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二維存活資料之模式檢驗 

研 究 生: 林建威           指導教授: 王維菁 博士 

 

國立交通大學統計學研究所 

 

 

 

摘要 

在本論文中，我們針對右設限的資料提出了 Archimedean Copula(AC)模型的

模式檢驗法。我們拓展了 Shih(Biometrika,1998) 的想法，Shih 只針對 Clayton

模型作推論，而我們將之延伸到更大的集合，AC 家族。我們也針對 AC 家

族提出了新的資料生成演算法。我們提供模擬分析以佐證在有限樣本下，

我們所提出的方法之效能。 

 

 

 

 

 

 

 

關鍵字: Archimedean Copula, Clayton模型, Concordance估計量, Frailty模型, 

Gumbel 模型 
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ABSTRACT 

In the thesis, we propose a model diagnostic approach to selecting an 

Archimedean Copula (AC) model based on right censored data. The proposed 

method extends the idea of Shih (Biometrika, 1998), who considered the 

Clayton model, to a larger class of models, namely the AC family. We also 

propose a new algorithm for generating a model from the AC family. Simulation 

results are provided to examine finite-sample performances of the proposed 

method.  

 

 

 

 

 

 

 

Keywords: Archimedean Copula, Clayton model, Concordance estimator, Frailty 

model, Gumbel model. 
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Chapter 1: Introduction    

1.1 Motivation 

 In the literature of survival analysis, there has been substantial research on investigating 

the association among several lifetime variables. Copula models are the most common 

modeling choice because they possess nice properties that are suitable for describing lifetime 

variables.  

Specifically copula models form a class of bivariate distributions whose marginals are 

uniform on the unit interval (Genest and MacKay, 1986). Usually one can write  

( ) ( ), Pr ,C u v U u V v= < < , 

where ( ),U V  are uniform ( )0,1  variables marginally but correlated with the joint 

distribution function ( ) [ ] [ ]
2

.,. : 0,1 0,1C → . Let ( ),X Y  be a pair of continuous failure times. 

In applications of lifetime data analysis, the copula structure is usually imposed on the 

survival function such that  

( ) { }Pr , Pr( ), Pr( )X x Y y C X x Y y> > = > >               (1.1) 

Models in the copula family allow for separate investigation on the dependence structure and 

the marginal distributions. The former is often the main interest and hence is handled 

parametrically (i.e. the form of ( ),C u vα  is given). The latter is of less interest and hence 

dealt with nonparametrically. There has been a trend to derive general properties for a class of 

models rather than only a single member. The Archimedean copula (AC) family, which is a 

sub-class of the copula family, is attractive due to its nice analytical properties. For an AC 

model, the bivariate copula function ( ),C u vα  can be further simplified as  

( ) ( ) ( ){ }1,C u v u vα α α αφ φ φ−= +  for [ ], 0,1u v ∈ ,           (1.2) 

where ( ) [ ] [ ]: 0,1 0,αφ ⋅ → ∞  is a univariate function which has two continuous derivatives 
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satisfying ( )1 0αφ = , ( )
( )

0
t

t
t

α
α

φ
φ

∂
′ = <

∂
 and ( )

( )2

2
0

t
t

t

α
α

φ
φ

∂
′′ = >

∂
. AC models have the 

nice feature that the bivariate relationship can be summarized by the univariate function 

( )αφ ⋅ . 

 Many authors have considered semi-parametric inference of the copula parameter α , 

which measures the level of association, without specifying the marginal distributions. Note 

that α  is related to Kendall’s τ , a rank correlation measure, such that  

( ) ( ) ( )
1 1

0 0

4 , , 1C u v C du dvα ατ α = −∫ ∫ ,            (1.3) 

where τ  is defined as the difference of concordance and discordance probabilities for two 

independent pairs of ( ),X Y . These semi-parametric inference procedures require 

specification of ( ).,.Cα  or ( )αφ ⋅ .  

 A practical and important question is how can we select an appropriate model to fit the 

data? There have been some works on model selection including the papers by Genest and 

Rivest (1993), Shih (1998) and Wang and Wells (2000), just to name a few. In the thesis, we 

extend the approach of Shih (1998), who considered only testing the Clayton model, to 

general Archimedean copula models. 

1.2 Outline of the thesis 

 In Chapter 2, we review AC models and their properties. In Chapter 3, we review 

literature on model diagnostics, including general methodology and results developed for 

selecting a particular copula model. The proposed method is presented in Chapter 4. In 

Chapter 5, we review existing data generation algorithms and propose a new approach. 

Simulation analysis is presented in Chapter 6 and concluding remarks are given in Chapter 7.  
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Chapter 2: Review of Archimedean Copula models 

Under Archimedean Copula family, the relationship between association parameter α  

and Kendall’s τ  can be expressed as follows: 

( ) ( ) ( )
1 1

0 0

4 , , 1C u v C du dvα ατ α = −∫ ∫

( )       4 , 1                E C u vα= −    

( )
( )

1

0
       4 1.                

v
dv

v

α

α

φ

φ
= +

′∫             (2.1) 

If the form of the function ( )φ ⋅  is specified, then we can estimate the association parameter 

α  semi-parametrically by the above equation. 

In multivariate survival analysis, we usually use Kendall’s τ  to measure the 

dependence between random variables. Moreover, we have another dependence measurement 

called the local odds ratio which is related to the conditional version of  Kendall’s τ  in 

Oakes (1989). Local odds ratio has been used to measure the pointwise dependence. From 

Oakes (1989), for an Archimedean Copula model we know that the local odds ratio depends 

on ( ),t x y=  only through some function of ( ),S x y , that is, ( ) ( ){ }* , ,x y S x yθ θ= , where 

( )* ,x yθ  is the local odds ratio function defined as 

( )
( ) ( )
( ) ( )

*
Pr , Pr ,

,
Pr , Pr ,

X x Y y X x Y y
x y

X x Y y X x Y y
θ

= = ⋅ ≥ ≥
=

= ≥ ⋅ ≥ =
                  (2.2) 

For an AC model, we have ( ) ( ) ( )v v v vθ φ φ′′ ′= − . The paper by Frees and Valdez (1998) 

provides a nice review of copula models.  

We briefly summarize commonly seen members of the AC family. 
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Example 1: Clayton model 

The generating function can be written as ( ) ( )1v v α
αφ α−= − , ( )0,α ∈ ∞ . The joint 

survival function can be written as 

( ) ( ) ( ){ }
1

Pr , 1
x y

X x Y y S x S y
ααα

−−−
 > > = + −     . 

It follows that 
2

α
τ

α
=

+
. 

 A special property of the Clayton model reflects in its local odds ratio which can be 

expressed as ( )* , 1x yθ α= + . Notice that ( ){ },S x yθ  does not depend on ( ),x y . 

Example 2: Gumbel model 

The generating function can be written as ( ) ( ){ }
1

logv v
α

αφ
+

= − , [ )0,α ∈ ∞ . The joint 

survival function can be written as  

( ) ( )( ) ( )( )
1

11 1
Pr , exp ln lnx yX x Y y S x S y

αα α++ +
   > > = − − + −     

. 

It follows that 
1

α
τ

α
=

+
. And the local odds ratio, can be expressed as 

( )
( )

* , 1
log ,

x y
S x y

α
θ = − . Compared with the Clayton model, however ( )* ,x yθ   depends 

on the joint survival function at ( ),x y . 

In Figure 2.1, the curves of ( )vθ  for three AC models with the same Kendall’s 

0.75τ =  are plotted. Note that the relationships between α  and τ  between two models 

are different. Under the same value of Kendall’s τ , the corresponding values of α  are 

different. Note that in the Clayton model, we have 
2

6
1

τ
α

τ
= =

−
. In the Gumbel model, 

3
1

τ
α

τ
= =

−
. For the Frank model, by setting 0.75τ = , we know that 7.741e-07α =  which 

can be obtained by numerically solving  

( ){ } ( )11 4 log 1 logDτ α α= − − −    
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where  

( ) ( ){ }1
0

1t
D t e dt

α

α α= −∫ . 

It is worthy to mention that the local odds ratio, ( )vθ , plays an important role for our 

proposed method. 

 

 

 

 

 

Fig.2.1. The Curves of Local Odds Ratio Function 
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Chapter 3: Review Methods of Model Checking 

In §3.1, we briefly describe methods of model checking for a parametric distribution. In 

§3.2, we review useful results for selecting an appropriate Archimedean Copula model. 

3.1 Model checking for a parametric distribution 

Suppose ( ),X Y  follows a parametric model with the distribution function   

( ) ( ), Pr ,F x y X x Y yθ = ≤ ≤ . Usually one can compare ( )ˆ ,F x y
θ

 with its empirical 

estimator, 

( )
( )

1

,

,

n

i i

i

I X x Y y

F x y
n

=

≤ ≤

=
∑

. 

The comparison can be made based on the plots of two curves or some distance measures. For 

example: one may use the Q-Q plot to check whether the two quantiles are about the same. 

Alternatively one can set up for a formal hypothesis and test it using statistics such as the K-S 

test or Chi-squared test, both of which measure the “distance” between the two functions.  

3.2 Model selection for Copula models 

If the marginal distributions of X  and Y  were known, the approach mentioned above 

can be easily applied. Specifically let ( )1i iU S X=  and ( )2i iV S Y= , then we have 

( ),i iU V ( )1,...,i n= , and can compare ( )ˆ ,C u vα  and its empirical estimator  

( )
( )

1

,

,

n

i i

i

I U u V v

C u v
n

=

< <

=
∑

. 

However, the parametric forms of the marginal distributions are usually not specified, we 

have to give up this method. 

Genest and Rivest (1993) derived useful properties of AC models which have been 

applied for model selection. Specifically they define the distribution Copula 

( ) ( )( ),V C F X F Y=  and find that V  is distributed as ( ) ( )K v v vλ= − , where 
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( ) ( ) ( )v v vλ φ φ ′=  for 0 1v< ≤ . Therefore we can compare the difference between a 

nonparametric estimator of ( )( ) ( ) ( )Pr , PrF X Y v V v K v≤ = ≤ =  and if model-based 

representation, ( )v vαλ− , based on a selected distance measure. If the difference is small, we 

can say that the imposed model is appropriate for the data. 

We briefly illustrate how to perform the above ideas based on complete data 

( ) ( )1 1, ,..., ,n nX Y X Y . The purpose is to identify the form of αφ . First of all, we need 

observations ),(
~

iii YXFV =  in order to estimate ( )K v  nonparametrically. Since the form 

of (.,.)F  is unknown, Genest and Rivest (1993) proposed the following “pseudo” 

observations:  

( ){ } ( )# , : , 1 ,  1, ,
i j j j i j i

V X Y X X Y Y n i n= < < − = … , 

which are proxies of ),(
~

iii YXFV = . The procedure of model selection is stated below.  

1. Obtain the nonparametric estimate of ( )K v : ( ) ( )
1

1 n

n i

i

K v I V v
n =

= ≤∑ . 

2. Construct a semi-parametric estimate of ( )K v . We may have several candidates of 

models indexed by 
( )j

αφ  for Jj ,...,1= . For each candidate we need to estimate the value 

of α . Note that one may estimate Kendall’s τ  and use the relationship between τ  and 

α  to estimate α . Based on 

( ) ( )
( ) ( )

( ) ( ) /

j

j

j

v
K v v

v v

α
α

α

φ

φ
= −

∂ ∂
, 

we can estimate 
( ) ( )j

K vα  for Jj ,...,1= . 

3. Then we can compare the distance between )(vK n  and )(
)(

vK
j

α  for Jj ,...,1= . The 

most-fitted model is the one which gives the smallest distance between the two curves.  

The above procedure is not applicable when there is censoring. Wang and Wells (2000) 
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propose a nonparametric estimator of ( )K v  based on right censored data. 
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Chapter 4: The proposed method for model checking 

In this chapter, we present our proposal for model checking. The idea was motivated by 

the paper of Shih (1998) who proposed to test the Clayton model by comparing the difference 

between weighted and unweighted concordance estimators of the association parameter α . 

When the model assumption is correct, which is the condition of the null hypothesis, both 

estimators converge to the true parameter value. On the other hand, when the model 

assumption is false, the two estimators will converge to different values. Here we extend 

Shih’s idea to verify whether the model follows a particular Archimedean Copula model. We 

will use the Gumbel model as an example of AC models. 

Define ( )( ) 0
ij i j i j

I X X Y Y ∆ = − − >  , where ( ),i iX Y  and ( ),
j j

X Y  are two 

independent replications of ( ),X Y . This indicator variable denotes whether the pairs 

( ),i iX Y  and ( ),
j j

X Y  are concordant or discordant. The conditional expectation of 
ij

∆  

contains the information about the level of association. Specifically it follows that  

( )Pr =1 ,
ij ij ij

X x Y y∆ = =� �  

( ) ( )
( ) ( ) ( ) ( )

2 Pr , Pr ,

2 Pr , Pr , Pr , Pr ,

i i j j

i i j j i i j j

X x Y y X x Y y

X x Y y X x Y y X x Y y X x Y y

⋅ = = ⋅ ≥ ≥
=

 ⋅ = = ⋅ ≥ ≥ + = ≥ ⋅ ≥ = 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

Pr , Pr ,

Pr , Pr ,

Pr , Pr ,
1

Pr , Pr ,

X x Y y X x Y y

X x Y y X x Y y

X x Y y X x Y y

X x Y y X x Y y

= = ⋅ ≥ ≥

= ≥ ⋅ ≥ =
=

= = ⋅ ≥ ≥
+

= ≥ ⋅ ≥ =

 

( )( )
( )( )

,
,

, 1

S x y

S x y

α

α

θ

θ
=

+
                    (4.1) 

where ( )min ,
ij i j

X X X=�  and ( )min ,
ij i j

Y Y Y=�  and ( )( ),S x yαθ  is the local odds ratio 

defined in equation (2.2). Recall that for the Clayton model, ( )( ), 1S x yαθ α= +  and the 

Gumbel model,  
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( )( )
( )

, 1
log ,

S x y
S x y

α

α
θ = − . 

Now we will illustrate how to utilize equation (4.1) to construct different forms of estimating 

functions of α . In §  4.1, external censoring is ignored temporarily to simply the 

presentation. In § 4.2, the proposed methods are modified to handle censored data. 

4.1: Analysis based on Complete Data 

For complete data, we observe ( ) ( ){ }, 1,...,i iX Y i n=  which is a random sample of 

( ),X Y . Based on the moment condition of equation (4.1), one can construct the following 

estimating function of the association parameter α : 

( )( ) ( )0 , , | , ,
ij ij ij ij

i j

U S x y E X Yα
<

 = ∆ − ∆ ∑ � �  

where ( ) ( )
( )( )

( )( )
,

| , Pr 1 ,
, 1

ij ij

ij ij ij ij ij ij

ij ij

S X Y
E X Y X Y

S X Y

α

α

θ

θ
∆ = ∆ = =

+

� �

� � � �

� �
.  

For the Gumbel model, the above estimating function becomes  

( )( )
( )

( )

0

1
log ,

, ,

2
log ,

ij ij

ij

i j

ij ij

S X Y
U S x y

S X Y

α

α
α

<

 
− 

 = ∆ −
 

− 
 

∑
� �

� �

       

( )
( )

log ,
                        .

2 log ,

ij ij

ij

i j ij ij

S X Y

S X Y

α

α<

 −
 = ∆ −

⋅ −  
∑

� �

� �
          (4.2) 

Here notice that, we use the conditional probability rather than the unconditional one. The 

latter is used in Shih’s paper (1998) since both are equivalent under the Clayton model. 

Note that ( ) ( ), Pr ,S x y X x Y y= > >  is a nuisance function. For complete data, 

( ),S x y  can be estimated by the empirical estimator 

( )
( )

1

,
ˆ , .

n

i i

i

I X x Y y

S x y
n

=

> >

=
∑
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To obtain an estimator of α , α̂ , we solve ( )( )0
ˆ, , 0U S x yα = . Since an explicit solution is 

not available, we suggest to solve the equation by numerical methods, say the 

Newton-Raphson method, which often requires computing the derivative of ( )( )0 , ,U S x yα  

with respect to α . For the Gumbel model, the derivative equals 

( )( )

( )( )( )
( )

( )
2 2

,

log ,
.

2 log ,1 ,

ij ij

ij ij

i j i j
ij ijij ij

d S X Y

S X Y
d

S X YS X Y

α

α

θ

α

αθ< <

 
  −
   =
    −+      

  

∑ ∑

� �

� �

� �� �

 

The function in (4.2) can be viewed as an unweighted version. That is, 
ij

∆  is treated 

equally for each combination of i  and j . However since different combinations of 
ij

∆  are 

associated with different values of ( , )
i i

X Y  and ( , )
j j

X Y , it is reasonable to suspect that such 

additional information may be utilized in the estimation procedure. Clayton (1978) proposed a 

conditional likelihood function for the Clayton family. We can modify his method for AC 

models. The resulting log-likelihood function is given by  

( )
( )( )

( )( )
( )

( )( )
, 1

L log 1 log ,
1 , 1 ,

ii ii ij

ij

i i jii ii ii ij ij ij

S X Y R

R S X Y R S X Y

α

α α

θ
α

θ θ<

   −   = + − ∆
   − + − +
   

∑ ∑
� �

� � � �
 

where ( ),
ij ij ij

R R X Y= � �  and ( ) ( )
1

, ,
n

i i

i

R x y I X x Y y
=

= ≥ ≥∑ . Now we derive the score 

function for an Archimedean copula model: 

( ) ( )

( )( )
( )( ) ( )

( )( )
( )( )ln , ,11

.
1 , 1 ,

ii ii ij ijijii

i i j
ii ii ii ij ij ij

d S X Y d S X YL R

d dR S X Y R S X Y

α α

α α

θ θα

α α αθ θ<

∆ −∂ −
= ⋅ + ⋅

∂    − + − +
   

∑ ∑
� � � �

� � � �

For the Gumbel model, the score function becomes 

( ) ( )

( )
( )

( )
( )

11
.

log ,
log ,

log ,

ijii

i i j ij ij ij

ii ii ii

ii ii

L R

R S X Y
R S X Y

S X Y

α

α αα
α

<

− ∆∂ − −
= +

∂    −   − −  
 

∑ ∑
� �

� �

� �

 

The two terms in the right-hand side of the above equation can be combined using the 
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technique in Oakes (1986). That is, if 
ii

j R∈ , then 
ii ij

R R= , 1
ij

∆ =  and 1
ii

ij iij R
R

∈
∆ = −∑ . 

It follows that 

( )
( )L

S
α

α
α

∂
=

∂
 

( )( )
( )( ) ( )

( )( )
( )( )ln , ,1

        
1 , 1 ,

ii
ij ii ii ij ijijj R

i i j
ii ii ii ij ij ij

d S X Y d S X Y

d dR S X Y R S X Y

α α

α α

θ θ

α αθ θ

∈

<

∆ ∆ −
= ⋅ + ⋅

   − + − +
   

∑
∑ ∑

� � � �

� � � �

( )( )
( )( ) ( )

( )( )
( )( )ln , ,1

        
1 , 1 ,

ii

ii ii ij ijijij

j R
i i j

ii ii ii ij ij ij

d S X Y d S X Y

d dR S X Y R S X Y

α α

α α

θ θ

α αθ θ
∈

<

∆ −∆
= ⋅ + ⋅

   − + − +
   

∑∑ ∑
� � � �

� � � �

( )( )
( )( ) ( )

( )( )
( )( )ln , ,1

        
1 , 1 ,

ij ij ij ijijij

i j
ij ij ij ij ij ij

d S X Y d S X Y

d dR S X Y R S X Y

α α

α α

θ θ

α αθ θ<

∆ −∆
= ⋅ + ⋅

   − + − +
   

∑
� � � �

� � � �

( )( )
( ) ( )( )

( )( ) ( )( )
( )( )

, 1 ln , ,
        .

, 11 ,

ij ij ij ij ij ij

ij

i j
ij ijij ij ij

S X Y d S X Y S X Y

d S X YR S X Y

α α α

αα

θ θ θ

α θθ<

 +  
= ⋅ ∆ − 

  +− +    

∑
� � � � � �

� �� �
 

(4.3) 

For the Gumbel model for illustration, the equation equals 

( )
( )
( )

( )
( )

( )

log ,

2 log ,2 log ,
.

log , log ,

ij ij

ij

ij ijij ij

i j ij ij ij ij ij

S X Y

S X YS X Y
S

R S X Y S X Y

α

αα
α

α α<

 −
∆ − 

−−   = − ⋅
   − −   

∑

� �

� �� �

� � � �
 

If we treat the estimating function in (4.2) as an unweighted version, the weight function in 

equation (4.3) is 

( )( )
( ) ( )( )

( )( ), 1 ln ,
,

1 ,

ij ij ij ij

ij ij ij

S X Y d S X Y

dR S X Y

α α

α

θ θ

αθ

+
⋅

 − +
 

� � � �

� �
 

which accounts for the effects of the data and model properties. 

Next, one can derive the Fisher information function, that is, the derivative of minus 

score function. It follows that  
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( )
( )S

I
α

α
α

∂
= −

∂
 

( )( )
( ) ( )( )

( )( ) ( )( )
( )( )

, 1 ln , ,
        

, 11 ,

ij ij ij ij ij ij

ij

i j
ij ijij ij ij

S X Y d S X Y S X Y

d S X YR S X Y

α α α

αα

θ θ θ

α α θθ<

 +∂  
= − ⋅ ∆ − 

∂   +− +    

∑
� � � � � �

� �� �

( )( )

( )( )
( )( )

( )( )

2

,

, 1
        1

,1 ,

ij ij

ij ij

ij

i j
ij ijij ij ij

d S X Y

d S X Y

S X YR S X Y

α

α

αα

θ

α θ

θθ<

 
 

   +   = − − ∆ ⋅
  − +    

∑

� �

� �

� �� �
 

                  

 

( )( )

( )( )

( )( ) ( )( )

2

2

2 2

,

1
     .

1 , ,,

ij ij

ij

ij ij ij ij ijij ij

d S X Y

d

R S X Y S X Yd S X Y

d

α

α αα

θ

α

θ θθ

α

 
 
 

∆  
− −     − +       
      

� �

� � � �� �

 

For the Gumbel model, the Fisher information function becomes, 

( )

( ) ( ) ( )
( )

( )
( )

( ) ( )

2log , 1 log , log ,

log , log ,
.

log , log ,

ij ij ij ij ij ij ij ij

ij ij ij ij ij

i j ij ij ij ij ij

S X Y S X Y S X Y

R S X Y S X Y
I

R S X Y S X Y

α

α α
α

α α<

  − − ∆ − ∆   − 
   − −     = −
   − −   

∑

� � � � � �

� � � �

� � � �
 

Again the nuisance function ( ),S x y  can be estimated separately and then the estimator is 

plugged into the score function and Fisher information function. The solution ˆ
w

α  requires 

using numerical methods such as the Newton-Raphson method approach. 

4.2: Analysis based on Right Censored Data 

Now we incorporate external situation censoring in the analysis. Let ( ),i iA B  be the 

bivariate censoring variables. One only observes ( )1 2, , ,
i i i i

X Y δ δ� � , where ( )min ,i i iX X A=� , 

( )min ,i i iY Y B=� , ( )1i i iI X Aδ = ≤  and ( )2i i iI Y Bδ = ≤ . In presence of right censoring, we 

know the order of 
i

X  and 
j

X  if and only if min( , )ij i jX A A≤� . Similarly the order of 
i

Y  
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and 
j

Y  can be known if and only if min( , )ij i jY B B≤� . Define ( ),
ij ij ij ij ij

Z I X A Y B= ≤ ≤�� � � , 

where min( , )ij i jA A A=�  and min( , )ij i jB B B=� . The value of 
ij

∆  is observed if and only if 

1
ij

Z = . We will modify the estimating procedures that only include comparable pairs (i.e. 

those with 1
ij

Z = )  in the analysis. 

The unweighted estimating function of the association parameter α  can be modified as 

( )( ) ( )0 , , | , ,
ij ij ij ij ij

i j

U S x y E X Y Zα
<

 = ∆ − ∆ ⋅ ∑ � �  

where  

( ) ( )
( )( )

( )( )
,

| , Pr 1 , .
, 1

ij ij

ij ij ij ij ij ij

ij ij

S X Y
E X Y X Y

S X Y

α

α

θ

θ
∆ = ∆ = =

+

� �

� � � �

� �
 

For the Gumbel model, the above function then becomes  

( )( )
( )

( )

0

1
log ,

, ,

2
log ,

ij ij

ij ij

i j

ij ij

S X Y
U S x y Z

S X Y

α

α
α

<

 
− 

 = ∆ − ⋅
 

− 
 

∑
� �

� �

 

( )
( )

log ,
                        .

2 log ,

ij ij

ij ij

i j ij ij

S X Y
Z

S X Y

α

α<

 −
 = ∆ − ⋅

⋅ −  
∑

� �

� �
 

For estimating the function ( , )S x y  for right censored data, there exist several nonparametric 

estimators. Here we adopt the Dabrowska estimator (1988) which is the most well-known one 

among its competitors. The formula of ˆ( , )S x y  is given by 

( ) ( ) ( ) ( )
0
0

ˆ ˆ ˆ, ,0 0, 1 , ,
u x
v y

S x y S x S y L u v
< ≤
< ≤

= − ∆ ∆  ∏  

where 

( )
( ) ( ) ( )

( ){ } ( ){ }
10 01 11

10 01

ˆ ˆ ˆ, , ,ˆ ,
ˆ ˆ1 , 1 ,

u v u v u v
L u v

u v u v

Λ ∆ − Λ − ∆ − Λ ∆ ∆
∆ ∆ =

− Λ ∆ − − Λ − ∆
,
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( )
( )

( )

1 2

1
11

1

, , 1, 1
ˆ ,

,

n

i i i i

i

n

i i

i

I X u Y v

u v

I X u Y v

δ δ
=

=

= = = =

Λ ∆ ∆ =

≥ ≥

∑

∑
,

( )
( )

( )

1

1
10

1

, , 1
ˆ ,

,

n

i i i

i

n

i i

i

I X u Y v

u v

I X u Y v

δ
=

=

= ≥ =

Λ ∆ − =

≥ ≥

∑

∑
, 

( )
( )

( )

2

1
01

1

, , 1
ˆ ,

,

n

i i i

i

n

i i

i

I X u Y v

u v

I X u Y v

δ
=

=

≥ = =

Λ − ∆ =

≥ ≥

∑

∑
, 

and ( )ˆ ,0S x  and ( )ˆ 0,S y  are the usual Kaplan-Meier estimates, i.e.,  

( )
( )

( )

1

1

, 1
ˆ ,0 1

n

i

i

n

u x
i

i

I X u

S x

I X u

δ
=

≤

=

 
= =  

= − 
 ≥
  

∑
∏

∑
, 

( )
( )

( )

1

1

, 1
ˆ 0, 1

n

i

i

n

u y
i

i

I Y u

S y

I Y u

δ
=

≤

=

 
= =  

= − 
 ≥
  

∑
∏

∑
 

That is, the marginals of ( )ˆ ,S x y  are given by the univariate Kaplan-Meier estimates. 

 Numerical algorithms for solving α̂  often involve calculating the derivative of 

( )( )0 , ,U S x yα . For Gumbel’s model, this terms equals 

( )( )

( )( )( )
( )

( )
2 2

,

log ,
.

2 log ,1 ,

ij ij

ij ij

ij ij

i j i j
ij ijij ij

d S X Y

S X Y
d Z Z

S X YS X Y

α

α

θ

α

αθ< <

 
  −
   ⋅ = ⋅
    −+      

  

∑ ∑

� �

� �

� �� �

 

The weighted versions of the score function and Fisher information for censored data are 

given by  

( )
( )( )

( ) ( )( )
( )( ) ( )( )

( )( )
, 1 ln , ,

.
, 11 ,

ij ij ij ij ij ij

ij ij

i j
ij ijij ij ij

S X Y d S X Y S X Y
S Z

d S X YR S X Y

α α α

αα

θ θ θ
α

α θθ<

 +  
= ⋅ ∆ − ⋅ 

  +− +    

∑
� � � � � �

� �� �
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For the Gumbel model, it equals 

( )
( )
( )

( )
( )

( )

log ,

2 log ,2 log ,
.

log , log ,

ij ij

ij

ij ijij ij

ij

i j ij ij ij ij ij

S X Y

S X YS X Y
S Z

R S X Y S X Y

α

αα
α

α α<

 −
∆ − 

−−   = − ⋅ ⋅
   − −   

∑

� �

� �� �

� � � �
 

And 

( )

( )( )

( )( )
( )( )

( )( )

2

,

, 1
1

,1 ,

ij ij

ij ij

ij

i j
ij ijij ij ij

d S X Y

d S X Y
I

S X YR S X Y

α

α

αα

θ

α θ
α

θθ<

 
 

   +   = − − ∆ ⋅
  − +    

∑

� �

� �

� �� �
 

( )( )

( )( )

( )( ) ( )( )

2

2

2 2

,

1
     .

1 , ,,

ij ij

ij

ij

ij ij ij ij ijij ij

d S X Y

d Z
R S X Y S X Yd S X Y

d

α

α αα

θ

α

θ θθ

α

 
 
 

∆  
− − ⋅    − +       
      

� �

� � � �� �

 

For the Gumbel model, it equals  

( )

( ) ( ) ( )
( )

( )
( )

( ) ( )

2log , 1 log , log ,

log , log ,
.

log , log ,

ij ij ij ij ij ij ij ij

ij ij ij ij ij

ij

i j ij ij ij ij ij

S X Y S X Y S X Y

R S X Y S X Y
I Z

R S X Y S X Y

α

α α
α

α α<

  − − ∆ − ∆   − 
   − −     = − ⋅
   − −   

∑

� � � � � �

� � � �

� � � �
 

The solution ˆ
w

α  requires using numerical methods such as the Newton-Raphson method 

approach. 

4.3: Model checking 

By defining ˆ ˆlogγ α=  and ˆ ˆlog
w w

γ α= , Shih (1998) proves that when the Clayton 

model is correct, ( )
1

2 ˆ ˆ
w

n γ γ−  converges to a normal distribution with mean zero. For 

complete data, the variance is  

( ) ( ) ( ) ( )2wW V V Hη η η η= + − , 

where 1η α=  and 
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( )
( )

( )
( )

( ) ( )
( ) ( )

24 3 2

2 22

4 2 1 17 27 14 28 2 1

1 3 1 3 1
V L

η η η ηη
η η

η η η η

 + + + ++ 
= − 

+ + +  

  

is the variance of 
1

2 ˆn γ
−

, where ( )
( ) ( )

( )( )
1

0

3
,

3 1 2

k

i

k

i
L

k k

η η
η

η η

∞
=

=

Γ +
=

Γ + + +

∏
∑  and 

( ) ( )
42 1 1 1

2 6 5 1 1
2 2 2

w
V η η η η ψ η ψ η

    
′ ′= + + − + + − +    
    

 

is the variance of 
1

2 ˆ
w

n γ
−

, where ( ) ( )
2

c n cψ
−

′ = +∑  is the trigamma function, and  

( )
( )

( ) ( )( )
3 2

2

2

40 49 21 3
4 4 1 2 1 ,

2 1
H J

η η η
η η η η η

η η

+ + +
= − − + + +

+
 

where 

    ( )
( )

( ) ( ) ( )0

! 2
.

2 2k

k
J

k k k

η
η

η η η

∞

=

Γ
=

+ + Γ +
∑  

For right censored data, the asymptotic variance becomes 

( ) ( ) ( ) ( )2wW V V Hη η η η= + −� � � � , 

where 

( )
( )

( )
( ) ( ) ( ) ( )2

2
3

12 13 2 2 3 3 23 232 *
1

4 2
, , , , ,

1
i i

i

V N N C u v C u v C u v f x y dxdy
α

η
α δ =

+
=

+
∏∫∫�  

( )
( ) ( ) ( )

( ) ( )
( )

3
12 13 2 2 3 3 23 23

2
12 2 3 3

, , ,1
, ,

, ,
w i i

i

N N C u v C u v C u v
V f x y dxdy

S u v S u v
η

δ =

= ∏∫∫�  

( )
( )

( )
( ) ( ) ( )

( )
( )

3
12 13 2 2 3 3 23 23

*
12 2

2 2 , , ,
, ,

1 ,
i i

i

N N C u v C u v C u v
H f x y dxdy

S u v

α
η

α δδ =

+
=

+
∏∫∫�  

with ( )Pr an observation is uncensored in both componentsδ = , ( ) ( )1 1 2 1l lN α α= ∆ + − + , 

( )* Pr 1
ij

Zδ = = , ( )1min ,l lu x x= , ( )1min ,l lv y y= , 2,3l = , and ( )23 2 3max ,u u u= , 

( )23 2 3max ,v v v= . 
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 One can estimating the variance for complete data ( )W η  by ( )ˆ
wW η . The censored 

version ( )W η�  can be estimated by  

( )
( )

( )
( )* *

ˆ ˆ2 2 2 21 1 1ˆ ˆ ˆ ,
ˆ ˆ ˆ ˆˆ ˆ1 1

w w

ij ik ij ik

i j k ij w ik w

W Z Z N N
n R n R n

α α

δ α δ δ α δ≠ ≠

  + +  
= − −  

+ +    
∑

� �
 

where 

  ( ) ( )ˆ ˆ ˆ2 1ij ij w wN α α= ∆ + − + , 

( )1 2

1

1, 1
ˆ

n

i i

i

I

n

δ δ

δ =

= =

=
∑

, *ˆ
2

ij

i j

n
Zδ

<

 
=  

 
∑ . 

For complete data, the null hypothesis is rejected when 
( )

1 2

ˆ ˆ

ˆ

w

w
W n

γ γ

η

−

  

 is greater than 
1 2

Z α−  

with significance level equals to α , where 
p

Z  is the p-th percentile of the standard normal 

distribution. For censored data, the test statistic is changed to 
1 2

ˆ ˆ

ˆ

w

W n

γ γ−

 
 

. 

 For our proposal which can be extended to the whole AC family, we need to know the 

(asymptotic) distribution of  ˆ ˆ
w

γ γ− . Asymptotic normality should be correct based on the 

central limit theorem and the delta method. Formal derivations will be future work. However 

the proposed method involves the complicated plugged-in estimator, analytic estimation of the 

variance term will be impossible. Note that even there exists no analytic form for the variance 

of Dabrowska’s estimator. Hence we suggest to use the Jackknife algorithm to estimate the 

variance of the proposed test statistic, denoted by 2ˆ
Jackknifeσ . Our hypothesis testing is rejected 

if 
ˆ ˆ

ˆ

w

Jackknife

γ γ

σ

−
 is greater than 

1 2
Z α−  with the significance level equals to α . 
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Chapter 5: Data Generation Algorithms 

In this chapter, we discuss two existing algorithms for generating an AC model and then 

propose a new data generation algorithm.  

5.1 Frailty Approach 

5.1.1 Theoretical Background 

Suppose that there are p lifetime variables, 
1 2
, ,...,

p
X X X  which are correlated. Oakes 

(1989) might be the first one who used the idea of frailty to construct multivariate 

distributions. He assumes that the dependence among these variables can be fully explained 

by a latent variable γ , called “frailty”. That is, given the value of γ , these variables are 

independent such that one can write 

( ) ( )1 1
1

,..., | |
p

p p j j
j

S X x X x S X xγ γ
=

> > = Π > . 

If the failure times represent the lifetimes of family members, γ  represents the shared 

genetic/environmental factor. Furthermore, γ  affects each of 
j

T  via a proportional hazard 

model such that  

( ) ( )|j jh x Z h x γ= ⋅  (or equivalently ( ) ( )|
j j

S x Z B x
γ

= ), 

where ( ) ( )( )exp
x

j j
o

B x b t dt= −∫ . Since γ  is a (positive) random variable, the unconditional 

joint survival function can be expressed as  

( ) ( )1 1
1

,...,
p

p p j j
j

S X x X x E B x

γ

γ
=

   
> > = Π     

.          (5.1) 

Notice that the Laplace transform of γ  is defined as  

( ) ( ) ( )t txL t E e e dF xγ
γ γ

− −= = ∫ , 

where Fγ  is the distribution function of γ . 

Oakes (1989) also pointed out that there is a relationship between the above frailty 
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family and the AC family introduced earlier. That is the inverse of the generating function 

( )1

αφ − ⋅  for an AC model is actually the Laplace transform of γ . To see this, we can view 

( )L t  as the moment generating function evaluated at t− . If we know the form of ( )L t , we 

derive its distribution. Moreover, 

( ) ( ) ( ){ }1 1 1 1
,...,

p p p p
S X x X x E B x B x

γ

γ
 > > =  �  

              ( ) ( ) ( )( ){ }1 1 2 2
exp ln ln

p p
E B x B x B xγ γ = ⋅ + + +

 
�  

         ( ) ( ) ( )1 1 2 2
ln ln ln

p p
L B x B x B x = − − − − � . 

Since  

( ) ( ) ( ) ( ) ( )1ln lni i i i i i i i i iS x E B x L B x B x L S x
γ

γ
− = = − ⇒ − =       

, 

we can obtain  

( ) ( ) ( ){ }1 1

1 1 1 1,..., p p p pS X x X x L L S x L S x
− −  > > = + +    � .  

Since the Laplace forms have well-defined inverses, thus from the above equation we can find 

that the inverse function of L , 1L− , acts as the generator of Archimedean Copula. That is, the 

frailty family can be treated as a subclass of the Archimedean copula family with the 

generator being the inverse function of the Laplace transform for the latent variable γ . The 

explanation by using the frailty variable to explain the cause of dependence is intuitive for 

many applications.  

5.1.2 Generation Algorithm 

Here we consider the bivariate case with 2p =  and, to unify the notations, we let 

1
X X=  and 

2
Y X= . Based on the construction of the frailty model, a random replication of 

( ) ( )1 2, ,X Y X X=  can be generated as follows.  

1. Generate a positive random variable γ  following a given distribution. Then derive 

the form of its Laplace transform denoted as L . 
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2. Independent of γ , generate ( )1 2,U U  which are independent uniform ( )0,1  

random variables. Recall that based on the relationship ( ) ( )|
k k k k k

U S X B X
γ

γ= = , 

we have ( )1 ln lnk k kU B Xγ −− ⋅ = −  for 1,2k = . 

3. After specifying the forms of ( ) ( ).  1,2kS k = , we need to find   

( )1 1 ln
k k k

X S L Uγ− − = − ⋅  . 

For the Gumbel model, it corresponds to the case that γ  following positive stable 

distribution with Laplace transform  

( )
1

1expL t tα +
 

= − 
 

, 

where ( ) ( ) ( )
11 logL t t t

α
φ

+− = − =   . 

5.2 Conditional Distribution Approach 

5.2.1 Theoretical Background 

The idea was proposed by Lee (1993). Given the marginal distribution of 1X  and if the 

conditional distribution of 2 1|X X  is specified, then 2X  can be generated. In general, 
k

X  

can be generated given that the form of 1 2 1| , ,...,
k k

X X X X −  is specified. The algorithm can 

be performed successively for 2,...,k p= . 

 Now we apply the above idea to the family of Archimedean copula construction of the 

form:  

( ) ( ) ( ) ( )( )1 2 1 1 2 2, ,..., , ,...,
p p p

F x x x C F x F x F x= ( ) ( ){ }1

1 1 k k
F x F xφ φ φ−= + +      � .  

The joint distribution function is given by  

( ) ( )1 1

1

, , ,...,
...

k

k k

k

f x x F x x
x x

∂
=

∂ ∂
…  

( ) ( ){ }1

1 1

1

                    
...

k

k k

k

F x F x
x x

φ φ φ−∂
= + +      ∂ ∂

�  
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( )
( )

( ) ( ){ } ( ) ( )1

1 1
1

                    
kk

k k i i i i
i

F x F x F x F xφ φ φ φ−

=

′′= + + ⋅Π          � ,  

where the superscript notation (k) means the k-th derivative. Then, the conditional density 

function of 
k

X  given 1 2 1, ,...,
k

X X X −  is 

( )
( )

( )
1

1 1

1 1

, ,
| ,...,

, ,

k

k k

k

f x x
f x x x

f x x
−

−

=
…

…
 

( )
( )

( ) ( ){ } ( ) ( )

( )
( )

( ) ( ){ } ( ) ( )

1

1 1
1

11
1

1 1 1 1
1

                           

kk

k k i i i i
i

kk

k k i i i i
i

F x F x F x F x

F x F x F x F x

φ φ φ φ

φ φ φ φ

−

=
−−−

− −
=

′′+ + ⋅Π          
=

′′+ + ⋅ Π          

�

�

 

( )
( )

( ) ( ){ }
( )

( )
( ) ( ){ }

( ) ( )
1

1 1

1
1

1 1 1 1

                           

k

k k

k k k kk

k k

F x F x
F x F x

F x F x

φ φ φ
φ

φ φ φ

−

−−
− −

+ +       ′′= ⋅   
+ +      

�

�

. 

Then, the conditional cumulative density function of 
k

X  given 1 2 1, ,...,
k

X X X −  is 

( ) ( )1 1 1 1| ,..., | ,...,
kx

k k k
F x x x f x x x dx− −−∞

= ∫  

( )
( )

( ) ( ){ }
( )

( )
( ) ( ){ }

( ) ( )
1

1 1

1
1

1 1 1 1

                           
k

k

x k

k kk

k k

F x F x
F x F x dx

F x F x

φ φ φ
φ

φ φ φ

−

−−∞ −
− −

+ +       ′′= ⋅   
+ +      

∫
�

�

 

( )
( )

( ) ( ){ }
( )

( )
( ) ( ){ }

1
1

1 1

1
1

1 1 1 1

                           

kx
k

k

k

k k
x

F x F x

F x F x

φ φ φ

φ φ φ

−−

−−

− −
=−∞

+ +      
=

+ +      

�

�

 

( )
( )

( ) ( ){ }
( )

( )
( ) ( ){ }

1
1

1 1

1
1

1 1 1 1

                           

k

k k

k

k k

F x F x

F x F x

φ φ φ

φ φ φ

−−

−−
− −

+ +      
=

+ +      

�

�

 

( )
( )

( ){ }
( )

( )
( )

1
1

1

1
1

1

                           

k

k k k

k

k

a F x

a

φ φ

φ

−−
−

−−
−

+   
= ,              (5.2) 

where ( ) ( )1 1 1 1 1k k k
a F x F xφ φ− − −= + +      � . 

5.2.2 Generation Algorithm 

 Consider the bivariate case with ( ) ( )1 2, ,X Y X X= . The algorithm can be described as 

following: 

1. Generate ( )1 2,U U  independent uniform ( )0,1  random variables. 
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2. Let ( )1

1 1 1X F U
−= . 

3. Then set 2X  as the solution of the following equation: 

( ) ( ) ( ){ }

( ) ( ){ }

( ) ( ) ( ){ }

( ) ( )

1 1

1 1 2 2 1 2 2

2
1 1

1 1 1

F x F x U F x
U

F x U

φ φ φ φ φ φ

φ φ φ φ

− −

− −

′ ′+ +          
= =

′ ′      

. 

For the Gumbel model with ( ) ( ){ }
1

logv v
α

φ
+

= − , we obtain 

( ) ( ) ( )
1

1 logv v
v

α
φ α

−
′ = + − ⋅   ,  ( ) ( )1 1 1expv v αφ − += − , 

( )
11

1 1exp
1

v
v v

α

α
αφ

α

−

+
− +

 ′  = − −   +  
,  

then 

( ) ( )( ){ } ( ) ( )( ){ }
( )

1
1 11 11 1

1 2 2 1 2 2

2

1 1

log log exp log log

.
log

U F x U F x

U
U U

α
α αα αα α

α

−+ ++ ++ +

−

     − + − ⋅ − − + −          
  =

−  

 

Obviously, the above form does not allow an explicit solution. Hence to solve the equation, 

we need to do it numerically. 

5.3: The Proposed Data Generation Method 

The idea is based on a theorem in Genest & Rivest (1993). Briefly speaking, for ( ),X Y  

which follow an AC model, we can define two random variables ( ),U V  where  

( )( ) ( )( ) ( )( ){ }/
x x y

U S X S X S Yφ φ φ= +  

and  

( ) ( )( ) ( )( ){ }1,
x y

V S X Y S X S Yφ φ φ−= = + .  

It follows that U  is distributed as uniform ( )0,1 ,  

   ( ) ( )( ) ( ) ( )Pr , /K v S X Y v v v vφ φ′= ≤ = − ,  

and U V⊥ . These theoretical results can be applied to generate a random replication of 



24 

 

( ),X Y  which follows an AC model. The algorithm can be stated as follows.  

1. Generate two independent random variables U  and *
U , both of which follow a 

uniform ( )0,1  distribution.  

2. Given an AC model, we can derive the formula of ( )K v . Then we can obtain 

( ),V S X Y=  by solving ( )1 *V K U−= . Note that ( )K v  is a distribution function 

and hence is monotone increasing. It is easy to find the inverse function ( )1
K

− ⋅  

numerically to obtain V . 

3. Based on the theorem, U  and V  are independent, where  

( )( )
( )( ) ( )( )

x

x y

S X
U

S X S Y

φ

φ φ
=

+
.  

Since ( )( ) ( )( ){ }1

x y
V S X S Yφ φ φ−= + , we have ( ) ( )1

x
S X U Vφ φ−= ⋅     

and ( ) ( ) ( )1 1
y

Y VS Uφ φ−= − ⋅   . Finally we can set  

( ){ }1 11
x

F U VX φ φ− −= − ⋅    

and  

( ) ( ){ }1 11 1
y

F VY Uφ φ− −= − − ⋅   ,  

        where the forms of ( )xS ⋅  and ( )yS ⋅  should be specified beforehand.  

For the Gumbel model with ( ) ( ){ }
1

logv v
α

φ
+

= − , we have  

( ) ( )1 1 1expv v αφ − += − , ( ) ( )
( )log

1
v

v
v

α

φ α
− −  ′ = + ,  

( )
( )log

1
= −

+

v v
K v v

α
 and ( )

11
1 1exp

1

v
v v

α

α
αφ

α

−

+
− +

 ′  = − −   +  
.  
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Hence we have  

1

11 1 U

xX F V
α +−  

= − 
 

 and 
( )

1

1
11 1

U

yY F V
α +

−−
 
 = −
 
 

.  

5.4: Comparisons of the Three Approaches 

For the frailty approach, to generate a random replication of ( ),X Y , we need to 

generate γ  and a pair of uniform random variables. For the latter two approaches, we only 

need to generate a pair of uniform random variables. Hence the frailty approach requires 

generating at least 50% more random numbers. This is considered as a drawback. For the 

Clayton model in which γ  follows the Gamma distribution, the algorithm is simpler. 

However for the situation with an arbitrary distribution of γ , to generate a random replicate 

of γ  needed additional work. Moreover, not all of AC family can be derived from frailty 

model, that is, not every generator ( )φ ⋅  can be expressed as an inverse function of Laplace 

transform of some random variable. 

 Although the idea of the conditional distribution approach is straightforward, the solution 

of 
k

X  in (5.2) usually does not have a closed-form expression even for the  bivariate case. 

It is very time consuming if we have to solve the complicated equation numerically. 

 The proposed method is friendlier compared with the previous two methods. In 

comparison with the frailty approach, we do not have to generate random numbers, namely γ , 

which are used only for a temporary purpose. Compared with the conditional distribution 

approach, our method is technically easier to handle. Sometimes the inverse of ( )K ⋅  has an 

explicit form. If not, we can take advantage of the monotone property of  ( )K ⋅  and obtain 

its inverse using the bisection method. Despite the simplicity of the proposed method, 

currently the result of Genest and Rivest (1993) can not handle higher dimension with 2p > . 

It implies that we need more general theoretical results in order to extend the proposed 
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algorithm to general multivariate situations. 

 In Figures 5.1, we plot the generated data using the proposed algorithm. The two models 

appear to be similar when the level of tau decreases.  
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Fig.5.1. Simulated Data using the Proposed Data Generation Algorithm 
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Chapter 6: Numerical Analysis    

Here we examine the performance of the proposed test by simulations. Since we expect 

our proposed test can be applied to any Archimedean Copula model, we use the Gumbel 

model for illustration. Recall that for the Gumbel model, we have ( ) ( ){ }
1

logv v
α

φ
+

= −  and 

( )( )
( )

, 1
log ,

S x y
S x y

α

α
θ = − .  

We generate bivariate failure times following the Gumbel model, also called the positive 

stable frailty model. We evaluate the performances under different Kendall’s τ  equal to 0.3, 

0.4, 0.5, 0.6 and 0.7 respectively. The marginal distributions of two variables are both 

exponential with means equal to 1. The bivariate censoring variables are mutually 

independent and also following exponential distributions such that the probability of 

censoring is from 0 to 0.5 respectively in each coordinate. 

After estimating the association parameter α , we have α̂  and ˆ
w

α  and let ˆ ˆlogγ α=  

and ˆ ˆlog
w w

γ α= . Then estimate the variance of ˆ ˆ
w

γ γ− , 2ˆ
Jackknifeσ . The Gumbel model is 

rejected if the test statistic  

ˆ ˆ

ˆ

w

Jackknife

T
γ γ

σ

−
=  

is greater than 
0.975

1.96Z = . In order to assess the power of the proposed test, we also 

generate the data from other AC models. Based on 100 replications, the empirical 

probabilities of accepting the Gumbel model under different settings are reported.  

Table 6.1 and 6.2 report the empirical probabilities of choosing the Gumbel model. When 

the true model is Gumbel’s, the nominal probability should be 0.95. When the true model is 

Clayton’s or Frank’s, the probability is the estimate of type II error rate. Hence we hope that 

under Gumbel model is correct the proportion of choosing Gumbel should be close to 95/100, 

and the power is as large as possible. From table 6.1, we find that type- Ι  error is a little 
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smaller than 0.05 when τ  equals to 0.3. This may result from the variance estimator using 

the Jackknife method. The Jackknife algorithm tends to overestimate the variance and results 

in lower type-I error. When the sample size increases to 200, we see some improvement. 

Specifically the results in Table 6.2 give more accurate type I probabilities and better power in 

Table 6.4 and Table 6.6. In Table 6.3 and Table 6.4, we evaluate the type II error probabilities 

when the true model is Clayton model. In Table 6.5 and Table 6.6, we evaluate the type II 

error probabilities when the true model is Frank model. From Table 6.3 to Table 6.6, we find 

that the power deceases as Kendall’s τ  decreases. This is reasonable, since these three 

models will all reduce to independent models as Kendall’s τ  tends to be zero. That is, 

( ) ( ) ( )Pr , x yX x Y y S x S y> > = ⋅ . This implies that it gets more difficult to distinguish the 

two models when they are similar.  

Figure 6.1 to Figure 6.4 show the powers under true model is Clayton and Frank model 

with sample size equal to 100 and 200 respectively. 
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Table 6.1: Empirical Probabilities of Accepting the Gumbel Model 

with n =100 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Gumbel 

Sample Mean -0.038 -0.029 -0.02 0.012 0.047 

Sample Standard Deviation 0.88 0.959 1.01 0.993 0.99 

Proportion of choosing Gumbel 99/100 97/100 96/100 96/100 95/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Gumbel 

Sample Mean -0.115 -0.127 -0.141 -0.133 -0.134 

Sample Standard Deviation 0.893 0.968 1.036 1.018 0.987 

Proportion of choosing Gumbel 98/100 93/100 95/100 97/100 96/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Gumbel 

Sample Mean -0.255 -0.252 -0.234 -0.207 -0.199 

Sample Standard Deviation 0.882 0.933 0.941 0.886 0.838 

Proportion of choosing Gumbel 97/100 96/100 95/100 96/100 99/100 
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Table 6.2: Empirical Probabilities of Accepting the Gumbel Model 

with n =200 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Gumbel 

Sample Mean 0.146 0.16 0.15 0.164 0.132 

Sample Standard Deviation 0.986 1.033 1.022 1.006 1.001 

Proportion of choosing Gumbel 97/100 95/100 92/100 93/100 93/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Gumbel 

Sample Mean 0.097 0.109 0.088 0.118 0.114 

Sample Standard Deviation 1.031 1.087 1.054 1.021 1.009 

Proportion of choosing Gumbel 95/100 94/100 94/100 93/100 96/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Gumbel 

Sample Mean -0.012 0.006 -0.034 -0.032 -0.032 

Sample Standard Deviation 0.946 0.923 0.856 0.907 0.879 

Proportion of choosing Gumbel 95/100 97/100 98/100 97/100 96/100 
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Table 6.3:Empirical Type II Error Probabilities of Accepting 

the Gumbel Model when the True Model is Clayton with n =100 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Clayton 

Sample Mean -2.458 -3.203 -3.721 -4.118 -4.358 

Sample Standard Deviation 1.113 1.226 1.194 1.193 1.246 

Proportion of choosing Gumbel 30/100 17/100 6/100 3/100 3/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Clayton 

Sample Mean -1.826 -2.397 -2.793 -3.113 -3.382 

Sample Standard Deviation 1.034 1.108 1.108 1.13 1.236 

Proportion of choosing Gumbel 55/100 39/100 24/100 10/100 12/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Clayton 

Sample Mean -1.031 -1.379 -1.64 -1.919 -2.137 

Sample Standard Deviation 0.879 0.983 1.059 1.144 1.135 

Proportion of choosing Gumbel 83/100 72/100 65/100 58/100 52/100 
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Table 6.4:Empirical Type II Error Probabilities of Accepting 

the Gumbel Model when the True Model is Clayton with n =200 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Clayton 

Sample Mean -3.644 -4.76 -5.65 -6.303 -6.78 

Sample Standard Deviation 1.217 1.511 1.695 1.832 1.894 

Proportion of choosing Gumbel 6/100 2/100 0/100 0/100 0/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Clayton 

Sample Mean -2.876 -3.782 -4.501 -5.055 -5.432 

Sample Standard Deviation 1.083 1.342 1.525 1.672 1.738 

Proportion of choosing Gumbel 23/100 6/100 3/100 0/100 0/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Clayton 

Sample Mean -1.771 -2.405 -2.882 -3.314 -3.628 

Sample Standard Deviation 0.951 1.218 1.392 1.549 1.579 

Proportion of choosing Gumbel 58/100 31/100 28/100 24/100 15/100 
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Table 6.5:Empirical Type II Error Probabilities of Accepting 

the Gumbel Model when the True Model is Frank with n =100 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Frank 

Sample Mean -1.865 -2.248 -2.547 -2.807 -2.977 

Sample Standard Deviation 0.959 0.949 0.944 0.936 0.964 

Proportion of choosing Gumbel 52/100 39/100 22/100 17/100 13/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Frank 

Sample Mean -1.666 -2.047 -2.293 -2.552 -2.691 

Sample Standard Deviation 0.945 0.957 0.928 0.92 0.956 

Proportion of choosing Gumbel 67/100 50/100 38/100 21/100 17/100 

    

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Frank 

Sample Mean -1.24 -1.53 -1.729 -1.961 -2.018 

Sample Standard Deviation 0.923 1.03 1.029 1.056 0.999 

Proportion of choosing Gumbel 78/100 67/100 60/100 58/100 53/100 
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Table 6.6:Empirical Type II Error Probabilities of Accepting 

the Gumbel Model when the True Model is Frank with n =200 

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 0% Frank 

Sample Mean -2.829 -3.426 -3.882 -4.255 -4.597 

Sample Standard Deviation 1.194 1.329 1.309 1.264 1.199 

Proportion of choosing Gumbel 21/100 12/100 4/100 2/100 1/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 20% Frank 

Sample Mean -2.77 -3.382 -3.837 -4.142 -4.363 

Sample Standard Deviation 1.167 1.333 1.345 1.346 1.315 

Proportion of choosing Gumbel 24/100 15/100 5/100 2/100 2/100 

   

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7 

Censor proportion = 50% Frank 

Sample Mean -2.229 -2.762 -3.139 -3.281 -3.413 

Sample Standard Deviation 1.176 1.385 1.442 1.376 1.335 

Proportion of choosing Gumbel 39/100 30/100 24/100 21/100 18/100 
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Fig.6.1: Curves of empirical power for 
0

H : Gumbel vs. 
a

H : Clayton (n=100) 

 

 

 

Fig.6.2: Curves of empirical power for 
0

H : Gumbel vs. 
a

H : Frank (n=100) 
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Fig.6.3: Curves of empirical power for 
0

H : Gumbel vs. 
a

H : Clayton (n=200) 

 

 

 

Fig.6.4: Curves of empirical power for 
0

H : Gumbel vs. 
a

H : Frank (n=200) 
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Fig.6.5: The local odds ratio functions at different levels of Kendall’s tau 

for the Gumbel model, the Clayton model and the Frank model 
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Chapter 7: Conclusion    

In this article, we propose a test for checking whether the data following an AC model. 

In our analysis, we use the Gumbel model for illustration. To verify whether proposed test 

statistic is asymptotically normal, and we examine its distribution by simulations. Our 

conjecture is confirmed. We have also found that the power of the proposed test is satisfactory. 

Shih (1998) has analyzed the situation when the null hypothesis is the Clayton model while 

the alternative hypothesis is Gumbel’s model. In our simulations, we reverse the roles of the 

two models in setting the hypotheses. Our result is similar to that of Shih.   

The power decreases as the censoring proportion increases. When the null hypothesis is 

the Gumbel model, the power is higher under the Clayton alternative than under the Frank 

model. Recall that in Figure 6.5., the Gumbel model is more close to the Frank model and less 

similar to the Clayton model. It is easier to distinguish two models which are more different 

which results in higher power.   

As for future investigation, we may try more model combinations. Also it may be 

interesting to compare the proposed test with the test of Wang and Wells (2000) by 

simulations.  
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Appendix 

Here, we prove the survival version of the theorem in Genest & Rivest. The proof can be 

divided into several parts. 

Consider the survival AC model: 

1, ~ (1 ,1 ) { (1 ) (1 )} Pr( , )X Y C x y x y X x Y yφ φ φ−− − = − + − = > > , 

( )1 ,1 1C x x− = − , ( )1,1 1C y y− = −  

Define the transformation: 

( ) ( ) ( ){ }1 / 1 1U X X Yφ φ φ= − − + − , ( ) ( ){ }1 1 1V X Yφ φ φ−= − + −  

We show that (a) ( )~ 0,1U Unif , (b) V  has c.d.f ( ) ( ) ( )/K v v v vφ φ ′= − , 

(c) VU ⊥ .  

(i) Define ( )1S Xφ= −  and ( )1T Yφ= − . Show that the joint survival function of 

( ),S T  can be written as ( )1
s tφ − + . 

(ii) Show the formula  

( )
( )( )

1

1

1d
t

dt t
φ

φ φ

−

−
=

′
 

(iii) Show that the conditional survival function can be written as 

( )
( )

( )

1

1
Pr |

t
S s T t

s t

φ φ

φ φ

−

−

′   > = =
′  + 

 

(iv) Show the relation  

( ) ( ) ( )
0

Pr , Pr | Pr
1

ut
U u V v S v t T t T t

u
φ

∞  
> > = < < − = = 

− 
∫  

(v) Obtain ( )Pr ,U u V v> >  ( )
( )
( )

1 1+
v

u v
v

φ

φ

 
= − ⋅ −  ′ 
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(i) 

( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

( )( ) ( )( ){ }
( )

1 1

1 1

1 1 1

1

Pr , Pr 1 , 1

                        Pr 1 ,1

                        Pr 1 , 1

                        

                        

S s T t X s Y t

X s Y t

X s Y s

s t

s t

φ φ

φ φ

φ φ

φ φ φ φ φ

φ

− −

− −

− − −

−

> > = − > − >

= − < − <

= > − > −

= +

= +

 

(ii) 

( )( )
( )( )

1

1

1

t t

d t

dt

φ φ

φ φ

−

−

=

=

∵

 

( )( )
( )1

1 1
d t

t
dt

φ
φ φ

−

−′⇒ ⋅ =  

( )
( )( )

1

1

1d t

dt t

φ

φ φ

−

−
∴ =

′
 

(iii) 

( ) ( )( )

( )( )
( )( )

( ) ( )( )

( )
( )

( )
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Here, we try to prove the asymptotic normality of ˆ ˆ
w

γ γ− . The idea is that, first prove 

the asymptotic normality of untransformed estimator ˆ ˆ
W Uw

α α− , then utilize delta method to 

derive the asymptotic normality of ˆ ˆ
w

γ γ− . 
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1        ,
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Here noticed that ( ),
ij ij

X Yαθ � � , ( ),
ij ij

X Yπ � � , ( ),
ij ij

X Yαθ ′ � �  and 
ij

∆  can be obtained only by 

( ),i j  pairs observations. So, we can utilize the U -statistic to derive the analytic properties 

of ( )S α . 
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