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使用效度與信度來比較艾菲爾微陣列基因晶片的 

預處理方法與表現量差異方法的組合 

 

研究生：王雅莉    指導教授：黃冠華 博士 

國立交通大學統計學研究所 

 

摘要 

 微陣列晶片的技術已被廣泛地應用了好幾年，許多計算分析的工具也已被發

展出來，而我們著重的平臺是已被廣泛應用的艾菲爾(Affymetrix)公司所製造的

基因晶片。為了評估各種預處理方法與表現量差異方法組合的表現，我們考慮了

四種常用的預處理方法：MAS 5.0、RMA、dChip 及 PDNN，與五種常用的表現

量差異方法：fold-change、two sample t-test、SAM、EBarrays 及 limma。為了評

估各種方法組合的效度，我們使用了三組嵌釘(spike-in)資料以及接收器運作指標

曲線來做評估；而為了評估信度，我們採用另一組來自「微陣列晶片品質管制計

畫」的資料組，此資料是將樣本分送至兩個同樣使用艾菲爾晶片平台的不同檢測

站所生成的資料，用此兩檢測站的資料所選出的表現量差異基因的重複率作為比

較信度的準則。若同時注重信度與效度，我們推薦幾種方法組合：當表現量差異

基因個數少時，推薦 RMA+fold-change、RMA+SAM、RMA+limma、PDNN+ 

fold-change、PDNN+SAM 與 PDNN+limma 此六種組合；而當表現量差異基因個

數多時，則推薦 dChip(PM-only)+fold-change、dChip(PM-only)+SAM 與

dChip(PM-only)+limma 此三種組合。 

 

關鍵字：微陣列晶片、艾菲爾基因晶片、接收器運作指標曲線 
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Validity and Reliability of Combinations of 

Preprocessing and Differential Expression Methods for 

Affymetrix GeneChip Microarrays 
 

Student: Ya-Li Wang   Advisor: Dr. Guan-Hua Huang 
Institute of Statistics 

National Chiao Tung University 
 

ABSTRACT 

Microarray technology has been widely used for several years and a large 

number of computational analysis tools have been developed. We focus on the most 

popular platform, Affymetrix GeneChip arrays. To evaluate which combinations of 

preprocessing and differential expression method perform well, we consider 4 popular 

preprocessing methods (MAS 5.0, RMA ,dChip and PDNN) and 5 popular differential 

expression methods (fold-change, two sample t-test, SAM, EBarrays and limma). We 

use three spike-in datasets to assess the validity, and ROC curves are used for the 

evaluation. To evaluate the reliability, we use another dataset from MAQC project, 

which was generated using samples hybridized to Affymetrix platform at two different 

test sites. Overlap rates between two test sites are compared. To give consideration to 

both validity and reliability, six combinations are recommended when differentially 

expressed genes are less, RMA+fold-change, RMA+ SAM, RMA+ limma, PDNN+ 

fold-change, PDNN+SAM, and PDNN+limma. Three combinations are recommended 

when differentially expressed genes are more, dChip(PM-only)+ fold-change, 

dChip(PM-only)+SAM, and dChip(PM-only)+limma. 

Key words: Microarray, Affymetrix GeneChip, ROC curve 
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1 Introduction 

  Microarray is a device designed to simultaneously measure the expression 

levels of many thousands of genes in a particular tissue or cell type. It is widely used 

in many areas of biomedical research especially Affymetrix GeneChip platform. 

Millions of probes with length of 25 nucleotides are designed on an Affymetrix array. 

Two categories of probes are designed: “perfect match (PM)” probe perfectly matches 

its target sequence and “mismatch (MM)” probe is created by changing the middle 

(13th) base of its paired perfect match probe sequence. The purpose of designing MM 

probe is to detect the nonspecific binding because its perfect match partner may be 

hybridize to nonspecific sequences. A paired PM and MM is called a “probe pair” and 

each gene will be represented by 11-20 probe pairs typically. Owing to this distinctive 

design, preprocessing Affymetrix expression arrays usually involves three main steps. 

That are background adjustment, normalization, and summarization. Nowadays, a 

large number of preprocessing methods have been developed to estimate expression 

levels of genes. 

Another fundamental goal of a microarray experiment is to identify those genes 

that are differentially expressed within different samples. For example, a disease may 

be caused by large expression of particular genes resulting in variation between 

diseased and normal tissues. The method used to detect the genes expressed 

differentially between different samples is called differential expression method. 

Various preprocessing and differential expression methods have been proposed, and 

their developers using different datasets and criteria claimed there are some features 

superior to other methods. In this thesis, we use the common datasets to evaluate 

combinations of the most popular preprocessing and differential expression methods 

in terms of validity and reliability. We try to help users of Affymetrix to select the best 
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method for their own microarray data. 

 Here we consider four commonly used preprocessing methods, Microarray Suite 

software Version 5.0 (MAS 5.0: Affymetrix, 2002), DNA-Chip Analyzer (dChip: Li 

and Wong, 2001a and 2001b), Robust Multi-array Analysis (RMA: Irizarry et al., 

2003a) and Position-Dependent Nearest-Neighbor (PDNN: Zhang et al., 2003), and 

five popular differential expression methods, Fold change(FC), two sample t-test, 

Significance Analysis of Microarrays (SAM: Tusher, Tibshirani and Chu, 2001), 

Paramettric Empirical Bayes methods (EBarrays: Newton et al., 2001, Kendziorski et 

al., 2003, and Newton and Kendziorski, 2003), and Linear Models and Empirical 

Bayes methods (limma: Smyth, 2004). Four datasets in total are used. Three are 

spike-in datasets used to assess the validity: two from Affymetrix Latin square 

datasets and one from the Golden Spike Project. ROC curves are used for the 

evaluation. To evaluate the reliability, we use another dataset from MicroArray 

Quality Control (MAQC) project, which was generated using samples hybridized to 

Affymetrix platform at two different test sites. Overlap rates between two test sites are 

compared.  
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2 Literature Review 

2.1 Background of microarray 

 Microarray is a device designed to simultaneously measure the expression levels 

of many thousands of genes in a particular tissue or cell type. It is widely used in 

many areas of biomedical research. Microarray technology makes use of the sequence 

resources created by the genome projects and other sequencing efforts to detect which 

genes are expressed in a particular cell type of an organism. Many different 

microarray technologies have been developed, and can be classified into three main 

categories: cDNA array (highly variable in length), short oligonucleotide array (25-30 

base) and long oligonucleotide array (50-80 base). The high-density oligonucleotide 

array produced by Affymetrix is one kind of the short oligonucleotide array. 

Affymetrix GeneChip arrays have become a widely used microarray platform and 

numerous of methods have been proposed for analyzing this type of microarray data. 

This thesis focuses on the analysis of data from Affymetrix GeneChip expression 

arrays. 

 

2.2 Affymetrix GeneChip array 

 Affymetrix GeneChip array are high throughput assays for measuring the 

expression levels of many thousands of gene transcripts simultaneously in a particular 

tissue or cell type. The technology takes advantage of hybridization properties of 

nucleic acid. To measure how much quantity of specific nucleic acid transcripts of 

interest present in the sample, complementary molecules are used to attach to a solid 

surface. The specific nucleic acid transcripts of interest presented in the sample are 

referred as “target”, and the complementary molecules attached to a solid surface are 

referred as “probe”. Millions of probes with a usually length of 25 nucleotides are 
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produced on an Affymetrix array. Two categories of probes are designed, “perfect 

match (PM)” probe perfectly matches its target sequence, and “mismatch (MM)” 

probe is created by changing the middle (13th) base of its paired perfect match probe 

sequence. The purpose of designing MM probe is to detect the nonspecific binding 

because its perfect match partner may be hybridize to nonspecific sequences. A paired 

PM and MM are called a “probe pair”, and a gene represented by multiple probe pairs 

is called a “probeset”. Typically, each gene will be represented by 11-20 probe pairs. 

For more comprehensible, we show these in following graph. 

 

 After RNA samples were prepared, labeled and hybridized to an array with 

millions of probes, the array is scanned and pixel intensity values are calculated using 

peculiar instruments by Affymetrix. According to these values, intensity values for 

each probe, called probe-level intensities, are computed and stored in a CEL file. The 

next step is to find a way to combine the 11-20 probe pair intensities together to a 

summary value for a given gene. The summary value for a given gene is defined as a 

measure of expression that represents the amount of the corresponding mRNA species. 

However, due to many systematical biases from different sources in miroarray 

experiments, data preprocessing becomes more necessary and important. The goal of 

data preprocessing is to obtain a corrected intensity value that represents the 

abundance of mRNA, instead of an uncertain brightness biased by other sources. 

Preprocessing Affymetrix expression arrays usually involves three main steps: 
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background adjustment, normalization, and summarization, that is, low-level analysis 

of Affymetrix microarray. Details for preprocessing methods are described later. 

 Another fundamental goal of a microarray experiment is to identify those genes 

that are differentially expressed within different samples. For example, a disease may 

be caused by large expression of a particular gene or genes resulting in variation 

between diseased and normal tissues. Numerous of differential expression methods 

are proposed to detect those differentially expressed genes between diseased and 

normal tissues. Throughout this thesis, we attempt to compare those combinations of 

the most commonly used preprocessing methods and differential expressed methods. 

 

2.3 Overview of preprocessing method 

 Here we interpret the three main steps of data preprocessing briefly before 

mentioning these preprocessing methods used to compare. 

2.3.1  Background adjustment 

 Because partial measured probe intensities maybe caused by non-specific 

hybridization or the noise in the optical detection system, background adjustment is 

essential to rid of these intensities not exactly expressed from genes. Observed probe 

intensities need to be adjusted to give the accurate expression levels of specific 

hybridization (Huber et al., 2005). Some methods make use of MM probes to adjust, 

but some are not. 

2.3.2  Normalization 

 During the process of carrying out the microarray experiment involving multiple 

arrays, there are many obscuring sources of variation involved, such as physical 

problems with the arrays, laboratory conditions, hybridization reactions, labeling, and 

scanner difference. In order to compare measurements from different arrays, implying 

different tissue, some proper normalization is necessary. 
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2.3.3  Summarization 

Due to Affymetrix platform designing multiple probes to represent a gene, 

summarization is needed to combine these probe intensities to a single value. For each 

gene, the background adjusted and normalized intensities are used to be summarized 

into one measurement that estimates the expression level. 

 

2.4 Four preprocessing methods used 

Notations: 

)( :,...., 1
:,....,1

)(:,....,1

genesetprobethengrepresentiGg
genetheinpairprobethengrepresentiJj

samplearraydifferentthengrepresentiIi

=
=
=

 

MAS 5.0 

MAS 5.0 (Microarray Suite software, Version 5.0) is offered by Affymetrix 

(Affymetrix, 2002). The gene expression level is calculated from the combined, 

background-adjusted, PM and MM values of the probe set. At the beginning, both PM 

and MM probe intensities must be preprocessed for background adjustment. 

To do the background adjustment, the array is divided into K rectangular zones 

(default K = 16). The probes are ranked and the lowest 2% is chosen as the 

background 
kZb  for that zone. Then each probe intensity is adjusted based on a 

weighted average of each of the background values, ),( yxb . 

kZ

K

k
kK

k
k

byxw
yxw

yxb ∑
∑ =

=

=
1

1

),(
),(

1),( . 

The weights for zone k, ),( yxwk , are dependent on distance from the probe location 

(x,y) to each of the zone centers. In particular, the weight is defined as: 

smoothyxd
yxw

k
k +

=
),(
1),( 2 , 

where ),(2 yxdk  is the Euclidean distance from the probe location (x, y) to the center 
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of zone k. The default value of smooth is 100, which is added to ),(2 yxdk  to ensure 

that the value will never be zero. The calculated background, ),( yxb  1, establishes a 

“floor” to be subtracted from each raw probe intensity. There are some rules for 

avoiding leading to the negative intensity. 

After each probe intensity is preprocessed for background adjustment, an ideal 

mismatch value is calculated and subtracted to adjust the PM intensity. Originally, the 

suggested purpose of the MM probes was that they could be used to adjust the PM 

probes for non-specific binding. The naïve approach is subtracting the intensity of 

MM probe from the intensity of the corresponding PM probe. However, this becomes 

problematic because the MM value is sometimes larger than the PM value. To avoid 

taking the negative expression value, Affymetrix introduced the concept of an Ideal 

Mismatch (IM), a quantity derived from the MM value that is never bigger than its 

corresponding PM value. IM is defined as a quantity equal to MM when PMMM < , 

but adjusted to be less than PM when PMMM ≥ . This is done by computing 

the gSBbackgroundspecific , , for each probe set g. If the g=1,…,G is the probe set 

and j=1,….,J is the probe pair, then the gSB  is defined as: 

( ){ }JjMMPMBiweightTukeySB jgjgg ,,1:)(loglog 22 …=−= , 

and the jgIM for probe pair j in probe set g is defined as: 

⎪
⎪
⎪
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where τcontrast (with a default value of 0.03) and τscale (with a default value of 

10) are tuning constants. The adjusted PM intensity is obtained by subtracting the 

corresponding IM from the observed PM intensity. Then, MAS 5.0 use a one-step 

Tukey Biweight to combine the probe intensities in log scale.  

( ){ }jgjgg IMPMBiweightTukeyofantithesignal −= 2log log . 

  Finally, signal is scaled using a trimmed mean. They defined a scaling factor sf and 

a normalization factor nf in their algorithm.  

)98.0,02.0,(signalTrimMean
Scsf = , 

where Sc is the target signal (default Sc=500). MAS 5.0 offers two analysis for user to 

choose, that are absolute analysis and comparison analysis. According to which 

analysis you want to perform, nf has different definition. 

⎪⎩

⎪
⎨
⎧

= analysiscomparisonfor
SPVeTrimMean
SPVbTrimMean

analysisabsolutefor
nf ,

)98.0,02.0,(
)98.0,02.0,(

,1
 

where SPVb is the baseline array signal, and SPVe is the experiment array signal. 

More details are described in the Statistical Algorithms Description Document 

(Affymetrix, 2002). The reported value of MAS5.0 of probe set g is: 

gsignalsfnfieportedValu ××=)(Re . 

dChip 

dChip (DNA-Chip Analyzer) is also a popular software for Affymetrix platform  

probe-level and high-level analysis of gene expression microarrays (Li and Wong, 

2001a) and SNP microarrays. This software can be downloaded from the website 

http://biosun1.harvard.edu/complab/dchip/ . dChip can be used to fit the Model Based 

Expression Index (MBEI) (Li and Wong, 2001a) , and obtain what we refer to as the 

dChip expression measure. Li and Wong reported that variation of a specific probe 

across multiple arrays (the between-array variance) is in general smaller than the 
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variance across probes within a probe set (the within-probe set variance) (Li and 

Wong, 2001a). To account for this strong probe affinity effect, they proposed a 

multiplicative model, for any given gene: 

εφαθνεφθαθν

εαθν

+++=+++=

++=

)( jjijjijijij

jijij

PM

MM
(1) 

Here ijPM  and ijMM denote the PM and MM intensity values from the i-th array 

and the j-th probe pair for this gene. iθ  denotes the expression index for this gene in 

the i-th array. Here multiple arrays are available for analysis. Assume that the 

intensity value of a probe will increase linearly as iθ  increases, but different 

increasing rate for different probes. And within the same probe pair, the ijPM  will 

increase at a higher rate than the ijMM . jα  and jφ  represent the increasing rate of 

the ijMM  probe and the additional increasing rate in the corresponding ijPM  probe 

respectively. The increasing rates are assumed to be nonnegative. jν  is the baseline 

response of the j-th probe pair due to nonspecific hybridization, and ε  are assumed 

to be independent normally distributed errors. 

 The model for individual probe responses implies an even simpler model for the 

PM–MM differences: 

)2(.,...,1,,...,1, JjIiMMPM ijjiijij ==+=− εφθ  

The model above is called PM-MM difference model ( Li and Wong, 2001a).  

Li and Wong discovered that because of doubting the efficiency of using MM 

probes, some investigators design custom arrays using PM probes exclusively. Thus, 

they proposed another model later to estimating gene expression levels, called 

PM-only model ( Li and Wong, 2001b). The PM-only model focus only on PM probes, 

using the description of PM in model (1). The PM-only model is as follows: 
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)3(.' εφθνεφθαθν ++=+++= jijjijijijPM  

Notations in the PM-only model represent the same meaning as well as PM-MM 

difference model, except that '
jφ  merges the two increasing rates jα  and jφ . 

No matter what model above is referred, Li and Wong’s measure is defined as the 

maximum likelihood estimates of the expression index iθ and outlier probe intensities 

are removed as part of the estimation procedure. Before computing model-based 

expression levels, dChip use the “Invariant Set” normalization method to normalize 

arrays at PM and MM probe levels for PM-MM difference model or PM probe levels 

for PM-only model. Using a baseline array, arrays are normalized by selecting 

invariant sets of probes then using them to fit a non-linear relationship between the 

"treatment" and "baseline" arrays. A set of probe is said to be invariant if ordering of 

probe in one chip is the same in other set. By default, an array with median overall 

intensity is chosen and all other arrays are normalized to it. 

In order to summarize the probe intensities, dChip performs the “Invariant Set” 

normalization method, then fit the normalized probe intensities to the alternative 

model for any given gene. Maximum likelihood estimates of the expression index iθ is 

the expression measure for this gene in array i. 

RMA 

RMA (Irizarry et al., 2003a), Robust Multi-array Analysis, is an expression 

measure consisting of three particular preprocessing steps: convolution background 

correction, quantile normalization, and a summarization based on a multi-array model 

fit robustly using the median polish algorithm. Many preprocessing methods, such as 

MAS 5.0 and dChip, calculating their measures rely on the difference PM-MM with 

the intention of correcting for non-specific binding. However, the exploratory analysis 

presented in Irizarry et al. (2003a) suggests that the MM probe may be a mixture 
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probe for which detects not only non-specific binding and background noise but also 

the transcript signal just like the PM probe. Thus, subtracting the MM intensity from 

the PM intensity as a way of correcting for non-specific binding and background 

noise is not always appropriate. These RMA authors proposed a procedure ignoring 

the MM intensities and using only the PM intensities. 

The RMA convolution background correction method is motivated by looking at 

the distribution of probe intensities. The model observed PM as the sum of a 

background intensity ijgbg  caused by optical and nonspecific binding, and a signal 

intensity ijgs . 

GgJjIisbgPM ijgijgijg ,,1,,,1,,,1, ……… ===+=  

with i representing the different array, j representing the probe pair, and g representing 

the different probe set. Under the model above, the background corrected probe 

intensities will be given by )( ijgPMB , where )|()( ijgijgijg PMsEPMB ≡ . To obtain a 

computationally feasible )(⋅B  we consider the closed-form transformation obtained 

when assuming that ijgs  is distributed exponential and ijgbg  is distributed normal, 

and the results obtained using )(⋅B  work well in practice (Irizarry et al., 2003a). 

Next, perform the quantile normalization, which is to make the distribution of 

probe intensities for each array the same (Bolstad et al., 2003). In order to summarize 

the probe intensities, RMA introduced a log scale linear additive model. The model is: 

ijjiij aePMT ε++=)( , 

where ijgPM  represents the PM intensity of array i=1,…,I and probe pair j=1,…,J, 

for any given probe set g. ( )⋅T  represents the transformation that background 

corrects, normalizes, and logs the PM intensities, ie  represents the log2 scale 
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expression value found on arrays i, ja  represents the log scale affinity effects for 

probes j , and ijε  represents error (Irizarry et al., 2003b). To protect against outlier 

probes, they use a robust procedure, such as median polish, to estimate model 

parameters (Irizarry et al., 2003a). The estimate of ie  as the log scale measure of 

expression refers to as robust multi-array average (RMA). 

PDNN 

 Zhang et al. (2003) propose a simply free energy model over the probe signals 

that enables to estimate the gene expression levels, called “position-dependent 

nearest–neighbor (PDNN) model”, for the formation of RNA-DNA duplexes on 

Affymetrix microarray. Different from most methods focused on statistical models, it 

is a physical model taking into account the sequence of nearest-neighbors (adjacent 

two bases) and the position of these nucleotide pairs. It has been suggest that the 

effect of nearest-neighbor nucleotide pairs is the most important factor in determining 

RNA/DNA duplex stability. Their model also describes binding interactions 

complicated by many factors such as steric hindrance on the chip surface, probe-probe 

interaction and RNA secondary structure formation. 

 The model is based on the nearest-neighbor model (Sugimoto et al., 1995) with 

two modifications: (1) a positional weight factor is added to reflect the different 

contributions from different part of the probe; (2) two different types of binding on 

the probes are considered. The two types of binding are gene-specific binding (GSB), 

representing the formation of DNA-RNA duplexes with exact complementary 

sequences, and non-specific binding (NSB), representing the formation with many 

mismatches between the probe and the attached RNA molecule. Notice that PDNN 

assumes that the majority of probes are designed specifically for their target, and only 

PM probes are used for GSB and NSB estimation. PDNN model divides signal of a 
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probe into three components, GSB, NSB and uniform background B, as follows: 

B
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e
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jgjg EE
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jg +
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+
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= *
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ˆ
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where jgÎ  is denoted as the expected intensity of the j-th probe in a probe set 

targeted to detect gene g, gN  as the true expression level for gene g, and *N  as the 

population of RNA molecules that contributes to NSB. jgE is defined as the free 

energy for formation of the specific RNA-DNA duplex with the targeted gene, and 

*
jgE  is the average free energy for NSB, that is, formation of duplexes with many 

different genes. jgE  and *
jgE  are computed as weighted sums of stacking energies 

with the sequence of a probe is given as ( )2521 ,.....,, bbb . 
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with kω  and *
kω  representing weight factors that depend on the position along the 

probe from the 5’ end to the 3’ end, and ( )1, +kk bbε  is defined the same as the 

stacking energy used in the nearest-neighbor model (Sugimoto et al., 1995). Both of 

GSB and NSB are involving 16 stacking energy parameters and 24 weight factors.  

The unknown parameters are obtained by minimizing the fitness function F to 

optimize the match between the expected probe intensity jgÎ  and the observed probe 

intensity jgI . 

( )
∑

−
=

M
II

F jgjg

2
lnˆln

, 

where M is the total number of probes on an array. A Monte Carlo simulation 

procedure is used to minimize the fitness function F. When the parameters are given, 
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the gene expression level gN  can be calculated and are scaled to an average of 500 

on an array.  

 

 For more comprehensible, we give a summary table for the four preprocessing 

methods above in Table 1. 

 

2.5 Five differential expression methods used 

Fold-change 

 Fold-change is the most commonly used method of detecting differentially 

expressed gene between two compared condition samples. It is often the first method 

used in microarray analysis. For any given gene, fold-change is calculated by the 

probeset intensity ratio of two compared condition samples. If there are replicates, we 

usually average across the samples for each condition in advance. Then the ratio of 

these averaged values is referred as fold-change. Larger fold-change leads the gene to 

be more likely differentially expressed gene. Biologist favors fold-change equal to 2 

as the threshold of differential expression. 

Two sample t-test 

 The simplest statistic method for comparing means between two groups is two 

sample t-test. It is widely applied in microarray analysis when detecting the 

differentially expressed genes between two compared condition samples. For any 

given gene, assume that the measurements of the first condition sample arise 

independently and identically from normal distribution with mean 1μ  and variance 

2
1σ , and the measurements of the second condition sample arise independently and 

identically from normal distribution with mean 2μ  and variance 2
2σ . When 

carrying out a two sample t-test, the variances of the two samples may be assumed to 
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be equal or unequal. The approach of unequal variance assumption is also called 

Welch’s t-test. For any given gene g, suppose that the number of samples in 

condition1 and in condition2 are M and N respectively. Here we describe the two tests 

briefly. 

Two sample t-test for equal variance: 
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Two sample t-test for unequal variance (Welch’s t-test): 
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After performing the test and the conclusion leads to reject 0H , we consider that this 

gene is a differentially expressed gene.  

SAM (Significance Analysis of Microarrays) 

SAM is a method for identifying genes on a microarray with statistically 

significant changes in expression. It was proposed by Tusher, Tibshirani and Chu 
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(2001). The method is based on a modified version of the standard t-statistic. Standard 

t-statistic method is popular but having the problem of multiple testing. That is, when 

thousands of hypotheses are tested simultaneously in microarray experiment, it would 

increase chance of false positives. For example, if we have 10000 genes in our 

microarray experiment and all of them are non-differentially expression. Choosing 

significance level 01.0=α , we would expect that there are 10001.010000 =×  

genes called significant (having 01.0<− valuep ). Even if we choose a small 

01.0=α  to evaluate small numbers of genes, we still get 100 genes called significant 

because of multiple testing. This problem led them to develop a statistical method 

adapted specifically for microarrays, Significance Analysis of Microarrays (SAM). 

   For each gene g, the “relative difference” gd  in gene expression is: 

0ss
r

d
g

g
g +
= . 

Here gr  is a score, gs  is a standard deviation, and 0s  is an exchangeability factor 

(Chu et al.). SAM software can be adapted for many types of experimental data, such 

as a simple unpaired two-group data, multiple-group data, paired data, censored 

survival data, …, etc. For each type of experimental data, SAM defines different 

gg sandr  in a different way (Chu et al.). We now focus only on the experiment of 

two groups. In this case, gg sandr have the following definition: 
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where 1gx  and 2gx  are defined as the average levels of expression for gene g in 

group 1 and group 2, and gjx  is defined as the expression level for gene g and 
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sample i. Group 1 and 2 have 1n  and 2n  genes, respectively. Comparing with 

standard two sample t-statistic for equal variance, the test statistic is the same as  

g

g

s
r

 . It is a problem with low expression levels genes. That is, variance in 
g

g

s
r

 can 

be high because of small values of gs . But in order to compare values of gd  across 

all genes, the distribution of gd  should be independent of the gene expression level. 

Thus, SAM adds 0s  in the denominator to ensure that the variance of gd  is 

independent of gene expression level. The value for 0s  is chosen to minimize the 

coefficient of variation. Rank all genes from small to large by gd  and denote new 

arrangements as )(gd . In other words, )( gd  is the g-th smallest relative difference. 

 To identify differentially expressed genes, a scatter plot of the observed relative 

difference )(gd  vs. the expected relative difference *
)( gd  is used. The definition of 

the expected relative difference *
)( gd  is as follows. Take B sets of permutations of 

the samples, and re-calculate a new “relative difference” b
gd *  for each permutation b. 

Obtain the corresponding order statistics b
gd *

)(  by ranking b
gd *  from small to large 

for each permutation b. For each permutation b, estimate the expected order statistics 

by ∑
=

=
B

b

b
gg d

B
d

1

*
)(

*
)(

1 .  

 In the scatter plot mentioned above, each points represents a specify gene. 

Choosing an adequate value as threshold Δ , the genes apart from the *
)()( gg dd =  

line by a distance greater than the threshold Δ  are regarded as differentially 

expressed genes. Using the samr package in R, the differentially expressed genes can 

be identified by giving a threshold Δ . 
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EBarrays 

 EBarrays package is implemented in the Bioconductor which is an open source 

and open development software project for the analysis and comprehension of 

genomic data (http://www.bioconductor.org/). EBarrays is an empirical Bayes analysis 

for identifying differentially expressed genes between two or among more than two 

conditions. The models attempt to describe the probability distribution of a set of 

expression measurements taken on a gene g, and select differentially expressed genes 

by posterior probability of expression pattern, which is computed for each gene and 

for each pattern. For more details on the methodology, see Newton et al. (2001), 

Kendziorski et al. (2003) and Newton and Kendziorski (2003). 

Measurements are considered as arising from an observation distribution 

)|  ( gobsf μ⋅ , where gμ  is a gene-specific mean value. The number of mean 

expression patterns possible depends on the number of conditions in a microarray 

experiment. For example, with a typical two conditions experiment, there are two 

possible patterns of expression - equivalent expression and differential expression 

between the two conditions. With three conditions, there are five possible patterns 

among the means. One pattern is equivalent expression across all conditions, and one 

pattern is distinct expression in each condition. Notice that different conditions may 

be sharing a common mean expression level, thus there are three patterns for altered 

expression in just one condition. 

Suppose in the general case of I arrays including N conditions, there are m+1 

possible distinct patterns. For gene g, ),......,(
~1~~ gNgg

ddd =  denotes the data vector 

where the measurements among the same condition cluster together. For any pattern k, 

the expression measurements sharing the common mean expression level group into 

the same subset. Thus, the N conditions are partitioned into r(k) mutually exclusive 
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and exhaustive subsets{ })(,...,2,1;, krtS kt = . Assume that measurements sharing a 

common mean expression level gμ  arise independently and identically from an 

observation component )|  ( gobsf μ⋅ , and gμ  arise from some genomewide 

distribution )( gμπ . Two parametric forms, Gamma-Gamma and Lognormal-Normal 

models, are considered later. Denote )(
,,~ ktSg

df  as the pdf for the data indexed by 

subset ktS , .  

gg
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g
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The pattern specific predictive density for pattern k is given by 
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where k=0 denotes the null hypothesis which is equivalent expression among all 

conditions. For each gene, discrete mixing parameters kp , k=1,…,m+1 are 

introduced to denote the unknown probabilities of expression pattern k, and describe 

the marginal distribution of the data by a mixture of the form 

∑
=

m
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kk dfp
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The posterior probability of expression pattern k is then 
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and the posterior odds in favor of pattern k is 
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The authors consider two particular distributional forms of the general mixture 

model described above. The way to specify the model is determined by the choice of 
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observation component )|  ( gobsf μ⋅  and mean component )( gμπ . 

Gamma-Gamma model (GG model): 

 Assume that the observation component )|  ( gobsf μ⋅  is a gamma distribution 

having shape parameter 0>α  and scale parameter 
gμ
αλ =  for measurements 

greater than zero, and assume a constant coefficient of variation 
α
1  in this 

distribution. They take the mean component )( gμπ  to be an inverse gamma, i.e. the 

quantity 
g

g μ
αλ =  has a gamma distribution with shape parameter 0α  and scale 

parameterν . Thus three parameters are involved in GG model, ),,( 0 νααθ = . 

Lognormal-Normal model (LNN model): 

 Assume that the observation component )|  ( gobsf μ⋅  is a log-normal distribution 

with mean gμ  and variance 2σ , and assume a constant coefficient of variation on 

the raw scale in this distribution. A conjugate prior for the gμ  is normal with mean 

0μ  and variance 2
0τ . Thus three parameters are involved in LNN model, 

),,( 0
2

0 τσμθ = .  

 The optimal procedure to classify genes into certain expression pattern is 

according to the state favored by the posterior probabilities. In general, in a typical 

two conditions experiment, genes with posterior probability of differential expression 

pattern greater than 0.5 are identified as the most likely differentially expressed genes 

(Kendziorski et al., 2007). For more details on the methodology, see Newton et al. 

(2001), Kendziorski et al. (2003) and Newton and Kendziorski (2003). 

limma 

 limma package is implemented in the Bioconductor for differential expression 
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analysis of data arising from single channel such as Affymetrix and long-oligos or two 

channel such as cDNA microarray experiments. The central idea is to fit a linear 

model to the expression data for each gene (Smyth, 2004). The linear model for gene 

g is: 

gg
XyE

~~~
)( α= , 

where 
g

y
~

 contains the expression data for the gene g, 
~
X  is the design matrix, and 

g~
α  is a vector of coefficients. This model is specified by the design matrix 

~
X . If we 

have a set of I microarrays in our experiment, the response vector of the linear model 

is ( )gIg
T

g yyy ,......,1=  for gene g. The responses will usually be log-intensities for 

single channel data or log-ratios for two-color data. Certain contrasts of the 

coefficients are assumed to be of biological interest and these are defined by  

g

T

g
C

~~~
αβ = . 

In general, we are interested in testing whether individual contrast values gjβ  are 

equal to zero. For example, with a three conditions experiment, if we concern whether 

there are difference between condition 1 and 2 and between condition 2 and 3 

respectively, we may set the design matrix X and the contrast matrix C as follows 
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CandX . 

Then, test the hypotheses 01 =gβ  and 02 =gβ  individually. 

 The basic statistic used for hypothesis test with respect to a certain contrast gjβ  

is the moderated t-statistic in which posterior residual standard deviations are used in 
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place of ordinary standard deviations. They use the empirical Bayes approach to 

shrink the estimated sample variances towards a common value, resulting in far more 

stable inference for small numbers of arrays. Additionally, they proposed an 

alternative statistic, called B-statistic which is log posterior odds that the gene is 

differentially expressed. The posterior odds are in terms of a moderated t-statistic. The 

B-statistic is monotonic increasing in the moderated t-statistic under some conditions. 

Even if these conditions do not hold, the two statistics will rank the genes in very 

similar order. To test hypotheses about all contrasts simultaneously, a moderated 

F-statistic which is appropriate quadratic forms of moderated t-statistic is used. 

 

2.6 Datasets 

 Our purpose is to evaluate which combination of preprocessing and differential 

expression methods performs well. We attempt to evaluate both validity and reliability 

of these combinations. To properly compare the combinations in terms of validity, we 

request that the truth differentially expressed genes of the dataset must be known. One 

kind of microarray experiment is called “spike-in experiments”, that is, some gene 

fragments have been added at known concentrations. These genes are called spike-in 

genes. To evaluate the validity, we choose three spike-in datasets, human genome U95 

dataset from Affymetrix, human genome U133 dataset from Affymetrix, and a wholly 

defined control spike-in dataset (Choe et al., 2005). To properly compare the method 

combinations in terms of reliability, we use a dataset which was generated using 

samples from rats and these samples are averagely distributed to different test sites 

(Guo et al., 2006). We use four datasets in total, and describe all briefly as follow. 

Affymetrix human genome U95 dataset (HGU95) 

 The human data set with array type HG-U95A consist of a series of genes 

spiked-in at known concentrations and arrayed in a format analogous to cyclic Latin 
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Square format. But there is still a little different from cyclic Latin Square. They 

represent a subset of the data used to develop and validate the Affymetrix Microarray 

Suite (MAS) 5.0 algorithm. 

 A standard 14×14 cyclic Latin Square design must consist of 14 gene groups in 

14 experimental groups. Each gene group contains only one spike-in gene, and each 

experimental group contains the same 14 spiked-in gene groups but spiked-in at 

different concentrations. For example, the concentration of the 14 gene groups in the 

first experimental group is 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 

1024pM. Each subsequent experimental group rotates the spike-in concentrations by 

one group; i.e. experimental group 2 begins with 0.25pM and ends at 0pM, on up to 

experimental group 14, which begins with 1024pM and ends with 512pM. Except for 

the 14 spike-in genes, a common background cRNA have been added at all arrays. 

 The Affymetrix human genome U95 dataset contains 14 human genes in each of 

14 experimental groups. Most groups contain 1 gene. Exceptions are group 1, which 

contains 2 genes, and group 12, which is empty. Specifically, transcript 407_at listed 

as present in group 12 is actually included in group 1 (together with 37777_at). For 

more comprehensible, we show the details in Table 3. The columns represent the 14 

spiked-in gene groups and the rows represent the 14 experimental groups. The first 

row shows the gene name in each gene group. 

 Most experimental groups contain 3 replicates, except that the 3rd experimental 

group contain only 2 replicates and both the 13th and 14th experimental group contain 

12 replicates. Replicates within each group result in a total of 59 arrays. This dataset 

is available at http://www.affymetrix.com/support/technical/sample_data/datasets.affx  

 Some researchers reported that there are 16 spike-in probesets in this dataset as 

opposed to the 14 originally described by Affymetrix (Cope et al., 2004). The two 

additional genes are "33818_at" and "546_at". They claimed that "33818_at" has the 
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pattern of gene group 12 missing from the Latin Square, agreed by three methods of 

calculating expression (RMA, MAS 5.0, dChip). Wolfinger and Chu (2002) identified 

this as well. They also claimed "546_at" should be considered with the same 

concentration as "36202_at" in gene group 9, since it has pattern the same as 

"36202_at", as shown by three methods. Wolfinger and Chu (2002) identified this as 

well. Due to the competitive preprocessing methods we choose are not merely the 

three methods, recognizing the two genes as spike-in genes maybe not advisable. For 

this reason, we recognize the 14 genes orginially described by Affymetrix as the entire 

spike-in genes. 

Affymetrix human genome U133 dataset (HGU133) 

 This dataset with a particular array type HG-U133A_tag consist of more genes 

spiked-in at known concentrations and arrayed in a cyclic Latin Square format. The 

dataset is expected to be useful for the development and comparison of expression 

analysis methods. Distinct from the HGU95 dataset above, this data set includes many 

more spikes, and a smaller concentration spike (0.125pM). 

 This dataset consists of 14 spiked-in gene groups in 14 experimental groups. 

Distinct from the HGU95 dataset above, each gene group contains three spike-in 

genes. Thus there are 42 spike-in genes in total in this dataset. Each experimental 

group contains the same 42 spiked-in genes, but the genes in different gene group are 

spiked-in at different concentrations. For example, the concentration of the 14 gene 

groups in the first experimental group is 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 

256, and 512pM. Each subsequent experimental group rotates the spike-in 

concentrations by one group; i.e. experimental group 2 begins with 0.125pM and ends 

at 0pM, on up to experimental group 14, which begins with 512pM and ends with 

256pM. For more comprehensible, we show the details in Table 4. 
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 The same as HGU95 dataset, all arrays have a common background cRNA 

except for the 42 spike-in genes. Each experimental group contains 3 replicates, and 

replicates within each group result in a total of 42 arrays. This dataset is available at 

http://www.affymetrix.com/support/technical/sample_data/datasets.affx . 

A wholly defined control spike-in dataset 

 Due to the vast numbers of genes interrogated in a microarray experiment, only a 

relatively small fraction of gene expression differences tend to be validated in any 

given study. Choe et al. (2005) generated a new control dataset for the purpose of 

evaluating methods for identifying differentially expressed genes between two sets of 

triplicated hybridizations to Affymetrix GeneChips. The two sets are called spike-in 

samples and control samples, resulting in a total of 6 arrays. This dataset has three 

main features to facilitate the relative assessment of different analysis options. First, 

this experiment has 1331 spike-in genes spiked-in at known relative concentrations 

between the spike-in and control samples. The dataset has a larger fraction of gene 

expression differences than the general spike-in datasets. Second, this experiment 

used a defined background sample of 2535 genes presented at identical concentrations 

in both spike-in and control samples, rather than a biological RNA sample of 

unknown composition. Third, this dataset includes lower fold changes, beginning at 

only a 1.2-fold concentration difference to 4-fold concentration difference. This 

dataset is available at http://www.ccr.buffalo.edu/halfon/spike/index.html. 

 Here, we give a summary table for the three spike-in datasets in Table 2. 

Rat dataset 

 The dataset we used is just a part of the complete dataset from a rat 

toxicogenomic study, which is one of the reference datasets of MAQC (MicroArray 

Quality Control) project 

(http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/). The purpose of 
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the MAQC project is to provide quality control tools to the microarray community in 

order to avoid procedural failures and to develop guidelines for microarray data 

analysis by providing the public with large reference datasets along with readily 

accessible reference RNA samples. The rat toxicogenomic dataset was generated 

using 36 RNA samples from rats treated with three chemicals (aristolochic acid, 

riddelliine and comfrey). In total there were six treatment/tissue groups: kidney from 

aristolochic acid–treated rats (K_AA), kidney from vehicle control (K_CTR), liver 

from aristolochic acid–treated rats (L_AA), liver from riddelliine- treated rats 

(L_RDL), liver from comfrey-treated rats (L_CFY) and liver from vehicle control 

(L_CTR). Within each treatment/tissue group there were six biological replicates.  

Aliquots of these samples were prepared and distributed to each of the test sites for 

gene expression profiling using microarrays from four different platforms (Affymetrix, 

Agilent, Applied Biosystems and GE Healthcare). There are two test sites using 

Affymetrix platform, and we adopt only the data from the two test sites. Each test site 

generated 36 arrays respectively. In this paper, when we refer to the Rat dataset, it 

denotes the 72 arrays in all which were generated from the two sites using Affymetrix 

platform. This dataset is available at 

http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ . 
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3 Materials and Methods 

Our purpose is to evaluate which combinations of preprocessing and differential 

expression methods perform well. Specifically, we compare the combinations 

according to two main criteria, the validity and the reliability of the combinations. 

First, we select datasets having some particular properties in terms of different criteria 

and some interested preprocessing method is used on the datasets to summary the 

probe set measurements. Then, these measurements of genes are performed by some 

interested differential expression method, and the likely differentially expressed genes 

chosen by certain combination of preprocessing and differential expression method 

are listed. Based on the list of differentially expressed genes, we can evaluate the 

validity and the reliability of the combination. We divide the assessment of validity 

and reliability into two Sections 3.2 and 3.3 respectively in detail.  

 

3.1  Implementation of methods selected 

There are four preprocessing methods and five differential expression methods 

applied to each of the datasets we selected. Three statistical models, MAS 5.0, dChip 

and RMA, and one physical model, PDNN, are considered. The five differential 

expression methods are fold-change, two sample t-test, SAM, EBarrays and limma. A 

total of 35 combinations are resulted. We may regard each criterion of methods as 

“score” to express the level of significance. The higher the score, the more significant 

the result. 

 

3.1.1  Four preprocessing methods used 

MAS 5.0 

MAS 5.0 (Microarray Suite software, Version 5.0) is offered by Affymetrix 
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(Affymetrix, 2002). Each probe including PM and MM must be preprocessed for 

background adjustment according to its location on the array. To avoid obtaining a 

negative value when subtracting MM from PM, MAS 5.0 introduces the concept of an 

Ideal Mismatch (IM) derived from MM and never bigger than its PM. The expression 

level is defined as the anti-log of a robust average (Tukey biweight) of the value 

( ){ }jgjg IMPM −2log  where jgjg IMandPM  represent the PM and IM intensities for 

j-th probe pair of gene g. Finally, the expression level is scaled using a trimmed mean. 

We apply the absolute analysis of MAS 5.0 in R.  

dChip ( including dChip(PM-MM) and dChip(PM-only)) 

 Li and Wong (2001a) proposed a Model Based Expression Index model (MBEI) 

where multiple arrays are available to estimate the expression levels. For any given 

gene, the model is defined as follows: 

εφαθνεφθαθν

εαθν

+++=+++=

++=

)( jjijjijijij

jijij

PM

MM
(1) 

where ijPM  and ijMM denote the PM and MM intensity values from the i-th array 

and the j-th probe pair for this gene. iθ  denotes the expression index for this gene in 

the i-th array. jα  and jφ  represent the increasing rate of intensity value of the 

ijMM  probe and the additional increasing rate in the corresponding ijPM  probe 

respectively. jν  is the baseline response of the j-th probe pair due to nonspecific 

hybridization, and ε  are assumed to be independent normally distributed errors. Two 

methods based on the model above are developed: (1) subtracting MM from PM 

intensities (Li and Wong, 2001a) (2) using PM intensities only (Li and Wong, 2001b). 

Li and Wong’s measure is defined as the maximum likelihood estimates of the 

expression index iθ  and the estimation procedure includes rules for outlier removal. 
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“Invariant Set” normalization method is used to normalize arrays at PM and MM 

probe levels.  

RMA 

 Irizarry et al. (2003a) developed a log scale linear additive model using only PM 

probes, it is also known as RMA (Robust Multi-array Analysis). For any given gene, it 

is described as ijjiij aePMT ε++=)( , where ijPM  is the PM intensity of array i 

and probe pair j for this gene. )( ⋅T  represents the transformation that background 

corrects, normalizes by quantile normalization, and logs the PM intensities. The three 

terms on the right represent the log2 scale expression value for this gene of array i, the 

log scale affinity effects for probe j, and error respectively (Irizarry et al., 2003b). To 

protect against outlier probes, a robust procedure such as median polish is used to 

estimate model parameters and the log scale measure of expression level ie . 

PDNN 

 Zhang et al. (2003) proposed a simply free energy model, called 

“position-dependent nearest–neighbor (PDNN) model”. Different from most methods 

focused on statistical models such as the methods introduced above, it is a physical 

model taking into account the sequence of nearest-neighbors (adjacent two bases) and 

the position of these nucleotide pairs. In the PDNN model, the signal of a probe is 

divided into three components: gene-specific binding, non-specific binding, and 

uniform background. And the free energy of the two bindings of a probe can be 

expressed as a weighted sum of its stacking energies (Sugimoto et al., 1995), where 

the stacking energies depend on the sequence of nearest-neighbors and the weights 

depend on the position along the probe. Further technical details can be found in 

Zhang et al. (2003). 
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3.1.2  Five differential expression methods used 

Fold-change (FC) 

 Fold-change is the most commonly used method of detecting differentially 

expressed gene between two compared condition samples. For any given gene, 

fold-change is calculated by the probe set intensity ratio of two compared condition 

samples. If there are replicates, we usually average across the samples for each 

condition in advance. Then the ratio of these averaged values is referred as 

fold-change. Fold-change is employed as the score of significance. 

Two sample t-test ( including t-test and Welch t-test) 

 The simplest statistical method for comparing means between two groups is two 

sample t-test. When carrying out a two sample t-test, the variances of the two samples 

may be assumed to be equal or unequal. The approach of unequal variance 

assumption is also called Welch’s t-test. We employ minus p-value as the score of 

significance. 

SAM (Significance Analysis of Microarrays) 

 It was proposed by Tusher, Tibshirani and Chu (2001). The method is based on a 

modified version of the standard t-statistic to adjust the high variance probably caused 

by a low expression level. For each gene g, the “relative difference” gd  in gene 

expression is defined as the form which adds an exchangeability factor to the 

denominator of the standard two sample t-statistic for equal variance. Exchangeability 

factor is added to ensure that the variance of gd  is independent of gene expression 

level. Rank all genes by the observed relative difference gd  and denote the new 

arrangements as )(gd . B sets of permutations of the samples are taken to obtain the 

expected relative difference *
)( gd  by a similar way (For more details, see Tusher et 
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al., 2001 and Chu et al.). A scatter plot of )(gd  vs. *
)( gd  is used and the genes apart 

from the *
)()( gg dd =  line by a distance greater than the threshold Δ  are regarded as 

differentially expressed genes.  

Using the samr package in R, the differentially expressed genes can be identified 

by giving a threshold Δ . But the number of genes selected is determined by the given 

threshold Δ , we can not set at will. And further filtering criteria which are not 

mentioned in the original paper (Tusher et al., 2001) are carried out. Thus, we give up 

using the samr package, and employ the difference between )(gd  and *
)( gd  as the 

score of significance according to the methodology referred in Tusher et al.(2001). 

EBarrays ( including of EBarrays(GG) and EBarrays(LNN)) 

 An empirical Bayes analysis, implemented in Bioconductor EBarrays package, 

attempt to describe the probability distribution of expression levels for gene g and 

select differentially expressed genes by posterior probability of differential expression. 

Two mixture models, Gamma-Gamma model and lognormal-normal model, are 

considered according to their sampling and prior distributions. For more details on the 

methodology, see Newton et al. (2001), Kendziorski et al. (2003), and Newton and 

Kendziorski (2003). We employ the posterior probability of differential expression as 

the score of significance. 

limma 

 Smyth (2004) proposed a method of linear models and empirical Bayes methods 

which is implemented in the Bioconductor limma package (Smyth, 2005). The linear 

model for gene g is 
gg

XyE
~~~

)( α= , where 
g

y
~

is the expression level vector of I 

arrays in total for this gene, 
~
X  is the design matrix, and 

g~
α is a vector of 

coefficients. Certain contrasts of the coefficients are assumed to be of biological 
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interest and these are defined by 
g

T

g
C

~~~
αβ = . In general, we are interested in testing 

whether individual contrast values gjβ  are equal to zero. The basic statistic with 

respect to a certain contrast gjβ  is the moderated t-statistic in which posterior 

residual standard deviations are used in place of ordinary standard deviations by 

empirical Bayes approach. Alternative statistic, called B-statistic, represents log 

posterior odds that the gene is differentially expressed. The default argument in limma 

package is B-statistic and we employ it as the score of significance. 

 

3.2 Assessment of validity 

To properly compare the combinations in terms of validity, we request that the 

true differentially expressed genes of the dataset must be known. Thus, we choose 

three datasets which provide the results of spike-in experiments where gene fragments 

have been added at known concentrations. The three datasets are human genome U95 

dataset from Affymetrix, human genome U133 dataset from Affymetrix, and a wholly 

defined control spike-in dataset (Choe et al., 2005). The three datasets provide various 

number of spike-in genes. ROC curves are used for the evaluation. We describe the 

three datasets briefly as follow. 

Affymetrix human genome U95 dataset (HGU95) 

 This dataset was used to develop and validate MAS 5.0 algorithm. It consists of 

59 arrays, where 14 different cRNA gene fragments have been spiked-in at various 

known concentrations ranging from 0.25 to 1024pM. Except for the 14 spike-in genes, 

a common background cRNA have been added at all arrays. The 14 spike-in genes are 

arranged in the format similar to a 14×14 cyclic Latin square design with each 

concentration appearing once in each row and column. The difference from a 14×14 

cyclic Latin square design is that there are two out of the 14 spike-in genes spiked-in 
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at the same concentrations across arrays (Table 3). Most experimental groups contain 

3 replicates, except that the 3rd experimental group contains only 2 replicates and 

both the 13th and 14th experimental group contain 12 replicates. For more details, see 

Affymetrix website and this dataset is available here 

http://www.affymetrix.com/support/technical/sample_data/datasets.affx. 

Affymetrix human genome U133 dataset (HGU133) 

 Distinct from the HGU95 dataset above, this dataset includes many more spikes, 

and a smaller concentration spike (0.125pM). This dataset consists of 14 gene groups 

in 14 experimental groups. A cyclic Latin Square format is designed for each gene 

group and experimental group. Each gene group containing three spike-in genes and 

each experimental group containing 3 replicates result in a total of 42 spike-in genes 

and 42 arrays. For more details, see Affymetrix website and this dataset is available 

here 

http://www.affymetrix.com/support/technical/sample_data/datasets.affx  

A wholly defined control spike-in dataset (Golden Spike) 

Choe et al. (2005) generated a new control dataset which contains two sets of 

triplicated hybridizations to Affymetrix GeneChips. The two sets are called spike-in 

samples and control samples respectively, resulting in a total of 6 arrays. This dataset 

has three main features: (1) 1331 spike-in genes spiked-in at known relative 

concentrations between the spike-in and control samples, a larger fraction of gene 

expression differences. (2) a defined background sample of 2535 genes presented at 

identical concentrations in both spike-in and control samples, rather than a biological 

RNA sample of unknown composition. (3) a lower fold changes beginning at only a 

1.2-fold concentration difference. This dataset is available at 

http://www.ccr.buffalo.edu/halfon/spike/index.html . 
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Methodology of comparison 

In order to evaluate the validity of these combinations, a receiver operating 

characteristic curve (simply called ROC curve) is used. ROC curve, which is widely 

used to evaluate the differential expression methods in microarray analysis, is a 

graphical plot of the sensitivity versus 1-specificity for a binary classifier system as its 

discrimination threshold is varied. Sensitivity and specificity are statistical 

measurements of how well a binary classification test correctly identifies the truth.  

Sensitivity is defined as the probability that the test lead to make positive decision 

given that the truth is actually a positive case. This is also known as the true positive 

rate (TPR). And specificity is defined as the probability that a negative decision is 

made when the truth is negative. In other words, 1-specificity represents that the 

probability that the positive decision is made when the truth is negative, and the 

meaning is equivalent to the false positive rate (FPR). For most differential expression 

methods, null hypothesis is usually defined as gene expressed equally under two 

different conditions. The four outcomes of a test can be formulated as the following 

table. 

TP : true positive     FP : false positive 
FN : false negative    TN : true negative
 
TPR : true positive rate (sensitivity) 
FPR : false positive rate (1-specificity) 

 

Null hypothesis 0H  
(non-differentially expressed) 

 
 

False True 
Reject 0H  

(Called significant) 
TP 

( β−1 ) 
FP 
(α ) 

Not reject 0H  
(Not called significant)

FN TN 
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Thus, the ROC curve is represented equivalently as a plot of the false positive 

(FP) rate as the x coordinate versus the true positive (TP) rate as the y coordinate. It 

provides tools to select possibly optimal methods by comparing the area under ROC 

curve (simply called AUC). The area measures discrimination, that is, the ability of 

the test to correctly classify those positive case and negative case in fact. The range of 

AUC is from 0 to 1 since both the x and y axes have values ranging from 0 to 1. The 

bigger its AUC is, the better overall performance of this test. We take advantage of 

ROC curve and AUC as criteria to assess the validity of different combinations. 

 Here we make a brief description of how to accomplish an average ROC curve 

for a selected combination of some dataset, preprocessing method, and differential 

expression method. For each spike-in dataset, spike-in genes are considered as true 

positives and non-spike-in genes as true negatives. For each dataset, different 

experimental groups imply that the spike-in genes are spiked-in at different 

concentrations. Thus, only replicates are regarded as being in the same experimental 

group. For each pair of experimental groups, we compute the number of true positive 

(TP) and false positive (FP) for a large range of thresholds. To form an average ROC 

curve, we compute the average TP according to each FP value. An average ROC 

curve is created by plotting the FP versus its average TP. And the area under average 

ROC curve is the measure of this combination (Cope et al., 2004). 

 

3.3 Assessment of reliability 

To properly compare the method combinations in terms of reliability, we use a 

particular dataset which was generated using samples from rats and these samples are 

averagely distributed to different test sites (Guo et al., 2006). Overlap rates between 

two test sites using Affymetrix platform are compared. 
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Rat dataset 

 The dataset we used is just a part of the complete dataset from a rat 

toxicogenomic study (Choe et al., 2005), which was generated using 36 RNA samples 

from rats treated with three chemicals (aristolochic acid, riddelliine and comfrey). In 

total there are six treatment/tissue groups: kidney from aristolochic acid-treated rats 

(K_AA), kidney from vehicle control (K_CTR), liver from aristolochic acid-treated 

rats (L_AA), liver from riddelliine-treated rats (L_RDL), liver from comfrey-treated 

rats (L_CFY) and liver from vehicle control (L_CTR). Within each treatment/tissue 

group, there are six biological replicates. Aliquots of these samples were prepared and 

distributed to each of five test sites. Each test site generated 36 arrays respectively. We 

adopt only the partly data which come from the two test sites using Affymetrix 

platform. In this paper, when we refer to the Rat dataset, it denotes the 72 arrays in all 

which were generated from the two sites using Affymetrix platform. This dataset is 

available at http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ . 

Methodology of comparison 

 In order to compare the reliability of these combinations, we plot graphs where 

x-axis represents the number of genes selected as differentially expressed genes and 

y-axis represents the overlap rate of two gene lists for a given number of differentially 

expressed genes. For example, when we employ two sample t-test as differential 

expression method and use p-value 0.05 as threshold, two gene lists according to the 

two test sites are produced respectively by collecting the genes which have p-value 

smaller than 0.05. The numerator of overlap rate is defined as the number of 

overlapping genes for both two gene lists, and the denominator of overlap rate is 

defined as the total number of genes in the union of two gene lists. Thus, if there are 

genes { }edcba ,,,,  have p-value smaller than 0.05 for the first test site and genes 

{ }fedc ,,,  have p-value smaller than 0.05 for the second test site. Overlap rate is 
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calculated by 5.0
6
3
= . 

Four graphs are created respectively according to each of the four tissues 

suffering different treatments versus their controls, and an average graph is created for 

summarizing the four conditions. For given data from the same test site and employed 

competitive combination, genes are ranked by the “score” of significance of the 

employed competitive combination referred in Section 3.1.2. For a fixed threshold of 

the “score”, two significant gene lists from the two test sites are produced respectively. 

The overlap rates of the two gene lists are computed for a large range of threshold of 

the “score”. Competitive combinations are showed as lines in the graph and their 

overlap rates between two test sites are compared. The higher overlap rate, the better 

performance in reliability. 
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4 Results 

4.1 Assessment of validity by ROC curve 

 In practice, we rarely validate more the 100 genes as differentially expressed 

genes (Cope et al., 2004). Under both HGU95 and HGU133 datasets, the growth in 

TP of most combinations has already become flat gradually after FP>100 (Figure 1-1 

and Figure 1-3). Furthermore, in these two datasets, true positive rates of the best 

performance have reached about 95% when FP<100. As for these combinations 

performing worst, their true positive rates increase after FP>100; even so, their 

performances still can not catch up to these combinations which perform well before 

FP<100 (Figure 1-2 and Figure 1-4). Thus, we focus on the part of FP<100 and report 

the summary statistic AUC up to 100 FP in both HGU95 and HGU133 datasets. 

 The other spike-in dataset, Golden spike dataset, unlike most microarray 

experiments assuming a small percentage of genes are differentially expressed, has 

nearly 10% genes differentially expressed. Considering the situation of FP less than 

100 to evaluate performance is not suitable for this dataset. The patterns of all 

combinations where false positive rate larger than 0.1 are similar to the patterns where 

false positive rate close to 0.1 (Figure 1-5 and Figure 1-6). Thus, we recommend a 

conservative choice 0.1 as a cutoff of false positive rate.  

 Two algorithms of all combinations can not be executed in R and we have no 

information about their performance. That are HGU133 ＋ dChip(PM-MM) ＋

EBarrays(GG) and HGU133 ＋ PDNN ＋ EBarrays(GG). Thus, there are 35 

combinations for both HGU95 and Golden Spike datasets, and only 33 combinations 

for HGU133 dataset. 

 We use AUC up to 100 FP in HGU95 and HGU133 datasets and up to 0.1 false 

positive rate in Golden spike dataset as assistants. For each dataset, all combinations 
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are ranked based on AUC. If there is distinct difference of AUC between two 

continuously ranked combinations, combinations are apart from there and divided into 

two groups. By this way, total combinations are clustered in four groups for HGU95 

dataset, four groups for HGU133, and three for Golden spike dataset shown in Table 5, 

6, 7 respectively. 

For HGU95 dataset 

 Under HGU95 dataset, (1)RMA or PDNN cooperated with most differential 

expression methods have excellent performances, except for Welch t-test employed as 

differential expression method (Figure 1-2). (2)Conversely, the combinations of 

preprocessing method using MAS 5.0 or dChip(PM-MM) are inferior to other 

compared combinations (Figure 1-2), and the combinations in the group with smallest 

AUC is entirely composed by MAS 5.0 and dChip(PM-MM) as preprocessing method 

(Table 5). (3)As long as using Welch t-test as differential expression method, the 

performance is not good enough even if cooperated with RMA or PDNN (Figure 2-1). 

(4)For a fixed differential expressed method, performances vary largely by employing 

different preprocessing methods, except for t-test and Welch t-test (Figure 3-1). And 

all combinations using t-test outperform than using Welch t-test. 

For HGU133 dataset 

 Results in HGU133 are very similar to HGU95. (1)~(3) conclusions are shown in 

HGU133 as well (Figure 1-4 , Table 6 and Figure 2-2). The different result is that the 

performances vary largely by employing different preprocessing methods for each 

differential expressed method. 

For Golden Spike dataset 

 Results in Golden Spike dataset are unlikeness to two datasets above. (1)Instead 

of RMA and PDNN, dChip have outstanding performances applied to this dataset. 

Through viewing Figure 1-6, all combinations are divided into three groups clearly. 
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There are 11 combinations classified into the outstanding group, and all of them 

combine with dChip, especially for dChip(PM-only) that cooperated with every 

differential expression methods are contained. But dChip(PM-MM) has extreme 

performance. When it is cooperated with fitting differential expression method, such 

as t-test, Welch t-test, limma and SAM, the performance will be outstanding. On the 

contrary, it will perform disappointingly (Figure 2-3). (2)The following 7 

combinations are the worst, MAS5.0+SAM, MAS5.0+FC, MAS5.0+ EBarrays(GG), 

MAS5.0+ EBarrays(LNN), dChip(PM-MM)+FC, dChip(PM-MM)+ EBarrays(GG), 

and dChip(PM-MM)+ EBarrays(LNN) (Table 7). Notice that, for all of the three 

datasets, the five combinations, MAS5.0+FC, MAS5.0+ EBarrays(GG), MAS5.0+ 

EBarrays(LNN), dChip(PM-MM)+FC, and dChip(PM-MM)+ EBarrays(LNN), are 

classified into the worst group clustered by AUC. 

 

4.2 Assessment of reliability by overlap rate 

 For this dataset, the true number of differentially expressed genes is unknown. 

We show the patterns of all combinations in log scale in Figure 4, and find that the 

trend of most of combinations is similar when the number of genes selected as 

differentially expressed is less than 10000. Moreover, if there are too many genes 

identified as differentially expressed genes, a much lower threshold of “score” of 

significance of the differential expression method must be set. But it is not a practical 

threshold. Thus, our comparison in reliability focuses on the value of x-axis less than 

10000. Here, the four tissues suffering different treatments versus their controls are 

simply called as K_AA, L_AA, L_CFY, and L_RDL. 

Low overlap rate for MAS 5.0 and dChip(PM-MM) 

 For each condition, K_AA, L_AA, L_CYF, and L_RDL, combinations are 

divided into five small graphs by preprocessing method such as Figure 5-1~5-4. 
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Figure 5-1~5-3 show that the overlap rates across two sites are lower than 0.6 when 

using MAS 5.0 or dChip(PM-MM), but higher overlap rates occur for three other 

preprocessing methods, RMA, PDNN and dChip(PM-only). For L_RDL, overlap 

rates exceed 0.6 when using MAS 5.0 or dChip(PM-MM), but that is caused by 

overall improvement of overlap rate for L_RDL, not for MAS 5.0 or dChip(PM-MM) 

only (Figure 5-4).  

Performances for EBarrays 

 For each preprocessing method cooperated with EBarrays, very similar patterns 

under Gamma-Gamma model and Lognormal-Normal model are shown (Figure 6). 

Usually, when using EBarrays, there is no overlap gene when small genes selected as 

differentially expressed but a rapidly increment in overlap rate happens when 

differentially expressed genes increase to some level. The level varies with different 

preprocessing method, usually MAS 5.0 and dChip(PM-MM) have lower level and 

the others have a higher level. However, even if a rapidly increment happens, the 

performance is still not good enough when compared to other combinations that 

perform well. The feature above can be saw by Figure 5-1~5-4. 

Top 2 combinations  

Now we assign the same color to combinations using the same differential 

expression method in Figure 7, most lines are clustered by color obviously. The 

performance is worse when using t-test (green) or Welch t-test (blue), and is better 

when using FC (black). SAM and limma perform well when fewer genes selected as 

differentially expressed. 

 Because of the poor performances with MAS5.0, dChip(PM-MM), t-test, Welch 

t-test and EBarrays, we consider totally 9 permutations with RMA, dChip(PM-only), 

PDNN as preprocessing method and FC, SAM, limma as differential expression 

method in Figure 8. Figure 8 shows that the two combinations, RMA+FC (blue) and 
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PDNN+FC (yellow) have the highest overlap rate and nearly equal. Thus the top two 

combinations in reliability are RMA+FC and PDNN+FC. 
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5 Conclusions and Discussion 

5.1 Conclusions 

Validity 

Notice that, the 15 combinations of the first two groups clustered by AUC for 

HGU95 are also contained in the first two groups for HGU133, except that the 

algorithm of PDNN+EBarrays(GG) can not executed for HGU133 (Table 5, 6). Ranks 

of combinations are similar when using HGU95 and HGU133 with an approximate 

proportion of genes expressed differentially, but very different when using Golden 

spike dataset which has a large proportion of genes expressed differentially. Top 

combinations seem to be substituted according to the amount of spike-in genes in the 

dataset. If a high validity is required when considering an experiment with a few 

differentially expressed genes, we recommend RMA or PDNN as preprocessing 

method but are sure to avoid collocating with Welch t-test. Nevertheless for an 

experiment with a larger proportion of genes expressed differentially, dChip(PM-only) 

are recommended as preprocessing method, or dChip(PM-PM) collocated with t-test, 

Welch t-test, limma and SAM are recommended. No matter what dataset is used, the 

same five combinations have the lowest validity, that is, MAS5.0+FC, MAS5.0+ 

EBarrays(GG), MAS5.0+ EBarrays(LNN), dChip(PM-MM)+FC, and 

dChip(PM-MM)+ EBarrays(LNN). 

 Giving an overview of the three spike-in datasets, we assign the same color by 

preprocessing method in Figure 1-2, Figure 1-4, and Figure 1-6. Combinations of the 

same color are slightly clustered together. But when we assign the same color by 

differential expression method in Figure 3-1 ~ Figure 3-3, colors are in a disorderly 

behavior. It seems that preprocessing method influences the validity more than 

differential expression method.  
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Reliability 

 Actually, the patterns of the four conditions are similar, so we introduce an 

average graph that facilitates to compare all combinations. We assign the same color 

by preprocessing method in Figure 9-1 and by differential expression method in 

Figure 9-2, and find that differential expression method influences the reliability 

much more than preprocessing method because the combinations are clustered by 

differential expression methods. When employing FC as differential expression 

method, combinations have the highest overlap rates, especially for cooperated with 

RMA or PDNN.  

Consideration to both validity and reliability 

 We give an overview of both validity and reliability, validity is influenced more 

by preprocessing method, but reliability is influenced more by differential expression 

method. To give consideration to both validity and reliability, six combinations are 

recommended when differentially expressed genes are less, RMA+FC, RMA+ SAM, 

RMA+ limma, PDNN+FC, PDNN+SAM, and PDNN+limma. Three combinations are 

recommended when differentially expressed genes are more, dChip(PM-only)+FC, 

dChip(PM-only)+SAM, and dChip(PM-only)+limma. However, four combinations 

lead to both low validity and low reliability. That are MAS5.0+ EBarrays(GG), 

MAS5.0+ EBarrays(LNN), dChip(PM-MM)+ EBarrays(LNN), and dChip(PM-MM)+ 

EBarrays(LNN). If you only focus on the simple t-test as differential expression 

method, the assumption of equal variance is advised because of higher accuracy and 

precision result. 

 

5.2 Discussion 

 The strange pattern of EBarrays in Figure 6 is caused by too many genes having 

posterior probability of differential expression equal to 1. When ranking genes by 
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posterior probability, too many equal values make the order meaningless. For example, 

more than one thousand genes have posterior probability equal to 1 when using 

PDNN+EBarrays(GG) for L_CFY treatment/control. We can not select only 100 

genes as differentially expressed genes in this situation. Even if using spike-in 

datasets, there are still too many genes having posterior probability of differential 

expression equal to 1. That is one disadvantage of EBarrays. And we can not find the 

best way to deal with genes having the equal values of score of significance. 
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Table 1. Summary of the four preprocessing methods used. 
Model Method Background 

adjustment 
Normalization Summarization Reference 

MAS5.0 Locational adjustment 
& MM subtracted 

Scale normalization Tukey biweight average Affymetrix, 2002 

dChip 
(PM-MM) 

MM intensities are 
subtracted 

Invariant set Fit a model based 
expression index 

Li and Wong, 2001a 

dChip 
(PM only) 

PM only Invariant set Fit a model based 
expression index 

Li and Wong, 2001b 

 
 
 
Statistical model 

RMA Convolution 
background correction

Quantile normalization A robust linear model is 
fitted (median polish) 

Irizarry et al., 2003 

Physical model PDNN PM only Quantile normalization A free energy model 
accounts for background 
and signal. 

Zhang et al., 2003 

 
Table 2. Summary of the three spike-in datasets used. 

Dataset Spike-in genes / Total 
genes in array 

Conditions Total 
arrays 

Replicates (conditions) Fold change range Reference 

HGU95 14 / 12626 14 59 2 (1) , 3 (11) , 12 (2) 2 ~ 122  Affymetrix 
HGU133 42 / 22300 14 42 3 (14) 2 ~ 122  Affymetrix 

Golden Spike 1331 / 14010 2 6 3 (2) 1.2 ~ 4.0 Choe et al., 2005 
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Table 3. Affymetrix human genome U95 dataset contains 14 spike-in gene groups in each of 14 experimental groups. This table shows the 
spiked-in concentrations (pM). 

Spike-in Gene Groups 
37777_at 684_at 1597_at 38734_at 39058_at 36311_at 36889_at 1024_at 36202_at 36085_at 40322_at 407_at 1091_at 1708_at 

 
HGU95 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 0 0.25 0.5 1 2 4 8 16 32 64 128 0 512 1024 
B 0.25 0.5 1 2 4 8 16 32 64 128 256 0.25 1024 0 
C 0.5 1 2 4 8 16 32 64 128 256 512 0.5 0 0.25 
D 1 2 4 8 16 32 64 128 256 512 1024 1 0.25 0.5 
E 2 4 8 16 32 64 128 256 512 1024 0 2 0.5 1 
F 4 8 16 32 64 128 256 512 1024 0 0.25 4 1 2 
G 8 16 32 64 128 256 512 1024 0 0.25 0.5 8 2 4 
H 16 32 64 128 256 512 1024 0 0.25 0.5 1 16 4 8 
I 32 64 128 256 512 1024 0 0.25 0.5 1 2 32 8 16 
J 64 128 256 512 1024 0 0.25 0.5 1 2 4 64 16 32 
K 128 256 512 1024 0 0.25 0.5 1 2 4 8 128 32 64 
L 256 512 1024 0 0.25 0.5 1 2 4 8 16 256 64 128 

M, N, 

O, P. 512 1024 0 0.25 0.5 1 2 4 8 16 32 512 128 256 

E
xp

er
im

en
ta

l G
ro

up
s 

Q, R, 

S, T. 1024 0 0.25 0.5 1 2 4 8 16 32 64 1024 256 512 
 



 51

Table 4. Affymetrix human genome U133 dataset contains 14 spike-in gene groups in each of 14 experimental groups. This table shows the 
spiked-in concentrations (pM). 

Spike-in Gene Groups 
203508_at

204563_at

204513_s_at

204205_at 

204959_at 

207655_s_at 

204836_at 

205291_at 

209795_at 

207777_s_at

204912_at

205569_at

207160_at

205692_s_at

212827_at

209606_at

205267_at

204417_at

205398_s_at

209734_at

209354_at

206060_s_at

205790_at

200665_s_at

207641_at 

207540_s_at

204430_s_at

203471_s_at

204951_at

207968_s_at

AFFX-r2-TagA_at

AFFX-r2-TagB_at

AFFX-r2-TagC_at

AFFX-r2-TagD_at

AFFX-r2-TagE_at

AFFX-r2-TagF_at

AFFX-r2-TagG_at

AFFX-r2-TagH_at

AFFX-DapX-3_at

AFFX-LysX-3_at 

AFFX-PheX-3_at 

AFFX-ThrX-3_at 

 
HGU133 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 
2 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 0 
3 0.25 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125 
4 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25 
5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 
6 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 
7 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 
8 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 
9 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 

10 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 
11 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 
12 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 
13 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 

E
xp

er
im

en
ta

l G
ro

up
s 

14 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 
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Table 5. Area under ROC curve (FP<100) for HGU95 dataset. 

HGU95 Preprocessing Differential expression AUC (FP<100)

1 PDNN limma 0.948579 
2 RMA limma 0.94818 
3 PDNN FC 0.944115 
4 PDNN SAM 0.944046 
5 RMA FC 0.943009 
6 RMA SAM 0.942039 
7 RMA EBarrays(GG) 0.927794 
8 RMA EBarrays(LNN) 0.923941 

9 dChip(PM-only) limma 0.905235 
10 PDNN EBarrays(GG) 0.902541 
11 PDNN EBarrays(LNN) 0.90131 
12 PDNN t.test 0.898442 
13 RMA t.test 0.886426 
14 dChip(PM-only) t.test 0.88254 
15 dChip(PM-only) SAM 0.880197 

16 dChip(PM-only) FC 0.846546 
17 dChip(PM-MM) t.test 0.841166 
18 dChip(PM-MM) limma 0.835926 
19 dChip(PM-MM) SAM 0.825455 
20 dChip(PM-only) EBarrays(GG) 0.824395 
21 dChip(PM-only) EBarrays(LNN) 0.820898 
22 MAS5.0 t.test 0.815033 
23 MAS5.0 limma 0.799162 
24 MAS5.0 SAM 0.794531 
25 PDNN Welch.t 0.767155 
26 RMA Welch.t 0.7576 
27 dChip(PM-only) Welch.t 0.742685 

28 dChip(PM-MM) Welch.t 0.701568 
29 dChip(PM-MM) FC 0.668716 
30 dChip(PM-MM) EBarrays(LNN) 0.647701 
31 dChip(PM-MM) EBarrays(GG) 0.645769 
32 MAS5.0 Welch.t 0.644588 
33 MAS5.0 FC 0.615917 
34 MAS5.0 EBarrays(GG) 0.612341 
35 MAS5.0 EBarrays(LNN) 0.587304 
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Table 6. Area under ROC curve (FP<100) for HGU133 dataset 

HGU133 Preprocessing Differential expression  AUC (FP<100)

1 RMA EBarrays(GG) 0.863092 
2 RMA EBarrays(LNN) 0.862798 

3 RMA FC 0.817002 
4 RMA limma 0.81548 
5 RMA SAM 0.815347 
6 PDNN SAM 0.81162 
7 PDNN limma 0.809847 
8 PDNN FC 0.797237 
9 dChip(PM-only) limma 0.786985 
10 dChip(PM-only) SAM 0.785353 
11 PDNN EBarrays(LNN) 0.779613 
12 PDNN t.test 0.777446 
13 dChip(PM-MM) SAM 0.771588 
14 dChip(PM-only) t.test 0.770554 
15 dChip(PM-MM) limma 0.764034 
16 RMA t.test 0.752983 
17 dChip(PM-MM) t.test 0.752711 

18 MAS5.0 SAM 0.720726 
19 PDNN Welch.t 0.720642 
20 dChip(PM-only) FC 0.718709 
21 MAS5.0 limma 0.706744 
22 dChip(PM-only) Welch.t 0.706271 
23 RMA Welch.t 0.699885 
24 dChip(PM-only) EBarrays(GG) 0.684316 
25 MAS5.0 t.test 0.670529 
26 dChip(PM-only) EBarrays(LNN) 0.669003 
27 dChip(PM-MM) Welch.t 0.668742 

28 dChip(PM-MM) FC 0.577278 
29 MAS5.0 Welch.t 0.553659 
30 MAS5.0 EBarrays(GG) 0.552828 
31 MAS5.0 EBarrays(LNN) 0.549571 
32 dChip(PM-MM) EBarrays(LNN) 0.54558 
33 MAS5.0 FC 0.535097 
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Table 7. Area under ROC curve (FPR<0.1) for Golden Spike dataset. 

GoldenS Preprocessing Differential expression AUC (FP<100)

1 dChip(PM-only) limma 0.56372 
2 dChip(PM-only) SAM 0.559223 
3 dChip(PM-only) t.test 0.547767 
4 dChip(PM-only) Welch.t 0.535408 
5 dChip(PM-MM) t.test 0.521514 
6 dChip(PM-MM) Welch.t 0.512999 
7 dChip(PM-only) FC 0.507993 
8 dChip(PM-MM) limma 0.501604 
9 dChip(PM-only) EBarrays(GG) 0.496914 
10 dChip(PM-only) EBarrays(LNN) 0.493245 
11 dChip(PM-MM) SAM 0.481958 
12 PDNN FC 0.36528 
13 PDNN limma 0.345729 
14 RMA limma 0.338737 
15 RMA SAM 0.336246 
16 MAS5.0 t.test 0.335354 
17 RMA FC 0.334257 
18 RMA EBarrays(GG) 0.328945 
19 RMA EBarrays(LNN) 0.32708 
20 PDNN SAM 0.321463 
21 MAS5.0 Welch.t 0.314948 
22 PDNN EBarrays(GG) 0.312507 
23 PDNN EBarrays(LNN) 0.312131 
24 RMA t.test 0.307509 
25 RMA Welch.t 0.295258 
26 PDNN t.test 0.292082 
27 MAS5.0 limma 0.282148 
28 PDNN Welch.t 0.260143 
29 MAS5.0 SAM 0.108924 
30 dChip(PM-MM) FC 0.058929 
31 dChip(PM-MM) EBarrays(LNN) 0.034358 
32 dChip(PM-MM) EBarrays(GG) 0.016425 
33 MAS5.0 FC 0.00642 
34 MAS5.0 EBarrays(LNN) 0.004662 
35 MAS5.0 EBarrays(GG) 0.004136 
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Figure 1-1. ROC curves for all combinations using HGU95 dataset (35 in total). 
Combinations using the same preprocessing method are assigned to the same color 
as shown in the legend. 

 
Figure 1-2. ROC curves for all combinations using HGU95 dataset (35 in total) but 
FP<100.  



 56

 

Figure 1-3. ROC curves for all combinations using HGU133 dataset (33 in total). 
Combinations using the same preprocessing method are assigned to the same color 
as shown in the legend. 

 
Figure 1-4. ROC curves for all combinations using HGU133 dataset but FP<100 (33 
in total). 
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Figure 1-5. ROC curves for all combinations using Golden Spike dataset (35 in 
total). Combinations using the same preprocessing method are assigned to the same 
color as shown in the legend. 

 
Figure 1-6. ROC curves for all combinations using Golden Spike dataset (35 in total) 
but false positive rate<0.1.  
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Figure 2-1. For HGU95 dataset, ROC curves of all combinations are divided by 
preprocessing method. Combinations using the same differential expression method 
are assigned to the same color as shown in the legend. 

 
Figure 2-2. For HGU133 dataset, ROC curves of all combinations are divided by 
preprocessing method. 
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Figure 2-3. For Golden Spike dataset, ROC curves of all combinations are divided 
by preprocessing method. 

 
Figure 3-1. ROC curves for all combinations using HGU95 dataset. Combinations 
using the same differential expression method are assigned to the same color as 
shown in the legend. 
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Figure 3-2. ROC curves for all combinations using HGU133 dataset. 

 

Figure 3-3. ROC curves for all combinations using Golden Spike dataset. 
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Figure 4. Overlap rate of two differentially expressed gene lists generated using 
different combinations. The x-axis represents the number of genes selected as 
differentially expressed, and the y-axis is the overlap rate of two gene lists for a 
given number of differentially expressed genes. The four tissues suffering different 
treatments versus their controls are simply called as K_AA, L_AA, L_CFY, and 
L_RDL. The fifth graph shows an average plot across the four conditions. x-axis is 
in log scale. A line represents one kind of combinations and there are 36 
combinations in total. This graph shows the overall patterns. 
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Figure 5-1. Overlap rate of two differentially expressed gene lists generated using 
different combinations for K_AA treatment/control. All combinations are divided by 
preprocessing method. Combinations using the same differential expression method 
are assigned to the same color as shown in the legend. 

 
Figure 5-2. Overlap rate of two differentially expressed gene lists generated using 
different combinations for L_AA treatment/control. 
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Figure 5-3. Overlap rate of two differentially expressed gene lists generated using 
different combinations for L_CFY treatment/control. 

 
Figure 5-4. Overlap rate of two differentially expressed gene lists generated using 
different combinations for L_RDL treatment/control. 
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Figure 6. Overlap rate of two differentially expressed gene lists generated using 
different combinations with EBarrays as differential expression method. Ten 
combinations in total are shown in the legend. 
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Figure 7. Overlap rate of two differentially expressed gene lists generated using 
different combinations. Combinations using the same differential expression method 
are assigned to the same color as shown in the legend. All combinations are 
included. 
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Figure 8. Overlap rate of two differentially expressed gene lists generated using 
different combinations. Only the nine permutations with RMA, dChip(PM-only), 
PDNN as preprocessing method and FC, SAM, limma as differential expression 
method are plotted. 
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Figure 9-1. Average overlap rate of two differentially expressed gene lists generated 
using different combinations. Combinations using the same preprocessing method 
are assigned to the same color. All combinations are included. Black for RMA, red 
for MAS5.0, green for dChip(PM-MM), blue-black for dChip(PM-only), and baby 
blue for PDNN. 
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Figure 9-2. Average overlap rate of two differentially expressed gene lists generated 
using different combinations. Combinations using the same differential expression 
method are assigned to the same color. All combinations are included. Black for FC, 
red for SAM, green for t-test, blue-black for Welch t-test, baby-blue for 
EBarrays(GG), pink for EBarrays(LNN), and yellow for limma. 

 


