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Student : Chih-Wen Wu Advisor:Dr. Lin-An Chen
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ABSTRACT

The tolerance interval has long been a technique for manufacturer to verify if there is
confidence large enough that ensures a proportion of production lot conforming to
specification limits. This paper formally formulate this "confidence" in terms of lot size
and parameters involved in the underlying distribution of the characteristic. With this
formulation, any technique for prediction of manufacturer's confidence may be evaluated
for its efficiency and it also provides a wide room for this prediction through statistical
inferences for the unknown confidence. We then study the power of the tolerance interval
in detecting if there is a reasonably large manufacturer's confidence. We found that when
the parameters involved in the distribution are known, the predicted manufacturer's
confidence is too optimistic in a value much higher than the true value and when the
parameters involved in the distribution are unknown, the predicted manufacturer's
confidence is too conservative in a value much lower than the true one. The
inefficiency partly comes from the fact that tolerance interval does not use the
information of lot size in prediction which is an ancillary statistic in the considered
statistical model. For statistical inference of this unknown confidence, we introduce a
point estimation technique that its results shown a power comparison seems to be very
promising for the manufacturer.

Key words: Hypothesis testing; power; quality control; tolerance interval.
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Tolerance Interval and a New Approach for Lot Production Inspection

Abstract

The tolerance interval has long been a technique for manufacturer to
verify if there is confidence large enough that ensures a proportion of pro-
duction lot conforming to specification limits. This paper formally formu-
late this “confidence” in terms of lot size and parameters involved in the
underlying distribution of the characteristic. With this formulation, any
technique for prediction of manufacturer’s confidence may be evaluated for
its efficiency and it also provides a wide room for this prediction through
statistical inferences for the unknown confidence. We then study the power
of the tolerance interval in detecting if there is a reasonably large manu-
facturer’s confidence. We found that when the parameters involved in the
distribution are known, the predicted manufacturer’s confidence is too opti-
mistic in a value much higher thanthe true'value and when the parameters
involved in the distribution are-unknewii, the predicted manufacturer’s con-
fidence is too conservative in-apvalue much lower than the true one. The
inefficiency partly comes from the, faet-that tolerance interval does not use
the information of lot size in‘predi¢tion which:is an ancillary statistic in
the considered statistical model. For statistical inference of this unknown
confidence, we introduce a point estimation technique that its results shown

a power comparison seems to be very promising for the manufacturer.

Key words: Hypothesis testing; power; quality control; tolerance interval.

1. Introduction

In manufacturing industry, specification limits for one characteristic of an
item, saying LSL and USL, define the boundaries of acceptable quality for a
manufacturing item (component). An item is said to be non-defective if the
measured characteristic is between the limits, otherwise it is defective. For a
manufacturer of a mass-production item, the tolerance interval is designed

for a quality assurance problem. For a production lot, the manufacturer
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knows that unless a proportion, saying =y, of this lot is acceptable in the
sense that the corresponding items are non-defective, he will lose money
in this production. In practice, the manufacturer further expects a process
that, in the long run, he or she will have lots of production not losing money
at least a percentage, saying qo, of the time. If this is true, the manufacturer
is guaranteed that, in the long run, he or she will have lots of production
of proportion v or more conforming to specifications at least 100gy% of
the time. The tolerance intervals are widely used in quality control and
related prediction problems to monitor manufacturing processes to ensure
product compliance with specifications, etc. An important application of
the tolerance interval is to examine if the manufacturer’s expectation is
accomplished.

We summarize the application of tolerance interval for predicting the
manufacturer’s confidence into three steps:
(a) The first step is to set up a hypothesis. Suppose that the characteristic
variable has a probability density funetion.f(z,6). The common purpose to
construct the tolerance intervalis to test the fellowing hypotheses:

USL

USL
Hy : / f(z,0)de <~ vs. Hy: / f(z,0)dz > ~, (1.1)
LSL LSL

(see Goodman and Madansky (1962) for reference). In fact, a level « test
for this hypothesis tries to answer if there is at least a proportion 7 of the
population conforming to specification limits with a confidence level 1 — .
(b) The second step is to construct the tolerance interval as a test statistic.
Suppose that we have a random sample X = (Xq,..., X;,)’ from the distri-
bution of the characteristic variable. The pioneer article by Wilks (1941)
introduced a y-content tolerance interval with confidence 1—« as an interval
(T1,T3) = (t1(X),t2(X)) that satisfies

Py{Py(Xo € (T1,T5)|X) >~} >1—afor O (1.2)

where © is the parameter space and X, represents the future observation
with the same distribution. A vast literature on developing tolerance inter-
val has been proposed (see for example Wilks (1941), Wald (1943), Paulson



(1943), Guttman (1970) and, for a recent review, Patel (1986)). Comparing
tolerance intervals based on criterion of expected length is the most popu-
larly used selection technique. For normal tolerance interval, Eisenhart etc.
(1947) constructed the shortest one. With the appealing property of short-
est length, it is now popularly implemented in manufacturing industry and
introduced in engineering texts. This criterion has also been a guide line
for developing regression tolerance interval (see Goodman and Madansky
(1962), Liman and Thomas (1988) and Mee et. al. (1991)).

(¢) The third step is to set up a rule for hypotheses in (1.1) based an observed
tolerance interval. Let (¢1,%2) be the observation of a 7y-content tolerance
interval at confidence 1 — a = gg. The test for hypotheses Hy vs Hy of (1.1)
is:

We reject H if (t1,t2) C (LSL,USL). (1.3)

When Hj is rejected, statistically we are 100(1 — )% sure that at least
1007% of the population is conforming to the specification limits. So, in a
long run, we will have lots having:at least proportion 7 of the distribution
conforming to the specification limits at least a percentage 1 — a of the
time. With the interest of resolving the manufacturer’s question, it is also

generally making an extending conclusion as the following:

When Hj is rejected, the lot of product is acceptable
because we have confidence of a reasonably large value
that at least 1007% of the population is
conforming to specification limits

(1.4)

where Papp (1992) further interpreted that the reasonably large value is
1 —a. For other references, see Bowker and Goode (1952), Owen (1964) and
Schilling (1982). Our interest concerns the question: When a sample data
support to reject Hp, is making the extending inference in (1.4) appropriate?

The manufacturer wants to see if there is proportion 7 of acceptable prod-
ucts with a reasonable large confidence go. Probabilitically it is known that
guaranteeing proportion 7 of the population conforming to the specification
limits is not guaranteeing proportion v of the products in a lot or even the

process conforming to the specification limits. Is it true that the prediction



of reasonably large confidence 1 — « for tolerance interval indicates a rea-
sonably large confidence ¢y for the manufacturer? We concern this question
since manufacturers want to assure a good chance to have lots accepted
when lots are produced at permissible levels of quality. On the other hand,
it is also important for the consumer to see if there is irregular degrada-
tion of levels of process quality in submitted lots. Henceful, any technique
used for this prediction should be able to protect the benefits of both the

consumer and manufacturer.

With setting that the characteristic variable of a product obeys some
fixed probability distribution, the confidence that there is proportion « or
more non-defective items, i.e., conforming to specification limits, is com-
pletely determined by the underlying distribution and the lot size, which
is an unknown constant involving unknown parameters. The construction
of tolerance interval for solving the manufacturer’s problem aims to predict
this unknown confidence. However, the tolerance interval in (1.2) is con-
structed primarily for the confidenceithat!the interval contains a proportion
v of the distribution. There may exists-a-big discrepancy between the re-
sulted proportion v of the sample space and the proportion v of product lot.
The size of discrepancy may be determined from the underlying distribution

and the lot size, however, it is+desired to discover.

The aim of this paper is to study this discrepancy and investigate if there
is an alternative technique that is promising for predicting the manufac-
turer’s confidence. We first explicitly formulate (in Section 2) the manu-
facturer’s unknown confidence in terms of distribution parameters and the
lot size. With this formulation, it provides a room for statistical inferences
for this true confidence. Next, we study (in Sections 2 and 4) the power
of the test using the tolerance interval to detect if there is a reasonably
large confidence qp. We will see that the tolerance interval leads to pre-
dicted confidence too optimistic in way that it is higher much more than
the true one when the distribution parameters are known. On the other
hand, when the unknown parameters are unknown the predicted confidence

is too conservative in the way that its predicted confidence is lower much



smaller than the true one. This verifies that the use of tolerance interval to
predict the manufacturer’s confidence is not appropriate. Third, we will in-
troduce a point estimation technique (in Section 5) for prediction of the true
confidence which provides a new approach for answering the manufacturer’s
question. We then further investigate the power of detecting the manufac-
turer’s confidence through this new technique which leads to very promising
results. Fourth, one observation for the inefficiency of the tolerance inter-
val in detecting the manufacturer’s confidence is that this interval does not
use the information of lot size which represents an ancillary statistic in the
statistical model. This provides another evidence that ancillary statistic is

important in several statistical inference problems.

2. Formulation of Confidence and an Evaluation of Tolerance In-
terval When Parameters Are Known

Let X be a random variable, representing the characteristic of a product
from a manufacturing process, haying'adistribution. There are production
lots produced from this process.  Forssimplicity, the lots are all assumed
to have the same size k. We want to See' if there is confidence gy that
there is proportion 7 of products in lets conforming to specification limits
{LSL,USL}. To evaluate this, we have‘a‘randem sample Xy, ..., X, from
the same process to evaluate the'manufacturer’s confidence. We need first
introduce appropriate criterions for evaluation of a technique for this pur-
pose. We consider its ability in correctly identifying the true confidence for
reducing the following two errors:
(a) The first error is that the inferenced confidence is much higher than the
true confidence. In this situation, the resulted confidence is too optimistic
for the manufacturer.
(b) The second error is that the inferenced confidence is much lower than the
true confidence. In this situation, the resulted confidence is too conservative
for the manufacturer.

Before consideration of any evaluation, let’s formulate the framework of

the statistical model we want to consider. We consider a manufacturing



process that the products forms a sequence of independent and identically
distributed random variables from a distribution with distribution function
Fy. We are interesting to see if a production lot of size k from this process
is with proportion 7 conforming to the specification limits {LSL,USL}.
With this purpose, we have a random sample Xj,..., X,, drawn from this
process for prediction. This random sample of size n is the only observable
variables.

We first introduce a formulation of the true confidence. Let X be a
random variable having distribution function Fy with probability density
function f(z,0). Then the item (product) reliability representing the prob-

ability that an item is non-defective is

USL
Pivom(0) = /L _ f@.0)dz = Fy(UST) = Fy(LSI) (2.1)

where Fy is the distribution function. Suppose that the lot size is k (usually a
large number). For this production lot, the number of acceptable products
is with binomial distribution b(kyPstem (0)):r;Then the true confidence for

having proportion v of production lot eonforming to specification limits is

k
q= i:z[:kﬂ (f) Pitom @) (L — pigem (0))F " (2.2)
Treating g as a function of pjzen (0)511 =g has the same properties as the
operating characteristic (OC) curve. However, 1 —¢q and OC curve are differ-
ent since OC curve doesn’t involve lot size k. Since confidence function q is
increasing in item reliability pizem (€), the interest of the manufacturer then
is to see if the true item reliability makes ¢ larger or equal to a prespecified
value.

We assume that the manufacturer expects to have confidence go. Then,
when a lot of production is with ¢ > ¢o this lot attains the manufacturer’s
expectation. In this situation, in the long run, it will accept lots having at
least proportion v acceptable products at least a proportion ¢y of the time.
The true confidence ¢ often relies on the unknown parameters involving

in the distribution of the characteristic such that it is also unknown to be
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predicted. The tolerance interval was designed to do this through the stated

rule of the hypothesis testing. We will study the appropriateness of using

the tolerance interval to detect the confidence with a simple situation.
Suppose that now X has a normal distribution N (p,0?) where p and o

are both known. From Wilks (1941), the natural tolerance interval as
(1~ 213201+ 2130) 2.

is a y-content tolerance interval with confidence 1. It is a 100% confidence

tolerance interval. Suppose that we further assume that
(LSL,USL) = (u—z%lcr,,u—i-z%lcr). (2.4)

It is generally accepted the statement that when an item reliability 100v% is
required, the production lot satisfying (2.4) should be accepted (see Schilling
(1982)) and we may conclude that with 100% confidence that there is pro-
portion 7 of acceptable products in lots. Is this conclusion really true? With
lot size k, the true confidence of this préduction lot with proportion v or

more acceptable products is

k

= <]:> - )

i=fkn]
We assume that the manufacturer. requires‘item proportion v of acceptable
products which, in this case of (2.4), is identical to the item reliability. We
list the corresponding values of true confidence for v = 0.9, 0.95 and several

values of k.

Table 1. True confidence q for vy-content acceptable products

~y k= 100 1,000 10, 000 100, 000
0.5 0.5397 0.5126 0.5039 0.5012
0.6 0.5432 0.5137 0.5043 0.5013
0.7 0.5491 0.5155 0.5049 0.5015
0.8 0.5594 0.5189 0.5059 0.5018
0.85 0.5683 0.5217 0.5068 0.5021
0.9 0.5831 0.5265 0.5084 0.5026
0.95 0.6159 0.5375 0.5118 0.5037




We have several conclusions drawn from the results in the above table:

(a) Although in all cases of v and lot size the confidences are greater than
0.5, but are all less than 0.65. In this situation that the tolerance interval co-
incides with the specification limits, the manufacturer, in the long run, may
accept lots having at least proportion 7 acceptable products guaranteeing
only proportion ¢ less than 70% of the time. This result is not a surprise.
Knowing the coverage interval only helps in knowing the item reliability
that, in fact, doesn’t improves in enlarging the true confidence.

(b) The true confidence ¢ relies on lot size k, specification limits and the
true item reliability p;tem (6) no matter if the parameter 6 is known or not.
(c) For a given item reliability p;tem (6) = 7, the true confidence ¢ is increas-
ing in lot size. On the other hand, for a given lot size, the true confidence
decreases when < increases. Furthermore, when the lot size increases to
infinity 400, the true confidence ¢ approaches to 0.5.

(d) Tt seems that it is too optimistic by using the tolerance interval to
interpret the confidence for that themanufacturer may accept lots having

at least proportion v acceptable products.

Example 1. Schilling (1982)yconsidered a-case that the characteristic
obeys the normal distribution IV (10, 1)which indicated that (8.04,11.96) =
(10 — 1.96,10 + 1.96) = (8.04,11.96) is a v =0.95-content tolerance inter-
val with confidence 100%. The autherthen assume that the specification
limits are LSL = 8.0 and USL = 12.0. Since the tolerance interval is fully
contained in the limits, he or she then claim that the product lot has to be
accepted. However, the probabilities that there are more than proportion

0.95 of products conforming to the limits is

k B\ .
g= Y <Z> Y (1= y)F
i=kx0.95
which given ¢ = 0.7789,0.9844,1 when £ = 1000, 10,000, 100, 000 respec-
tively. Let’s consider the case that the specification limits be LSL = 8.02
and USL = 11.98. We may see that the confidences for the same k’s are
0.6676,0.8642,1. [
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Let the proportion of acceptable products requiring by the manufacturer
be fixed with +. It is interesting to see, when the specification limits are
wider or shorter than the tolerance interval of (2.3), the performances of the
true confidence. From (2.2), any production lot has confidence a positive
value when its item reliability pjten, (@) is in interval (0,1). That is, no
matter how small the item reliability is, this process has chance to produce
proportion 7 acceptable products in a lot and, no matter how large (<
1) the item reliability is, this process has chance to produce very small
proportion acceptable products in a lot. Then, it is interesting to investigate
the sensitivity of the confidence as a function of the item reliability. We
set some values of pitem (0) and proportion « and list the corresponding

confidences ¢ in Table 2.

Table 2. Confidence ¢ for y-content acceptable products

Ditem (0) v=0.8 0.85 0.9 0.95 0.99

0.7 4.986e — 13 0 0 0 0

0.75 1.089e — 4 8.770e — 15 0 0 0

0.8 0.5189 2.644e - 5 0 0 0

0.85 0.9999 0.5217 2.038¢ — 06 0 0

0.9 1 0.9999 0.5265 2.995e — 09 0

0.95 1 1 1 0.5375 2.797e — 12
0.99 1 1 1 1 0.5830

We have several conclusions drawn from Table 2:

1. When pjzem (0) is moderately below v, the confidence ¢ is approximately
equal zero and when p;tem (0) is moderately larger than +y, it is approximately
equal one.

2. When item reliability p;tem () is -y or lesser, the corresponding confidence
q is about equal or smaller than 0.6.

3. For given a value of 7, the curve representing the confidence as a func-
tion of pitem (0) is started from zero and rapidly climb up when p;zen, (6) is
increasing.

4. The interest is that when the true confidence ¢ may be moderately large

to ensure proportion v or more acceptable products in a lot. From the table,
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it is the case that item reliability pitem (6) is larger than «. This tells us how

to improve the process.

3. Minimum Item Reliability for Achieving Proportion v Accept-
able Products with Confidence ¢

The use of tolerance interval to predict the manufacturer’s confidence is
shown to be too optimistic when the parameters involved in the underlying
distribution are known. For case that parameters are unknown, can the
classical tolerance intervals be also too optimistic or on the opposite way?
To investigate this question, we need to prepare some further results on the
relation between item reliability and manufacturer’s confidence q.

Recall that the manufacturer expects to have proportion v or more ac-
ceptable products with confidence go or more. Let’s define the minimum
item reliability that guarantees proportion v acceptable products with con-

fidence go. That is, p4, satisfies

k

> <lf> (Bya0)' (L= Dya)” ™" = qo- (3.1)

i=[kv]

Consider that the product’s characteristic variable has a distribution func-
tion Fy. Then, the manufacturer may expect to. have proportion v accept-

able products with confidence gg-only if the'item reliability satisfies
pitem(G) = FQ(USL) — FQ(LSL) Z p’YtIo' (32)

For a given pairs (v, qo), we list the item reliabilities to achieve exactly

proportion v of acceptable products with confidence ¢q in the following table.

Table 3. Minimum item reliability (k=1,000)

q v=0.8 0.85 0.9 0.95 0.99
0.8 0.8099 0.8587 0.9071 0.9549 0.9918
0.85 0.8123 0.8608 0.9089 0.9562 0.9923
0.9 0.8152 0.8634 0.9111 0.9577 0.9929
0.95 0.8196 0.8673 0.9142 0.9599 0.9938
0.99 0.8277 0.8744 0.9200 0.9638 0.9952




11

Suppose that the characteristic variable of interest obeys a normal dis-
tribution N (u,02). Then item reliability, the probability that an item con-
forming to specifications, is

USL 4

pitem(lfwg):/ e 222 dx
L

SL 2no

and then the true confidence to have proportion v acceptable products is

q::§:<§>mwﬂmgﬂl—demﬂﬁ”

i=[kv]

)

k
S (@)(q)(USL—p,)_q)(LSL—p,))i(l_(@(USL—M)_@(LSL—M

(4 o g g o

i=[k~]
We denote the minimum item reliability as p,q. A production lot to
have proportion v acceptable products with confidence ¢y requires that

USL—u)_(I)(LSL—p,

> 3.3
g ) 2 (33

pz’tem(ﬂa 0-) = (I)(

where p,4, may be found from:Table 3:

One question very interesting.is how short.the specification limits that
guarantees the minimum item reliability. Let thespecification limits be the
special form {LSL,USL} = {f~ toyp+1o} and we denote I, as the [ so

that the item reliability produce itemreliability exactly as
Prao = P — 11,0 < X < 1+ lyge0).
We list [4, in this design in the following table.

Table 4. Specification limits (LSL,USL) = (p—lyq,0, tt+1,4,0) to achieve
item reliability exactly equal to p,q, (k=1,000)

q v=0.8 0.85 0.9 0.95 0.99
0.8 1.3103 1.4710 1.6807 2.0043 2.6451
0.85 1.3172 1.4789 1.6898 2.0161 2.6672
0.9 1.3263 1.4889 1.7013 2.0309 2.6953
0.95 1.3397 1.5037 1.7184 2.0531 2.7380
0.99 1.3649 1.5317 1.7509 2.0954 2.8212
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This table will be used in next section to study the power of the classical

tolerance interval in detection of manufacturer’s confidence.

4. Power Study for the Classical Tolerance Intervals

Suppose that we have X7i,..., X,, representing a random sample for the
characteristic variable of interest and the specification limits for the charac-
teristic are { LSL,USL}. Let (Ty,T3) be a tolerance interval of Wilks (1941)
constructed from the random sample. To test the hypotheses of (1.2), we
consider the popularly rule ( see Bowker and Goode (1952)) setting: re-
jecting Hy if (T1,T3) C (LSL,USL). Following the classical evaluation of
hypothesis testing, we may analogously define a power function, in terms of

specification limits, as
m(LSL,USL) = Py((Ty,T>) C (LSL,USL)), (4.1)

which, from Papp(1992), provides the probability of concluding that there
is proportion v or more acceptablesptrodiicts, in a lot with confidence 1 — «
at the specified specifications. sBasicallys(4.1)"is to evaluate the rule that
we conclude that there is proportion 4 or more-acceptable products with
confidence gy when (T1,T3) € (LSL;USL) occurs. Hence, we expects a
tolerance interval to have lower power w(LSL,USL) when pitem () < Pryq,
is true and large power when p;tem @)=y With g0 = 1 — a. We want to
simulate the powers for the Eisenhart et al.’s tolerance interval for several
combinations of specification limits. We also consider a Monte Carlo study
with replication number m. By letting (LSL,USL) = (—b,b), the simulated

power of a tolerance interval (T3, T5) is defined as

m

LSO ) € (<b,b) (4.2)

™= —
m

j=1
where (,t}) is the observation of (T, T5) from the jth sample. The power
of (4.2) simulates the chance of (4.1) that the tolerance interval (T4, T5)

may conclude that the production lot includes a proportion « of acceptable

products with confidence 1 — a.
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To study (4.2), suppose that we have a random samaple X1, ..., X,, drawn
from a distribution normal distribution N(u,0?) where both p and o are
unknown. The general form of a prediction interval for a future normal

random variable is of the form

(X —m*S, X +m*S) (4.3)

where the 100(1 — )% confidence interval (prediction interval) is the form
with m* = t,_a (n —1),/1+ = andiwhete t;_ s (n — 1) represents the 1 —
5 th quantile of the central ¢-distributienswith degrees of freedom. For the
Wilks’ tolerance interval, Eiseénhart et al (1947) developed the shortest one
which is now the most popular version‘of tolerance interval to deal with the
manufacturer’s problem when the characteristic variable does obey a normal
distribution. We select values m™* from.the table in Eisenhart et al. (1947).
With replication m = 100, 000, we generate random sample of size n from
distribution N(0,1). Let z; and s]2 be the sample mean and sample variance
for the jth sample. We compute this tolerance interval and study its powers
of (4.2) with several sample sizes n = 20, 30,50 and 100 and various values

b. The simulated results are listed in Table 5.

Table 5. Powers of the minimum-width tolerance intervals ((v,1 — «) =
(0.9,0.9))
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Limits =20 n =30 n =50 7 =100
(k) (2.152) (2.025) (1.916) (1.822)
b=14 0.0042 0.0024 0.0006 0.0000
g = 1.371e — 08 : : : :
b=15 0.0107 0.0080 0.0041 0.0016
¢ = 0.00071 : : : :
b=16 0.0237 0.0217 0.0187 0.0151
g = 0.17899 : : : :
b= 1.645
e 0.0325 0.0330 0.0328 0.0341
b=1.7013 0.0480 0.0542 0.0646 0.0863
q=20.9
b=18 0.0834 0.1064 0.1484 0.2536
¢ = 0.9995 : : : :
b ?8 0.2129 0.3032 0.4714 0.7657
b—22
e 0.4013 0.5757 0.8067 0.9790
b=25
e 0.7118 0.8842 0.9860 0.9999
3.0
Hp 0.9649 0.9970 1.0000 1.0000
b ?1’8 0.9986 0.9999 1.0000 1.0000

According to Papp(1992), when a «y-content tolerance interval with confi-

dence 1 — «v is contained in the specification limits, we may claim that there

is percentage v of acceptable products with confidence 1 — a. We then have

several conclusions drawn from the simulation results in above table:

(a) When the specification limit interval (—b, b) is wider in sense that value b
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is increasing the power for the tolerance interval to detect the manufacturing
process to have confidence 1 — « is increasing.

(b) When b < 1.7013 the true confidence for a y-content acceptable products
is less than 1—a = 0.9. In this situation, the powers of this tolerance interval
in all cases of sample size are all less than 0.05. That is, it is fewer than
0.05 to claim to have confidence 0.9.

(c) When b > 1.7013 the true confidence for a y-content acceptable products
is greater than or equal to 1 — o = 0.9. In this situation, although the
powers are increasing when b increases. However, they are still with very
low percentages for cases such as 1.7013 < b < 2.0 to claim that it is a
process of v = 0.9-content acceptable products with confidence 1 —a = 0.9.
This is a plan too conservative to both the consumer and manufacturer.
(d) If, in the long run, there is a large proportion that the tolerance inter-
vals rejected the null hypothesis Hy, the process must be in well control so
that the specification limit interval (LSL,USL) is wide enough to have the
tolerance intervals contained in the interval of specification limits.

(e) When there is larger chancge that_the tolerance interval will claim to
have percentage v of acceptable products with confidence 1 — . The actual
confidence often is larger far from 1 =~ a@. For-example, b = 2.5 is the
situation that there is good chance to eclaim the manufacturer’s expectation
with confidence 0.9, however, the ¢enfidenee is approximately near 1. This
indicates that detection of manufacturer’s question by the tolerance interval
is too conservative.

Alternatively Huang, Chen and Welsh (2005) showed that

- S S S

(X—tl_%(n—l,ﬂz%l)%,X+t1_%(n—1,\/7_Lzl_j;1)%) (43)
is also a 7 content tolerance interval with confidence 1 — a where ¢5(¢, m)
is the )-th quantile of noncentral t-distribution with degrees of freedom /
and noncentrality parameter m. The interest is that this tolerance inter-

t1_%(n—17\/521+77) .
NG , we list the
simulation results of the powers of (4.1) for this tolerance interval in Table

5.

val is explicitly formulated. By letting k; =
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Table 6. Power of coverage-interval tolerance intervals ((y, 1—a) = (0.9,0.9))

Limits n = 20 n = 30 n = 50 n = 100
(ky) (2.3960) (2.2198) (2.0649) (1.9265)
b=14 0.0009 0.0004 0.0001 0.0000
b=1.5 0.0015 0.0009 0.0002 0.0000
b=1.6 0.0065 0.0056 0.0041 0.0024
b=1.645 0.0098 0.0088 0.0081 0.0063
b=1.7013 0.0154 0.0160 0.0162 0.0206
b=1.8 0.0291 0.0337 0.0477 0.0868
b=2.0 0.0887 0.1288 0.2325 0.5043
b=2.2 0.2023 0.3255 0.5669 0.9071
b=125 0.4701 0.6979 0.9273 0.9991
b=3.0 0.8675 0.9785 0.9997 1.0000
b=3.5 0.9878 0.9996 1.0000 1.0000

Let’s investigate the probability that Hy will be accepted when there does

exist a v coverage interval contained in specification limits.

m

Z (Px, {(t1, to) 23"y andi(ty, t2) C

(—b,b)).

Table 7. Power with v content aceeptable products for the minimum-width

tolerance intervals ((v, 1 — «)=(0.9,0:9))
Limits n = 20 n = 30 n = 50 n = 100
(k) 2.152 2.025 1.916 1.822
b=1.645 0.0000 0.0000 0.0000 0.0000
b=1.8 0.0225 0.0373 0.0704 0.1589
b=2.0 0.1270 0.2120 0.3750 0.6661
b=22 0.3052 0.4748 0.7033 0.8797
b=25 0.6084 0.7845 0.8842 0.9001
b=3.0 0.8608 0.8965 0.8983 0.9002
b=3.5 0.8952 0.8989 0.8983 0.9002
b=4.0 0.8965 0.8989 0.8983 0.9002
b=4.5 0.8966 0.8989 0.8983 0.9002

Table 8. Power with v content acceptable products for the coverage-interval

tolerance intervals ((y,1 —«a) =

(0.9,0.9))
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Limits n =20 n =30 n = 50 n =100
(k) 2.3960 2.2198 2.0649 1.9265
b=1.645 0.0000 0.0000 0.0000 0.0000
b=1.8 0.0092 0.0149 0.0268 0.0659
b=2.0 0.0598 0.1036 0.2052 0.4808
b=2.5 0.4317 0.6626 0.8986 0.9766
b=3.0 0.8279 0.9473 0.9725 0.9773
b=35 0.9504 0.9683 0.9727 0.9773
b=4.0 0.9630 0.9686 0.9727 0.9773
b=45 0.9634 0.9686 0.9727 0.9773

5. Confidence Estimation and Its Power for a Process of y-Content
Acceptable Products

Let the interest of characteristic be a random variable having a distribu-
tion function Fp and the specification limits are { LSL,USL}. We also have
a random sample X7, ..., X, drawn from this underlying distribution.

Let 6 be an estimator of the unknown parameter 6. Replacing Fy by Fj
and from (3.1), we have an estimator-of the:probability of a product to be

acceptable as
Ditem = Ditem(0) = E;(USL) — E4(LSL).

For each (v, q), there is item reliability p,, such.that when pjter, = p.q iden-
tity of (3.1) holds. First we want to simulate the efficiencies of estimating
the item reliability piterm = p,q in Table 3.

Consider that we are dealing with the normal distribution N(u,o?). For
each (v, ¢) there is £.,, such that p,q = P(p—Llyq0 < X < p+L,40) (see Table
4). When the item reliability is p,, we may guarantee that the confidence
of a lot with proportion v products conforming in specification limits is q.
Our aim is to see if the estimate p;tem is efficient for estimating the true
reliability pitem = poq. Suppose that now this random sample is drawn from

a normal distribution N(y,?) and choose the classical estimators i = X
and 62 = §% = L3 (X, — X)2. We then have

USL - X (I)LSL—X'

5 ) — (T)- (5.1)

ﬁitem = (
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With the above process of parameter estimation, we perform this simula-
tion with replication m = 100,000 and sample size n = 30. Let ﬁ% be
the confidence estimate corresponding to the j-th, j = 1, ..., m, observation
Z1ij, ..., Tnj drawing from the standard normal distribution N(0,1) where we
have then (LSL,USL) = (—{q,%+q). Let P, be the estimate of the item
reliability at the jth replication. We then define the empirical average of

ietem reliability estimation as

m
_ 1 Z ~j
Pitem — E . pitem‘
J=1

In the following table, we display the simulated results of the averaging item
pitem

reliability and true reliability p,, in the vector form < (o)
vq

Table 9. Empirical average for the estimation of item reliability p,, when

the underlying distribution is normal (k=1,000, m=100,000, n=30)

q v=0.8 v =0.85 v=10.9 v=0.95 v = 0.99
0.8 0.8070 0.8547 0.9020 0.9497 0.9887
' (0.8099) (0:8587) (0.9071) (0.9549) (0.9918)
0.85 0.8093 0.8568 0.9039 0.9510 0.9893
' (0.8123) (0.8608) (0.9089) (0.9562) (0.9923)
0.9 0.8121 0.8594 0.9061 0.9526 0.9900
) (0.8152) (0:8634) (0.9111) (0.9577) (0.9929)
0.95 0.8167 0.8630 0.9094 0.9548 0.9911
' (0.8196) (0.8673) (0.9142) (0.9599) (0.9938)
0.99 0.8245 0.8700 0.9149 0.9588 0.9928
] (0.8277) (0.8744) (0.9200) (0.9638) (0.9952)
In the next, we consider the mean square error
1 &,
MSE = — Bl = D)’
m jz:;(pztem p'Y(I)

The simulated results are displayed in the following table.

Table 10. Mean square error for the Estimation of item reliability p;tem

when the underlying distribution is normal (k=1,000, m=100,000, n=30)
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q v=0.8 v=0.85 v=10.9 v =0.95 v = 0.99
0.8 0.0031 0.0025 0.0017 0.0008 1.08e — 4
0.85 0.0031 0.0025 0.0017 0.0007 1.0le — 4
0.9 0.0031 0.0025 0.0016 0.0007 9.09¢ — 5
0.95 0.0030 0.0024 0.0016 0.0007 7.85e — 5
0.99 0.0029 0.0023 0.0015 0.0006 5.68¢ — 5

From (3.2), we further have confidence estimator for a process of ~-

content acceptable products as

k

. kYN . . —i
q = Z < i ) pz’tem(l - pz'tem)k . (52)

i=[kv]

The estimation of the unknown confidence uses the estimation of unknown
parameters € and lot size where the latter one is an ancillary statistic.

Suppose that now this random sample is drawn from a normal distribu-
tion N(p,02) and choose the classical estimators i = X and 62 = S2 =
13" (X; — X)% We then have

USL — X LSL - X
bitem = (YRR,
e = (B X,
With this, we further have
k; r . . —
. k USL - X LSE~X ., USL—-X
i= Y (%) @ e e
i=[k7]
R (5.3

Let’s study the efficiency of confidence estimation for having a propor-
tion v or more acceptable products. Let’s first fix v = 0.9. We gener-
ate observation of a random sample from the standard normal distribu-

tion and then compute its sample mean z and sample standard deviation
s= (130 (2, —x)2)Y2. With specification limits (LSL,USL) = (£, ¢)

n—1
and k = 1,000, the confidence estimate for this sample is p. of (5.3) with X
and S be replaced by Z and s, respectively. We choose (pq,¢) from Table 4

that guarantees an exact y-content acceptable products with confidence q.
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With the above process of parameter estimation, we perform this simu-
lation with replication m = 100,000 and let ﬁ% be the confidence estimate
corresponding to the j-th observation zy,...,z,; for j = 1,...,m. Now we

are interesting in the following average confidence,
1 m
by =—> P
7j=1
The following table displays the simulated results of average confidence.

Table 11. Simulated averaging confidences (k=1,000, m=100,000)

Spec L n = 20 30 50 100
=14 0.1664 0.1199 0.0682 0.0217
=15 0.2790 0.2459 0.1915 0.1209
[=1.6 0.4219 0.4085 0.3916 0.3621
[ =1.7013 0.5697 0.5902 0.6245 0.6732
=18 0.7043 0.7504 0.8075 0.8881
[ =2.0 0.8932 0.9376 0.9758 0.9964
=22 0.9725 0:9910 0.9986 0.9999
[=3.0 0.9999 1 1 1

6. Power Study and Robustness of Lot Size for Confidence esti-
mation Technique

We have seen that the toleramnce interval is niot really appropriate in de-
tecting the manufacturer’s confidence for having a proportion v of acceptable
production lots for that it is too optimistic when the parameters involved
in the distribution are known and it is too conservative when the param-
eters are unknown. It is then interesting to evaluate the manufacturer’s
confidence through the estimate of the unknown confidence. Consider a
simulation that we randomly select observations from the standard normal
distribution. We consider replication m = 100, 000, v = 0.9 and confidence
go = 0.9. By letting ¢’ as the jth estimate of the confidence, j = 1,..., m.

We define the power of this point estimator as

1 »
m=—> I(@ > q).
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The following table list the simulation results of this study.

Table 12. Power for the Estimation of the confidence for having a pro-
portion v or more acceptable product when the underlying distribution is
normal (k=1,000, m=100,000)

Spec L n = 20 30 90 100

[=14 0.1180 0.0744 0.0322 0.0049
1.5 0.2161 0.1682 0.1087 0.0429
1.6 0.3344 0.3061 0.2653 0.1927
1.7 0.4802 0.4838 0.4864 0.4850

1.7013 0.4890 0.4928 0.4959 0.5062
1.8 0.6208 0.6555 0.7060 0.7849
1.9 0.7460 0.7999 0.8643 0.9445
2.0 0.8455 0.8978 0.9518 0.9916
2.2 0.9548 0.9821 0.9967 0.9999
2.5 0.9966 0.9995 1.0 1.0
3.0 1.0 1.0 1.0 1.0

We have several conclusions that may be drawn from the results in the above
table:
(a) For every given sample size n, theléfficiency is strictly increasing in the
specification limit [. This fulfills-our expectation:
(b) In the setting v = 0.9 and gy =,0.9'by the manufacturer, [ = 1.7013 guar-
antees to have proportion v or more acceptable products with confidence
exactly ¢ = 0.9. In this situation, the efficiencies are about 0.48. There is
probability 0.48 that we can detect that the lot of interest is acceptable. In
Table 5, we see that the tolerance interval techniques can observe this fact
with chance less than 0.1.
(¢) When the specification limit [ is a bit wider we have large chance to
detect that the lot is acceptable. Comparing this table with Table 5, we
see that this technique of confidence estimation is better than the tolerance
interval technique casewise.

For this confidence estimation technique, it may be argued that the lot
size k may not be correctly predicted or counted and we may have, especially
when the size is huge, only an approximate number. Then, it is interesting

to see how robust the estimation technique in its estimated confidence when
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the lot size has not been correctly used. We design a simulation computing
the average confidences with various large sizes to see its sensitiveness in

terms of lot size.

Table 12. Simulated averaging confidences for some large lot sizes

Spec L n = 20 30 50 100
k = 100,000
=15 0.2645 0.2272 0.1715 0.0918
[ =1.6474 0.4756 0.4798 0.4775 0.4808
[ =1.6482 0.4783 0.4788 0.4817 0.4823
[ =1.6507 0.4787 0.4808 0.4842 0.4894
[=1.8 0.6935 0.7389 0.8030 0.8892
[ =2.0 0.8905 0.9365 0.9775 0.9979
=25 0.9981 0.9998 1 1
k = 300,000
=15 0.2669 0.2281 0.1739 0.0947
[ =1.6474 0.4787 0.4858 0.4874 0.4858
[ =1.6482 0.4807 0.4843 0.4863 0.4906
[ =1.6507 0.4850 0.4901 0.4943 0.4996
=18 0.6989 0:7440 0.8090 0.8948
=20 0.8910 0.9375 0.9780 0.9982
=25 0.9985 0.9999 1 1
k = 500,000
=15 0.2723 0.2307 0.1745 0.0965
[ =1.6474 0.4802 0.4825 0.4872 0.4892
[ =1.6482 0.4827 0.4848 0.4898 0.4939
[ =1.6507 0.4865 0.4897 0.4963 0.5028
=18 0.6978 0.7420 0.8080 0.8963
[ =2.0 0.8921 0.9387 0.9783 0.9981
=25 0.9984 0.9998 1 1

7. Concluding Remarks

We have several remarks illustrating our further concern and clarification
of our study:
(a) We show that the use of tolerance interval to evaluate for the manu-
facturer the confidence for a proportion v of production lot conforming to
specifications is not appropriate. This does not imply any in-appropriateness

for other purposes.
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(b) Concerning confidence ¢ as a parameter in terms of unknown parameters
0, there are confidence interval and hypothesis testing that could be devel-
oped to infer the unknown g. Concerning the problem, if a process that may
generally produce products with confidence g a proportion v of production
lot conforming to specifications, we may want to test the hypothesis that if
one other process may also produce the same quality.

(c) The inefficiency of the classical tolerance interval for detecting the man-
ufacturer’s confidence partly comes from the fact that it uses only the infor-
mation contained in the random sample. The lot size which is an ancillary
statistic in this case is an important information that hasn’t been considered
in construction of tolerance interval. This is an example that an ancillary
statistic provides important information for statistical inference.

(d) There are tolerance interval-like technique for deciding if we will accept
a production lot (see Kirkpatrick (1970), Owen and Hua (1977), Weingarten
(1982) and Mee (1984)). This technique does not employ the information
of lot size and has not been popular,in practical use. Hence it is not in our

study.
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