSC of sample (GA-240/V=50/50) with different rise temp rate	9
Figure 3-27	Dynamic DSC of sample (GA-240/V=40/60) with different rise temp rate	0
Figure 3-28	$\ln(\Phi/T_m^2)$ VS 1/T _m of sample (GA-240/V=100/0)101	1

Figure 3-29 $\ln(\Phi/T_m^2)$ VS $1/T_m$ of sample (GA-240/V=70/30)	.102
Figure 3-30 $\ln(\Phi/T_m^2)$ VS $1/T_m$ of sample (GA-240/V=60/40)	.103
Figure 3-31 $\ln(\Phi/T_m^2)$ VS $1/T_m$ of sample (GA-240/V=50/50)	.104
Figure 3-32 $\ln(\Phi/T_m^2)$ VS $1/T_m$ of sample (GA-240/V=40/60)	.105

Figure 3-33 FT-IR spectra of sample (GA-240/V=50/50) cured at 130°C

for different curing times (A_t , t in minutes) in the range of

Figure 3-34 FT-IR spectra of sample (GA-240/V=50/50) cured at 130°C

	for different curing times (A_t , t in minutes) in the range of
	600-2400 cm ⁻¹
Figure 3-35	FT-IR spectra of sample (GA-240/V=50/50) cured at 130°C
	for different curing times (A_t , t in minutes) in the range of
	2100-2500 cm ⁻¹
Figure 3-36	FT-IR spectra of sample (GA-240/V=50/50) cured at 130°C
	for different curing times (A_t , t in minutes) in the range of
	1200-2000 cm ⁻¹
Figure 3-37	FT-IR spectra of sample (GA-240/V=50/50) cured at 130°C
	for different curing times (A_t , t in minutes) in the range of
	800-1200 cm ⁻¹ 110
Figure 3-38	Difference FT-IR spectra (A_t - A_0 , t in minutes) of sample
	(GA-240/V=50/50) cured at 130°C111

Figure 3-39	FT-IR spectra of sample (GA-240/V=50/50) cured at 190°C
	for different curing times (A_t , t in minutes) in the range of (00, 4000 cm ⁻¹)
	600-4000 cm
Figure 3-40	FT-IR spectra of sample (GA-240/V=50/50) cured at 190°C
	for different curing times (A _t , t in minutes) in the range of
	$600-2400 \text{ cm}^{-1}$ 113
Figure 3-41	FT-IR spectra of sample (GA-240/V=50/50) cured at 190°C
	for different curing times (A _t \cdot t in minutes) in the range of
	2100-2500 cm ⁻¹ 114
Figure 3-42	FT-IR spectra of sample (GA-240/V=50/50) cured at 190°C
	for different curing times ($A_t \cdot t$ in minutes) in the range of
	1200-2000 cm ⁻¹
Figure 3-43	FT-IR spectra of sample (GA-240/V=50/50) cured at 190°C
	for different curing times (A_t , t in minutes) in the range of
	$800-1000 \text{ cm}^{-1}$ 116
Figure 3-44	Difference FT-IR spectra (A_t - A_0 , t in minutes) of sample
	(GA-240/V=50/50) cured at 190°C117
Figure 3-45	Thermomechanical analyses of samples (GA-240/V),
	B=70/30, C=60/40, D=50/50, E=40/60118
Figure 3-46	Thermogravimetric analyses of samples (GA-240/V),
	A = 100/0 B = 70/30 C = 60/40 D = 50/50 E = 40/60

A-100/0, B-70/30, C-60/40, D-30/30,	, E—40/00 ,
F=0/100	119

表目錄

Table 3-1 The maximum exothermic temp. of samples	58
Table 3-2 Dynamic DSC data of samples	50
Table 3-3 Curing condition of samples	51
Table 3-4 Gel fraction results of samples	64
Table 3-5 Thermal expansion coefficient of samples	65
Table 3-6 Thermogravimetric analysis of samples	67
Table 3-7 Dielectric constant and Loss factor of samples	68

