FAREEZ AR BT AL

Bivarate Survival Estimation for Successive Events

PoE R4 Lo o



Bivariate Survival Estimation for Successive events

o4t mg Student : YuChun Wu

Rz aF Advisor : Weijing Wang

B2« g
o5 "\‘L/Eﬂ N ,_:;_i_

wU E i
oL e

A Thesis
Submitted to Institute-of Statistics
College of Science
National Chiao.Tung University
in partial.Fulfillment of the Requirements
for the Degree of
Master
in

Statistics
June 2007

Hsinchu, Taiwan, Republic of China

PEA R L



il

’ﬁ BEiEz 2% 835417

B4 % (5 TR £ SESCE

A s E R L R PR S RIS
VOSSR AL B B A e aRIE S N o B e 2 B ARE B~
TR i A S R AR T ERGF R § Mg e 4T ek
PSR gL AE Y AR o
APEENS Fa A T AT s R E LR o - B R
Frydman #r#& 21 (1992) & B8 A 4 T &g Sb S -2 %= B
2 %4 Wang and Wells (1998) # 3 » #p BA& - 47 8 S #cdTiE L %
#1482 (product limit) 73558 » & 3 B 4c e 2 AT AP B 2R PLePRY 3 o 14
53 % &P R R
BEHRA PRE R A AN R R AR P S BRI  fEh
PR RW B ERER € MR F 2 B2 FIA Y D iE P A ik

SRS AR -

Mgz BV A 58 > AP R 2R kG E



iii

Bivariate Survival Estimation for Successive events

Student : YuChun Wu Advisors : Dr. Weijing Wang

Institute of Statistics
National Chiao Tung University

Abstract

Consider nonparametric analysis for successive events in which the joint
survival function of the duration times;isjofsmajor interest. Such a phenomenon is
usually investigated under the' framework of.stochastic processes in which the
transition rates are modeled.by Markov-related properties. In the past decade, some
authors have applied techniques of multivariate survival analysis to handle the
problem.

In the thesis, we compare two different nonparametric estimators which are
constructed based on different ideas. One estimator was proposed by Frydman (1992)
who considered nonparametric MLE under a Markov assumption. The other
estimator was proposed by Wang and Wells (1998) who suggested to decompose the
target function in terms of estimable quantities. The latter does not make any model
assumption. Via simulations, we want to verify our conjecture. Briefly speaking, we
suspect that the NPMLE will be more efficient if the Markov property holds but will
be biased if this assumption is violated. On the other hand, the estimator proposed
by Wang and Wells (1998) should be more robust since it does not require any
model assumption.

Key words: decomposition, dependent censoring, Markov model.
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Chapter 1 Introduction

Nonparametric analysis of the bivariate survival function has been a popular
research area. Let (7;,7,) be a pair of failure time variables. Several estimators of
Pr(7; > s,T, > t) have been proposed including the ones proposed by Campbell &
Folder (1982), Dabrowska (1988), Prentice and Cai (1992), Lin & Ying (1993) and
Wang and Wells (1997), just to name a few. In general situations, where no addition
information about the path is given, the nonparametric MLE approach can not
produce a reliable estimator in presence of censoring. Specifically this approach can
estimate the mass of a given region that maximizes the likelihood function but the

distribution within the region can not be determined without additional assumptions.

State 0 State 1 State 2
HIV Infection AIDS > Death

A 4

Figure 1-1 Evolution of AIDS

In the thesis, we consider a special situation such that the path information is
known. Consider an example of AIDS, depicted in Figure 1-1, in which 7
represents the time from HIV infection to AIDS and 7, represents the time from
AIDS to death. Traditionally this kind of phenomenon was analyzed under the
framework of stochastic processes. Specific structures based on Markov or
semi-Markov properties are often imposed on the process. For example, Frydman
(1992) modeled the evolution of AIDS by a Markov process and then derived the
nonparametric MLE when the data are interval censored. An alternative approach

suggested to decompose Pr(7; > s,7, > t) into estimable quantities and then plug in



the estimator of each component. This approach has been taken by Visser (1996),
Wang and Wells (1998) and Lin, Sun and Ying (1999) based on different
decompositions. In the thesis we discuss the estimator proposed by Wang and Wells

(1998) who suggested to decompose the joint survival function as follows:

Pr(7, > s, T, >t) =Pr(T, > s)Pr(T, >t| T, > s)

=Pr(T; > s)- [ [{1-Pu(T, €[u,u+du)|T, 2u,T, > s)}. (1.1)

u<t

Note that each component in the right-hand side can be estimated separately. In
presence of censoring, the challenge of statistical inference comes from the fact that
T, is subject to dependent censoring by 7. That is, the larger the value of 7}, the

more likely that 7, will be censored.

The major goal of the thesis. is to compare the two approaches proposed by
Frydman (1992) and Wang and, Wells (1998). The former is constructed based on a
Markov assumption which allows for-theé use of nonparametric MLE. The latter is
derived without making any model assumption. When the Markov property holds, it
is expected that the former estimator should yield better performance. However
when this assumption fails, the latter approach should still perform reasonably since

it is more robust. We aim to examine our conjecture via simulations.

Here is the outline of the thesis. In Chapter 2, we will introduce some common
model structures under the framework of stochastic processes. More detailed
discussions can be found in the book by Anderson et al. (1993). In Chapter 3, we
review the two competing approaches, namely the methods proposed by Wang &
Wells (1998) and Frydman (1992). Simulation results are presented in Chapter 4. We

give some concluding remarks in Chapter 5.



Chapter 2 Review on Multi-state Models
There are two ways of describing a process with multiple states. One approach

adopts the framework of stochastic processes under which the transitions between

the states are modeled. Specifically let ¢ (¢) be the transition rate from state i to

state j attime ¢ and define the transition probability
B(s.)= Pr(X(0)=j|X(s)=1)

which measures the conditional probability that, given that a person is in state i at

time s, he/she will be in state j attime ¢ and X(¢) denotes the state number at

time ¢. Specifically we can write o (#)' based.on F,(s,t) as follows

o)® - ) Pr(X(t+A)Z JIEYGIEDY

The other approach takes the viewpoint.of survival analysis in which the
failure times between different random events are of interest. Let 7 be the sojourn
time of state i and S(¢) = Pr(T">¢) be| the survival function of 7 . The

corresponding hazard function is given by

>
At = limPr(Te[t,t+A]|T_t)
A—0 A

=— %log(S(t)) .

Note that under the framework of survival analysis, the variable of interest is often

the length of survival time instead of the transition probability.

The following sections introduce several multistate models. First, the simplest
model is a model with two states and one irreversible path. Then we extend the

situation that allows for j different paths but only one path will happen. Then a more



complex model with three states and two paths. The thesis will focus on the model

with three states and one path.

2.1 Two-state Model (The Classical Survival Framework)

Figure 2-1 depicts a simple model with two states, namely “alive” and “dead”.
There is only one path and the transition from state 0 to state 1 is not reversible.
Here () denotes the be the transition rate from alive to death at time ¢. Note
that the phenomenon in Figure 2-1 actually falls in the classical framework of

survival analysis.

State 0 State 1
Alive Dead

v

Figure 2-1 A simple two-state model

In this simplest model, it:follows that A(t)=c,,(¢) which implies that the
transition rate is the same as the hazard rate. The two approaches have no

distinction.

2.2 Competing Risks Model

Figure 2-2 describes a competing risks model where a person can experience

one of several different causes to the absorbing state. However a subject can only

experience through one path. In this model, let the «,,(f) be the transition rate

from being alive to death due to cause ; for j=1,.,J.



Death cause #1

Alive .

.

Figure 2-2 A competing risks model

Death cause #J

In survival analysis, it follows that the hazard function from state O to state ]

can be defined as

A= i EeleralB=jir20

A—0 7 7 A

where B is type of causes.

Let A(¢) be the hazard rate escape from s&été 0.1t follows that

1

AR) = Zl‘j(l‘) ¥ Z Oj(t)' 1

The survival function of T caﬁ be written as
t J | | t
S@) = P(T21) = exp(=[ D &y, (w)du)= exp(~[ Au)du).
j=1

Another useful measure in the context of competing risks is the cumulative

incidence function. For cause j, the cumulative incidence function is defined as

F,(t) = Pu(T<t,B=))

Pr(T =u,B = j)
Pr(T > u)

u=t
= _[ Pr(T 2 u)
u=0

= TPr(TZu)/lj(u)du



= F£,0.0).
Sometimes one may define the following random variable
T,=T-1(B=j)+x-1(B# ).
Notice that 7, is an improper random variable since it carries positive mass
Pr(B # j) attime oo. It follows that F,(¢)=Pr(7T, <¢) but
Pr(T, > t) # exp(— J.;/%j (u)du).

The consequence of this property is that the relationship between a survival function

and hazard rate no longer holds.

2.3 Three-state Model with Two Paths

\4

State 0 State 1

State 2

Figure 2-3 an illness-death model

The model depicted in Figure 2-3 is so called an illness-death model. An
individual entering the model may take two different paths. State 1 can be viewed as

an intermediate state and state 2 is an absorbing state. There are two possible paths.
One path is state O—state 1—state 2. The other is state 0—state2. Define 4,(¢) to

be the hazard function from state i to state j for (i, j) =(0,1),(0,2),(1,2). Define T

to be the time to the first event. Using the terminology of survival analysis, the



survival function of 7 can be expressed as

P(T >1) = exp(—jo’/z(u)du)

= exp(=[ Ay, () + Ay ()
= 1-F(O-F0),
where F,(t)=Pr(T'<t,B=j). In the view of stochastic processes, recall that
P, (s,t)=Pr(X(t)=j| X(s)=1), where X(¢) is the state number at time t. We
have
P, (0,1) = Pr(X(1)=1]X(0)=0) = I;]’OO(O,u—)aOI(u)RI(u,t)du
and

Pa(0,0) = [ By(Ou)a, @dut [ [fR(05-)tq (5)ds]- B (s,u=), (u)du

ust S<u
Notice that £, (0,1) = F;(¢) Tor(j=12).
Define the sojourn time 7; which measures the length between state i and

state j for (i,/)=(0,0),(0,2),(1,2) Note that 7, is undefined if a person never

takes the path from state i to state j. Generally speaking, when there exists a

proportion of subjects who can bypass the path, the definition of 7} is not clear but

a, (1) is well-defined.

2.4 Three-state Model with One Path

Figure 2-4 is simpler than the model discussed in Section 2.3 and is the focus of

the thesis. Only the path, state O—state 1—>state 2, is possible. Let 7;, be the



duration time between state 0 and state 1 and 7;, be the duration from state 1 to

state 2. Since only path is possible, 7,, and 7;, are well-defined.

State 0 State 1 State 2

Figure 2-4 Three-state with one path

2.5 Model Properties

In the previous sections, we have seen that multi-state models can either be
described under the framework of stochastic préeesses or in the context of survival
analysis. Here we introducessome commonly seen model assumptions based on

transition intensity functions:

2.5.1 Common Assumptions

One common assumption /imposed on a_stochastic process is the Markov

assumption. Consider the continuous time Markov model (CTMC). A stochastic

process {X(¢):¢=0}on the state space ®= {1, 2, 3,...1} is called a CTMC if, for

alliandjin @, satisfy
Pr(X(s+t)=j|X(s)=0,X(u),05u<ys)
= Pr(X(s+t)=j|X(s)=1iQ), V t,s>0.
where s is the current time.

By the above definition, evolution in the future only depends on the present

state. Recall that F,(X(s+¢)=j[X(s)=1) indicates the transition probability

between state 1 and j. The transition matrix is



B(s,t) -+ B(s,0)
P= : : )
P(s,t) - By(s,0)

The transition rate from state i to state j at time s + t given the previous process is

Pr(X(s+t+A)=j| X(s+8)=i,X(s)=0,Xu),05u<s)

a;(s,1)= lim

A—0 A
_ 1imPr(X(s+t+A):]|X(s+t):z).
A—0 A

Since the future evolution only depends on present state at time s + t, then the

intensity matrix becomes

a,(s,t) - a,(s,t)
R = ) . !

a, (s,t) s a,(sg)

In this case, longer past survival time may affect the hazard rate of the future state.

Now consider the simplest -Markov- process: “time homogeneous Markov

model”. The CTMC is said to be tim¢ homogenéous if
P (s,t) = B(X(s+1)=j|X(s)=0) V £,520
=Pr(X(t)=/j| X(0)=i) V t>0.
Assume that P, (s,7) is a function of tand &; (s,%) 1isa constant a; since

. Pr(X AN=j|X =i
aij(s,t) _ 1A1£10’1 r(X(s+1t+ )A]| (s+1)=1i)

- Pr(X(A) = j| X (0)=1)
m A

1s a constant. Thus
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Py - B,(®) oy
P=| . and R= :
Py@) - B0 an oy

We can ignore the information about s, the transition time of state 1, and only focus

on the current time s + t in CTMC. The homogeneous Markov model means the

transition rate is homogeneous for the current time. For example, if 7, is the

sojourn time in state i follow FExp(c,), the process {X(¢):t>0} is a time

homogeneous Markov process.

2.5.2 Markov Extension Model

The other well-known extension of Markov models is semi-Markov models.

The transition rate of a Semi-Markov: model is

aij(S,t)zlAir%Pr(X(S+t+A) ]|X(s+t)A LX(s)=1,X(u),05u<ys)

. P X@+ A= X@®)=1)
- lim A

o

where & (s,%) only depends on the duration time of state i and is independent of

the previous state and the length of the past survival time. For more types of Markov

Extension models, please refer to Hougaard (1999).

2.5.3 Example — Illness-death Model

Now we use the illness-death model depicted in Figure 2.3 to illustrate the
Markov properties. Under the homogeneous Markov assumption, the transition rate

matrix becomes

—Qy—Cyp  Qy Oy

R= 0 -a, o,

The lower triangular matrix is zero because it is an irreversible model. Extending to
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the non-homogeneous Markov model, the transition intensity matrix becomes

Ay (u) ay ) ay(u)
R= 0 a,(u) o, |,
0 0 0

where u is the current time. Finally, the transition intensity matrix under the

Semi-Markov model assumption is given by

(1) Ay (1) Ay, (1)
R= 0 ayw=T) a,u-T)
0 0 0

where 7, is the transition time from state O to state 1. Bebchuk and Betensky (2001)

proposed an estimator of the hazard function for such a multi-state model.

We can reduce illness-death model to a.one path model with «, (#)=0 for all u.
Note that this simplified case is the model that we will analyze. The transition matrix
is given by:

ag(u)  ay(u) 0

R= 0 a,(u-T) a,u-T)|.
0 0 0
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Chapter 3 Statistical Inference for Multi-state Model

As discussed in Chapter 2, we have seen that the process of multiple events
data can either be described under the framework of stochastic processes or using
the terminology of multivariate survival analysis. Now we discuss statistic inference.
The difficulty of analysis usually comes from the complex structure of the events
that may or may not have an orderable relationship. In the thesis, we consider a
simpler case when the events are sequential. In this situation, applying Markov

assumptions can simplify the analysis.

State 0 - State 1 > State 2
HIV infection AIDS develobpment Death
T
M 7 S
Type 1 Type 2 Type 3
Censoring Censoring Censoring

Figure 3-1 Observation of AIDS evolution subject to censoring

Using the evolution of AIDS as an example, state 0 refers to the event of HIV
infection, state 1 refers to the development of AIDS and state 2 refers to death. Let
T, be the time from HIV infection to AIDS development and T, be the time from
AIDS development to death. Note that T, and T, may be correlated and their
dependent relationship is of major interest. In the example, the intermediate event,

AIDS, must proceed before death. If death occurs prior to AIDS, it is viewed as a
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censoring event. In general external censoring may occur due to patients’ withdrawal
from the study or the end-of-effect. In Figure 3-1, we highlight three possible
locations of the censoring event which would affect the resulting data structure. Let
C be the censoring time measured from state 0 to the censoring event. Let
T=T,+T, be the total survival time. If C < T, only partial information about T,

is available and no information about T, . In this case, we set

X,=T, AC, 6, =I(T, < C)=0, X,=0and 0, =I(T,+T, <C)=0.
If T,<C<T +T,, we have complete information about T, and partial information
about T, . We set

X, =T, 6, =T, < C)=1l, X,=T AC)-X, and 06, =I(T<C)=0.
If 7,+7, <C, we have complete information.about both T, and T,. In this case,
we set

X,=T,, o, =l(Ty= Ozl X, =(T AC)-X,~and 6, =[(T<C)=1.

We collect the data (X,;, 0,,, Xas 0,,,) for ifrom 1 to N. Notice that the larger

li»

the value of T, the higher chance that T, will be censored. Since the two

variables are correlated, we have dependent censoring.

3.1 Nonparametric MLE Based on Markov Assumption

Frydman (1992) used the evolution of AIDS as an example and analyzed the
three-state with one-path model under the Markov assumption. Recall that 7,
represents the time from HIV infection to AIDS and 7, represents the time from
AIDS to death. Let 7' =7, +T,. The Markov property is imposed on the transition

probability such that

Pr(7,=t|T,2t,T,=s) =Pr(T =u|T >u).
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wereu=t+s.

The original paper considered the situation that 7, is subject to interval

censoring. Here we modify Frydman’s discussion for right censored data. Following

the notations of previous discussion, we have data (X,,,9,,,X,,9,,,), (i=1,...,N).

The likelihood function for right censored data can be written as:

N
[]pPe(T, = X,)" Pe(T, =X

i=1

T,>X,)" Pu(T, = X,,,T, = X,,)"™,

i 1i°

N
= [IPu(T 2 X)) P, > X, | T, = X,) ™ Pr(T; = X,)"
i=1
xPr(T, = X, | T, = X,)" Pr(T, = X,)"™,

where I,,= 1(5,=0,6,,=0), L= 1(0,=1,6;=0) and [, = I(5,=1,0,=1).

Recall that F(s)=Pr(7, < s)=and

Lo P(T e[t b +A)| T, =5,T, >t
/12“(t|S): llm (2 )l 1 2 )

A—0 A

is the transition rate which condition on 7, =s generally.
Under the Markov assumption,
Pe(T, =u—s|T, 2u-s,T, =s) =Pr(T' =u|T Zu).

We can find the hazard rate can be simplified as a function of current time,

()= limPr(Te[u,u+A)|TZu).

A—0 A

Hence the Markov property implies that A, (u|7) = A,(u) . Based on the

product-limit decomposition and the Markov property we have

Pr(7, > X, | T =X;) = H(l_dAzu(u‘XU))

(0,X;]

= H(l_dAT(u+Xli))

(0,451
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= [la-da, o,

(X1 X+ X5

where A, ()= J'O[ A, (x)dx and A, (¢)= JZ A (x)dx . Similarly, we have

Pr(7, =X, |T, =X,)= H(l_dAZU(Z’l’Xli))A2|l(X2i | X))

(0,X5;)

- H(1 —dAy (u+ X)) (X, + X))

(0,X5)

= JJa-dA, (A (X, +X,).

(X, X+ X5;)

Finally, the likelihood function L can be rewritten as follows:

L(FI,AT)ZﬁPr(TI > X, x{ H(l—dAT(u))} |

i=l (X151 +X;]

xPr(T, = Xli)lb{ H(l_dAT(u))AT(XZi +X1i)} ‘l Pr(T; = X,))" .

(X, X5, +X5;)

Now we discuss nonparametric likelthood estimation. The objective is to

maximize

N
L(F. Ap) =] [Pr(T, 2 X,)" P(T; = X,)" Pr(T; = X,)"

i=1

X{ H(l—d/\r(u))}{ H(l—d/\r(u))}H{AT(XZZ-JFXU)}["' 3.1

(X1, X1+ X5;] (X1, X1 +X3;) i=1

Let {X,,, |p=1~ M} be the collection of observed distinct values of 1, , where
M is the number of distinct failures of 7, . Let {X wn=1~ M,} be the

collection of observed distinct values of 7] +7, , where M p 1s the number of

distinct failures of 7, +7, . Let {d,} be the number of ties for X, . We define the

(n) *

z, = F(X,,.)—F(X,,—) 1is the jump size of F(¢) at time X, and

(»)
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h, =N (X))~ A (X,,—) 1s the jump size of A, (¢) attime X, . The first part
N
l_IPr(T1 > X,)" Pr(T, = X)) Pr(T, = X,,)’* can be expressed as a function of z,
i=1

and the second part,

H{ H(l—dl\r(u))}{ H(l—dAr(u))Ar(Xl,-+Xz,-)}

=l (X, X+ X ] (X1, X1+ X5;)
can be expressed as a function of #,.

Turnbull (1976) proved that the nonparametric MLE satisfies a property of

self-consistency. Hence Frydman (1992) proposed a self-consistent algorithm to

estimate z, and £, . Using the property of self-consistency, the estimation

procedure can be stated as follows:

M

Step 0: Set initial values. Z° :{zg} and .h’= {h’}. such that 222 =1 and
p=1

0<h’ <1.

Step 1: Compute 4,,(z,h), w;(z.h)=and y..(Z,h).

(2, ) =1{X,, = X,,,3,, =1} for m=1~N, i=1~ M

N L, z; if X, 2X,,and 6,, =0 . ~
ty; (z,h) =——, wherel; = ' for i=l~ M
0 o.w.
21
k=1
J=1~N

If X, <X, and 6,,=1,n=1~M,, m=1~N, then
0;if X, < X,

Vom(Z,h) = for m=1~M, and n=1~ M,

I if X, <X, <X, + X,
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Step 2: Find new {z } and {ﬁn} based on u .(z,h), y;(z,h) and y, (z,h).

Let

M J
Dt (20 h)+ D 1 (20, h°)
m=1 j=1

ép: N. p=1~M;

/’lAn =M—n n=1~]\7[D.
Zymn(z()’h())
m=1

Step 3: Let Z”" and A" be the new values of {2} and {A,}. To Repeat

stepl ~ step 2 until {Z } and {ﬁn} attain the required accuracy.

Note that a patient with survival time X, with X, > X  never enters the

risk set at time X, so it is reasonable to set” y, (z,/4) equal to 0. If Max X, is

the censoring time, we should be careful that the denominator of ,uﬁ (z,h) becomes
0. We can directly get the PHZ}<5)and PHT, >#|T =s) from {2} and {A,}
as follows:
‘ 0
PH(T, < )= F(s)=1 2 Sy SS<Sen

p=l

1

Pr(T, >¢t|T, =s)=[[(1-dA,)= H(l—ﬁn)zﬁ(l—ﬁnl{X(n) e(s,s+1]}).

(s,5+t) (s,5+t) n=1
Since

PiT, <s,T, >1)= J:Pr(Tz >t T, =u)Pr(T, =u)du
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we can estimate Pr(7; <s,7, >t) by

M
Pr(T, <s,T, >0)= Y Pu(T, > 1| T, =u){D 2 1{s, <u<s;,}
=1

0<u<s i

My, R I
= > [1a=h1i,, e(s,)50, DD 2050 <5, < S -
i=1

OSS(F)SS n=1

In the Appendix, we provide more detailed description about why Frydman’s

approach is self-consistent.

3.2 Estimators Based on Decomposition Approach

In the past decade, several nonparametric estimators of the bivariate survival
function have been proposed. These estimators aresconstructed based on different

ways of decomposing the survival funection.'For example Visser (1996) and Wang
and Wells (1998) both decompose Pr(7,:>¢,,7, > t,) as the product of Pr(7} >1t,)

and the other is Pr(7, >¢, | 1] > t).-For-example, Visser (1996) assumed that the

variables are discrete and proposed to estimators for A,(t;) and A, (t,[t,).

Finally, Visser maximize the likelihood function with respect to A,(t;) and
Au(ty ).

Lin, Sun and Ying (1999) decompose the Pr(7, <t¢,,7, <t,) as Pr(T; <¢)) -
Pr(7, <t,,T, > t,) and estimate the two parts separately. Another difficulty is how

to estimate in presence of right censoring. Without right censoring data,

ZI(X“ <t X >t2)

i=1

Pr(T, <t,,T, >t,) can be estimated by empirical function,
n

If the presence of right censoring, they use the survival function of censoring time to

adjust the empirical estimator as
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1 & I(X, <t,X, > 1))

n iz G’(Xil +t2)

where é(r) is an estimator of G(¢) = Pr(C >1).

In the thesis, we focus on Wang and Wells (1998). Wang and Wells (1998)

proposed a method to estimate Pr(7;, >s,7, >¢). The idea can be described as

follows. First of all, they consider the following decomposition:
Pr(T} > 5,T, > t)=Pr(T} > s,T, > t)=Pr(T, > t| T, > s)Pr(7} > s).

Then the two components involve only one-dimensional estimation, which can be

handled based on the product-limit expression. Specifically, it follows that

B _Pr(T] € (u,u+A)
PK(T, >5) = g{l Pr(T, = 1)

= [~ 24 3

U<s

where

. PuZ elu,u+A)|T, 2a)
lim :

A—0 Z&

Ao (1)

Similarly

Pr(T, > ¢|T >s) = ]‘[{1—Pr(T2 =wh >s),
u<t Pr(Tz Zu,]] >S)

In presence of censoring, we can get

Pr(Ty =u,T,>s) _ Pr(X,>s,X,=u,0,=10,=1)
Pr(7, > u,T, > s) Pr(X, >s, X, 2u,6,=1)

Estimation of the second component in presence of censoring is more difficult due to

dependent censoring. They did the following derivations. Foru, s > 0,
Pr(X,>s,X,=u,d,=1,6,=1)

= Pr(T >5,C>5,T, =u,T, <C,C—T, >u)
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= Pr(T, > 5,7, =u,C~T, >u)
since 7, >s and C-T,>2u impliesthat 7, <C,C = s. It follows that
Pr(X,>s,X,=u,8,=1,6,=1) = Pr(l, >5,T, =u)Pr(C>u+T)
which is independence of C and T, ~ T,. Similarly,

Pr(X, >s,X,>u,8 =1)

= Pr(l} >s,C>s,T, 2u,C-T1, 2u, T, <C)

Pr(; >s,T, 2u,C 21, +u)

Pr(7, > s, T, 2u) Pr(C 2T, +u)

Using the ratio of

PHX, > 5, X, = .0, 51,0, = 1)
Pr(C 2T, +u)

Pr(7, > 5,7, =u)

and

Pr(Xy 55, X, > u, 5, =1)
Pr(C=T +u)

Pr(T, > s,T, 2u) =

as the basis to estimate A,(u|7; >s), the effect of dependent censoring can be

removed.

The survival function Pr(7, >s) is estimated easily by K-M estimator based

on (X,;,0,,) for i from 1 to N. Also we can use

P(T, > 5,1, > )= [[{1- 4, |T, > s)du} Fi(s).

u<t
Now we discuss estimation of A,,(u|7, >s)du which need to account for the

effect of dependent censoring. Let
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if (0,,6,,)=1(0,0): X,-C =X, +0, 5ic =1-96,0,
(Xica5ic): if (6,:,0,,)=(10): XiC =Xy é‘ic =1-9,0,
if (0,,0,,)=(1): XI.C =X, +X,, oF =1-0,,0,,.

1

Foru>0, Pr(C>u+s) can be estimated by K-M method based on (X} ,5°) for i

from 1 to N. The corresponding estimator can be expressed as

N¢
ZI(XZ.C =u+s,0° =1)

Geu+s) = [J0-— 1.
v<u+s Z](XIC >u +S)

i=1

Accordingly A,(u |7, > s)du can be estimated by

N
ZI(XU >5,0, =1,X,, =u,08,, =1)/ G.(X,, +u)
Ao | T, > s)du = =

N
ZI(X“ > 5,0, =1, X57>u)/ G.(X,, +u)

i=1

Finally we can estimate the joint probability by

F(s,t)=]T8- A, | T > 5)duy B (&)

u<t

Now we compare the two estimators. They are both nonparametric. Frydman’s
approach uses the Markov property to simplify the likelihood expression. We expect
that if the Markov property holds, the NPMLE would lead to a more efficient
estimator. The approach proposed by Wang and Wells does not impose such a strong

assumption and will be more robust. Our conjecture will be assessed via simulations.
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Chapter 4 Simulation Study

In this chapter, we compare two different estimators via simulations. Specifically one is the
path-dependent estimator proposed by Wang and Wells (1998) and the other is the non-parametric
MLE proposed Frydman (1992) which assumes the Markov property. In our analysis, we generate
two types of data, namely a non-homogeneous-Markov model and a Copula model. Note that under
the first setting, the model assumption in the paper of Frydman (1992) is valid. Hence it is expected
that this approach based on non-parametric MLE should work better than the method by Wang and
Wells (1998) in which no model assumption is made. In the second setting, we generate the data

from Clayton’s model such that
Pr(T, > 1,,T, >1,) = {Pr(Lai) "+ P, >1,)™ —1}" o e(l,). 4.1)

4.1 Data Generation Algorithms

4.1.1 Data From a Non-homogeneous-Markov Process

Based on the non-homogeneous-Markov property, we have
PH(T >1¢|T = s)=exp{—JZPr(T SulT>u,T = s)du)
=exp{—J.tPr(T =ul|T 2u)du}

— exp {—L’ Ay (u)du} .
We simplify the simulation algorithm in Judith and Betensky (2001), which is stated below.
1. Generate U followsa uniform(0,1) distribution.
2. Let U=F,(T}) andset T, =FI_1(U) , Where the form of F(s) can be derived if the form of
A,(s) 1s given based on F,(s)=exp {—JZ A, (u)du}

3. Generate V' which follows a uniform (0,1) distribution, independent of U .
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4. Let V = F,(T|s), then T =FT_1(V|S) can be obtained by the probability integral

transformation Theorem. Now we have 7, =sand 7, = T-7, = T -s.

5. Generate right censoring time variable C.

With (7},

5,=I(T,+T, <C).

A 1 3 6 10
1 0.331927 0.328921 0.329184 0.328956
3 -0.730228 -0.814889 -0.838167 -0.847920
6 -0.956323 -0.964759 -0.968716 -0.970787
10 -0.981231 -0.981207 -0.979310 -0.977902

T,, C), we can set the observed variables as 7, <C, o6, =I(1, <C), T,+T,<C and

Table 4-1 The number is each cell is Kendalls’ 7

In our simulations, we generate 7; from exponential (1) and set the hazard function
A(t)=ap(t)””" to follow the Weibullthazard function with*parameter « and p. Table 4.1 lists
the value of Kendalls’ ¢ with different combination of («a,p). We observe that under the
selected parameters, (77,7,) can have large negative association but only permits low positive

association.

4.1.2 Data from the Clayton Model

The Clayton model is given in (4.1) with o = 1+—T We adopt the algorithm in Prentice and
-7

Cai (1992) in which 7, and 7, are set to follow Exp(A4,) and Exp(A,) respectively. The

simulation procedure based on Clayton (1978) :

1. Generate U and V follow uniform(0,1) distribution.
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1
T1=—/1—10g(1—U).

1
-a

Tzz%log(l—(l—U)’“ +(1=-U)“(1-V)e).

2

2. Generate right censoring time variable C.

3. With (7}, T,, C), we can set the observed variables as 7, <C, 6, =I1(T, <C), TI,+T,<C

and 0,=I(T,+T,<C).

4.2 Simulation Results

In our simulations, we report the bias and standard deviation (in the parenthesis) for the
estimator Pr(7, <¢,,T, <t,) based on 300 or 500 replications. Note that Wang and Wells (1998)
provided their estimator based on Px(Z} >¢,,T, >¢,) “and> hence we need to calculate the joint

probability by the following formula:
Pr(7, <¢,,T, <t,)=1-Pr(T} >4)+Pr(L;>6,) =Pu(T, > t,,1, > t,) (4.2)

The numbers shown in the table are multiplied by 10°_ The results are given in Table 4-2 ~ Table

4-6.

4.2.1 Data from non-homogeneous Markov Process

First, we compare the performance of two estimators based on Markov data. Since the data
satisfy the model assumption of Frydman’s method, we expect that it will perform better than Wang
and Wells’ method. The bias and standard deviation of the two methods are reported corresponding
to different parameters. In Table 4-2 with low correlation, we can see that both methods perform
well and don’t have obvious difference. In Table 4-3 and Table 4-4, the level of association
becomes stronger. In the case, we can see that the bias of the two methods both are about the same,
but the deviation of Wang and Wells’ estimator can be larger in some case. Note that there are few

observations of 7, between 0.3 and 0.6 for generated Markov model and this affects the result of
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Wang and Wells’ estimation. Finally, the Table 4-4 with strong correlation structure and higher
censoring rate shows the Frydman’s estimator is better than Wang and Wells’ estimator. The
maximum bias is still about 4x10~° but the bias of Wang and Wells’ estimator is worse than in the
low correlation structure. Even though Wang and Wells’ estimator is worse, the maximum bias is

about 9x10~. Note that the last grid points in Table 4-4 have unusual bias, it is caused by the bad
selection of grid point with P(C>¢ +¢,) = 0. Since we only observe C A (T, +7,), choosing

(¢,,t,) in the tail area result in poor estimation.

4.2.2 Data from Clayton model.

Then we compare the two methods based on the Clayton model since this violates the
assumption of Frydman’s method, and we want to see how it behaves under model
mis-specification. We report two different correlations, one is 0.005 and another is 0.818, in Table
4-5 and Table 4-6. We can find no large difference between two methods in low Kendall’s 7. We
increase the correlation to 0.818, and we find the bias of Frydman’s method is larger at some grid
points. So the wrong model assumption cause -bad estimation of Frydman’s approach as the

correlation between the time variables is:high.
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T1 T2 True Bias (F Standard | Bias (W Standard
value P(C 20+ tz) © deviation ) deviation
() (W)

0.050000 | 0.130000 | 0.004343 0.964660 -0.284026 | 8.755885 | -0.434063 | 13.549313
0.050000 | 0.150000 | 0.005498 0.961727 -0.407624 | 10.011397 | -0.611689 | 14.821236
0.050000 | 0.250000 | 0.012610 0.941480 -1.262630 | 14.660030 | -0.785667 | 20.901781
0.050000 | 0.450000 | 0.028900 0.881880 -2.001756 | 15.231161 | -0.345468 | 24.267647
0.150000 | 0.150000 | 0.022526 0.941480 -0.661658 | 32.106002 | -1.854896 | 46.602093
0.150000 | 0.200000 | 0.033448 0.934807 -1.879834 | 38.637600 | -1.876408 | 54.963911
0.150000 | 0.250000 | 0.045220 0.914733 -3.144643 | 42.919818 | -2.285402 | 60.973611
0.150000 | 0.450000 | 0.091090 0.861807 -4.799818 | 37.289896 | -1.480140 | 64.176412
0.300000 | 0.650000 | 0.234054 0.785373 -2.211174 | 20.381585 | -0.039404 | 49.780053
0.300000 | 0.700000 | 0.240786 0.772927 -1.355026 | 15.493690 | 0.342529 | 37.723636
0.800000 | 0.700000 | 0.529438 0.667293 -1.199453 | 16.874751 | 0.773245 | 38.235751
0.800000 | 0.750000 | 0.535670 0.655893 -0.483195 | 13.559709 | 0.890078 | 29.091310
1.200000 | 0.750000 | 0.683752 0.567680 -1.188078 | 13.272199 | 0.098142 | 28.755435
1.500000 | 0.800000 | 0.766423 0.490700 -0.189812 | 11.775102 | 0.421018 | 22.058600
2.000000 | 0.850000 | 0.857540 0.358560 0.171229 | 10.550403 | -0.460072 | 16.634423
2.500000 | 1.000000 | 0.915880 0.222387 3.445247 | 10.441048 | 0.759025 | 11.565810

Table 4-2 Markov model a=2 2=4 repeat 500 sample size 300 Kendall’s t=0.029227

Censoring rate of T1 is 21.87%, Censoring rate of T2 is 25.95%.
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T1 T2 True Bias (F Standard | Bias (W Standard
value P(C 20+ tZ) ® deviation ) deviation
() (W)

0.050000 | 0.130000 | 0.002223 0.957753 -0.056518 | 5.387089 | -0.301042 | 9.1041320
0.100000 | 0.500000 | 0.042762 0.865847 -2.771526 | 28.691298 | -0.787734 | 46.704400
0.200000 | 0.750000 | 0.136575 0.788027 -3.050022 | 27.169118 | -0.477552 | 73.369998
0.350000 | 1.000000 | 0.272948 0.699880 -0.281012 | 12.405852 | 0.0925330 | 38.961856
0.150000 | 0.150000 | 0.011802 0.928633 -0.263205 | 20.688308 | -1.456980 | 31.540952
0.400000 | 0.350000 | 0.128425 0.829847 -2.226206 | 81.576866 | -6.747808 | 141.35072
0.150000 | 0.450000 | 0.057598 0.865847 -3.873429 | 41.251242 | -2.501958 | 65.275824
0.500000 | 0.750000 | 0.323290 0.719333 -2.965783 | 35.222427 | -2.454568 | 99.687207
0.300000 | 0.350000 | 0.091797 0.854240 -3.082721 | 69.396949 | -5.182065 | 112.14946
0.400000 | 0.450000 | 0.169196 0.808840 -4.147652 | 78.214676 | -6.840380 | 146.43111
0.500000 | 0.750000 | 0.323290 0.719333 -2.965783 | 35.222427 | -2.454568 | 99.687207
0.600000 | 0.800000 | 0.390315 0.689687 -2.645174 | 28.867423 | -3.303129 | 84.626810
0.900000 | 0.750000 | 0.514485 0.628160 -2.695100 | 34.695753 | -2.632240 | 97.565389
1.500000 | 0.800000 | 0.710792 01489780 -2.755712 | 28.201743 | -2.789572 | 84.507931
2.000000 | 0.850000 | 0.811094 0.362633 -2.279274 | 22.735904 | -3.116583 | 70.819558
2.500000 | 1.000000 | 0.890848 0.215300 1.564353 | 14.766494 | -0.336915 | 39.136745

Table 4-3 Markov model 0=2 A=2 repeat 500 sample size 300 Kendall’s 7=0.146178

Censoring rate of T1 is 22.15%, Censoring rate of T2 is 28.75%.
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T1 T2 True Bias (F Standard | Bias (W Standard
value P(C 20+ tZ) © deviation ) deviation
() W)

0.050000 | 0.130000 | 0.000730 0.939160 0.055047 | 2.058647 | -1.797911 | 4.2096050
0.050000 | 0.150000 | 0.001045 0.935733 0.068707 | 2.701295 | -1.890555 | 5.6914190
0.050000 | 0.250000 | 0.003905 0.903167 0.008385 | 6.816600 | -2.331336 | 13.358093
0.050000 | 0.450000 | 0.016995 0.826640 -0.395545 | 14.823341 | -1.935060 | 24.859973
0.150000 | 0.150000 | 0.006257 0.903167 0.120047 | 12.023384 | -6.588907 | 17.569704
0.150000 | 0.200000 | 0.011192 0.890580 0.020023 | 18.410499 | -6.719424 | 31.943418
0.150000 | 0.250000 | 0.017913 0.862573 -0.249468 | 25.211740 | -6.965533 | 43.752489
0.150000 | 0.450000 | 0.060635 0.792413 -2.029990 | 41.228056 | -5.308293 | 67.590241
0.300000 | 0.450000 | 0.143088 0.732047 -3.739897 | 64.850595 | -9.455314 | 113.99729
0.300000 | 0.550000 | 0.185506 0.696940 -3.463777 | 49.132670 | -5.827240 | 102.46529
0.800000 | 0.550000 | 0.469792 0.517273 -1.981527 | 54.713053 | -6.178835 | 116.23843
0.800000 | 0.600000 | 0.490822 0.509773 -1.541588 | 43.888784 | -4.712470 | 98.946725
1.200000 | 0.600000 | 0.638953 0.370707 0.235860 | 44.276640 | -4.677959 | 97.504928
1.500000 | 0.650000 | 0.734026 0.243287 3.848780 | 33.938284 | -2.262546 | 78.687287
2.000000 | 0.700000 | 0.835086 0.036567 11.287361 | 29.479361 | -1.595592 | 64.155822
3.000000 | 0.850000 | 0.942616 0.000000 34.420339 | 17.921452 | 49.032459 | 19.881606

Table 4-4 Markov model a =3 A =4 repeat 500 sample size 300 Kendall’s T=-0.827893
Censoring rate of T1 is 33.18%, Censoring rate of T2 is 40.11%.
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T1 T2 True Bias (F Standard | Bias (W Standard
value P(C 20+ tZ) ® deviation ) deviation
() (W)

0.050000 | 0.020000 | 0.004684 0.984671 -0.076867 | 3.205136 | -0.127983 | 3.990142
0.050000 | 0.100000 | 0.019333 0.966761 -0.179919 | 7.327877 | -0.361669 | 8.077350
0.050000 | 0.150000 | 0.025900 0.955086 -0.131419 | 8.488430 | -0.124885 | 9.327232
0.050000 | 0.200000 | 0.031003 0.944022 -0.087343 | 9.430975 | -0.321557 | 10.467596
0.200000 | 0.020000 | 0.017398 0.950790 -0.140047 | 4.873253 | -0.269865 | 7.811502
0.200000 | 0.100000 | 0.071819 0.932254 -0.339722 | 14.159066 | -0.260133 | 16.361615
0.200000 | 0.150000 | 0.096221 0.921393 -0.416783 | 16.707775 | -0.166718 | 17.727617
0.200000 | 0.500000 | 0.166722 0.843404 -0.436926 | 21.640716 | -0.418824 | 22.577976
1.000000 | 0.150000 | 0.334825 0.743318 -0.862412 | 24.945594 | -0.055581 | 29.639565
1.000000 | 0.250000 | 0.452326 0.720649 -1.167206 | 29.045440 | -0.531579 | 31.807811
1.000000 | 0.350000 | 0.523388 0.698333 -1.192295 | 30.331127 | -1.668054 | 32.919563
1.000000 | 0.450000 | 0.566364 0.675994 -1.245497 | 30.513365 | -1.816170 | 32.345590
2.000000 | 0.150000 | 0.457179 0.519444 0.002288 | 25.398337 | -0.732071 | 32.212080
2.000000 | 0.300000 | 0.672636 0486174 0.232664 | 28.076394 | -0.971929 | 32.102910
2.000000 | 0.800000 | 0.849028 0.377316 0.185231 | 24.794812 | -0.079348 | 27.359247

Table 4-5 Clayton model exp(1) exp(5),7=0.005 repeat S00 sample size 300 Censoring rate of T1
is 22.29%, Censoring rate of T2 is 26.370%.
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T1 T2 True Bias (F Standard | Bias (W Standard
value P(C 20+ tZ) ® deviation ) deviation
() W)

0.050000 | 0.020000 | 0.028111 0.984663 0.033766 | 9.269063 | -0.055722 | 9.907238
0.050000 | 0.040000 | 0.040643 0.980024 -0.949622 | 11.586493 | -0.223587 | 12.001098
0.050000 | 0.080000 | 0.047624 0.971106 -0.948741 | 12.835534 | 0.140512 | 13.173680
0.050000 | 0.100000 | 0.048347 0.966859 -0.704267 | 13.017319 | 0.054889 | 13.246833
0.200000 | 0.020000 | 0.075735 0.950865 10.736515 | 14.481595 | 0.109143 | 16.573450
0.200000 | 0.040000 | 0.127881 0.946090 1.647625 | 18.899140 | 0.275777 | 20.735686
0.200000 | 0.080000 | 0.171711 0.937188 -8.585814 | 21.836477 | 0.104741 | 23.370917
0.200000 | 0.100000 | 0.177602 0.932508 -7.906743 | 22.325337 | -0.288541 | 23.340817
0.500000 | 0.020000 | 0.094080 0.883341 44986948 | 15.359193 | 0.080468 | 18.248861
0.500000 | 0.040000 | 0.177602 0.878678 43.228557 | 20.483141 | -0.333964 | 24.063984
0.500000 | 0.080000 | 0.307634 0.870401 -3.254256 | 24.717086 | -0.932267 | 29.544991
0.500000 | 0.100000 | 0.348858 0.866106 -22.264862 | 25.946045 | -0.952399 | 30.634325
1.000000 | 0.100000 | 0.393023 0.753870 52.260769 | 24.965144 | -0.621747 | 33.646507
1.000000 | 0.500000 | 0.632121 0.665104 -15.822411 | 30.558998 | -1.672707 | 30.612189

Table 4-6 Clayton model exp(1) exp(5) T=0.818 repeat500 sample size 300 Censoring rate of
T1 is 22.29%,Censoring rate of T2 is 26.75%.




32

Chapter 5 Conclusion

In the thesis, we review several multi-state models and some properties that are often imposed
to describe the underlying process. In particular we focus on a simple model with three states and
one path that can be used to describe the evolution of AIDS. Two nonparametric estimators for
estimating the joint distribution of the two duration times are discussed. Specifically Frydman
(1992) proposed a nonparametric maximum likelithood estimator under the assumption that the
underlying stochastic processes the Markov property. The other estimator proposed by Wang and
Wells (1998) is constructed by expressing the joint survival function in terms of estimable
quantities. By using the idea of weighting, the bias due to dependent censoring can be removed.
Our simulations confirm our conjecture that thé NPMLE approach yields a more efficient result
when the model assumption is correctly specified:-On, the other hand, the estimator proposed by

Wang and Wells (1998) is more robust.since it does not rely.on-any model assumption.
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Appendix: Self-consistency of Frydman’s estimator

Definition: self-consistency estimator (Turnbull 1976)
Z={z, j=1~ M} is a set of probability mass. Z is a self-consistency if Z is defined to be

any solution of the equation,

~

z,=f(Z) Vj=1~M.

Under Z and H=1{h,, n=1~Q} areknown and

~

z,=Pr(X,, <T, < X,,,) V j=1~M,

1) —
h, =Pr(T = Xy5 1T 22X,,) ¥V n=1~M,.
Let

W (z,h)=I{X,, =X, ,,6,, =1} forj=1~ M, m=1~N,

which is the probability that m-th observation fail attime’ &', ;, exactly. Let

I z,; X & @X

M wherel. ={ "/
u m {O 0.W.
zlkm

k=1

1m7oo) and 51m =0 . "
for =1~ M,

Hy (1) =

m=1~N,

which 1s the probability that m-th observation fail at time X if 7,>Xx, . If

1(/)

X, <X,=X,+X,, and o, =1, n=1~ MD,m=1~N,then

(n) — 1m
0;if X ) < X,
Vo (2,h) = for m=1~N, and n=1~ M,
I if X ) e(X,,,X,,]

which is the number of risk set at time X, . Let

~

d,=1{,, =1 96,,=1LX,=X,} form=1~N,n=1~ M,

(n)
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My
And d, = de is number of ties at X, .

n=1

Based on the above definition, we can calculate following expected value,

N N
E(N01(X1(,')) | Data) = Z,ujm (Zah)‘*'zluﬁn (z,h)
m=1

m=1

Ny, (X,;))= #of AIDS development at time t.

N
E(N,(X,,))| Data)= "} d,,

m=1

N, (X)) =# of death at time t.

N
E()IZ(X(H)_) | Data) = zymn (29 h)
m=1
Y,(X,, ) =#ofrisk set at time t.
According to the equations in Frydman (1992),
E(Ny (X)) | Data)=N x z,
E(N,(X,)) | Data)=h, x EG(X ,, )| Daia).

This implies that

N N
Zﬂjm(z7h)+2/’lj1in(zo7h0)
m=1

z, = ]\r;:l =f(Z,H) satisfy the definition of self-consistency.
N
Z dmn
h, == f(Z,H).
2 ymn (ZO b ho)
m=l1

We will prove the NPMLE of equation (3.1) can be maximized by self-consistent estimator.

m»®) otherwise
X,,] if o, =1

X if o, =0 X
( OO] 1 1m {( vaINN

First, define 4, = n ) =
(X, .X,]ifs, =1 |(X

1m> 1m 1m>

{1 if X, €A,
mj =

0 otherwise

B, =(X,.,X,) Vm=I~N

1m>
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()

C[1ifs, =1, X,, B,
i 0 otherwise

Recall that z, = F(X,,,,)—F(X,;—-) is the jump size of F(¢) at time X, and
h, =N (X (,0)— A (X)) is the jump size of A, (¢) attime X, .
We write down the log likelihood as following:
log L Z{IU log[Zal/ ]]+(121 +I31)10g[ZaU z;
+2121{Zﬂm log(l hn)}+2131{2ﬂm log(l hn)+zdm logh }
i=l i=1
MD
—Z{log[za,, ,]}+Z{Zﬁm log(1- hn)}+zd logh,
i=l n=1
ZeethE
Let d, (Z)——Z{log[z Ay toE Z{Zﬂm log(1-h )}+—Za’ logh,
i=1 k#j 1+ 1+€ =l n=1
i _Zk (]'_Zj)
0 & i Z-+€ N i l+¢& % 1+¢&)’
:_Z log[zalk a; J z k#j ( ) ( ) )
oe ‘S oy I+¢ = z, z,+¢&
Zaik +a,
i l+e l+¢&
M
Yz, +a,
Set €=0. d,(2)= Z{ k=l } and find the relationship between d,(Z) and Z; is

M
L
k=

z. d.(Z
-y G

N
—_J
it _ﬁg i
Zalkzk Z
k=1 k=1 k=1
So d;(Z)=0, the self-consistent estimator is equivalent to NPMLE.

We consider the NPMLE of £, .

Zj-l-g

z {log[z alk

a;
g -1 k%) I+¢
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=

a N

6hg zl{z;ﬂ log(1—h, )}+Z;d logh,
=0+ —+Z{ ’g}

Finally, We solve above equation and find

N
2.

m=1

-~
z}/mg(zo’ho)
m=1

}; MLE

is equivalent to
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