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Gaussian distributions based on higher order
likelihood method

Student: I-Ming Wu Advisors:Dr. Shu-Hui Lin
Dr. Hui-Nien Hong

Institute of Statistics

National Chiao Tung University

Abstract

An interval estimation method ' for the common mean of several
non-homogeneous inverse Gaussiani(IG). populations is discussed. The
proposed method is based:on-a higher-order likelihood-based asymptotic
procedure. The merits of the proposed method: are numerically compared
with the signed log-likelihood ratio statistic and the simple t-test method
with respect to their expected lengths,” coverage probabilities and type |
errors. Numerical studies show that the coverage probabilities of the
proposed method are very accurate even for very small samples. The

methods are also applied to two examples.

Keywords: Coverage probability; Expected length; Inverse Gaussian; Pivotal

guantity; Signed log-likelihood ratio statistic; Type | error
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1. Introduction

In many application areas, such as demography, management science, hydrology,
finance, etc., data are frequently positive and right-skewed. Recently, the inverse
Gaussian (IG) distribution has drawn many attentions and the inferences concerned
with the IG distribution have also grown rapidly because the IG distribution is an
ideal candidate for modeling and analyzing the right-skewed and positive data. For
instance, Wise (1971, 1975) and Wise et al. (1968) developed the IG population as a
possible model to describe cycle time distribution for particles in the blood; Lancaster
(1972) made use of the IG distribution in describing strike duration data, etc.

The history of the inverse Gaussian distribution can be traced back to 1915 when
Schrédinger and Smoluchowski presented independent derivations of the density of
the first passage time distribution of Bownian-motion with positive drift. The modern
day statistical community became aware-of-this distribution through the pioneering
work of Tweedie (1941, 1945, 1946, 1947, 1956, 1957). The name “inverse Gaussian”
was also given by Tweedie based on his discovers that the cumulant function of 1G
distribution is the inverse of the cumulant function of the normal distribution. For
further details about the IG distribution and for applications, the reader is referred to
the books by Chhikara and Folks (1989) and Seshadri (1999), respectively.

The probability density function (pdf) of IG distribution, 1G (x, A1), is defined as

l 1/2 ﬂ/
f(x,y,l):(z 3) exp{— - (x—y)z}, x>0, ©u>0, 1>0, (1.1)
X 217X

where « is the mean parameter and A is the scale parameter. We present some
density curves in Fig.1.1 and Fig. 1.2 for various valuesof x at A=1 and A at

u=1.
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Fig. 1.1 Density functions of IG (x, 4) for fixed 4 =1 and five values of u
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Fig. 1.2 Density functions of IG (x, 4) for fixed x =1 and five values of A



In Fig. 1.1 and Fig. 1.2, the density of IG distribution varies from the highly
right-skewed to almost symmetric for different parameter configurations. Hence, the
inverse Gaussian distribution is very flexible in describing various data.

The inference methods of the IG model are very analogous to those of the
Gaussian model; for example, a very common problem in applied field is to compare
the means of several Gaussian populations, i.e.

Hy:wp=p,=---=x vs. H,:notall z's areequal. (1.2)
If the variance of each population is homogeneous, the analysis of variance (ANOVA)
can be used to perform the test. Similarly, the analysis of reciprocals (ANORE) can
also be used to test the equality of means of several IG samples if all scale parameters
among groups are assumed to be equal (Tweedie, 1956 ; Chhikara and Folks, 1989).
The testing procedure will be brigfly introduced.in Remark 1. But when the scale
parameters are non-homogeneous,.the ANORE fails to solve the problem as ANOVA
fails to test (1.2) when these populations-are-not homogeneous. Tian (2005) proposed
a method to test the equality of 1G-means under heterogeneity based on generalized
test variable method. However, if the null hypothesis is not been rejected, the
inferences for the common mean remain unsolved. Therefore, in this paper, we would
like to estimate and construct the 100(1—«)% confidence interval for the common
mean of several non-homogeneous IG populations. Our method is based on a higher
order asymptotic likelihood based method. This method, in theory, has a higher order

accuracy, O(n™?

), and is very accurate even when the sample size is small. Reid
(1996) gave some review and annotation of the development. The method has also
been applied to solve many practical problems involving interval estimation for a
skewed distribution, e.g. Wu et al. (2002) applied this procedure to make the

confidence interval estimation of the ratio of two independent lognormal distribution,

Wau et al. (2003) presented a confidence interval for a log-normal mean based on this
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method; Wu and Wong (2004) used the method to improve the interval estimation for
the two-parameter Birnbaum-Saunders distribution; Tian and Wilding (2005) used the
method to construct confidence interval for the ratio of means of two independent IG
distributions, etc. In our case, the likelihood-based method gives a satisfactory result
as well.

Remark 1. One of the resemblances between the IG distribution and the ordinary
Gaussian distribution is the method for the analysis of residuals. We are familiar with
the analysis of variance (ANOVA) in normal inference theory, Tweedie (1956)
introduce the so called analysis of reciprocals (ANORE) for the inverse Gaussian

distribution. The procedure is as follows:

Assume that there are n, components in the i ™ populations and each population is

distributed as 1G(g;, A), where g0 1=1,...,1 and A are unknown. Further assume the

random samples X, i=1,..,1;;j=4..,n are independent. We are interested in the

problem of testing (1.2)

The likelihood function, denoted by "L(z,..., 4, 4; X;; i=1..,1,j=1..n))is

proportion to

/12 exp(——zz 0 _'u') (1.3)

i=l j=1 /Lli ij
|
where N =Zni . Differentiation with respect to 4« and A yields the following
i=1

maximum likelihood estimates (MLEs), 0= (£, 1, ,i) , Where

R 1
m =n_Z:l:
'Zi(xu

i=1 j=1

(1.4)

While H,is true, the estimates are



- (1.5)
NA, =D > 06" =%7)
i=1 j=1
The likelihood ratio can be reduced to
2 7-1
Av_NAT_Q (1.6)
Ni* Q
Note that Q can be decomposed into
|
Q=Q+ X NX ' =NX"=Q,+Q, (1.7)
i=1

It is easy to verify that A1Q, follows a chi-squared distribution with degrees of
freedom N —1 while AQ, is a chi-squared distribution with degrees of freedom of
(I-1) and Q, and Q, are independeént. It follows that the likelihood ratio test

statistic

Gl (1.8)
(I _1)Q0 I-1,N-17

where F_,_, isthe F -distributionwith-degrees of freedom 1-1 and N-I and

the « level rejection region is given by solving the following inequality

(N-DQ
(1 -DQ,

For illustration examples of ANORE, see Chhikara and Folks (1989) and Seshadri

> I:I—l,N—I,l—oz ' (19)

(1999) for further details.

This article is organized as follows. In section 2, we will briefly introduce the
properties of IG distribution and the concepts of the signed log-likelihood ratio
statistic and a higher order asymptotic method. Then the method is applied to
construct a confidence interval for the common mean of several independent IG
populations in section 3. The classical procedure under the assumption of identical

scale is also described in section 3. We will present two numerical examples and two



simulation studies in section 4 to illustrate the merits of our proposed method. Some

concluding remarks are given in section 5.




2. A general review

In section 2.1 we give some basic characteristics of the IG distribution and some
useful sampling distributions which will be used in later analysis. The main appeal of

this article, the likelihood based inference technique, will be introduced in section 2.2.
2.1 Some properties of 1G distribution

Let X be an inverse Gaussian distributed variate with parameters xand A.

The probability density function of X is given in (1.1), and the distribution function
F(x) can be written in terms of the distribution function of the standard normal

variate, ®(x), as

F(x)= @[J%(%—l)ﬁexp(%)d)[— %(%H)], x>0 . 2.1)

The characteristic function of X is given by

2t
p )], (2.2)

and the moment generating function can be obtained fromC, (t), i.e.,

C, (1) = exp[ = (- (-
u

L (=1 ) 24
M= L i

Differentiating the moment generating function with respect to t for the first and

)" (2.3)

second order at t=0, we can obtain the mean and the variance of X as
,Us
E(X)=u and var(X):T,respectively.
For a random sample X,,X,,..., X, from 1G (g, 4), the uniformly minimum

. . . - 1
variance unbiased estimators (UMVUESs) of x and A~ are X=—in and

i=1



1 &,1 1 . . .. -
W= —12(— —?), respectively, and the minimum sufficient statistics of (z, 4)
n-— i=1 i

n n 1 . .
are (T, T,),where T, = 2 X, and T, = ZY . Itis worthy to notice that
i=1 i=1

X ~1G(u,nA) and (n—-1)W ~%z§_1, (2.4)

and that these two statistics are independently distributed. The proof can be found in

Chhikara and Folks (1989).

Remark 2. Let X ~I1G(u,A) and A ~%an be two independent random variables,

2
then %~Zf and its distribution is independent of AA ~ y? . Let
M—M then the distribution of [M| is the truncated Student’s t variable

- /J(XA)M !
with n degrees of freedom and -M?* has the “E. distribution with 1 and n degrees

of freedom. (Chhikara and Folks, 1989)

NA(X = u)®

5 ~ 72 which is independent
LEX

From (2.4) and Remark 2, we know:that

of (n—HW ~ %;(nz_l. Let

U In(X-p

= 2.5
ﬂ(XW)lIZ ( )

then the distribution of |U| is the truncated Student’s t with n—1 degrees of

freedomand U*~F .

2.2 The likelihood-based inference

Let X =(X,,..,X,) be an independent sample from some distribution and
1(0) =1(6; X =x) be the log-likelihood function based on the sample data. Suppose &

is the p-dimensional vector parameters that can be partitioned into(u«, A1) with u



being the parameter of interest with dimension 1, and A being the nuisance
parameters with dimensions p—21. The signed log-likelihood ratio r(x) for inference

on u isdefined as
r(u) =sgn(ii - w){201(0) - 16,)1¥"*, (26)
where é:(,[z, /i) is the overall maximum likelihood estimator (MLE) of & and

0,=(u, 4,) is the constrained MLE of & for a given x. Cox and Hinkley (1974)

verified that r(x) is asymptotically distributed as the standard normal distribution
with first-order accuracy O(n™?). A 100 (1- «) % confidence interval for x based on
r(u) can be obtained by

{ufr(p)Isz,,.}, (2.7)
where z_,, isthe 100(1—c /2)" percentile of the standard normal distribution. Since
the signed log-likelihood ratio statistic is quite inaccurate when the sample size is small,
Barndorff-Nielsen (1986, 1991) proposed--a-higher order likelihood-based method

which is known as the modified sighed-log-likelihood ratio,

© () = r () + () Iog{% , (2.8)

where r(u) is the sign log-likelihood ratio statistic and () is a statistic which can
be expressed in various forms depending on the information available. For most of the
conditions, q()is not easy to obtain. Thomas (1999) presented an approximation to
q(x) with error of O(n™") and hence r’(u). A widely applicable formula for q(u)

-3/2

that ensures the O(n™°) accuracy provided by Fraser et al. (1999) is defined as

@-1,6) 1.6)|[[in@)] ] 29
1, (6) .6, |

where j%,(é) is the pxp observed information matrix and jM(éﬂ) is the

(p-Dx(p-1) observed nuisance information matrix and

10



5 _ 0l(0) ol () .. al,(0)
l, (@) =—= dl, (@) =— .
0=, L (6,) = Cand by (0 =257

The vector array V:(vl’,...,v;)) in (2.9) where v, ={v,,,...v;,}, i=1..,p, is

obtained from a vector pivotal quantity R(x;6) =(R,(x;;6),....,R,(X,;8)) by

OR(X; 49))_1(8R(x 9))

V =—(
ox 00

(2.10)

6

where the distribution of R.(x.;&) is free of the parameters. The choice of the pivotal

quantity will be briefly discussed in Remark 4. The quantity 1, (&) is the likelihood

gradient with

1, () _{—I(H X), . |(9 X)}, (2.11)

CElIK

]

where iI(B,X)=Zl.X_(9)-Vi,-= =1, pj=1,
dVi =1 -

Note that r”achieves third-order accuracy to a standard normal distribution (Fraser
et al. 1999). Therefore, a 100 (1= «) % confidence interval for x4 based on r (u) is

given by
{wir (W< z,,}- (2.12)

Remark 3. Notice that the procedure we mention above is performed for one
population. If the inference problem involves | independent populations, some
modifications are needed in applying this method. First, we put all the observations

from the 1 distinct random samples together. Denote the set of observations by X,

where X = (X4, Xp s X100, X Xy X ) - FoOr each component in X, we

2y 14+
construct a corresponding pivotal quantity, R;(X;,0), i=1..,1 ,j=1..n;, then

q(u) and r’(u) can be constructed in similar manner as we mentioned above.

Remark 4. Explicit specification of the pivotal quantity R;(x;,8) is not needed for

11



the computation of q(u) (Fraser et al. 1999). A simple and easy choice is given by the
distribution function which is uniformly distributed. In fact, the choice of the pivotal
quantity has crucial impact on the computation of the modified signed log-likelihood
ratio algorithmatically. A choice which contains more information about the sample is

preferred.

Remark 5. q(x) in (2.9) can be expressed in various forms. It is different from the

quantity
~ ~ n a2
Q(,U) _ I;é ('9) - I;é (9;1) I/l;é (9/1) ‘199 (9)‘ (2 13)
1,4(0) [1..6,)

where

| (é)_8|(l9 | (é )_al;g(e) P _al;é(e)

0 - " e NTad T ) . VR0 - 00 )

90 lo-s 0=0, 9=0

given by Barndorff-Nielsen (1991) “and--Barndorff-Nielsen & Cox (1994) for
computing r’(u). Both variants of 'r"(x) can reach third-order accuracy, although

r’ (1) can be obtained through different forms. The expression in (2.13) involves

differentiation with respect to 6, if there is no analytic form of MLEs, then

sometimes such q(x) is difficult or impossible to obtain. For example, as for our
problem, the inference for the common mean of | independent IG populations, there
are |1+1 parameters and 2l minimal sufficient statistics which is the so-called

(21,1 +1) curved exponential model, g(x) in (2.13) is not easy to apply since the

MLEs do not have closed form, so the computation of the derivative with respect to

~

€ is not available. On the other hand, q(x) in (2.9) is easy to implement

algorithmically. Such a q(u) is quite flexible; hence we will use it to perform the

higher order and likelihood-based inferences in the following section.

12



3. Inferences for the common mean of several independent IG
populations
In this section we apply the procedure we present in section 2 to construct the
confidence interval. The derivation for the general case will be presented in section
3.1. The two independent I1G populations case will be discussed in section 3.2. At
last, we derive the t-like confidence interval under the assumption of homogeneity for
comparison purpose. All the results will be utilized in the simulation in the next

section.

3.1 The likelihood-based confidence interval in the general case

Suppose  X; = (X, X, ), 124,2,.., 1, _are" |- independent populations from

IG (u, 4) . The parameters, 8= (u,4,,...,4), contain x being the parameter of

interestand (4, ..., 4,) being the'nuisance parameters. The log-likelihood function is

1(0; X, =X,.. X, =X,)
N |

=izl:niIogﬁ—iiilogxi.—LZZI:ZE,,xi.jLiZni;t,—liiﬁ. (3.1)
2 & o 2 ) j 9 eilt'y

i1 j=1 i=1 j=1 y 2 i1 j1 X

Differentiating the log-likelihood function (3.1) with respect to & for the first order

yields the following results:

— ! ! b
AO) Ay pzr iy yh
o M 3 A5 T X (3.2)
A@ _n m I 11,

15,2
__ XS —
oA 24 wu 2; Vot X

The overall MLEs é:([z,/i,...,i,) can be uniquely obtained by solving the

non-linear system (3.2) simultaneously. It seems that in our problem, there is no

analytic form for the overall MLEs. Therefore, some numerical facility is needed to

13



get the numerical solutions. Furthermore, the constrained MLEs 6, = (1,4,,,,.., 4,,)

foragiven u are

N _n 2
A, = il E—— (N (3.3)
' i 2 i 1
@nu=3 %=1 3 )
i=1 i=1

2

A (Xij — 1)
/uzxij

Choosing a vector of pivotal quantity R={R;,..,R,} with R;=

i=1.,1;j=1.,n, then R, ~ x/ with the distribution free of any unknown

parameters. Differentiating R; with respectto x and & , we have

oR. 2x? OR.
5 L= ’uz )" if j=k ;else —=0;
X A% — 1) X,
oR; _ =24 (X; — 1),
ou wooo
oR. (%, —p)’ OR.
aﬂ::(” ZX”) if j=K:else 6_A:=O' (3.4)
H X
Thus
OR . _ . ’x2 /uzxfn X’ luzxzn
(_) l=d|ag[ )le H PINEARAE] 2 - 2y 1 #2 1 PINEARAE 2 - 2 ]1 (35)
OX A (% —4%) ﬂ’l(xlnl —4°) Ay (Xiy = 17) A (XlnI —u°)

where diag[.] is the abbreviation of the diagonal matrix.

oR OR, ,0R. oR .. . . .
Furthermore, (%) = [(a) ,(a) (6_2,) 1=[h,....h, ;] with
h = (_221()(11 — H) _2/11(X1r11 —H) =22, (X, — 1) —24 (X'“I _’u))
ILIS LS | ﬂg L | ILI3 LR | lle

2
hi,,=(0.,..,0 Ca=r) e =)
j+1 — 1 My 2 1y 2
it H Xy H X,
N

0...,0),j=1,...1. (3.6)

Note that V is a vector array and use (3.5) and (3.6), V can be expressed as follows:

14



- 2%, - —Xil(xll_ﬁ) 0 0 0
Ay +41) A, + f)
A 2x, i _><1An1(><1n1—f7) . . ;
A + 1) 2 (%, + 1)
0 X0 = )
Ao (Xyy + f1)
: ) 0 0
: 0 _Xi”?(xz—"z_’&) : _ Xl—l,l (X|—1,1 — H) 0
= Ao (Xop, + £2) Ao (Xi_ys + £2)
. 0 . . |
X, (X _1p_, = £)
/{,_l(x,_lvnl_1 + 1)
0 0 3 0 0
Lﬁl 0 0 : _X’\Il(xll_/&)
/}(Xll+1&) ﬂ/l (X|1+/j)
i 0 0 0 _ Xln' (Xin — H)
| 4X, + i) —/1. (%, + ) |

It remains to obtain the likelihood*gradients, I, (9), 1, (9), 1, (@), and the fisher

information matrices j,,(¢) and j,,(6). Notice again that

ol (9) [al ©) ),

l, () =

Vi aV|+1 ’
. al, (@ al, (¢ al, (6
1 (6) = g§)=[ 02y
A o4
~, o, (6 al, () al., (6 al, (6
ly () = g; )=[ g( ), v ( ) v ( )],
u o4 04,
where
? = iil;xu (O juictpen . K=Lies P,
a| o I 1N
( ) [zzly Xij (H)Vl JH(i=L)xn_y 1 zzl,u Xij (e)vl+l j+(i-1)xn, 1]
a| 0 L 1N
( ) _[ZZ_:I% Xij (H)Vl jH=Dxnm_y ** ZZIA X (H)V|+1 j+(i-1)xn, l] m=1..,1.
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Therefore the complete results are

I:v (9) =

Il:V (0)=

Ia;v (0)=

The observed information matrix and-the-observed nuisance information matrix can

be calculated by multiplying the Hessian _matrix for the log-likelihood function by

(L

i=1 j=1

I
i=1 j=1

N

i=1

L, (O

A% (6’)V

Z Z I;xij (e)vl, JH(i-1)xn_y

I+1, j+(i-1)xn;_4

Z Iﬂl;xIJ (0)\/1,j+(i—1)><ni,1
1+1, j+(i-1)xn; 4

n; |
Z I,U§Xij (H)Vl,j+(i—l)><ni,1 Z

i=1

N

z Z Ii, Xij (0)V|+1 JH({I-1)xn;

i=1 j=1

Lo

Zzlﬂ, ( )VI+1 JH(i-1)xn;_y

i=1 j=1

N

j=1

N

1=1 j=1

(-1) . The results are given below.

jga (9) =

and

y7,

i-1 M

—‘Z N,

Tu u

n

27

0

16

Z Iﬂi;xij (6’)V1] j+(i=1)xn;_y

|
Zzly Xj (9)V|+1 JH(I-1)xmy Zzlﬁi X (0)V|+1 JH(I-1)xn;_y
j=1

n.
- X2i

i=1 ,US

| n;

i=1 j=

nI
U

N

Z Iﬂ-| Xij (e)vl,j-*—(i—ﬁl.)><n|71

I
i=1 j=1

__Z l

_1/1

0

207

ZZ I)Ll;xij (e)vl +1, j+(i=1)xny
=1 |




I’l12 0
24
j,u (0) =
n
0 I
L 2]42 i

Apply the above quantities to (2.8) and (2.9),

q(/l) = ‘I;V (é) B I?V (éﬂ) I/1;V (éu) ‘jee (é)‘ -
‘Ia;v (é)‘ ‘ju (6"\#)
and then (1) = r(x)+ r(z)™ Iog{%} can be obtained.
7

Although the values of r and r can be obtained here, in general, some
simple numerical iteration procedure is needed to solve the upper bound limit and
lower bound limit. In this thesis we use the so-called secant method (or the modified
Newton-Raphson method) to obtain,the confidence limit; the algorithm is summarized
as follows:

Step 1: Give the tolerance =& for the purpose of:accuracy;
Step 2: Select & for the purpose of numerical differentiation;
Step 3: Give the initial estimate ., to start the iteration;

Step 4: Compute

[Za/2 — r(/uo)]
[r(uo +6) =1 (1 = 6)]/ 26

M= Hy+ (3.7)

Step 5: If | — | > &, replace 1z, with x4 and return to Step 4 again,

otherwise take the latest ; as the lower bound limit of the 100(1—«) %

confidence interval.
Replacing Z,,, with Z,__,, in(3.7), we can obtain the upper bound limit for the

100(1—«) % confidence interval of the common mean . Similarly, the confidence

interval based on r’”can be obtained by substituting r* for r in (3.7).
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3.2 The likelihood-based confidence interval when 1=2

For the purpose of illustration, we present the derivation of the confidence interval for

the common mean of two independent IG populations. Let X, = X,,,..., X;, ~1G(x,4,)
and X, = Xy,..., X, ~1G(u,4,) be two independent inverse Gaussian samples. The

log-likelihood function based on the observations is

an A3 A
1(0; X, =%, X, =%,) = 1| 23 =2 2 jog 22
(0; X, =%, X, =X%,) = og Zogxi. lel 5 log =%
3% /12 L
257 2 Ay Ayl 3.8
3 21000~ 52D e+ ;Xm (38)

A

The MLEs and the constrained MLEs are é:(ﬁ,ﬁl,/@) and 64 =(y,i1ﬂ,i2ﬂ),
respectively .
/1()(”'_,“)2

Take R, =—;
M X

to bexthe pivotal -quantity as we mentioned earlier and

differentiate R, with respect to<x.and6;wethen have

,UZX121
/11()(121 — i)
1%y
Ry A (%, = 42°)
2 ﬂzxzzl
2(X21 1)

M X,
lz(xzznz - /uz)_

and
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2

=24 (X, - (Xy— 4)
3 2 0
H HXy
240Xy = 41) (X — 41)° 0
& 7 %,
00 =2, (Xp — 14) 0 (X — /U)Z
e H X
_22“2 (XZn2 - /u) 0 (X2n2 B /u)z
L 'ua luzXZn2
Co oR
So V=(v,,v,,V,) =—(—)"(—
(V1,V5,V3) (ax) (ae)é
[ 2X121 _ X}l(xll — [‘) 0 |
H(Xyy + 1) /11()(11"',&)
2, Xy (X ) .
2X221 = XA21(X21 - :[‘)
/:l(le + /:l) ﬂﬂz (X21 + /[‘)
2XZZn2 _ X2n2 (XZn2 - /[l)
| (X, + 1) Ay (X, + A1) |
Moreover, the likelihood gradients are
i 2% /11 A 3 Z 22 4 3
i= Xll +:u) 2X1I 2/:22 2X1I =1 :[I X2| +,Ll) 2X2| 2/[[2 2X2i
- X. 3
I;V (9) — X}| (:u il) X 2’1 21 )
i Ay (X + 4) 2X1| 2# 2X1i
X (=) (d  p 8
i=1 lz (Xzi +/}) 2Xzzi 2/&2 2XZi
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gﬁ(xzﬂxim' 22 _222) gﬁ(xzzixim' zi _222)
0= S o ’
i ° 21: ((:(:, +X;)) 2%2 - 2}12)_
and
R R no2x 1 1 & 2% 11
22T rd R D 90 ) R g o
s (0)= :3.Zx?ifl+u) ZZ((: +Xu)) T X
_%H ’ szffﬂ)) 2 222)

The observed Fisher information matrix and the observed nuisance information matrix

are
348, _2AW 84S, 2, - s N, s, |
4 3 4 3 2 3 2 3
A" ) TR TR
: N« S n
Joo (0) = — — 0
00 Ile ﬂS 2]12
n s o
i w0 24, |
and
nl
_ 22
0) = ,
1,.(0) n,
22,

where s, => X, and s,=) X, . Finally, a 100(l-a)% confidence interval of
i=1 i=1

4 based on r’(u) isthen obtained by applying these quantities to (2.8) and (2.12).

3.3 Simple t-test confidence interval

For the purpose of comparison, we present a simple t-test confidence interval that is
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inspired from the analysis of reciprocals (ANORE). This method can provide an exact
confidence interval when the scale parameters are homogeneous.

Suppose  X; =(Xiy,.., X, ), 1=1,2,..,1, are | independent populations with

parameters (u,4) for each population, from (2.4) we know that

[ ! N
X :% X; ~1G(g,NA) and (N-1)W ~%;{,ﬁ_, are independent distributed,
i=1 j=1

! s 1 1 &¢ -

where N=>n , X;==> X, and W=—r (X; = X") . Moreover,
= n = N—143

from Remark 2, we know % IS the truncated student’s t distribution

)7,

with N —1 degrees of freedom. Therefore, a two-sided 100(1-«) % for u can be

obtained by solving the following inequality

{ﬂm <t1_aN_|}

'u()ZW)I/Z
JN (2—1)
RGN I e

The confidence interval is summarized as

— -1 — -1 —
X |1+t 0{,/M ;X |1-t a‘/M ,if 1-t a‘/M>o
17 N 17E N 17 N

- . (3.9)

x|
[EEN
+
—
8
|

S
=
@
=
wn
@
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4 . Simulation studies and numerical examples

In this section, we first present a simulation to show the normal approximation of
r and r". In section 4.2, we conduct a simulation study of the proposed procedure
for different parameter configurations. In section 4.3, a real-life data and a simulated

data are given as illustrations.

4.1 Normal approximation for r and r’

To show that the normal approximations for r and r”are adequate, we conduct a

simulation to show the validity and also to compare the extent of asymptotic of r and
r’. We present the Q-Q plots for both r'and r under the same parameter settings.
For two populations, the sample sizes “(n,n,)=(510), (10, 5) and (10,10) and
(u,4,4,) = (1,0.2,1) are demonstrated. /And" the ~sample sizes (n,n,,n,)=(5,8,10),
(5,10,8) and (10,8,5) and (x, A4, 4,, 45y =(1,0.1,0.5,1) are chosen for three populations.
All the simulations are based on 5,000 repetitions. For two populations, the Q-Q plots are
given in Fig. 4.1 and for three populations, the Q-Q plots are given in Fig. 4.2. Both Fig.
4.1 and Fig. 4.2 show that the asymptotic of r” is better than r which is consistent as
we expect. In these figures, we can see, most of the tail of the Q-Q plots of r deviate off
the straight line which is the indicator of normality whereas those of r”~ seem to overlap
the straight line for most of the part. In short, r” is more accurate in approximating to

the standard normal.
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Fig. 4.1 Q-Q plots for two populations at (u«,4,4,)=(1, 0.2, 1)
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4.2 Simulation studies

To evaluate the accuracy of the proposed method, we present simulation studies of
the confidence interval and type | errors applied to a variety of scale parameter
configurations and different settings of sample size for two and three populations. We
exhibit the coverage probabilities, the average lengths of the 95% confidence intervals
and calculate type | errors based on r, r~ and simple t-test method. The results
given in tables 1-4 below are based on 10,000 simulation runs for each combination.
From the table 1 and table 2, we see that although the confidence intervals based on
the directed log-likelihood ratio method, r, have shortest average lengths comparing
to the other two methods, the coverage probabilities are too short to attain the
proposed coverage probabilities in‘each combination. The confidence intervals based
on the simple t-test method alse show a good-performance on coverage probabilities,
but these coverage probabilities-decrease-When-the heterogeneity increases. Moreover,
when the scale parameter is small related to_ ., then the intervals constructed by the
simple t-test are unbounded (i.e., a one-sided interval). In these cases, the method
gives less information about the target value than those based on r” and r. On the
other hand, the confidence intervals based on higher order likelihood-based method,
r", not only have almost exact coverage probabilities in each combination (except for
few pairs having large sample sizes with relatively small scale parameters), but the
average lengths are also quite acceptable. Therefore, for the overall comparisons, the

higher order likelihood-based method outperforms the other two methods.
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Table 1

Simulation results of 95% confidence interval of 4 =1 for two populations

r r simple t-test

(n,n) A4 4

CP Length CP Length CP Length

(5,100 02 1 0.951 9.387 0.923 1.637 0.954 0
05 1 0.948 14.340  0.917 1.554 0.945 o0
1 3 0.952 1.054 0.926 0.786 0.943 1.024
3 10 0.947 0.456 0.920 0.387 0.939 0.486
1 10 0.948 0.477 0.923 0.409 0.933 0.791
(1050 02 1 0.931 23.093  0.847 1.368 0.955 0
05 1 0.944 13.672  0.897 1.534 0.949 0
1 3 0.949 1.958 0.906 0.967 0.950 1.506
3 10 0.948 0.598 0:903 0.464 0.949 0.623
1 10 0.947 0.840 0:925 0.573 0.951 1.361
(10,10) 0.2 1 0.951 7.914 0.929 1.659 0.958 0
05 1 0.955 2.320 0.933 1.363 0.948 0
1 3 0.945 0.873 0.924 0.708 0.946 0.918
3 10 0.945 0.410 0.921 0.360 0.947 0.456

1 10 0.949 0.459 0.926 0.399 0.947 0.795

CP : Coverage probability; Length : Average length
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Table 2

Simulation results of 95% confidence interval of # =1 for three populations

*

onon) A A4 A r r simple t-test
CP Length CP Length CP Length
(5,8,10) 01 01 1 0949 4865 0923 1.611 0.965 o0
01 05 1 0949 3382 0922 1456 0.959 o0
1 1 5 0948 0671 0923 0542 0.948 0.807
1 1 10 0949 0467 0925 0.39% 0.943 0.766
1 5 10 0948 0393 0921 0337 0938 0.511
(5,10,8) 01 01 1 0952 5964 0917 1589 0.963 o0
01 05 1 0948 3784 0918 1492 0.952 o0
1 1 5 0945 0754 0919 0586 0.951 0.873
1 1 10 0950 0537+ 0919 0435 0.947 0.844
1 5 10 09455 0413+-0917 0350 0.938 0.524
(10,8,5) 01 01 1 09287 7016-70839 1.306 0.967 o0
01 05 1 0946 5952 0.889 1467 0.965 o0
1 1 5 0943 0957 0.901 0.668 0.950 0.974
1 1 10 0945 0.720 0.898 0.518 0.953 0.956
1 5 10 0946 0521 0.902 0.406 0.948 0.711

CP : Coverage probability; Length : Average length

Furthermore, from tables 3 and 4, we can see the type | errors based on r™ and r
are quite stable under different parameter configurations since the type | errors based
on the simple t-test method decrease as the mean parameter under the null hypothesis
increases. From tables 3 and 4, the type | errors based on r™ are significantly better

than that of r since the type I errors based on rare around 0.07 to 0.10 which are
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too large comparing to the nominal level 0.05. On the contrary, the type | errors based

on

we can say that

populations and give robust and reliable results under different scenarios.

Table3: Type | errors for H, @z = g, vs

Hyiu# p, at

I=2and «=0.05

“ are not only stable, but the values also close to the nominal level 0.05. Thus,

the proposed procedure can deal with heterogeneity among

n, =10, n, =5

Ho

(4, 4,)

0.2

0.8

1.2

2.0

5.0

0.2

0.8

1.2

2.0

5.0

(0.2, 1)

(0.5,1)

(1,3)

(1,5)

(1, 10)

(1)
2
3)
(1)
(2)
(3)
1)
()
(3)
(1)
(2)
(3)
(1)
2
3)

0.0522
0.0774
0.0615
0.0485
0.0832
0.0555
0.0526
0.0783
0.0583
0.0507
0.0788
0.0634
0.0528
0.0751
0.0775

0.0528
0.0746
0.0430
0.0562
0.0862
0.0507
0.0528
0.0783
0.0545
0.0566
0.0803
0.0616
0.055
0.0759
0.074

0.0529
0.075
0.0489
0.0569
0.0844
0.0514
0.0500
0.0744
0.0503
0.0517
0.0768
0.061
0.0484
0.0727
0.0682

0.0493
0.0686
0.0426
0.0533
0.0813
0.0504
0.0578
0.081
0.0539
0.0551
0.0779
0.0573
0.0559
0.0777
0.0589

0.0506
0.0702
0.0324
0.0575
0.0808
0.0509
0.0564
0.079
0.0524
0.057
0.079
0.0499
0.0487
0.0697
0.0478

0.055
0.1027
0.0502
0.0528
0.0901
0.0469
0.0542
0.0966
0.0514
0.0585
0.1009
0.0502
0.0559

0.104
0.0532

0.0495
0.0903
0.0378
0.056
0.095
0.0515
0.0548
0.0985
0.0471
0.0537
0.0936
0.0471
0.0538
0.0977
0.0468

0.0567
0.0989
0.0410
0.0522
0.0922
0.0461
0.0573
0.0941
0.0464
0.0558
0.099
0.0465
0.0517
0.0967
0.0507

0.0551
0.0912
0.0381
0.0552
0.0922
0.0434
0.0570
0.0939
0.0535
0.0563
0.098
0.046
0.0582
0.0997
0.0431

0.0524
0.0912
0.0313
0.053
0.0883
0.0484
0.0553
0.0939
0.0424
0.0575
0.0989
0.0371
0.0571
0.0981
0.0344

The above type | errors due to (1)- 1 () ; (2)- r () ; (3)- simple t-test.
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Table 4: Type lerrors for H,:p=u, vs. Hy:p# p, at1=3and o =0.05

=51, =8, n,=10 n =5 n,=10, n,=8
1 > T T v 13T

Hoy o
(B ) 02 08 1.2 2.0 5.0 02 08 1.2 2.0 5.0
0.1,01,1) (1) 0.0481 0.0564 0.0542 0.0563 0.0551 0.055 0.0539 0.0516 0.0576 0.0549
(2) 0.0716 0.0774 0.0748 0.0796 0.0729 0.0845 0.0789 0.0769 0.0814 0.0787
(3) 0.0483 0.0391 0.0336 0.0258 0.0187 0.0472 0.0355 0.029 0.0247 0.0194
(0.1,051) (1) 0.0539 0.0572 0.0528 0.0548 0.0554 0.0516 0.0563 0.0534 0.0570 0.0525
(2) 0.0812 0.0832 0.0749 0.0761 0.0769 0.0778 0.0841 0.0804 0.0804 0.0791
(3) 0.0594 0.0462 0.0395 0.0377 0.0283 0.0558 0.0450 0.0422 0.0378 0.0271
(1,1,5) (1) 0.0520 0.0505 0.0560 0.0567 0.0558 0.0517 0.0525 0.0542 0.0548 0.0577
(2) 0.0782 0.0755 0.0797 0.0824 0.0768 0.0843 0.0840 0.0839 0.0800 0.0864
(3) 0.0572 0.0594 0.0557 0.051,.0.0436 0.0544 0.0516 0.0524 0.0472 0.0409
(1,1,100 (1) 0.0485 0.0516 0.0494+'0.0564_0.0557. 0.0549 0.0541 0.0528 0.0543 0.0581
(2) 0.0746 0.0724 0.073 0.0792°0.0767 -0.0853 0.0852 0.0797 0.0820 0.0864
(3) 0.0579 0.0534 0.0537 0.0522° 0.0394 -0.0588 0.0496 0.0484 0.0458 0.0399
(1510) (1) 0.0517 0.0514 0.0514 - 0.0537-0.0524- 0.0518 0.0534 0.054 0.0557 0.0525
(2) 0.0779 0.0777 0.0775 0.0815--0.0766 0.08 0.0828 0.0827 0.0865 0.0806
(3) 0.0638 0.0659 0.0660 0.0553 0.0544 0.0634 0.0625 0.0611 0.0603 0.0477

The above type | errors due to (1)-1 () ; (2)- r () ; (3)- simple t-test.

4.3 Two examples

Example 1

We first presented a 3 population IG simulated data with (n,n,,n,)=(56,7)
and (u,4,4,,4)=(1,0.2,1,10) as illustrative example. The original data and the
summary data are depicted in table 5. The interval estimations based on r”, r and
the simple t-test method are given in table 6. Both of the confidence interval based on

r’ and r give satisfactory result under the heterogeneous data set when comparing
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with that based on the simple t-test method. Although the one based on r” is a little

wider than that of r, in general, it gives a better coverage comparing with r.

Table 5
Population i 1 2 3
0.7312 1.3932 1.6999
1.7314 0.5934 1.2698
0.7109 1.6046 0.7887
0.0303 2.0649 1.0535
0.7044 1.2238 0.7973
0.0538 1.4988
1.4685
X; 0.7816 1.1556 1.2252
W, 31.3779 17.7229 0.4820

N
W= 04" %)
j=L

Table 6: The 95% confidencerintervals for the‘common mean

method Point estimate . zz Interval estimate

r 1.221 (0.961, 1.728)

r 1.221 (0.980, 1.605)
simple t -test 1.078 (0.553, 20.711)

Example 2

The second data set is taken from Tweedie (1956) and has been used by
Seshadri (1999, p.175) to perform the ANORE. The data set consists of four
unbalanced populations and is modeled via the IG distribution. When A ’s are
assumed to be the same for all groups, the P-value is 0.1879 for testing equality of
four 1G means through the analysis of reciprocals method. Therefore, we can use the
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proposed method to construct the confidence interval for the common mean parameter.
The data and the interval estimation are given in tables 7 and 8. Table 7 shows that
when the data are homogeneous, the point estimators and confidence intervals for

three methods are quite similar.

Table 7
Population i 1 2 3 4
8.7 8.5 8.4 8.1
9.0 8.6 9.0 8.4
8.4 8.4 8.9 8.5
8.6 8.3
8.8
X 8.675 8.520 8.767 8.333
W, 3.049x10* | 2.455%10% ' 3.077x10* 1.856x10™
W= 0% )

=L

Table 8 : The 95% confidence intervals for the common mean

method Point estimate Interval estimate

r 8.56 (8.353, 8.789)

r 8.56 (8.407, 8.718)
simple t -test 8.57 (8.440, 8.711)
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5. Conclusions

In this thesis, we presented an accurate higher order likelihood-based procedure to
construct the confidence interval of the common mean of several independent 1G
populations. In our simulation, we compared this procedure with two alternative
methods with respect to their coverage probabilities, average lengths and type | errors.
The numerical examples showed that the proposed method gives nearly exact
coverage probability and the type I errors are close to the nominal level .05 even for
small sample size. The method is able to integrate the information of several
non-homogeneous 1G populations, and therefore is useful for a variety of practical

applications.
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