TR B R RIS ZEE AL S A T B
AL 2 A RAE L B e b
Validity and Reliability of Combinations of

Preprocessing and Differential Expression Methods for

Affymetrix GeneChip Microarrays

Fa ';i‘ 4 3 9:'57'_4T|J



R B G R RO RER ML R TR ¥ e

FAILS e AR LR ks

Validity and Reliability of Combinations of
Preprocessing and Differential Expression Methods for

Affymetrix GeneChip Microarrays

B3 Student: Ya-Li Wang

T Advisor: Dr. Guan-Hua Huang

L o

A Thesis
Submitted to institute of Statistics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Statistics
July 2007

Hsinchu, Taiwan, Republic of China

PERREA L S



f?’**)i)ii—,ﬁ’%&il’b V'*'Eﬁ R 5| ZF) fy ¥ e
AR 2R ARELE 2ol

SR NEAREE RS 1 hErE i sE #4
SRR EY S
&
B 7] B B MR A T TS EF LI E A1 B e g
Bk >mAipFEdad i § R LRy hy R (Affymetrix) & 2 #1#:g 0

AT R o 3R LAY 2 RE AR 2 e LA AP Y R
A ¥ * IE JL 2 D MAS 5.0 » RMA~dChip®2 PDNN » 22 7 #& % * eh4 IR
& £ £ 22 ! fold-change - two sample t-test~ SAM ~ EBarrays # limma - % 7 #*=
BRI EEaMLR AP R Y T fr(splke i) Fookt & Feft BaE ivdp ik
WRKRAGER A R IR E R APHEY V- kg THEA S R TR
T TR LFEREREASEIABRERY VEE LT SR Rk
HArd TR LA P OTARATE N DA R T LR A TFNEAF S ITL
PRERNER c FRFIERRE R APRESFE 2L FARELS
A ¥ &b pF o> 42 & RMA+fold-change - RMA+SAM ~ RMA+limma ~ PDNN+
fold-change ~ PDNN+SAM £2 PDNN+limma * = fae & ;7 % 2 RE L R A 7B
¥ % pF > P4z & dChip(PM-only)+fold-change ~ dChip(PM-only)+SAM £

dChip(PM-only)+limma ¢+ = fa %= & -

BEEF LIy 7 IR RS 7 R FEE /F']lﬁ b R
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Student: Ya-Li Wang  Advisor: Dr. Guan-Hua Huang
Institute of Statistics
National Chiao Tung University

ABSTRACT

Microarray technology has been widely used for several years and a large
number of computational analysis tools;have,been developed. We focus on the most
popular platform, Affymetrix GeneChip arrays. Toevaluate which combinations of
preprocessing and differential expression method perform well, we consider 4 popular
preprocessing methods (MAS 5.0, RMA",dChip and PDNN) and 5 popular differential
expression methods (fold-change, two sample’t-test, SAM, EBarrays and limma). We
use three spike-in datasets to assess the validity, and ROC curves are used for the
evaluation. To evaluate the reliability, we use another dataset from MAQC project,
which was generated using samples hybridized to Affymetrix platform at two different
test sites. Overlap rates between two test sites are compared. To give consideration to
both validity and reliability, six combinations are recommended when differentially
expressed genes are less, RMA+fold-change, RMA+ SAM, RMA+ limma, PDNN+
fold-change, PDNN+SAM, and PDNN+limma. Three combinations are recommended
when differentially expressed genes are more, dChip(PM-only)+ fold-change,
dChip(PM-only)+SAM, and dChip(PM-only)+limma.
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1 Introduction

Microarray is a device designed to simultaneously measure the expression
levels of many thousands of genes in a particular tissue or cell type. It is widely used
in many areas of biomedical research especially Affymetrix GeneChip platform.
Millions of probes with length of 25 nucleotides are designed on an Affymetrix array.
Two categories of probes are designed: “perfect match (PM)” probe perfectly matches
its target sequence and “mismatch (MM)” probe is created by changing the middle
(13th) base of its paired perfect match probe sequence. The purpose of designing MM
probe is to detect the nonspecific binding because its perfect match partner may be
hybridize to nonspecific sequences. A paired PM and MM is called a “probe pair” and
each gene will be represented by 11-20_praobe pairs typically. Owing to this distinctive
design, preprocessing Affymetrix'expression arrays.usually involves three main steps.
That are background adjustment, normalization, and summarization. Nowadays, a
large number of preprocessing methods have-been developed to estimate expression
levels of genes.

Another fundamental goal of a microarray experiment is to identify those genes
that are differentially expressed within different samples. For example, a disease may
be caused by large expression of particular genes resulting in variation between
diseased and normal tissues. The method used to detect the genes expressed
differentially between different samples is called differential expression method.
Various preprocessing and differential expression methods have been proposed, and
their developers using different datasets and criteria claimed there are some features
superior to other methods. In this thesis, we use the common datasets to evaluate
combinations of the most popular preprocessing and differential expression methods

in terms of validity and reliability. We try to help users of Affymetrix to select the best



method for their own microarray data.

Here we consider four commonly used preprocessing methods, Microarray Suite
software Version 5.0 (MAS 5.0: Affymetrix, 2002), DNA-Chip Analyzer (dChip: Li
and Wong, 2001a and 2001b), Robust Multi-array Analysis (RMA: Irizarry et al.,
2003a) and Position-Dependent Nearest-Neighbor (PDNN: Zhang et al., 2003), and
five popular differential expression methods, Fold change(FC), two sample t-test,
Significance Analysis of Microarrays (SAM: Tusher, Tibshirani and Chu, 2001),
Paramettric Empirical Bayes methods (EBarrays: Newton et al., 2001, Kendziorski et
al., 2003, and Newton and Kendziorski, 2003), and Linear Models and Empirical
Bayes methods (limma: Smyth, 2004). Four datasets in total are used. Three are
spike-in datasets used to assess the validity: two from Affymetrix Latin square
datasets and one from the Golden Spike Project. ROC curves are used for the
evaluation. To evaluate the reliability, we .use .another dataset from MicroArray
Quality Control (MAQC) project, which-was-generated using samples hybridized to
Affymetrix platform at two different test sites.-Overlap rates between two test sites are

compared.



2 Literature Review

2.1 Background of microarray

Microarray is a device designed to simultaneously measure the expression levels
of many thousands of genes in a particular tissue or cell type. It is widely used in
many areas of biomedical research. Microarray technology makes use of the sequence
resources created by the genome projects and other sequencing efforts to detect which
genes are expressed in a particular cell type of an organism. Many different
microarray technologies have been developed, and can be classified into three main
categories: cDNA array (highly variable in length), short oligonucleotide array (25-30
base) and long oligonucleotide array (50-80 base). The high-density oligonucleotide
array produced by Affymetrix is one,kind of the short oligonucleotide array.
Affymetrix GeneChip arrays have become a‘widely used microarray platform and
numerous of methods have been proposed for analyzing this type of microarray data.
This thesis focuses on the analysis~of data-from’ Affymetrix GeneChip expression

arrays.

2.2 Affymetrix GeneChip array

Affymetrix GeneChip array are high throughput assays for measuring the
expression levels of many thousands of gene transcripts simultaneously in a particular
tissue or cell type. The technology takes advantage of hybridization properties of
nucleic acid. To measure how much quantity of specific nucleic acid transcripts of
interest present in the sample, complementary molecules are used to attach to a solid
surface. The specific nucleic acid transcripts of interest presented in the sample are
referred as “target”, and the complementary molecules attached to a solid surface are

referred as “probe”. Millions of probes with a usually length of 25 nucleotides are



produced on an Affymetrix array. Two categories of probes are designed, “perfect
match (PM)” probe perfectly matches its target sequence, and “mismatch (MM)”
probe is created by changing the middle (13th) base of its paired perfect match probe
sequence. The purpose of designing MM probe is to detect the nonspecific binding
because its perfect match partner may be hybridize to nonspecific sequences. A paired
PM and MM are called a “probe pair”, and a gene represented by multiple probe pairs
is called a “probeset”. Typically, each gene will be represented by 11-20 probe pairs.

For more comprehensible, we show these in following graph.

Perfect match (PM) CAGAATCGATGCTAGTAGTCATCTA j Probe Pair
Mismatch (MM) CAGAATCGATGCGAGTAGTCATCTA

1 Probe Set :  11-20 (PM-+MM) Probe pair
5’ 3’

Probe Set

25 mers

After RNA samples were prepared, labeled and hybridized to an array with
millions of probes, the array is scanned and pixel intensity values are calculated using
peculiar instruments by Affymetrix. According to these values, intensity values for
each probe, called probe-level intensities, are computed and stored in a CEL file. The
next step is to find a way to combine the 11-20 probe pair intensities together to a
summary value for a given gene. The summary value for a given gene is defined as a
measure of expression that represents the amount of the corresponding mRNA species.
However, due to many systematical biases from different sources in miroarray
experiments, data preprocessing becomes more necessary and important. The goal of
data preprocessing is to obtain a corrected intensity value that represents the
abundance of mRNA, instead of an uncertain brightness biased by other sources.

Preprocessing Affymetrix expression arrays usually involves three main steps:

4



background adjustment, normalization, and summarization, that is, low-level analysis
of Affymetrix microarray. Details for preprocessing methods are described later.
Another fundamental goal of a microarray experiment is to identify those genes
that are differentially expressed within different samples. For example, a disease may
be caused by large expression of a particular gene or genes resulting in variation
between diseased and normal tissues. Numerous of differential expression methods
are proposed to detect those differentially expressed genes between diseased and
normal tissues. Throughout this thesis, we attempt to compare those combinations of

the most commonly used preprocessing methods and differential expressed methods.

2.3 Overview of preprocessing method

Here we interpret the three.main steps ‘of.data preprocessing briefly before
mentioning these preprocessing=-methods used.to compare.
2.3.1 Background adjustment

Because partial measured probe..intensities maybe caused by non-specific
hybridization or the noise in the optical detection system, background adjustment is
essential to rid of these intensities not exactly expressed from genes. Observed probe
intensities need to be adjusted to give the accurate expression levels of specific
hybridization (Huber et al., 2005). Some methods make use of MM probes to adjust,
but some are not.
2.3.2 Normalization

During the process of carrying out the microarray experiment involving multiple
arrays, there are many obscuring sources of variation involved, such as physical
problems with the arrays, laboratory conditions, hybridization reactions, labeling, and
scanner difference. In order to compare measurements from different arrays, implying

different tissue, some proper normalization is necessary.
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2.3.3 Summarization

Due to Affymetrix platform designing multiple probes to represent a gene,
summarization is needed to combine these probe intensities to a single value. For each
gene, the background adjusted and normalized intensities are used to be summarized

into one measurement that estimates the expression level.

2.4 Four preprocessing methods used

Notations:

i=1,...,1:representing the different array (sample)
j=1,...., J : representing the probe pair in the gene
g =1,...,G : representing the probe set (gene)

MAS 5.0

MAS 5.0 (Microarray Suite.'software, Version 5.0) is offered by Affymetrix
(Affymetrix, 2002). The gene-expression level.is-calculated from the combined,
background-adjusted, PM and MM values-of the probe set. At the beginning, both PM
and MM probe intensities must be preprocessed for background adjustment.

To do the background adjustment, the array is divided into K rectangular zones

(default K = 16). The probes are ranked and the lowest 2% is chosen as the

background b, for that zone. Then each probe intensity is adjusted based on a

weighted average of each of the background values, b(x,y).

B(X, ¥) = 3w, (%, Y)by,.

ZWk (x,y)

The weights for zone k, w, (X, y), are dependent on distance from the probe location

(x,y) to each of the zone centers. In particular, the weight is defined as:

1
dZ(x,y) +smooth ’

w, (x,y) =

where d/(x,y) is the Euclidean distance from the probe location (x, y) to the center

6



of zone k. The default value of smooth is 100, which is added to d/(x,y) to ensure

that the value will never be zero. The calculated background, b(x,y) 1, establishes a
“floor” to be subtracted from each raw probe intensity. There are some rules for
avoiding leading to the negative intensity.

After each probe intensity is preprocessed for background adjustment, an ideal
mismatch value is calculated and subtracted to adjust the PM intensity. Originally, the
suggested purpose of the MM probes was that they could be used to adjust the PM
probes for non-specific binding. The naive approach is subtracting the intensity of
MM probe from the intensity of the corresponding PM probe. However, this becomes
problematic because the MM value is sometimes larger than the PM value. To avoid
taking the negative expression value, Affymetrix introduced the concept of an Ideal
Mismatch (IM), a quantity derived fromrthe -MM value that is never bigger than its
corresponding PM value. IM is-defined as a quantity-equal to MM when MM < PM ,

but adjusted to be less than PM whenMM > PM . This is done by computing

the specific background, SB_, for each’ probe set g. If the g=1,...,G is the probe set
and j=1,....,J is the probe pair, then the SB, is defined as:
SB, =Tukey Biweight{logz(PM jg)— log,(MM ;) j=1..., J},

and the IM ;, for probe pair j in probe set g is defined as:

MM, MM, <PM
IM . = PM MM . >PM . and SB_ > contrast r
19 2SBg ! 9 = 19 g
PM .

19 , MM, > PM  and SB, < contrast z

9 =
contrast ¢
contrastz—SBy
I ——
2 scaler




where contrast 7 (with a default value of 0.03) and scale 7 (with a default value of
10) are tuning constants. The adjusted PM intensity is obtained by subtracting the
corresponding IM from the observed PM intensity. Then, MAS 5.0 use a one-step

Tukey Biweight to combine the probe intensities in log scale.
signal, = the antilog of Tukey Biweight{logz(PM i~ M, )}

Finally, signal is scaled using a trimmed mean. They defined a scaling factor sf and

a normalization factor nf in their algorithm.

Sc

sf = ,
TrimMean(signal,0.02,0.98)

where Sc is the target signal (default Sc=500). MAS 5.0 offers two analysis for user to
choose, that are absolute analysis and comparison analysis. According to which

analysis you want to perform, nf has, different definition.

1 , TOF absolute analysis
nf =< TrimMean(SPVb;0.02,0.98)

- , for comparison analysis
TrimMean(SPVe,0.02,0.98)

where SPVb is the baseline array signal, and SPVe is the experiment array signal.
More details are described in the Statistical Algorithms Description Document

(Affymetrix, 2002). The reported value of MAS5.0 of probe set g is:

Re portedValue(i) = nf x sf x signal ; .

dChip

dChip (DNA-Chip Analyzer) is also a popular software for Affymetrix platform
probe-level and high-level analysis of gene expression microarrays (Li and Wong,
2001a) and SNP microarrays. This software can be downloaded from the website

http://biosunl.harvard.edu/complab/dchip/ . dChip can be used to fit the Model Based

Expression Index (MBEI) (Li and Wong, 2001a) , and obtain what we refer to as the
dChip expression measure. Li and Wong reported that variation of a specific probe

across multiple arrays (the between-array variance) is in general smaller than the

8



variance across probes within a probe set (the within-probe set variance) (Li and
Wong, 2001a). To account for this strong probe affinity effect, they proposed a

multiplicative model, for any given gene:

MM, =v,+0a; +¢

(1)

PM; =v,+0a;+60¢,+e=v,;+0,(a; +¢;,)+¢
Here PM; and MM; denote the PM and MM intensity values from the i-th array

and the j-th probe pair for this gene. & denotes the expression index for this gene in

the i-th array. Here multiple arrays are available for analysis. Assume that the

intensity value of a probe will increase linearly as & increases, but different

increasing rate for different probes. And within the same probe pair, the PM;; will
increase at a higher rate than the MMy, . a; and_ ¢, represent the increasing rate of
the MM, probe and the additional-increasing rate in the corresponding PM;; probe

respectively. The increasing rates are assumed to be nonnegative.v; is the baseline

response of the j-th probe pair due to nonspecific hybridization, and & are assumed
to be independent normally distributed errors.

The model for individual probe responses implies an even simpler model for the
PM-MM differences:

PM, -MM, =04, +&; ,i=L..1,j=1.,3. (2)

ij
The model above is called PM-MM difference model ( Li and Wong, 2001a).

Li and Wong discovered that because of doubting the efficiency of using MM
probes, some investigators design custom arrays using PM probes exclusively. Thus,
they proposed another model later to estimating gene expression levels, called

PM-only model ( Li and Wong, 2001b). The PM-only model focus only on PM probes,

using the description of PM in model (1). The PM-only model is as follows:

9



PM; =v, +6a,+0¢, +c=v,+0¢, +e. (3)
Notations in the PM-only model represent the same meaning as well as PM-MM

difference model, except that ¢; merges the two increasing rates «; and ¢;.

No matter what model above is referred, Li and Wong’s measure is defined as the
maximum likelihood estimates of the expression index 6. and outlier probe intensities
are removed as part of the estimation procedure. Before computing model-based
expression levels, dChip use the “Invariant Set” normalization method to normalize
arrays at PM and MM probe levels for PM-MM difference model or PM probe levels
for PM-only model. Using a baseline array, arrays are normalized by selecting
invariant sets of probes then using them to fit a non-linear relationship between the
"treatment™ and "baseline™ arrays. A-set of probe is said to be invariant if ordering of
probe in one chip is the same in other set..By default, an array with median overall
intensity is chosen and all other:arrays are-normalized to it.

In order to summarize the probe intensities, dChip performs the “Invariant Set”
normalization method, then fit the normalized probe intensities to the alternative
model for any given gene. Maximum likelihood estimates of the expression index 6, is
the expression measure for this gene in array i.

RMA

RMA (Irizarry et al., 2003a), Robust Multi-array Analysis, is an expression
measure consisting of three particular preprocessing steps: convolution background
correction, quantile normalization, and a summarization based on a multi-array model
fit robustly using the median polish algorithm. Many preprocessing methods, such as
MAS 5.0 and dChip, calculating their measures rely on the difference PM-MM with
the intention of correcting for non-specific binding. However, the exploratory analysis

presented in Irizarry et al. (2003a) suggests that the MM probe may be a mixture

10



probe for which detects not only non-specific binding and background noise but also
the transcript signal just like the PM probe. Thus, subtracting the MM intensity from
the PM intensity as a way of correcting for non-specific binding and background
noise is not always appropriate. These RMA authors proposed a procedure ignoring
the MM intensities and using only the PM intensities.

The RMA convolution background correction method is motivated by looking at

the distribution of probe intensities. The model observed PM as the sum of a

background intensity bg;, caused by optical and nonspecific binding, and a signal
intensity s, .

PM;, =bg;, +Sy,,i=1....,1,j=1...,3,0=1...,.G
with i representing the different array, j representing the probe pair, and g representing

the different probe set. Under-the. model above, the background corrected probe
intensities will be given by B(PM

)s whererB(PM ;) = E(s;, | PM;;,) . To obtain a

ijg ijg

computationally feasible B() we consider the closed-form transformation obtained

when assuming that s, is distributed exponential and bg;, is distributed normal,

and the results obtained using B(-) work well in practice (Irizarry et al., 2003a).
Next, perform the quantile normalization, which is to make the distribution of

probe intensities for each array the same (Bolstad et al., 2003). In order to summarize

the probe intensities, RMA introduced a log scale linear additive model. The model is:
T(PM;)=¢ +a; +¢&;,
where PM;, represents the PM intensity of array i=1,...,I and probe pair j=1,...,J,

for any given probe set g. T() represents the transformation that background

corrects, normalizes, and logs the PM intensities, e, represents the log2 scale

11



expression value found on arrays i, a.

; represents the log scale affinity effects for

probes j , and ¢; represents error (lrizarry et al., 2003b). To protect against outlier

probes, they use a robust procedure, such as median polish, to estimate model
parameters (Irizarry et al., 2003a). The estimate of e, as the log scale measure of
expression refers to as robust multi-array average (RMA).

PDNN

Zhang et al. (2003) propose a simply free energy model over the probe signals
that enables to estimate the gene expression levels, called “position-dependent
nearest—-neighbor (PDNN) model”, for the formation of RNA-DNA duplexes on
Affymetrix microarray. Different from most methods focused on statistical models, it
is a physical model taking into account-the sequence of nearest-neighbors (adjacent
two bases) and the position of:these nucleotide pairs. It has been suggest that the
effect of nearest-neighbor nucleotide pairs is the most important factor in determining
RNA/DNA duplex stability. Their model alse describes binding interactions
complicated by many factors such as steric hindrance on the chip surface, probe-probe
interaction and RNA secondary structure formation.

The model is based on the nearest-neighbor model (Sugimoto et al., 1995) with
two modifications: (1) a positional weight factor is added to reflect the different
contributions from different part of the probe; (2) two different types of binding on
the probes are considered. The two types of binding are gene-specific binding (GSB),
representing the formation of DNA-RNA duplexes with exact complementary
sequences, and non-specific binding (NSB), representing the formation with many
mismatches between the probe and the attached RNA molecule. Notice that PDNN
assumes that the majority of probes are designed specifically for their target, and only

PM probes are used for GSB and NSB estimation. PDNN model divides signal of a

12



probe into three components, GSB, NSB and uniform background B, as follows:

A N N”
Ijg = gE_ + = “r‘B,
1+e™ 14e°®

where fjg is denoted as the expected intensity of the j-th probe in a probe set
targeted to detect gene g, N, as the true expression level for gene g, and N asthe

population of RNA molecules that contributes to NSB. E, is defined as the free

energy for formation of the specific RNA-DNA duplex with the targeted gene, and

E}g is the average free energy for NSB, that is, formation of duplexes with many

different genes. E;; and E?g are computed as weighted sums of stacking energies

with the sequence of a probe is given as (b,,b,,....., 0, ).

2%
Ejg & Za)kg(bk ' bk+1)
k=1

*

2ddm
E, =2.00¢ (bk’bk+1)

k=1

with @, and a)k* representing weight factors-that depend on the position along the

probe from the 5° end to the 3’ end, and &(b,,b,,,) is defined the same as the
stacking energy used in the nearest-neighbor model (Sugimoto et al., 1995). Both of
GSB and NSB are involving 16 stacking energy parameters and 24 weight factors.

The unknown parameters are obtained by minimizing the fitness function F to

optimize the match between the expected probe intensity fjg and the observed probe

intensity | ;, .

E Z:(Inl )2

where M is the total number of probes on an array. A Monte Carlo simulation

procedure is used to minimize the fitness function F. When the parameters are given,
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the gene expression level N, can be calculated and are scaled to an average of 500

on an array.

For more comprehensible, we give a summary table for the four preprocessing

methods above in Table 1.

2.5 Five differential expression methods used
Fold-change

Fold-change is the most commonly used method of detecting differentially
expressed gene between two compared condition samples. It is often the first method
used in microarray analysis. For any given gene, fold-change is calculated by the
probeset intensity ratio of two compared:condition Samples. If there are replicates, we
usually average across the samples for each condition in advance. Then the ratio of
these averaged values is referred-as fold-change. Larger fold-change leads the gene to
be more likely differentially expressed gene: Biologist favors fold-change equal to 2
as the threshold of differential expression.
Two sample t-test

The simplest statistic method for comparing means between two groups is two
sample t-test. It is widely applied in microarray analysis when detecting the
differentially expressed genes between two compared condition samples. For any
given gene, assume that the measurements of the first condition sample arise

independently and identically from normal distribution with mean 4 and variance

012, and the measurements of the second condition sample arise independently and

identically from normal distribution with mean 4, and variance o,”. When

carrying out a two sample t-test, the variances of the two samples may be assumed to
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be equal or unequal. The approach of unequal variance assumption is also called
Welch’s t-test. For any given gene g, suppose that the number of samples in
conditionl and in condition2 are M and N respectively. Here we describe the two tests
briefly.

Two sample t-test for equal variance:
condition 1: X ;... X gy ~ N(z3,07%)
condition 2:Yy,....,Yg ~ N(z,,0°)

Ho iz =p,  Versus Hy i # 1,

test statistic : SR, Sl S Tuinz:
1 1
—4+=5,
M N
ZW-%)+ZW -Y)?
where § % == :
P M+ N —2

Two sample t-test for unequal variance (Welch’s t-test):

condition 1: X ;... Xz =~ N(1,:67°)
condition 2:Y,,.... ¥ =N{1z,.0,°)
Hy gy =p,  Vversus H, o #4,

test statistic :L ~T, (approximately),
S, S
M N
2 1 - v )2 2
where S2 :—Z(Xi—X) , S¢= Z(Y -Y)? and
M -1% N-14
SZ S’
(o)
VvV =
Sx Sy

M%M—D+N%N—n
After performing the test and the conclusion leads to rejectH,, we consider that this
gene is a differentially expressed gene.
SAM (Significance Analysis of Microarrays)
SAM is a method for identifying genes on a microarray with statistically

significant changes in expression. It was proposed by Tusher, Tibshirani and Chu
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(2001). The method is based on a modified version of the standard t-statistic. Standard
t-statistic method is popular but having the problem of multiple testing. That is, when
thousands of hypotheses are tested simultaneously in microarray experiment, it would
increase chance of false positives. For example, if we have 10000 genes in our
microarray experiment and all of them are non-differentially expression. Choosing
significance level « =0.01, we would expect that there are 10000 x0.01=100
genes called significant (having p—value <0.01). Even if we choose a small
a =0.01 to evaluate small numbers of genes, we still get 100 genes called significant
because of multiple testing. This problem led them to develop a statistical method

adapted specifically for microarrays, Significance Analysis of Microarrays (SAM).

For each gene g, the “relative difference” d_ in gene expression is:

9

=l
g il
g 0

Here r, isascore, s, is a standard deviation, and s, is an exchangeability factor

(Chu et al.). SAM software can be adapted for many types of experimental data, such
as a simple unpaired two-group data, multiple-group data, paired data, censored

survival data, ---, etc. For each type of experimental data, SAM defines different

r, and s, ina different way (Chu et al.). We now focus only on the experiment of

two groups. In this case, r, and s, have the following definition:

fy = Xg2 =X
— 2 _ 2
1 1 Z(Xgi —X5) + Z(Xgi —Xy2)
Sg — (—+—)>< iegroupl iegroup2 ’
n, n, n,+n,—-2

where X, and X, are defined as the average levels of expression for gene g in

group 1 and group 2, and X is defined as the expression level for gene g and
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sample i. Group 1 and 2 have n, and n, genes, respectively. Comparing with

standard two sample t-statistic for equal variance, the test statistic is the same as

r : : : . . N
- It is a problem with low expression levels genes. That is, variance in - can
S

9 Sg

be high because of small values ofs;. But in order to compare values of d; across
all genes, the distribution of d; should be independent of the gene expression level.

Thus, SAM adds s, in the denominator to ensure that the variance of d; is
independent of gene expression level. The value for s, is chosen to minimize the

coefficient of variation. Rank all genes from small to large by d, and denote new

arrangements as d ,, . In other words,_ .dg;uis the g-th smallest relative difference.

To identify differentially expressed genes, a scatter plot of the observed relative

difference d,, vs. the expected relative-difference d_(g)* is used. The definition of
the expected relative difference d_(g)* is-as follows. Take B sets of permutations of

the samples, and re-calculate a new “relative difference” dg*b for each permutation b.

Obtain the corresponding order statistics d(g)*b by ranking dg*b from small to large
for each permutation b. For each permutation b, estimate the expected order statistics
<g) - Z%)
In the scatter plot mentioned above, each points represents a specify gene.

Choosing an adequate value as threshold A, the genes apart from the d,, = J(’;)

line by a distance greater than the threshold A are regarded as differentially
expressed genes. Using the samr package in R, the differentially expressed genes can

be identified by giving a threshold A.
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EBarrays
EBarrays package is implemented in the Bioconductor which is an open source

and open development software project for the analysis and comprehension of

genomic data (http://www.bioconductor.org/). EBarrays is an empirical Bayes analysis
for identifying differentially expressed genes between two or among more than two
conditions. The models attempt to describe the probability distribution of a set of
expression measurements taken on a gene g, and select differentially expressed genes
by posterior probability of expression pattern, which is computed for each gene and
for each pattern. For more details on the methodology, see Newton et al. (2001),
Kendziorski et al. (2003) and Newton and Kendziorski (2003).

Measurements are considered as arising from an observation distribution

fons (| 14) , Where x, is a gene-specific_mean value. The number of mean

expression patterns possible depends on the number of conditions in a microarray
experiment. For example, with"a typical-two-conditions experiment, there are two
possible patterns of expression - equivalent expression and differential expression
between the two conditions. With three conditions, there are five possible patterns
among the means. One pattern is equivalent expression across all conditions, and one
pattern is distinct expression in each condition. Notice that different conditions may
be sharing a common mean expression level, thus there are three patterns for altered
expression in just one condition.

Suppose in the general case of | arrays including N conditions, there are m+1

possible distinct patterns. For gene g, ¢ =(d ,....d ) denotes the data vector
. ~ N

where the measurements among the same condition cluster together. For any pattern Kk,
the expression measurements sharing the common mean expression level group into

the same subset. Thus, the N conditions are partitioned into r(k) mutually exclusive
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and exhaustive subsets {Styk;t:1,2,...,r(k)}. Assume that measurements sharing a
common mean expression level x, arise independently and identically from an
observation component f, (-[«,) , and x, arise from some genomewide

distribution 7 (x,). Two parametric forms, Gamma-Gamma and Lognormal-Normal

models, are considered later. Denote f(d ) as the pdf for the data indexed by

~ 0.5k

subset S, .

fe ) =j[ [1 fex(d | ug)}r(ug)dug

The pattern specific predictive density for pattern k is given by
r(k)

HCHESIRICAN

T9Sek

where k=0 denotes the null hypothesis which is equivalent expression among all

conditions. For each gene, discrete mixing parameters p,, k=1,...m+1 are
introduced to denote the unknown probabilities of expression pattern k, and describe

the marginal distribution of the data by a mixture of the form

z p f(d )
k=0 -9
The posterior probability of expression pattern k is then

P(k|d ) pfi(d )

and the posterior odds in favor of pattern k is
f (d
pk k ( - )
1-p 1= f(d )

odds,, =

The authors consider two particular distributional forms of the general mixture

model described above. The way to specify the model is determined by the choice of
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observation component f, (-| x,) and mean component z(x,).

Gamma-Gamma model (GG model):

Assume that the observation component f, (- «,) is a gamma distribution

. (24
having shape parameter « >0 and scale parameter 1 =-— for measurements
Hg

.. . L. 1 . .
greater than zero, and assume a constant coefficient of variation — in this

Ja

distribution. They take the mean component 7(u,) to be an inverse gamma, i.e. the

quantity A, =% has a gamma distribution with shape parameter ¢, and scale
Hq

parameterv . Thus three parameters are involved in GG model, 6 = (o, «,,V) .

Lognormal-Normal model (LNN model):

Assume that the observation,component f ..(:| «,) is alog-normal distribution
with mean 4, and variance o, and assuime a constant coefficient of variation on
the raw scale in this distribution. A conjugate prior for the 4, is normal with mean

4, and variance 7. . Thus three parameters are involved in LNN model,

0= (uy,0°,7,).

The optimal procedure to classify genes into certain expression pattern is
according to the state favored by the posterior probabilities. In general, in a typical
two conditions experiment, genes with posterior probability of differential expression
pattern greater than 0.5 are identified as the most likely differentially expressed genes
(Kendziorski et al., 2007). For more details on the methodology, see Newton et al.
(2001), Kendziorski et al. (2003) and Newton and Kendziorski (2003).
limma

limma package is implemented in the Bioconductor for differential expression
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analysis of data arising from single channel such as Affymetrix and long-oligos or two
channel such as cDNA microarray experiments. The central idea is to fit a linear
model to the expression data for each gene (Smyth, 2004). The linear model for gene
g is:

E(y )=X a

- g

where y contains the expression data for the gene g, X is the design matrix, and
~ g -

a is a vector of coefficients. This model is specified by the design matrix X . If we
~y A

have a set of I microarrays in our experiment, the response vector of the linear model

§ ygT :(ygl, ...... ,ygl) for gene g. The responses will usually be log-intensities for

single channel data or log-ratios for, two-color data. Certain contrasts of the
coefficients are assumed to be of.biologicalinterest'and these are defined by

B =Cla .
~g E- =g
In general, we are interested in testing whether individual contrast values g are

equal to zero. For example, with a three conditions experiment, if we concern whether
there are difference between condition 1 and 2 and between condition 2 and 3

respectively, we may set the design matrix X and the contrast matrix C as follows

1 0 0]
1 00

-1 0
010

X = and C=|1 -1]|.

010

0 1
0 01
0 0 1]

Then, test the hypotheses S, =0 and S, =0 individually.

The basic statistic used for hypothesis test with respect to a certain contrast B

is the moderated t-statistic in which posterior residual standard deviations are used in
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place of ordinary standard deviations. They use the empirical Bayes approach to
shrink the estimated sample variances towards a common value, resulting in far more
stable inference for small numbers of arrays. Additionally, they proposed an
alternative statistic, called B-statistic which is log posterior odds that the gene is
differentially expressed. The posterior odds are in terms of a moderated t-statistic. The
B-statistic is monotonic increasing in the moderated t-statistic under some conditions.
Even if these conditions do not hold, the two statistics will rank the genes in very
similar order. To test hypotheses about all contrasts simultaneously, a moderated

F-statistic which is appropriate quadratic forms of moderated t-statistic is used.

2.6 Datasets

Our purpose is to evaluate which combination of preprocessing and differential
expression methods performs well,.\We attempt to evaluate both validity and reliability
of these combinations. To properly compare-the.combinations in terms of validity, we
request that the truth differentially expressed.genes of the dataset must be known. One
kind of microarray experiment is called “spike-in experiments”, that is, some gene
fragments have been added at known concentrations. These genes are called spike-in
genes. To evaluate the validity, we choose three spike-in datasets, human genome U95
dataset from Affymetrix, human genome U133 dataset from Affymetrix, and a wholly
defined control spike-in dataset (Choe et al., 2005). To properly compare the method
combinations in terms of reliability, we use a dataset which was generated using
samples from rats and these samples are averagely distributed to different test sites
(Guo et al., 2006). We use four datasets in total, and describe all briefly as follow.
Affymetrix human genome U95 dataset (HGU95)

The human data set with array type HG-U95A consist of a series of genes

spiked-in at known concentrations and arrayed in a format analogous to cyclic Latin
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Square format. But there is still a little different from cyclic Latin Square. They
represent a subset of the data used to develop and validate the Affymetrix Microarray
Suite (MAS) 5.0 algorithm.

A standard 14x14 cyclic Latin Square design must consist of 14 gene groups in
14 experimental groups. Each gene group contains only one spike-in gene, and each
experimental group contains the same 14 spiked-in gene groups but spiked-in at
different concentrations. For example, the concentration of the 14 gene groups in the
first experimental group is 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and
1024pM. Each subsequent experimental group rotates the spike-in concentrations by
one group; i.e. experimental group 2 begins with 0.25pM and ends at OpM, on up to
experimental group 14, which begins with 1024pM and ends with 512pM. Except for
the 14 spike-in genes, a common background cRNA have been added at all arrays.

The Affymetrix human genome U95 dataset contains 14 human genes in each of
14 experimental groups. Most groups-contain-1.gene. Exceptions are group 1, which
contains 2 genes, and group 12, which.is empty. Specifically, transcript 407_at listed
as present in group 12 is actually included in group 1 (together with 37777 _at). For
more comprehensible, we show the details in Table 3. The columns represent the 14
spiked-in gene groups and the rows represent the 14 experimental groups. The first
row shows the gene name in each gene group.

Most experimental groups contain 3 replicates, except that the 3rd experimental
group contain only 2 replicates and both the 13th and 14th experimental group contain
12 replicates. Replicates within each group result in a total of 59 arrays. This dataset

is available at http://www.affymetrix.com/support/technical/sample data/datasets.affx

Some researchers reported that there are 16 spike-in probesets in this dataset as
opposed to the 14 originally described by Affymetrix (Cope et al., 2004). The two

additional genes are 33818 at" and "546 at". They claimed that 33818 _at" has the
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pattern of gene group 12 missing from the Latin Square, agreed by three methods of
calculating expression (RMA, MAS 5.0, dChip). Wolfinger and Chu (2002) identified
this as well. They also claimed "546_at" should be considered with the same
concentration as "36202_at" in gene group 9, since it has pattern the same as
"36202_at", as shown by three methods. Wolfinger and Chu (2002) identified this as
well. Due to the competitive preprocessing methods we choose are not merely the
three methods, recognizing the two genes as spike-in genes maybe not advisable. For
this reason, we recognize the 14 genes orginially described by Affymetrix as the entire
spike-in genes.

Affymetrix human genome U133 dataset (HGU133)

This dataset with a particular array type HG-U133A tag consist of more genes
spiked-in at known concentrations‘and arrayed in.a cyclic Latin Square format. The
dataset is expected to be useful for the development and comparison of expression
analysis methods. Distinct from:the HGU95 dataset above, this data set includes many
more spikes, and a smaller concentration spike(0:125pM).

This dataset consists of 14 spiked-in gene groups in 14 experimental groups.
Distinct from the HGU95 dataset above, each gene group contains three spike-in
genes. Thus there are 42 spike-in genes in total in this dataset. Each experimental
group contains the same 42 spiked-in genes, but the genes in different gene group are
spiked-in at different concentrations. For example, the concentration of the 14 gene
groups in the first experimental group is 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128,
256, and 512pM. Each subsequent experimental group rotates the spike-in
concentrations by one group; i.e. experimental group 2 begins with 0.125pM and ends
at OpM, on up to experimental group 14, which begins with 512pM and ends with

256pM. For more comprehensible, we show the details in Table 4.
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The same as HGU95 dataset, all arrays have a common background cRNA
except for the 42 spike-in genes. Each experimental group contains 3 replicates, and
replicates within each group result in a total of 42 arrays. This dataset is available at

http://www.affymetrix.com/support/technical/sample_data/datasets.affx .

A wholly defined control spike-in dataset

Due to the vast numbers of genes interrogated in a microarray experiment, only a
relatively small fraction of gene expression differences tend to be validated in any
given study. Choe et al. (2005) generated a new control dataset for the purpose of
evaluating methods for identifying differentially expressed genes between two sets of
triplicated hybridizations to Affymetrix GeneChips. The two sets are called spike-in
samples and control samples, resulting in a total of 6 arrays. This dataset has three
main features to facilitate the relative assessment.of different analysis options. First,
this experiment has 1331 spike-in.genes spiked-in at known relative concentrations
between the spike-in and control samples.—TFhe. dataset has a larger fraction of gene
expression differences than the general spike-in datasets. Second, this experiment
used a defined background sample of 2535 genes presented at identical concentrations
in both spike-in and control samples, rather than a biological RNA sample of
unknown composition. Third, this dataset includes lower fold changes, beginning at
only a 1.2-fold concentration difference to 4-fold concentration difference. This

dataset is available at http://www.ccr.buffalo.edu/halfon/spike/index.html.

Here, we give a summary table for the three spike-in datasets in Table 2.
Rat dataset

The dataset we used is just a part of the complete dataset from a rat
toxicogenomic study, which is one of the reference datasets of MAQC (MicroArray
Quality Control) project

(http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqgc/). The purpose of
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the MAQC project is to provide quality control tools to the microarray community in
order to avoid procedural failures and to develop guidelines for microarray data
analysis by providing the public with large reference datasets along with readily
accessible reference RNA samples. The rat toxicogenomic dataset was generated
using 36 RNA samples from rats treated with three chemicals (aristolochic acid,
riddelliine and comfrey). In total there were six treatment/tissue groups: kidney from
aristolochic acid-treated rats (K_AA), kidney from vehicle control (K_CTR), liver
from aristolochic acid-treated rats (L_AA), liver from riddelliine- treated rats
(L_RDL), liver from comfrey-treated rats (L_CFY) and liver from vehicle control
(L_CTR). Within each treatment/tissue group there were six biological replicates.
Aliquots of these samples were prepared and distributed to each of the test sites for
gene expression profiling using microarrays from four different platforms (Affymetrix,
Agilent, Applied Biosystems and.GE Healthcare).- There are two test sites using
Affymetrix platform, and we adopt only-the-data from the two test sites. Each test site
generated 36 arrays respectively. In this paper, when we refer to the Rat dataset, it
denotes the 72 arrays in all which were generated from the two sites using Affymetrix
platform. This dataset is available at

http://www.fda.gov/nctr/science/centers/toxicoinformatics/magc/ .
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3 Materials and Methods

Our purpose is to evaluate which combinations of preprocessing and differential
expression methods perform well. Specifically, we compare the combinations
according to two main criteria, the validity and the reliability of the combinations.
First, we select datasets having some particular properties in terms of different criteria
and some interested preprocessing method is used on the datasets to summary the
probe set measurements. Then, these measurements of genes are performed by some
interested differential expression method, and the likely differentially expressed genes
chosen by certain combination of preprocessing and differential expression method
are listed. Based on the list of differentially expressed genes, we can evaluate the
validity and the reliability of the combination. We divide the assessment of validity

and reliability into two Sections 3:2 and.3:3 respectively in detail.

3.1 Implementation of methods selected

There are four preprocessing methods and five differential expression methods
applied to each of the datasets we selected. Three statistical models, MAS 5.0, dChip
and RMA, and one physical model, PDNN, are considered. The five differential
expression methods are fold-change, two sample t-test, SAM, EBarrays and limma. A
total of 35 combinations are resulted. We may regard each criterion of methods as
“score” to express the level of significance. The higher the score, the more significant

the result.

3.1.1 Four preprocessing methods used
MAS 5.0

MAS 5.0 (Microarray Suite software, Version 5.0) is offered by Affymetrix
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(Affymetrix, 2002). Each probe including PM and MM must be preprocessed for
background adjustment according to its location on the array. To avoid obtaining a
negative value when subtracting MM from PM, MAS 5.0 introduces the concept of an
Ideal Mismatch (IM) derived from MM and never bigger than its PM. The expression

level is defined as the anti-log of a robust average (Tukey biweight) of the value

{Iogz(PMjg -IMy, )} where PM  and IM, represent the PM and IM intensities for

j-th probe pair of gene g. Finally, the expression level is scaled using a trimmed mean.
We apply the absolute analysis of MAS 5.0 in R.
dChip (including dChip(PM-MM) and dChip(PM-only))

Li and Wong (2001a) proposed a Model Based Expression Index model (MBEI)
where multiple arrays are available to_estimate the expression levels. For any given

gene, the model is defined as follows:

MM, =v, +0ai+ e

(1)

PM; =v,+0a;+0,¢; +e5v%0 (& +9;)+¢
where PM; and MM; denote the PM"and'MM intensity values from the i-th array

and the j-th probe pair for this gene. & denotes the expression index for this gene in

the i-th array. «; and ¢; represent the increasing rate of intensity value of the
MM;; probe and the additional increasing rate in the corresponding PM; probe

respectively. v; is the baseline response of the j-th probe pair due to nonspecific

hybridization, and & are assumed to be independent normally distributed errors. Two
methods based on the model above are developed: (1) subtracting MM from PM
intensities (Li and Wong, 2001a) (2) using PM intensities only (Li and Wong, 2001b).
Li and Wong’s measure is defined as the maximum likelihood estimates of the

expression index & and the estimation procedure includes rules for outlier removal.
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“Invariant Set” normalization method is used to normalize arrays at PM and MM
probe levels.
RMA

Irizarry et al. (2003a) developed a log scale linear additive model using only PM

probes, it is also known as RMA (Robust Multi-array Analysis). For any given gene, it

is described as T(PM;)=¢, +a; +¢;, where PM; is the PM intensity of array i

and probe pair j for this gene. T(-) represents the transformation that background
corrects, normalizes by quantile normalization, and logs the PM intensities. The three
terms on the right represent the log2 scale expression value for this gene of array i, the
log scale affinity effects for probe j, and error respectively (Irizarry et al., 2003b). To
protect against outlier probes, a robust,procedure such as median polish is used to
estimate model parameters and the log scale-measure of expression levele,.
PDNN

Zhang et al. (2003) proposed “a-‘simply free energy model, called
“position-dependent nearest-neighbor (PDNN) model”. Different from most methods
focused on statistical models such as the methods introduced above, it is a physical
model taking into account the sequence of nearest-neighbors (adjacent two bases) and
the position of these nucleotide pairs. In the PDNN model, the signal of a probe is
divided into three components: gene-specific binding, non-specific binding, and
uniform background. And the free energy of the two bindings of a probe can be
expressed as a weighted sum of its stacking energies (Sugimoto et al., 1995), where
the stacking energies depend on the sequence of nearest-neighbors and the weights
depend on the position along the probe. Further technical details can be found in

Zhang et al. (2003).
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3.1.2 Five differential expression methods used
Fold-change (FC)

Fold-change is the most commonly used method of detecting differentially
expressed gene between two compared condition samples. For any given gene,
fold-change is calculated by the probe set intensity ratio of two compared condition
samples. If there are replicates, we usually average across the samples for each
condition in advance. Then the ratio of these averaged values is referred as
fold-change. Fold-change is employed as the score of significance.

Two sample t-test ( including t-test and Welch t-test)

The simplest statistical method for comparing means between two groups is two
sample t-test. When carrying out a two sample t-test, the variances of the two samples
may be assumed to be equal .or unequal. “The approach of unequal variance
assumption is also called Welch's.t*test. We-employ minus p-value as the score of
significance.

SAM (Significance Analysis of Microarrays)
It was proposed by Tusher, Tibshirani and Chu (2001). The method is based on a

modified version of the standard t-statistic to adjust the high variance probably caused

by a low expression level. For each gene g, the “relative difference” d, in gene

g
expression is defined as the form which adds an exchangeability factor to the

denominator of the standard two sample t-statistic for equal variance. Exchangeability

factor is added to ensure that the variance of d; is independent of gene expression
level. Rank all genes by the observed relative difference d, and denote the new

arrangements as d, . B sets of permutations of the samples are taken to obtain the

(9) "

expected relative difference d(g)* by a similar way (For more details, see Tusher et
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al., 2001 and Chu et al.). A scatter plot of d, vs. cT(g)* is used and the genes apart

from the d,, = cT(g) line by a distance greater than the threshold A are regarded as

differentially expressed genes.

Using the samr package in R, the differentially expressed genes can be identified
by giving a threshold A. But the number of genes selected is determined by the given
threshold A, we can not set at will. And further filtering criteria which are not

mentioned in the original paper (Tusher et al., 2001) are carried out. Thus, we give up

using the samr package, and employ the difference between d,, and d(g)* as the

score of significance according to the methodology referred in Tusher et al.(2001).
EBarrays ( including of EBarrays(GG) and EBarrays(LNN))

An empirical Bayes analysis,‘implemented-in Bioconductor EBarrays package,
attempt to describe the probability. distributien of expression levels for gene g and
select differentially expressed genes by posterior probability of differential expression.
Two mixture models, Gamma-Gamma. model-and lognormal-normal model, are
considered according to their sampling and prior distributions. For more details on the
methodology, see Newton et al. (2001), Kendziorski et al. (2003), and Newton and
Kendziorski (2003). We employ the posterior probability of differential expression as
the score of significance.
limma

Smyth (2004) proposed a method of linear models and empirical Bayes methods
which is implemented in the Bioconductor limma package (Smyth, 2005). The linear

model for gene g is E(y )=Xa , where y is the expression level vector of |
~g -9 ~g

arrays in total for this gene, X is the design matrix, and « is a vector of
- -9

coefficients. Certain contrasts of the coefficients are assumed to be of biological
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interest and these are defined by B =C' & . In general, we are interested in testing
~g ~ ~4g

whether individual contrast values S are equal to zero. The basic statistic with

respect to a certain contrast S is the moderated t-statistic in which posterior

residual standard deviations are used in place of ordinary standard deviations by
empirical Bayes approach. Alternative statistic, called B-statistic, represents log
posterior odds that the gene is differentially expressed. The default argument in limma

package is B-statistic and we employ it as the score of significance.

3.2 Assessment of validity

To properly compare the combinations in terms of validity, we request that the
true differentially expressed genes-of the dataset.must be known. Thus, we choose
three datasets which provide the-results of spike-in experiments where gene fragments
have been added at known concentrations.-The-three-datasets are human genome U95
dataset from Affymetrix, human genome U133 dataset from Affymetrix, and a wholly
defined control spike-in dataset (Choe et al., 2005). The three datasets provide various
number of spike-in genes. ROC curves are used for the evaluation. We describe the
three datasets briefly as follow.
Affymetrix human genome U95 dataset (HGU95)

This dataset was used to develop and validate MAS 5.0 algorithm. It consists of
59 arrays, where 14 different cRNA gene fragments have been spiked-in at various
known concentrations ranging from 0.25 to 1024pM. Except for the 14 spike-in genes,
a common background cRNA have been added at all arrays. The 14 spike-in genes are
arranged in the format similar to a 14x14 cyclic Latin square design with each
concentration appearing once in each row and column. The difference from a 14x14

cyclic Latin square design is that there are two out of the 14 spike-in genes spiked-in
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at the same concentrations across arrays (Table 3). Most experimental groups contain
3 replicates, except that the 3rd experimental group contains only 2 replicates and
both the 13th and 14th experimental group contain 12 replicates. For more details, see
Affymetrix website and this dataset is available here

http://www.affymetrix.com/support/technical/sample data/datasets.affx.

Affymetrix human genome U133 dataset (HGU133)

Distinct from the HGU95 dataset above, this dataset includes many more spikes,
and a smaller concentration spike (0.125pM). This dataset consists of 14 gene groups
in 14 experimental groups. A cyclic Latin Square format is designed for each gene
group and experimental group. Each gene group containing three spike-in genes and
each experimental group containing 3 replicates result in a total of 42 spike-in genes
and 42 arrays. For more details, see Affymetrix website and this dataset is available
here

http://www.affymetrix.com/support/technical/sample- data/datasets.affx

A wholly defined control spike-in"dataset (Golden Spike)

Choe et al. (2005) generated a new control dataset which contains two sets of
triplicated hybridizations to Affymetrix GeneChips. The two sets are called spike-in
samples and control samples respectively, resulting in a total of 6 arrays. This dataset
has three main features: (1) 1331 spike-in genes spiked-in at known relative
concentrations between the spike-in and control samples, a larger fraction of gene
expression differences. (2) a defined background sample of 2535 genes presented at
identical concentrations in both spike-in and control samples, rather than a biological
RNA sample of unknown composition. (3) a lower fold changes beginning at only a
1.2-fold concentration difference. This dataset is available at

http://www.ccr.buffalo.edu/halfon/spike/index.html .
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Methodology of comparison

In order to evaluate the validity of these combinations, a receiver operating
characteristic curve (simply called ROC curve) is used. ROC curve, which is widely
used to evaluate the differential expression methods in microarray analysis, is a
graphical plot of the sensitivity versus 1-specificity for a binary classifier system as its
discrimination threshold is varied. Sensitivity and specificity are statistical
measurements of how well a binary classification test correctly identifies the truth.
Sensitivity is defined as the probability that the test lead to make positive decision
given that the truth is actually a positive case. This is also known as the true positive
rate (TPR). And specificity is defined as the probability that a negative decision is
made when the truth is negative. In other words, 1-specificity represents that the
probability that the positive decision i1s made when the truth is negative, and the
meaning is equivalent to the false positive rate:(FPR): For most differential expression
methods, null hypothesis is usually.defined-as gene expressed equally under two
different conditions. The four outcomes.of a.test can be formulated as the following

table.

TP : true positive FP : false positive
FN : false negative TN : true negative

TPR : true positive rate (sensitivity)
FPR : false positive rate (1-specificity)

Null hypothesisH,
(non-differentially expressed)

False True
Reject H, TP FP
(Called significant) (1-75) ()
Not reject H, FN TN

(Not called significant)
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Thus, the ROC curve is represented equivalently as a plot of the false positive
(FP) rate as the x coordinate versus the true positive (TP) rate as the y coordinate. It
provides tools to select possibly optimal methods by comparing the area under ROC
curve (simply called AUC). The area measures discrimination, that is, the ability of
the test to correctly classify those positive case and negative case in fact. The range of
AUC is from 0 to 1 since both the x and y axes have values ranging from 0 to 1. The
bigger its AUC is, the better overall performance of this test. We take advantage of
ROC curve and AUC as criteria to assess the validity of different combinations.

Here we make a brief description of how to accomplish an average ROC curve
for a selected combination of some dataset, preprocessing method, and differential
expression method. For each spike-in dataset, spike-in genes are considered as true
positives and non-spike-in genes- as true negatives. For each dataset, different
experimental groups imply that.the spike-in .genes are spiked-in at different
concentrations. Thus, only replicates.are-regarded as being in the same experimental
group. For each pair of experimental groups, we compute the number of true positive
(TP) and false positive (FP) for a large range of thresholds. To form an average ROC
curve, we compute the average TP according to each FP value. An average ROC
curve is created by plotting the FP versus its average TP. And the area under average

ROC curve is the measure of this combination (Cope et al., 2004).

3.3 Assessment of reliability

To properly compare the method combinations in terms of reliability, we use a
particular dataset which was generated using samples from rats and these samples are
averagely distributed to different test sites (Guo et al., 2006). Overlap rates between

two test sites using Affymetrix platform are compared.
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Rat dataset

The dataset we used is just a part of the complete dataset from a rat
toxicogenomic study (Choe et al., 2005), which was generated using 36 RNA samples
from rats treated with three chemicals (aristolochic acid, riddelliine and comfrey). In
total there are six treatment/tissue groups: kidney from aristolochic acid-treated rats
(K_AA), kidney from vehicle control (K_CTR), liver from aristolochic acid-treated
rats (L_AA), liver from riddelliine-treated rats (L_RDL), liver from comfrey-treated
rats (L_CFY) and liver from vehicle control (L_CTR). Within each treatment/tissue
group, there are six biological replicates. Aliquots of these samples were prepared and
distributed to each of five test sites. Each test site generated 36 arrays respectively. We
adopt only the partly data which come from the two test sites using Affymetrix
platform. In this paper, when we refer to the Rat dataset, it denotes the 72 arrays in all
which were generated from the-two sites using Affymetrix platform. This dataset is

available at http://www.fda.gov/nctr/sciéncel/centers/toxicoinformatics/magc/ .

Methodology of comparison

In order to compare the reliability of these combinations, we plot graphs where
x-axis represents the number of genes selected as differentially expressed genes and
y-axis represents the overlap rate of two gene lists for a given number of differentially
expressed genes. For example, when we employ two sample t-test as differential
expression method and use p-value 0.05 as threshold, two gene lists according to the
two test sites are produced respectively by collecting the genes which have p-value
smaller than 0.05. The numerator of overlap rate is defined as the number of
overlapping genes for both two gene lists, and the denominator of overlap rate is
defined as the total number of genes in the union of two gene lists. Thus, if there are
genes {a,b,c,d,e} have p-value smaller than 0.05 for the first test site and genes
{c.d,e, f} have p-value smaller than 0.05 for the second test site. Overlap rate is
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calculated by g =0.5.

Four graphs are created respectively according to each of the four tissues
suffering different treatments versus their controls, and an average graph is created for
summarizing the four conditions. For given data from the same test site and employed
competitive combination, genes are ranked by the “score” of significance of the
employed competitive combination referred in Section 3.1.2. For a fixed threshold of
the “score”, two significant gene lists from the two test sites are produced respectively.
The overlap rates of the two gene lists are computed for a large range of threshold of
the “score”. Competitive combinations are showed as lines in the graph and their
overlap rates between two test sites are compared. The higher overlap rate, the better

performance in reliability.
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4 Results

4.1 Assessment of validity by ROC curve

In practice, we rarely validate more the 100 genes as differentially expressed
genes (Cope et al., 2004). Under both HGU95 and HGU133 datasets, the growth in
TP of most combinations has already become flat gradually after FP>100 (Figure 1-1
and Figure 1-3). Furthermore, in these two datasets, true positive rates of the best
performance have reached about 95% when FP<100. As for these combinations
performing worst, their true positive rates increase after FP>100; even so, their
performances still can not catch up to these combinations which perform well before
FP<100 (Figure 1-2 and Figure 1-4). Thus, we focus on the part of FP<100 and report
the summary statistic AUC up to 100 FP.in.both HGU95 and HGU133 datasets.

The other spike-in dataset; Golden spike ‘dataset, unlike most microarray
experiments assuming a small “percentage of genes are differentially expressed, has
nearly 10% genes differentially“expressed.-Considering the situation of FP less than
100 to evaluate performance is not suitable for this dataset. The patterns of all
combinations where false positive rate larger than 0.1 are similar to the patterns where
false positive rate close to 0.1 (Figure 1-5 and Figure 1-6). Thus, we recommend a
conservative choice 0.1 as a cutoff of false positive rate.

Two algorithms of all combinations can not be executed in R and we have no
information about their performance. That are HGU133 + dChip(PM-MM) +
EBarrays(GG) and HGU133 + PDNN -+ EBarrays(GG). Thus, there are 35
combinations for both HGU95 and Golden Spike datasets, and only 33 combinations
for HGU133 dataset.

We use AUC up to 100 FP in HGU95 and HGU133 datasets and up to 0.1 false

positive rate in Golden spike dataset as assistants. For each dataset, all combinations
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are ranked based on AUC. If there is distinct difference of AUC between two
continuously ranked combinations, combinations are apart from there and divided into
two groups. By this way, total combinations are clustered in four groups for HGU95
dataset, four groups for HGU133, and three for Golden spike dataset shown in Table 5,
6, 7 respectively.
For HGU95 dataset

Under HGU95 dataset, (1)RMA or PDNN cooperated with most differential
expression methods have excellent performances, except for Welch t-test employed as
differential expression method (Figure 1-2). (2)Conversely, the combinations of
preprocessing method using MAS 5.0 or dChip(PM-MM) are inferior to other
compared combinations (Figure 1-2), and the combinations in the group with smallest
AUC is entirely composed by MAS 5.0 and dChip(PM-MM) as preprocessing method
(Table 5). (3)As long as using Welch t-test-as differential expression method, the
performance is not good enough-even.if cooperated with RMA or PDNN (Figure 2-1).
(4)For a fixed differential expressed method, performances vary largely by employing
different preprocessing methods, except for t-test and Welch t-test (Figure 3-1). And
all combinations using t-test outperform than using Welch t-test.
For HGU133 dataset

Results in HGU133 are very similar to HGU95. (1)~(3) conclusions are shown in
HGU133 as well (Figure 1-4 , Table 6 and Figure 2-2). The different result is that the
performances vary largely by employing different preprocessing methods for each
differential expressed method.
For Golden Spike dataset

Results in Golden Spike dataset are unlikeness to two datasets above. (1)Instead
of RMA and PDNN, dChip have outstanding performances applied to this dataset.

Through viewing Figure 1-6, all combinations are divided into three groups clearly.
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There are 11 combinations classified into the outstanding group, and all of them
combine with dChip, especially for dChip(PM-only) that cooperated with every
differential expression methods are contained. But dChip(PM-MM) has extreme
performance. When it is cooperated with fitting differential expression method, such
as t-test, Welch t-test, limma and SAM, the performance will be outstanding. On the
contrary, it will perform disappointingly (Figure 2-3). (2)The following 7
combinations are the worst, MAS5.0+SAM, MAS5.0+FC, MAS5.0+ EBarrays(GG),
MAS5.0+ EBarrays(LNN), dChip(PM-MM)+FC, dChip(PM-MM)+ EBarrays(GG),
and dChip(PM-MM)+ EBarrays(LNN) (Table 7). Notice that, for all of the three
datasets, the five combinations, MAS5.0+FC, MAS5.0+ EBarrays(GG), MAS5.0+
EBarrays(LNN), dChip(PM-MM)+FC, and dChip(PM-MM)+ EBarrays(LNN), are

classified into the worst group clustered by AUC.

4.2 Assessment of reliability by overlap.rate

For this dataset, the true number-of differentially expressed genes is unknown.
We show the patterns of all combinations in log scale in Figure 4, and find that the
trend of most of combinations is similar when the number of genes selected as
differentially expressed is less than 10000. Moreover, if there are too many genes
identified as differentially expressed genes, a much lower threshold of “score” of
significance of the differential expression method must be set. But it is not a practical
threshold. Thus, our comparison in reliability focuses on the value of x-axis less than
10000. Here, the four tissues suffering different treatments versus their controls are
simply called as K_AA, L_AA, L_CFY,and L_RDL.
Low overlap rate for MAS 5.0 and dChip(PM-MM)

For each condition, K_AA, L_AA, L_CYF, and L _RDL, combinations are

divided into five small graphs by preprocessing method such as Figure 5-1~5-4.
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Figure 5-1~5-3 show that the overlap rates across two sites are lower than 0.6 when
using MAS 5.0 or dChip(PM-MM), but higher overlap rates occur for three other
preprocessing methods, RMA, PDNN and dChip(PM-only). For L_RDL, overlap
rates exceed 0.6 when using MAS 5.0 or dChip(PM-MM), but that is caused by
overall improvement of overlap rate for L_RDL, not for MAS 5.0 or dChip(PM-MM)
only (Figure 5-4).
Performances for EBarrays

For each preprocessing method cooperated with EBarrays, very similar patterns
under Gamma-Gamma model and Lognormal-Normal model are shown (Figure 6).
Usually, when using EBarrays, there is no overlap gene when small genes selected as
differentially expressed but a rapidly increment in overlap rate happens when
differentially expressed genes increase to some level. The level varies with different
preprocessing method, usually -MAS 5.0 and-dChip(PM-MM) have lower level and
the others have a higher level.-However,.-even if ‘a rapidly increment happens, the
performance is still not good enough.when-compared to other combinations that
perform well. The feature above can be saw by Figure 5-1~5-4.
Top 2 combinations

Now we assign the same color to combinations using the same differential
expression method in Figure 7, most lines are clustered by color obviously. The
performance is worse when using t-test (green) or Welch t-test (blue), and is better
when using FC (black). SAM and limma perform well when fewer genes selected as
differentially expressed.

Because of the poor performances with MAS5.0, dChip(PM-MM), t-test, Welch
t-test and EBarrays, we consider totally 9 permutations with RMA, dChip(PM-only),
PDNN as preprocessing method and FC, SAM, limma as differential expression

method in Figure 8. Figure 8 shows that the two combinations, RMA+FC (blue) and
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PDNN+FC (yellow) have the highest overlap rate and nearly equal. Thus the top two

combinations in reliability are RMA+FC and PDNN+FC.
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5 Conclusions and Discussion

5.1 Conclusions
Validity

Notice that, the 15 combinations of the first two groups clustered by AUC for
HGU95 are also contained in the first two groups for HGU133, except that the
algorithm of PDNN+EBarrays(GG) can not executed for HGU133 (Table 5, 6). Ranks
of combinations are similar when using HGU95 and HGU133 with an approximate
proportion of genes expressed differentially, but very different when using Golden
spike dataset which has a large proportion of genes expressed differentially. Top
combinations seem to be substituted according to the amount of spike-in genes in the
dataset. If a high validity is required when considering an experiment with a few
differentially expressed genes, we recommend RMA or PDNN as preprocessing
method but are sure to avoid: collocating ‘with Welch t-test. Nevertheless for an
experiment with a larger proportion of.genes-expressed differentially, dChip(PM-only)
are recommended as preprocessing method; or'dChip(PM-PM) collocated with t-test,
Welch t-test, limma and SAM are recommended. No matter what dataset is used, the
same five combinations have the lowest validity, that is, MAS5.0+FC, MAS5.0+
EBarrays(GG), MAS5.0+ EBarrays(LNN), dChip(PM-MM)+FC, and
dChip(PM-MM)+ EBarrays(LNN).

Giving an overview of the three spike-in datasets, we assign the same color by
preprocessing method in Figure 1-2, Figure 1-4, and Figure 1-6. Combinations of the
same color are slightly clustered together. But when we assign the same color by
differential expression method in Figure 3-1 ~ Figure 3-3, colors are in a disorderly
behavior. It seems that preprocessing method influences the validity more than

differential expression method.
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Reliability

Actually, the patterns of the four conditions are similar, so we introduce an
average graph that facilitates to compare all combinations. We assign the same color
by preprocessing method in Figure 9-1 and by differential expression method in
Figure 9-2, and find that differential expression method influences the reliability
much more than preprocessing method because the combinations are clustered by
differential expression methods. When employing FC as differential expression
method, combinations have the highest overlap rates, especially for cooperated with
RMA or PDNN.
Consideration to both validity and reliability

We give an overview of both validity and reliability, validity is influenced more
by preprocessing method, but reliability is influenced more by differential expression
method. To give consideration=to both vahdity and-reliability, six combinations are
recommended when differentially expressed-genes are less, RMA+FC, RMA+ SAM,
RMA+ limma, PDNN+FC, PDNN+SAM, and PDNN-+limma. Three combinations are
recommended when differentially expressed genes are more, dChip(PM-only)+FC,
dChip(PM-only)+SAM, and dChip(PM-only)+limma. However, four combinations
lead to both low validity and low reliability. That are MAS5.0+ EBarrays(GG),
MAS5.0+ EBarrays(LNN), dChip(PM-MM)+ EBarrays(LNN), and dChip(PM-MM)+
EBarrays(LNN). If you only focus on the simple t-test as differential expression
method, the assumption of equal variance is advised because of higher accuracy and

precision result.

5.2 Discussion
The strange pattern of EBarrays in Figure 6 is caused by too many genes having

posterior probability of differential expression equal to 1. When ranking genes by
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posterior probability, too many equal values make the order meaningless. For example,
more than one thousand genes have posterior probability equal to 1 when using
PDNN+EBarrays(GG) for L_CFY treatment/control. We can not select only 100
genes as differentially expressed genes in this situation. Even if using spike-in
datasets, there are still too many genes having posterior probability of differential
expression equal to 1. That is one disadvantage of EBarrays. And we can not find the

best way to deal with genes having the equal values of score of significance.
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Table 1. Summary of the four preprocessing methods used.

Model Method Background Normalization Summarization Reference
adjustment
MAS5.0 Locational adjustment  Scale normalization Tukey biweight average Affymetrix, 2002
& MM subtracted
dChip MM intensities are Invariant set Fit a model based Li and Wong, 2001a
Statistical model | (PM-MM) subtracted expression index
dChip PM only Invariant set Fit a model based Li and Wong, 2001b
(PM only) expression index
RMA Convolution Quantile normalization A robust linear model is Irizarry et al., 2003
background correction fitted (median polish)
Physical model PDNN PM only Quantile normalization A free energy model Zhang et al., 2003
accounts for background
and signal.

Table 2. Summary of the three spike-in datasets used.

Dataset Spike-in genes / Total ~ Conditions Total Replicates (conditions)  Fold change range Reference
genes in array arrays
HGU95 14 /12626 14 59 2(1),3(11),12(2) 2~ 2% Affymetrix
HGU133 42 /22300 14 42 3(14) 2~ 2% Affymetrix
Golden Spike 1331/14010 2 6 3(2) 1.2~4.0 Choe et al., 2005
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Table 3. Affymetrix human genome U95 dataset contains 14 spike-in gene groups in each of 14 experimental groups. This table shows the

spiked-in concentrations (pM).

Spike-in Gene Groups

»
»

HGUO95 | 37777 at | 684 at | 1597 at | 38734_at | 39058 at | 36311 at | 36889 at | 1024 at | 36202_at | 36085_at | 40322 _at | 407_at | 1091 at | 1708_at
1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 0 0.25 0.5 1 2 4 8 16 32 64 128 0 512 1024
B 0.25 0.5 1 2 4 8 16 32 64 128 256 0.25 1024 0
C 0.5 1 2 4 8 16 32 64 128 256 512 0.5 0 0.25
D 1 2 4 8 16 32 64 128 256 512 1024 1 0.25 0.5
E 2 4 8 16 32 64 128 256 512 1024 0 2 0.5 1
@ F 4 8 16 32 64 128 256 512 1024 0 0.25 4 1 2
§ G 8 16 32 64 128 256 512 1024 0 0.25 0.5 8 2 4
TL: H 16 32 64 128 256 512 1024 0 0.25 0.5 1 16 4 8
§ I 32 64 128 256 512 1024 0] 0.25 0.5 1 2 32 8 16
% J 64 128 256 512 1024 0 0.25 0.5 2 4 64 16 32
L%' K 128 256 512 1024 0 0.25 0.5 4 8 128 32 64
! L 256 512 1024 0 0.25 0.5 1 8 16 256 64 128
M, N,
O,P.| 512 1024 0 0.25 0.5 1 2 4 8 16 32 512 128 256
QR,
S, T.| 1024 0 0.25 0.5 1 2 4 8 16 32 64 1024 256 512
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Table 4. Affymetrix human genome U133 dataset contains 14 spike-in gene groups in each of 14 experimental groups. This table shows the
spiked-in concentrations (pM).

Spike-in Gene Groups >
HGU133| 203508 _at | 204205 _at |204836_at|207777_s_at| 207160_at | 209606_at [205398_s_at|206060_s_at| 207641 at |203471_s_at | AFFX-r2-TagA_at | AFFX-r2-TagD_at | AFFX-r2-TagG_at | AFFX-LysX-3_at
204563 at | 204959 at (205291 at| 204912 at |205692_s_at|205267 at| 209734 at | 205790 at [207540_s_at| 204951 at | AFFX-r2-TagB_at | AFFX-r2-TagE_at | AFFX-r2-TagH_at | AFFX-PheX-3_at
204513 s at|207655_s_at|209795_at| 205569 at | 212827 at |204417_at| 209354 at |200665_s at|204430 s at| 207968 _s_at | AFFX-r2-TagC_at | AFFX-r2-TagF_at | AFFX-DapX-3_at | AFFX-ThrX-3_at
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0.125 | 0.25 | 05 1 2 4 8 16 32 64 128 256 512
2 | 0125 | 025 | 05 1 2 4 8 16 32 64 128 256 512 0
3| 0.25 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125
4 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25
2|5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5
3|6 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1
% 7 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2
S8 8 16 32 64 128 256 512 0 0.125 | 0.25 0.5 1 2 4
g 9 16 32 64 128 256 512 0 0.125 | 0.25 0.5 1 2 4 8
L%‘ 10 32 64 128 256 512 0 0.125 | 0.25 0.5 1 2 4 8 16
v 64 128 256 512 0 0.125 | 0.25 0.5 1 2 4 8 16 32
12 | 128 256 512 0 0.125 | 0.25 0.5 2 4 8 16 32 64
13 | 256 512 0 0.125 | 0.25 0.5 4 8 16 32 64 128
14 | 512 0 0.125| 0.25 0.5 1 8 16 32 64 128 256
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Table 5. Area under ROC curve (FP<100) for HGU95 dataset.

HGU95 Preprocessing Differential expression AUC (FP<100)
1 PDNN limma 0.948579
2 RMA limma 0.94818
3 PDNN FC 0.944115
4 PDNN SAM 0.944046
5 RMA FC 0.943009
6 RMA SAM 0.942039
7 RMA EBarrays(GG) 0.927794
8 RMA EBarrays(LNN) 0.923941
9 dChip(PM-only) limma 0.905235
10 PDNN EBarrays(GG) 0.902541
11 PDNN EBarrays(LNN) 0.90131
12 PDNN t.test 0.898442
13 RMA t.test 0.886426
14 dChip(PM-only) t.test 0.88254
15 dChip(PM-only) SAM 0.880197
16 dChip(PM-only) FC 0.846546
17 dChip(PM-MM) t.test 0.841166
18 dChip(PM-MM) limma 0.835926
19 dChip(PM-MM) SAM 0.825455
20 dChip(PM-only) EBarrays(GG) 0.824395
21 dChip(PM-only) EBarrays(LNN) 0.820898
22 MAS5.0 t.test 0.815033
23 MAS5.0 limma 0.799162
24 MAS5.0 SAM 0.794531
25 PDNN Welch.t 0.767155
26 RMA Welch.t 0.7576
27 dChip(PM-only) Welch.t 0.742685
28 dChip(PM-MM) Welch.t 0.701568
29 dChip(PM-MM) FC 0.668716
30 dChip(PM-MM) EBarrays(LNN) 0.647701
31 dChip(PM-MM) EBarrays(GG) 0.645769
32 MAS5.0 Welch.t 0.644588
33 MAS5.0 FC 0.615917
34 MAS5.0 EBarrays(GG) 0.612341
35 MAS5.0 EBarrays(LNN) 0.587304
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Table 6. Area under ROC curve (FP<100) for HGU133 dataset

HGU133 Preprocessing Differential expression AUC (FP<100)
1 RMA EBarrays(GG) 0.863092
2 RMA EBarrays(LNN) 0.862798
3 RMA FC 0.817002
4 RMA limma 0.81548
5 RMA SAM 0.815347
6 PDNN SAM 0.81162
7 PDNN limma 0.809847
8 PDNN FC 0.797237
9 dChip(PM-only) limma 0.786985

10 dChip(PM-only) SAM 0.785353
11 PDNN EBarrays(LNN) 0.779613
12 PDNN t.test 0.777446
13 dChip(PM-MM) SAM 0.771588
14 dChip(PM-only) t.test 0.770554
15 dChip(PM-MM) limma 0.764034
16 RMA t.test 0.752983
17 dChip(PM-MM) t.test 0.752711
18 MAS5.0 SAM 0.720726
19 PDNN Welch.t 0.720642
20 dChip(PM-only) FC 0.718709
21 MAS5.0 limma 0.706744
22 dChip(PM-only) Welch.t 0.706271
23 RMA Welch.t 0.699885
24 dChip(PM-only) EBarrays(GG) 0.684316
25 MAS5.0 t.test 0.670529
26 dChip(PM-only) EBarrays(LNN) 0.669003
27 dChip(PM-MM) Welch.t 0.668742
28 dChip(PM-MM) FC 0.577278
29 MAS5.0 Welch.t 0.553659
30 MAS5.0 EBarrays(GG) 0.552828
31 MAS5.0 EBarrays(LNN) 0.549571
32 dChip(PM-MM) EBarrays(LNN) 0.54558
33 MAS5.0 FC 0.535097
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Table 7. Area under ROC curve (FPR<0.1) for Golden Spike dataset.

GoldenS Preprocessing Differential expression AUC (FP<100)
1 dChip(PM-only) limma 0.56372
2 dChip(PM-only) SAM 0.559223
3 dChip(PM-only) t.test 0.547767
4 dChip(PM-only) Welch.t 0.535408
5 dChip(PM-MM) t.test 0.521514
6 dChip(PM-MM) Welch.t 0.512999
7 dChip(PM-only) FC 0.507993
8 dChip(PM-MM) limma 0.501604
9 dChip(PM-only) EBarrays(GG) 0.496914
10 dChip(PM-only) EBarrays(LNN) 0.493245
11 dChip(PM-MM) SAM 0.481958
12 PDNN FC 0.36528
13 PDNN limma 0.345729
14 RMA limma 0.338737
15 RMA SAM 0.336246
16 MAS5.0 t.test 0.335354
17 RMA FC 0.334257

18 RMA EBarrays(GG) 0.328945
19 RMA EBarrays(LNN) 0.32708
20 PDNN SAM 0.321463
21 MAS5.0 Welch.t 0.314948
22 PDNN EBarrays(GG) 0.312507
23 PDNN EBarrays(LNN) 0.312131
24 RMA t.test 0.307509
25 RMA Welch.t 0.295258
26 PDNN t.test 0.292082
27 MAS5.0 limma 0.282148
28 PDNN Welch.t 0.260143
29 MAS5.0 SAM 0.108924
30 dChip(PM-MM) FC 0.058929
31 dChip(PM-MM) EBarrays(LNN) 0.034358
32 dChip(PM-MM) EBarrays(GG) 0.016425
33 MAS5.0 FC 0.00642
34 MAS5.0 EBarrays(LNN) 0.004662
35 MAS5.0 EBarrays(GG) 0.004136
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Figure 1-1. ROC curves for all combinationsiusing HGU95 dataset (35 in total).
Combinations using the same preprocessing.method are assigned to the same color
as shown in the legend.
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Figure 1-2. ROC curves for all combinations using HGU95 dataset (35 in total) but
FP<100.
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Figure 1-3. ROC curves for all combinationsiusing HGU133 dataset (33 in total).
Combinations using the same preprocessing.method are assigned to the same color
as shown in the legend.
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Figure 1-4. ROC curves for all combinations using HGU133 dataset but FP<100 (33
in total).
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GoldenSpike ROC curve
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Figure 1-5. ROC curves for all combinationsiusing Golden Spike dataset (35 in
total). Combinations using the same preprocessingmethod are assigned to the same
color as shown in the legend.
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Figure 1-6. ROC curves for all combinations using Golden Spike dataset (35 in total)
but false positive rate<0.1.
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Figure 2-1. For HGU95 dataset, ROC curves.of all'combinations are divided by
preprocessing method. Combinations using the same differential expression method

are assigned to the same color as shown in-the legend.
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Figure 2-2. For HGU133 dataset, ROC curves of all combinations are divided by

preprocessing method.
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Figure 2-3. For Golden Spike dataset, ROC curyves of all combinations are divided
by preprocessing method.
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Figure 3-1. ROC curves for all combinations using HGU95 dataset. Combinations
using the same differential expression method are assigned to the same color as
shown in the legend.
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Figure 3-2. ROC curves for all combinations'using HGU133 dataset.
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Figure 3-3. ROC curves for all combinations using Golden Spike dataset.
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Figure 4. Overlap rate of two differentially expressed gene lists generated using
different combinations. The x-axis represents the number of genes selected as
differentially expressed, and the y-axis is the overlap rate of two gene lists for a
given number of differentially expressed genes. The four tissues suffering different
treatments versus their controls are simply called as K_AA, L_AA, L_CFY, and
L_RDL. The fifth graph shows an average plot across the four conditions. x-axis is
in log scale. A line represents one kind of combinations and there are 36
combinations in total. This graph shows the overall patterns.
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Figure 5-1. Overlap rate of two differentiallysexpressed gene lists generated using
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preprocessing method. Combinations using the same differential expression method
are assigned to the same color as shown in-the legend.
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Figure 5-2. Overlap rate of two differentially expressed gene lists generated using
different combinations for L_AA treatment/control.
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Figure 6. Overlap rate of two differentially expressed gene lists generated using
different combinations with EBarrays as differential expression method. Ten
combinations in total are shown in the legend.
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Figure 7. Overlap rate of two differentially expressed gene lists generated using
different combinations. Combinations using the same differential expression method
are assigned to the same color as shown in the legend. All combinations are
included.
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Figure 8. Overlap rate of two differentially expressed gene lists generated using
different combinations. Only the nine permutations with RMA, dChip(PM-only),
PDNN as preprocessing method and FC, SAM, limma as differential expression
method are plotted.
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Figure 9-1. Average overlap rate of two differentially expressed gene lists generated
using different combinations. Combinations using the same preprocessing method
are assigned to the same color. All combinations are included. Black for RMA, red
for MAS5.0, green for dChip(PM-MM), blue-black for dChip(PM-only), and baby
blue for PDNN.

67



Average four conditions

= _

20

@

" \r\.-.....\\ . :
ETR = \\\\ :
8 N S
T e iimas
= b e
O < B e

i gt

@ T

o

s

=

=

| | | | |
1 10 100 1000 10000

Mumber of genes selected as differentially expressed

Figure 9-2. Average overlap rate of two differentially expressed gene lists generated
using different combinations. Combinations using the same differential expression
method are assigned to the same color. All combinations are included. Black for FC,
red for SAM, green for t-test, blue-black for Welch t-test, baby-blue for
EBarrays(GG), pink for EBarrays(LNN), and yellow for limma.
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