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ABSTRACT

In the thesis, we propose a model diagnostic approach to selecting an
Archimedean Copula (AC) model based .on right censored data. The proposed
method extends the idea of Shih: (Biometrika, 1998), who considered the
Clayton model, to a larger:class of models, namely the AC family. We also
propose a new algorithm for generating a model from the AC family. Simulation
results are provided to examine finite-sample performances of the proposed

method.
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Chapter 1: Introduction

1.1 Motivation

In the literature of survival analysis, there has been substantial research on investigating
the association among several lifetime variables. Copula models are the most common
modeling choice because they possess nice properties that are suitable for describing lifetime
variables.

Specifically copula models form a class of bivariate distributions whose marginals are

uniform on the unit interval (Genest and MacKay, 1986). Usually one can write

C(u,v) =Pr(U <u,V <v) ,
where (U,V) are uniform (0,1) variables marginally but correlated with the joint

distribution function C(.,.):[0, 1]2 —10,1]. Let. (X,Y) be a pair of continuous failure times.

In applications of lifetime data analysis, the copuld structure is usually imposed on the

survival function such that

Pr(X>x,Y>y):C{Pr(X>x),Pr(Y>y)} (1.1)
Models in the copula family allow for separate investigation on the dependence structure and
the marginal distributions. The former is often the main interest and hence is handled

parametrically (i.e. the form of C,(u,v) is given). The latter is of less interest and hence

dealt with nonparametrically. There has been a trend to derive general properties for a class of
models rather than only a single member. The Archimedean copula (AC) family, which is a

sub-class of the copula family, is attractive due to its nice analytical properties. For an AC

model, the bivariate copula function C, (u, v) can be further simplified as

Ca(u,v)=¢a_l{¢a(u)+¢a(v)} for u,ve[0,1], (1.2)

where ¢, (-):[O,l]%[O,oo] is a univariate function which has two continuous derivatives



d 0’
satisfying ¢,(1)=0, ¢;(t)=¢g—t(t)<0 and @ (1)= g’;’z(t)>0. AC models have the

nice feature that the bivariate relationship can be summarized by the univariate function
¢a () :
Many authors have considered semi-parametric inference of the copula parameter «,

which measures the level of association, without specifying the marginal distributions. Note

that a isrelated to Kendall’s 7, a rank correlation measure, such that

a

T(a)=4j

[C,(uv)C, (du,dv)-1, (1.3)

where 7 is defined as the difference of concordance and discordance probabilities for two

independent pairs of (X,Y) . These semi-parametric inference procedures require

specification of C,(.,.) or ¢,(:).

A practical and important question is how can we select an appropriate model to fit the
data? There have been some wotks. on.model-selection including the papers by Genest and
Rivest (1993), Shih (1998) and Wang and Wells (2000), just to name a few. In the thesis, we
extend the approach of Shih (1998), who considered only testing the Clayton model, to
general Archimedean copula models.

1.2 Outline of the thesis

In Chapter 2, we review AC models and their properties. In Chapter 3, we review
literature on model diagnostics, including general methodology and results developed for
selecting a particular copula model. The proposed method is presented in Chapter 4. In
Chapter 5, we review existing data generation algorithms and propose a new approach.

Simulation analysis is presented in Chapter 6 and concluding remarks are given in Chapter 7.



Chapter 2: Review of Archimedean Copula models

Under Archimedean Copula family, the relationship between association parameter o

and Kendall’s 7 can be expressed as follows:

a

=4ﬁc (du,dv) -1
= 4E[Ca (u,v):I—l

4[ 9. (v) St @.1)
V

If the form of the function ¢(-) is specified, then we can estimate the association parameter

o semi-parametrically by the above equation.

In multivariate survival analysis, we usually use Kendall’s 7 to measure the
dependence between random variables. Moreover, we-have another dependence measurement
called the local odds ratio which is gelated to_the conditional version of Kendall’s 7 in
Oakes (1989). Local odds ratio has been used to- measure the pointwise dependence. From

Oakes (1989), for an Archimedean Copula model we know that the local odds ratio depends

on 7=(x,y) only through some function of S(x,y), thatis, 6 (x,y)= 0{S (x, y)} , where
0 (x,y) is the local odds ratio function defined as

Pr(X=x,Y=y)Pr(X2xY2y)

2.2
Pr(X:x,YZy)-Pr(XZ_x’Y:y) ( )

6 (x.y)=

For an AC model, we have 8(v)=-v¢’(v / ¢’(v) . The paper by Frees and Valdez (1998)

provides a nice review of copula models.

We briefly summarize commonly seen members of the AC family.



Example 1: Clayton model

The generating function can be written as ¢, (v) =(v‘“—1) / o, ae(0,). The joint

survival function can be written as

Pr(X >xY >y) :{[SX ()] +[s,(»]" —1}

-

It follows that 7 = @ .
a+?2

A special property of the Clayton model reflects in its local odds ratio which can be

expressed as 6 (x,y)=a+1. Notice that 6{S(x,y)} does not depend on (x,y).
Example 2: Gumbel model

a+l

The generating function can be written as ¢, (v)={-log(v)}" , @e[0,%). The joint

survival function can be written as

Pr(X>xY>y)= exp{—[(—ln S8 (x))w+l +(~Ins, (y))a+1 }Ml} :

It follows that T:il . And. the local” odds ratio, can be expressed as
o+
0 (x,y)=1- @ . Compared with the Clayton model, however & (x,y) depends
log S (x,y)

on the joint survival function at (x,y).

In Figure 2.1, the curves of #(v) for three AC models with the same Kendall’s

7=0.75 are plotted. Note that the relationships between & and 7 between two models

are different. Under the same value of Kendall’s 7, the corresponding values of « are

different. Note that in the Clayton model, we have a’zlz—fz6. In the Gumbel model,
-7

o= IL =3. For the Frank model, by setting 7=0.75, we know that & =7.741e-07 which
-7

can be obtained by numerically solving

r=1-4{D,[~log(a)]-1} /log()



where
D, (@) =["{t/a(e 1)}t
It is worthy to mention that the local odds ratio, 6(v), plays an important role for our

proposed method.

Kendall's tau = 0.75

— Gumbel
----- Clayton
---- Frank
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Fig.2.1. The Curves of Local Odds Ratio Function



Chapter 3: Review Methods of Model Checking

In §3.1, we briefly describe methods of model checking for a parametric distribution. In
§3.2, we review useful results for selecting an appropriate Archimedean Copula model.

3.1 Model checking for a parametric distribution

Suppose (X,Y) follows a parametric model with the distribution function

F,(x,y)=Pr(X<x,Y<y) . Usually one can compare F, (x,y) with its empirical
estimator,

ZI(XiS'x’YiSy)
F(x,y)="

n

The comparison can be made based on the plots of two curves or some distance measures. For
example: one may use the Q-Q plot to check whether the two quantiles are about the same.
Alternatively one can set up for a formal hypothesis and test it using statistics such as the K-S
test or Chi-squared test, both of whichumeasure the ‘‘distance” between the two functions.

3.2 Model selection for Copula models

If the marginal distributions of X and Y were known, the approach mentioned above

can be easily applied. Specifically let U,=S,(X,) and V,=S,(Y,), then we have

1

(U,,V,) (i=1,...,n), and can compare C,(u,v) and its empirical estimator

D I(U, <uV, <v)
C (u,v)=-

n

However, the parametric forms of the marginal distributions are usually not specified, we
have to give up this method.
Genest and Rivest (1993) derived useful properties of AC models which have been

applied for model selection. Specifically they define the distribution Copula

V=C(F(X),F(Y)) and find that V is distributed as K(v)=v-A(v) , where



A(v)=¢(v)/¢’(v) for 0<v<I. Therefore we can compare the difference between a
nonparametric estimator of Pr(F (X,Y)< v) =Pr(V<v)=K(v) and if model-based

representation, v—A4, (v) , based on a selected distance measure. If the difference is small, we

can say that the imposed model is appropriate for the data.

We briefly illustrate how to perform the above ideas based on complete data

(X,.Y,),....(X,.Y,). The purpose is to identify the form of ¢,. First of all, we need

observations \7[ = F(X,,Y,) in order to estimate K (v) nonparametrically. Since the form

of F(..) is unknown, Genest and Rivest (1993) proposed the following “pseudo”

observations:

V=#{(X,.7,) Xp<X Vikx ] [(n-1), i=1,..n,

which are proxies of l7, = F(X,,X,)« The procédure of model selection is stated below.
. . ; 1
1. Obtain the nonparametric estimate'of - K'(v): K, (v)==>1(V,<v).
n iz
2. Construct a semi-parametric estimate of K (v). We may have several candidates of

models indexed by ¢Lj ) for j =1,...,J . For each candidate we need to estimate the value

of « . Note that one may estimate Kendall’s 7 and use the relationship between 7 and

o toestimate ¢« . Based on

we can estimate Kl(x"')(v) for j=1..,J.

3. Then we can compare the distance between K,(v) and K.’ (v) for j=1,..,J. The

most-fitted model is the one which gives the smallest distance between the two curves.

The above procedure is not applicable when there is censoring. Wang and Wells (2000)



propose a nonparametric estimator of K (v) based on right censored data.




Chapter 4: The proposed method for model checking

In this chapter, we present our proposal for model checking. The idea was motivated by
the paper of Shih (1998) who proposed to test the Clayton model by comparing the difference
between weighted and unweighted concordance estimators of the association parameter ¢ .
When the model assumption is correct, which is the condition of the null hypothesis, both
estimators converge to the true parameter value. On the other hand, when the model
assumption is false, the two estimators will converge to different values. Here we extend
Shih’s idea to verify whether the model follows a particular Archimedean Copula model. We

will use the Gumbel model as an example of AC models.

Define A, =1I[(X,~X,)(¥,-¥,)>0] , where (X,¥) and (X.¥,) are two
independent replications of (X,Y )" This indicator variable denotes whether the pairs

(X,.Y,) and (X Y j) are concordant or discordant. The conditional expectation of A,

contains the information about the level of association. Specifically it follows that

Pr(A,=1/X, =x.Y, =)

y

—_<

<

~ 2-Pr(X,=xY,=y)Pr(X,2xY 2y)
2:[Pr(X, =xY,=y)-Pr(X, 2 xY, 2 y)+Pr(X, =x.¥, 2 y)-Pr(X, 2 x,Y, = y) |

J

Pr(X=xY=y)Pr(X2xY2y)
Pr(X=x,Y2y)Pr(X2xY=y)

- Pr(X=xY=y)Pr(X=2xY2y)
Pr(X=x,Y2y)Pr(X2xY=y)

_ ea(S(x,y))
6,(S(x,y))+1’

+1

4.1)

where )Ziizmin(Xi,Xj) and Iil.zmin(Yi,Yj) and ﬁa(S(x,y)) is the local odds ratio

defined in equation (2.2). Recall that for the Clayton model, 6,(S(x,y))=a+1 and the

Gumbel model,



_ a
logS(x,y)

Now we will illustrate how to utilize equation (4.1) to construct different forms of estimating

Ha(S(x,y))Zl

functions of a . In § 4.1, external censoring is ignored temporarily to simply the

presentation. In § 4.2, the proposed methods are modified to handle censored data.
4.1: Analysis based on Complete Data

For complete data, we observe {(X ,Y)(izl,...,n)} which is a random sample of

(X Y ) Based on the moment condition of equation (4.1), one can construct the following

estimating function of the association parameter « :

Uo(a’S(X’Y))ZZ[AU _E(Aijl)zij’iij)}’

i<j

where E(Al.j I )?l.j,);lj)zPr(AU :1‘ )Zl.j,fij):

1- o
log S Xl..,Y:.
UO(G’,S(X,y))=Z ,]_ (a./ ./)
i<j —
2 logS()?l.j,fU)
_y|a, - e ) e | “2)
=" 2-logS(X,.Y,)-«a

Here notice that, we use the conditional probability rather than the unconditional one. The

latter is used in Shih’s paper (1998) since both are equivalent under the Clayton model.

Note that S(x,y)=Pr(X >xY>y) is a nuisance function. For complete data,

S(x,y) can be estimated by the empirical estimator

ZI(Xi >x.Y, >y)
S(x,y)=-

n

10



To obtain an estimator of &, &, we solve U, (0{,§ (x, y)) =0. Since an explicit solution is

not available, we suggest to solve the equation by numerical methods, say the

Newton-Raphson method, which often requires computing the derivative of U, (a/,S (x, y))

with respect to « . For the Gumbel model, the derivative equals

B | lOgS(Xii’Y:'i)

i<j (1+6’ (S(XUYZJ)))Z i<j [210‘%5()21:1"2/)_“]2 |

The function in (4.2) can be viewed as an unweighted version. That is, A, is treated

)

equally for each combination of i and ;. However since different combinations of A, are

associated with different values of (X, ¥)) and #(X j,Y j), it is reasonable to suspect that such

additional information may be utilized in the estimation procedure. Clayton (1978) proposed a
conditional likelihood function for the Clayton_family. We can modify his method for AC
models. The resulting log-likelihood function is-given by

0, (S(Xii’Yii))
R, -1+6,(S(X,

ii?

L(Ot)=Zlog N)) +Z(1—Aij)log R -1

)| = R, -1+6,(5(X,.7,)) |
where R =R(X,.Y) and R(x,y)=Y1(X,2xY 2y). Now we derive the score
i=1

function for an Archimedean copula model:

oL(a) (R-1) _ dm6(S(%,.¥,)) (8,-1) a9, (S (X,.%,

i’ il

a4 |R,—146,(5(%,.,))] da ;[le—l+9a(5()f,.,f.))] da
For the Gumbel model, the score function becomes
aL(a):z _(Rii_l) (1_Aij)

+
o i o v
{Rﬁ —MWJDOgS(Xﬁ’Ki)_a

] 7| R logS(X,.7,)-a]
The two terms in the right-hand side of the above equation can be combined using the

11



technique in Oakes (1986). That is, if je R,,then R, =R,, A, =1 and ) _ A,=R,-1.

It follows that

) e ding,(s(X,.7,)) (a,-1) d,(s(X,.7,))
B [R ~1+6,(s(X f))] do TZ [R —1+ea(s()2ij,~])): do
: wo als(RE) (4 da(s()
2.2 [R ~1+6,(S(X ,Y;))] da /[R ~1+6,(5(X,.7,)) do

_ A/ dlnHa(S()Z],f.i)) (Aij_l) dé’a(S(X] Y/))
F[Rr-1+6,(5(%,.7,))] da +[R]—1+6’a(S()?j )| da

(s(E,0)) 1 dme(s(,0)[ als(i,0)
Sl E G R o WA A Y

4.3)

If we treat the estimating function in (4.2) as an unweighted version, the weight function in
equation (4.3) is

0,(5(X,.%,))+1  d6,(s(X,.7,))

[(Rij_l)"'ga(si(fij’ﬁy‘))} da

which accounts for the effects of the data and model properties.

Next, one can derive the Fisher information function, that is, the derivative of minus

score function. It follows that

12



@)=~ oo
oo el ana(s(5E)[ als(i)
T s [(Rii—1)+6’a(S()2U.,)7”))] da {A”_ea(s()?,, 2,~))+1}

1 ) a dazu" i ) A
[Rij—1+9a(s(??,;, Y,,))} {dea(s(iu Yll))]Z 6,(s(%, Y~,,))2
da

For the Gumbel model, the Fisherinformation function becomes,
[21ogS(X,.7,)-a|(1-A,)~log S(X:Y,)  A,l0g5(X,.7,)

5 [Rijlogs(iij,ij)—a] [1ogs()?ij,ﬁ,)—a]

i<j |:Ri/' logS(XU,fﬁ)—a}[logS(fﬁ,%)—a] |

I(a)=-

Again the nuisance function S(x,y) can be estimated separately and then the estimator is

plugged into the score function and Fisher information function. The solution &, requires

using numerical methods such as the Newton-Raphson method approach.
4.2: Analysis based on Right Censored Data

Now we incorporate external situation censoring in the analysis. Let (A,B,) be the
bivariate censoring variables. One only observes ()Zl.,fi,b’”ﬁzl.), where X, =min(X,,4),
Y, =min(Y,B,), 8,=1(X,<A) and &, =1(Y,<B,). In presence of right censoring, we

l

know the order of X, and X, if and only if X ; Smin(A,A;). Similarly the order of Y,

13



[}

and Y, can be known if and only if f” <min(B;,B;). Define Z, =1()2ij SAU,YU. Séj),
where A,.j =min(A;,A;) and El.j =min(B;,B;) . The value of A, is observed if and only if
Z,;=1. We will modify the estimating procedures that only include comparable pairs (i.e.

those with Z, =1) in the analysis.

The unweighted estimating function of the association parameter ¢ can be modified as

Uy (@8 (x,y))=D[ &, —E(81 X,.F,) |- 2,

where
~ o~ ~ o~ ga(S(~lJ’Yij))
E(A 1X. .Y )=Pr(A, =1X .Y )= —
(11 ij l/) I‘( ij ‘ ij ’J) Ha(S(XU,Y;j))-l‘l
For the Gumbel model, the above funetion then becomes
o
l—logS()? )7)
Uy (a5 (x. ) = Spsem— =) | 7
i<j &
: lOgS(Xii’Yt/)
yla logS(X,.Y,)-a o,

=" 2-logS(X,
For estimating the function S(x,y) for right censored data, there exist several nonparametric

estimators. Here we adopt the Dabrowska estimator (1988) which is the most well-known one

among its competitors. The formula of S(x, y) is given by

A

S(x,y)= S (x,O)S’ (0,y) H [1—L(Au,Av)],

O<usx
O<v<y

where

A

L(Au,Av)=

Ay (Au,v=) Ay, (1= Av) = A, (Au, Av)
{1=A, (Auv=)H{1-A,, (u— Av)}

14



and §(x,0) and §(O,y) are the usual Kaplan-Meier estimates, i.e.,

Z[ X, =u,d=1)

That is, the marginals of S (x,y) are given by the univariate Kaplan-Meier estimates.

Numerical algorithms for solving & often involve calculating the derivative of

U, (a', S(x, y)) . For Gumbel’s model, this terms equals

_d6,(S(X,.7,))

lj,

da |-z, = u)
T\ (e (s(%,8)) |

The weighted versions of the score function and Fisher information for censored data are

given by

6,(S(X,.7,))+1 .dlnea(S(XU,Y)){A“_ 6,(s
R, =1)+6,(5(%,.7,)) | da "o, (s(

15



For the Gumbel model, it equals

And

do 0,(5(X,.7,))+1
I(a)=- = 1- — A,
~ [R _1+00!(S(XJ’Y;))} ea(S Xy u))
dzg“(S(Xii’Yl))
1 _ do’ = |- AJ - 7
~ ~ N ~ o~ ij
[R’_H_e"(S(X’ Y’))} de“(S(XJ Y;)) ga(S(XJ J))
da
For the Gumbel model, it equals
{[ZIOgS(XU’YU)_“](I_Au)_logs(iwﬁj)_ A, logS(X,.Y)) }
I(a):—z [Rl.jlogS(}Zij,flj)—a] [logS()?ij,fij)—a} -
i<y |:Rij logS( ~ij,f1j)—a}[logS(fﬁ,fj)—a} v

The solution ¢, requires using numerical methods such as the Newton-Raphson method

approach.

4.3: Model checking
By defining 7=log& and 7 =logd,, Shih (1998) proves that when the Clayton

1
model is correct, n*(7,—7) converges to a normal distribution with mean zero. For

complete data, the variance is
W(n)=Vv(n)+Vv,(n)-2H(n),

where 7=1/a and

16



V(n)= ML(U _4(277“)22(17773 +227772+1477+2)
(7-+1) 3n° (n+1) (3n+1)

k
_1 - +
is the variance of n* 7, where L(7 :z r@ )H (7+1)
ST (k+3n+1)(2n+k)

V. (n7)=2n"+6n+5—(n+1) {1/1(5 % j— (1+%nj}

is the variance of n777 where y'(c)=> (n+ c)_2 is the trigamma function, and

—

40m° +49n° +21n+3
n° (217+1)

H (1) =—4n- +4J (1) (n+1)(27+1)",

where

i k'T'(27)
S (n+k)(2ntk)L(2n+k)

For right censored data, the asymptotic vartance becomes

W (7)=V () +Viln) - 261(n).

where
- 4(a+2 3
4 :Q.“-NIZNISC(MZ’VZ)C(MS’VS “23"’23 Hf X Yi dxdy,
(0(+1) i=1

~ N12N13C(”2’V2)C(”3’V3 ”23"’23 2

§ f X, ), dxdy,
( J-J- S(”z’vz)S(uz’Vz H

7 2(“"'2 N12N13C(”2’V2)C(”3’V3 ”23"’23 2

H(n)= .y, )dxdy,
1) ={asnes 51l S(iw,v,) [17 Cx, v )evdy

with & =Pr(an observation is uncensored in both components) , N, =A,, (¢+2)—(a+1) ,
o =Pr(le =1) , w,=min(x,x,) , v,=min(y,y,), [=2,3, and u, =max(u,,u,) ,

vy, =max (v,,v,).
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One can estimating the variance for complete data W (77) by W (7, ). The censored

version W (77) can be estimated by

R o & 4+ 2(6 42
W:lzziizikNijNik ~1A_ (&, + )A ~1A_ (&, + )A ’
Nk RS n(a,+1)0 | |R 6 n(a,+1)0

where
zl(é‘lt = 1’521' = 1)
N, =A,(&,+2)-(&,+1), §== $*=Zz../("j
y y w ’ ’ ij .
n = 2
o -1
For complete data, the null hypothesis is rejected when ———————~ is greater than Z,_,,

[(w(n,)/n]"

with significance level equals to &, where Z, is the p-th percentile of the standard normal

=]
[vi/n]

For our proposal which can-be exténded.to.the whole AC family, we need to know the

distribution. For censored data, the test statisticis changed to

(asymptotic) distribution of 7 —7. Asymptotic normality should be correct based on the
central limit theorem and the delta method. Formal derivations will be future work. However
the proposed method involves the complicated plugged-in estimator, analytic estimation of the
variance term will be impossible. Note that even there exists no analytic form for the variance

of Dabrowska’s estimator. Hence we suggest to use the Jackknife algorithm to estimate the

variance of the proposed test statistic, denoted by 6-J2¢zc-kknife' Our hypothesis testing is rejected

7.~

A

if is greater than Z,_,, with the significance level equals to « .

O-J ackknife
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Chapter 5: Data Generation Algorithms
In this chapter, we discuss two existing algorithms for generating an AC model and then
propose a new data generation algorithm.
5.1 Frailty Approach

5.1.1 Theoretical Background

Suppose that there are p lifetime variables, X,,X,,...,X » which are correlated. Oakes

(1989) might be the first one who used the idea of frailty to construct multivariate
distributions. He assumes that the dependence among these variables can be fully explained
by a latent variable y, called “frailty”. That is, given the value of ¥, these variables are

independent such that one can write

<

S(X, > x..4% >x 19)=1

1

S(X,>x,17).

Il
UN

If the failure times represent the lifetimes of family members, » represents the shared

genetic/environmental factor. Furthermore; -y -affects each of T, via a proportional hazard

model such that

h;(x1Z)=h,(x) ¥ (orequivalently S, (x1Z)=B,(x)"),

o

where B, (x)=exp (— .[ “b,(1) dt) .Since ¥ is a (positive) random variable, the unconditional

joint survival function can be expressed as

S(Xl>x1,...,X,,>x,,)=Ey{biBj(xj)H. (5.1)
Notice that the Laplace transform of ¥ is defined as

L(t)=E, (e_'7) = .[e_”dFy (x).
where F, is the distribution function of .

Oakes (1989) also pointed out that there is a relationship between the above frailty
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family and the AC family introduced earlier. That is the inverse of the generating function

9. () for an AC model is actually the Laplace transform of y. To see this, we can view

L(z) as the moment generating function evaluated at —7. If we know the form of L(r), we
derive its distribution. Moreover,
S(X, > x,00 X, > x,) =Ey{[Bl (x)-B, (xp)ﬂ
= Ey{exp[y/- (ln B,(x)+InB,(x,)++B (x, ))J}
=L|-InB,(x)-InB,(x,)=~InB,(x,)].
Since
S/(5)=E,| B (x) |= L[~ B, (x)]=-B (x)=L"[S,(x)],
we can obtain

S(X1 > X5 X, >xp)=L{L_1[Sl(xl)]+---+L_1 [Sp (xp)}}.

Since the Laplace forms have well-defined inverses; thus from the above equation we can find
that the inverse function of L, L', actsias the generator of Archimedean Copula. That is, the
frailty family can be treated as a subclass of the Archimedean copula family with the
generator being the inverse function of the Laplace transform for the latent variable y. The
explanation by using the frailty variable to explain the cause of dependence is intuitive for
many applications.
5.1.2 Generation Algorithm

Here we consider the bivariate case with p=2 and, to unify the notations, we let

X =X, and Y =X, . Based on the construction of the frailty model, a random replication of
(X,Y)=(X,,X,) canbe generated as follows.

1. Generate a positive random variable ¥ following a given distribution. Then derive

the form of its Laplace transform denoted as L.
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2. Independent of ¥, generate (U,,U,) which are independent uniform (0,1)

random variables. Recall that based on the relationship U, =S, (X, 1¥)=B,(X,),
we have —y™'-InU, =—InB,(X,) for k=1,2.
3. After specifying the forms of S, (.) (k=1,2), we need to find

X, =S [L(-r"my,)].
For the Gumbel model, it corresponds to the case that ¥ following positive stable

distribution with Laplace transform
1
L(t)= exp(—t”’+1 j ,

where L' (1)=[~log(1)]" = ¢(z).
5.2 Conditional Distribution Appreach
5.2.1 Theoretical Background

The idea was proposed by Lee(1993). Given the marginal distribution of X, and if the
conditional distribution of X, |X, is specified, then X, can be generated. In general, X,
can be generated given that the form of X, | X ,X,,.... X, , 1is specified. The algorithm can
be performed successively for k=2,...,p.

Now we apply the above idea to the family of Archimedean copula construction of the

form:

F()cl,xz,...,xp)=C(F1 (%).F(x,),... F, (xp)) =¢_1{¢[Fl (xl):|+--~+¢[Fk (xk)]}

The joint distribution function is given by

Y
f('xl’ ’xk):ax...ax F(xl’ ’xk)
ak —1
:axl...axk ¢ {¢|:Fl(XI):|++¢|:Fk (xk):l}
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= (¢_1 )(k){¢|:F1 (xl):|+"'+¢|:Fk (%, ):I}é¢’[E (xi)] F;" (x)

where the superscript notation (k) means the k-th derivative. Then, the conditional density

function of X, given X ,X,,... X, 18

(o) {o[7 (x)]+ -+ o[ 2. ()]} O (A (5)]F ()
(o) oLk ()] + 0 Ay () [ IO £ ()] ()
)
)

VWWU%} +OLF ()]
(07) ol A (x)]++ o[ A ()]

Then, the conditional cumulative density function of X, given X ,X,,....X, | 1is

¢,|:Fk (x, ):I F/ (%)

F(x, le,...,xk_l)=jjif(x|xl,...,xk_1)dx

—L _({ﬁFa]++%F Jll

{¢[F (x) ]+ +0] F, xkl)]}.([j,[EC(X)]Fk/(X)dx
_ <¢-1)“ {o[Fg) [ +-—+lF (]} |
(o) Mol R ol F () Y
(07) "ol . (x)]++0[ F ()]
(0 o[ R ()]eo[ A (5 )
) ool m )]} 52

(0)" (@)
where a,_, = ¢[F1 (x, )] ot ¢[Fk_1 (%, )] )
5.2.2 Generation Algorithm
Consider the bivariate case with (X,Y)=(X,,X,). The algorithm can be described as
following:

1. Generate (U,,U,) independent uniform(0,1) random variables.
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2. Let X,=F'(U,).

3. Thenset X, as the solution of the following equation:

(¢_1 )/{¢[F1 (% ):|+¢[Fz (x, )]} _ (¢_1)/ {¢(U1)+¢[Fz (x, ):I} .
(o) ol 7 ()]} (o) [o(w)]

For the Gumbel model with ¢ (v) ={~log (v)}*", we obtain

U, =

¢(v)=(a+1)[-log(v)]- =1, ¢ (v) =exp(—v'),

then

{[—log ] +[ log (F. ))]ml}%.exp{—{[—log ] +[ log (F. ))]ml}alﬂ}

U, [~log(U)]™”

U, =

Obviously, the above form does not allow an explicit'solution. Hence to solve the equation,
we need to do it numerically.

5.3: The Proposed Data Generation Method

The idea is based on a theorem in Genest & Rivest (1993). Briefly speaking, for (X,Y)
which follow an AC model, we can define two random variables (U,V) where

U =¢(s,(X)){(s, (X)) +(S, (¥)))

and
V=5(X.Y)=¢"{4(S,(X))+o(s,(¥))}.

It follows that U is distributed as uniform (0,1),

K(v)zPr(S(X,Y)Sv)zv—¢(v)/¢'(v),

and U LV . These theoretical results can be applied to generate a random replication of
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(X,Y) which follows an AC model. The algorithm can be stated as follows.
1.  Generate two independent random variables U and U ", both of which follow a
uniform (0,1) distribution.
2. Given an AC model, we can derive the formula of K (v) Then we can obtain
V=S(X.,Y) bysolving V=K"'(U"). Note that K (v) is a distribution function

and hence is monotone increasing. It is easy to find the inverse function K~ ()

numerically to obtain V .
3. Based on the theorem, U and V are independent, where

#(5.(X))

U (X)) alsum),

Since V =¢"{(5, (X)) +o(8:(¥))} swehave S, (X)=¢"[U-9(V)]
and S (Y)=9¢"'[(1-U): §(V)]-Finally we can set
x = 1= (060
and
Y =F ' {1-¢"[(1-U)-9(v)]}.
where the forms of S, (-) and S, (-) should be specified beforehand.

For the Gumbel model with ¢(v)={-log (v)}aﬂ, we have

b

)—[—lo:c}g,(v)]a

(1) =exp(7). $0) =1

-

K(v)zv—VlOg(v) and [¢_l(v)],=—va+l exp(—v“al}

a+1
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Hence we have
X=F (1 —VU“”j and Y=F' {1—‘/“”)“ J

5.4: Comparisons of the Three Approaches

For the frailty approach, to generate a random replication of (X,Y), we need to

generate ¥ and a pair of uniform random variables. For the latter two approaches, we only
need to generate a pair of uniform random variables. Hence the frailty approach requires
generating at least 50% more random numbers. This is considered as a drawback. For the
Clayton model in which ¥ follows the Gamma distribution, the algorithm is simpler.
However for the situation with an arbitrary distribution of ¥, to generate a random replicate

of ¥ needed additional work. Moreover, not all of AC family can be derived from frailty
model, that is, not every generator’ ¢(-);/cén be.expressed as an inverse function of Laplace

transform of some random variable.
Although the idea of the conditional distribution approach is straightforward, the solution

of X, in (5.2) usually does not have a closed-form expression even for the bivariate case.
It is very time consuming if we have to solve the complicated equation numerically.

The proposed method is friendlier compared with the previous two methods. In

comparison with the frailty approach, we do not have to generate random numbers, namely ¥,

which are used only for a temporary purpose. Compared with the conditional distribution
approach, our method is technically easier to handle. Sometimes the inverse of K (-) has an
explicit form. If not, we can take advantage of the monotone property of K (-) and obtain

its inverse using the bisection method. Despite the simplicity of the proposed method,

currently the result of Genest and Rivest (1993) can not handle higher dimension with p>2.

It implies that we need more general theoretical results in order to extend the proposed
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algorithm to general multivariate situations.
In Figures 5.1, we plot the generated data using the proposed algorithm. The two models

appear to be similar when the level of tau decreases.

Clayton Model with Kendall's tau=0.75 Gumbel Model with Kendall's tau=0.75
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Fig.5.1. Simulated Data using the Proposed Data Generation Algorithm
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Chapter 6: Numerical Analysis

Here we examine the performance of the proposed test by simulations. Since we expect

our proposed test can be applied to any Archimedean Copula model, we use the Gumbel

model for illustration. Recall that for the Gumbel model, we have @(v) ={—10g(v)}0[+1 and

_ (04
logS(x,y)

We generate bivariate failure times following the Gumbel model, also called the positive

Ha(S(x,y))Zl

stable frailty model. We evaluate the performances under different Kendall’s 7 equal to 0.3,
0.4, 0.5, 0.6 and 0.7 respectively. The marginal distributions of two variables are both
exponential with means equal to 1. The bivariate censoring variables are mutually
independent and also following exponential distributions such that the probability of
censoring is from O to 0.5 respectively in each coordinate.

After estimating the associdtion parameter &, we have & and &, andlet y=log&
and 7, =logd,. Then estimate. the'wariance-of # —7. 67, .- The Gumbel model is

rejected if the test statistic

7, —7]

Jackknife

T =

is greater than Z ., =1.96. In order to assess the power of the proposed test, we also
generate the data from other AC models. Based on 100 replications, the empirical
probabilities of accepting the Gumbel model under different settings are reported.

Table 6.1 and 6.2 report the empirical probabilities of choosing the Gumbel model. When
the true model is Gumbel’s, the nominal probability should be 0.95. When the true model is
Clayton’s or Frank’s, the probability is the estimate of type II error rate. Hence we hope that
under Gumbel model is correct the proportion of choosing Gumbel should be close to 95/100,

and the power is as large as possible. From table 6.1, we find that type-1 error is a little
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smaller than 0.05 when 7 equals to 0.3. This may result from the variance estimator using
the Jackknife method. The Jackknife algorithm tends to overestimate the variance and results
in lower type-I error. When the sample size increases to 200, we see some improvement.
Specifically the results in Table 6.2 give more accurate type I probabilities and better power in
Table 6.4 and Table 6.6. In Table 6.3 and Table 6.4, we evaluate the type II error probabilities
when the true model is Clayton model. In Table 6.5 and Table 6.6, we evaluate the type 11
error probabilities when the true model is Frank model. From Table 6.3 to Table 6.6, we find
that the power deceases as Kendall’s 7 decreases. This is reasonable, since these three

models will all reduce to independent models as Kendall’s 7 tends to be zero. That is,

Pr(X >xY>y)=S(x)-S,(y). This implies that it gets more difficult to distinguish the

two models when they are similar.
Figure 6.1 to Figure 6.4 show: the powers-undet, true model is Clayton and Frank model

with sample size equal to 100 and 200 respectively.
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Table 6.1: Empirical Probabilities of Accepting the Gumbel Model

with n =100

tau=0.3 | tau=0.4 | tau=0.5 | tau=0.6 tau=0.7
Censor proportion = 0% Gumbel
Sample Mean -0.038 -0.029 -0.02 0.012 0.047
Sample Standard Deviation 0.88 0.959 1.01 0.993 0.99
Proportion of choosing Gumbel 99/100 97/100 96/100 96/100 95/100

tau=0.3 | tau=0.4 | tau=0.5 | tau=0.6 tau=0.7
Censor proportion = 20% Gumbel
Sample Mean -0.115 -0.127 -0.141 -0.133 -0.134
Sample Standard Deviation 0.893 0.968 1.036 1.018 0.987
Proportion of choosing Gumbel 98/100 93/100 95/100 97/100 96/100

tau=0.3 | tau=0.4 | tau=0.5 | tau=0.6 tau=0.7
Censor proportion = 50% Gumbel
Sample Mean -0.255 -0.252 -0.234 -0.207 -0.199
Sample Standard Deviation 0.882 0.933 0.941 0.886 0.838
Proportion of choosing Gumbel 97/100 96/100 95/100 96/100 99/100
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Table 6.2: Empirical Probabilities of Accepting the Gumbel Model

with n =200

tau=0.3 | tau=0.4 | tau=0.5 tau=0.6 | tau=0.7
Censor proportion = 0% Gumbel
Sample Mean 0.146 0.16 0.15 0.164 0.132
Sample Standard Deviation 0.986 1.033 1.022 1.006 1.001
Proportion of choosing Gumbel 97/100 95/100 92/100 93/100 93/100

tau=0.3 | tau=0.4 | tau=0.5 tau=0.6 | tau=0.7
Censor proportion = 20% Gumbel
Sample Mean 0.097 0.109 0.088 0.118 0.114
Sample Standard Deviation 1.031 1.087 1.054 1.021 1.009
Proportion of choosing Gumbel 95/100 94/100 94/100 93/100 96/100

tau=0.3 | tau=0.4 | tau=0.5 tau=0.6 | tau=0.7
Censor proportion = 50% Gumbel
Sample Mean -0.012 0.006 -0.034 -0.032 -0.032
Sample Standard Deviation 0.946 0.923 0.856 0.907 0.879
Proportion of choosing Gumbel 95/100 97/100 98/100 97/100 96/100
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Table 6.3:Empirical Type II Error Probabilities of Accepting
the Gumbel Model when the True Model is Clayton with n =100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 0% Clayton
Sample Mean -2.458 -3.203 -3.721 -4.118 -4.358
Sample Standard Deviation 1.113 1.226 1.194 1.193 1.246

Proportion of choosing Gumbel 30/100 17/100 6/100 3/100 3/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 20% Clayton
Sample Mean -1.826 -2.397 -2.793 -3.113 -3.382
Sample Standard Deviation 1.034 1.108 1.108 1.13 1.236

Proportion of choosing Gumbel 55/100 39/100 24/100 10/100 12/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 50% Clayton
Sample Mean -1.031 -1.379 -1.64 -1.919 -2.137
Sample Standard Deviation 0.879 0.983 1.059 1.144 1.135

Proportion of choosing Gumbel 83/100 72/100 65/100 58/100 52/100
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Table 6.4:Empirical Type II Error Probabilities of Accepting
the Gumbel Model when the True Model is Clayton with n =200

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 0% Clayton
Sample Mean -3.644 -4.76 -5.65 -6.303 -6.78
Sample Standard Deviation 1.217 1.511 1.695 1.832 1.894

Proportion of choosing Gumbel 6/100 2/100 0/100 0/100 0/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 20% Clayton
Sample Mean -2.876 -3.782 -4.501 -5.055 -5.432
Sample Standard Deviation 1.083 1.342 1.525 1.672 1.738

Proportion of choosing Gumbel 23/100 6/100 3/100 0/100 0/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 50% Clayton
Sample Mean -1.771 -2.405 -2.882 -3.314 -3.628
Sample Standard Deviation 0.951 1.218 1.392 1.549 1.579

Proportion of choosing Gumbel 58/100 31/100 28/100 24/100 15/100
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Table 6.5:Empirical Type II Error Probabilities of Accepting
the Gumbel Model when the True Model is Frank with n =100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 0% Frank
Sample Mean -1.865 -2.248 -2.547 -2.807 -2.977
Sample Standard Deviation 0.959 0.949 0.944 0.936 0.964

Proportion of choosing Gumbel 52/100 39/100 22/100 17/100 13/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 20% Frank
Sample Mean -1.666 -2.047 -2.293 -2.552 -2.691
Sample Standard Deviation 0.945 0.957 0.928 0.92 0.956

Proportion of choosing Gumbel 67/100 50/100 38/100 217100 17/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 50% Frank
Sample Mean -1.24 -1.53 -1.729 -1.961 -2.018
Sample Standard Deviation 0.923 1.03 1.029 1.056 0.999

Proportion of choosing Gumbel 78/100 67/100 60/100 58/100 53/100
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Table 6.6:Empirical Type II Error Probabilities of Accepting
the Gumbel Model when the True Model is Frank with n =200

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 0% Frank
Sample Mean -2.829 -3.426 -3.882 -4.255 -4.597
Sample Standard Deviation 1.194 1.329 1.309 1.264 1.199

Proportion of choosing Gumbel 21/100 12/100 4/100 2/100 1/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 20% Frank
Sample Mean -2.77 -3.382 -3.837 -4.142 -4.363
Sample Standard Deviation 1.167 1.333 1.345 1.346 1.315

Proportion of choosing Gumbel 24/100 15/100 5/100 2/100 2/100

tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7

Censor proportion = 50% Frank
Sample Mean -2.229 -2.762 -3.139 -3.281 -3.413
Sample Standard Deviation 1.176 1.385 1.442 1.376 1.335

Proportion of choosing Gumbel 39/100 30/100 24/100 217100 18/100
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Chapter 7: Conclusion

In this article, we propose a test for checking whether the data following an AC model.
In our analysis, we use the Gumbel model for illustration. To verify whether proposed test
statistic is asymptotically normal, and we examine its distribution by simulations. Our
conjecture is confirmed. We have also found that the power of the proposed test is satisfactory.
Shih (1998) has analyzed the situation when the null hypothesis is the Clayton model while
the alternative hypothesis is Gumbel’s model. In our simulations, we reverse the roles of the
two models in setting the hypotheses. Our result is similar to that of Shih.

The power decreases as the censoring proportion increases. When the null hypothesis is
the Gumbel model, the power is higher under the Clayton alternative than under the Frank
model. Recall that in Figure 6.5., the Gumbel model is more close to the Frank model and less
similar to the Clayton model. It isteasier tordistinguish two models which are more different
which results in higher power.

As for future investigation;. we~may. try-mote model combinations. Also it may be
interesting to compare the proposed ‘test ‘with the test of Wang and Wells (2000) by

simulations.
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Appendix

Here, we prove the survival version of the theorem in Genest & Rivest. The proof can be

divided into several parts.

Consider the survival AC model:

XY ~C(l-x,1-y)=¢"{g(-x)+p(1- y)} =Pr(X > x,¥ > ),

C(l-x,1)=1-x,C(L,1-y)=1-y

Define the transformation:

U =(1-X){p(1-X)+0(1-7)}.V =" {p(1-X) +9(1-7)]

We show that (a) U ~Unif (0,1), (b) V hasc.df K(v)=v-¢(v)/¢'(v),

(c) ULV.

@

(ii)

(i)

@iv)

v)

Define S=¢(1-X) and F'=¢(1-Y). Show that the joint survival function of

(S,T) can be written as@’' (s+1).

Show the formula

d o1
qu (1)=—

—1
o (07 (1))
Show that the conditional survival function can be written as

oo (1)]

Pr(S>s|T=t)=m

Show the relation

ut

Pr(U >u,V >v)=j0°°1>r{ <S<p(v)-tIT =t}Pr(T =1)

1—u

Obtain Pr(U >u,V >v) :(l—u)-(1+ o(v) —vj

o (v)
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)

Pr(S>s5T>t)=Pr(¢(1-X)>s¢(1-Y)>1)
Pr(l-X <¢™'(s),1-Y <97 (1))
Pr(X >1-¢7'(s),Y >1-¢"'(s))
=9 {0(¢” () +0(¢” (1)}

=9 (s+1)

=1-¢7"'(1) (,since Y ~ U(O,l))
Pr(S>s,T=t)

Pr(S>sIT=t)= Pr(T=1)
Pr(S>s,T=1) :_EPr(S >5,T >1)
dt at ’

__9 4

- az¢ (s+1)

_ -1
(07" (s+1))
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Pr(T=1) 9
— I =—Pr(T<
dt ot r(T<1)

-1
#1o7(1)]
Pr(S>sT=1)
Pr(T =1)
_Pr(S>s,T=t)/dt
~ Pe(T=1)/dr

_ 0]
¢ (s+1)]

Pr(S>sIT=t)=

(iv)&(v)

Pr(U>uV >v):Pr(S >1u—T,S <¢(v)—Tj
—u

:fjop{ ut <S<¢(v)—T'T=fde(f)

1-u

- L(_I:W(V)Pr(u—t <5 < ¢(V)¥25"IT;:" tde (1)

1—‘14‘ le

Kut/l—u

0 (1-W)d(v) o(v)

PI‘(S Slu—tlT:[]:]—M’ and PI‘(S S¢(V)—I|T=t):1—¢,[¢¢i(lv()t)]-

i)
~Pr(U>u,V >v)

= L(zlouw(v){Pr(s <p(v)-tIT = t)—Pr(S Slu—t ¥a =tﬂdF(t)

—Uu
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_vj

(v)

o(v)

-

F, (v)=1—(1+

—

(v

o (v)

K(v)

and U LV.
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Here, we try to prove the asymptotic normality of 7 —7. The idea is that, first prove
the asymptotic normality of untransformed estimator &, — ¢, , then utilize delta method to

derive the asymptotic normality of 7 —7.
\/; (&W.Dab - dUw.Dab )—) N (O’ o’ ) o
= \/Z (dW.Dab - a) - \/Z (aA’/Uw.Dab - a)

:\/Z(dW.Dab_d ) —0

W .true
W .true

(& e — ) ——N(0,07)

_\/Z (&Uw.Dub - a’\'/ ) —p> 0

Uw.true

+n (8, e —a)——>N (0,07,
s(a) z Qa()?ij,flj)+1 dln@a()?ij,Ylj) A ea()zijjzy)
a)= - L
i<j [(Rii_l)—i-ea()zii’yu):l da T o0,(X, Y,y)+1

. (X,.7,
! ;{(le—l) 0 ()Z,ﬁ)] da
R, =R(X,.Y,)=21(X,2X,.Y, 27,

7(x,y)=Pr(X >xY>y)

_if'_l’ﬂ[()?ij,flj) by SLLN, and RN
n n

We suppose that 8, (X i Y”) is bounded, then

0, (X,-%,) 0
n
S(a’)zn_l ea()zg’fij;)—i_l‘g;(%ij’y::i) Az/_ ea(~~ij:~tj)
= x(X,.7)  6.(X,.7) 0,(X,.7,)+1
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X, X,
oX || &6F
:n—l h i , J
Z/: NE Y
Y Y
L 5’ 5'/ -

Here noticed that Qa()? l.j,fl.j), n’()?ij,flj), 6’;()? l.j,fl.j) and A, can be obtained only by

(i,j) pairs observations. So, we can utilize the U -statistic to derive the analytic properties

of S(a).
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