=

HEF-EF R Ry
The Recognition of Traveling Vehicles by
Nonparametric Discrimination of Functional Data

with Different Proximity

SRR
Rl ¥ es gl

PoE s R4 L o2 E 2



F1% E2 Bos T E R LD iE
The Recognition of Traveling Vehicles by
Nonparametric Discrimination of Functional Data

with Different Proximity

oy oA L ERRE Student : Yung-Tsai Lu
ERR D RBY Advisor : Yow-Jen Jou

ok = 3T

L oo

A Thesis
Submitted to Institute of Statistics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Statistics
June 2007

Hsinchu, Taiwan, Republic of China

PEAREY LA ERT



&
REEPpAFAFEY F L ER D

r‘]a_ﬂ,\é’riu i%é"rlgﬁ,

3o o AT FERY R R A > Bt B AR g 0 K Bt

- ETRMGATARR T §F MR AR P Bk B T

B A FE R R PERD A8 X R

A SBcF R T R B R



The Recognition of Traveling Vehicles by
Nonparametric Discrimination of Functional Data

with Different Proximity
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ABSTRACT

Traffic congestion is a serious and general problem in our daily life.
Real time traveling vehicle information is essential to the advanced traffic
management. The recognition and statistics of traffic flow among
different types of traveling vehicles would be contributive to improve
traffic block. This thesis considers the dataset recorded by the Radar
microwave detector with the intensity of back waves and the types of
traveling vehicles. The data is treated as functional data and then
classification would be proposed to be performed by nonparametric
discrimination of functional data with three forms of Proximity. The
proximity with lower misclassification rate would be adopted for the data.
The results show that the misclassification rate is pretty satisfactory if the
number of groups is two and as the number of groups increases the
misclassification rate increases as expected.
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Abstract

Traffic congestion is a seriotis;and general problem in our daily life. Real
time traveling vehicle information‘is essential to the advanced traffic man-
agement. The recognition and statistics of traffic flow among different types
of traveling vehicles would be contributive to improve traffic block. This
thesis considers the dataset recorded by the Radar microwave detector with
the intensity of back waves and the types of traveling vehicles. The data
is treated as functional data and then classification would be proposed to
be performed by nonparametric discrimination of functional data with three
forms of Proximity. The proximity with lower misclassification rate would
be adopted for the data. The results show that the misclassification rate
is pretty satisfactory if the number of groups is two and as the number of
groups increases the misclassification rate increases as expected.

Key words: Partial least square regression; Kernel; K Nearest Neighbors; Non-

parametric Discrimination; Proximity.
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1 Introduction

The Radar identification technology is developed fast after the World War I1.
The technology is principally used in the recognition of aircrafts and tanks. In mil-
itary scenarios, the need to reliably identify objective is even more stringent, since
erroneous identification could easily result in friendly fire incidents. A common
technique for identification of military objective is Identification Friend Foe (IFF).
IFF identification is initiated when the interrogator transmits a challenge to the
aircraft. Friendly aircraft are supposed to be equipped with a transponder, which
replies to the challenge by transmitting an identification code to the interrogator.
Some IFF modes of operation require more information to be included in the reply,
such as the current aircraft altitude. Hostilé aircraft: will in general not be able to
respond properly to the challenge because of the lack; of a (compatible) transpon-
der, and will therefore be identified: as*hostile (or'at least not friendly). Various
other identification techniques are used in combination with IFF. For example,
friendly aircraft can be required to limit their flight path to pre-defined regions of
airspace called corridors.

Traditional radars collect and transform the information to form images such
as two-dimensional Inverse Synthetic Aperture Radar (ISAR) or a sequence of one-
dimensional range profile from the raw data, and then classify targets based on
these images. Herman (2002) bypassed the image formation and attempted target

recognition directly from the received data, which is labeled as Automatic Target



Recognition (ATR). A Radio Frequency System-on-Chip (RF SoC) using the the-
ory of Frequency Modulated Continuous Waves (FMCW) combining the military
Radar identification technology can be used in traffic management. The Radar ve-
hicle recognition system is less expensive and reliable than the recognition of image
system.Our approach to recognizing (or, classifying) our targets (vehicles on the
road) adopts the same idea of Hermans work, i.e., attempt automatic classification
directly the received data. Therefore, we use the nonparametric discrimination
of functional data to solve the recognition problem. The aim is to find a robust
methodology that classifies a new object into one of a prespecified set of classes.

In many scientific disciplines, the observed response from experimentation may
be viewed as a continuous curve rather than a'sealar or a vector. Main sources
from this kind of data are real time.monitoring of processes and certain types of
longitudinal studies. In the terminology-of-Ramsay and Silverman (1997), they
are called functional data sets. Although-the underlying data are made up in-
trinsically by curves, the observed data are discretized representations of these
curves. Therefore, each data curve is represented by a (large) finite-dimensional
vector. The practical Radar data set can be treated as the functional data. So the
nonparametric discrimination of functional data is adopted suitably for the Radar
data set.

The rest of this thesis is organized as follows: Section 2 introduces the nonpara-
metric discrimination of functional data with three types of proximity. The three
types of proximity contain the PCA-type, PLS-type and Derivatives-type semi-
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metrics. The method of PLS regression is also mentioned compendiously. Section
3 describes the Radar data set and uses the method in the Section 2 to classify
the vehicles and lanes. Some analysis results are also mentioned. The conclusion

would be proposed in the Section 4.




2 Model Specifications and Methodology

Functional data sets appear in many areas of science. Although each data point
may be seen as a large finite-dimensional vector it is preferable to think of them as
functional data. First we introduce some notation of functional data, then give a

brief introduction of nonparametric discrimination with three types of proximity.

2.1 Prerequisite Notions and Notation

We first introduce some common notation and the terminology that generally
used in mathematics.
Definition 1. A random variable X" is called functional random variable (f.r.v.)
if it takes values in an infinite dimensional spacés An observation  of X is called
a functional data. The X denotes a random:curve, X = {X(¢),t € T}.
Definition 2. ||.|| is a semi-norm on some space F/as long as:
1Ve € F,||z| > 0.
2¥Y(a,z) € R x F, |azx| = |a|||x].
3V(x,y) e FXF |l +y| <z + [yl
Definiton 3. d is a semi-metric on some space F as long as:
LV € F,d(xz,x) = 0.
2V¥(z,y) e F xF,d(z,y) > 0.
3V(z,y,z) e FxFxF,dz,y) <dz z)+dz,v).
Note that in fact, a semi-norm ||.|| does not have the property that ||| = 0 imply

x = 0. Similarly, a semi-metric does not have the property that d(x,y) = 0 imply



T =1y.

2.2 Three Types of Semi-Metrics

Because most available functional datasets are curves, we will describe three

types of semi-metrics well adapted for this kind of data in the following subsection.

2.2.1 Semi-Metrics Based on Functional PCA

Functional Principal Components Analysis (FPCA) is a good tool for computing
proximities between curves in a reduced dimensional space. As long as E[[ X% (t)dt]

is finite, the FPCA of the f.r.v. & has the following expansion (Dauxois, etc. 1982):

_ g:l ( / X(t)vk(t)dt) o

with v1, v, ..., being the orthogonal éigenfuinctions of the covariance operator
Ix(s,1) = B (1))

associated with the eigenvalues Ay > Ay > .... Then the truncated version of the

above expansion of X is

X0 = i(/?( Yo (t dt)vk

The main goal is to find truncated version such that

E (/ (X() — PqX(t))th>

is minimized over all projections F, of X into ¢-dimensional spaces. According to
the classical L?-norm, we can define a parametric class of semi-norms and semi-

7



metrics in the following way:

In general, I'y is unknown and then, the v;.s too. However, the covariance operator

can be well approximated by its empirical version

Dh(s, 1) = 1/n 3 Xi(5) (1),

The eigenvectors of I}, are consistent estimators of eigenvectors of I'y. In prac-
tice, we never observe exactly {x; = {z;(t);t € T}},_, , but a discrete version

{a}i = (z;(t1),..., wi(tJ)),}izl e So we can approximate the integral in a discrete

way
1) - = ng — a(t;)ult;)

where wq,...w; are weights which define the approximate integration. A stan-

dard choice is w; = ¢; — t;_;. Similarly, the semi-metric d’“4(x;, z;) can be

approximated by its empirical version

d M@y, Ty) = Z (Z wj (x(t —wi'(tj))vk(tj))

k=1

where vy, v, ..., 74, are the W-orthonormal eigenvectors of the covariance matrix
n
n !/
"W =1/n) z;ziW
i=1

associated with the eigenvelues A1, > Ao,y > ... > Ay, and W = diag(wy, ..., wy).



2.2.2 Semi-Metrics Based on Functional PLS

In this subsection we first introduce partial least squares (PLS) regression and
different forms of PLS, then give a brief introduction of semi-metric based on
functional PLS.

Partial Least Squares Regression:

Partial Least Squares is a widespread method for modeling relations between
a set of dependent variables and a large set of predictors. PLS generalizes and
combines features from principal component analysis and multiple regression. It
originated in social sciences (particularly economy, Herman Wold 1966) but become
popular first in chemometrics due to Herman’s son Svante, (Geladi and Kowalski,
1986). It was first presented as am'algorithm.analeg to the power method (used
for computing eigenvectors) but was suitably interpréted in statistical framework.
(Frank and Friedman, 1993; HosKuldsson, 1988; Helland, 1990; Tenenhaus, 1998).

PLS usually is used to predict response variable Y from predictors X and de-
scribe their common structure. If X is full rank, ordinary multiple regression can
be applied. When the number of predictors is larger than the number of obser-
vations, X would be singular and the ordinate multiple regression is no longer
practicable. Several methods have been developed to solve this problem, e.g. prin-
cipal component regression. But the method is chosen to explain the variation of
X, nothing guarantees that the choice to explain X are suitable for Y. PLS regres-

sion finds components from X that are also connected with Y. It searches for a



set of components (latent vectors) that performs a simultaneous decomposition of
X and Y with the constraint that these components explain as much as possible
of the covariance between X and Y.

Let X be the zero-mean (n x N) matrix and Y be the zero-mean (n x M)
matrix, where n denotes the number of data sample. PLS decomposes X and Y
into the form

X=TP +E
Y=UQ +F (1)

where the T, U are (n x p) matrix of the p extracted components, the (N x p)
matrix P and the (M X p) matrix Q represent loading matrices and the (n x N)
matrix E and the (n x M) matrix.F are theresidual.matrices. PLS which is based
on the nonlinear iterative partial least squares (NIPALS) algorithm finds weight

vectors w, ¢ such that
[cov(t, u)]* = [cov(Xw, Yc)]* = max(p|=(s/=1)[cov(Xr, Ys)]*

where cov(t,u) = t'u/n denotes the sample covariance between the components t
and u . The NIPALS algorithm starts with random initial value of the component
u and repeats a sequence of following steps until convergence.

Step 1. w = X'u/(u'u) (estimate X weights)

Step 2. |[w| — 1

Step 3. t = Xw (estimate X component)

Step 4. ¢ = Y't/(t't) (estimate Y weights)

10



Step 5. |lc]] — 1

Step 6. u = Yc (estimate Y component)

Specially, u =y if M =1, Y is a one-dimensional vector that is denoted by y. In
this case the NIPALS procedure converges in a single iteration.

It can be shown that the weight vector w also corresponds to the first eigen-
vector of the following series of equations: w o X'u o« X'Yec « X'YY't x
X'YY'Xw. This shows that the weight vector w is the right singular vector of
the matrix X"Y. Similarly, the weight vectors c is the left singular vector of X"Y.
Then the latent vectors t and u are given as t=Xw and u=Yc, where the weight
vector c is defined in steps 4 and 5 as stated above. Similarly, the extraction of t,
u or c estimates can be derived.

Forms of PLS:

PLS is an iterative process. After'thedatent; vectors t and u being extracted,
the matrices X and Y are extracted by subtracting their rank-one approximations
based on t and u. Different extractions form several variants of PLS. By equation
(1) the loading vectors p and q are computed as coefficients of regressing X on t
and Y on u, respectively. Then, the loading vectors can be solved by p = X't /(t't)
and q = Y'u/(u'u).

1.) PLS Mode A:

The PLS Mode A is based on rank-one deflation of individual matrices using
the corresponding latent and loading vectors. In this case, the X and Y matrices
are extracted X = X —tp’ and Y = Y —uq’. This method was originally proposed

11



by Herman Wold (1966) to model the relations between the different sets of data.
2.) PLS1 and PLS2:

PLS1 (either dependent variable or independent variable consists of a single
variable) and PLS2 (both variables are multidimensional) are used as PLS regres-
sion method. The form of PLS is the most popular PLS approach. The main
feature of the approach is that the relation between of X and Y is asymmetric.

The main assumptions of the form of PLS are:

(i) The latent vectors {ti}%?: ; are good predictors of Y; p denotes the number

of extracted latent vectors.

(ii) a linear inner relation between tlie latent/vectors t and u exists; that is,
U=TD+H
where D is the (p x p) diagonal. matrix and H is the residual matrix.

The asymmetric assumption of the independent and dependent variable relation is
transformed into a deflation scheme. The latent vectors {t;}*_, are good predictors

of Y. Then the latent vectors are used to deflate Y, that is, a component of the

regression of Y on t is removed from Y at each iteration of PLS.
X=X-tp and Y=Y —tt'Y/(t't) =Y — tc

where the weight vector ¢ is defined in step 4 of NIPALS. This way of deflation

p

will ensure that the extracted latent vectors {t;}._, are mutually orthogonal.

12



3.) SIMPLS:

In order to avoid deflation steps at each iteration of PLS1 and PLS2, Jong
(1993) has introduced another form of PLS denoted SIMPLS. The SIMPLS ap-
proach directly finds the weight vectors {w;},_, which are applied to the original
matrix X. The criterion of the mutually orthogonal latent vectors {Ei}; is kept.
Semi-Metrics Based on Functional PLS:

Let of,... ,ul be the vectors of R’ performed by multivariate partial least
squares regression (MPLSR) where ¢ denotes the number of the factors and p the

number of scalar responses. Then the semi-metric based on the MPLSR is defined

as
PLS L[ 2
d " (@ o) = | D w; (x ()= @i (1)) v (L)
k=1 \j=1
where wy, . .., w; are weights which define the approximate integration. A standard

choice is w; = t; — t;_1;. When we consider-only one scale response (p = 1), the
proximity between two discrete curves is'due to only one direction, which seems
inadequate with regard to the complexity of functional data. However, as soon as
we consider multivariate response, such a family of semi-metrics allows to obtain

very good results, which is the case in the curves discrimination context.

2.2.3 Semi-Metrics Based on Derivatives

One semi-metrics is to consider a distance between curves among their deriva-

tives. The semi-metric based on derivatives of two observed curves x; and x; can

13



be defined as

dgmv(wi, Ty) = \// (wgq) (t) — :BZ(?) (t))th
where (@ denotes the gth derivative of . Note that dd*™*(z;, 0) is the classical L2-
norm of . The computation of successive derivatives is very sensitive numerically.
In order to overcome the numerical stability problem, we can use a B-spline (Boor,
1978) approximation for the curves. Once we have obtained an analytical B-
spline expansion for each curve, the successive derivatives are directly computed
by differentiating several times their analytic form. Let {By, ..., Bg} be a B-spline
basis, then the discrete approximative form of the curve x; = (;(t1), ..., z;(t;))

is as follows:

— — —

B 2
B; = (511523) = arg inf Z (‘Bi(tj) - ZabBb(tj)> .
b=1

(@1,..,08)ERE g=1

This produces a good approximation of thersolution of the minimization problem

2

arg i / <:ci(t)—b§Bloszb(t)> dt.

(al,...,aB)GRB

Therefore, the approximative form of the curve x; = (x;(t1), ..., x;(t;)) is

Because the analytic expression of the B;s is well-known, the successive derivatives

can be exactly computed and we can differentiate easily the approximated curves:

290) =3 BB ().

b=1



Then semi-metric based on derivatives of two observed curves x; and x;, can be

computed by

A2 (z, ) = \/ / (&7(t) — &7 (1)) .
2.3 Nonparametric Classification of Functional Data

Classification or discrimination of functional data is in the situation when we
observe a fr.v. X and a categorical response Y which gives the group of each
functional observation. The main purpose is to predict the group when we ob-
serve a new functional data. In next section we hope to find a robust method
for assigning each functional observation to some homogeneous group. We review
the nonparametric discrimination method 'that, is proposed by Ferraty and Vieu
(2006).

2.3.1 Method

Let (X;,Y;),_, ,be asample of 7 independent pairs, identically distributed as
(X,Y) and valued in F x G, where G = {1,...,G} and (F,d) is a semi-metric
vector space (X is a fr.v. and d is a semi-metric). The notation (z;, y;) denotes

the observation of the pair (X;,Y;).

General classification rule (Bayes rule). Given a functional observation x,

the purpose is to estimate the posterior probability

py(x) =P(Y=g|lX¥ =2),9€G.

15



A~

Once the G probabilities are estimated (pi(x),...,pe(x)), the classification rule
consists of assigning an incoming functional observation x to the group with highest

estimated posterior probability

y(x) = argmaxp,(x).
e G

This classification rule is called Bayes rule. To use a suitable kernel estimator make

precise discrimination of functional data.

Kernel estimator of posterior probabilities. Before defining the kernel-type

estimator of the posterior probabilities, we remark that

py(z) = Ry J1&= 2 ).

with I[Y:g] equal to 1if Y = g and.0 otherwise. Therefore we can use kernel-type

estimator introduced for the prediction viayconditional expectation.

1

~ (2

pg(w) = ﬁg,h(w) =

g thd (2, X))

1

Y

ISR

K (h='d (z, X;))

=1

where K is the kernel and h is the bandwidth (a strictly positive smoothing pa-

rameter). The kernel posterior probability estimate can be rewritten as

Pgn(x) = Z wip(x) with w;p(x) = nK(h_ld(m’Xi>) '
{#Yi=o} > K (hld (@, X))

In order to compute the quantity p,,(x) we use only the X;’s belonging to both

the group g and the ball centered at x and of radius h.

Pon(x) =D wip(z) where I={i:Y;,=g}n{i:d(z, X;) <h}.
iel
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The closer AX; is to @ the larger the quantity K (h™'d (z, X;)). Hence, the closer X;
is to @ the larger the weight w; ,(x). So, among the A&;’s lying to the gth group,
the closer &; is to & and the larger is its effect on the gth estimated posterior
probability. As long as K is nonnegative, the kernel estimator has the following

interesting properties :

which ensure that the estimated probabilities are forming a discrete distribution.

Choosing the bandwidth. According to thesshape of the kernel estimator,
we have to choose the smoothing parameter+<h. A usual way for an automatic

choice of h is constructed from minimizingarloss function Loss as:
RIoss = arg m}}n Loss(h),

where the function Loss can be built from p, ,(x)’s and y,’s. The misclassification
rate is a nature choice among different types of Loss functions. Therefore, the
functional classification can be performed by the following procedure:
Learning step:
for h e H
fori=1,2,...,n

g=12,...,G

17



R Z?i/:y,/:g} K(h_ld(wi,mi/))
pgvh (wl) = Z?’:l K(hfld(whwi,))

enddo
enddo
enddo
Nioss = arg min Loss(h)
Predicting step:

Let « be a new functional observation and y(x) be its estimated group:

@(m) — a’rg max {ﬁgthoss (w)}
9eG

where ‘H C R is a set of suitable values for h and K is a known kernel.

2.3.2 K Nearest Neighbors Estimator

The choices of the bandwidth A and the semi-metric d have great influence
on the behavior of the kernel estimator. Tt is“inefficient to choose bandwidth h
among the positive real number subset from a computational point of view. So, we
consider a general and simple way which is the k nearest neighbors (kNN) version
of kernel estimator. Then we can replace a choice of real parameter among an
infinite number of values with an integer parameter k£ (among a finite subset). The
main idea of the kNN estimator is to replace the parameter h with h; which is the
bandwidth allowing us to take into account k terms in the weighted average. The

py at @ is estimate by

o o) - Sl K (@ 20)
, i K (h;:ld (z, mz))

18



where hy, is a bandwidth such that the number of {i : d (x, ;) < hy} is k. That is,
the minimization problem on h over a subset of R is replaced with a minimization

on k over a finite subset {1,2,..., K}:

kross =arg min  Loss(k) and h

kE{l,Q,...,K} Loss - hkLoss’

where the loss function Loss is now built from p, x(2;)’s and y,’s.
In order to choose the tuning parameter k, we must introduce a loss function
(Loss). The loss function allows us to build a local version of the kNN estimator.

The main goal is to compute the quantity:

s ( AT, T) )
pLCV( ) { =Y, —g} hrov(Pig)
g S (e 2 2

=1 hrev(Tiy)

where iy = arg. 11112111 d(z,z;) and hrcy (@) is the-bandwidth corresponding to
1=y 7n

the optimal number of neighborsiat x;, ©btained by the following cross-validation

procedure:
k)ch(iBio) = arg mkj}n LOSSch(kZ,io),
where
- (~io) 2
LOSSLCV ]f 7,0 Z < pg,ko (wio))
g=1
and ( )
d( Ty, T
oy o Sl & ()
Dy (mio) d(wzoymz)
i=1izig 1€ (W)

As long as we set up the appropriate semi-metric and kernel function K(.), the

prediction procedure is finished.
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The misclassification rate for the learning sample (z;, y,)i=12,., (the sample
of curves for which the groups are observed) will be used to assess the performance
of the predicted results, the procedure is described as follows:
fori=1,2,....,n

LCV LCV
yEV —arg max _ pEV(a,)

g€{1,2,....G}

enddo

. l L
Misclas «+ = ¢§1 ][yﬂéyich]
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3 Practical Example

The procedures described in previous sections will be applied to a real data
set. We consider a real data set which is recorded by Radar microwave detector.
The collection of the data would be introduced in section 4.1. Then some analysis

results would be shown in section 4.2.

3.1 Data Description

The practice data set are collected near the section 1 of Singlong Road, Jhubei
City, Hsinchu County by vehicle Radar microwave detector, which is a side-looking
configuration. There are four lanes on the Singlong Road. The collection time is
from 10:00 AM to 5:00 PM on October 11, 2006. These vehicles with speed 40
km /hour are recorded on the four lanes of Singlong Road. There are 248 observed
curves of vehicles recorded. We'do registration in the original dataset, and take
the peak of intensity of back wave ‘assthe marker. So the observed curves are
shifted and truncated, then we take the adjusted curves as the analytic curves.
Each of curves represents the intensity of back wave at 30 discrete observed points
and the types of vehicles. So we observe n = 248 pairs (z, y,),_, _, Where x; =
(z; (t1), i (t2), ..., x; (t30)) correspond to the ith discrete functional data and y,
give the class of the ith observation. Given a new functional observation x , our
main goal is to predict the corresponding class of vehicle and lane y*¢V.

The classes of vehicles contain small and large vehicles. The small vehicles

are the sedans. However, the large vehicles contain cranes, buses, trucks, goods

21



wagons, etc. The Figure 1 displays intensity of back wave for the two vehicle classes
on the lane 3. The 10 solid curves and 10 dashed curves represent the sample of
small and large vehicles, individually. The functional data of different lanes and

vehicles are shown in Figure 2 and Figure 3.

Vehicle on Lane 3

10

Voltage
6
|

0 5 10 15 20 25 30

Times (0.01024 sec)

Figure 1: The intensity of back wave for the two vehicle classes on the lane 3.
The 10 solid curves and 10 dashed curves represent the sample of small and large
vehicles, individually.
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Vehicle on Lane 1

Q
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o
o
>
Times (0.01024 sec)
\ehicleon kane 2
Q
(o))
o
(e
>

Times (0.01024 sec)

Figure 2: The intensity of back wave for the two vehicle classes on the lane 1 and
lane 2. The 10 solid curves and 10 dashed curves represent the sample of small

and large vehicles, individually.
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Vehicle on Lane 3
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\lehicleonikane 4
Q
(@]
o
(e
>
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Figure 3: The intensity of back wave for the two vehicle classes on the lane 3 and
lane 4. The 10 solid curves and 10 dashed curves represent the sample of small

and large vehicles, individually.
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3.2 Data Analysis

Our principal aim is to predict the class of vehicle and lane relative to the new
observed functional data. In order to measure the performance of our functional
nonparametric discrimination method, we set up two samples from the collected
data sets. One is the learning sample, and the other is the testing sample. The
learning sample allows us to estimate the posterior probabilities. The testing sam-
ple is useful for assessing the discriminant power. We can get the predicted groups
of testing sample. The misclassification rate can be evaluated by the proportion of
predicted groups not equal to the observed groups. Repeating this procedure 5000
times, we will get 5000 misclassification rates. The distribution of these misclas-
sification rates can give a good idea of the-pewer of nonparametric discrimination
of functional data with various semi-metrics. Three types of semi-metrics are con-
sidered, and each of them has different:forms*being used. The different forms of

three proximity measures are as follows:

(i) PLS-type semi-metrics with a number of factors taking its values in 2, 3, 4,

5, 6, 7, 8 and 9 successively.

(ii) PCA-type semi-metrics with a number of components taking its values in 2,

3,4, 5, 6, 7 and 8 successively.

(iii) Derivative-type semi-metrics with a number of derivatives equal to zero (clas-

sical Lo-norm).
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We first consider the recognition of traveling vehicles with fixed lane and speed.
In order to measure the performance of our functional nonparametric discrimina-
tion method, we build randomly two samples from the original dataset. The learn-
ing sample and testing sample have 18 functional observations for each of classes
of vehicles. Repeating the procedure 5000 times, we will get 5000 misclassification
rates. The Figure 4 displays the box-plot of misclassification rates for three types
of semi-metrics proximity. The Figure 5 displays the scatter plot of mean and vari-
ance of misclassification rates for three types of semi-metrics proximity. Our goal is
to predict the classes of traveling vehicles correctly. So we hope to find the robust
methodology with lower misclassification rate. From the Figure 4 and Figure 5
we prefer PLS-type semi-metrics with 2 factors-and PCA-type semi-metrics with
3 components to the others. The proportion that. we can correctly recognize the
class of traveling vehicle is about 84% TheFigure 6 displays the classification rate
over 5000 runs with 2 classes of vehicles: The ¢olumns denote the real classes and
the rows denote the predicted classes. The correct classification rates and misclas-
sification rates are both exhibited in the Figure 6. The diagonal rates denote the
correct classification rate over the 5000 runs. Others denote the misclassification

rate over the 5000 runs.
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Figure 4: Dynamic vehicle recognition data discrimination over 5000 runs with 2

classes of vehicles.
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Figure 5: Scatter plot of mean and variance of misclassification rate over 5000 runs
with 2 classes of vehicles.
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s3 L3 S3 L3 s3 L3
45.61% 11.92% 45.95% 12.12% 45.96% 13.30%
4.39% 38.08% 4.05% 37.88% 4.04% 36.70%
s3 L3 s3 L3 s3 L3
46.18% 13.74% 46.19% 14.17% 46.20% 13.87%
3.82%  36.26% 3.81%  35.83% 3.80% 36.13%
s3 L3 S3 L3 s3 L3
46.51% 14.08% 47.82% 14.22% 43.87% 16.22%
3.49% 35.92% 2.18% 35.78% 6.13% 33.78%
s3 L3 s3 L3 s3 L3
42.25% 16.76% 42.12% 17.72% 41.34% 18.84%
7.75% 33.24% 7.88% 32.28% 8.66% 31.16%
S3 L3 S3 L3 53 L3
40.66% 18.73% 39.87% 8.58% 39.08% 8.64%
9.34% 31.27% 10.13% 31.42% 10.92% 31.36%
s3 L3

46.28% 14.23%
3.72%  35.77%

Figure 6: The classification rate over 5000 runs with 2 classes of vehicles. The
columns denote the real classes and the rows denote the predicted classes.
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Our second aim is to classify the lanes and dynamic vehicles with fixed speed.
In order to measure the performance of our functional nonparametric discrimina-
tion method, we also build randomly two samples from the original dataset. The
numbers of functional observations of small vehicles on lane 1, 2, 3 and 4 take
its value in 10, 10, 10 and 10. Then the numbers of functional observations of
large vehicles on lane 1, 2, 3 and 4 take its value in 10, 10, 10 and 5. The size
of learning sample and testing sample are the same. We also repeat 5000 times
above procedure to get 5000 misclassification rates. The Figure 7 and 8 are analo-
gous to the Figure 4 and Figure 5. We tend to regard PLS-type semi-metrics with
2 or 3 factors as the proximity for these data. The correct classification rate is
about 42%, a dramatic drop due todnereasing in‘number of classes. The Figure 9
displays the classification rate over 5000 runs.with. 8-classes of vehicles and lanes.
The columns denote the real classes ‘and-therrows' denote the predicted classes.
The correct classification rates and ‘migelassification rates are both exhibited in
the Figure 9. The diagonal rates denote the correct classification rate over the

5000 runs. Others denote the misclassification rate over the 5000 runs.
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Figure 8: Scatter plot of mean and variance of misclassification rate over 5000 runs
with 8 classes of vehicles and lanes.

32



7.38% 1.61% 0.54% 2.34% 0.41% 0.59% 1.08% 0.52%
3.22% 6.80% 3.36% 1.29% 1.00% 0.96% 1.55% 0.00%
0.69% 4.33% 7.29% 3.85% 0.96% 0.61% 1.35% 0.00%
1.51% 0.55% 2.09% 5.68% 0.07% 0.23% 0.29% 0.04%
0.18% 0.00% 0.01% 0.08% 5.34% 2.90% 2.68% 1.80%
0.19% 0.01% 0.00% 0.07% 2.73% 4.85% 3.99% 2.07%
0.15% 0.03% 0.04% 0.03% 2.39% 2.85% 2.22% 0.88%
0.00% 0.00% 0.00% 0.00% 0.43% 0.34% 0.16% 1.36%

7.15% 1.67% 0.77% 2.03% 1.09% 0.90% 1.27% 0.30%
2.46% 6.28% 2.61% 1.00% 0.92% 0.54% 1.43% 0.00%
1.06% 4.48% 7.15% 3.99% 0.84% 0.74% 1.38% 0.00%
1.85% 0.77% 2.80% 6.05% 0.07% 0.43% 0.48% 0.14%
0.14% 0.01% 0.00% 0.04% 3.91% 2.39% 2.02% 1.46%
0.29% 0.07% 0.00% 0.12% 3.15% 5.42% 3.63% 1.35%
0.39% 0.05% 0.00% 0.10% 2.71% 2.59% 2.73% 1.41%
0.00% 0.00% 0.00% 0.00% 0.65% 0.32% 0.41% 2.01%

Figure 9: The classification rate over 5000 runs with 8 classes of vehicles and lanes.
The columns denote the real classes and the rows denote the predicted classes.
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4 Conclusion

This research uses three semi-metrics proximity to deal with nonparametric dis-
crimination of functional data. The result shows PLS-type semi-metrics proximity
is more appropriate for the Radar microwave data set of the recognition of travel-
ing vehicles. The vehicles functional data can be treated as multivariate data with
30 predictors, then PCA and PLS methodology implement data reduction with 2
or 3 dimension. But their recognition rate is higher than that with more factors.
The large vehicles contain cranes, buses, trucks, goods wagons, etc. These vehicles
have distinct forms, but we classify them analog. This may cause the recognition
rate to be not as high as we expect. No matter how we expect that the nonpara-
metric discrimination of functional data, with thesé.three semi-metrics proximity

contribute to improve traffic janr and build-the lane for a special purpose.
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