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摘要 

    道路上的即時資料是交通管理系統中重要的一環，為了測得在眾多道路上車

輛所在的車道與種類，我們利用架設在路旁的無線電射頻系統晶片來收集車輛的

資訊。當車子進入偵測區時，晶片所記錄的資料是雷達回波的強度。而原始的資

料經過適當的截取及平移後，可視為一筆函數資料。本文中提出兩種模型方法來

辨識車種，其中一種是利用多變量分析方法來說明車種與車道之間主變因與其交

互作用的影響，另一種則是用半母數線性模型來突顯函數資料中各群的特徵。若

分的群數不多，不論用哪種模型分析，都可以得到不錯的結果；但當群數過多時，

則會降低此兩種模型分析的能力。 
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ABSTRACT 
 

In order to make the detecting of the lanes and the types of the vehicles traveling 

on various roadways affordable, radio-frequency (RF) system-on-chip is designed and 

will be mounted on the roadside to collect vehicle information. The data originally 

collected by the chip is the intensity of the back wave of the vehicle entering the range 

of detection. The raw data is registered by landmark and then treated as functional 

data. In order to classify the types of the vehicles, two models are proposed to model 

the data. One is multivariate analysis of variance model to account for the main effect 

and the interaction effect between type and lane, the other is the semi-parametric 

linear model to emphasize the functional characteristic of the data. Both models work 

well when the number of groups is small but deteriorate when the number of groups 

increases.  
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ABSTRACT 

 

In order to make the detecting of the lanes and the types of the vehicles traveling 

on various roadways affordable, radio-frequency (RF) system-on-chip is designed and 

will be mounted on the roadside to collect vehicle information. The data originally 

collected by the chip is the intensity of the back wave of the vehicle entering the range 

of detection. The raw data is registered by landmark and then treated as functional 

data. In order to classify the types of the vehicles, two models are proposed to model 

the data. One is multivariate analysis of variance model to account for the main effect 

and the interaction effect between type and lane, the other is the semi-parametric 

linear model to emphasize the functional characteristic of the data. Both models work 

well when the number of groups is small but deteriorate when the number of groups 

increases.  

    

Key words: Radar recognition; Radar Cross Section; Fast Fourier Transform; 

Multivariate analysis of variance (MANOVA); Semi-parametric linear mixed effects 

model (SLM); Classification. 
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1. Introduction 

The vehicle detector plays an important role in collecting traffic information 

which in turn is essential to Advanced Traffic Management System (ATMS). Since 

there are numerous roadways in our country and the detectors are usually imported 

from abroad with high cost. As a result, it would have some sort of difficulties on 

setting up detectors intensively, and the follow-up maintenance will be high-priced. A 

radio frequency system-on-chip (RF SoC) using the theory of frequency modulated 

continuous waves (FMCW) is a promising solution. Traditional radars collect and 

transform the information to form images such as inverse aperture radar (ISAR) or a 

sequence of one-dimensional range profile from the raw data, and then classify targets 

based on these images. Herman (2003) bypassed the image formation and attempted 

target recognition directly from the received data, which is labeled as Automatic 

Target Recognition (ATR).  

 

The information we obtained from the vehicle detector is a continuous curve, 

which is the signal of the radar back wave. We transform the continuous curve into a 

finite-dimensional vector of time index. Our approach to recognize our targets (the 

vehicles on the road) adapts the same idea of Herman’s work, i.e., attempt automatic 

classification directly from the received data. We put our data into a form of a data 

matrix which rows correspond to sample individuals and columns to the time index of 

a vector, as a repeated measures study. As long as it displays a form of multivariate 

data set, we can utilize multivariate analysis to analyze it. Furthermore, since the data 

is a continuous curve measured at different time points, we also regard the data as 

functional data and use nonparametric approach to build mixed effects model for all 

vehicles to classify the vehicles with different characteristics. 
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Therefore the subject matters of this thesis are organized as follows. In Section 2, 

there has three parts; the first one is a brief introduction of radar, explaining why it 

can be used extensively and how to deal the information collected from radar. The 

second is the background of the multivariate analysis and how to use multivariate 

analysis to conduct a repeated measures study. The last part is a summarized account 

of the nonparametric statistical procedures. Section 3 shows two different statistical 

analyses: the traditional parametric method, the model of multivariate analysis of 

variance (MANOVA) and the representative table; and the other viewpoint, the 

nonparametric aspect, the construction of the semi-parametric linear mixed effects 

model. An empirical illustration uses two types of statistical analyses would be 

described in Section 4. Comparison the results of using different methods on the same 

data set and a few concluding remarks are made in Section 5. 

 

 

 

  



4 

 

2. Background and Literature Review 

The word “radar” was originally an acronym, RADAR, for “RAdio Detection 

And Ranging.” Today, the technology is so common that the word has become a 

standard English noun. Early radar development was driven by military necessity, and 

the military is still the dominant user and developer of radar technology. In the recent 

years, radar has an increasing range of applications, such as the police traffic radar 

used for enforcing speed limits and the “color weather radar” familiar to every viewer 

of local television news. One of the most common radar applications is used for 

collision avoidance and buoys detection by ships, and is now beginning to serve the 

same role for the automobile and trucking industries. 

 

RCS, Radar Cross Section, the amount of power reradiated by the target back 

toward the radar transmitter, is an equivalent area that can be used to relate the 

incident power density at the target to the reflected power density that results at the 

receiver. Many researches, such as Bennett and Toomey (1981), Herman (2003), 

Ehrman and Lanterman (2003) treated RCS as one of the criterions of target 

recognition. They used “frequency space trajectories”, which was a database of the 

past data, compared to the multi-frequency RCS to differentiate the variety and the 

size of cars. 

 

Roe, H. and Hobson, G. S. (1992) used the reflected signal of FMCW 

(frequency-modulated continuous wave) and Doppler to draw the reflected signal 

graph, and observed the characteristics of the targets. Songhua, H., Hui, Z. and Bo, H. 

(1995) utilized polarization identification of High Resolution Range Profiles to 

identify the features of objective. Chun, J. C., Kim, T. S., Kim, J. M., Lim, Z.S. and 
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Park, W.S. (2001) used the “Beat Signals” in the FMCW Radar Level Meter as a basis 

to get the distance between the antenna and the target. Weber, N., Moedl, S. and 

Hackner, M. (2002) employed a novel signal processing approach in microwave 

Doppler speed sensing. Park, S. J., Kim, T. Y., Kang, S. M. and Koo, K. H. (2003) 

brought up a new signal processing technique for vehicle detection radar. Ehrman, L. 

M. and Lanterman, A. D. (2003) added automatic target recognition (ATR) 

components to passive radar systems to correctly identify aircraft in the target class 

with exceptional accuracy at the anticipated noise levels. Greneker, E. F. and Rausch, 

E. O. (2004) applied the X-band radar to detect the speed of trucks on the highway, 

measured their speed and issued a warning when they exceeded the speed limit to help 

mitigate truck overturn incidents on US interstate highways. 

 

The signal of the back wave radar could be recorded in various ways and it is 

very useful in the traffic and engineering. In this thesis, we transform the signal of the 

radar back wave into the numerical data, and utilize it by the statistical approach to 

discriminate cars of different types and traveling on the different lanes.  

 

Statistical data arise whenever any responses are either measured or observed on 

a set of individuals. Each particular response is referred to generally as a “variable” or 

“variate” ; if just a single observation or measurement is made on each individual then 

the data are said to be “univariate”, whereas if more than one observation or 

measurement is made on each individual then the data are said to be multivariate. 

 

The popularity of multivariate analysis has spread rapidly over the past thirty 

years, and the use of multivariate procedures in diverse fields of application has 

generated a growth in the development of theoretical results in multivariate analysis. 
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Recent studies suggest that there is no clear advantage to either the univariate or 

multivariate approach. Indeed, for some sets of data the univariate approach is more 

powerful, whereas in other instances, data with sphericity violated, the multivariate 

approach may be more efficient. 

 

The data that we collected from the radar microwave detector can be treated as 

the repeated measurements of the same group of individuals. The simplest approach 

of repeated measurement is to reduce the vector of multiple measurements from each 

experimental unit to a single measurement. Thus, a multivariate response is reduced to 

a unitvariate response. Wishart (1938) appears to have been the first researcher to 

document the use of this approach. Pocock (1983), Matthew et al. (1990), Dawson 

and Lagakos (1991, 1993), and Frison and Pocock (1992) refer to these types of 

method as the “summary-statistic approach”. Although this permits the use of simple 

analysis methods, the resulting loss of information may not be desirable. Another 

alternative to a univariate analysis of data of a repeated measures study is to perform a 

multivariate analysis. It uses the multivariate nature of a subject’s observations. Thus, 

rather than reduce the vector of repeated measurements from each subject to a single 

summary measurement, observations at different measurements are treated as a vector 

of random variables; all of the data are used. A step-by-step procedure for conducting 

a MANOVA on repeated measures data is presented by O’Brien and Kaiser (1985). 

Therefore, we will analyze our back wave radar data by the multivariate approach. 

 

The typical introductory course is parametric statistical procedures. A 

characteristic of these procedures is the fact that the appropriateness of their use for 

purposes of inferences depends on certain assumptions, for example, assume that 

samples have been drawn from normally distributes populations with equal variances. 
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Since populations do not always meet the assumptions underlying parametric test, 

therefore we need inferential procedures whose validity does not depend on rigid 

assumptions. Nonparametric statistical procedures fill this need in many instances, 

since they are valid under very general assumptions. As a result, the inference 

conclusion reached with nonparametric methods need not be tempered by qualifying 

statements as strong as, “If the distribution is normal, then …”. The qualifications are 

always much less restrictive for nonparametric model than for classical (parametric) 

one.  

 

Since our radar data can also be treated as a real function for a travelling car at 

time t, which satisfies the reasons for considering data analysis from a functional 

perspective given by Ramsay and Dalzell (1991). Familiar examples of functional 

data include growth curves, weather measured over time, and satellite data. Ramsay 

and Dalzell used the term “functional data analysis” to describe the statistical methods 

for analyzing such data. Smoothing spline has long been used for fitting curves to data. 

The monograph by Wahba (1990) can be consulted for more details concerning the 

mathematical basis for splines.  

 

To take care of various fixed and random elements, mixed effects models 

provide flexible approach to fit models. For example, for longitudinal data, Wypij et 

al. (1993) and Wang and Taylor (1995) used regression splines to model the fixed 

effects. Anderson and Jones (1995) used smoothing spline structure to model the 

random effects. Shi et al. (1996) used regression splines to model both the fixed 

effects and the random effects. For functional data, Rice and Silverman (1991) used 

smoothing splines to model the fixed effects; the random effects were also modeled 

nonparametrically by expanding the covariance function in terms of eigenfunctions. 
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Under certain conditions, the integrated random walk model is equivalent to a 

smoothing polynomial spline model. Wecker and Ansley (1983) and Kohn and Ansley 

(1985.1987) devise the spline model as an integrated random walk observed with 

error. They used a state-space model which allowed them to calculate likelihoods 

using the Kalman filter. Hence, stochastic process can also be applied into the random 

effects in the nonparametric model. Wang (1998) applied the stochastic process as the 

nonparametric part in his mixed effects model and provided program in R to fit the 

model ( http://www.pstat.ucsb.edu/faculty/yuedong/ASSIST/manual/node36.html ). 
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3. Model Specification and Methodology 

Two diverse procedures that are applicable to build models for the transformed 

radar back wave data are described in this section. One is the traditional parametric 

statistical approach, multivariate analysis of variance, which can provide the argument 

for the significance of differences between groups. The other uses nonparametric 

approach to build mixed effects model to classify data with different characteristics. 

 

3.1 Multivariate Analysis of Variance（MANOVA）  

A standard method of displaying a set of multivariate data is in the form of a data 

matrix in which rows correspond to sample individuals and columns to variables, so 

that the entry in the ith row and jth column gives the values of the jth variate as 

measured or observed on the ith individual. And, if the data are a random sample from 

some populations and the objective is to describe these populations, then the first step 

is to choose an appropriate probability model for them. There are many different 

multivariate distributions that can be used to build a probability model, however, by 

the reason of tractability on the mathematical side and the central limit theorem on the 

statistical side, the multivariate normal distribution is always the underlying model. 

 

Multivariate linear model 

The univariate linear model may be written  

���� � �����	�
  ���	�
��     ε��� 

where � is a vector of dependent variables on � individuals, and the aim is the 

prediction of a random variables � as a linear function of (��, ��, … , ��). The matrix 

� contains the values of these variables, and �� � 1, giving the constant term in the 
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linear model. � is a vector of unknown parameters, to be estimated, and ε is a 

vector of random error terms.  

 

The multivariate linear model is the extension of the univariate linear model, it 

has the form 

���� � �����	�
  ���	�
��     ���� 

and E��
 � 0���cov��
 � ���� �  ��� 

where �  has p dependent variates. The random error terms of the p-variate 

observations are independent, and have an unknown covariance matrix �. Different 

responses in the same individual item may be correlated. 

 

The matrix of residual sums of squares and products is 

�� ! ��"
#�� ! ��"
 
and the estimator of � is �" � ��#�
$��#�. Gauss-Markov theorem on least squares 

shows that the estimates �" and the predictions �" are unbiased and have minimum 

variance in the class of unbiased linear estimates. Therefore the predicted values are 

given by 

�" � ��" � ���#�
$��#� 

and the residuals are 

�% � � ! �" 

The covariance matrix of the residuals is 

�" � �%#�%� ! & ! 1 

and the elements of �" are the unbiased estimates of �. 
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The further assumption that the errors have a multivariate normal distribution, 

�~(�0, )
 
implies that �" and �" also have multivariate normal distribution, and significance 

test and confidence intervals based on this assumption. Least squares estimation is 

also maximum likelihood estimate under multivariate normality and likelihood ratio 

test are available. 

 

MANOVA 

The acronym “MANOVA” stands for “multivariate analysis of variance”. As the 

name implies, it is just the extension of ANOVA to the multivariate case of vector 

observations. With multivariate methods, we have seen those univariate variances are 

replaced by multivariate covariance matrices. In MAVONA, the sums of squares of 

ANOVA are replaced by the corresponding SSP (sums of squares and cross products) 

matrices. Thus, one can construct an ANOVA-type table in which the former SS 

column is replaced by one containing SSP matrices corresponding to the various 

effects. The effects referred to here are only fixed since any random effects have been 

subsumed into the covariance structure.  

 

Now consider a two-way layout. Let us suppose we have nrc independent 

observations generated by the model. 

�*+, � -  .*  /+  �.�
*+  0*+, ,     1 � 1,… , 2 ,   3 � 1,… , 4 ,   5 � 1, … , �  
where - is the overall effect, .* is the ith row effect, /+ is the jth column effect, 

�.�
*+ is the interaction effect between the ith row and the jth column, and 0*+, is 

the error term which is assumed to be independent (�~�6, )
 for all i, j, k. The table 

of MANOVA is list as follow: 
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Source of 

variation 

Sum of squares and cross product 

(SSP) 

Degree of 

freedom 

(d.f.) 

Rows 

treatment 
7 � 4 �89�:* .. ! �: ...<=

*>� 9�:* .. ! �: ...<# r-1 

Columns 

treatment 
? � 2 �89�: .+ . ! �: ...<@

+>� 9�: .+ . ! �: ...<# c-1 

Interaction A � �889�:*+ . ! �:* .. ! �: .+ .  �: ...<@
+>�

=
*>� 9�:*+ . ! �:* .. ! �: .+ .  �: ...<# (r-1)(c-1) 

Residual B � 8889�*+, ! �:*+.<9�*+, ! �:*+.<CD
,>�

@
+>�

=
*>�  rc(n-1) 

Total E � 7  ?  A  B � 8889�*+, ! �: ...<9�*+, ! �: ...<CD
,>�

@
+>�

=
*>�  rcn-1 

where �:* .. � �@�∑ ∑ �*+,�,>�@+>�  , �:.G . � �=�∑ ∑ �*+,�,>�=*>�  , �:*+ . � ��∑ �*+,�,>�  , 

and �:... � �=@�∑ ∑ ∑ �*+,�,>�@+>�=*>�  . 

 

In univariate ANOVA, the F-test is based on ratios of the sums of squares, which 

represent the differences between groups. However in MANOVA, Wilk’s lambda is 

defined as Λ � |JK||JK	JL| � |JK||J|  and it is equivalent to the likelihood ratio test of the 

hypothesis of equal group means. 

 

After building the MANOVA model for our data, the model will be used to 

identify the group which a new observation comes from.  The objective of 

discriminant analysis is that when given the existence of several distinct groups of 

individuals, and a sample of observations from each group, find the functions of these 
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observations that can distinguish the groups and enable future unidentified individuals 

to be classified to their correct group. Multivariate analysis of variance provides the 

basis for inferential argument about the significance of differences between groups 

and the importance of particular variables. Therefore, we use the result of multivariate 

analysis of variance as the criterion to discriminate the radar back wave data. 

 

3.2 Semi-parametric Linear Mixed Effects Model（SLM） 

3.2.1 Linear Mixed Effects Model 

Our radar response data could also be regarded as a repeated measurement data.  

Repeated measurement data are usually modeled by linear mixed effects model which 

can be generalized from the classical regression analysis through a two-stage analysis. 

 

Two-Stage Analysis 

Let the random variable Yij denote the response for the ith individual measured at 

time tij , i=1,…,N , j=1,…,ni , N is the number of individuals, ni is the number of 

observations for ith individual, and Yi be the ni-dimensional vector of all repeated 

measurements for the ith subject, that is Yi =�M*�, M*�, … , M*�N
C. 
 

The first stage of the two-stage approach assumes that Yi satisfies the linear 

regression model 

M* � O*P*  Q*                                        (3.2.1) 

where O*  is a ( ni × q ) matrix of known covariates, represents how the response 
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evolves over time for the ith subject. P*  is a q-dimensional vector of unknown 

regression coefficients, and Q* is a vector of residual components εRS, j=1,…,ni. We 

assume that all Q* are independent and normally distributed with mean zero and 

covariance matrix σ�U�N , where U�N is the ni -dimensional identity matrix. 

 

The next step, a multivariate regression model of the form 

P* � V*P  W*                                       (3.2.2) 

is used to explain the observed variability between the subjects and their regression 

coefficients P* . V*  is a ( q × p ) matrix of known covariates, and  P  is a 

p-dimensional vector of unknown regression parameters. And W*s are assumed to be 

independent random terms, following a q-dimensional normal distribution with mean 

zero and covariance matrix D. 

 

The General Linear Mixed Effects Model 

Combining the models from two-stage analysis, we replace P*  in (3.2.1) by the 

equation (3.2.2), it becomes 

M* � X*P  O*W*  Q*                               (3.2.3) 

where Yi 
is the ni-dimensional response vector for the subject i , X* � O*V*  and O*  are 

( ni × p ) and ( ni × q ) dimensional matrices of known covariance. α and W* are 

p-dimensional and q-dimensional vectors containing the fixed and random effects, 

and Q*  is an ni-dimensional vector of residual components.  

Therefore the equation (3.2.3) is called a linear mixed effect model with fixed 
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effect α and random effect W*. And we assume that  

ZW*~(�0, [

Q*~(�0, \*
] 

where D is a ( q × q ) covariance matrix with ( i , j ) element ^*+ � +̂* and \* is a ( ni  

× ni ) covariance matrix which will not depend upon i. 

 

As a result, the model (3.2.3) has the ability to model the mean structure (fixed 

effects) and the covariance structure (random effects and random residuals) 

simultaneously. 

 

3.2.2 Semi-Parametric Model 

To illustrate semi-parametric regression, let us take a look at a specific example. 

Let Y be log wages and consider the explanatory variables schooling, and labor 

market experience. If we assume log wages are linearly related to these explanatory 

variables, then the linear regression model is as follow: 

_�M|`4abbc, def
 � β�  β�．`4abbc  β�．def           (3.2.4) 

Equation (3.2.4) is a parametric regression model that we have already known.  

 

Suppose we want to estimate 

_�M|`4abbc, def
 � h � `4abbc, def 
               (3.2.5) 

and assume that m(‧) is a smooth function. Then equation (3.2.5) is a nonparametric 

regression model. And now, suppose the regression function of log wages on 

schooling and experience has the following shape: 
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_�M|`4abbc, def
 � α  g�� `4abbc 
  g��def
          (3.2.6) 

Here g�(‧) and g�(‧) are two unknown smooth functions of main effects and α is an 

unknown parameter. Therefore equation (3.2.6) combines the additive structure of the 

parametric regression model with the flexibility of the nonparametric approach, which 

is also called the generalized additive model (GAM). Having both parametric and 

nonparametric components means the models are semi-parametric. Hence, equation 

(3.2.6) is a semi-parametric regression model. 

 

In brief, semi-parametric model is the model that combines the parametric 

estimator and nonparametric function. But some scholars consider that as long as the 

model has nonparametric parts then it should be called nonparametric models. 

 

In order to estimate the unknown function in the semi-parametric model, such as 

the functions g�(‧) and g�(‧) in the above example, nonparametric regression 

estimators have to be utilized. That means when estimating semi-parametric models 

we usually have to use nonparametric skills. Therefore in this thesis, we would 

illustrate how to use nonparametric techniques to estimate the unknown functions in 

the semi-parametric model. 

 

3.2.3 Semi-parametric Linear Mixed Effects Model 

Most previous papers, e.g. Rice (1991), Wang (1998), … etc., considered on 

special models for special data. In this thesis, we suggest a general family of 

semi-parametric mixed effects models for most data sets. The fixed effects are 

modeled by general smoothing spline models which are estimated by maximizing the 
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penalized likelihood. The random effects are modeled parametrically by assuming that 

the covariance function depends on a parsimonious set of parameters. We estimate 

these parameters and the smoothing parameter simultaneous by the generalized 

maximum likelihood (GML) method. 

 

A general form of semi-parametric mixed effects model: 

Y � f  Zb  ε                        (3.2.7) 

where  Y � �M� , M� , … ,  Mn
C ,  f � �o�p�
, o�p�
,… , o�pn

C ,  ε � �ε�, ε�, … , εn
C , 

tR r s� , s�  is any arbitrary domain, and o t u � u�  vu� . W~(�0, σ�[
 , 
Q~(�0, σ�Λ
, where [ and Λ are some symmetric positive definite matrices, and 

they are mutually independent.  

 

    o t u, where  uis a reproducing kernel Hilbert space (RKHS) of real-valued 

functions on  s� .   u can be decomposed into  u� v u� , where u�  is a finite 

dimensional space containing terms which will not be penalized. The penalized 

likelihood estimate of  o in u is the solution of 

minz tu� 1N |Y ! f|�  λ|~�o|�
 
where  ~�  is the orthogonal projection of o  onto u� in u . λ is a smoothing 

parameter. See Wahba (1990) for details on RKHS and general smoothing spline 

models. 

 

Model (3.2.7) is very general. o t u is a function on any arbitrary domain s�. 

For example, u are polynomial splines on s� � �0,1� for growth curves. u may 

also be a subset of the tensor product of some RKHSs. For example, let s� �
�0,1��s� � …�s�, where s�, … , s� are covariates such as treatment group, sex, age 
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etc. : we can build a smoothing spline ANOVA model (Wahba, 1990) for longitudinal 

data. 

Smoothing Spline Analysis of Variance Decompositions 

Smoothing spline structure can be used to model mixed effects by using 

smoothing spline ANOVA decompositions. We would describe how to use smoothing 

spline ANOVA decompositions to build main effects and interactions that can be 

interpreted as in classical ANOVA.  

 

Our sample consists of curves of the intensity of the back wave of cars from 

different groups. The aims of our analysis are to model two main fixed effects, time 

and group, and one random effect of the individual cars in each group and then use 

the model to classify a new observed curve into a specific group.  

 

There are three factors involved in our model: two categorical covariates group 

and car and a continuous covariate time. From the design of the experiment, the time 

and group factors are fixed, and the car factor is nested within the group factor which 

will be treated as random effect. For group k, denote �, as the population from 

which the cars in group k were drawn with sampling distribution ~�|,]. 
 

Assume the model 

�,�+ � o95, �, p+<  �,�+  ;  5 � 1,… , �  ;   � t ��   ;   p+r �0,1�  ,  
where �,�+ is the back wave intensity at time p+ of car � in the population �� , 

o95,�, p+< is the “true” mean intensity at time p+ of car � in the population �� , 

and Q�,  ~ RR�(�0, ��
 and is independent of o95, �, p+<. o95,�, p+<  is a function 

defined on � �1���� , � , ������� ��0,1� . Note that o95, �, p+< is a random 
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variables since � is a random sample from �� .What we observe are realizations of 

this “true” mean function plus random errors. We use label i to denote the car we 

actually observe. 

 

For the time effects, the reproducing kernel Hilbert space 

�� � �o �  o��
 absolutely continous,   � � 0,1,   o��
 t ���0,1�  � 
is decomposed into �� � �1� � �t ! 0.5� �  �  where �1�  and �t ! 0.5�  

represent linear spaces spanned by the constant 1 and linear basis t ! 0.5 . H� , the 

orthogonal complement of span �1, t ! 0.5 � in W� , is a RKHS with RK  

£��s, t
 � 5��s
5��t
 ! 5¤�s ! t
                 (3.2.8) 

where k¦�x
 � B¦�x
/ν! and B¦�x
 is the νth  Bernoulli polynomial.  

 

For the group effect, the RKHS G is decomposed into G � �1�vH�, where 

�1� � �z t G: z�1
 � z�2
 � � � z��
� and H� � �z t G:∑ z�i
 � 0�R>� � with RK  

£��1, 3
 � I�*>+� ! 11C/�,                    (3.2.9) 

where I is the identity matrix and 1 is the vector with 1 in every entry. Clearly, 

�1� and H� are orthogonal. 

 

Define the following averaging operators: 

 

³́
´́́
µ
´́́
¶́ A�o � 8¸�o�5, �, p
/��

�>�
¸�o � ¹ o�5,�, p
�º ^~�|,]

¸»o � ¹ o�5,�, p
�
� ^p

¸¤o � ¼¹ ∂∂t o�5, �, p
�
� ^p¾ �t ! 0.5


] 
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Therefore, an AVOVA-like decomposition can be defined as      o � ��¸�  �¸� ! ¸�
  �U ! ¸�
��¸»  ¸¤  �U ! ¸» ! ¸¤
�o     

   � ¸�¸»o  ¸�¸¤o  ¸��U ! ¸» ! ¸¤
o 

      �¸� ! ¸�
¸»o  �¸� ! ¸�
¸¤o  �¸� ! ¸�
�U ! ¸» ! ¸¤
o  
      �U ! ¸�
¸»o  �U ! ¸�
¸¤o  �U ! ¸�
�U ! ¸» ! ¸¤
o 

     � ¿  À�p ! 0.5
  `��p
  Á,  Â,�p ! 0.5
  `��5, p
 

      P��,
  Ã��,
�p ! 0.5
  `»�5, �, p
                          (3.2.10) 

 

where µ is the grand mean, β�t ! 0.5
 is the linear main effect of time, s��t
 is the 

smooth main effect of time, ξ� is the main effect of group, δ��t ! 0.5
 is the linear 

interaction between group and time, s��k, t
 is the smooth interaction between group 

and time, αÇ��
  is main effect of car, γÇ��
�t ! 0.5
  is the linear interaction 

between car and time, s»�k,w, t
 is the smooth interaction between car and time. 

 

The first three terms in equation (3.2.10) are fixed time effects. They are 

orthogonal components in the RKHS 

�� � �o �  o��
 absolutely continous,   � � 0,1,   o��
 t ���0,1�  �. 
The fourth to sixth terms in (3.2.10) are the fixed group effects. The identifiability 

will be fulfilled because of the orthogonality of the subspaces. The last three terms in 

(3.2.10) are random effects. The last two terms are interactions between the 

individuals and the time. 

 

We will assume that ÊËÌ�Í
ÎÌ�Í
Ï~( Ê9��<, ��[,Ï and `»�5, �, p
, independent of 

P��,
  and Ã��,
 , is a realization of some stochastic process on G � �0,1� with 

mean 0 and covariance function σ��£��1, 3
£��`, p
, where £��`, p
 and £��1, 3
 are 

defined in (3.2.8) and (3.2.9), respectively. The comment by Wang and Wahba (1998) 
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for Brumback and Rice (1998) can be consulted for more details concerning the 

mathematical basis for model structure. 
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4. Empirical Illustration 

As an example of our methods in the previous section, here we present analyses 

of a data set recorded by a radar microwave detector.  

 

4.1 Data Collection  

The practical data was recorded by the vehicle radar microwave detector which 

is a side-looking device. Figure 1 shows the miniature of the radar microwave detector. 

The data set was collected near the section 1 of Singlong Road, Jhubei City, Hsinchu 

Country (新竹縣竹北市興隆路一段). There are four lanes on the road and the 

instrument is set up by the side of the Singlong Road. The sketch of the relative 

positions of the device and the range covered by the transmitter is shown in Figure 2. 

 

 

Figure 1: The miniature of the vehicle radar microwave detector. 
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Figure 2: The sketch of the relative positions of the device and the range covered by 

the transmitter. 

 

The data was collected from 10:00 AM to 5:00 PM on October 11, 2006. The 

original data consists of radar back waves of small and large vehicles; sedans belong 

to small vehicles, whereas cranes, buses, trucks and goods wagons, etc. were 

classified as the large vehicles. There dataset comprises of 248 observed curve data of 

different vehicles. At this stage of our experiment, the speed of small cars is 

controlled at 40 km/hour on the four lanes of Singlong Road. 

 

Nevertheless, the data was recorded at the unit time ( 52 10−

× sec) and the 

recorder made a note every 512 data points. We take the maximum (the most 

powerful intensity of the radar back wave) of each 512 data as the data to be analyzed 

and the frequency is one observation for every 512 × ( 52 10−

× sec) = 21.024 10−

×  

second. After adjusting to the new time unit, typical curves of intensity of back waves 

for small and large vehicles on lane 1, 2, 3, 4 are shown in Figure 3 and Figure 4, 

respectively. And they are plot on the same scale in Figure 5. 
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Figure 3: A typical curve of the intensity of back wave for small vehicle. (a) Lane 1; 

(b) Lane 2; (c) Lane 3; (d) Lane 4. 
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Figure 4: A typical curve of the intensity of back wave for large vehicle.  (a) Lane 1; 

(b) Lane 2; (c) Lane 3; (d) Lane 4. 
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Figure 5: The typical curves for small and large vehicles plotted on the same scale.  

(a) small vehicles; (b) large vehicles. 
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It can be seen from Figure 5 that the magnitudes and the peaks are different for 

different types of vehicles. The relatively low magnitudes at the beginning are caused 

by the time lag of manual operation. We are interested in classify the types of vehicles 

according to the intensity. Because of the lengths of the data are different, we have to 

regulate the curves of the back wave in order to analyze them under the same 

criterions, so called registration
1
 of functional data (Ramsay and Li, 1998). Here, the 

peak of the curve is regarded as the marker. We make the maximum intensity as the 

center of the data by taking 15 points of the new unit time before the peak and 14 

points of the new unit time after the peak. The resulting 30 numbers observed at 

discrete time are the data that we use to analyze.  

 

4.2 Model Description and Data Analysis 

Our main goal is to classify the vehicles according to their types and the lanes 

they are running. There are two classes of vehicles: large and small vehicles, and four 

lanes of the Singlong Road, therefore there are 8 groups in total. In order to examine 

the results of our discrimination analyses, we separate the dataset into two parts:  one 

comprises the learning sample, and the other is the testing sample. The former is set 

up for building our models and the later is taken for authenticating the power of 

discrimination. We use our models to get the predicted groups of the testing samples, 

and then the correct classification rate is computed as the proportion of correctly

                                                 
1
 If the observed responses from experimentation were viewed as continuous curves 

rather than scalars or vectors, this kind of data are called functional data sets. An 

essential preliminary to a functional data analysis is often the registration or alignment 

of a salient curve features. Marker registration is the process of aligning curves by 

identifying the timing of certain salient features in the curves. Using this strategy, 

curves are aligned by transforming time so that marker events occur at the same 

values of the transformed time. 
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predicted groups. Here we select 16 curves from each group randomly, 8 curves of 

them would be the learning sample set, and the other 8 curves are the testing sample 

set. Figure 6 and Figure 7 display the 8 learning samples of the back wave data for 

each type of vehicles on lanes 1, 2 and lanes 3, 4, respectively. And the 8 learning 

samples of the back wave data of small and large vehicles on 4 lanes is showed in 

Figure 8. 

 

This thesis will apply two different statistical approaches to analyzing the same 

learning sample. Due to the data is a 30-dimensional vector of time index, we can 

utilize the traditional parametric statistical approach, multivariate analysis of variance, 

to analyze the learning sample. Furthermore, the same sample would also be dealt 

with the semi-parametric model which combines the parametric and nonparametric 

function. 

 

4.2.1 Multivariate Analysis of Variance（MANOVA） 

By transforming the back wave data into a 30-dimensional vector of time index 

data set, we could assume the multivariate linear model as follow: 

�*+,Ð � ¿Ð  P*Ð  À+Ð  �PÀ
*+Ð  Q*+,Ð 
where P represents the lane effect, 1 � 1,… ,4 ; À indicates the type of vehicle  

effect, 3 � 1, 2  (“1” represents the large vehicle, and “2” stands for the small 

vehicle); �PÀ
 is the interaction effect; 5 � 1,… , �*+ is the numbers of observation 

in ith lane and jth type of vehicle; p � 1, … , 30 represents the 30 unit time index; and  

we assume that Q*+,Ð  ~ RR� (� 0 , ��
. 
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Figure 6: The 8 learning samples of the back wave data of each type of vehicles on 

Lanes 1, 2. 
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Figure 7: The 8 learning samples of the back wave data of each type of vehicles on 

Lanes 3, 4. 
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Figure 8: The 8 learning samples of the back wave data of small and large vehicles on 

4 lanes. 
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In multivariate analysis of variance, Wilks' lambda statistic can be regard as the 

likelihood ratio test of the hypothesis of equal group means. Therefore, the following 

Table 1 shows the multivariate table that uses Wilks' lambda as the test statistic of 

equal group means. Furthermore, the randomly selected 8 curves as the learning 

sample of small and large vehicles on each lane and the fitted value calculated by 

multivariate analysis of each group are displayed in Figure 9 and Figure 10. 

 

 

 

Table 1: The table of MANOVA by using Wilks' test statistic 

Source of  

variation 

df Wilks approx F num df den df Pr(>F) 

lane 3 0.0503 1.5579 90 81.69 0.02135 * 

car 1 0.1251 6.2926 30 27.00 3.307e-06 *** 

lane × car 3 0.0488 1.5822 90 81.69 0.01802 * 

residuals 56      
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Figure 9: The 8 black curves as the learning sample of small vehicles and the red lines 

represent the fitted value of each group (a) Lane 1; (b) Lane 2; (c) Lane 3; (d) Lane 4. 
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Figure 10: The 8 black curves as the learning sample of large vehicles and the red 

lines represent the fitted value of each group (a) Lane 1; (b) Lane 2; (c) Lane 3; (d) 

Lane 4. 
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4.2.2 Semi-parametric Linear Mixed Effects Model（SLM） 

Since we randomly select 8 curves from each 8 group as the learning sample set, 

that means there have 64 car curves would be assigned to 8 groups. There are two 

categorical covariates group and car and a continuous covariate time. We code the 

group factor as 1 to 8 and the observed car factor as 1 to 64, and transform the time 

variable into �0,1�. There are two fixed factors, group and time, and the car factor is 

nested within the group factor therefore we treat car as a random factor. For group k, 

denote �, as the population from which the cars in group k were drawn. Assume the 

following model: 

�,�+ � o95,�, p+<  �,�+  ;  5 � 1,… ,8  ;   � t ��   ;   p+r �0,1�  ;   j=1,…,30 , 

where �,�+ is the back wave intensity at time p+ of car � in the population �� , 

o95,�, p+< is the “true” mean intensity at time p+ of car � in the population �� , 

and r,�+ ’s are random errors. o95,�, p+<  is a function defined on � �1���� ,
�2���� ,   �3���» , �4���¤ , �5���Ô , �6���Ö , �7���Ø , �8���Ù� ��0,1�.  

Note that o95,�, p+< is a random variables since �  is a random sample from 

�� .What we observe are realizations of this “true” mean function plus random errors.  

 

Then by the SS ANOVA decomposition 

o � ¿  À�p ! 0.5
  `��p
  Á,  Â,�p ! 0.5
  `��5, p
 
               P,��
  Ã,��
�p ! 0.5
  `»�5, �, p
                  (4.2.1) 

where ¿ is a constant, À�p ! 0.5
 is the linear main effect of time, `��p
 is the 

smooth main effect of time, Á, is the main effect of group, Â,�p ! 0.5
 is the linear 

interaction between time and group, `��5, p
 is the smooth interaction between time 

and group, P,��
 is the main effect of car, Ã,��
�p ! 0.5
 is the linear interaction 

between time and car, and `»�5, �, p
 is the smooth interaction between time and car.   
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We calculate the main effect of time as À�p ! 0.5
  `��p
, the interaction 

between time and group as Â,�p ! 0.5
  `��5, p
, and the interaction between time 

and car as Ã,��
�p ! 0.5
  `»�5, �, p
. The first six terms in the equation (4.2.1) are 

fixed effects, and the last three terms in equation (4.2.1) are random effects since they 

depend on the random variable �. 

 

In the equation (4.2.1), the first three terms, depending on time only, represent 

the mean curve for all cars. The middle three terms measure the departure of a 

particular group from the population mean curve. The last three terms measure the 

departure of a particular car from the mean curve of a population from which the car 

was chosen. 

 

Therefore, by the equation (4.2.1), we can fit three models.  

Model 1: assuming there is no interaction between cars and time. 

   �,�+ � o�95, �, p+<  �,�+ 

      �  ¿  À�p ! 0.5
  `��p
  Á,  Â,�p ! 0.5
  `��5, p
  P,��
  r,�+ 

It has a different population mean curve for each group plus a random intercept for 

each car. We assume that P*  ~ RR� N�0, �Ë�
 , �,*+  ~ RR� N�0, ��
 , and they are mutually 

independent. 

 

Model 2: assuming there is no smooth interaction between cars and time. 

   �,�+ � o�95, �, p+<  �,�+ 

      �  ¿  À�p ! 0.5
  `��p
  Á,  Â,�p ! 0.5
  `��5, p
 

        P,��
  Ã,��
�p ! 0.5
  r,�+ 

It has a different population mean curve for each group plus a random intercept and a 
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random slope for each car. We assume that �P* , Ã* 
 ~ RR� N Ê�0, 0
, diag9�Ë� , �Î� <Ï , 
�,*+  ~ RR� N�0, ��
 , and they are mutually independent. 

 

Model 3: 

   �,�+ � o»95, �, p+<  �,�+ 

      �  ¿  À�p ! 0.5
  `��p
  Á,  Â,�p ! 0.5
  `��5, p
 

        P,��
  Ã,��
�p ! 0.5
  `»�5, �, p
  r,�+ 

It has a different population mean curve for each group plus a random intercept, a 

random slope and a smooth random effect for each car. We assume that 

�P* , Ã* 
 ~ RR� N Ê�0, 0
, diag9�Ë� , �Î� <Ï , `»�5, �, p
’s are stochastic process which are 

independent between cars with mean zero and covariance function ���£��`, p
 2, 
�,*+  ~ RR� N�0, ��
 , and they are mutually independent. 

 

The criteria for model selection are shown in Table 2. As we can see that the AIC 

of Model 3 is the minimum, therefore Model 3 is the most favorable. Furthermore, 

Figure 11 shows one random sample selected from the learning sample of the large 

vehicle on Lane 1 and the predicted curves of this sample from these three models. 

And from Figure 11, we find that the predicted curve from Model 2 is closer to the 

observed curve than Model 1, but the predicted curve from Model 3 is even closer 

than Model 2. This plot also shows that Model 3 is the most suitable model among 

these three models. 

 

 

                                                 
2
 ��� � σ��£��1, 3
 , £��`, p
=�5��`
5��p
 ! 5¤�` ! p
� , where 5��e
 � Ú��e
/�! 

and Ú��．
 is the vth Bernoulli polynomial. 
 



38 

 

 

Table 2: The criteria for model selection 
 

Model AIC BIC logLikelihood Test L.Ratio p-value 

1 2877.512 2921.984 -1430.756    

2 2795.187 2850.777 -1387.593 1 vs 2 86.32490 <.0001 

3 2710.626 2771.775 -1344.313 2 vs 3 86.56081 <.0001 

 

 

 

 

 

Figure 11: One random sample selected from the learning sample of the large vehicle 

on Lane 1 and the predicted curves of this sample from these three models. 
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After using the learning sample set to build models, we use the models built from 

the learning samples to acquire the mean curve of each group. And calculate the 

distance between the mean curve and the curve of the testing sample. Assign the 

testing sample to the group that has the smallest distance measure between the group 

mean curve and the testing sample. Then compute the correct classification rate by 

evaluating the proportion of correctly predicted groups.  Table 3 displays the correct 

classification rate using MANOVA model and the three models of SLM for 8 groups 

over one run. Although we have already known that Model 3 of SLM is more 

favorable than Model 1 and Model 2 in the sense of goodness-of-fit, but the correct 

classification rate of Model 3 is not much higher than Model 1 and 2. Nevertheless, it 

takes much more time to fit Model 3, therefore under the limited time and the 

restriction of resources; we only use Model 1 and 2 to fit our real data. After repeated 

sampling the learning and testing samples from our data over 100 runs, we would 

obtain 100 correct classification rates from each model. Figure 12 displays the 

box-plot of the vehicle correct classification rate over 100 runs for three models 

(MANOVA model and the Model 1, Model 2 of SLM). 

 

 

Table 3: The correct classification rate of MANOVA model and the three SLM 

models for 8 groups over one run 

 MANOVA 

model 

SLM 

Model 1 Model 2 Model 3 

correct 

classification 

rate 

0.3392857 0.3928571 0.3571429 0.4285714 
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Figure 12: The box-plot of vehicle correct classification rate over 100 runs. 
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5. Conclusion and Discussion 

This study proposed two methodologies to deal with radar back wave data and 

our goal is to classify the sizes of vehicles. The parametric multivariate analysis 

presents a traditional statistical approach and only takes very short time to do the 

classification. But as we can see from the fitted value of large vehicles on Lane 1 in 

Figure 8 and the predicted curve of one large vehicle on Lane 1 in Figure 9, the fitted 

curve of MANOVA is not as good as the curve predicted from SLM model. However, 

from Table 3, the correct classification rate of MANOVA doesn’t seem too awful.  

Additionally, the SLM model costs too much time to predict the curve, it only shows 

a higher correct classification rate. Therefore these two models have respective 

advantages.  

 

However the correct classification rate could be higher if we take account of the 

following two factors. First, while radar transmits a controlled, well-defined signal, 

the signal measured at the receiver output in response is the superposition of several 

major components. The major components are the target, clutter, noise and jamming. 

Noise and jamming are interference signals; they degrade the ability to measure 

targets. In some cases, clutters may be interference, too. However, our data were 

collected from the real-time back wave of the radar microwave detector, the data 

certainly include the target, clutter, noise and jamming. But we didn’t eliminate those 

interference signals before analyzing data; therefore the result obtained from the 

analyses may have inaccuracy.  

 

The other factor is that the number of observations is relatively few to classify 

them into eight groups. We have tried to classify the observations into only two 
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groups, ignoring the lane effect, and the correct classification rate is doubled. This 

phenomenon occurs for both models, i.e., both of these two models would work well 

when the number of groups are small but deteriorate rapidly when the number of 

groups increases.  

 

The methodologies presented in this thesis offer some views of recognizing 

vehicles. Since the form, size and color of the vehicles on the road are all distinct, it is 

worth noting that the model of dissimilar vehicles may be different. Therefore, if the 

number of observations is enough, the model can be expanded for color effect or other 

possible effects. 
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