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Abstract

Our aim in this paper is to introduce a concept trying to evaluate statisti�

cal inference techniques for all statistical inference problems with a unifying

method� For each inference problem� we may de�ne a function mapping

each inference technique to a subset of the sample space� Then we can de�

�ne various criterions in evaluating the size of the mapping for all techniques

when they are applied for one statistical inference problem� The criterions

of the size for the mapping including the volume of the mapping set and

probability variation of the mapping set are considered as examples in this

paper� We initiate this direction of evaluation of an inference technique in

terms of the size of its corresponding mapping set is interesting whereas the

use of size in our three methods still needs for further investigation�

Key words� Hypothesis testing� interval estimation� point estimation� sta�

tistical inference� statistical mapping�

�� Introduction

The general statistical inference problem arises from the fact that we do

not know which of a family of distributions is the true one for describing

the variability of a situation in which we make an observation� From the

observation made we wish to infer something about the true distribution�

or equivalently about the true parameter� There are three statistical prob�

lems� point estimation� interval estimation and hypothesis testing� dealing

with inferences for a parameter �� For each statistical problem� we aim in

developing a procedure �as good 	in probabilistic context
 as possible��

Having made great e�ort� statisticians developed interesting good infer�

ence procedures for these three statistical problems� In the hypothesis test�

ing� there are two important categories of hypothesis speci�cation� the sig�

ini�cance test and the Neyman�Pearson formulation� The Neyman�Pearson

Typeset by AMS�TEX

�



�

formulation considers a decision problem that we want to choose one from

the null hypothesis H� and an alternative hypothesis H�� On the other hand�

the signi�cance test considers only one hypothesis� the null hypothesis H��

The signi�cance test may occur that H� is drawn from a scienti�c guess and

we are vague about the alternative� and cannot easily parameterize them�

Another case is that the model when H� is true is developed by a selection

process on a subset and is to be checked with new data� Then the problem

for signi�cance test is more general than the Neyman�Pearson formulation

in that when H� is not true there are many possibilities for the true alterna�

tive� Unfortunately the existed signi�cance tests do not share any optimal

property� for examples� the uniformly minimum variance unbiased estimator

in point estimation and uniformly most powerful test in Neyman�Pearson

formulation� to support them� This diculty occurs too for the con�dence

interval problem where Zacks 	����� Sec ����

 shows that desirable results

for the con�dence sets such as optimality in terms of size are not attainable�

The general possibility of making inference rests in the fact that it is

usually the case that a given observation is much more probable under some

members of the distribution family than it is under others� so that when this

observation actually occurs in practice� it becomes plausible that the true

distribution belongs to the former set rather than the latter� Silvey 	����


and Lindsey 	����
 pointed out that much of frequentist theory appear ad

hoc because it need not be model�based� not relying on the likelihood func�

tion nor any other single unifying principle� not even having the requirement

that all of the information in the data must be used� This leads the fact that

these existed techniques are less convincing in the interpretation of generat�

ing a subset of plausible values in the parameter space after an observation

X � x has been taken�

The interest of this paper is to propose a concept trying to evaluate

statistical inference techniques for all statistical inference problems with a

unifying method� For each inference problem� we may de�ne a function

mapping each inference technique to a subset of the sample space� Then

we can de�ne various criterions in evaluating the size of the mapping for all



�

techniques when they are applied for one statistical inference problem� The

criterions of size for the mapping including the volume of the mapping set

and probability variation of the mapping set are considered as examples in

this paper� We initiate this direction of evaluation of an inference technique

in terms of the size of its corresponding mapping set is interesting whereas

the use of size in our methods still needs for further investigation�

�� Sample Set Mapping and Statistical Inference

���� Sample Set Mappings

Let X�� X�� ���� Xn be a random sample drawn from a distribution with

probability density function f	x� �
 where � is a parameter in �� We denote

vector X � 	X�� X�� ���� Xn
� and Rn
x the sample space of the random sample

X� representing the set of all possible sample realizations� We also let �� be

a subset of � of our concern and denote � as the class of all subsets of Rn
x �

We call the following mapping

��
S� � 	���


a sample set mapping� i�e�� for each � � ��� S	�
 is a subset of Rn
x � A

sample set mapping may be represented as the family fS� � � � ��g� For

convenience� we also call S� the sample set mapping�

Why are we considering the sample set mapping� Suppose that for a

speci�c interest and we are working on choosing one from two sample set

mappings fS�� � � � ��g and fS�� � � � ��g� This then may be done by

specifying a metric to compare sizes of sample sets S�� and S�� � Our interest

is to treat statistical inference problems as selection of sample set mapping

from a group of sample set mappings speci�ed by the problem�

We are going to transform the class of statistical procedures for one sta�

tistical problem� point estimation� interval estimation or hypothesis testing�

to a class of sample set mappings� However� the size and the form of the

mapping class is determined by the problem� Let�s specify several techniques

for transformations needed in statistical problems�
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De�nition ���� 	a
 We said that a sample set mapping S is partitioned if

it is disjoint in sense that S� �S�� � � for �� �� � � and exhaustive in sense

that for each x � Rn
x there is a � � � such that x � S��

	b
 A sample set mapping S is said to be singular if there is a set S� such

that fS� � � � ��g � fS�g 	a constant type mapping
�

	c
 We call a sample set mapping S a level � � � sample set mapping if it

satis�es

P�	X � S�
 � �� � for � � ���

With this� we also call S� a level �� � sample set mapping�

	d
 We call a sample set mapping S a size � � � sample set mapping if it

satis�es

inf����P�	X � S�
 � �� ��

With this� we call S� a size �� � sample set mapping�

We are going to show that each classical statistical problem may be for�

mulated as problems for selecting sample set mapping from a subfamily of

sample set mappings of 	���
 determined by conditions in De�nition ���� For

speci�c� the following categories explain the transformation from statistical

inference problems to classes of sample set mappings�

	�
 Partitioned sample set mapping corresponds with point estimation

	�
 Level ��� sample set mapping corresponds with interval 	set
 estimation

	�
 Singular size � � � sample set mapping corresponds with hypothesis

testing�

���� Point Estimation and Partitioned Sample Set Mapping

An estimator of parameter � represents a function of the form�

Rn
x

��� ��

Then� an estimator may be denoted as ��	X
 where X represents the random

sample�

Theorem ���� 	a
 Let fS� � � � �g be a partitioned sample set mapping� If

we set function h	x
 � � where � satis�es x � S�� then h	X
 is an estimator

of ��



�

	b
 Let ��	X
 be an estimator of parameter �� Then fS� � � � �g with

S� � fx � ��	x
 � �g 	���


is a partitioned sample set mapping�

Proof� 	a
 Suppose that S� is a partitioned sample set mapping� Then�

being exhaustive and disjoint for the mapping leads to the fact that for each

x� there is one and only one � � � such that h	x
 � �� Then h	X
 is an

estimator of � since it is a mapping from Rn
x to ��

	b
 Let ��	X
 be an estimator of �� For each x � Rn
x � we see that x � S���x��

This indicates that the mapping fS� � � � �g is exhaustive� Suppose that

this mapping is not disjoint� There exists � and �� in � with a x in Rn
x such

that x � S� and x � S�� � This violates that ��	X
 is a function� This proves

the theorem� �

Not every partitioned sample set mapping fS� � � � �g makes estimator

h	X
 onto parameter space �� On the other hand� not every estimator ��	X


makes the partitioned sample set mapping S� nonempty for every � � ��

Let�s derive partitioned sample set mappings for some examples of point

estimators�

Example �� The maximum likelihood estimator ��mle	X
 sets the partition�

for � � ��

S� � fx � L	��� x
 � L	�� x
 for �� � �g�

If X�� ���� Xn is a random sample from exponential distribution with proba�

bility density function f	x� �
 � �
� e

�x��� x � �� � � �� Maximum likelihood

estimator ��mle	X
 � �X set the partition� for � � ��

S� � f
�
�
x�
���
xn

�
A �

nX
i	�

xi � n�g�

Whenever sample point 	x�� ���� xn
 with
Pn

i	� xi � n�� is observed� we will

let �� as our estimate of the unknown parameter ��
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On the other hand� the method of moment set the partition� for � � ��

S� � fx �
nX
i	�

xi � nE�Xg�

If X�� ���� Xn is a random sample from Bernoulli distribution with success

probability p� the estimator of method of moment is �p � �X that sets the

partition

Sp � f
�
�
x�
���
xn

�
A �

nX
i	�

xi � npg�

Sp is non�empty only when p � f�� �n � �n � ���� �g� Whenever Sp is non�empty�

it includes elements of number

�
n
np

�
� �

���� Set Estimation and Level �� � Sample Set Mapping

We generally say that a family� �X � f�x � �x � � and x � Rn
xg is a

���	�� �
� con�dence set of � if it satis�es

�� � � P�	fx � � � �xg
� � � ��

Theorem ���� 	a
 Let fS� � � � �g be a level �� � sample set mapping�

Then C	X
 with Cx � f� � x � S�g is a ���	�� �
� con�dence set of ��

	b
 If �X is a ���	�� �
� con�dence set of �� then fS� � � � �g with

S� � fx � � � �xg�

is a level �� � sample set mapping�

Proof� 	a
 Let S� be a level ��� sample set mapping� Then P�	� � C	X

 �

P�	X � S�
 � ��� for � � �� Thus� C	X
 is a ���	���
� con�dence set

of ��

	b
 Let �X be a ���	�� �
� con�dence set of �� We have P�	X � S�
 �

P�	� � �X 
 � � � � for � � �� Thus� S� is a level � � � sample set

mapping� �

Let C � 	t�	X
� t�	X

 be a ���	���
� con�dence interval for �� When

X � x is observed� we choose 	t�	x
� t�	x

 as the possible set of the true ��

By letting

S� � fx � � � 	t�	x
� t�	x

g�



	

it satis�es P�	X � S�
 � � � � for � � �	� ��
� In this situation� when

x in S� is observed we put � in the x�s possible set and when x in not in

S� we wouldn�t put � in x�s possible set� That is� the con�dence set when

x is observed is the collection of � such that x is in level � � � sample set

mapping S�� The interval estimation problem is the problem for selecting a

level �� � sample set mapping�

On the other hand� when we have level ��� sample set mapping S�� by

letting Cx � f� � x � S�g� the fact P�	� � CX
 � �� � for � � � indicates

that CX plays the role of level �� � con�dence set of �� We also have that

the problem of selecting a level � � � sample set mapping is a problem of

selecting level �� � con�dence interval�

Example �� Let X�� ���� Xn be a random sample from Bernoulli distribution

with success probability p� An approximate ���	���
� con�dence interval

for p is 	�x� z���

q

x���
x�

n � �x � z���

q

x���
x�

n 
� Then� the partition is

Sp � f
�
�
x�
���
xn

�
A � �x� z���

r
�x	�� �x


n
� p � �x � z���

r
�x	�� �x


n
g� p � 	�� �
�

Whenever sample point 	x�� ���� xn
 in Sp is observed� the value p is con�

sidered as a potential true parameter point� Then Sp is the set of sample

points that we favor p as the true value� �

���� Hypothesis Testing and Singular Size �� � Sample Set Map�

ping

In the hypothesis testing� there are two important categories of hypothesis

speci�cation� the sigini�cance test and the Neyman�Pearson formulation�

The Neyman�Pearson formulation considers a decision problem that we want

to choose one from the null hypothesis H� � � � �� and an alternative

hypothesis H� � � � �� where both H� and H� could be simple or composite

hypotheses� In either case� we generally concern the problem� Is a given

observation consistent with the null hypothesis H� or it is not� For dealing

with the latter framework� our concern often is by setting a signi�cance level

� and then searching for a critical region C� which is a subset of the sample






space Rn
x and satis�ed that the type I error probabilities� in terms of � in

��� is less than or equal to ��

Consider the hypothesis testing problem that we have a null hypothe�

sis H� � � � ��� A test with critical region C is called a level � test if

sup����
P�	X � C
 � �� Let Cc be the complement of C� Then we have

inf����
P�	X � Cc
 � �� ��

In this setting� the transformation

S� � fx � x �� Cg

is a size �� � sample set mapping on �� � ���

Theorem ���� 	a
 Let fS� � � � ��g � fSg be a singular size ��� sample

mapping� By letting

C � Sc�

then C is a size � critical region for the hypothesis H� � � � ���

	b
 Let C be a size � critical region for the null hypothesis H� � � � ��� By

letting

S � Cc�

then fSg is a singular size �� � sample set mapping�

Proof� Let S be a size �� � singular sample set mapping on ��� Then�

sup����
P�	Reject H�
 � sup����

P�	X � C
 � �� inf����
P�	X � S
 � ��

This proves part 	a
� The proof of part 	b
 is skipped for that it may be

analogously showed� �

The complement of a singular sample set mapping may serve as a critical

region�

Example �� Again� let X�� ���� Xn be a random sample from the Bernoulli

distribution� Consider the hypotheses H� � p � ��� vs H� � p � ���� We
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classically consider to reject H� when
p
n� 
X�����

��� � z����� We then have the

partition

Sp	��� � f
�
�
x�
���
xn

�
A �

nX
i	�

xi � n	��� � z����
���p
n


g

with number of elements
Pc

j	�

�
n
j

�
where c � n ��� � z����

���p
n

! where  �!

is the greatest integer function� �

Dealing with general statistical hypothesis testing problem of with null

hypothesis H� � � � �� and with no speci�cation of any alternative hypothe�

sis� a signi�cance test is a method for measuring statistical evidence against

H� that computes p�value� the probability of an extreme set determined

from a sample X with observation X � x�� The classical signi�cance test�

being called the Fisherian signi�cance test� chooses a test statistic T � t	X


and determines the extreme set as values x�s that t	x
�s are greater than or

equal to t � t	x�
� The p�value may be formulated as

px� � P��	t	X
 � t	x�

�

We have a partition

S�� � fx � t	x
 � t	x�g� 	���


where� in this case� � � px� and �� � f��g� This includes all non�extreme

samples in S�� �

There are several properties for various ��favorable sample sets�

	a
 Consider the point estimation problem� Let �� be an estimator with ��

favorable sample set S�� Then� for every x � Rn
x � there exists one and only

one � � � such that x is in S�� With this� we have

S� � S�� � � for �� �� � � with � �� ��� 	���


	b
 For the con�dence interval problem� the property of 	���
 is not guran�

teed for the induced ��favorable sample sets�

Let S� be the ��favorable sample set for a statistical technique� For every

statistical inference problem that we are working on deciding a ��favorable



��

sample set� there may exist many choices of possible partition S� that all

ful�ll the con�dence restriction�

�� Equivariant Sample Set Mapping

With the fact that the concept of ��favorable set may be considered as a

generalization of location point to a sample location set� we may expect that

a location�scale equivariance property is satis�ed for the ��favorable set� In

this section� let�s denote �X as the parameter of � with respect to random

sample X�

De�nition ���� Let�s redenote the ��favorable sample set for random

variable X by S�x	X
� We say that S�x	X
 is equivariant if it satis�es

S�ax�b	aX � b
 � aS�x	X
 � b for a� b � R�

By saying that � is a location parameter if it satis�es �	aX � b
 � a�� b

and � is a scale parameter if it satis�es �	aX � b
 � jaj�	X
� It is inter�

esting to see in what circumstances that the ��favorable sample sets of the

statistical inference techniques are equivariant� We say that �x is a location

parameter if it satis�es �ax�b � a�x � b and it is a scale parameter if it

satis�es �ax�b � jaj�x� for a� b � R�

Theorem ���� 	a
 Let � be a location parameter� Then� a location�scale

equivariant estimator ��	X
� i�e�� ��	aX � b
 � a��	X
 � b� leads to an equi�

variant ��favorable sample set�

	b
 Let � be a scale parameter� Then a scale equivariant estimator ��	X
�

��	aX � b
 � jaj��	X
� leads to equivariant ��favorable sample set�

Proof� 	a
 By letting �x as the vector parameter corresponding with the

sample X� the ��favorable sample set de�ned by the the location�scale esti�

mator corresponds to aX � b� linear function of X� is

S�ax�b	aX � b
 �

��
�
�
�
ax� � b

���
axn � b

�
A � ��	aX � b
 � �aX�b

	

� �

Since �� is a location�scale equivariant estimator� We have ��	aX�b
 � a��b

and �x is a location parameter indicating that �ax�b � a� � b� Then the



��

proof is �nished by the followings�

S�ax�b	aX � b
 �

��
�a
�
�
x�
���
xn

�
A� b � ��	x
 � �

	

�

� aS�x � b�

	b
 When � is a scale parameter and ��	X
 is a scale equivariant estimator�

Then the ��favorable sample set of the location�scale tranformation sample

aX � b is

S�aX�b
	aX � b
 �

��
�
�
�
ax� � b

���
axn � b

�
A � ��	aX � b
 � �aX�b

	

�

�

��
�a
�
�
x�
���
xn

�
A� b � jaj��	x
 � jaj�

	

�

� a

��
�
�
�
x�
���
xn

�
A � ��	x
 � �

	

�� b

� aS�x	X
 � b� �

This theorem indicates that a location�scale equivariant estimator of a loca�

tion parameter does induce an equivariant ��favorable sample set� On the

other hand� it of a scale equivariant estimator of a scale parameter is also

equivariant�

Theorem ���� Suppose that � is a location parameter� We also assume

that a pivotal quantity Q	X� �
 satis�es the folowings�

	a
 Q	X� �
 and Q	aX � b� a� � b
 have the same distribution�

	b
 Q	aX � b� a� � b
 �

�
Q	X� �
 if a � �
�Q	X� �
 if a � �

�

We then have the followings�

	�
 Let q satisfy � � � � P�	�q � Q	X� �
 � q
� Then the favorable

sample set of the ���	� � �
� con�dence interval inverted from the event

	�q � Q	X� �
 � q
 is equivariant�



��

	�
 Consider the null hypothesis H� � � � ��� Then the favorable sample set

of the level � test with critical region fx � Q	X� ��
 � �q or Q	X� ��
 � qg
is location�scale equivariant�

Proof� Let Y � aX � b� For 	�
� we want to show that S�ax�b	aX � b
 �

aS�x	X
�b� The favorable sample set of the ���	���
� con�dence interval

based on random sample Y�� ���� Yn may have the following transformation�

S�ax�b	aX � b
 �

��
�y �

�
B�
y�
���
yn

�
CA � �q � Q	aX � b� a� � b
 � q

	

� 	���


�a���
�

��
�a
�
�
x�
���
xn

�
A� b � �q � Q	X� �
 � q

	

�

� a

��
�
�
�
x�
���
xn

�
A � �q � Q	X� �
 � q

	

�� b

� aS�x	X
 � b�

When a � �� from 	���
� we have

S�ax�b	aX � b
 �

��
�a
�
�
x�
���
xn

�
A� b � �q � �Q	X� �
 � q

	

�

� a

��
�
�
�
x�
���
xn

�
A � �q � Q	X� �
 � q

	

�� b

� aS�x	X
 � b�

For 	�
� it is simply the case of 	�
 with � � ��� �

Eaxmple �� Let X�� X�� ���� Xn be a random sample drawn from a normal

distribution N		� 
�
 where 
 is known constant� Traditionally we choose

���	���
� con�dence interval for 	 as C	X
 � 	 �X�z��� �p
n
� �X�z���

�p
n


�

This is drived from the pivotal quantity Q	X�	
 �

X��
��

p
n

which satis�es

conditions 	a
 and 	b
� Then the favorable sample set of the con�dence



��

interval C	X
 as

S� �

��
�x �

�
�
x�
���
xn

�
A � �x� z���


p
n
� 	 � �x � z���


p
n

	

�

is equivariant� �

However� when conditions 	a
 and 	b
 hold� it doesn�t guarantee that the

favorable sample set of the ���	� � �
� con�dence interval inverted from

the event 	�q� � Q	X� �
 � q�
 with � � � � P�	�q� � Q	X� �
 � q�
 is

equivariant� We illustrate this with an example�

Example 	� 	Continue to Example "
 Let z� and z� satisfy P 	z� � Z �
z�
 � �� � and P 	Z � z�
 �� P 	Z � z�
� Then C	X
 � 	 �X � z�

�p
n
� �X �

z�
�p
n


 is a ���	�� �
� con�dence interval for 	� The favorable sample set

of Y � aX � b satis�es the folowings�

Sa��b �

��
�y �

�
B�
y�
���
yn

�
CA � �y � z�


yp
n
� 	y � �y � z�


yp
n

	

�

�

��
�a
�
�
x�
���
xn

�
A� b � a�x � z�

jaj
p
n
� a	 � a�x � z�

jaj
p
n

	

�

�a	��
�

��
�a
�
�
x�
���
xn

�
A� b � a�x� z�

a
p
n
� a	 � a�x� z�

a
p
n

	

�

�

��
�a
�
�
x�
���
xn

�
A� b � �x� z�


p
n
� 	 � �x� z�


p
n

	

� 	���


	���
 is equal to aS� � b only if

P 	Z � �z�
 � P 	Z � z�
 and P 	Z � �z�
 � P 	Z � z�
� 	���


However� since z� � � and z� � � whenever � � � � �� we have P 	Z �
�z�
 � P 	Z � z�
 �� P 	Z � z�
 and P 	Z � �z�
 � P 	Z � z�
 �� P 	Z �



��

z�
� This contradicts 	���
 and then the favorable sample set of C	X
 is not

location�scale equivariant� �

Theorem ���� Suppose that � is a scale parameter of random variable X

in sense that the parameter for aX�b is jaj�� We also assume that a pivotal

quantity Q	X� �
 satis�es the followings�

	a
 Q	X� �
 and Q	aX � b� a� � b
 have the same distribution�

	b
 Q	aX � b� a� � b
 � Q	X� �
 for a �� ��

We then have the followings�

	�
 Let q� and q� be any values satisfying � � � � P�	q� � Q	X� �
 � q�
�

Then the favorable sample set of the ���	���
� con�dence interval inverted

from the event 	q� � Q	X� �
 � q�
 is equivariant�

	�
 Consider the null hypothesis H� � � � ��� Then the favorable sample set

of the level � test with critical region fx � Q	X� ��
 � q� or Q	X� ��
 � q�g
is equivariant�

Proof� We only show case 	�
 where 	�
 in its special case� Let Y � aX � b�

We want to show that S�aX�b
	aX�b
 � aS�X 	X
�b� The favorable sample

set of the ���	���
� con�dence interval based on random sample Y�� ���� Yn

may have the following transformation�

S�aX�b
	aX � b
 �

��
�y �

�
B�
y�
���
yn

�
CA � q� � Q	aX � b� a� � b
 � q�

	

�

�

��
�a
�
�
x�
���
xn

�
A� b � q� � Q	X� �
 � q�

	

�

� aS�X 	X
 � b� �

Example 
� Let X�� ��� Xn be a random sample from N		� 
�
 where 	

and 
 are both unknown� It is seens that �n���S�
��

	 ��	n � �
 where

S� � �
n��

Pn
i	�	Xi� �X
� is a pivotal quantity satisfying conditions 	a
 and

	b
� The interval

C	X
 � 	
	n� �
S�

���
�

	n� �
S�

���

 	���




��

with ��� � P 	��� � ��	n��
 � ���
 is a ���	���
� con�dence interval for


�� Then the 
�favorable sample set induced from this con�dence interval

is equivariant� �

�� Volume�based Size of ��Favorable Sample Set

For each statistical inference problem�� we face the problem of selection

one from many available procedures� With sample set mapping� this prob�

lem turns to the problem of selection one from a class of avalibale sample

set mappings�

The conditional distribution of the random sample X � 	X�� ���� Xn


given sample space mapping S� is

fXjS� 	x� �
 �
�R

S�
fX	x� �
dx

fX	x� �
� x � S��

In case that P�	X � S�
 � �� we let

fXjS�	x� �
 �
�

P�	X � S�

fX	x� �
� x � S��

What do we have for comparison of inference procedures from the structure

of sample set mapping� With the above� we have an induced statistical

model as�

 i! Sampling model� X � 	X�� ���� Xn
 is a random sample�

 ii! Induced probability model ffXjS�	x� �
� � � �� x � Rn
xg�

Size� in some way� for the sample set mapping is statistically appropriate

for mapping selection� There are three potentially desirable techniques for

computing the size of a sample set mapping�

	a
 Volume of the sample set mapping S� provides one way for comparison�

	b
 Covariance matrix of X restricted on its induced space S� provides

another way for comparison� This approach involves the induced probability

model fXjS� 	x� �
�

	c
 The third way is comparison of densities of X on S� that measures the

probability at sample point x when � is true� This implements the con�

cept of Silvey	����
 and Lindsey	����
 for developing probable or plausible

statistical procedures�



��

Without involving the density function� the size of the ��favorable sample

set may be measured with its volume for evaluation or comparison� In the

attempt of proposing standard technique for measuring the size of the ��

favorable sample sets� volume is a most intuitive way to be mentioned�

Example �� 	a
 Consider the example that we have a random sample drawn

from Bernoulli distribution� The sample space of this random sample has

elements with total number
Pn

j	�

�
n
j

�
� �n which is �nite� Hence any

statistical inference procedure corresponds to a ��favorable sample set with

size� number of elements� less than or equal to �n� Any two statistical in�

ference proposals may be compared through their corresponding ��favorable

sample sets in terms of element numbers�

	b
 For continuous distribution� consider a simple situation that we have

a random sample of size two� X�� X� from a distribution with probability

density function f	x
 and we consider a hypothesis H� � f	x
 � 
�x

���� �

x � �� The size of the density increases as jxj increases from zero to one�

With this fact� two seems to be reasonable tests are�

Test �� rejecting H� if jx�x�j � ������

Test �� rejecting H� if jx� � x�j � ����

The critical values are chosen such that both are level ���� tests� In this

situation� the ��favorable sample sets for Test � and Test �� respectively� are

S� �

��
x�
x�

�
� jx�x�j � ������

�
and S� �

��
x�
x�

�
� jx� � x�j � ���

�
�

We then have areas of these two ��favorable sample sets as Area	S�
 �

��#��� and Area	S�
 � ���� When we set volume as a tool for comparison

of ��favorable sample sets� we would say that Test � is better than Test � in

sense that it has ��favorable sample set with smaller volume than the other

one� �

Discrete and continuous disributions with sample space� for the random

sample� of �nite elements or �nite volume� all their ��favorable sample sets

are with �nite elements or �nite volumes so that a comparison of these sets

is achievable� How is it when the sample space for the random sample is



�	

with in�nite volume� For speci�c� in this sample space� is a �nite width

con�dence interval or acceptance region of a test must have ��favorable

sample set of �nite volume�

Example �� The sample space for a random sample from a normal distribu�

tion N		� 
��
� where 
� is known� is with in�nite volume� The ���	���
�

con�dence interval of 	 is C	X
 � 	 �X � z���
��p
n
� �X � z���

��p
n


 which has

�nite width� By letting z� � z���
��p
n

� the ��favorable sample set is

S� �

��
�

�
BB�
x�
x�
���
xn

�
CCA � n		� z�
 �

nX
i	�

xi � n		� z�


	

�
�

This is a set of hyperplanes
Pn

i	� xi � c� n		 � z�
 � c � n		 � z�
�

obviously a set of in�nite volume� Same conclusion will be drawn for the

con�dence interval of 
� in Example �� In this situation� a comparison of

the ��favorable sample sets is generally impossible� �

Although it is not generally that we can compare ��favorable sample

sets through their volumes when the sample space of the random sample

is unbounded� However� there is a situation where sample sets covered the

random sample with the same coverage probability that this diculty may

be conquered�

We have de�ned that S� is a level � � � sample set mapping on �� if it

satis�es

�� � � P�fX � S�g for � � ���

Theorem ���� Suppose that two level �� � sample set mapping on �� are

S�
a and S�
b with

L	�� x�
 � L	�� x�
 for x� � S�
a � Sc�
b and x� � Sc�
a � S�
b� 	"��


Then S�
a has super�volume smaller than it of S�
b�

Proof� Since S�
a and S�
b are both with level �� �� we have

P�fX � S�
ag � P�fX � S�
bg for � � ���



�


Deleting the subset common to fx � x � S�
ag and fx � x � S�
bg yields

P�fX � S�
a � Sc�
bg � P�fX � Sc�
a � S�
bg� 	"��


Thus� from 	"��
�

volume	fx � x � S�
a � Sc�
bg � volume	fx � x � Sc�
a � S�
bg� 	"��


so� adding the volume of fx � x � S�
ag � fx � x � S�
bg to both sides of

	"��
�

volume	fx � x � S�
ag � volume	fx � x � S�
bg
� 	"�"


Then 	"�"
 holding for each � � ��� �

Theorem "�� may be applied on level ��� sample set mappings on �� of

�nite or in�nite volume but not at all� Here we give one example that this

comparison does not work�

Example � Consider again that we have a hypothesis testing problem

stated in Example �� We present a case that Theorem "�� may not be

applied� Consider the following two tests�

Test �� rejecting H� if jx� � x�j � �
Test �� rejecting H� if x� � �������

	a
 The acceptance region for test � includes the following sets�

Category �� S�� � f
�
x�
x�

�
� �� � x� � �������� ���� � x� � �g� S�� �

f
�
x�
x�

�
� ����#�� � x� � �� ������ � x� � �g� S�� � S� and S�� � S��

	b
 The acceptance region for test � includes the following sets�

Category �� S�� � f
�
x�
x�

�
� ������� � x� � �������� ����"� � x� � ����g�

S�� � f
�
x�
x�

�
� ������� � x� � ����#��� ���#�� � x� � ������g� S�� � S�

and S�� � S��

With careful checking� we may see that

f��	x�� x�
 � f��	x
�
�� x

�
�
 for 	x�� x�


� � S�� and 	x��� x
�
�

� � S�



��

and

f��	x�� x�
 � f��	x
�
�� x

�
�
 for 	x�� x�


� � S�� and 	x��� x
�
�

� � S���

This violates the assumption in Theorem "��� Then this theorem is not

applicable for comparison of these sample set mappings� �

We use one example to explain this point�

Theorem ���� Suppose that S� is a level �� � sample set mapping on ��

with

L	�� xa
 � L	�� xb
 for xa � S� and xb � Sc� � 	"��


Then S� has uniformly smallest volume among the class of level ��� sample

set mappings on ���

Proof� Let S�� is a level ��� sample set mapping on ��� With the discussion

of 	"��
� we analogously have

P�fX � S� � Sc��g � P�fX � Sc� � S��g� 	"��


The region on two probabilities of 	"��
 cover the true parameter � with

identical probability� Now� 	"��
 also indicates that L	�� x�
 � L	�� x�
 for

x� � S� and x� � Sc��� i�e�� the likelihood function de�ned on region in left

probability is greater or equal to it in the right probability� Thus�

volume	fx � x � S� � Sc��g � volume	fx � x � Sc� � S��g� 	"��


This further implies that

volume	fx � x � S�g � volume	fx � x � S��g
� 	"�#


Then 	"�#
 holding for each � � �� and any level �� � sample set mapping

on �� leads to the theorem� �

	� Variation�based Size of Sample Set Mapping

The consideration of using volume as a standard technique for evaluation

of the size of a ��favorable sample set has a diculty when the underlying



��

distribution of the random sample has unbounded sample space� In this

situation� the volume of an unbounded ��favorable sample set is not �nite�

Although hyper�volumes may be compared through the density function in

some situations of ��favorable sample sets� however� this is not a general case

to evaluate competitive ��favorable sample sets� With this� an alternative

way in measuring the size of ��favorable sample set with the desire that it

may exist with mild conditions on the underlying distribution is needed�

Extending from the fact that the ��favorable sample set may be treated

as an extension of location point to location set� variation measuring the

spreadness and closeness of this set may be appropriate in the representation

of its size� With this consideration� the covariance matrix of the random

sample restricted on the ��favorable sample set is popularly accepted to play

this role� It is interesting that this variation exists when the underlying

distribution of the random sample has �nite second moment�

De�nition 	��� Let S� be a ��favorable sample set mapping� We call $�

the variation matrix of the S� where

$� � Cov� XI	X � S�
!�

Let Y represents the n�vector having distribution of X given S�� Then

Y has probability density function

fY 	y� �
 �
�

P�	X � S�

fX	y� �
� y � S�

whenver � is with P�	X � S�
 � �� In case that we consider the level �� �

sample set mapping� then

fY 	y� �
 �
�

�� �
fX	y� �
� y � S��

The sample space of Y may varies in true parameter �� With this transfor�

mation� we have

Cov�	XjS�
 � Cov�	Y 
�



��

Example ��� Let X�� X� be a random sample of size two from a dis�

tribution with probability density function f � We consider the hypothe�

sis H� � f	x
 � �
�x

�
�x

�
���� � x�� x� � �� The test that we reject H�

if jx� � x�j � ��� corresponds with the singular sample set mapping S� ���
x�
x�

�
� jx� � x�j � ���

�
� The covariance matrix $ � Cov	XjS�
 � Cov	Y 


with Y �

�
Y�
Y�

�
where Y�� Y� have a joint probability density function

fY�
Y�	y�� y�
 �
�

����
 "
y��y

�
�� 	y�� y�
 �

��
y�
y�

�
� jy� � y�j � ���

�
�

With careful calculations� we see thatE	Y�
 � E	Y�
 � �� E	Y �
� 
 � E	Y �

� 
 �
���
��� and E	Y�Y�
 � �� Then we have the population covariance matrix

$ �

�
���
��� �

� ���
���

�
�

On the other hand� when we consider test rejecting H� if jx�x�j � a �

������� The corresponding singular sample set mapping S� �

��
x�
x�

�
� jx�x�j � a

�
�

The covariance matrix $ � Cov	XjS�
 � Cov	Y 
 with Y �

�
Y�
Y�

�
where

Y�� Y� have a joint probability density function

fY�
Y�	y�� y�
 �
�

����
 "
y��y

�
�� 	y�� y�
 �

��
y�
y�

�
� jy�y�j � a

�
�

With careful calculations� we see thatE	Y�
 � E	Y�
 � �� E	Y �
� 
 � E	Y �

� 
 �

�����# and E	Y�Y�
 � �� Then we have the population covariance matrix

$ �

�
�����# �

� �����#

�
� �

Now� for two ���	���
� con�dence intervals C� and C� of parameter ��

we may use the sizes of variation matrices of ��favorable sample sets SC�	�


and SC�	�
 as a basis to compare these two con�dence intervals�

Example ��� Let X�� ���� Xn be a random sample from normal distribution

N		� 
�
 where 	 is unknown but 
 is known� As we have noted� Cz and



��

Ct are the classical ���	�� �
� con�dence intervals for 	� In this simula�

tion� we generate data from the standard normal distribution to construct

the con�dence intervals and conduct replications ��� ���� In the following

table� we display the simulated determinants of their corresponding sample

variation matrix of the 	�favorable sample sets�

Table �� Determinants of 	�favorable sample sets for Z and t con�dence

interval

n Cz� CP Detz Ct� CP Dett
� ������ ������ ���"�" ����"#
�� ������ �����" ���"�� ����#�
�� ���"#� ������ ������ ������
�� ���"#� ��#�"# ���"�" ����#�
�� ���"�� ��#�"� ���"#� ���#��
��� ���"�� ��#��" ���"�� ������

Example ��� Let X�� ���� Xn be a random sample from the negative expo�

nential distribution with pdf

f	x� �
 � e��x���� x � ��

The interest is to test the hypothesis H� � � � � and we consider the

following three acceptance regions

UHLCI�	X��� �

Pn
i	�	Xi �X���


n
� �

�n
�����	�n
� X���


HLCI � 	X��� �
ln�

n
�X���


Classical � 	X��� �
ln	���


n
�X��� �

ln	�� ���


n



We performed a simulation study with replication ��� ��� and from the

distribution under H�� The following table display the simulated determi�

nations of their corresponding sample variation matrices of the ��favorable

sample sets under several sample sizes�

Table �� Determinants and associated con�dences of ��favorable sample

sets for three acceptance regions



��

sample size UHLCI HLCI Classical

n � �
���#��e� �

	���"��

������e� �

	���"�#

"�"���e� �

	������


n � ��
�����"e� �"

	���"��

��#��#e� �"

	���"�#

"�����e� �"

	������


n � ��
�����"e� �#

	���"��

������e� ��

	������

������e� ��

	������


n � ��
������e� ��

	�����"

���"��e� ��

	���"�#

���#��e� ��

	������
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