A Study for Application of Regression Tolerance Interval for

Lot Productions Conforming To Specifications and A New Approach

Abstract

The tolerance interval has long been a technique for manufacturer to ver-
ify if there is a reasonably large value confidence that ensures a proportion
of production lot conforming to specification limits. This paper formally
formulate this interest of “confidence” in terms of lot size and parameters
involved in the underlying distribution of a product’s characteristic. With
this formulation, any technique for prediction of manufacturer’s confidence
may be evaluated for its effieciency and it also provides a wide room for this
prediction through statistical inferences for the unknown confidence. We
then study the power of the tolerance interval in detecting if there is a rea-
sonably large manufacturer’s confidence for the production. We found that
when the parameters involved in'the distribution are known, the predicted
manufacturer’s confidence is too optimistic in a value much more higher than
the true confidence and when the parameters involved in the distribution
are unknown, the predicted manufacturer’s-confidence is too conservative
in a value much lower than the true one. The inefficiency partly comes
from the fact that tolerance interval does not use the information of lot size
which is an ancillary statistic in the considered statistical model. For statis-
tical inference of this unknown confidence, we introduce a point estimation
technique that its results including a power comparison seems to be very

promising for the manufacturer.

Key words: Confidence interval; hypothesis testing; linear regression; power;

quality control; tolerance interval.

1. Introduction
Statistical theory of interval estimation mostly deals with the confidence

interval to contain a parameter 6. In many applications, we require an
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interval to contain the future random variable which is a prediction prob-
lem. Among the alternatives, intervals in the form of tolerance intervals is
widely used in quality control and related prediction problems to monitor
manufacturing processes, detect changes in such processes, ensure product
compliance with specifications, etc.

In manufacturing industry, specification limits for one charateristic of an
item, saying LSL and USL, define the boundaries of acceptable quality for
an manufacturing item (component). An item is said to be non-defective if
the measured characteristic is between the limits, otherwise it is defective.
For a manufacturer of a mass-production item, the tolerance interval is
designed for a quality assurance problem. For a process of production, the
manufacturer knows that unless a proportion of a lot is acceptable in the
sense that the corresponding items are non-defective, he will lose money
in this production lot. In practice, the manufacturer further expects to be
guarateed that, in the long run, he or she will have lots of production not
lossing money at least a percentage of the time. The approach of tolerance
interval is a major technique to solve this problem and this technique has
been applied to the linear regression problem.

Consider a linear regression model
!/
y==op+¢€

where y and € are, respectively, the response and error variables and = rep-
resents the explanatory vector. For a given vector zg, it is assumed that
there are specification limits {LSL,,,USL,,} indicating that when the ob-
servation of the corresponding response variable gy falls in the limits then
this observation is acceptable, otherwise, it is not acceptable. Henceful, the

manufacturer is interesting to get information about the following probabil-

ity
USL,,

LSL,,

(see this point in Goodman and Madansky (1962)). For manufacturer’s
question, the technique of tolerance interval consider three steps in the fol-

lowings to answer it:
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(a) Consider the probability in a hypothesis testing problem with hypothe-

Ses:

Hy: Pgo(yo € (LSLyy,USLy,)) <7 vs Hy: Pgo(yo € (LSLg,,USLg,)) >~

(1.2)
(see Goodman and Madansky (1962) for reference). A level « test for this
hypothesis tries to answer if there is at least a proportion v of the population
conforming to specification limits with a confidence level 1 — a.

(b) Construct a y-content tolerance interval at confidence 1 — «, (T7,T3) =
(t1(y, X), t2(y, X)), that satisfies

P[P(yo € (T1, To)|y, X) > 1] > 1 — a. (1.3)

The construction of tolerance interval of (1.3) has been received intensive
attention in literature (see for examples, Lieberman and Miller (1963), Li-
mam, Thomas (1988)), Carroll and Ruppert (1991) and Jordan (1995)).

(c). Let (t1,t2) be the observation of the tolerance interval. The test for

hypothes Hy vs H; is:
We reject Hy if (t1,12) C (LSL,USL). (1.4)

For discussing testing hypotheses of (1.2)-by rule of (1.4), see Goodman and
Madansky (1962) and Owen (1964). When Hy is rejected, statistically we
are 100(1 — «)% sure that at least 1009% of the population is conforming
to the specification limits. So, in a long run, we will have lots having at
least proportion 7 of the distribution conforming to the specification limits
at least a proportion 1 — « of the time. With the interest of resolving the
manufacturer’s qusetion, it is generally to make an extending conclusion in
the following:
When H, is rejected, the lot of product is acceptable
because we have confidence of a reasonably large value

that at least 100y% of the population is
conforming to specification limits

(1.5)

where Schilling (1982) further argued that the reasonably large value of the

confidence is exactly 1 — a. For other references of this hypothesis testing



technique, see Bowker and Goode (1952), Owen (1964) and Papp (1992).
Our interest is the question: When a sample data support to reject Hy, is

the extending inference in (1.5) appropriate?

The manufacturer wants to see if there is proportion v of acceptable
products with a reasonable large confidence, saying ¢o. Probabilitically it
is known that guaranteering proportion 7 of the population conforming to
the specification limits is not guaranteering proportion v of the products in
the lot conforming to the specification limits. How can we believe that the
prediction of reasonably large confidence 1—« for tolerance interval implying
a reasonably large confidence gy for the manufacturer is an appropriate
technique? We concern this qusetion since the manufacturer wants to assure
a good chance to have lots accepted when lots are produced at permissible
levels of quality. On the other hand, it is also important for the consumer to
see if there is irregular degradation of levels of process quality in submitted
lots. Henceful, any technique used for this prediction should be able to

protect the benifits of both the consumer and manufacturer.

We may consider that the characteristic variable of a product obeys some
fixed probability distribution: With this probabilistic assumption, the con-
fidence that there is proportion v or more non-defective items, i.e., con-
forming to specification limits; is completely determined by the underlying
distribution, which is an unknown constant when the distribution involves
unknown parameters. The construction of tolerance interval for solving the
manufacturer’s problem aims to predict this unknown confidence. However,
the tolerance interval in (1.3) is constructed primarily for the confidence that
the interval contains a proportion v of the distribution. There may have a
big discrepancy between the proportion v of the sample space conforming
to the specification limits and the proportion 7 of product lot conforming
to the specification limits. The size of discrepancy may be determined from
the underlying distribution, however, it is desired to discover.

Our aim in this paper is to achieve three purposes: First, we extend
the idea of Chen, etc. (2006) developing regression type tolerance interval

(in Sections 2 and 3). Second, we explicitly formulate the manufacturer’s



unknown confidence in terms of distribution parameters. With this formu-
lation, it provides a room for statistical inferences for this true confidence.
Third, we study the power of the ability that the test based on tolerance
interval may conclude a reasonably large confidence ¢y when it does exist.
We will see that the tolerance interval leads to predicted confidence too
optimistic in way that it is higher much more than the true one. On the
other hand, when the unknown parameters are unknown the version of tol-
erance interval is too conservative in way that its predicted confidence much
lower than the true one. This verifies that the use of tolerance interval to
predict the manufacturer’s confidence is not appropriate. Fourth, we will
introduce a point estimation technique for estimation of the true confidence
which provides a new approach for answering the manufacturer’s question.
We then further investigate the power of detecting the manufacturer’s con-

fidence through this new technique which leads to very promising results.

2. Regression Tolerance Interval

Consider the linear regression model
y=Xp+e (2.1)

where y is a n-vector of observations for the response variable, X is a known
n x p design matrix with 1’s in the first column, £ is unknown parameter
n-vector and € is a n-vector of independent and identically distributed dis-
turbance variables.

Suppose that xp is a new design vector and yq is its corresponding re-
sponse variable. The interest for developing the tolerance interval is stated

in the following definition.

Definition 2.1. A ~-content regression tolerance interval at confidence
1 — « is a random interval (T1,T3) = (t1(y, X), t2(y, X)) for which

P[P(yo € (T1, T2)|ly, X) =2 7] =1 - o (2.2)

In other words, a y-content regression tolerance interval (T}, T») contains

at least 100v% of the population of the distribution of response variable
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variable given zy with (1 — «)-confidence level. From (2.1), we wish to
search T7 and T5 such that

PC(y,X)>7) >1-a (2-3)

with C(y, X) = ttf((yy,’;(()) fyo (2)dz as the coverage of the interval (t1(y, X), t2(y, X)).
The coverage C(y, X) is, of course, a random variable. The distribution of
the covearge C(y, X) of this integral is, ingeneral, exceedingly complicated,
and the question of how to chooses k exactly so as to meet the require-
ment (2.2) for preassigned v and p is quite hard to answer (see this point in
Guttman (1970)). The popular technique in obtaining a tolerance interval
is through some approximation method (see Wald and Wolfowitz (1946))
and Ellison (1964)).
Let’s define a regression type confidence interval of a population coverage

interval where we will extend the result of Huang, etc. (2006) by showing

that this confidence interval is a regression tolerance interval.
Definition 2.2. (a) An interval (a(zg,8,0), b(xo, 3,0)), depending on pa-

rameters in general, is called ‘a regression -content interval if it satisfies

Pg,g(a(.ro,ﬁ, U) <Y < b(xo,ﬁ, 9)) =.

(b) A random interval (T1, Ts) = (t1(y, X), t2(y, X)) is called a 100(1 — )%
C.L of (a(xo, 3,0),b(xo, B,0)) if it satisfies

l—a= P(tl(an) < Cl(.To,,B, 0-) < b(l’o,/@, 0-) < t2(y7X))

Without using the classical approximation techniques, we prove that the

confidence interval above is a tolerance interval for regression model.

Theorem 2.3. Suppose that (a(zg,S,0),b(xo, 3,0)) is a 100y% cover-
age interval. If (T1,Ts) = (t1(y, X),ta2(y, X)) is a 100(1 — @)% C.I. of
(a(zo, B,0),b(x0, 3,0)), then (Ty,T>) is a y-content tolerance interval at

confidence coefficient 1 — « for future r.v. yg.



Proof.

P[P{t1(y, X) < ta(y, X)ly, X} 2 7] = P{Fy, (t2(y, X)) — Fy, (t2(y, X)) = 7}
= P{Fy, (t2(y, X)) Fy (t1(y, X)) = Fy, (b(xo, B, F)) — Fy, (a(z0, 5, F))}

> P{Fy,(t1(y, X)) < Fy, (alzo, B, F)) < Fy, (b(xo, 8, F)) < Fy, (t2(y, X))}]

> P{tl(y7 ) < a(l‘o,ﬂ, ) < b(xovﬂv F) < tz(y,X)}

=1-aq,

as F, is nondecreasing. L[]

3. Regression Tolerance Interval for Normal Distribution

In his original article, Wilks (1941) first pointed out that if the distribu-
tion of the variables of interest can be assumed to have a given functional
form involving unknown parameters, methods having a greater efficiency
than the nonparamter methods could be used for setting tolerance limits.
In this section, we assume that.the error variables are independent and
identically distributed with normal distribution IV (0, o?).

In the simpler case that y is a normal random sample, Jilek and Likar
consider two cases where one is known mean and unknown variance and
the other one is known variance and unknown mean. We first extend their

result to the regression case.

Theorem 3.1. Suppose that 3 is known. We let S7 = 13" (y; — z/3)%
Then the interval

n n
(708 — Z%ﬂ/msh%ﬁ + 2140y | msl)

is a y-content tolerance interval at confidence coefficient 1 — « for future r.v.
Yo-

Proof. A two sided regression «y-content interval for future r.v. Xy is

(xp8 — 21420, o + zl_j;lcr).
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Since "US; ~ x%(n), it is seen from the following derivation,

nS?
1—a=P("L > ()

(by the fact that @Sl and y/x2(n)) > 0)

= P(- Y5, < —/xEm) < Vil < Ls)

S1 < —ziyo < 21 Sl)

-+

VO < Zi4q
2

m‘

Xa(n)

n
= P($6ﬁ— 214y 2751 < $6ﬁ — 2147 0 < $6ﬁ+Z1+70' < $6,8+Zl+’y
2 Xa(n) 2 2 2

2y F

Table 1. y-content tolerance interval at confidence coefficient 1 — o when

[ is known

~v-content interval Tolerance interval
(o8 — 240, 00) (x4 — Z'V\/x (n) Sy, 00)
(—00, 2403 + 2y0) (—00, 20 + 2y, | == 51)

, , (@0 = 2152\ 5y S
(x4 — 2144 0,20 + 2144 0) )
3 2 $Oﬁ+z%'l v (n)S1)

Normal distribution with known o

Theorem 3.2. Consider the linear regression model where ¢ is known. Let

B = (X'X)71 X"y, the least squares estimator of 3. Then the interval

(./L':]B_ZH»T'Y o—21-204/25(X'X) "o, .rf)BA—FzHTya—le__a\/xo(X’X) Lzg)

is a y-content tolerance interval at confidence coefficient 1 — .

Proof. Since f3 is the least squares estimator, we have 4,3 ~ N (z)3, o2z) (X' X)~

1.7)0).




It is seen from the following,

-
1—C¥:P(—Z1_g < xOB Cﬁoﬂ g)

5 S — —— S 1-3
= P(—z1—a0y/2p(X'X) 1z < zhB — B < z1—aoy /2o (X' X))

= P(—z%la —z1_a0y\/ro (X' X) "ty < zh B — xhf — 21420 < zh B — xhf
+2120 < zuTwa+z1_%m/x6(X’X)—1xo)

= Pz} — 21420 — Z1- g0\ 2((X'X) 7w < zyff — 21420 < zo + 21420 < zh 3
—i—z%la—l—zl_%ag/a:{)(X’X)_lxo) O

Table 2. y-content tolerance interval at confidence coefficient 1 — o when

o is known

~v-content interval Tolerance interval

(.Té)ﬂ — %240, OO) (:L‘6ﬂ — 2:.70' — Zl—aU\/ZU()(X’X)_le, OO)
(_OO, $6ﬂ + Z'yO') (—OO,A:B{)ﬁ + 2y0 + 210 ~T6(X’X)_1x0)
(248 ~ 21320 — 2150 /75 (X' X) T,

23 — 21440, T3 + 2110 O -
(206 = 21420, 0 + Z142.0) woP 1 21120 + 2130 /T (X X) Ta0)

The tolerance interval for a-normal distribution with mean and variance
both unknown is first studied by Wilks (1941) and it has been re-treated
by Wald and Wolfowitz (1946) and Odeh and Owen (1980). However, it
has been all solved by approximation. An exact tolerance interval for this
problem is solved by Huang, etc. (2006). We extend this result to the

regression problem.

Theorem 3.3. Suppose that § and ¢ are all unknown. Then the interval

xh3 —ti—a(n —k, (+y S\/zh(X'X) 1z,
( 0 ' 2( \/$6(X/X) 1.‘170) 0( ) 0

A Z(14v)/2 / _
xi)/B_t%(n_k7_\/x(]((X/:;z'/)—lgjo)S 'IB(X/X) 1-770)

is a two sided ~y-content tolerance interval at confidence coefficient 1 —« and
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the following two intervals

(2)3 —ti_a(n —

k ]
V(X' X) 1z
Ay
V(X' X) 1z
are one sided y-content tolerance intervals at confidence coefficient 1 — .

Proof. Note that

-
Toll — 2ol 1 a0 N( a ,1) for a € R.

o/xy (X' X) 1z zh(X'X) 1z

This indicates that

)Sy/zy (X' X))~ teg, 00)

(—00,208 — ta(n — k, - )8/ wo (X' X) " wo)

00 = 2B+ 242y UESVLI
Sv/xh(X'X) 1z Vb (XTX) "t
and .
TP — 20/ — 2(44)/20 Hn— -2
Sv/zh(X'X) g T /T (XTX) 7T
Then

A Z(1+7)/2 / _
l1—a=Plz\f— 2,3+ 21470 < t1oa(n =k, ( Sy/xh (X' X) 1
2o o/ = v 2( a:{)(X’X)_lxo) of ) o

A A(1+7)/2 / _
— Plz(B — 2B — 21410 < ta(n —k, — ( Sy/zh(X'X) 1z
S o/ N 2( \/:U{)(X’X)_lxo) o ) o

. z
= Plzf — x50 < ti—a(n — k, 7 (()1;;2/)2_136 )S /(X' X)~1wo = 2154 0]
0 0
. z
— Plagf —apf < ta(n—Fk,— T (()1;;)(/)2_133 )S\/2 (X' X) " ao + 2142 0]
0 0
Z(147)/2 / — 1A /

= Plta(n —k,— S\/zh( X' X)) leg+ zivo < xS —

13 n = =B )5\ [y (X0X) T s < a2}

<ti_a(n—k “047)/2 )S a:{)(X’X)_lxo—z%«La]

/2 (XTX) "L
A(149)/2 / — I /
= Plta(n—k, — S\/xy (X' X))ty < 2y — o3 — 21440

- S o — A(147)/2 (Y Y)—1
< xof :L'06+z1+Tya<t1_§(n k, \/x(](X’X)—le)S (X' X)71x)]

_ 1A aln — Z(147)/2 (VY —1 o
= PlrgB —ti—2(n -k, \/xf](X’X)—lxo)S”xO(X X)lzg < 2y 21420

A Z(14v)/2 / -
<o+ zievo <z —ta(n—k,— ( Sv/zh (X' X))~ 1ag].
08+ 20 <20l — by ) SV (X X) T
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This proves the theorem.

4. Formulation of Confidence and an Evaluation of Tolerance In-
terval When Parameters Are Known

Let yo be a random variable, representing the characteristic of a product,
that corresponds with covariate xy from a manufacturing process. There
are lots of products produced from this process. For simplicity, the lots are
all assumed to have the same size k. We want to see if there is confidence ¢

that there is proportion 7 of products in lots conforming to specification lim-

its {LSL,,USL,}. To evaluate this, we have a sample (;ﬁ) eees (;?:L)
from the same process to evaluate the manufacturer’s confidence. We need
first introduce appropriate criterions for evaluation of a technique for this
purpose. We consider its ability in correctly identifying the true confidence
for reducing the following two errors:

(a) The first error is that the inferenced confidence is much higher than the
true confidence. In this situation, the resulted confidence is too optimistic
for the manufacturer.

(b) The second error is that the inferenced confidence is much lower than the
true confidence. In this ituation, the resulted confidence is too conservative
for the manufacturer.

Before consideration of any evaluation, let’s formulate the framwok of the

statistical model we want to consider.  We have a linear regression model
/ .
yi=z,f+e€,i=1,...,n (4.1)

where €;,7 = 1,...,n are independen and identically random variables with

distribution function F,, having mean zero and unknown variance o2. The

vectors (?) s eeey (y"> forms the only observable vectors. We are inter-
1 n

esting to see if a production lot of size k from the same process is with
proportion v conforming to the specification limits { LSL,,USL,}.

The tolerance interval deals with the following problem: There is a col-

lection of products forming a production lot, vectors y* > , and each prod-
x

uct is classified to be non-defective if y* falls in specification limit interval
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(LSLy«,USLy+) and to be defective if it lies outside the limit interval.
However, for this production lot, the manufacturer knows that unless a pro-
portion ¢ of this lot is acceptable in sense that the corresponding products
are non-defective, he will loss money.

For giving vector <i> following model (4.1) and its corresponding speci-

fication limits { LS L., USL,}, the probability that variable y corresponding

with covariates  is acceptable is

USL,
poreew:8.0) = [ o)y = B (USL, — o'5) = Fo(LSL, — /).

LSL, (42)
Consider production lot with size k is to be judged if there is proportion
or more acceptable products. For simpler study, let’s restrict the situation
that the probability function pgpec(z, 3, 0) is independent of covariates .
The case that the specification limits of the form LSL, = 2’3 — [ and
USL, = 2’ + 1 is one example. By letting pspec(3,0) = pspec(, 3, 0)
for this case, the number of products representing by variables y are lying
in their corresponding specification limits obeys the binomial distribution
b(k,pspec(B,0)). Then, the confidence of [kv] or more acceptable products

is .
0= 30 (4) prelB o (1~ (43)

i=[k]

which is the probability that there is proportion v or more acceptable prod-
ucts. Treating ¢ as a function of pspec(3,0), 1 — ¢ has the same properties
as the operating characteristic (OC) curve. However, these two function are
different since OC curve involves sample size n and 1 — ¢ involves lot size k.
The properties of OC curve indicates that confidence function ¢ is increasing
in item reliability pspec(3,0). The interest of the manufacturer then is to
see if the true item reliability makes ¢ larger or equal to a prespecified value.
When the confidence of a production lot is with ¢ = ¢ this lot attains
the manufacturer’s expectation to have ~-content acceptable products at
confidence ¢g. In this situation, the manufacturer achieves the desired re-

sult that, in the long run, it will accept lots having at least proportion
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acceptable products at least a proportion ¢y of the time.

Suppose that now e has a normal distribution N(0,02) and regression
parameter (3 and error variance o2 are both known. From Wilks (1941), the
following

(a:’ﬂ—zuTycr, xlﬁ'i‘Zl-i-T'yO') (4.4)

is a y-content tolerance interval with confidence 1. It is a 100% confidence

tolerance interval. Suppose that we further let
(LSL,,USL,) = (ZL'//B—ZI—Q—T'yO',CU/ﬂ‘i‘Zl—O—T'yO'). (4.5)

With this claim of 100% tolerance interval, it is interpreted that it will
accept all the lots, without missing any one lot, having at least proportion
v acceptable products. Is this classical conclusion appropriate? Let number
k be the size of a production lot (usually large). The true confidence of this

production lot with proportion v or more acceptable products is

k

¢= ) <f) YT =)t

i=[kv]

We list the corresponding values of true confidence for v = 0.8, 0.85,0.9,0.95

and several values of k.

Table 3. True confidence ¢ for vy-content acceptable products

Lot size v=0.8 v =10.85 v=10.9 v=10.95
k =50 0.6011 0.6045 0.6223 0.6580
k =100 0.5838 0.6192 0.5528 0.5891
k = 500 0.5431 0.5299 0.5438 0.5322
k =1,000 0.5147 0.5309 0.5223 0.5357
k = 10,000 0.5115 0.5067 0.5059 0.5108
k =100, 000 0.5013 0.5013 0.5013 0.5013

We have several conclusions drawn from the results in the above table:

(a) In all cases of v and lot size the confidences are larger than, but close,
to 0.5. In this situation that the tolerance interval coincides with the spec-
ification limits, the manufacturer, in the long run, may accept lots having

at least proportion v acceptable products guaranteering only proportion ¢
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close to 0.5 of the time. It is not a surprise. Knowing the coverage interval
only helps in knowing the coverage probability that doesn’t improves in the
true confidence.

(b) The true confidence ¢ relies on lot unit number k£ and the true value
of the item reliability pspec(5, o) no matter if the parameters 5 and o are
known or not.

(c) For a given coverage probability v, the true confidence ¢ approximates
to 0.5 when the lot size increses to infinity.

(d) It seems that using the tolerance interval to interprete the confidence
that the manufacturer may accept lots having at least proportion v accept-
able products is not appropriate.

From (4.3), any production lot has its true confidence with property: once
an item reliability pspec(, 3, 0) is in interval (0, 1), no matter how large and
how small it is, its corresponding confidence should be between zero and one.
However, when item reliability is close to one its corresponding confidence
is also close to one and whe item reliability-is close to zero its corresponding
confidence is also close to zero.. However,. it is interesting to investigate the
sensitivity of the confidence as a function of the item reliability. We set
some values of pspec(x, 5,0) and percentages v and list the corresponding

confidences ¢ in Table 4.

Table 4. Confidence for vy-content acceptable products

Dspec(B,0) v=0.8 0.85 0.9 0.95 0.99
0.75 0.0001 0 0 0 0
0.8 0.5189 0 0 0 0
0.85 0.9999 0.5217 0 0 0
0.9 1 0.9999 0265 0 0
0.95 1 1 1 0.5375 0
0.99 1 1 1 1 0.5830

We have several conclusions drawn from Table 4:
1. When pgpec(z, 3,0) is moderately below +, the confidence is approxi-
mately equal zero and when pgpe.(x, 5, 0) is moderately larger than -, it is

approximately equal one.
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2. When pgpec(z, 3,0) is 7y close to 0.5 the confidence ¢ of y-content accept-
able products is only slightly more than 0.5.

3. For given a value of 7, the curve representing the confidence as a function
of pspec(x,B,0) is started from zero and rapidly climb up for domain of
Papec(w,8,) is (0,1).

4. The interest is that when the true confidence ¢ may be moderately large
to ensure proportion v or more acceptable products in a lot. From the table,
it is the case that item reliability pspec(z, 5, 0) is larger than . This tells

us how to improve the process to achieve the aim when it is not.

5. Minimum Item Reliability for proportion v Or More Acceptable
Products With Confidence g

For the use of tolerance interval to predict the manufacturer’s confidence
is shown to be too optimistic when the parameters involved in the underlying
distribution are known. For case that parameters are unknown, can the
classical tolerance intervals be also too optimistic or on the opposite way?
To investigate this question, we need to prepare some further results on the
relation between item reliability and manufacturer’s confidence q.

Recall that the manufacturer expects to have proportion v or more ac-
ceptable products with confidence ¢g or more. Let’s define the minimum
item reliability that guarantees proportion v acceptable products with con-

fidence q as p,4 satisfying

i <k> (P10)" (1 = py0)" ™" = 4. (5.1)

7
i=[k~]

From (4.3), a process to have a y-content acceptable products with confi-

dence gg requires that
Pspec(B,0) > Prygo- (5.2)

For given v and ¢, we display the p,, that solves equation (5.1) in the
following table.

Table 5. Minimum specification coverage p,, achieving for y-content ac-
cptable products with confidence ¢ (k=100,000)
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q v=0.8 0.85 0.9 0.95 0.99
0.8 0.8099 0.8587 0.9071 0.9549 0.9918
0.85 0.8123 0.8608 0.9089 0.9562 0.9923
0.9 0.8152 0.8634 0.9111 0.9577 0.9929
0.95 0.8196 0.8673 0.9142 0.9599 0.9938
0.99 0.8277 0.8744 0.9200 0.9638 0.9952

Suppose that the characteristic variable y of interest given covariates
r obeys a normal distribution N(2'3,02) and the specification limits are
{LSL,,USL,} ={«'8—¢,2'3+ £}. Then the probability that an observa-

tion of it to be acceptable is

@fre (y=2'8)2
spec\0 ) = e 2% d
Pspec(0) /w—e o y
14 4
= () - o(~)

g o

where @ is the distribution function of the standard normal distribution.

Then the confidence that there are v percentage acceptable products is

k
= > (§) @O e @i o) - o)
i=[k~]
For a given o and the specified specification limits {LSL,, USL,} = {2/ —
l, 2’3+ £}, py(o) is the true confidence for the production lot. Let p, be
the minimum specification coverage defined in (5.1). A process to have a

y-content acceptable products with confidence ¢(p,(c) > ¢q) requires that

pspec(o') > Drgq- (53)

One question very interesting is how small the difference of specifica-
tion limits is that guarantees the desired process. Let’s consider a sim-
ple situation that the error variable obeys the standard normal distribution
N(0, 1) and we consider the specification limits of the form { LSL,,USL,} =

{2'B—1,2'3+1} and denote L4 as the minimum [ that a tolerance interval
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achieves its corresponding minimum acceptability coverage, i.e., equality in
(5.1) holds, as
Prg = P(=lyq £ Z < lyg).

Table 6. Width [,, for minimum specification coverage p,, achieving for

vy-content accptable products with confidence ¢ (k=100,000)

q v=0.8 0.85 0.9 0.95 0.99
0.8 1.3103 1.4710 1.6807 2.0043 2.6452
0.85 1.3174 1.4789 1.6898 2.0161 2.6672
0.9 1.3264 1.4889 1.7013 2.0309 2.6953
0.95 1.3397 1.5037 1.7184 2.0532 2.7380
0.99 1.3650 1.5318 1.7510 2.0956 2.8216

6. Power Study for the Regression Tolerance Intervals

We perform a simulation to study the role of a regression tolerance in-
terval in estimating the manufacturer’s confidence. With a simple linear
regression model,

yi = PBo +P1x; +€;,1=1,...,n

where error variables ¢; are iid standard normal and the predicted variable

yo follows
Yo'= Bo + Brzo + €o.

The covariates x; are independent normal random variables with mean ¢ and
variance 1. The sample size n, n = 20, 30,50, 100 are considered and total
of 100000 replications is performed. Let (¢15,%2;) be the tolerance interval
for the jth sample. We first study if the regression tolerance interval of
our approach does appropriate in playing its role of predicting the manufac-
turer’s confidence. We first consider the power of the tolerance interval to
be accepted as a process of y-content acceptable products with confidence

q as

1 m
- > I((t1j.ta5) € (LSL,USL)).
j=1

With (LSL,USL) = ('8 — £, 2’3+ £), the following table list the results of

the power.
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Table 7. Simulated power as a <y-content acceptable products with confi-
dence ¢ (n=>50)

v=0.8 v =0.85 v=10.9 v =0.95 v = 0.99
q=20.9
L=1.5 0.0061 0.0006 0 0 0
1.7013 0.0697 0.0141 0.0013 0 0
2.0 0.4216 0.1904 0.0447 0.0025 0
2.5 0.9332 0.8192 0.5580 0.1589 0.0018
3.0 0.9975 0.9895 0.9490 0.7106 0.0831
3.5 0.9999 0.9998 0.9980 0.9697 0.4868
4.0 1 1 0.9999 0.9986 0.8821
qg=0.95
L=1.5 0.0015 0.0002 0 0 0
1.7013 0.0234 0.0044 0.0003 0 0
2.0 0.2531 0.0901 0.0158 0.0006 0
2.5 0.8620 0.6889 0.3870 0.0786 0.0006
3.0 0.9930 0.9743 0.8908 0.5556 0.0378
3.5 0.9999 0.9993 0.9938 0.9306 0.3317
4.0 1 0.9999 0.9998 0.9957 0.7840

There are several conclusions may be drawn from the simulation results
in above table:
(a) When the specification limit interval ('S — 1, 2’6 + 1) is wider in sense
that value [ is increasing the power for the tolerance interval to detect the
manufacturing process to have confidence ¢ is increasing.
(b) When [ < 1.7013 the true confidence for a y-content acceptable products
is less than ¢ = 0.9. In this situation, the powers of this tolerance interval
in all cases of sample size are all less than 0.006. That is, it is fewer than
0.006 to claim to have confidence 0.9. This is a plan too conservative to
both the consumer and manufacturer.
(c) In all cases of [, the true confidence for a y-content acceptable products
can’t be greater than or equal to 0.9 in all situations of ~.
(d) If, in the long run, there is a large proportion that the tolerance intervals
rejected the null hypothesis Hy, the process must be in well control so that
the specification limit interval ('3 —1, 2’3+ 1) must be wide enough so that

the tolerance intervals are contained in the limit interval.
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Let’s study the following:

1 & ta
— Z[(there is (t,t5) C (t1j,ta;) such that / fuo(y)dy > 7 and (t},¢5) C (LSL,USL)).
m #

!

J=1

Table 8. Simulated confidence for regression tolerance intervals (y = 0.9)

True 1 — « n =20 n =30 n = 50 n = 100
L = 0.0001
1—a=0.8 0.8369 0.8259 0.8169 0.8084
0.9 0.9377 0.9272 0.9197 0.9126
0.95 0.9784 0.9730 0.9666 0.9598
L =01
1—a=0.8 0.8803 0.8805 0.8901 0.9086
0.9 0.9595 0.9561 0.9567 0.9626
0.95 0.9869 0.9851 0.9842 0.9860
L=0.5
1—a=0.8 0.9422 0.9496 0.9615 0.9754
0.9 0.9830 0.9850 0.9891 0.9942
0.95 0.9957 0.9958 0.9973 0.9988
L=1.0
1—a=0.8 0.9527 0.9599 0.9682 0.9781
0.9 0.9871 0.9894 0.9923 0.9956
0.95 0.9968 0.9973 0.9980 0.9990

compute the following approximate confidence
1 m
— IcrI itoi)).
m Z ( - (tljﬂt%))
j=1
The approximate confidences of regression tolerance intervals are listed in

Table 9.

Table 9. Simulated confidence for regression tolerance intervals

True 1 — « n =20 n =30 n = 50 n = 100
v=10.9
0.8 0.8349 0.8234 0.8155 0.8087
0.9 0.9367 0.9286 0.9182 0.9136
0.95 0.9776 0.9716 0.9662 0.9595
v =0.95
0.8 0.8409 0.8288 0.8170 0.8136
0.9 0.9367 0.9277 0.9187 0.9130
0.95 0.9775 0.9714 0.9666 0.9599
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7. Confidence Estimation and Its Power for a Process of y-Content
Acceptable Products

Suppose that we have a sample linear regression model y; = '8+ €;,1 =
1,...,n where €y, ..., €, are independent and identically distributed random
variables with normal distribution N(0,02). Again, we also let the specifi-
cation limits be {LSL,, USL,} The item reliability pspec is
USL, — ;E’B) B @(LSLx — 7'

pspec(l'wg,o-) :CI)( p o

).

With a simple linear regression model, we let Bls and s2 be the least squares

estimates of 3 and o, respectively.

ﬁspec = pspec(xv Blsa S)
USL, — ' B, LSL, — 7' Bis
—) _ (I)(—

S S

— ).

We will perform a series of simulation. In this simulation, we consider the
simple linear regression model y; = By + f1&; + €;, 1 = 1, ..., n with specifica-
tion limits { LSL,,USL,} = {8y + f1&— ¥, Bo + f1x +L}. Consider that the
error terms are randomly selected from the standard normal distribution

N(0,1). Hence the estimate of the item reliability is

Bo—“ﬂll‘—Ff—.’L‘/Bls)_@(ﬂo—}—ﬁll'—f—l‘/éls

pspec — @( s s

)

where true regression parameters for data generation are §y = 1 = 1. For
given a pair (7, ¢), there is pair (pyq, £) such that when the specification
limits are {8y + 12 — €yq, Bo + f12 + €4} the confidence of a proportion
acceptable production lots is exactly equal to q. To have good estimation
for confidence we should have good estimation technique of item reliability.

We choose /., corresponding with v = 0.9 and confidence ¢ = 0.9. With
replication m = 100, 000, let ﬁgpec be the estimate of the item reliability at

the jth replication. We define the empirical item reliability as

m

= L3050

Pspec = E Pspec:
=1
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Our aim is to see if Pgpe. is efficient to estimate the true item reliability p.,.

The following table displays the simulation results of pgpe. and the MSE’s.

Table 10. Empirical item reliability pgp.. associated with the true item

reliability p,4 (m = 100000, k& = 1, 000)

v=0.8 v =10.85 v=20.9 v =10.95

q=0.8 Pyq = 0.8099 DP~q = 0.8587 P~yg = 0.9071 Dyqg = 0.9549
n = 30 0.8070 0.8548 0.9022 0.9495
n = 50 0.8082 0.8564 0.9042 0.9518
n = 100 0.8088 0.8575 0.9057 0.9533
q=20.9 Pyq = 0.8152 P~yq = 0.8634 Pyg = 0.9111 Dyg = 0.9577
n = 30 0.8124 0.8597 0.9062 0.9524
n = 50 0.8135 0.8608 0.9081 0.9545
n = 100 0.8143 0.8624 0.9095 0.9561
The mean square error is

MSE = - zm:( 7 e = Drvg)”

- m pspec p'YQ) .
j=1

Table 11. MSE for empirical item reliability estimation (m = 100000, k =

1,000)

v=0.8 0.85 0.9 0.95

qg=0.8

n =30 0.0032 0.0026 0.0017 0.0008
n = 50 0.0019 0.0015 0.0010 0.0004
n = 100 0.0009 0.0007 0.0005 0.0002
qg=20.9

n = 30 0.0032 0.0025 0.0017 0.0007
n = 50 0.0019 0.0015 0.0010 0.0004
n = 100 0.0009 0.0007 0.0005 0.0002

We let the point estimate of the confidence p, (o) be its least squares

estimate as

q=

(-

S

zk: (k) ((I)(USL:U - lJBls
{ s
i=[k]
[@(USLm - xléls B (I)(LSL:v - xléls

S

LSL, — 2' 3,
_q)(—xﬁl

)i

S

e,




22

The estimation of the unknown confidence uses the estimation of unknown
parameters 3 and o and lot size where the last one is an ancillary statistic.

We consider v = 0.9 and confidence ¢ = 0.9. By letting ¢’ as the jth
estimate of the confidence, 7 = 1, ..., m. We simulate the empirical average

of confidence as

1 <
N
1= 2

Table 12. Empirical average confidence p, (m = 100000,k = 1,000,y =
09,1 —a=0.9)

/ n =30 n =50 n = 100
1.4 0.1254 0.0722 0.0185
1.5 0.2512 0.2124 0.1190
1.6 0.3960 0.4112 0.3665
1.7 0.5888 0.6148 0.6832
1.8 0.7432 0.8001 0.8990
2.0 0.9416 0.9681 0.9951
2.2 0.9891 0.9978 0.9999
2.5 0.9999 1 1

We have seen that the tolerance interval is not really appropriate in de-
tecting the manufacturer’s confidence for having a proportion v of acceptable
production lots for that it is too optimistic when the parameters involved
in the distribution are known and it is too conservative when the param-
eters are unknown. It is then interesting to evaluate the manufacturer’s
confidence through the estimate of the unknown confidence. Consider a
simulation that we randomly select errors from the standard normal dis-
tribution. We consider replication m = 100,000, v = 0.9 and confidence
go = 0.9. By letting ¢’ as the jth estimate of the confidence, j = 1,..., m.

We define the power of this point estimator as

The following table list the simulation results of this study.
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Table 13. Power for the Estimation of the confidence for a y-content ac-

ceptable product when the underlying distribution is normal (k=100,000,

m=100,000)

Spec L n =30 n =50 n = 100
[=1.0 0.0002 0 0
[=1.1 0.0018 0.0003 0
[=1.2 0.0084 0.0009 0
[=1.3 0.0292 0.0065 0.0002
[=1.4 0.0802 0.0340 0.0046
[=1.5 0.1711 0.1101 0.0424
[=1.6 0.3111 0.2675 0.1924
[=1.7 0.4810 0.4840 0.4864
[ =1.7013 0.4854 0.4846 0.4944
[=1.8 0.6566 0.7016 0.7834
[=1.9 0.7958 0.8627 0.9417
[=2.0 0.8950 0.9502 0.9912
[ =22 0.9811 0.9970 0.9999
[ =25 0.9994 0.9999
[=3.0 1 1

We have several conclusions that may be drawn from the results in the above
table:

(a) For every given sample size n, the effiicency is strictly increasing in the
specification limit [. This fullfills our expectation.

(b) In the setting v = 0.9 and gp = 0.9 by the manufacturer, [ = 1.7013 guar-
antees to have proportion v or more acceptable products with confidence
exactly ¢ = 0.9. In this situation, the effieciencies are about 0.48. There is
probability 0.48 that we can detect that the lot of interest is acceptable. In
Table 7, we see that the tolerance interval techniques can observe this fact
with chance less than 0.1.

(¢) When the specification limit [ is a bit wider we have large chance to
detect that the lot is acceptable. Comparing this table with Table 7, we
see that this technique of confidence estimation is better than the tolerance

interval technique simultanuously.

8. Concluding Remarks
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We have several remarks illustrating our further concern and clarification

of our study:

(a) We show that the use of tolerance interval to evaluate for the manu-
facturer the confidence for a proportion v of production lot conforming to

specifications is not appropriate.

(b) The inefficiency of the classical tolerance interval for detecting the man-
ufacturer’s confidence partly comes from the fact that it uses only the infor-
mation contained in the sample. The lot size which is an ancillary statistic
in this case is an important information that hasn’t been considered in con-
struction of tolerance interval. This is an example that an ancillary statistic

provides important information for statistical inference.

(¢) There are tolerance interval-like technique for deciding if we will accept
a production lot (see Kirkpatrick (1970), Owen and Hua (1977), Weingarten
(1982) and Mee (1984)). This technique does not employ the information
of lot size and has not been popular in practical use. Hence it is not in our

study.

For this confidence estimation technique, it may be argued that the lot
size k may not be correctedly predicted or counted and we may have, es-
pecially when the size is huge, only an approximate number. Then, it is
interesting to see how robust the estimation technique in it estiamted confi-
dence when the lot size has not been correctly used. We design a simulation
computing the average confidences with various large sizes to see its sensi-

tiveness in terms of lot size.

Table 14. Simulated averaging confidences for some large lot sizes
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[ k = 100,000 k = 300,000 k = 500,000 k = 1000, 000
1.3 0.01449 0.01472 0.01478 0.01471
1.4 0.05897 0.06022 0.06055 0.06278
1.5 0.17367 0.1767 0.17818 0.17836
1.55 0.26367 0.26864 0.2698 0.26921
1.6 0.36821 0.37366 0.37848 0.37829
1.65 0.48829 0.49174 0.4926 0.49574
1.7 0.60048 0.60721 0.60875 0.61018
1.75 0.71045 0.71476 0.71825 0.72178
1.8 0.79859 0.80835 0.80823 0.80823
2.0 0.97638 0.97681 0.97801 0.97757
2.5 0.99999 1 1 1
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