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This study investigates phonon-induced electron relaxation in a lateral double quantum dot that is
embedded in a suspended slab. Exact calculations are made in electric fields. The dependence of the
relaxation rate on the parameters of the dots and the slabs is analyzed. Numerical results indicate
that the relaxation rate depends strongly on the phonon character of the slab. Unlike in the bulk
environment, phonon-subband quantization clearly influences the behavior. In particular, the
relaxation rate can be greatly suppressed or enhanced by tuning the electric fields. This fact may be
useful in manipulating the relaxation rate in lateral double quantum dots. © 2008 American Institute
of Physics. �DOI: 10.1063/1.3009960�

I. INTRODUCTION

The recent fabrication of quantum dots �QDs� in nano-
meter dimension has led to much theoretical and experimen-
tal research interests in the QD systems.1,2 Gate-defined QDs
are laterally fabricated from a two-dimensional electron gas
in a GaAs/AlGaAs heterostructure.3,4 Lateral QDs are further
grown by self-assembly techniques.5,6 QDs are regarded as
being crucial to solid-state quantum devices, providing a sig-
nificant advantage of controllability via external voltages.
Their atomlike properties and their highly flexible size
and shape make them ideal for numerous potential
applications.7–11

QDs are solid-state structures embedded in the surround-
ing macroscopic crystal. Electrons in QDs always interact
with the lattice according to its degrees of freedom. Hence,
phonon-induced relaxation can occur, preventing the electron
from remaining for long in a quantum state without loss. In
lateral or vertical QDs, the few meV of separation between
the energy levels is less than the optical phonon energy, and
so electron relaxation is dominated by acoustic phonon scat-
tering. Correspondingly, the relaxation times from excited
states are limited to the order of nanoseconds in GaAs-based
QDs.12 Many theoretical studies of electron relaxation in
single and double QDs have been performed.13–16 Electron-
phonon scattering can be effectively suppressed using vari-
ous mechanisms to improve the performance of QD
devices.17–21 The manipulation and understanding of the
electron relaxation in QDs are therefore of great importance
in the design and the operation of the quantum devices.

Since the features of QDs are controllable, external in-
fluences on electron relaxation in QDs become an important
topic.16–20 Even though considerable effort has been made to
analyze bulk systems, the relaxation of a lateral double QD
in a confined structure has received little attention. Unlike in
the bulk, the confined structure enables the phonon density
of states to be controlled: the electron-phonon interaction can

be tailored by altering the dimensions. Intuitively, electron-
phonon scattering is expected to reveal some interesting
properties of confined structures. This work elucidates elec-
tron relaxation in a lateral double QD embedded in a sus-
pended slab. The system is subjected to an in-plane electric
field in the interdot direction. Exact diagonalization is used
in numerical calculations to show that the structural param-
eters and electric field strongly affect the relaxation rate. In
particular, the phonon characteristics of the slab determine
this rate. The relaxation rate can be varied by several orders
of magnitude by tuning the field strength.

II. MODEL AND METHOD

Figure 1 depicts a GaAs double dot embedded inside a
suspended slab with two boundaries at z= �L /2. The struc-
ture was realized with the help of advanced
nanotechnology.22,23 The Hamiltonian for an electron in a
double QD subjected to an in-plane electric field can be writ-
ten as

H =
p2

2m�
+ Vc�r�� + Vw�z� + Vext�r�� , �1�

where p=−i��, m� is the electron effective mass and Vc is
the xy-plane confinement potential,
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L

d

a 0

z

x

FIG. 1. Schematic view of a double QD embedded in a suspended semicon-
ductor slab with a width of L. The vertical width of the dot is a and the
interdot distance is d. The double dot is located in the center of the slab.
Here we simply illustrate the dots with blocks.
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Vc =
1

2
m��0

2 min��x −
d

2
�2

+ y2,�x +
d

2
�2

+ y2	 , �2�

with r� = �x ,y�, interdot distance is d, and confinement fre-
quency is �0. For vertical confinement, Vw is given by
V0��
z
−a /2�, where a is the vertical width of the QD. The
potential is taken as an infinite quantum well �V0→��. Be-
cause its confinement is much stronger than that in the
xy-plane, a relevant wave function is ��z�=�2 /a cos��z /a�.
Analysis using the model indicates that only the x component
of the electric field is relevant. Accordingly, the interaction
between an electron and an electric field in the x direction
can be expressed as

Vext = − eFx , �3�

with the electron charge as e and the field strength as F.
A numerical solution to the Hamiltonian of electron can

be obtained by expanding the wave function in a basis set
with a large number of eigenstates of the single-dot wave
functions,

��r�,	,z� = �
m,l

cml
ml�r�,	���z� . �4�

Here, the basis wave functions 
ml are the well-known Fock–
Darwin states,24


ml��,	� =� m!

��2�m + 
l
�!
�
l
e−�2/2Lm


l
��2�eil	, �5�

and their corresponding electron energy levels are

Eml = ��0�2m + 
l
 + 1� , �6�

where Lm

l
��� is an associated Laguerre polynomial and �

=r� /� is a scaled radius with effective QD lateral length �
=�� /m��0. In the equations m �=0,1 ,2 , . . .� and l �
=0, �1, �2, . . .� are quantum numbers. Exact diagonaliza-
tion of the electron Hamiltonian allows the corresponding
eigenvalues and coefficients to be obtained numerically. No-
tably, the chosen basic set 
ml� provides stable convergence
for Eq. �1� with increasing m. The method and basis are
analogous to those used in a study of a lateral double QD
system.25 As an example, the error for the lowest five energy
levels is lower than 10−7 for mmax�20, causing convergence
in the electron relaxation rate to within 1%.

The electron relaxation rates due to acoustic-phonon
scattering between the two lowest states are calculated using
the Fermi golden rule,26

 =
2�

�
�

q�,n,�

�f 
Mn

�eiq�·r�
i�
2�nq�n
� + 1����E − ��q�n

� � , �7�

where � is the phonon mode and n is the branch. �E denotes
the energy difference between the first excited state 
i� and
the ground state 
f�. nq�n

� represents the Bose distribution with
in-plane wave vector q� = �qx ,qy�. To evaluate the phonon
frequency �q�n

� , the elastic properties of the slab are assumed
to be isotropic, based on the elastic continuum model. Small
elastic vibrations of the slab are defined by the displacement
vector u�r�. Under the isotropic elastic continuum approxi-
mation, the equation for the displacement vector is27

�2u

�t2 = ct
2�2u + �cl

2 − ct
2� � �� · u� , �8�

where cl and ct are the speeds of longitudinal and transverse
acoustic waves, respectively. The confined phonon model
can be solved by matching the boundary conditions. The
three confined acoustic modes are shear waves, dilatational
waves, and flexural waves. An important feature of the con-
fined modes is the quantization in the z direction; the z com-
ponent of the wave vector qz, is directly related to the width
of the slab. For shear waves, they are purely transverse
waves and their dispersion relation �superscripts omitted� is
�q�n

=ct
�q�

2+qz,n
2 , where qz,n depends on n� /L. Here, qz is

labeled by an additional index n. Following Ref. 28, the
electron-phonon interaction is Hep=Ea� ·u�r� with the de-
formation potential constant Ea. The shear waves can be ne-
glected because they do not interact with electrons through
the deformation potential �� ·u=0�. Additionally, the phonon
dispersion relations for the other waves are given by28

�q�n
= cl

�q�
2 + ql,n

2 = ct
�q�

2 + qt,n
2 , �9�

where ql,n and qt,n are determined from equations

tan qt,nL/2
tan ql,nL/2

= −
4q�

2ql,nqt,n

�q�
2 − qt,n

2 �2 , �10�

for the dilatational waves, and

tan ql,nL/2
tan qt,nL/2

= −
4q�

2ql,nqt,n

�q�
2 − qt,n

2 �2 , �11�

for the flexural waves. Correspondingly, the function Mn
i de-

scribes the coupling strength of the electron that interacts
with the dilatational waves,

Mn
d�q�,z� = Fn

d� �Ea
2

2A��q�,n
�qt,n

2 − q�
2�

��ql,n
2 + q�

2�sin�qt,nL

2
�cos�ql,nz� , �12�

and with the flexural waves,

Mn
f �q�,z� = Fn

f� �Ea
2

2A��q�n
�qt,n

2 − q�
2�

��ql,n
2 + q�

2�cos�qt,nL

2
�sin�ql,nz� , �13�

where Fn
d �Fn

f � is the normalization constant, A is the area of
the slab, and � is the mass density.

The importance of the piezoelectric potential can be
compared with that of the deformation potential. The ratio of
the piezoelectric potential strength to the deformation poten-
tial strength depends on �ee14 /Eaq�2, where e14 is the piezo-
electric constant, and q is the wave vector.29,30 In bulk GaAs
systems, piezoelectric interaction typically dominates for
long-wavelength acoustic phonons.31,32 For the slabs, how-
ever, confinement yields a lower bound for q, which is equal
to � /L, because of the qz quantization.28 This cuts off
phonons with low momenta that determine the strength of
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the piezoelectric electron-phonon coupling. Accordingly, de-
formation potential can be argued to be the main determinant
of the confined phonon geometries.28,33 The numerical re-
sults for electron relaxation in a GaAs double QD are pre-
sented below. The material parameters are taken from Ref.
29. To explicate the main feature of one-phonon processes,
the calculation assumes a zero temperature such that the pho-
non absorption can be neglected. Unless otherwise specified,
all calculations are performed for a slab width L=130 nm, a
lateral confinement potential ��0=1 meV, an interdot dis-
tance d=150 nm, and a vertical width a=8 nm.

III. RESULTS AND DISCUSSION

Equations �9�–�11� yield numerical results for the disper-
sion relations. Figures 2�a� and 2�b� show the complex char-
acter of the spectra of dilatational and flexural waves. Con-
fined phonons are evidently quantized in subbands. For most
branches, the energy increases with the in-plane component
q�. In particular, the curve exhibits a remarkable behavior. As
presented in Fig. 2, the second dilatational mode and the
third flexural mode decrease to a minimum and then increase
in the small q� regime, reflecting the fact that the phonon
group velocity is zero at some value q�.

The phonon properties of the slab are now considered.
The phonon density of states is given by

���� = �
q�,n

��� − �q�n
� . �14�

Based on the dispersion relations, Fig. 3 presents the density
of states for dilatational and flexural modes. The curves are
not congruous because the parameters �q� ,ql,n ,qt,n� of the
dilatational and flexural waves independently satisfy the dis-
persion relations. As the energy increases, phonon-subband
quantization produces a staircaselike curve. Each step corre-
sponds to the onset of a new subband, which starts to con-
tribute to the density of states. Specifically, a fine but very
large density of states �arrow� is observed. It originates from
the van Hove singularity, which corresponds to a minimum
in the dispersion relation, as shown in Fig. 2.28,33

Next, the relaxation rate in the presence of in-plane elec-
tric field is discussed. The double dot is assumed to be lo-
cated in the center of the slab, such that the electron wave
function ��z� is even. Since Eq. �13� is an odd function of z,
the flexural waves do not contribute to the relaxation rate
����z�
sin�ql,nz�
��z��=0�. Figure 4 reveals an interesting
phenomenon. Unlike in bulk systems, the effect of quantized
phonon subbands on the relaxation rate is obvious. In most
cases, the relevant values are of the order of 105–107 s−1. In
particular, the rate is suppressed �→0� at a certain electric
field �inset�. The electron is expected to be able to remain for
long time in a quantum state without losses. The divergence
of the displacement field u�r� vanishes at the point such that
the function Mn

d plays no role in Eq. �7�, importantly indicat-
ing that the electron-phonon interaction becomes ineffective.
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FIG. 2. Dispersion relations ��q�n
for �a� dilatational and �b� flexural waves

with L=130 nm.
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FIG. 3. Density of states �arbitrary units� as a function of energy �� for �a�
dilatational and �b� flexural waves. The arrows are used to indicate the van
Hove singularities.
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However, Fig. 4 �arrow� displays a dramatically enhanced
rate. Figure 3�a� indicates that this fact follows from the van
Hove singularity for dilatational waves. Hence, the relax-
ation rate can be detuned by several orders of magnitude by
varying the electric field. Notably, two special features origi-
nate from the intrinsic phonon properties of the slab. Analyz-
ing the components of Eq. �7� reveals that the temperature
and the vertical width of the QD do not affect the relaxation
rates at the points.

Figure 5 plots the specific electric fields in which relax-
ation rates are enhanced and suppressed with variation in the
width of the slab. The electric field plays a flexible role in
controlling the energy difference �E. The energy difference
increases with the field, as shown in the inset.25 To obtain
specific rates, large electric fields are applied when the
widths are small. The values drop monotonically as the width
increases. The signatures are no longer evident when the slab
has large width. In particular, the rate is enhanced only in the
large-width regime. This result is explained by the fact that at
F=0, the lowest energy difference exceeds the specific pho-
non energy �� for the suppressed or enhanced rate.

According to the above results, the positions of the dots
could be perhaps to influence the relaxation. To demonstrate
this point, Fig. 6 plots the relaxation rate versus electric field
F for fixed a position of the double QD �z0=30 nm�. Here,
z0 is the displacement of the double QD from the center of
the slab. As the dots are not located at the center of the slab,
flexural waves start to contribute to the electron relaxation.
The total rate consists of two components: dilatational waves
and flexural waves. As the electric field increases, the con-
tributions of the two waves complicate the rate. Both com-
ponents contribute differently to the rate by varying the elec-
tric field. As shown in the inset, the main contributor to the
relaxation rate changes between the two waves. Figure 6
displays the two enhanced relaxation rates. The important
feature is the large asymmetry in the magnitudes of the rates
for the two waves. According to Fig. 3, the van Hove singu-
larities are mainly responsible for the obtained rates.

We briefly make some comparison with those used in
related studies. Suppression of the relaxation rate is an im-
portant issue for researchers who are concerned with the per-
formance of quantum devices. For vertically double QD sys-
tems, the relaxation rate is tuned by varying the electric or
magnetic field applied in the growth direction.16–18 Electrons
interact with bulk phonons. The modulation of the factor
��f 
eiq·r
i�� enables the relaxation rate to be reduced. On the
contrary, in the model employed herein, a lateral double QD
is embedded in a suspended slab. An electric field is applied
in the interdot direction. A totally different way to control the
relaxation rate, which depends on the phonon properties of
the slab, is provided. The relaxation rate can be suppressed
by tailoring the electron-phonon coupling.

The results for the slab system are compared with those
obtained using cavity quantum electrodynamics. In an anal-
ogy to the case of confined phonons, the quantized photon
modes in the cavity can significantly modify the atomic
spontaneous emission. Furthermore, the enhancement or re-
duction in spontaneous emission is controllable. For ex-
ample, in a single-mode cavity, the emission decay rate can
be increased if the atom is surrounded by a cavity that is
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FIG. 4. Relaxation rate  as a function of electric field F. The arrow indi-
cates the enhanced relaxation rate. The inset shows a suppressed relaxation
rate �arrow�. The double dot is located in the center of the slab.
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tuned to the transition frequency.34 Conversely, it decreases
when the cavity is detuned.35 The gaps in the density of
states enable spontaneous emission to be completely inhib-
ited in artificial periodic structures.36,37 This situation is un-
like the vanishing of the relaxation rate in the slab that is
caused by a real zero in the phonon deformation potential.

IV. CONCLUSIONS

The electron relaxation of lateral double QD systems
embedded in suspended slabs is studied. The relaxation rate
is strongly modified by the two-dimensional character of the
slab phonon. The relaxation rate can be varied by several
orders of magnitude by controlling the electric field. Not
only can the behavior be enhanced, but also the relaxation
rate can be greatly reduced. This flexible mechanism may be
useful for quantum devices that are based on lateral double
QDs.
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