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                                        洪慧念 博士 

 

國立交通大學統計學研究所 

 

摘要 

 

  這篇文章裡我們討論了關於多個異質的逆高斯分配的共同平均數信賴區間的

估計。我們所利用的方法是以概似函數為基礎的高階近似方法，並且我們利用模

擬的方法去跟 signed log-likelihood ratio 及 simple t-test 兩種方法比較所建構出

的信賴區間的覆蓋機率和平均寬度以及所對應檢定的型 I 錯誤來檢視我們所利

用方法的優劣。結果顯示我們所提出的方法即使在小樣本的情況下表現的很好，

而且相對來說比前述的兩種方法可以提供更穩定、正確的結果。最後我們提供了

兩個例子作為說明。 

 

關鍵字 : 覆蓋機率;期望長度;逆高斯分配;樞紐量;符號對數概似比;型 I誤差 
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likelihood method 
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Abstract 
An interval estimation method for the common mean of several 

non-homogeneous inverse Gaussian (IG) populations is discussed. The 

proposed method is based on a higher order likelihood-based asymptotic 

procedure. The merits of the proposed method are numerically compared 

with the signed log-likelihood ratio statistic and the simple t-test method 

with respect to their expected lengths, coverage probabilities and type I 

errors. Numerical studies show that the coverage probabilities of the 

proposed method are very accurate even for very small samples. The 

methods are also applied to two examples. 

Keywords: Coverage probability; Expected length; Inverse Gaussian; Pivotal 

quantity; Signed log-likelihood ratio statistic; Type I error 
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1. Introduction 

 

In many application areas, such as demography, management science, hydrology, 

finance, etc., data are frequently positive and right-skewed. Recently, the inverse 

Gaussian (IG) distribution has drawn many attentions and the inferences concerned 

with the IG distribution have also grown rapidly because the IG distribution is an 

ideal candidate for modeling and analyzing the right-skewed and positive data. For 

instance, Wise (1971, 1975) and Wise et al. (1968) developed the IG population as a 

possible model to describe cycle time distribution for particles in the blood; Lancaster 

(1972) made use of the IG distribution in describing strike duration data, etc.   

The history of the inverse Gaussian distribution can be traced back to 1915 when 

Schrödinger and Smoluchowski presented independent derivations of the density of 

the first passage time distribution of Bownian motion with positive drift. The modern 

day statistical community became aware of this distribution through the pioneering 

work of Tweedie (1941, 1945, 1946, 1947, 1956, 1957). The name “inverse Gaussian” 

was also given by Tweedie based on his discovers that the cumulant function of IG 

distribution is the inverse of the cumulant function of the normal distribution. For 

further details about the IG distribution and for applications, the reader is referred to 

the books by Chhikara and Folks (1989) and Seshadri (1999), respectively.  

The probability density function (pdf) of IG distribution, IG ( , )μ λ , is defined as 

1/ 2
2

3 2( , , ) exp ( ) ,    0,  0,  0,
2 2

f x x x
x x
λ λμ λ μ μ λ
π μ

⎧ ⎫⎛ ⎞= − − > >⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

>      (1.1) 

where μ  is the mean parameter and λ  is the scale parameter. We present some  

density curves in Fig.1.1 and Fig. 1.2 for various values of μ  at 1λ =  and λ  at 

1μ = . 
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       Fig. 1.1 Density functions of IG ( , )μ λ  for fixed 1λ =  and five values of μ  
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Fig. 1.2 Density functions of IG ( , )μ λ  for fixed 1μ =  and five values of λ  
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In Fig. 1.1 and Fig. 1.2, the density of IG distribution varies from the highly 

right-skewed to almost symmetric for different parameter configurations. Hence, the 

inverse Gaussian distribution is very flexible in describing various data. 

The inference methods of the IG model are very analogous to those of the 

Gaussian model; for example, a very common problem in applied field is to compare 

the means of several Gaussian populations, i.e.  

0 1 2: IH μ μ L= = = μ   vs.  :  not all '  are equalA iH sμ .            (1.2) 

If the variance of each population is homogeneous, the analysis of variance (ANOVA) 

can be used to perform the test. Similarly, the analysis of reciprocals (ANORE) can 

also be used to test the equality of means of several IG samples if all scale parameters 

among groups are assumed to be equal (Tweedie, 1956 ; Chhikara and Folks, 1989). 

The testing procedure will be briefly introduced in Remark 1. But when the scale 

parameters are non-homogeneous, the ANORE fails to solve the problem as ANOVA 

fails to test (1.2) when these populations are not homogeneous. Tian (2005) proposed 

a method to test the equality of IG means under heterogeneity based on generalized 

test variable method. However, if the null hypothesis is not been rejected, the 

inferences for the common mean remain unsolved. Therefore, in this paper, we would 

like to estimate and construct the 100(1 )%α−  confidence interval for the common 

mean of several non-homogeneous IG populations. Our method is based on a higher 

order asymptotic likelihood based method. This method, in theory, has a higher order 

accuracy, , and is very accurate even when the sample size is small. Reid 

(1996) gave some review and annotation of the development. The method has also 

been applied to solve many practical problems involving interval estimation for a 

skewed distribution, e.g. Wu et al. (2002) applied this procedure to make the 

confidence interval estimation of the ratio of two independent lognormal distribution, 

Wu et al. (2003) presented a confidence interval for a log-normal mean based on this 

-3/2(O n )
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method; Wu and Wong (2004) used the method to improve the interval estimation for 

the two-parameter Birnbaum-Saunders distribution; Tian and Wilding (2005) used the 

method to construct confidence interval for the ratio of means of two independent IG 

distributions, etc. In our case, the likelihood-based method gives a satisfactory result 

as well. 

Remark 1. One of the resemblances between the IG distribution and the ordinary 

Gaussian distribution is the method for the analysis of residuals. We are familiar with 

the analysis of variance (ANOVA) in normal inference theory, Tweedie (1956) 

introduce the so called analysis of reciprocals (ANORE) for the inverse Gaussian 

distribution. The procedure is as follows: 

 Assume that there are  components in the th populations and each population is 

distributed as 

in i

IG( , )iμ λ , where ,  1,...,  and i i Iμ λ= are unknown. Further assume the 

random samples ,  1,..., ,  1,...,ij iX i I j= = n

I

 are independent. We are interested in the 

problem of testing (1.2) 

The likelihood function, denoted by 1( ,..., , ; ,  1,..., ,  1,..., )I ij ijL X x i I j nμ μ λ = = = is 

proportion to  

      
2

2
2

1 1

( )
exp( )

2

iN nI
ij i

i j i ij

x
x
μλλ

μ= =

−
− ∑∑                                    (1.3) 

where . Differentiation with respect to 
1

I

i
i

N
=

= ∑ n and iμ λ  yields the following 

maximum likelihood estimates (MLEs), 1
ˆ ˆˆ ˆ( ,..., , )Iθ μ μ λ= , where 

       1

1 1

1 1

1ˆ ,

ˆ ( )

i

i

n

i ij i
ji

nI

ij i
i j

x x
n

N x

μ

λ

=

− −

= =

= =

= −

∑

∑∑ 1 .x −

                                   (1.4) 

While is true, the estimates are  oH
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1 1

1 1
0

1 1

1ˆ ,

ˆ ( )

i

i

nI

ij
i j

nI

ij
i j

x x
n

N x

μ

λ

= =

− −

= =

= =

= −

∑∑

∑∑ .x
                                       (1.5) 

The likelihood ratio can be reduced to 

      
2 1

1
0

ˆ
ˆ

oN QN
QN

λ
λ

−

−
Λ = ≡                                           (1.6) 

Note that can be decomposed into Q

      1 1
0

1

I

i i
i

Q Q n x Nx Q Q− −

=

= + − ≡ +∑ 0 1                                (1.7) 

It is easy to verify that 0Qλ  follows a chi-squared distribution with degrees of 

freedom while N I− 1Qλ  is a chi-squared distribution with degrees of freedom of 

( 1I − ) and  are independent. It follows that the likelihood ratio test 

statistic 

1 and oQ Q

       1
1,

0

( ) ~
( 1) I N I
N I Q F
I Q − −

−
−

,                                          (1.8) 

where  is the -distribution with degrees of freedom 1,I N IF − − F 1I −  and  and 

the 

N I−

α  level rejection region is given by solving the following inequality 

       1
1, ,1

0

( )
( 1) I N I
N I Q F
I Q α− − −

−
>

−
.                                       (1.9) 

For illustration examples of ANORE, see Chhikara and Folks (1989) and Seshadri 

(1999) for further details. 

  This article is organized as follows. In section 2, we will briefly introduce the 

properties of IG distribution and the concepts of the signed log-likelihood ratio 

statistic and a higher order asymptotic method. Then the method is applied to 

construct a confidence interval for the common mean of several independent IG 

populations in section 3. The classical procedure under the assumption of identical 

scale is also described in section 3. We will present two numerical examples and two 
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simulation studies in section 4 to illustrate the merits of our proposed method. Some 

concluding remarks are given in section 5. 
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2. A general review 

 

   In section 2.1 we give some basic characteristics of the IG distribution and some 

useful sampling distributions which will be used in later analysis. The main appeal of 

this article, the likelihood based inference technique, will be introduced in section 2.2. 

 

2.1 Some properties of IG distribution 

 

   Let X  be an inverse Gaussian distributed variate with parameters μ and λ . 

The probability density function of X is given in (1.1), and the distribution function 

 can be written in terms of the distribution function of the standard normal 

variate, 

( )F x

( )xΦ , as 

        2( ) [ ( 1)] exp( ) [ ( 1)],    0x xF x x
x
λ λ λ

μ μ μ μ
= Φ − + Φ − + > .         (2.1) 

The characteristic function of X  is given by 

        
12
22( ) exp[ (1 (1 ) )]X

itC t λ μ
μ λ

= − − ,                             (2.2) 

and the moment generating function can be obtained from , i.e., ( )XC t

        
1

0

( 1 )! 2( ) ( ) .
!( 1 )!

t
t

X
j

t jM t
j t j

λμ
μ

−
t−

=

− −
=

− −∑                     (2.3) 

Differentiating the moment generating function with respect to  for the first and 

second order at , we can obtain the mean and the variance of  

t

0t = X  as 

( )E X μ=  and 
3

var( )X μ
λ

= , respectively.     

For a random sample 1 2, ,..., nX X X  from IG ( , )μ λ , the  uniformly minimum 

variance unbiased estimators (UMVUEs) of μ  and 1λ−  are 
1

1 n

i
i

X X
n =

= ∑  and  
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W =
1

1 1
(

1

n

iin X=

−
− ∑ 1

)
X

, respectively, and the minimum sufficient statistics of ( , )μ λ  

are , where  and 1 2( ,  )T T 1
1

n

i
i

T
=

= ∑ X 2
1

1 
n

i i

T
X=

= ∑ .  It is worthy to notice that  

 ~X IG ( , )nμ λ  and ( 1)n W− 2
1

1~ nχλ − ,                         (2.4) 

and that these two statistics are independently distributed. The proof can be found in 

Chhikara and Folks (1989).  

 

Remark 2. Let ~ IG( , )X μ λ  and 21~ nχλ
Λ  be two independent random variables, 

then 1

2

2
2( ) ~X

X
λ μ

μ
χ−

 and its distribution is independent of 2~ nλ χΛ . Let 

1/ 2

(
( )

n X
X

)μ
μ

Μ
Λ
−

= , then the distribution of Μ  is the truncated Student’s  variable 

with  degrees of freedom and 

t

n 2Μ  has the  distribution with 1 and  degrees 

of freedom. (Chhikara and Folks, 1989) 

F n

From (2.4) and Remark 2, we know that 
2

2
12

( ) ~n X
X

λ μ χ
μ
−  which is independent 

of 2
1

1( 1) ~ nn W χ
λ −− . Let  

1/ 2

(
( )
n XU

XW
)μ

μ
−

=                              (2.5) 

then the distribution of U  is the truncated Student’s t  with  degrees of 

freedom and ~

1n−

2U 1, 1nF − . 

 

2.2 The likelihood-based inference 

 

   Let 1( ,..., )nX X X
%
= be an independent sample from some distribution and 

( ) ( ; )l l X xθ θ
% %

= =  be the log-likelihood function based on the sample data. Suppose θ  

is the p -dimensional vector parameters that can be partitioned into ( , )μ λ  with μ  
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being the parameter of interest with dimension 1, and λ  being the nuisance 

parameters with dimensions . The signed log-likelihood ratio 1p − ( )r μ  for inference 

on μ  is defined as  

                                   (2.6) 

where 

1/ 2ˆ ˆˆ( ) sgn( ){2[ ( ) ( )]} ,r l l μμ μ μ θ θ= − −

ˆ ˆ( ,  )ˆθ μ λ=  is the overall maximum likelihood estimator (MLE) of θ  and 

ˆ ( ,  )ˆ
μ μθ μ λ=  is the constrained MLE of θ  for a given μ . Cox and Hinkley (1974) 

verified that ( )r μ  is asymptotically distributed as the standard normal distribution 

with first-order accuracy . A 100 (1-1/2(O n ) )α− % confidence interval for μ  based on 

( )r μ  can be obtained by 

               / 2{ :| ( ) | }r zαμ μ ≤ ,                                (2.7) 

where  is the 10/ 2zα 0(1 / 2)α− th percentile of the standard normal distribution. Since 

the signed log-likelihood ratio statistic is quite inaccurate when the sample size is small, 

Barndorff-Nielsen (1986, 1991) proposed a higher order likelihood-based method 

which is known as the modified signed log-likelihood ratio, 

    * 1 ( )( ) ( ) ( ) log{ },
( )

qr r r
r
μμ μ μ
μ

−= +                         (2.8) 

where ( )r μ  is the sign log-likelihood ratio statistic and ( )q μ  is a statistic which can 

be expressed in various forms depending on the information available. For most of the 

conditions, ( )q μ is not easy to obtain. Thomas (1999) presented an approximation to 

( )q μ  with error of  and hence 1(O n− ) *( )r μ . A widely applicable formula for ( )q μ  

that ensures the  accuracy provided by Fraser et al. (1999) is defined as -3/2(O n )

            

1/ 2

; ; ;

;

ˆ ˆ ˆ ˆ( ) ( )   ( ) ( )
( ) ,ˆ ˆ( ) ( )

V V V

V

l l l j
q

l j
μ λ μ θθ

θ λλ

θ θ θ θ
μ

θ θμ

⎧ ⎫− ⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

               (2.9) 

where ˆ( )jθθ θ  is the  observed information matrix and p p× ˆ( )jλλ μθ  is the 

 observed nuisance information matrix and  ( 1) ( 1p p− × − )
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; ;' ' '
; ; ;

ˆ ˆ ˆ

( ) ( )( )ˆ ˆ ˆ ( ) , ( )  and  ( )V V
V V V

l lll l l
V

μ μ

μ λ μ θ
θ θ θ

θ θθθ θ θ
λ θ

∂ ∂∂
= = =

∂ ∂ ∂
. 

The vector array  in (2.9) where 1( ,..., )pV v v′= ′ ,1 ,{ ,..., },i i i nv v v=  , is 

obtained from a vector pivotal quantity 

1,...,i = p

1 1( ; ) ( ( ; ),..., ( ; ))n nR x R x R xθ θ θ=
%

 by 

         1

ˆ

( ; ) ( ; )( ) (R x R xV
x

) ,
θ

θ θ
θ

−∂ ∂
= −

∂ ∂
                          (2.10) 

where the distribution of ( ; )i iR x θ  is free of the parameters. The choice of the pivotal 

quantity will be briefly discussed in Remark 4.  The quantity ; ( )Vl θ  is the likelihood 

gradient with 

        '
;

1

( ) { ( ; ),..., ( ; )}V
p

d dl l x l
dv dv

θ θ θ
% %

= x ,                        (2.11) 

where ; ,
1 1

( )( , ) ( ) ,  1,..., , 1,...,
j

n n

x i j ij
j ji j

d ll x l v v i p j
dv x

θθ θ
= =

∂
= ⋅ = ⋅ = =

∂∑ ∑ n . 

Note that achieves third-order accuracy to a standard normal distribution (Fraser 

et al. 1999). Therefore, a 100

*r

(1 )α− % confidence interval for μ  based on *( )r μ  is 

given by 

              .                                   (2.12) 

Remark 3. Notice that the procedure we mention above is performed for one 

population. If the inference problem involves

*
/ 2{ :| ( ) | }r zαμ μ ≤

I  independent populations, some 

modifications are needed in applying this method. First, we put all the observations 

from the I distinct random samples together. Denote the set of observations by X
%

, 

where . For each component in
1 211 1 21 2 1( ,..., , ,..., ,..., ,..., )

In n IX X X X X X X=
%

In X
%

, we 

construct a corresponding pivotal quantity, ( , )ij ijR X θ , 1,...,   , 1,.... ii I j n= = , then 

( )q μ  and *( )r μ  can be constructed in similar manner as we mentioned above.  

 

Remark 4. Explicit specification of the pivotal quantity ( , )ij ijR x θ  is not needed for 
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the computation of ( )q μ (Fraser et al. 1999). A simple and easy choice is given by the 

distribution function which is uniformly distributed. In fact, the choice of the pivotal 

quantity has crucial impact on the computation of the modified signed log-likelihood 

ratio algorithmatically. A choice which contains more information about the sample is 

preferred.    

 

Remark 5. ( )q μ  in (2.9) can be expressed in various forms. It is different from the 

quantity 
1/ 2

ˆ ˆ ˆ; ; ;

ˆ;

ˆ ˆ ˆ ˆ( ) ( )   ( ) ( )
( ) ,ˆˆ ( )( )

l l l j
q

jl

μ μ θθθ θ λ θ

λλ μθ θ

θ θ θ θ
μ

θθ

⎧ ⎫− ⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                (2.13) 

where 

ˆ ˆ; ;
ˆ ˆ ˆ; ; ;

ˆ ˆ ˆ

( ) ( )( )ˆ ˆ ˆ( ) ,  ( ) ,  ( )ˆ
l lll l l

μ

θ θ
μθ λ θ θ θ

θ θ θ θ θ

θ θθθ θ θ
λ θθ = θ= =

∂ ∂∂
= = =

∂ ∂∂
 

given by Barndorff-Nielsen (1991) and Barndorff-Nielsen & Cox (1994) for 

computing *( )r μ . Both variants of *( )r μ  can reach third-order accuracy, although 

*( )r μ  can be obtained through different forms. The expression in (2.13) involves 

differentiation with respect to θ̂ , if there is no analytic form of MLEs, then 

sometimes such ( )q μ  is difficult or impossible to obtain. For example, as for our 

problem, the inference for the common mean of I  independent IG populations, there 

are 1I +  parameters and 2I  minimal sufficient statistics which is the so-called 

 curved exponential model, (2 , 1)I I + ( )q μ  in (2.13) is not easy to apply since the 

MLEs do not have closed form, so the computation of the derivative with respect to 

θ̂  is not available. On the other hand, ( )q μ  in (2.9) is easy to implement 

algorithmically. Such a ( )q μ  is quite flexible; hence we will use it to perform the 

higher order and likelihood-based inferences in the following section. 
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3. Inferences for the common mean of several independent IG 

populations 

   In this section we apply the procedure we present in section 2 to construct the 

confidence interval. The derivation for the general case will be presented in section 

3.1.  The two independent IG populations case will be discussed in section 3.2. At 

last, we derive the t-like confidence interval under the assumption of homogeneity for 

comparison purpose. All the results will be utilized in the simulation in the next 

section. 

 

3.1 The likelihood-based confidence interval in the general case 

 

Suppose 1( ,..., ),  1, 2,.., ,
ii i inX X X i= = I are I independent populations from 

IG ( , )iμ λ . The parameters, 1( , ,..., )Iθ μ λ λ= , contain μ  being the parameter of 

interest and 1( ,..., )Iλ λ being the nuisance parameters. The log-likelihood function is  

1 1

2
1 1 1 1 1 1 1 1

   ( ; ,..., )

1 3 1 1 1log log .          (3.1)
2 2 2 2 2

i i i

I I
n n nI I I I I

i i
i ij i ij i i

i i j i j i i j ij

l X x X x

n x x n
x

θ

λ λλ λ
π μ μ= = = = = = = =

= =

= − − + −∑ ∑∑ ∑∑ ∑ ∑∑

Differentiating the log-likelihood function (3.1) with respect to θ  for the first order 

yields the following results: 

      
2 3 2

1 1 1

2
2 2

1 1

( ) 1 1

( ) 1 1 1  ,  1,..., .
2 2 2

i

i i

nI I
i

i i
i i j ij

n n
i i

ij
j ji i ij

l n
x

n nl x i I
x

λθ λ
μ μ μ

θ
λ λ μ μ

= = =

= =

∂ −
= +

∂

∂
= + − − =

∂

∑ ∑∑

∑ ∑
                 (3.2) 

The overall MLEs 1̂
ˆˆ( , ,...,ˆ )Iμ λθ λ=  can be uniquely obtained by solving the 

non-linear system (3.2) simultaneously. It seems that in our problem, there is no 

analytic form for the overall MLEs. Therefore, some numerical facility is needed to 
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get the numerical solutions. Furthermore, the constrained MLEs  

for a given 

,1 ,
ˆ ˆ ˆ( , ,..., )Iμ μθ μ λ λ= μ

μ  are 
2

,
2

1
1 1

ˆ ,   1,...,
1(2 )

i i

i
i n n

i
i i i

n i
n x

x

μ
μ

λ
μ μ

= =

−
=

− −∑ ∑
I= .               (3.3) 

Choosing a vector of pivotal quantity 11{ ,..., }
IInR R R=  with 

2

2

( )
,  i ij

ij
ij

x
R

x
λ μ

μ
−

=  

, then 1,.., ; 1,.., ii I j= = n 2
1~ijR χ  with the distribution free of any unknown 

parameters. Differentiating ijR  with respect to and  x θ , we have    

            

           
2 2

1
2 2( ) ,  if   ; else 0

( )
ij ij ij

k i ij k

R x R
j k

x x x
μ

λ μ
−∂ ∂

= = =
∂ − ∂

; 

 3

2 ( )ij i ijR xλ μ
μ μ

∂ − −
=

∂
;  

2

2

( )
 if   ; else 0ij ij ij

k ij k

R x R
j k

x
μ

λ μ λ
∂ − ∂

= =
∂ ∂

= .                       (3.4) 

Thus 

1

1

2 2 2 22 2 2 2
11 11 1

2 2 2 2 2 2 2 2
1 11 1 1 1

( ) [ ,..., ,..., ,..., ]
( ) ( ) ( ) (

I

I

n II

n I I I In

x xx xR diag
x x x x x

μ μμ μ
)

n

λ μ λ μ λ μ λ μ
−∂
=

∂ − − − −
,   (3.5) 

where diag[.] is the abbreviation of the diagonal matrix.   

Furthermore, ' ' ' ' '
1

1

( ) [( ) , ( ) ,..., ( ) ] [ ,..., ]I
I

R R R R h h
θ μ λ λ 1+
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 with 

   11 11 11 1
1 3 3 3

2 ( ) 2 ( )2 ( ) 2 ( )( ,..., ,..., ,..., )In II I
x xx xh 3

Inλ μ λλ μ λ μ
μ μ μ μ

− − − −− − − −
=

μ
 

   {
1

1

22
1

1 2 2
1

( )( )
(0,...,0 , ,..., ,0....,0) , 1,...,j

j j
k

k

jnj
j

j jn
n

xx
h j

x x

μμ
μ μ−

=

+

−−
= =

∑

I .               (3.6) 

Note that is a vector array and use (3.5) and (3.6), can be expressed as follows:  V V
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' ' 1
1 1

ˆ
( ,..., ) ( ) ( )I

RV v v R
x θθ

−
+

∂ ∂
= = −

∂ ∂
  

1 1 1

1 1

2 2

2

2
11 11 11

11 1 11

2
1 1 1

1 1 1

21 21

2 21

2 2 1,1 1,1

2 2 1 1,1

ˆ2 ( )
0 0ˆˆ ˆ( ) ˆ( )

ˆ2 ( )
0 0ˆˆ ˆ( ) ˆ( )

ˆ( )
0 ˆ ˆ( )

0 0
ˆ( ) ˆ( )

0 0ˆ ˆˆ ˆ( ) ( )

0 0

n n n

n n

n n I I

n I I

x x x
x x

x x x
x x

x x
x

x x x x
x x

μ
μ μ λ μ

μ
μ μ λ μ

μ
λ μ

μ μ

λ μ λ μ

L

M M M M M M

L

M O M

M M M O

M M

M O M

− −

− −

−
−

+ +

−
−

+ +

−
−

+

− −
− −

+ +=

0

0

M

M

1 1

1

1, 1,

1 1,

2
1 1 1

1 1

2

ˆ( )
ˆ ˆ( )

0 0 0 0
ˆ2 (

0 0 ˆˆ ˆ( ) ˆ( )

ˆ2 (
0 0 0 ˆˆ ˆ( ) ˆ( )

I I

I

I I I

I I

I n I n

I I n

I I I

I I I

In In In

In I In

x x

x

x x
x x

x x
x x

μ

λ μ

μ
μ μ λ μ

)

)

x

x μ
μ μ λ μ

M M M O M

M M

L M

M M M M M M

L

− −

−

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ −
⎢ −
⎢ +
⎢
⎢
⎢ −⎢ −
⎢ + +
⎢
⎢
⎢ −⎢ −
⎢ + +⎣ ⎦

.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

It remains to obtain the likelihood gradients, ; ( ),Vl θ ; ( )Vlλ θ , ; ( )Vlθ θ , and the fisher 

information matrices ( )jθθ θ  and ( )jλλ θ . Notice again that  

'
;

1 1

; ; ;'
;

1

; ; ; ;'
;

1

( ) ( ) ( )( ) [ ,..., ],

( ) ( ) ( )
( ) [ ,..., ],

( ) ( ) ( ) ( )ˆ( ) [ , ,..., ],

V
I

V V V
V

I

V V V V
V

I

l l ll
V v v
l l l

l

l l l l
l

λ

θ

θ θ θ
θ

θ θ θ
θ

λ λ λ
θ θ θ θ

θ
θ μ λ λ

+

∂ ∂ ∂
= =

∂ ∂ ∂
∂ ∂ ∂

= =
∂ ∂ ∂

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

 

where  

1; , ( 1)
1 1

( ) ,  1,...( , ,) i

ij i

nI

x k j i n
i jk

l v kl
v
θ θ

−+ − ×
= =

=
∂

=
∂ ∑∑ p   

1 1; 1, ( 1) ; 1, ( 1)
1

;

1 1 1
( ) ,...,

( )
[ (

i i

ij i ij i

n nI I

x j i n x I j i n
i j i

V

j

l
l v l vμ μ

θ
θ θ

μ − −+ − × + + − ×
= = = =

∂
=

∂ ∑∑ ∑∑ ) ],  

1 1; 1, ( 1) ; 1, ( 1)
1 1 1 1

; ( ) ,..., ( ) ],  1
( )

[ ,...,
i i

m ij i m ij i

n nI I

x j i n x I
V

i
i j i jm

j nl v l v m
l

Iλ λθ
θ

θ
λ − −+ − × + + − ×

= = = =

=
∂

=
∂ ∑∑ ∑∑ . 
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 Therefore the complete results are  

1

1

; 1, ( 1)
1 1

;

; 1, ( 1)
1 1

( )

( ) ,

( )

i

ij i

i

ij i

nI

x j i n
i j

V
nI

x I j i n
i j

l v

l

l v

θ

θ

θ

−

−

+ − ×
= =

+ + − ×
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑∑

∑∑

M

1 1

1 1

; 1, ( 1) 1

1

1−

; 1, ( 1)
1 1 1 1

;

; 1, ( 1) ; 1, ( 1)
1 1 1 1

( ) ( )

( ) ,

( ) ( )

i i

ij i I ij i

i i

ij i I ij i

n nI I

x j i n x I j i n
i j i j

V
n nI I

x I j i n x I j i n
i j i j

l v l v

l

l v l v

λ λ

λ

λ λ

θ θ

θ

θ θ

− −

− −

+ − × + + − ×
= = = =

+ + − × + + − ×
= = = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑∑ ∑∑

∑∑ ∑∑

L

M M

L

1 1 1

1 1 1 1

; 1, ( 1) ; 1, ( 1) ; 1, ( 1)
1 1 1 1 1 1

;

; 1, ( 1) ; 1, ( 1) ;
1 1 1 1

( ) ( ) ( )

( )

( ) ( )

i i i

ij i ij i I ij i

i i

ij i ij i

n n nI I I

x j i n x j i n x j i n
i j i j i j

V
n nI I

x I j i n x I j i n
i j i j

l v l v l v

l

l v l v l

μ λ λ

θ

μ λ λ

θ θ θ

θ

θ θ

− −

− −

+ − × + − × + − ×
= = = = = =

+ + − × + + − ×
= = = =

=

∑∑ ∑∑ ∑∑

∑∑ ∑∑

L

M M M M

L
11, ( 1)

1 1

.

( )
i

ij i

nI

x I j i n
i j

vθ
−+ + − ×

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑∑

The observed information matrix and the observed nuisance information matrix can 

be calculated by multiplying the Hessian matrix for the log-likelihood function by 

(-1) . The results are given below. 

1 2

1

2

1 21 2
4 3 2 2 2 3 2

1 1 1 1 1 1

11 1
2 3 2

1 1

22 2
2 3 2

1 2

2 3 2
1

3 2

0 0 0
2

( ) 0 0
2

0 0
0 0

0 0 0
2

i I

I

n n n nI I
i ij i i i i IiI

i j i i i i

n
i

i

n
i

i

n
IiI I

i I

x n x xn n n

xn n

xn nj

xn n

θθ

λ λ
3

x
μ μ μ μ μ μ μ μ

μ μ λ

θ
μ μ λ

μ μ λ

= = = = = =

=

=

=

⎡ ⎤
− − − −⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢
⎢
⎢
⎢= −
⎢
⎢
⎢
⎢
⎢
⎢ −⎢⎣ ⎦

∑∑ ∑ ∑ ∑ ∑

∑

∑

∑

L L

L

M M

M M O

M M M O

L

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M

 

and  
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1
2

1

2

0
2

( )

0
2

I

I

n

j
n

λλ

λ
θ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

O .   

Apply the above quantities to (2.8) and (2.9), 

 

1/ 2

; ; ;

;

ˆ ˆ ˆ ˆ( ) ( )   ( ) ( )
( ) ˆ ˆ( ) ( )

V V V

V

l l l j
q

l j
μ λ μ θθ

θ λλ

θ θ θ θ
μ

θ θμ

⎧ ⎫− ⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

and then * 1 ( )( ) ( ) ( ) log{ }
( )

qr r r
r
μμ μ μ
μ

−= + can be obtained.  

Although the values of  r  and  can be obtained here, in general, some 

simple numerical iteration procedure is needed to solve the upper bound limit and 

lower bound limit. In this thesis we use the so-called secant method (or the modified 

Newton-Raphson method) to obtain the confidence limit; the algorithm is summarized 

as follows: 

*r

    Step 1: Give the tolerance ε  for the purpose of accuracy; 

    Step 2: Select δ  for the purpose of numerical differentiation; 

    Step 3: Give the initial estimate 0μ  to start the iteration; 

    Step 4: Compute  

               / 2 0
1 0

0 0

[ ( )]
[ ( ) ( )] / 2

Z r
r r

α μμ μ
μ δ μ δ δ

−
= +

+ − −
                    (3.7) 

    Step 5: If 1 0μ μ ε− > , replace 0μ  with 1μ  and return to Step 4 again, 

 otherwise take the latest 1μ  as the lower bound limit of the 100(1 )α− %  

confidence interval.  

Replacing / 2Zα  with  in (3.7), we can obtain the upper bound limit for the 1 / 2Z α−

100(1 )α− % confidence interval of the common meanμ . Similarly, the confidence 

interval based on can be obtained by substituting  for  in (3.7). *r *r r
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3.2 The likelihood-based confidence interval when I=2 

 

For the purpose of illustration, we present the derivation of the confidence interval for 

the common mean of two independent IG populations. Let
11 11 1 1,..., ~ IG( , )nX X X μ λ=

%
 

and 
22 21 2 2,..., ~ IG( , )nX X X μ λ=

%
 be two independent inverse Gaussian samples. The 

log-likelihood function based on the observations is 
1 1 1

2 2 2

1 1 1 1 1 1 2 2
1 1 2 2 1 12

1 1 1 1

2 2 2 2
2 22

1 1 1 2

3 1( ; , ) log log log
2 2 2 2 2 2 2

3 1                  log .      (3.8)
2 2 2

      

n n n

i i
i i i i

n n n

i i
i i i i

n nl X x X x x x
x

nx x
x

nλ λ λ λθ λ
π μ μ

λ λ λ
μ μ

= = =

= = =

= = = − − + − +

− − + −

∑ ∑ ∑

∑ ∑ ∑

% %% % π

ˆ

 

The MLEs and the constrained MLEs are 1 2
ˆ ˆˆ( , , )θ μ λ λ= and 1 2

ˆ ˆ ˆ( , , )μ μ μθ μ λ λ= , 

respectively . 

Take 
2

2

( )i ij
ij

ij

x
R

x
λ μ

μ
−

=  to be the pivotal quantity as we mentioned earlier and 

differentiate ijR  with respect to x  and θ , we then have  

1

1

2

2

2 2
11

2 2
1 11

2 2
1

2 2
1 11

2 2
21

2 2
2 21

2 2
2

2 2
2 2

( )

( )
( )

( )

( )

0

0

n

n

n

n

x
x

x
xR

x x
x

x
x

μ
λ μ

μ
λ μ

μ
λ μ

μ
λ μ

O

O

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−∂ ⎢ ⎥= ⎢ ⎥∂
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 

and  

 

 18



 

      

1 1

1

2 2

2

2
1 11 11

3 2
11

2
1 1 1

3 2
1

2
2 21 21

3 2
21

2
2 2 2

3 2
2

2 ( ) ( ) 0

2 ( ) ( )
0

( )
2 ( ) ( )0

2 ( ) ( )
0

n n

n

n n

n

x x
x

x x
xz

x x
x

x x
x

λ μ μ
μ μ

λ μ μ
μ μ

θ λ μ μ
μ μ

λ μ μ
μ μ

M M M

M M M

⎡ ⎤− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
∂ ⎢ ⎥= ⎢ ⎥∂ − − −

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

So ' ' ' 1
1 2 3

ˆ
( , , ) ( ) ( )V v v Rv

x
R

θθ
−∂ ∂

= = −
∂ ∂

  

1 1 1

1 1

2 2

2 2

2
11 11 11

11 1 11

2
1 1 1

1 1 1

2
21 21 21

21 2 21

2
2 2

2 2 2

ˆ2 ( ) 0ˆˆ ˆ( ) ˆ( )

ˆ2 ( )
0ˆˆ ˆ( ) ˆ( )

ˆ2 (
0 ˆˆ ˆ( ) ˆ( )

ˆ2 (
0 ˆˆ ˆ( ) ˆ( )

n n n

n n

n n

n n

x x x
x x

x x x
x x

x x
x x

x x
x x

μ
μ μ λ μ

μ
μ μ λ μ

μ
μ μ λ μ

22

)

)n

x

x μ
μ μ λ μ

M M M

M M M

⎡ ⎤−
−⎢ ⎥+ +⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥
−⎢ ⎥+ +⎢ ⎥= ⎢ ⎥−⎢ −

⎢ + +
⎢
⎢
⎢ −⎢ −
⎢ + +⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

Moreover, the likelihood gradients are  

1 2

1

2 2
1 21 1 2 2

2 2 2 2
1 11 1 1 2 2

1 1 1 1
; 2 2

1 1 11 1

2 2 2 2
2 2
2 22 2

ˆ ˆ ˆ ˆ2 23 3( ) (
ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 2 2 ( ) 2 2 2

ˆ ˆˆ( ) 3( ) ( )ˆ ˆ2 2 2ˆ( )
ˆ ˆˆ( ) 3( )ˆ ˆ2 2 2ˆ( )

n n
i i

i ii i i i i

n
i i

V
i i ii

i i

i ii

x x
x x x x x x

x xl
x xx

x x
x xx

λ λ λ λ
μ μ μ μ μ μ

μ λ λθ
μλ μ

μ λ λ
μλ μ

= =

=

⋅ − − + ⋅ − −
+ +

−
= ⋅ − −

+

−
⋅ − −

+

∑ ∑

∑
2

1

,

n

i=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

2

)
i
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1 2

1

2

2 2
1 2

2 2 2 2
1 11 1 2 2

1 1
; 2 2

1 11 1

2 2
2 2

1 22 2

2 1 1 2 1 1( ) (
ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 2 ( ) 2 2

ˆ( ) 1 1( ) ( ) 0ˆ ˆ2 2ˆ( )
ˆ( ) 1 10 (ˆ ˆ2 2ˆ( )

n n
i i

i ii i i i
n

i i
V

i ii
n

i i

i ii

x x
x x x x

x xl
xx

x x
xx

λ

μ μ μ μ μ μ

μθ
μλ μ

μ
μλ μ

= =

=

=

⎡ ⎤
⋅ − ⋅ −⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−⎢ ⎥= ⋅ −
⎢ ⎥+
⎢ ⎥

−⎢ ⎥⋅ −⎢ ⎥+⎣ ⎦

∑ ∑

∑

∑

)

)

 

and 

1 2

1 1

2 2 22
1 2

4 2 2
1 1 1 11 1 2 2

1 1 1 1
; 3 2 2

1 11 11 1

2 2
3

ˆ 2 2 21 1 1 1( ) (
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 2 ( ) 2 2

ˆ ˆ( ) ( )1 1 1( ) ( ) 0ˆˆ ˆ ˆ( ) 2 2ˆ( )
ˆ( )1

ˆ (

in n n
iji i i

i j i iij i i i i

n n
i i i i

V
i ii ii

i i

x x x
x x x x x

x x x xl
x xx

x x

θ

λ
μ μ μ μ μ μ μ μ

μ μθ
μ μ μλ μ

μ
μ

= = = =

= =

⋅ ⋅ − ⋅
+ + +

− −
= − ⋅ −

+ +

−
−

∑∑ ∑ ∑

∑ ∑

2 2 )−

2 2
2 2

2 2
1 12 22 2

.

ˆ( ) 1 10 (ˆˆ ˆ) 2ˆ( )

n n
i i

i ii ii

x x
x xx

μ
μ μλ μ= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⋅ −⎢ ⎥+ +⎣ ⎦
∑ ∑ )

2

The observed Fisher information matrix and the observed nuisance information matrix 

are  

1 1 1 1 2 2 2 2 1 1 2 2
4 3 4 3 2 3 2

1 1 1
2 3 2

1

2 2 2
2 3 2

2

3 2 3 2

( ) 0
2

0
2

s n s n n s n s

n s nj

n s n

θθ

λ λ λ λ
3μ μ μ μ μ μ μ μ

θ
μ μ λ

μ μ λ

⎡ ⎤
− + − − −⎢ ⎥

⎢ ⎥
⎢ ⎥
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where  and . Finally, a 100
1

1
1

n

i
i

s X
=

=∑ 1 2

2

2
1

n

i
i

s X
=

=∑ (1 )%α−  confidence interval of 

μ  based on *( )r μ  is then obtained by applying these quantities to (2.8) and (2.12).  

 

3.3 Simple t-test confidence interval 

 

  For the purpose of comparison, we present a simple t-test confidence interval that is 
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inspired from the analysis of reciprocals (ANORE). This method can provide an exact 

confidence interval when the scale parameters are homogeneous.  

Suppose 1( ,..., ),  1, 2,.., ,
ii i inX X X i= = I are I independent populations with 

parameters ( , )iμ λ for each population, from (2.4) we know that 

1 1

1 ~ ( , )
inI

ij
i j

X X IG
N

 Nμ λ
= =

= ∑∑  and 21( ) ~ N IN I W χ
λ −−  are independent distributed, 

where ,
1

I

i
i

N n
=

= ∑
1

1 
in

i i
ji

jX X
n =

= ∑  and 1

1 1

1 (
inI

ij i
i j

W X
N I

− −

= =

=
− ∑∑ 1)X− . Moreover, 

from Remark 2, we know  1/ 2

(
( )

N X
XW

)μ
μ

−  is the truncated student’s  distribution 

with  degrees of freedom. Therefore, a two-sided 

t

N I− 100(1 )α− % for μ  can be 

obtained by solving the following inequality  

1/ 2 1 ,
2

( ):
( ) N I

N X t
XW α

μμ
μ − −

⎧ ⎫−⎪ ⎪<⎨ ⎬
⎪ ⎪⎩ ⎭

 

1/ 2 1 ,
2

( 1)
:

( ) N I

XN
t

XW α
μμ

− −

⎧ ⎫
−⎪ ⎪⎪ ⎪= <⎨ ⎬

⎪ ⎪
⎪ ⎪⎩ ⎭
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The confidence interval is summarized as  
1 1

1 1 1
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4 . Simulation studies and numerical examples 

  In this section, we first present a simulation to show the normal approximation of  

 and . In section 4.2, we conduct a simulation study of the proposed procedure 

for different parameter configurations. In section 4.3, a real-life data and a simulated 

data are given as illustrations.  

r *r

 

4.1 Normal approximation for  and    r *r

 

  To show that the normal approximations for  and are adequate, we conduct a 

simulation to show the validity and also to compare the extent of asymptotic of  and 

. We present the Q-Q plots for both and  under the same parameter settings.  

For two populations, the sample sizes 

r *r

r

*r *r r

1 2( , ) (5,10) , (10, 5) and (10,10)n n = and 

1 2( , , )μ λ λ = (1,0.2,1) are demonstrated. And the sample sizes (5,8,10), 

(5,10,8) and (10,8,5) and 

1 2 3( , , )n n n =

1 2 3( , , , ) (1,0.1,0.5,1)μ λ λ λ =  are chosen for three populations. 

All the simulations are based on 5,000 repetitions. For two populations, the Q-Q plots are 

given in Fig. 4.1 and for three populations, the Q-Q plots are given in Fig. 4.2. Both Fig. 

4.1 and Fig. 4.2 show that the asymptotic of  is better than  which is consistent as 

we expect. In these figures, we can see, most of the tail of the Q-Q plots of  deviate off 

the straight line which is the indicator of normality whereas those of  seem to overlap 

the straight line for most of the part. In short,  is more accurate in approximating to 

the standard normal.  

*r r

r

*r

*r
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Fig. 4.1 Q-Q plots for two populations at 1 2( , , ) (1,  0.2,  1)μ λ λ =  
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Fig. 4.2 Q-Q plots for three populations at 1 2 3( , , , ) (1,  0.1,  0.5,  1)μ λ λ λ =  
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4.2 Simulation studies  

 

To evaluate the accuracy of the proposed method, we present simulation studies of 

the confidence interval and type I errors applied to a variety of scale parameter 

configurations and different settings of sample size for two and three populations. We 

exhibit the coverage probabilities, the average lengths of the 95% confidence intervals 

and calculate type I errors based on ,  and simple t-test method. The results 

given in tables 1-4  below are based on 10,000 simulation runs for each combination. 

From the table 1 and table 2, we see that although the confidence intervals based on 

the directed log-likelihood ratio method, , have shortest average lengths comparing 

to the other two methods, the coverage probabilities are too short to attain the 

proposed coverage probabilities in each combination. The confidence intervals based 

on the simple t-test method also show a good performance on coverage probabilities, 

but these coverage probabilities decrease when the heterogeneity increases. Moreover, 

when the scale parameter is small related to 

r *r

r

μ , then the intervals constructed by the 

simple t-test are unbounded (i.e., a one-sided interval). In these cases, the method 

gives less information about the target value than those based on  and r . On the 

other hand, the confidence intervals based on higher order likelihood-based method, 

, not only have almost exact coverage probabilities in each combination (except for 

few pairs having large sample sizes with relatively small scale parameters), but the 

average lengths are also quite acceptable. Therefore, for the overall comparisons, the 

higher order likelihood-based method outperforms the other two methods.  

*r

*r
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Table 1 

Simulation results of 95% confidence interval of 1μ =  for two populations 

*r  r  simple t-test 
1 2( , )n n  1λ  2λ  

CP Length CP Length CP Length 

(5,10) 0.2 1 0.951 9.387 0.923 1.637 0.954 ∞  

 0.5 1 0.948 14.340 0.917 1.554 0.945 ∞  

 1 3 0.952 1.054 0.926 0.786 0.943 1.024 

 3 10 0.947 0.456 0.920 0.387 0.939 0.486 

 1 10 0.948 0.477 0.923 0.409 0.933 0.791 

(10,5) 0.2 1 0.931 23.093 0.847 1.368 0.955 ∞  

 0.5 1 0.944 13.672 0.897 1.534 0.949 ∞  

 1 3 0.949 1.958 0.906 0.967 0.950 1.506 

 3 10 0.948 0.598 0.903 0.464 0.949 0.623 

 1 10 0.947 0.840 0.925 0.573 0.951 1.361 

(10,10) 0.2 1 0.951 7.914 0.929 1.659 0.958 ∞  

 0.5 1 0.955 2.320 0.933 1.363 0.948 ∞  

 1 3 0.945 0.873 0.924 0.708 0.946 0.918 

 3 10 0.945 0.410 0.921 0.360 0.947 0.456 

 1 10 0.949 0.459 0.926 0.399 0.947 0.795 

CP : Coverage probability; Length : Average length 
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Table 2 

Simulation results of 95% confidence interval of 1μ =  for three populations 

*r  r  simple t-test 
1 2 3( , , )n n n  1λ  2λ  3λ  

CP Length CP Length CP Length 

(5,8,10) 0.1 0.1 1 0.949 4.865 0.923 1.611 0.965 ∞  

 0.1 0.5 1 0.949 3.382 0.922 1.456 0.959 ∞  

 1 1 5 0.948 0.671 0.923 0.542 0.948 0.807 

 1 1 10 0.949 0.467 0.925 0.396 0.943 0.766 

 1 5 10 0.948 0.393 0.921 0.337 0.938 0.511 

(5,10,8) 0.1 0.1 1 0.952 5.964 0.917 1.589 0.963 ∞  

 0.1 0.5 1 0.948 3.784 0.918 1.492 0.952 ∞  

 1 1 5 0.945 0.754 0.919 0.586 0.951 0.873 

 1 1 10 0.950 0.537 0.919 0.435 0.947 0.844 

 1 5 10 0.945 0.413 0.917 0.350 0.938 0.524 

(10,8,5) 0.1 0.1 1 0.928 7.016 0.839 1.306 0.967 ∞  

 0.1 0.5 1 0.946 5.952 0.889 1.467 0.965 ∞  

 1 1 5 0.943 0.957 0.901 0.668 0.950 0.974 

 1 1 10 0.945 0.720 0.898 0.518 0.953 0.956 

 1 5 10 0.946 0.521 0.902 0.406 0.948 0.711 

CP : Coverage probability; Length : Average length 

 

Furthermore, from tables 3 and 4, we can see the type I errors based on  and  

are quite stable under different parameter configurations since the type I errors based 

on the simple t-test method decrease as the mean parameter under the null hypothesis 

increases. From tables 3 and 4, the type I errors based on  are significantly better 

than that of  since the type I errors based on are around 0.07 to 0.10 which are 

*r r

*r

r r
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too large comparing to the nominal level 0.05. On the contrary, the type I errors based 

on  are not only stable, but the values also close to the nominal level 0.05. Thus, 

we can say that  the proposed procedure can deal with heterogeneity among 

populations and give robust and reliable results under different scenarios. 

*r

 

Table3: Type I errors for 0 0 0:  vs. :H H 0μ μ μ μ= ≠  at  I=2 and 0.05α =  

  1 25,  10n n= =  1 210,  5n n= =  

  0μ  0μ  

1 2( , )λ λ   0.2 0.8 1.2 2.0 5.0 0.2 0.8 1.2 2.0 5.0 

(0.2, 1) (1) 0.0522 0.0528 0.0529 0.0493 0.0506 0.055 0.0495 0.0567 0.0551 0.0524

 (2) 0.0774 0.0746 0.075 0.0686 0.0702 0.1027 0.0903 0.0989 0.0912 0.0912
 (3) 0.0615 0.0430 0.0489 0.0426 0.0324 0.0502 0.0378 0.0410 0.0381 0.0313

(0.5,1) (1) 0.0485 0.0562 0.0569 0.0533 0.0575 0.0528 0.056 0.0522 0.0552 0.053 

 (2) 0.0832 0.0862 0.0844 0.0813 0.0808 0.0901 0.095 0.0922 0.0922 0.0883
 (3) 0.0555 0.0507 0.0514 0.0504 0.0509 0.0469 0.0515 0.0461 0.0434 0.0484

(1, 3) (1) 0.0526 0.0528 0.0500 0.0578 0.0564 0.0542 0.0548 0.0573 0.0570 0.0553
 (2) 0.0783 0.0783 0.0744 0.081 0.079 0.0966 0.0985 0.0941 0.0939 0.0939
 (3) 0.0583 0.0545 0.0503 0.0539 0.0524 0.0514 0.0471 0.0464 0.0535 0.0424

(1, 5) (1) 0.0507 0.0566 0.0517 0.0551 0.057 0.0585 0.0537 0.0558 0.0563 0.0575
 (2) 0.0788 0.0803 0.0768 0.0779 0.079 0.1009 0.0936 0.099 0.098 0.0989
 (3) 0.0634 0.0616 0.061 0.0573 0.0499 0.0502 0.0471 0.0465 0.046 0.0371

(1, 10) (1) 0.0528 0.055 0.0484 0.0559 0.0487 0.0559 0.0538 0.0517 0.0582 0.0571
 (2) 0.0751 0.0759 0.0727 0.0777 0.0697 0.104 0.0977 0.0967 0.0997 0.0981
 (3) 0.0775 0.074 0.0682 0.0589 0.0478 0.0532 0.0468 0.0507 0.0431 0.0344

The above type I errors due to (1)- *( )r μ ; (2)- ( )r μ ; (3)- simple t-test. 
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Table 4: Type I errors for 0 0 0:  vs. :H H 0μ μ μ μ= ≠  at I=3 and 0.05α =  

  1 25,  8n n= = , 3 10n =  
1 2 35,  10,  8n n n= = =  

  0μ  0μ  

1 2 3, )( ,λ λ λ
 

 0.2 0.8 1.2 2.0 5.0 0.2 0.8 1.2 2.0 5.0 

(0.1,0.1,1) (1) 0.0481 0.0564 0.0542 0.0563 0.0551 0.055 0.0539 0.0516 0.0576 0.0549

 (2) 0.0716 0.0774 0.0748 0.0796 0.0729 0.0845 0.0789 0.0769 0.0814 0.0787
 (3) 0.0483 0.0391 0.0336 0.0258 0.0187 0.0472 0.0355 0.029 0.0247 0.0194

(0.1,0.5,1) (1) 0.0539 0.0572 0.0528 0.0548 0.0554 0.0516 0.0563 0.0534 0.0570 0.0525
 (2) 0.0812 0.0832 0.0749 0.0761 0.0769 0.0778 0.0841 0.0804 0.0804 0.0791
 (3) 0.0594 0.0462 0.0395 0.0377 0.0283 0.0558 0.0450 0.0422 0.0378 0.0271

(1,1,5) (1) 0.0520 0.0505 0.0560 0.0567 0.0558 0.0517 0.0525 0.0542 0.0548 0.0577
 (2) 0.0782 0.0755 0.0797 0.0824 0.0768 0.0843 0.0840 0.0839 0.0800 0.0864
 (3) 0.0572 0.0594 0.0557 0.051 0.0436 0.0544 0.0516 0.0524 0.0472 0.0409

(1,1,10) (1) 0.0485 0.0516 0.0494 0.0564 0.0557 0.0549 0.0541 0.0528 0.0543 0.0581
 (2) 0.0746 0.0724 0.073 0.0792 0.0767 0.0853 0.0852 0.0797 0.0820 0.0864
 (3) 0.0579 0.0534 0.0537 0.0522 0.0394 0.0588 0.0496 0.0484 0.0458 0.0399

(1,5,10) (1) 0.0517 0.0514 0.0514 0.0537 0.0524 0.0518 0.0534 0.054 0.0557 0.0525
 (2) 0.0779 0.0777 0.0775 0.0815 0.0766 0.08 0.0828 0.0827 0.0865 0.0806
 (3) 0.0638 0.0659 0.0660 0.0553 0.0544 0.0634 0.0625 0.0611 0.0603 0.0477

The above type I errors due to (1)- *( )r μ ; (2)- ( )r μ ; (3)- simple t-test. 

 

4.3 Two examples 

 

Example 1 

We first presented a 3 population IG simulated data with  

and 

1 2 3( , , ) (5,6,7)n n n =

1 2 3( , , , )μ λ λ λ (1,0.2,1,10)=  as illustrative example. The original data and the 

summary data are depicted in table 5. The interval estimations based on  and 

the simple t-test method are given in table 6. Both of the confidence interval based on 

 and  give satisfactory result under the heterogeneous data set when comparing 

*,  r r

*r r
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with that based on the simple t-test method. Although the one based on  is a little 

wider than that of , in general, it gives a better coverage comparing with . 

*r

r r

 

Table 5 

Population  i 1 2 3 
 0.7312 1.3932 1.6999 
 1.7314 0.5934 1.2698 
 0.7109 1.6046 0.7887 
 0.0303 2.0649 1.0535 
 0.7044 1.2238 0.7973 
  0.0538 1.4988 
   1.4685 

ix  

iw  
0.7816 
31.3779

1.1556 
17.7229 

1.2252 
0.4820 

1 1

1

)(
in

i ij
j

ixw x−

=

−= −∑  

 

      Table 6: The 95% confidence intervals for the common mean 

 

 

 

 

method Point estimate μ̂  Interval estimate 

*r  1.221 (0.961, 1.728) 

r  1.221 (0.980, 1.605) 

simple t -test 1.078 (0.553, 20.711) 

 

 

Example 2 

   The second data set is taken from Tweedie (1956) and has been used by 

Seshadri (1999, p.175) to perform the ANORE. The data set consists of four 

unbalanced populations and is modeled via the IG distribution. When iλ ’s are 

assumed to be the same for all groups, the P-value is 0.1879 for testing equality of 

four IG means through the analysis of reciprocals method. Therefore, we can use the 
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proposed method to construct the confidence interval for the common mean parameter. 

The data and the interval estimation are given in tables 7 and 8. Table 7 shows that 

when the data are homogeneous, the point estimators and confidence intervals for 

three methods are quite similar.  

   

Table 7 

Population  i 1 2 3 4 

 8.7 8.5 8.4 8.1 

 9.0 8.6 9.0 8.4 

 8.4 8.4 8.9 8.5 

 8.6 8.3   

  8.8   

ix  8.675 8.520 8.767 8.333 

iw  -43.049 10× 2.455 -410× 3.077 -410× 1.856  -410×

       1 1

1

)(
in

i ij
j

ixw x  −

=

−= −∑

 

Table 8 : The 95% confidence intervals for the common mean  

method Point estimate μ̂  Interval estimate 

*r  8.56 (8.353, 8.789) 

r  8.56 (8.407, 8.718) 

simple t -test 8.57 (8.440, 8.711) 
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5. Conclusions 

In this thesis, we presented an accurate higher order likelihood-based procedure to 

construct the confidence interval of the common mean of several independent IG 

populations. In our simulation, we compared this procedure with two alternative 

methods with respect to their coverage probabilities, average lengths and type I errors. 

The numerical examples showed that the proposed method gives nearly exact 

coverage probability and the type I errors are close to the nominal level .05 even for 

small sample size. The method is able to integrate the information of several 

non-homogeneous IG populations, and therefore is useful for a variety of practical 

applications.  
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