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有序事件之無母數存活分析 

 

學生：吳侑峻        指導教授：王維菁博士 

 

國立交通大學統計學研究所 

 

摘 要 

在論文中我們針對連續事件的間隔時探討聯合分配函數的推論方法。文獻

中對這類的問題有兩個不同的處理方式。傳統的方法以隨機過程的角度切入，

並對狀態的轉移率做模式的假設。近十年來有學者嘗試用多維存活分析的技巧

處理此類的問題。 

我們選出兩種無母數的估計方法並透過模擬比較其差異。第一個方法由

Frydman 所提出 (1992)，在馬可夫模型下建構無母數最大概似估計量。第二個

方法是由 Wang and Wells (1998) 年提出，將感興趣的二維存活函數拆解成乘

積極限 (product limit) 的形式，並透過加權的方法處理相關設限的問題。後

者不需要任何模型假設。 

透過模擬我們驗證了無母數最大概似估計量在資料符合假設時具有較好的

效度，然而假設錯誤時則會出現偏誤。第二個方法因未用到任何模型的假設，

所較為穩健。 

 

關鍵詞:馬可夫模式，相關設限，無母數最大概似估計量 
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Bivariate Survival Estimation for Successive events 

 

Student：YuChun Wu       Advisors：Dr. Weijing Wang 

 

Institute of Statistics 
National Chiao Tung University 

 

Abstract 

Consider nonparametric analysis for successive events in which the joint 

survival function of the duration times is of major interest. Such a phenomenon is 

usually investigated under the framework of stochastic processes in which the 

transition rates are modeled by Markov-related properties. In the past decade, some 

authors have applied techniques of multivariate survival analysis to handle the 

problem.  

In the thesis, we compare two different nonparametric estimators which are 

constructed based on different ideas. One estimator was proposed by Frydman (1992) 

who considered nonparametric MLE under a Markov assumption. The other 

estimator was proposed by Wang and Wells (1998) who suggested to decompose the 

target function in terms of estimable quantities. The latter does not make any model 

assumption. Via simulations, we want to verify our conjecture. Briefly speaking, we 

suspect that the NPMLE will be more efficient if the Markov property holds but will 

be biased if this assumption is violated. On the other hand, the estimator proposed 

by Wang and Wells (1998) should be more robust since it does not require any 

model assumption.  

Key words: decomposition, dependent censoring, Markov model.   
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Chapter 1 Introduction 

Nonparametric analysis of the bivariate survival function has been a popular 

research area. Let  be a pair of failure time variables. Several estimators of 

 have been proposed including the ones proposed by Campbell & 

Földer (1982), Dabrowska (1988), Prentice and Cai (1992), Lin & Ying (1993) and 

Wang and Wells (1997), just to name a few. In general situations, where no addition 

information about the path is given, the nonparametric MLE approach can not 

produce a reliable estimator in presence of censoring. Specifically this approach can 

estimate the mass of a given region that maximizes the likelihood function but the 

distribution within the region can not be determined without additional assumptions. 

),( 21 TT

),Pr( 21 tTsT >>

State 1 
AIDS 

State 2 
Death 

State 0 
HIV Infection 

 

 

 

In the thesis, we consider a special situation such that the path information is 

know

Figure 1-1 Evolution of AIDS 

n. Consider an example of AIDS, depicted in Figure 1-1, in which T  

represents the time from HIV infection to AIDS and represents the time from 

AIDS to death. Traditionally this kind of phenomenon was analyzed under the 

framework of stochastic processes. Specific structures based on Markov or 

semi-Markov properties are often imposed on the process. For example, Frydman 

(1992) modeled the evolution of AIDS by a Markov process and then derived the 

nonparametric MLE when the data are interval censored. An alternative approach 

suggested to decompose ),Pr( tTsT >>  into estimable quantities and then plug in 

1

2T  

21
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the estimator of each component. This approach has been taken by Visser (1996), 

Wang and Wells (1998) and Lin, Sun and Ying (1999) based on different 

decompositions. In the thesis we discuss the estimator proposed by Wang and Wells 

(1998) who suggested to decompose the joint survival function as follows:  

)|Pr()Pr(),Pr( 12121 sTtTsTtTsT >>>=>>

,|),[Pr(1{)Pr( 221 uTduuuTsT
tu

≥+∈−⋅>=

 

)}1 sT >∏
≤

.   (1.1) 

Note that each component in the right-hand side can be estimated separately. In 

presence of censoring, the challenge of statistical inference comes from the fact that 

 is subject to dependent censoring by . That is, the larger the value of , the 

more likely that  will be censored.  

2T 1T 1T

2T

The major goal of the thesis is to compare the two approaches proposed by 

Frydman (1992) and Wang and Wells (1998). The former is constructed based on a 

Markov assumption which allows for the use of nonparametric MLE. The latter is 

derived without making any model assumption. When the Markov property holds, it 

is expected that the former estimator should yield better performance. However 

when this assumption fails, the latter approach should still perform reasonably since 

it is more robust. We aim to examine our conjecture via simulations. 

Here is the outline of the thesis. In Chapter 2, we will introduce some common 

model structures under the framework of stochastic processes. More detailed 

discussions can be found in the book by Anderson et al. (1993). In Chapter 3, we 

review the two competing approaches, namely the methods proposed by Wang & 

Wells (1998) and Frydman (1992). Simulation results are presented in Chapter 4. We 

give some concluding remarks in Chapter 5.  
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Chapter 2 Review on Multi-state Models 

There are two ways of describing a process with multiple states. One approach 

adopts the framework of stochastic processes under which the transitions between 

the states are modeled. Specifically let )(tijα  be the transition rate from state  to 

state 

i

j  at time  and define the transition probability t

   = ),( tsPij ))(|)(Pr( isXjtX ==  

which measures the conditional probability that, given that a person is in state  at 

time , he/she will be in state 

i

s j  at time t  and  denotes the state number at 

time . Specifically we can write 

)(tX

t )(tijα  based on  as follows  ),t(sPij

)(tijα  = 
Δ

==Δ+
→Δ

))(|) t(Pr(lim
0

itXjX .  

The other approach takes the viewpoint of survival analysis in which the 

failure times between different random events are of interest. Let T  be the sojourn 

time of state i and = )  be the survival function of )(tS Pr( tT > T . The 

corresponding hazard function is given by  

)(tλ  = 
Δ

≥Δ+∈
→Δ

)|],[Pr(lim
0

tTttT  

    = ))(log( tS
t∂
∂

− .  

Note that under the framework of survival analysis, the variable of interest is often 

the length of survival time instead of the transition probability. 

The following sections introduce several multistate models. First, the simplest 

model is a model with two states and one irreversible path. Then we extend the 

situation that allows for j different paths but only one path will happen. Then a more 
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complex model with three states and two paths. The thesis will focus on the model 

with three states and one path.  

2.1 Two-state Model (The Classical Survival Framework) 

Figure 2-1 depicts a simple model with two states, namely “alive” and “dead”. 

There is only one path and the transition from state 0 to state 1 is not reversible. 

Here )(01 tα  denotes the be the transition rate from alive to death at time . Note 

that the phenomenon in Figure 2-1 actually falls in the classical framework of 

survival analysis. 

t

 

 

State 0 
Alive 

State 1 
Dead 

Figure 2-1 A simple two-state model 
 

= )(01 tα(t)λIn this simplest model, it follows that  which implies that the 

transition rate is the same as the hazard rate. The two approaches have no 

2.2 Competing Risks Model 

Figure 2-2 describes a competing risks model where a person can experience 

one of several dif

experience through one path. In this model, let the 

distinction.  

ferent causes to the absorbing state. However a subject can only 

)(0 tjα  be the transition rate 

from being alive to death due to cause j  for J,...,1=j . 
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Death cause #1 

Alive  
Death cause #J 

Figure 2-2 A competing risks model 
 

In survival analysis, it follows that the hazard function from state 0 to state j 

can be defined as  

)(tjλ  = [ ]
Δ

≥=Δ+∈

→Δ

)|,,Pr(lim
0

tTjBttT  

where B is type of causes. 

Let )(tλ  be the hazard rate escape from state 0. It follows that  

)(tλ  =  = ∑ . ∑
=

J

1
)(

j
j tλ

=

J

1
0 )(

j
j tα

The survival function of T can be written as  

 )  =  = = .  (tS )( tTP ≥ ∫ ∑
=

−
t

j
j duu

0

J

1
0 ))(exp( α ∫−

t
duu

0
))(exp( λ

Another useful measure in the context of competing risks is the cumulative 

incidence function. For cause j, the cumulative incidence function is defined as  

    = )(tFj ),Pr( jBtT =≤  

= ∫
=

= ≥
==

≥
tu

u uT
jBuTuT

0 )Pr(
),Pr()Pr(  

=   duuuT
tu

u
j )()Pr(

0
∫
=

=

≥ λ
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= .  ),0(0 tP j

Sometimes one may define the following random variable  

)()( jBIjBITTj ≠⋅∞+=⋅= .  

Notice that  is an improper random variable since it carries positive mass 

 at time . It follows that 

jT

)Pr( jB ≠ ∞ )Pr()( tTtF jj ≤=  but  

          Pr( .        ≠j > )tT ∫−
t

j u
0

)(exp( λ du)

The consequence of this property is that the relationship between a survival function 

and hazard rate no longer holds.  

2.3 Three-state Model with Two Paths 

 

State 0 

State 2 

State 1 

Figure 2-3 an illness-death model 

 

The model depicted in Figure 2-3 is so called an illness-death model. An 

individual entering the model may take two different paths. State 1 can be viewed as 

an intermediate state and state 2 is an absorbing state. There are two possible paths. 

One path is state 0→state 1→state 2. The other is state 0→state2. Define  to 

be the hazard function from state i to state j for 

)(tλij

)2,1(),2,0(),1,0(),( =ji . Define T  

to be the time to the first event. Using the terminology of survival analysis, the 
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survival function of T  can be expressed as  

   =  )P( tT > ))(exp(
0∫−
t

duuλ

       =  ))()(exp(
0 0201∫ +−
t

duuu λλ

 = )()(1 21 tFtF −− ,  

where = ) . In the view of stochastic processes, recall that )(tFj

Pr()

,t≤

|j

Pr( jBT =

)()( isXt = ),( XtsPij == , where  is the state number at time t. We 

have  

)(tX

 =  ∫ −
t

dutuPuuP
0 110100 ),()(),0( α),0(01 tP  = )0)0(|1)Pr( ( == XtX

P00 (

F=

and 

),0(02 tP  = + . ∫ −
t

duuu
0 02 )(),0 α ∫ ∫

≤ ≤

−⋅−
tu uS

duuusPdsssP )(),(])(),0([ 12110100 αα

Notice that  for )(),0(0 ttP jj )2,1( =j . 

Define the sojourn time  which measures the length between state i and 

state j for  Note that  is undefined if a person never 

takes the path from state i to state j. Generally speaking, when there exists a 

proportion of subjects who can bypass the path, the definition of  is not clear but 

ijT

)2,1(),2,0((),( =ji ),1,0 ijT

ijT

)(tijα  is well-defined. 

2.4 Three-state Model with One Path 

Figure 2-4 is simpler than the model discussed in Section 2.3 and is the focus of 

the thesis. Only the path, state 0→state 1→state 2, is possible. Let  be the 01T
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duration time between state 0 and state 1 and  be the duration from state 1 to 

state 2. Since only path is possible,  and  are well-defined.  

12T

01T 12T

 

State 0 State 1 State 2 

Figure 2-4 Three-state with one path 
 

2.5 Model Properties 

In the previous sections, we have seen that multi-state models can either be 

described under the framework of stochastic processes or in the context of survival 

analysis. Here we introduce some commonly seen model assumptions based on 

transition intensity functions. 

2.5.1 Common Assumptions 

One common assumption imposed on a stochastic process is the Markov 

assumption. Consider the continuous time Markov model (CTMC). A stochastic 

process }on the state space 0:)({ ≥ttX Φ = {1, 2, 3,…I} is called a CTMC if, for 

all i and j in y Φ , satisf

  0),)(|)(Pr( usXjtsX (, Xi u ≤≤ )s==+  

= 0, ≥),|)(Pr( )( ∀==+ iXjtsX   st  

)

s

(| X

. 

where s is the current time. 

By the above definition, evolution in the future only depends on the present 

state. Recall that ))(( isjtsXPij ==+  indicates the transition probability 

between state i and j. The transition matrix is  
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   P = . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

),(),(

),(),(

1

1111

tsPtsP

tsPtsP

III

The transition rate from state i to state j at time s + t given the previous process is  

 ),( tsijα = 
Δ

<≤==+=Δ++
→Δ

)0),(,)(,)(|)(Pr(lim
0

suuXisXitsXjtsX
  

= 
Δ

=+=Δ++
→Δ

))(|)(Pr(lim
0

itsXjtsX
.  

Since the future evolution only depends on present state at time s + t, then the 

intensity matrix becomes 

R = . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

),(),(

),(),(

1

111

tsts

tsts

III

I

αα

αα

In this case, longer past survival time may affect the hazard rate of the future state. 

Now consider the simplest Markov process “time homogeneous Markov 

model”. The CTMC is said to be time homogeneous if  

),( tsPij  = 0,))(|)(( ≥∀==+ stisXjtsXPij      

= 0))0(|)(Pr( ≥∀== tiXjtX     .  

Assume that  is a function of t and ),( tsPij ),( tsijα  is a constant ijα  since  

  ),( tsijα  = 
Δ

))(|)Δ(Pr(lim
0Δ

itsXjtsX =+=++
→

 

           = 
Δ

))0(|)Δ(Pr(lim
0Δ

iXjX ==
→

  

is a constant. Thus 
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P=  and R=  . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)()(

)()(

1

1111

tPtP

tPtP

III ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

III

I

αα

αα

1

111

We can ignore the information about s, the transition time of state 1, and only focus 

on the current time s + t in CTMC. The homogeneous Markov model means the 

transition rate is homogeneous for the current time. For example, if  is the iT

sojourn time in state i follow )( iExp α , the process   time 

homogeneous Markov process. 

2.5.2 Markov Extension Model 

sion of Markov models is semi-Markov models. 

The transition rate of a S

}0:)({ ≥ttX is a

The other well-known exten

emi-Markov model is 

),( tsijα =
Δ

<≤==+=Δ++
→Δ

)0),(,)(,)(|)(Pr(lim
0

suuXisXitsXjtsX
 

= 
Δ

))(|)Δ(Pr(lim
0Δ

itXjtX ==+
→

,  

where ),( tsijα  only depends on the duration time of state i and is independent of 

the previous state and the length of the past survival time. For more types of Markov 

2.5.3 Example － Illness-death Model 

l depicted in Figure 2.3 to illustrate the 

Markov properties. Under the hom

R= .  

The lower triangular matrix is zero because it is an irreversible model. Extending to 

Extension models, please refer to Hougaard (1999). 

Now we use the illness-death mode

ogeneous Markov assumption, the transition rate 

matrix becomes   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−

000
0 1212

02010201

αα
αααα
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the non-homogeneous Markov model, the transition intensity matrix becomes  

 

R= 

where u is the current time. Finally, the transition intensity matrix under the 

R= 

where is the transition time from state 0 to state 1. Bebchuk and Betensky (2001) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
)()(0
)()()(

1211

020100

uu
uuu

αα
ααα

, 

Semi-Markov model assumption is given by  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

000
)()(0

)()()(

112111

020100

TuTu
uuu

αα
ααα

 

1T  

proposed an estimator of the hazard function for such a multi-state model. 

We can reduce illness-death model to a one path model with )(02 uα =0 for all u. 

Note e trans

R= 

 that this simplified case is the model that we will analyze. Th ition matrix 

is given by:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

000
)()(0

0)()(

112111

0100

TuTu
uu

αα
αα

. 
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Chapter 3 Statistical Inference for Multi-state Model 

As discussed in Chapter 2, we have seen that the process of multiple events 

data can either be described under the framework of stochastic processes or using 

the terminology of multivariate survival analysis. Now we discuss statistic inference. 

The difficulty of analysis usually comes from the complex structure of the events 

that may or may not have an orderable relationship. In the thesis, we consider a 

simpler case when the events are sequential. In this situation, applying Markov 

assumptions can simplify the analysis. 

  

 

State 1 

AIDS development Death

State 2 State 0 

HIV infection

Type 1  
Censoring

Type 2  
Censoring

Type 3  
Censoring

1T 2T

Figure 3-1 Observation of AIDS evolution subject to censoring 

 

Using the evolution of AIDS as an example, state 0 refers to the event of HIV 

infection, state 1 refers to the development of AIDS and state 2 refers to death. Let 

 be the time from HIV infection to AIDS development and  be the time from 

AIDS development to death. Note that  and  may be correlated and their 

dependent relationship is of major interest. In the example, the intermediate event, 

AIDS, must proceed before death. If death occurs prior to AIDS, it is viewed as a 

1T 2T

1T 2T
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censoring event. In general external censoring may occur due to patients’ withdrawal 

from the study or the end-of-effect. In Figure 3-1, we highlight three possible 

locations of the censoring event which would affect the resulting data structure. Let 

C be the censoring time measured from state 0 to the censoring event. Let 

= +  be the total survival time. If C < , only partial information about  

is available and no information about . In this case, we set 

T 1T 2T 1T 1T

2T

1X = 1T ∧C, =I(1δ 1T ≤ C)=0, =0 and =I( +2X 2δ 1T 2T ≤C)=0. 

If , we have complete information about  and partial information 

about . We set 

21 TT +1T <C <

2T

1T

CT1X = 1T , 1δ =I( C)=1, =(1T ≤ 2X ∧ )-  and =I(T C)=0. 

, we have complete infor ation about both  and . In this ca

= =I( C)=1, =(

1X 2δ ≤

C2 <T1 +T m

2X

1T 2T se, If 

we set 

T C1X 1T , 1δ 1T ≤ ∧ )-  and =I(T C)=1. 

 the data (

1X 2δ ≤

We collect 1iX , i1δ , 2iX , i2δ ,) fo ro  1 to N. Notice th

tion  

ple and analyzed the 

three-state with one-path m

r i f m at the larger 

the value of 1T , the ig  c ce at 2T  will be censored. Since the two 

variables are correlated, we have dependent censoring.  

3.1 Nonparametric MLE Based on Markov Assump

 h her han  th

Frydman (1992) used the evolution of AIDS as an exam

odel under the Markov assumption. Recall that 1T  

represents the time from HIV infection to AIDS and 2T  represents the time from 

AIDS to death. Let 21 TTT += . The Markov property is imposed on the transition 

probability such that 

   Pr(T ),| 122 sTtTt =≥=  = )|Pr( uTuT ≥= .    
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were u = t + s. 

al paper considered the situation that  is subject to interval 

cens

The origin 1T

oring. Here we modify Frydman’s discussion for right censored data. Following 

the notations of previous discussion, we have data ( 1iX , i1δ , 2iX , i2δ ,), (i=1,…,N). 

The likelihood function for right censored data can be written as: 

  ∏
=

=>=≥
i

i
I

ii
I

i
ii TXTXTXTXT

1
11221111

21 ,Pr(),Pr()Pr( =
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is the transition rate which condition on sT =1  generally.  

Under the Markov assumption, 

),|Pr( 122 sTsuTsuT =−≥−=  = )|Pr( uTuT ≥= . 

We can find the hazard rate can be simplified as a function of current time, 

  )(uTλ = + Δ ≥
Δ

∈ )|),[Pr(lim uTuuT .  

Hence the Markov property implies that 

→Δ 0

)|(1|2 tuλ = )(uTλ . Based on the 

product-limit decomposition and the Markov property we have 
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Fina  L can be rewritten as follows: 
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Now we discuss nonparametric likelihood estimation. The objective is to 
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nh = )()( )()1( −Λ−Λ + nTnT XX  is the jump siz )(tTe of Λ  at time )(nX . The first part 
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Step  Find new  a 2:   }ẑ{ p nd }ˆ{ nh  based on ),( hzmiμ ,  and ),( hzR
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we can estimate  by 
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ore detailed description about why Frydman’s 

approach is self-consistent. 

3.2 Estimators Based on Decomposition Approach 

In the past decade, several nonparametric estimators of the bivariate survival 

function have been proposed. These estim

tion. For example Visser (1996) and Wang 

and Wells (1998) both decompose as the product of 

ser (1996) assum

varia

In the Appendix, we provide m

ators are constructed based on different 

ways of decomposing the survival func

),(Pr 2211 tTtT >>  )Pr( 11 tT >  

ed that the and the other is )|(Pr 1122 tTtT >> . For example, Vis

bles are discrete and proposed to estimators for )(t11λ  and )t|(t 121|2λ . 

Finally, Visser maximize the likelihood function with respect to )(t11λ  and  

)t|(t 121|2λ . 

Lin, Sun and mpose the ),Pr( 2211 tTtT Ying (1999) deco ≤≤  as )(Pr 11 tT ≤  - 

),Pr( 2211 tTtT >≤  and estimate the two parts separately. Another difficulty is how 

to estimate in presence 

),(P 2211 tTtTr >≤  

of right censoring. W hout right censoring data, 

can be estimated by empirical function, 

it

n

tXt i >≤ 221 ,XI
n

i
∑
=1

( i1 )
. 

If th rvival function of ring time

adjust the empirica

e presence of right censoring, they use the su  censo  to 

l estimator as 
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ii tXtXI 2211
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where is an)(ˆ tG  = .  

In the thesis, we focus on Wang and Wells (1998). Wang and Wells (1998) 

proposed a method to estimate ),Pr( 21 tTsT >> . The idea can be described as 

follows. First of all, they consider the following decomposition: 

= = . 

lve only one-dim ional estimation, which can be 

handled based on the product-limit expression. Specifically, it follows that  

),Pr( 21 tTsT >> ),Pr( 21 tTsT >> )Pr()|Pr( 112 sTsTtT >>>

Then the two components invo ens
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ponent in presence of censoring is more difficult due to 

dependent censoring. They did the following derivations. For u , s > 0, 

Estimation of the second com

 ( )1,1,,Pr 2121 ===> δδuXsX  

  = ( uTsCsT )uTCCT >−≤=≥> ,,,Pr 1121 ,  
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( )uTCuTsT >−  =   =2> 11 ,,Pr

since sT >1  and uTC ≥− 1  implies that CT ≤1 , sC ≥ . It follows that  

 ( )1,1,,Pr 2121 ===> δδuXsX  = ( )Pr(,Pr 121 TuCuTsT )+>=>   

which is independence of C and 、 . Similarly, 1T 2T

 Pr >( )1,, 121 =≥ δuXsX  

  = 1 ),,,,Pr( 121 CTuTCuTsCsT ≤≥−≥>>  
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as the basis to estimate )|( 112 sTu >λ , the effect of dependent censoring can be 

he survival fun  is estimated easily by K-M estimator based 
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Now we discuss estimati dusT )| 1 >u(12λ  which need to account for the 

effect of dependent censoring. Let  
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Finally we can estimate the joint probability by  

Now we compare the two estimators. They are both nonparametric. Frydman’s 

approach uses the Markov property to simplify the likelihood expression. We expect 

that if the Markov property holds, the NPMLE would lead to a more efficient 

estimator. The approach proposed by Wang and Wells does not impose such a strong 

assumption and will be more robust. Our co ture will be assessed via simulations. 

),(ˆ tsF = > sFdus )(ˆ}) 1 .  ∏
≤

−
tu

Tu |(ˆ1{ 112λ

njec
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Chapter 4 Simulation Study 

In this chapter, we compare two different estimators via simulations. Specifically one is the 

path-dependent estimator proposed by Wang and Wells (1998) and the other is the non-parametric 

MLE proposed Frydman (1992) which assumes the Markov property. In our analysis, we generate 

two types of data, namely a non-homogeneous-Markov model and a Copula model. Note that under 

the first setting, the model assumption in the paper of Frydman (1992) is valid. Hence it is expected 

that this approach based on non-parametric MLE should work better than the method by Wang and 

Wells (1998) in which no model assumption is made. In the second setting, we generate the data 

from Clayton’s model such that 

  = ),Pr( 2211 tTtT >> 1
1

}1)Pr(    ){Pr( 1
22

1
11

−
−

−>+> −− ααα tTtT  ),1( ∞∈α .  (4.1) 

4.1 Data Generation Algorithms 

4.1.1 Data From a Non-homogeneous-Markov Process 

Based on the non-homogeneous-Markov property, we have 

 )|Pr( 1 sTtT =≥ =  }),|Pr(exp{
0 1∫ =≥=−
t

dusTuTuT

    =  })|Pr(exp{ ∫ ≥=−
t

s
duuTuT

    = λ .  })(exp{ ∫−
t

s T duu

We simplify the simulation algorithm in Judith and Betensky (2001), which is stated below.  

1. Generate U  follows a ) ,1 (0 uniform  distribution. 

2. Let U = )( 11 TF  and set 1T = )(1
1 UF − , where the form of )(1 sF  can be derived if the form of 

)(1 sλ  is given based on )(1 sF = }  )(
0 1∫−
t

duuλexp{

3. Generate V  which follows a ) ,1 (0  distribution, independent of U .  uniform
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4. Let V  = )|( sT , then FT T = )|(1 sV  can be obtained by the probability integral 

transformation Theorem. Now we have 1T  = s and 2T  = 

FT
−

T - 1T  = T -s. 

5. Generate right censoring time variable C. 

With ( , , C), we can set the observed variables as 1T 2T CT ≤1 , = , 1δ )( 1 CTI ≤ CTT ≤+ 21  and 

2δ =

 

)CI ≤+ . ( 1T 2T

λ        α 1 3 6 10 

1 0.331927 0.328921 0.329184 0.328956 
3 -0.730228 -0.814889 -0.838167 -0.847920 
6 -0.956323 -0.964759 -0.968716 -0.970787 
10 -0.981231 -0.981207 -0.979310 -0.977902 

Ta num cell i τ 

In our simulations, we generate  from exponential (1) and set the hazard function 

ble 4-1 The ber is each s Kendalls’ 

 

1T

)(tλ = to follow the Weibull hazard function with parameter 1)( −ptpα  α  and p . Table 4.1 lists 

 Kendalls’ τ with diff mbination of (the value of erent co α , p ). W  observe that under the 

eters, 21 can have lar e negative associa e its low positive 

association. 

4.1.2 Data from the Clayton Model 

e

 but only pselected param ),( TT  g tion rm

The Clayton model is given in (4.1) with α  = 
τ
τ

−
+

1
1 . We adopt the algorithm in Prentice and 

Cai (1992) in which 1  and 2  are set to llow 1T T  fo )(λExp  and 2 )(λExp  respectively. The 

simulation procedure based on Clayton (1978) : 

1. Generate   and  follow  distribution. U V ) ,1 (0 uniform
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1T = )1log(1 U−−
λ

. 
1

=2T ))1()1()1(1log(1 1

2

+
−

−− −−+−− α
α

αα

αλ
VUU . 

2. Generate right censoring time variable C. 

 as 3. With ( 1T , 2T , C), we can set the observed variables CT ≤1 , = , 1δ )( 1 CTI ≤ CTT ≤+ 21  

and . 

4.2 Simulation Results 

In our simulations, we report the bias and standard deviation (in the parenthesis) for the 

based on 300 or 500 replications. Note that Wang and Wells (1998) 

prov

 by the following f

2δ = )2 CTI ≤+( 1T

estimator ,Pr( 211 tTtT ≤≤ )2  

ided their estimator based on ),Pr( 2211 tTtT >>  and hence we need to calculate the joint 

probability ormula:  

),(Pr(1),Pr( 221112211 tTtTtTtTtT >>Pr)Pr() 221 tT −>+>−=≤≤      (4.2) 

The numbers shown in the table are multiplied by . The results are given in Table 4-2 ~ Table 

4-6.  

ss 

rst, we compare the performance of two estimators based on Markov data. Since the data 

t it will perform better than Wang 

and 

310

4.2.1 Data from non-homogeneous Markov Proce

Fi

satisfy the model assumption of Frydman’s method, we expect tha

Wells’ method. The bias and standard deviation of the two methods are reported corresponding 

to different parameters. In Table 4-2 with low correlation, we can see that both methods perform 

well and don’t have obvious difference. In Table 4-3 and Table 4-4, the level of association 

becomes stronger. In the case, we can see that the bias of the two methods both are about the same, 

but the deviation of Wang and Wells’ estimator can be larger in some case. Note that there are few 

observations of  2T  between 0.3 and 0.6 for generated Markov model and this affects the result of 
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Wang and Wells’ estimation. Finally, the Table 4-4 with strong correlation structure and higher 

censoring rate shows the Frydman’s estimator is better than Wang and Wells’ estimator. The 

maximum bias is still about 3104 −×  but the bias of Wang and Wells’ estimator is worse than in the 

low correlation structure. Even though Wang and Wells’ estimator is worse, the maximum bias is 

about 3109 −× . Note that the last grid points in Table 4-4 have unusual bias, it is caused by the bad 

selection of grid point with )P(C 21 tt +≥  = 0. Since we only observe )( 21 TTC +∧ , choosing 

( ,tt ) in the tail area result in poor estimation. 

Then we compare the two methods bas

21

4.2.2 

mis-s

Data from Clayton model. 

ed on the Clayton m

we want to see how it behaves under model 

odel since this violates the 

assumption of Frydman’s method, and 

pecification. We report two different correlations, one is 0.005 and another is 0.818, in Table 

4-5 and Table 4-6. We can find no large difference between two methods in low Kendall’s τ. We 

increase the correlation to 0.818, and we find the bias of Frydman’s method is larger at some grid 

points. So the wrong model assumption cause bad estimation of Frydman’s approach as the 

correlation between the time variables is high. 
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T1 T2 True 
value 

)P(C 21 tt +≥ Bias (F) Standard 
deviation 

(F) 

Bias (W) Standard 
deviation 

(W) 
0.050000 0.130000 0.004343 0.964660 -0.284026 8.755885 -0.434063 13.549313
0.050000 0.150000 0.005498 0.961727 -0.407624 10.011397 -0.611689 14.821236
0.050000 0.250000 0.012610 0.941480 -1.262630 14.660030 -0.785667 20.901781
0.050000 0.450000 0.028900 0.881880 -2.001756 15.231161 -0.345468 24.267647
0.150000 0.150000 0.022526 0.941480 -0.661658 32.106002 -1.854896 46.602093
0.150000 0.200000 0.033448 0.934807 -1.879834 38.637600 -1.876408 54.963911
0.150000 0.250000 0.045220 0.914733 -3.144643 42.919818 -2.285402 60.973611
0.150000 0.450000 0.091090 0.861807 -4.799818 37.289896 -1.480140 64.176412
0.300000 0.650000 0.234054 0.785373 -2.211174 20.381585 -0.039404 49.780053
0.300000 0.700000 0.240786 0.772927 -1.355026 15.493690 0.342529 37.723636
0.800000 0.700000 0.529438 0.667293 -1.199453 16.874751 0.773245 38.235751
0.800000 0.750000 0.535670 0.655893 -0.483195 13.559709 0.890078 29.091310
1.200000 0.750000 0.683752 0.567680 -1.188078 13.272199 0.098142 28.755435
1.500000 0.800000 0.766423 0.490700 -0.189812 11.775102 0.421018 22.058600
2.000000 0.850000 0.857540 0.358560 0.171229 10.550403 -0.460072 16.634423
2.500000 1.000000 0.915880 0.222387 3.445247 10.441048 0.759025 11.565810

Table 4-2 Markov model α=2 λ=4 repeat 500 sample size 300 Kendall’s τ=0.029227 
Censoring rate of T1 is 21.87%, Censoring rate of T2 is 25.95%. 
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T1 T2 True 
value 

)P(C 21 tt +≥ Bias (F) Standard 
deviation 

(F) 

Bias (W) Standard 
deviation 

(W) 
0.050000 0.130000 0.002223 0.957753 -0.056518 5.387089 -0.301042 9.1041320
0.100000 0.500000 0.042762 0.865847 -2.771526 28.691298 -0.787734 46.704400
0.200000 0.750000 0.136575 0.788027 -3.050022 27.169118 -0.477552 73.369998
0.350000 1.000000 0.272948 0.699880 -0.281012 12.405852 0.0925330 38.961856
0.150000 0.150000 0.011802 0.928633 -0.263205 20.688308 -1.456980 31.540952
0.400000 0.350000 0.128425 0.829847 -2.226206 81.576866 -6.747808 141.35072
0.150000 0.450000 0.057598 0.865847 -3.873429 41.251242 -2.501958 65.275824
0.500000 0.750000 0.323290 0.719333 -2.965783 35.222427 -2.454568 99.687207
0.300000 0.350000 0.091797 0.854240 -3.082721 69.396949 -5.182065 112.14946
0.400000 0.450000 0.169196 0.808840 -4.147652 78.214676 -6.840380 146.43111
0.500000 0.750000 0.323290 0.719333 -2.965783 35.222427 -2.454568 99.687207
0.600000 0.800000 0.390315 0.689687 -2.645174 28.867423 -3.303129 84.626810
0.900000 0.750000 0.514485 0.628160 -2.695100 34.695753 -2.632240 97.565389
1.500000 0.800000 0.710792 0.489780 -2.755712 28.201743 -2.789572 84.507931
2.000000 0.850000 0.811094 0.362633 -2.279274 22.735904 -3.116583 70.819558
2.500000 1.000000 0.890848 0.215300 1.564353 14.766494 -0.336915 39.136745

Table 4-3 Markov model α=2 λ=2 repeat 500 sample size 300 Kendall’s τ=0.146178 
Censoring rate of T1 is 22.15%, Censoring rate of T2 is 28.75%. 
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T1 T2 True 
value 

)P(C 21 tt +≥ Bias (F) Standard 
deviation 

(F) 

Bias (W) Standard 
deviation 

(W) 
0.050000 0.130000 0.000730 0.939160  0.055047 2.058647 -1.797911 4.2096050
0.050000 0.150000 0.001045 0.935733  0.068707 2.701295 -1.890555 5.6914190
0.050000 0.250000 0.003905 0.903167  0.008385 6.816600 -2.331336 13.358093
0.050000 0.450000 0.016995 0.826640  -0.395545 14.823341 -1.935060 24.859973
0.150000 0.150000 0.006257 0.903167  0.120047 12.023384 -6.588907 17.569704
0.150000 0.200000 0.011192 0.890580  0.020023 18.410499 -6.719424 31.943418
0.150000 0.250000 0.017913 0.862573  -0.249468 25.211740 -6.965533 43.752489
0.150000 0.450000 0.060635 0.792413  -2.029990 41.228056 -5.308293 67.590241
0.300000 0.450000 0.143088 0.732047  -3.739897 64.850595 -9.455314 113.99729
0.300000 0.550000 0.185506 0.696940  -3.463777 49.132670 -5.827240 102.46529
0.800000 0.550000 0.469792 0.517273  -1.981527 54.713053 -6.178835 116.23843
0.800000 0.600000 0.490822 0.509773  -1.541588 43.888784 -4.712470 98.946725
1.200000 0.600000 0.638953 0.370707  0.235860 44.276640 -4.677959 97.504928
1.500000 0.650000 0.734026 0.243287  3.848780 33.938284 -2.262546 78.687287
2.000000 0.700000 0.835086 0.036567  11.287361 29.479361 -1.595592 64.155822
3.000000 0.850000 0.942616 0.000000  34.420339 17.921452 49.032459 19.881606

Table 4-4 Markov model α =3 λ =4 repeat 500 sample size 300  Kendall’s τ=-0.827893  
Censoring rate of T1 is 33.18%, Censoring rate of T2 is 40.11%. 
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T1 T2 True 
value 

)P(C 21 tt +≥ Bias (F) Standard 
deviation 

(F) 

Bias (W) Standard 
deviation 

(W) 
0.050000 0.020000 0.004684 0.984671 -0.076867 3.205136 -0.127983 3.990142
0.050000 0.100000 0.019333 0.966761 -0.179919 7.327877 -0.361669 8.077350
0.050000 0.150000 0.025900 0.955086 -0.131419 8.488430 -0.124885 9.327232
0.050000 0.200000 0.031003 0.944022 -0.087343 9.430975 -0.321557 10.467596
0.200000 0.020000 0.017398 0.950790 -0.140047 4.873253 -0.269865 7.811502
0.200000 0.100000 0.071819 0.932254 -0.339722 14.159066 -0.260133 16.361615
0.200000 0.150000 0.096221 0.921393 -0.416783 16.707775 -0.166718 17.727617
0.200000 0.500000 0.166722 0.843404 -0.436926 21.640716 -0.418824 22.577976
1.000000 0.150000 0.334825 0.743318 -0.862412 24.945594 -0.055581 29.639565
1.000000 0.250000 0.452326 0.720649 -1.167206 29.045440 -0.531579 31.807811
1.000000 0.350000 0.523388 0.698333 -1.192295 30.331127 -1.668054 32.919563
1.000000 0.450000 0.566364 0.675994 -1.245497 30.513365 -1.816170 32.345590
2.000000 0.150000 0.457179 0.519444 0.002288 25.398337 -0.732071 32.212080
2.000000 0.300000 0.672636 0.486174 0.232664 28.076394 -0.971929 32.102910
2.000000 0.800000 0.849028 0.377316 0.185231 24.794812 -0.079348 27.359247
Table 4-5 Clayton model exp(1) exp(5) τ=0.005 repeat 500 sample size 300 Censoring rate of T1 

is 22.29%, Censoring rate of T2 is 26.370%. 
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T1 T2 True 
value 

)P(C 21 tt +≥ Bias (F) Standard 
deviation 

(F) 

Bias (W) Standard 
deviation 

(W) 
0.050000 0.020000 0.028111 0.984663 0.033766 9.269063 -0.055722 9.907238
0.050000 0.040000 0.040643 0.980024 -0.949622 11.586493 -0.223587 12.001098
0.050000 0.080000 0.047624 0.971106 -0.948741 12.835534 0.140512 13.173680
0.050000 0.100000 0.048347 0.966859 -0.704267 13.017319 0.054889 13.246833
0.200000 0.020000 0.075735 0.950865 10.736515 14.481595 0.109143 16.573450
0.200000 0.040000 0.127881 0.946090 1.647625 18.899140 0.275777 20.735686
0.200000 0.080000 0.171711 0.937188 -8.585814 21.836477 0.104741 23.370917
0.200000 0.100000 0.177602 0.932508 -7.906743 22.325337 -0.288541 23.340817
0.500000 0.020000 0.094080 0.883341 44.986948 15.359193 0.080468 18.248861
0.500000 0.040000 0.177602 0.878678 43.228557 20.483141 -0.333964 24.063984
0.500000 0.080000 0.307634 0.870401 -3.254256 24.717086 -0.932267 29.544991
0.500000 0.100000 0.348858 0.866106 -22.264862 25.946045 -0.952399 30.634325
1.000000 0.100000 0.393023 0.753870 52.260769 24.965144 -0.621747 33.646507
1.000000 0.500000 0.632121 0.665104 -15.822411 30.558998 -1.672707 30.612189
Table 4-6 Clayton model exp(1) exp(5) τ=0.818  repeat500 sample size 300 Censoring rate of 

T1 is 22.29%, Censoring rate of T2 is 26.75%. 
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Chapter 5 Conclusion 

In the thesis, we review several multi-state models and some properties that are often imposed 

to describe the underlying process. In particular we focus on a simple model with three states and 

one path that can be used to describe the evolution of AIDS. Two nonparametric estimators for 

estimating the joint distribution of the two duration times are discussed. Specifically Frydman 

(1992) proposed a nonparametric maximum likelihood estimator under the assumption that the 

underlying stochastic processes the Markov property. The other estimator proposed by Wang and 

Wells (1998) is constructed by expressing the joint survival function in terms of estimable 

quantities. By using the idea of weighting, the bias due to dependent censoring can be removed. 

Our simulations confirm our conjecture that the NPMLE approach yields a more efficient result 

when the model assumption is correctly specified. On the other hand, the estimator proposed by 

Wang and Wells (1998) is more robust since it does not rely on any model assumption. 
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Appendix: Self-consistency of Frydman’s estimator 

Definition: self-consistency estimator (Turnbull 1976) 

}M~~1j  ,{ == izZ  is a set of probability mass. Z  is a self-consistency if Z is defined to be 

any solution of the equation, 

M~~1j    )( =∀= Zfz j .  

Under Z  and  are known and }Q~1n   ,{ == nhH

M~~1j     )Pr( )1(11)(1 =∀<≤= +jjj XTXz , 

D)()( M~~1n     )|Pr( =∀≥== nnn XTXTh . 

Let 
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Based on the above definition, we can calculate following expected value, 
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We will prove the NPMLE of equation (3.1) can be maximized by self-consistent estimator. 
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