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摘  要 

網際網路的發達，使得政府及工商業界的文書往來，漸漸地由紙式文件，

改為利用網際網路傳遞的電子式文件；簽章部分也由傳統的印章改為電子簽

章。因應此一電子化的趨勢，世界各國紛紛制訂電子簽章法來推行電子簽章；

中華民國政府也於 2001 公告自 2002 開始施行電子簽章法。 

電子簽章又稱數位簽章，其發展到 1996 年，Mambo 才提出代理簽章的概

念。代理簽章提供了原始簽章者，可以授權給代理簽章者代簽電子簽章的功能，

是近十年來，蓬勃發展的電子簽章應用之一。許多學者也提出增進代理簽章安

全性及不同的代理簽章演算方法來實現代理簽章。但這些方法被質疑能否實際

應用於現實生活，所以我們除了提出架構在 Quadratic Residues 上的代理簽章

外；也建議代理簽章建構在標準的簽章法，如 DSA 及 ECDSA 等；並提出了建

構在 DSA/ECDSA 的代理簽章法，藉由已充分討論過安全性的標準簽章法，使

代理簽章成為現實可行的簽章機制。 

為了解決金鑰曝光的問題，我們在現有的代理簽章法加入前向預防式

(proactive) 的概念，而提出了 proactive secret sharing proxy signature scheme。

藉由定時更新金鑰的方式，確保了某一段時間內，簽章的安全性。proactive secret 

sharing proxy signature scheme 的復原機制，更可以在某一代理簽章者的 share

遺失或無法使用時，由其他的代理簽章者來復原其 share。 
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單向雜湊函數經常配合簽章使用來增進簽章的效率，自從王小雲教授提出

在 269的時間複雜度內可以找到單向雜湊函數 SHA-160 的碰撞後；我們也分析

SHA-160 的訊息處理模式，發現 SHA-160 有衰減(Decay)的現象，所以我們提

出兩個改進 SHA-160 的訊息處理模式安全性的方法。期望我們對單向雜湊函數

與代理簽章的分析與改進，能使電子簽章能實際地運用於日常生活中。 
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Abstract 

Due to the rapid progress of Internet, governments and enterprises change their 

paper-based documents to electronic ones; as well as hand-made signatures to digital 

signatures.  The electronic signature relative regulations are established all over the world. 

Taiwan has also established the Electronic Signature Laws in 2001 and put into operation in 

2002.  

Mambo et al. are the first group who introduced the proxy signature scheme in 1996.  

The proxy signatures, with which the original signers can delegate their signing capability 

to the proxy signers, are the most popular application of digital signatures in the last decade.  

Lots of researchers proposed improvement or alternative mathematic base of proxy 

signatures without adopting Digital Signature Algorithm (DSA) or Elliptic Curve Digital 

Signature Algorithm (ECDSA); however, most of the proposed proxy signature schemes are 

not feasible in practice because their securities cannot be really proved.  Therefore, we 

propose the proxy signature adopting DSA and ECDSA and firstly introduce Quadratic 
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Residues’ concepts.  Our scheme keeps not only the properties of the DSA/ECDSA but 

also fulfills the strong requirements of proxy signatures. 

To solve key exposure problem, we adopt proactive concept into proxy signature and 

propose proactive secret sharing proxy signature scheme.  The proactive secret sharing 

proxy signature scheme is based on verifiable secret sharing to against the active attacker.  

Consequently, the proactive secret sharing proxy signature scheme, which is a 

group-oriented scheme, provides the functionality of proxy signers' shares renewing and 

recovering. 

One-way hash functions are important skills to make digital signatures efficient.  

Wang et al. reported their method to find a collision efficiently in SHA-160 within 269 hash 

steps in February 2005.  In fact, we can still discover the decay phenomenon with the 

application of a message schedule’s judgment when inspecting how SHA-160 generates 

message schedule actually.  Therefore, we would like to introduce two SHA-160 

corrections to enhance the security of SHA-160.  In general, we hope our enhancement of 

SHA-160 and new proxy signature schemes could be used in practice. 
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Chapter 1   Introduction 

Due to the rapid progress of Internet, the evidence of possessing documents is 

especially important in the electronic world.  The digital signature is developed to replace 

ordinary hand-written signatures without losing the properties of signer authenticity, data 

integrity and non-repudiation.  Proxy signature scheme is one kind of digital signature 

applications.  In this dissertation, we survey lots of proxy signature schemes and propose 

several novel proxy signature schemes.  On the other hand, a one-way hash function is 

also an important skill to make digital signature efficient.  Therefore, the security of 

one-way hash functions is also worth discussing in this dissertation. 

1.1  Motivation and Related Work 

When original signers cannot sign a document by themselves, they might delegate 

their signing capability to trustworthy proxy signers.  For example, when the manager of a 

company will leave for the vacation, she/he needs to authorize her/his secretary to sign 

messages on behalf of her/him.  To deliver manager’s private key directly to her/his 

secretary is dangerous, nevertheless, the traditional digital signature does not provide 

functionality of proxy, either. 

A proxy signature scheme was introduced by Mambo et al. [MUO96] to solve the 

proxy problem so that the original signer could delegate her/his signing capability to proxy 

signer without revealing her/his secret information.  However, Mambo’s scheme does not 

provide non-repudiation property [Zha97a][Sun99]; thus several papers propose 

non-repudiation proxy signature scheme [Zha97a][Sun99][HWW03][LHW98][LKK01b] 

which means both original and proxy signers cannot deny the signatures those are created 

exactly by themselves. 
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In addition, Mambo's proxy signature scheme is not a strong proxy signature scheme 

because it is not a proxy-protected signature scheme in which the original signer knows and 

can derive the proxy key on her/his own.  On the contrary, in the proxy-protected proxy 

signature scheme, the original signer and proxy signer create the proxy key interactively so 

that the proxy signer can be protected from a malicious original signer.  Hence, Lee and 

Kim [LK99][LKK01a][LKK01b] proposed the concept of the strong proxy signature, 

which defined the four requirements of the proxy signature: verifiability, strong 

unforgeability, strong identiability, and strong undeniability.  The strong proxy signature 

should complete all the requirements of proxy signature. 

In the first, most of proxy signatures are based on discrete logarithm problem [EIG85] 

including Mambo's one, so that Li, Tzeng and Hwang proposed generalization of proxy 

signature based on discrete logarithms [LTH03].  After that, Wu and Varadharajan 

proposed a proxy signature based on Chinese remainder theorem [WV99].  In 2002, Chen, 

Liu and Chung proposed a proxy-protected signature scheme based on elliptic curve 

cryptosystem [CLC02], then Hwang et al proposed generalization of proxy signature based 

on elliptic curves [HTT04].  Furthermore, Z. H. Shao proposed the proxy signature 

schemes based on factoring in 2002 [Shao02] and Qingshui Xue, Zhenfu Cao proposed 

"Factoring based proxy signature schemes," in 2005 [XC05].  It is desirable to design 

proxy signature schemes based on Quadratic Residues (QR) problem. 

Fan and Lei proposed efficient blind signature scheme based on QR in 1996 [FL96] 

and improved their scheme in 1998 [FL98].  Therefore, by adopting Fan's signature 

scheme, we propose the proxy signature based on QR to provide another mathematical 

implement. 

Unfortunately, most of the proposed proxy signature schemes prior to this date are not 

feasible in practice because the security of those schemes cannot be really proved without 
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adopting standard signature such as DSA/ECDSA.  The Digital Signature Algorithm 

(DSA) based on ElGamal [EIG85] and Schnorr’s [Sch90] signature schemes is a useful 

digital signature scheme and has become a U.S. Federal Information Process Standard 

(FIPS 186) in August, 1991; called as the Digital Signature Standard (DSS) [NIST00].  In 

addition, the Elliptic Curve Digital Signature Algorithm (ECDSA), a DSA reinforced by the 

Elliptic curve cryptosystems (ECC), was invented in 1985 [ANSI99], which was also 

accepted as a FIPS standard (FIPS 186-2) in 2000 [NIST00]. 

To conquer those disadvantages, therefore, we are the first one who propose 

proxy-protected signature scheme combining standard signature DSA/ECDSA, as well as 

the Public key infrastructure (PKI) mechanism [AF99][BPH02][CFSMW03], which are 

pretty well known by their security properties to reinforce the proxy signature in order to be 

used in practice. 

In many applications, the security is assured whenever the secret key remains 

unrevealed; therefore, a proxy key exposure is also a serious problem for proxy signature 

schemes.  Chang, Lin and Yeh proposed "Forward Secure Proxy Signature Scheme" in 

NCS 2003 to deal with the key exposure problem [CLY03].  In forward secure proxy 

signature scheme, the proxy signer renews her/his proxy keys and deletes the previous 

proxy keys periodically.  Those deleted proxy keys cannot be recovered, needless to 

mention being revealed.  In addition, many threshold proxy signature schemes are 

proposed in which the k out of n threshold schemes [DF89][Zha97b][KPW97][SLH99] 

[HWW03].  However, those threshold proxy signature schemes may be insufficient to 

construct a long-live scheme with the proactive properties to reinforce security and the 

proxy share cannot be recovery either. 

The proactive secret sharing scheme [HJKY95], which is based on Verifiable Secret 

Sharing [Ped91], provides strong security for a secret sharing against the active attacker.  
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Consequently, the proactive secret sharing scheme is a verifiable group-oriented scheme, 

which provides shares renewing and recovery properties.  Therefore, we adopt the concept 

of proactive to propose a proactive secret sharing proxy signature scheme. 

A proactive secret sharing proxy signature could permit the shares of designated 

signers, called proxy signers, being renewed periodically without changing the secret.  In 

particular, we apply the (t, n) threshold proxy signature scheme to allow any t or more then 

t signers to form a designated group from n proxy signers to sign messages on behalf of the 

original signer.  The proxy shares of proposed scheme are periodically renewed; therefore, 

it will be hurtless even when the adversary obtains the proxy shares information in some 

period.  In our proactive secret sharing proxy signature scheme; furthermore, one proxy 

signer can recover her/his own share from the other t proxy shares without revealing any 

information about the other proxy shares.  Unless more than t other proxy signers 

cooperate and collude, the secret share algorithm is always secure. 

Proxy blind signature scheme is a variant proxy signature scheme prior to this date 

[TLT02][SH04][LA05].  Blind signature allows a user receiving a given message signed 

by the original signer without revealing any information about the message itself.  By 

using Schnorr blind signature, Tan et al. proposed two digital proxy blind signature 

schemes based on DLP and ECDLP in 2002 respectively [TLT02].  Moreover, Lal and 

Awasthi further pointed out that Tan et al.’s proxy blind signature schemes suffer from a 

kind of forgery attack and proposed a more efficient proxy blind signature scheme, which 

means Tan et al.’s schemes do not fulfill the unforgeability and unlinkability properties.  

Lal and Awasthi’s scheme, however, does not satisfy the unlinkability property either.  

Therefore, Sun and Hsieh discuss the security of Tan and Lal's schemes in 2004 particularly 

[SH04]. 

Most documents are too large in size to sign digital signature; thus one-way hash 
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functions are important skills to make digital signature scheme efficient.  SHA-160 is one 

of popular one-way hash functions and the security of SHA-160 is worth discussing.  In 

1998, F. Chabaud and A. Joux presented a method to find collisions in Secure Hash 

Algorithm (SHA)[NIST02] with 261 time complexities [CJ98].  In 2004’s crypto 

conference and in Feb. 2005, Wang et al. [WFLY05][WY05] developed efficient methods 

to find collisions in MD5, as well as in SHA-160 with time complexity of 239 and 269 hash 

steps respectively.  Furthermore, Biham and Chen [BC04] announced new analytical 

discoveries concerning SHA-160. Their results include a collision in a reduced-round 

version of SHA-160, which can be found less than 40 rounds. 

Suppose the output size of one-way hash function is n-bit.  According to the birthday 

paradox attack property [MOV96], we could expect certain collisions after trying 2n/2 

possible input values.  Van Oorschot and Wiener [OW94] have explained how such a 

brute-force attack might be implemented.  That implies any cryptanalysis method with 

higher complexity than the birthday paradox attack will be regarded as inefficient.  F. 

Chabaud and A. Joux find collision in SHA with 261 complexities, related to differential 

cryptanalysis of block ciphers [CJ98], and their method is theoretically faster than birthday 

paradox attack.  Unfortunately, in SHA-160, their method is unable to detect collision 

faster than the birthday paradox attack. 

In fact, we can still discover the decay phenomenon with the application of a message 

schedule’s judgment when inspecting how SHA-160 generates message schedule actually.  

Furthermore, we find a reason why move SHA to SHA-160.  The more nonlinear terms 

are involved, the more terms in message schedule process will be effective.  Therefore, we 

would like to introduce two SHA-160 corrections to enhance the security of SHA-160.  

This analysis could also be used in all SHA-serials or other one-way hash functions. 
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1.2  Organization of Dissertation 

We describe our motivation and related work in this chapter; and then report some 

fundamental cryptosystem knowledge and discuss one-way hash functions in chapter 2.  

In chapter 3, we describe some preliminaries of digital signature, (strong) proxy signature, 

Quadratic Residues, secret sharing, DSA, ECDSA, etc.  In chapter 4, we propose novel 

proxy signatures based on QR, DSA and ECDSA respectively and analyze security of 

proposed proxy signature schemes.  And then, we proposed a proactive secret sharing 

proxy signature in chapter 5 to deal with key exposure and key recovery problems.  

Finally, we summarize a conclusion in chapter 6 and list references respectively. 
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Chapter 2   Cryptography 

2.1  Cryptosystem 

   A cryptosystem can provide following properties [Sta03]:  1. Secrecy:  It can 

prohibit the eavesdroppers from receiving plaintext.  2. Authentication:  It can identify a 

message from its origin for the receiver and the eavesdroppers cannot disguise as someone.  

3. Integrity:  It can verify that a message has not been modified so that eavesdroppers 

can’t replace a legal message by a false one in transmission.  4. Non-repudiation:  It can 

prove the message of the sender who may falsely deny later that he had sent the message.  

And a cryptosystem is composed of five basic components: 

m : plaintext message space. 

c : ciphertext message space. 

K : key space. 

E : Encryption. 

D : Decryption. 

 We show mathematic form and figure as follows: 

 

  
ekE ( m ) = c For a given key k K∈  

  
dkD ( c ) = m For a given key k K∈  

 

 

 

 

 

 

 

 



 8

 

 

 

 

 

 

 

Fig 2.1 Encryption and Decryption 

In Fig 2.1, cryptosystem uses keys ke and kd for Encryption and Decryption 

respectively.  Simmons [Sim79] classifies the cryptosystems as symmetric (one key) and 

asymmetric (two keys).  In symmetric cryptosystem, also called secret-key cryptosystem, 

the encryption key and the decryption key are the same or can be easily determined from 

each other.  On the other hand, in asymmetric cryptosystem, also called public-key 

cryptosystem, the encryption key and the decryption key are different. 

In Kerckhoffs’s assumption [Ker83], the strength of a cryptographic system cannot 

rely on attacker’s unawareness about the cryptosystem algorithm.  A secure cryptographic 

system must be published and unbreakable even under the most fatal attack by the world’s 

best cryptographers for years. 

 

2.2  Symmetric Ciphers 

There are two kinds of symmetric ciphers, stream ciphers and block ciphers.  The 

stream ciphers encrypt plaintext one byte or one bit in one time span; one-time pad is one 

kind of stream ciphers.  On the other hand, the block ciphers operate on fixed-length 

groups of bits to form the blocks. 

m 

Encryption 

c 

Decryption 

ke kd 
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2.2.1 Encryption Standard in U.S. 

 

FIPS (Federal Information Processing Standard) - 46: DES (Data Encryption Standard) 

announced by U.S. Government in 1977 has been generally used.  DES is a 64-bit block 

cipher with the key length of 56 bits.  Unfortunately, Electronic Frontier Foundation (EFF) 

using a special purpose "DES cracker" machine proved DES insecure in July 1998 [EFF98].  

Therefore, NIST (National Institute of Standards and Technology) announced Triple DES 

as FIPS 46-3 to enhance original DES.  Triple DES uses three keys and three executions 

of the DES algorithm following an encrypt-decrypt-encrypt sequence. 

Triple DES with 168 bits key and 64 bits the same block size as DES is not for 

long-term use [Sta03].  For reasons of both efficiency and security, a larger block size is 

desirable.  Hence, NIST began the process of replacing DES with AES (Advanced 

Encryption Standard) in 1997 and Rijndael was published as AES: FIPS – 197 in 2001 

[NIST01].  AES uses a 128 bits block size and its key length that can be 128, 192, and 256 

bits.  Four different stages are used in AES: substitute bytes (S-box), shift rows, mix 

columns, and add round key. 

 

2.2.2 Dynamic Extended DES 

 

The original S-boxes of DES are important design to resist differential attack.  

Furthermore, Yeh and Hsu proposed the extended DES [YH02], which developed eight 

more new S-boxes with the same cryptographic properties as original S-boxes in DES.  

These 16 S-boxes are used to construct the extended DES, which double the block cipher 

and key size.  As a result, the time complexity of differential cryptanalysis of the extended 
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DES is 2110.  We propose an intricate extended DES that includes permutation on S-boxes.  

By keeping the permutation information in secret, the new version of extended DES is 

stronger to defeat differential and linear attacks by 20922789888000 times. 

 

The Extended DES 

The extended DES [YH02] has exactly the same data flow and concept as DES.  The 

eight more S-boxes are used in the extended DES to double the block cipher and key size.  

Some modifications are necessary on P-box and key scheduling algorithms. 

The extended DES encrypts a 128-bit data block with a 112-bit key. All data bits go 

through an initial permutation. The data bits then split into two 64-bit data blocks called as 

right and left data blocks.  Two data blocks then go through 32 identical rounds, there is 

no swap of two data blocks in the last round.  After the last round, two data blocks are 

combined into a 128-bit block. The result will be through the inverse initial permutation. 

In each round, the right data block and 96-bit sub-key (Ri and Ki in Figure 2.2) are 

combined by a round function called F.  The output of F is then combined with the left 

part data block by XOR operation.  The two data blocks swap in the next round. 
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Fig 2.2 128-bit extended DES 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.3 One round of 128-bit extended DES 
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The 64-bit right data block is expanded to 96 bits by expansion permutation after 

combining with the 96-bit sub-key; the 96-bit data is distributed to all 16 S-boxes as input. 

Each S-box has 4 output bits. Therefore, 64-bit data is used in the next step where P-box is 

the permutation box. 

Eight more new S-boxes are proposed in following tables. Table 2.1 shows the 

cryptographically similarity of new S-boxes and original S-boxes. They are also 

semi-similar.  The new S-boxes are listed in Table 2.2. 

 

Table 2.1 The similarity of new and original S-boxes. 
New 

design 
Original LST B1 B2 C order GD ID OD L1 L2 L3 L4 GL 

None-zero 

rate 

S-box #9 S-box #1 20 3 3 1 9.31 32.25 46.56 18 20 22 18 78 79.4% 

S-box #10 S-box #2 28 3 3 1 11.22 35.81 56.32 22 20 18 18 78 78.6% 

S-box #11 S-box #3 24 3 4 1 12.65 41.70 63.62 18 22 20 18 78 79.6% 

S-box #12 S-box #4 12 3 2 2 8.16 32.66 44.00 22 22 22 22 88 68.5% 

S-box #13 S-box #5 20 3 2 1 9.90 35.81 55.32 22 20 18 20 80 76.5% 

S-box #14 S-box #6 24 3 3 1 11.31 38.85 59.53 20 20 20 20 80 80.4% 

S-box #15 S-box #7 24 3 3 1 12.17 43.45 65.18 18 22 14 20 74 77.2% 

S-box #16 S-box #8 20 3 2 1 10.95 38.71 56.21 22 20 20 22 84 77.1% 

 
LST: Linear structure tolerance. 
B1:  First order 0-1 balance tolerance. 
B2:  Second order 0-1 balance tolerance. 
C order: Maximum order of completeness. 
GD:  Global SAC-map distance. 
ID:  Input SAC-map distance 
OD:  Output SAC-map distance 
Li:  Nonlinearity of output bit i. 
GL:  Global nonlinearity 
None-zero rate: Percentage of none zero entry in the DDT map. 
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Table 2.2 Extended S-boxes. 
3 0 9 7 15 12 6 11 14 13 2 1 5 10 8 4

0 3 5 8 9 15 12 6 13 10 11 7 14 4 2 1

15 5 12 2 0 11 9 14 4 3 1 8 10 6 7 13

9 15 0 5 10 6 3 8 2 12 13 11 4 1 14 7

S-box #9 

1 10 15 12 8 3 6 5 13 4 0 7 14 9 11 2

4 7 10 0 15 9 1 12 8 14 3 13 5 2 6 11

2 5 4 10 7 12 9 3 11 8 14 1 13 6 0 15

7 0 9 3 4 15 10 6 2 13 5 14 11 8 12 1

S-box #10 

15 4 12 1 5 10 2 13 3 8 6 11 0 7 9 14

6 13 15 2 8 4 5 11 0 7 9 12 3 10 14 1

4 13 15 10 2 1 8 6 14 3 0 5 11 12 7 9

13 3 1 4 11 14 2 8 7 10 12 15 0 5 9 6

S-box #11 

10 7 15 12 4 2 1 11 0 13 5 3 9 14 6 8

6 13 12 0 1 7 11 14 3 8 9 15 10 4 5 2

4 1 2 11 15 12 8 6 7 10 14 5 0 9 13 3

1 11 7 14 12 0 2 5 13 6 4 9 3 10 8 15

S-box #12 

4 7 1 12 14 11 8 2 13 10 6 9 0 5 3 15

13 0 2 7 4 14 1 11 3 12 5 10 15 9 8 6

10 1 12 11 9 2 7 14 6 13 15 4 5 8 0 3

7 11 9 4 2 1 14 13 0 6 10 3 12 15 5 8

S-box #13 

2 14 15 0 12 11 9 5 4 13 8 3 1 6 7 10

12 5 9 10 7 0 2 15 3 6 14 13 8 11 4 1

12 2 3 14 15 4 10 9 11 1 5 8 6 13 0 7

1 15 12 5 10 9 7 2 6 8 0 14 3 4 13 11

S-box #14 

13 2 4 7 3 12 8 1 0 15 14 9 5 10 11 6

3 8 14 13 9 2 5 11 15 4 0 10 12 7 6 1

2 11 8 13 15 0 4 14 12 5 1 6 10 3 7 9

13 6 1 8 2 11 14 5 10 9 12 3 7 4 0 15

S-box #14 

12 2 10 7 1 4 15 8 11 14 0 9 13 3 6 5

2 1 9 4 7 14 12 11 13 8 3 15 10 5 0 6

1 11 15 8 4 13 2 7 14 0 5 6 3 10 9 12

11 13 6 1 8 2 5 14 4 7 10 12 15 9 3 0

S-box #16 

 

Permuted S-boxes 

Extended DES has 16 fixed S-boxes, each of them is a mapping from {0, ...,63} to 

{0, …,15}, or formulated as S: [0...63] [0...15], used in a settled order.  Unfortunately, 

this usage is convenient for cryptanalysis.  To remedy the situation, more complicated use 

of S-boxes should be effectuated. 

The change is to rearrange the order of S-boxes in the succeeding round.  In detail, a 

permutation mappings p: [1...16] [1...16] is used to construct the new order.  The ith 

S-box in the jth round will be equal to the p(i)th S-box in the (j-1)th round.  For example, 

the S-boxes sequence in the former round is S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 
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S16 and given the permutation as (3,9,16,2,11,7,10,8,1,12,4,14,6,13,5,15); in the next round, 

the S-boxes sequence then becomes S3 S9 S16 S2 S11 S7 S10 S8 S1 S12 S4 S14 S6 S5 S15 . 

By keeping the permutation information in secret, the exact usage of S-boxes is not 

explicit.  This increases the difficulty of cryptanalysis. 

 

Substitution Words Access 

The whole S-boxes data can be filled into a table that forms as a two-dimension, 

16x64, matrix.  Without loss of generality, let the table be M[1...16, 1...64] and the initial 

S-boxes sequence be S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16.  The kth word (4-bit) 

of Si is placed in M[i, k].  While applying an S-boxes permutation p, the S-boxes sequence 

of first encrypting round will be Sp(1) Sp(2) Sp(3) Sp(4) Sp(5) Sp(6) Sp(7) Sp(8) Sp (9) Sp (10) Sp (11)  

Sp (12) Sp (13) Sp (14) Sp (15) Sp (16); that is, the kth word of the ith S-box is placed in M[p(i), k] 

now.  Generally, the S-boxes sequence of the jth round is: 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
S S S S S S S S S S S S S S S Sj j j j j j j j j j j j j j j jp p p p p p p p p p p p p p p p ,

where pj(i) denotes to execute the mapping p with j times such as p(p(...p(p(i))...)).  It is 

obviously that the kth word of the ith S-box of the jth round is placed in M[pj(i), k]. 

According to the above derivation, we know that a word in an S-box can still be easily 

read from the S-boxes table while including the S-boxes permutation.  The increasing 

calculations are just some mapping operations and never exceed 16 times of nested 

mapping because of the restriction of 16 rounds in extended-DES.  Therefore, the new 

algorithm is considered as the same efficient as extended-DES.  While decrypting, the 

same 16 S-boxes sequences in encryption are used but in reverse order.  This does not 

increase the computing time complexity. 
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Permutation Materials 

The adopted S-boxes permutation should be kept in secret.  It can be added up some 

other secret information like an independent key to the system.  This will increases the 

quantity of secret information; system will be more secure in this viewpoint.  On the other 

hand, there turns out more secret data to be managed which may raise the burden for users. 

Alternatively, the S-boxes permutation can be also derived from the key.  For 

example, we can choose the smallest integer between A and B, which is larger than the key 

value and relatively prime to 16 as the multiplier.  The ith value of the permutation 

function p, will be p(i)=(A+i*B mod 16)+1. 

 

Security Analysis on Dynamic Extended DES 

Both differential and linear attacks need to know the exact usage of S-boxes.  If we 

can keep the permutation in secret, it will be difficult for the adversary to apply the two 

attacks.  The attack may guess the permutation with rare 
1

20922789888000  probability 

because 16 S-boxes can derive 16! = 20922789888000 different permutations.  It is 

computational inefficiency to guess the right permutation. 

Furthermore, if higher security is required, the permutations used in each round can be 

different.  That is, using 16 different permutations to construct the initial S-boxes 

sequence, and applying them in different rounds.  The probability to guess the right 

permutation reduces to ≅1680002092278988
1

2141034869.1
1
×

 to be computational 

impossible. 

Dynamic Extended DES permutes the S-boxes order in the succeeding round; as a 

result, the usage of S-boxes becomes more confused.  This change can enhance extended 

DES to resist differential and linear attacks.  In addition, this method can be also used in 
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any other S-boxes.  However, the permutation information should be always kept in secret; 

otherwise, not only the confusion effect will no more exists, but also become even 

favorable for the cryptanalysis. 

 

2.2.3 NESSIE 

New European Schemes for Signature, Integrity, and Encryption (NESSIE) project has 

launched out the next generation of cryptographic algorithms in 2000 [Nessie04].  The 

NESSIE portfolio of cryptographic primitives has been announced in February 2003.  In 

block cipher scheme, MISTY1 (64-bit), AES (128-bit), Camellia (128-bit), SHACAL-2 

(256-bit) are recommended algorithms.  MISTY1 is similar to the block cipher KASUMI, 

which has been scrutinized prior to its adoption as a 3GPP standard, so many analyses for 

KASUMI would be also applicable to MISTY1.  AES is FIPS – 197 announced by U.S. 

NIST; and Camellia has many similarities to the AES.  SHACAL-2 is based on a one-way 

hash function upon SHA [NIST02] used in encryption mode.  The strength of SHACAL-2 

is inheritance from the extensive analysis that has been made on SHA.  Although RC6 is 

also a secure block cipher, the NESSIE felt unable to consider RC6 [RRSY98] owing to 

ongoing serious Intellectual Property Rights issues. 

2.3  Asymmetric Ciphers 

 Diffie Whitfield and Hellman introduced asymmetric ciphers in 1976 [DH76]. 

Asymmetric ciphers rely on one key for encryption and a different but related key for 

decryption; nevertheless, it is computationally infeasible to determine the decryption key 

given only the knowledge of the algorithm and encryption key.  For example, asymmetric 

ciphers cryptosystem encrypting the sender’s messages by using recipient’s “public” key 
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and the recipient’s “private” key can decrypt the messages.  RSA [RSA78], ElGamal  

[ElG85] and Elliptic curve [Men93][ANSI99][Han04] are most popular asymmetric 

cryptosystems that we describe as follows: 

 

2.3.1 RSA Cryptosystem 

 Rivest, Shamir, and Adleman developed the RSA algorithm in 1977 [RSA78]; the 

letters RSA are the initials of their surnames.  The RSA scheme makes use of factoring 

problem to generate key pairs described as follows: 

1. Let p and q are large primes such that p ≠ q and n = pq. 

2. Compute the Euler's totient function φ(n) = (p-1)(q-1). 

3. Choose a integer e, where 1 < e < φ(n) and e is coprime to φ(n) i.e. gcd (e, φ(n))=1. 

4. Compute d such that ed = 1 mod φ(n). 

5. The public key is (e, n) and the private key is (d, n). 

 

Euler’s theorem shows that αφ ( n )  mod n =1; thus to encrypt message m, we could 

compute me mod n = c to obtain ciphertext c.  And to decrypt ciphertext c, we could 

compute as follows: 

cd mod n 

= (me mod n) mod n 

= med mod n 

= m(kφ ( n ) + 1 ) mod n 

= m1 mod n 

= m 
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We use artificially small parameters here; but we can also use OpenSSL [OpenSSL] to 

generate and examine key pairs.  For example, let p = 101, q = 53, n = 101*53 = 5353, the 

message m = 4657, and choose e = 743 for public key.  Via Euclidean algorithm, we could 

compute the private key d = 7 so that the public and the private key are (743, 5353) and  

(7, 5353) respectively.  The encryption function is 

 

E743(4657) = 4657743 mod 5353 = 1003 

 

and the decryption function is: 

 

D7(1003) = 10037 mod 5353 = 4657 

 

Both of these computations can be done efficiently using the square-and-multiply 

algorithm for modular exponentiation. RSA is much slower than symmetric cryptosystems. 

In practice, sender typically encrypts a secret message with a symmetric algorithm, 

encrypts the symmetric key with RSA, and transmits both the RSA-encrypted symmetric 

key and the symmetrically- encrypted message to receiver. 

2.3.2 Discrete Logarithm problem 

Discrete logarithms are defined in group theory, which is a collection of elements 

together with a binary operation.  A primitive root g∈ a finite group Zp
*, a number x under 

multiplication modulo the prime p, and gx denoting the element obtained by multiplying g 

itself by x times;  by Fermat's little theorem,  we know that for a primitive root g∈Zp
*,  

gp = g mod p, and the set of group is: 

{g, g2, g3,…, gp-1} = {1, …, p−1}. 
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The discrete logarithm problem is as follows: given a primitive root g in Zp
* and 

another element y∈Zp
*, finding an integer x such that gx = y mod p.  For example, the 

solution to the problem 3x = 15 (mod 17) is 6, because 36 = 729 = 15 (mod 17).  If in Zn
*, 

where n is not a prime number, by Euler’s theorem, αφ ( n )  mod n = 1, the set of group will 

be: 

{α, α2, α3,…, αφ ( n )}. 

 The ElGamal cryptosystem [ElG85] is based on the discrete logarithm problem.  For 

a generator (primitive root) g ∈ Zp
* of order p, Alice chooses a random x from {0, … , p−1} 

and computes  y = gx.  The values p, g, and y are the public keys and x is a private key of 

Alice.  To encrypt a message m to Alice, we show as follows: 

 

1. Convert m to into an element of Zp
* 

2. Choose a random k from {0, … , p−1} 

3. Calculate c1 = gk mod p and c2 = myk mod p 

4. Send the ciphertext (c1, c2) to Alice 

Then, Alice can decrypt ciphertext by computing c2 (c1
x)-1. 

 

   c2 (c1
x)-1 = myk(gkx)-1 = mgx k(gkx)-1 = m mod p. 

 

2.3.3 Description of Elliptic Curves 

In general, elliptic curves take the form: y2+ axy + by = x3+ cx2+ dx + e where a, b, c, 

d, and e are the real numbers satisfying to some conditions [Han04].  There are two finite 

fields Zp
*  and nZ

2
*.  The elliptic curve E over Zp

* and nZ
2

* are defined as definition 2.1 

and 2.2 respectively: 
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Definition 2.1: Let a, b ∈ Zp
* be constants such that 4a3+27b2 ≠ 0.  An elliptic curve is the 

set E of solutions (x, y) ∈ Zp
*, to the equation: 

y2 = x3 + ax + b          (2.1) 

together with a special point O called the point at infinity. 

 

Definition 2.2: Let a, b ∈ nZ
2

* be constants such that b ≠ 0.  An elliptic curve is the set E 

of solutions (x, y) ∈ nZ
2

*, to the equation: 

y2 + xy = x3 + ax2 + b         (2.2) 

together with a special point O called the point at infinity. 

 

We concentrate on elliptic curves over finite fields Zp
*.  An example of elliptic curve 

E over Zp
* as following: 

Let p = 19 and consider the elliptic curve E: y2 = x3 + x + 4 defined over Z19
*.  In this 

case, a = 1 and b = 4. We have 4*13+27*42(mod 19) = 18 ≠ 0, which satisfies the condition 

for an elliptic group mod 19.  The order of points in E(Z19
*) is also 19 and all the points 

and O are list as following: 

 

Table 2.3 Points on the Elliptic Curve E(Z19
*) 

(0, 2) ( 6,13) (11, 4) 
(0,17) ( 8, 7) (11,15) 
(1, 5) ( 8,12) (14, 8) 
(1,14) (9, 1) (14,11) 
(5, 1) (9,18) O 
(5,18) (10, 8)  
(6, 6) (10,11)  
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  The addition and multiplication operation in ECC are counterpart of modular 

multiplication and exponentiation in RSA, respectively.  Let P = (x1, y1) and Q = (x2, y2) 

be two points on an elliptic curve E.  Then, P + Q = R, we show it as Fig 2.4 and Fig 2.5 

geometrically. 

 

 

 
 
 
 
 
 
 

Fig 2.4 P and Q are two distinct points 

 
 
 
 
 

 
 
 
 
 

Fig 2.5 the addition of an elliptic curve point 

 

 First at all, we have to find the slope of PQ , where P≠Q  or the tangent line of P, 

where P = Q.  We show as following: 
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λ = 

P 

Q 

R 

x 

y 
L

P 

R 

x 

y 
L



 22

 

 The equation of line L is y = λx + v.  The P = (x1, y1) and Q = (x2, y2) is on L so that: 

y1 = λx1 + v and y2 = λx2 + v.  We substitute y = λx + v into the equation (2.1), getting the 

following: 

  (λx + v)2 = x3 + ax + b 

  x3 - λ2x2 + (a-2λv)x + b –v2 = 0         (2.4) 

 x1 and x2 are two roots of equation (2.4), which are real.  As the result, the third root, 

said x3, must also be real. 

  (x - x1)(x – x2)(x – x3) 

  = x3 – (x1 + x2 + x3)x2 +(x1x2 + x2x3 + x1x3)x-x1x2x3 = 0     (2.5) 

 Comparing equation (2.4) and (2.5), we know that λ2 = x1 + x2 + x3.  Hence, 

  x3 = λ2 - x1 - x2 

 The slope λ = 
12

12

xx
yy

−
−  = 

13

13

xx
yy

−
−−

; hence: 

  y3 = λ(x1 – x3) – y1 

 

 The rules for the sum of two points and the double of one point, we summarize as 

follows: for all P, Q ∈ E (Zp
*) [Han04]: 

1. P + O = P 

2. If P = (x, y), then the point (x, -y) denoted as - P and P + (- P) = O 

3. Let P = (x1, y1) and Q = (x2, y2), where P≠Q, then P + Q = (x3, y3) where 

   x3 = λ2 - x1 - x2, 

   y3 = λ(x1- x3) - y1, where the slope λ shows as equation (2.2). 

4. Let n be the smallest integer such that nP = O, then n is the order of P over E. 
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Elliptic curve cryptography (ECC) [Kob87] is a public-key cryptography based on the 

elliptic curve discrete logarithm problem (ECDLP) proposed by Neal Koblitz and Victor 

Miller in 1985.  Given an elliptic curve E, over a Galois field GF(q), the operation “+” is 

defined as above paragraph and the operation “*” defined as Z×E(q) → E(q) where E(q) is 

rational points form (x, y), and both x and y are in GF(q).  If P is some point in E(q), then 

we define: 

2*P = P + P, 

3*P = 2*P + P = P + P + P, and so on. 

The ECDLP is then to determine integer k in k*P = Q, where P and Q are the given 

points.  For a specific base point G is selected and published for use with the curve E(q), 

Alice chooses a private key k as random integer and then the value P = k*G is published as 

the public key.  To encrypt a message m to Alice, we show as follows: 

 

1. Convert message m (where 0 ≤ m < k

p
2

) to into an element Pm of E(q) 

 We append k bits at the end of the message 

 Compute x = 2km + i, for i = 0, 1, …, until (
p

baxx ++3

) = 1. 

2. Choose a random integer r 

3. Calculate ciphertext Cm = {rG, Pm+rP} 

4. Send the ciphertext Cm to Alice 

Alice can decrypt ciphertext by multiplying the first point in the pair of Alice's secret 

key and subtracts the result from the second point: 

     Pm + rP – k(rG) 

= Pm + r(kG) – k(rG) 

= Pm. 
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2.4  One way hash functions 

A one-way hash function, h(m), operates on an arbitrary-length message m, and returns 

a fixed-length hash value, called digest.  One-way hash functions are widely deployed in 

electronic mail, electronic funds transfer, software distribution, data storage, and other 

applications, which require the assurance of data integrity. 

2.4.1 Secure Hash Standard 

SHA, one kind of popular one-way hash functions, was originally applied to DSA 

(Digital Signature Algorithm), issued by the NIST and published as a federal information 

processing standard (FIPS PUB 180) in 1993; a revised version was issued as FIPS PUB 

180-1 in 1995 [NIST95] and is generally referred to as SHA-160.   SHA and SHA-160 

operate on an arbitrary-length message as input; and then output a 160-bit digest. 

 

FIPS 180-2 [NIST02] is announced by NIST on May 30, 2001.  FIPS 180-2 is a 

strengthened version of the SHA-160, which offers four secure hash algorithms including 

SHA-160, SHA-224, SHA-256, SHA-384, and SHA-512. Table 2.4 presents the basic 

properties of FIPS 180-2. 

Table 2.4 Comparison between all SHA-serial algorithms 
Algorithm Message Size Block Size Word size Message Digest Size Security* 

SHA-160 <264 512 32 160 80 

SHA-224 <264 512 32 224 112 

SHA-256 <264 512 32 256 128 

SHA-384 <2128 1024 64 384 192 

SHA-512 <2128 1024 64 512 256 

Note: *In this context, “security” refers to the fact that a birthday attack on a message digest of size n 

produces a collision with a work factor of approximately 2n/2. 
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The input of SHA and SHA-160 is processed in a 512-bit message block [NIST95].  

First at all, for a 512-bit block, append padding and length after the message.  The 

message block is transformed from 16 32-bit words (m0, m1, …, m15) to 80 32-bit words  

(w0, w1, …, w79) by the following algorithm:  The difference between SHA and SHA-160 

is that SHA-160 rotates 1 bit left: ROTL1. 

wt = mt                        ,0 ≤ t ≤ 15 

wt = ROTL1(wt-3♁wt-8♁wt-14♁wt-16) ,16 ≤ t ≤ 79 

Each of the 80 steps of the processing one 512-bit block form as: 

A, B, C, D, E ← [ROTL5(A)+ ft (B,C,D)+E+wt+kt], A, ROTL30(B), C, D 

Where ft defines in belowing section and the logical operators (AND, OR, NOT, XOR) 

are represented by the symbols (^, ∨, ¬, ⊕).  kt are constants, please refer to [NIST02]. 

ft (x,y,z) = Ch(x,y,z)  = (x^ y)∨(¬x^ z)  , 0 ≤ t ≤ 19 

ft (x,y,z) = Parity(x,y,z) = x ⊕ y ⊕ z   ,20 ≤ t ≤ 39 

ft (x,y,z) = Maj(x,y,z) = (x^y) ∨ (x^z) ∨ (y^z) ,40 ≤ t ≤ 59 

ft (x,y,z) = Parity(x,y,z) = x ⊕ y ⊕ z   ,60 ≤ t ≤ 79 

The output of each round becomes initial value of next round until finish whole blocks. 

The final output is the concatenation of A, B, C, D, E. 

 

2.4.2 Analyze SHA-160 in message schedule 

We examine the changes from SHA to SHA-160 and discover the decay phenomenon 

with the application of a message schedule’s judgment when inspecting how SHA-160 

generates message schedule actually. 
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One reason from SHA to SHA-160: Firstly, we define notation xn = ROTLn mod 32 (x).  

The message schedule of wt of SHA-160 and SHA shall be prepared respectively as 

follows: 

Table 2.5 Different message block between SHA and SHA-160 
SHA SHA-160 

wt = mt                 ,0 ≤ t ≤ 15 

wt = wt-3♁wt-8♁wt-14♁wt-16 ,16 ≤ t ≤ 79

wt = mt                        ,0 ≤ t ≤ 15 

wt = ROTL1(wt-3♁wt-8♁wt-14♁wt-16) ,16 ≤ t ≤ 79

 

The other reason why ROTL1 function can upgrade the security level is the increase of 

involved terms of mt.  For example, when comparing w27 in both SHA and SHA-160 

(shown as follows), there are only 6 terms involved in SHA compared with 14 terms 

involved in SHA-160. 

Table 2.6 w27 in SHA and in SHA-160 
SHA involved 6 terms w27

 = m2♁m3♁m4♁m7♁m8♁m15 

SHA-160 involved 14 

terms 

w27
 = m2

4♁m3
2♁m4

4♁(m5
2♁m5

3)♁m7
3♁m8

2♁(m10
2♁

m10
4)♁(m11

1♁m11
2)♁(m13

1♁m13
3)♁m15

4 

 

W27 becomes independent of m5 in the end even though m5 has been involved twice in 

SHA.  But in SHA-160, m5 is involved under ROTL function thus m5
2 and m5

3 will not be 

eliminated.  Belowing is a figure comparing the number of terms involved in message 

schedules of both SHA and SHA-160.  X-axis presents the index, and y-axis presents the 

number of terms. 
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Fig 2.6 Terms involved between SHA and SHA-160 

 

Not only the paper “Differential collisions in SHA-0” shows the security level of 

SHA-160 is greatly higher than SHA [BC04], we also shows the terms involved in 

SHA-160 is much more than in SHA in Fig 2.6.  Furthermore, we find the decay 

phenomenon in message schedule, which points out the existence of some inefficient 

calculations in SHA-160.  If the inefficient calculations could be modified such that the 

decay phenomenon postpones, much more terms will be involved in later wt.  Therefore, 

we would like to introduce two SHA-160 corrections to enhance the security of SHA-160. 

 

2.4.3 The First Modification scheme of SHA-160 (SHA-m1) 

Firstly, we re-write the original recursive equation into a general form: 

wt = mt                         ,0 ≤ t ≤ 15 
wt = ROTL1(wt-t1♁wt-t2♁wt-t3♁wt-t4)     ,16 ≤ t ≤ 79 

And, we define some notations with convenience and generality. Let m(i) be an input 

block, i = 0, … , 15; and wj, j = 0,…,79 be the message words. 
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Table 2.7 Notations of proposed scheme 
ROTLb Left rotation of b bits 

ROTRb Right rotation of b bits 

mi
b Left rotation of b bits on mi, i = 0, … , 15 

wi
b Left rotation of b bits on wi, i = 0, … , 79 

jpbb
jm .....1  jpb

j
b
j

b
j mmm K⊕⊕= 21 , j = 0, … , 15 

jqbb
jw .....1  jqb

j
b
j

b
j www K⊕⊕= 21 , j = 0, … , 79 

|| Concatenation 

| X | Number of X 

 

As a result, in the original SHA-160 algorithm, (t1, t2, t3, t4) equals to (3,8,14,16) 

according to following basic constraints: 

a. 1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 = 16 

b. gcd (t1, t2, t3) = 1 

 

There are C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3

15
 = 455 possibilities to assign (t1,t2,t3), where 1 ≤ t1＜t2＜t3 ≤ 15.  

We list parts of experiments in Table 2.8 and the comparison between SHA-m1 and 

SHA-160 in Fig 2.7.  We list whole experiments of assign (t1,t2,t3) in appendix A. 

According to our experiments, the best choice is (t1,t2,t3) = {1,2,11}. 

Table 2.8 Parts of experiments for choosing {t1, t2, t3} 
t1 t2 t3 Total 

terms 
Maximum number of 
involved terms in wt 

Average terms 
involved of all wt 

… 
1 2 10 7279 175 113.4844 
1 2 11 8670 212 135.2188 
1 2 12 7189 182 112.0781 

… 
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Fig 2.7 Comparison between SHA-160 and SHA-m1 

 

SHA-m1 algorithm costs as much time as SHA-160; however, the terms involved in 

SHA-m1 are significantly more than in SHA-160 as shown in Fig 2.7; as well as the decay 

phenomenon postpones. 

 

2.4.4 The Second Trial of SHA-160 

Another viewpoint to modify SHA-160 is based on the ROTL1 function. We re-write 

the original equation and summarize 3 conclusions as follows: 

wt = mt                     ,0 ≤ t ≤ 15 

wt = ROTLb(wt-3♁wt-8♁wt-14♁wt-16)     ,16 ≤ t ≤ 79 

 

1. ROTLb and ROTL32-b cause the same effect; 

2. The smaller gcd(32, b) is, the more involved terms will be; and 

3. ROTLn and ROTLm will cause the same effect if gcd(n,32)=gcd(m,32). 
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Table 2.9 Four groups of SHA-160 on wt = ROTLb(wt-3♁wt-8♁wt-14♁wt-16) 
 gcd(b,32) variations

Total Terms 

b = {1,2,3,5,6,7,9,10,11,13,14,15,17,   

18,19,21,22,23,25,26,27,29,30,31} 

{1,2} {31,15} 2271 

b = {4,12,20,28} 4 7 1733 

b = {8,24} 8 3 1265 

b = 16 16 1 725 

 

We classify four groups as listed in Table 2.9.  The original SHA-160 is one of the 

24 experiments with the most terms involved.  The same experiments on SHA-m1 are 

classified into five groups by the largest common divisor of 32 and the variable b.  As a 

result, rotating one bit is the best choice already both in SHA-160 and SHA-m1. 

 

2.4.5 The Third Modification scheme of SHA-160 (SHA-m2) 

We re-write the wt in another form:  

wt = mt        ,0 ≤ t ≤ 15 

wt = (wt-3)b1♁(wt-8) b2♁(wt-14) b3♁(wt-16) b4 ,16 ≤ t ≤ 79 where 0 ≤ b1, b2, b3, b4≤ 31. 

Based on the results in second trial, we make one supposition that “The largest number 

of ' Terms involved in wt' will appear when b1, b2, b3 and b4 are all odds”.  Hence, the time 

complexity to determine b1, b2, b3, and b4 is reduced from 324 to 164.  We conclude two 

results: 

1. The maximal number of ‘Terms involved in wt’ founded in 1280 experiments is 2509; 

one of them is {b1, b2, b3, b4} = {1,3,9,3}. 

2. The minimum number of ‘Terms involved in wt’ founded in 256 experiments is 1023; 

one of them is {b1, b2, b3, b4}={1,1,3,7}. 
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We develop SHA-m2 by using one of the best choice {b1, b2, b3, b4}={1,3,9,3} and 

show the comparison between SHA-160 and SHA-m2 as follows: 

 

Fig 2.8 Comparison |wi| between SHA-160 and SHA-m2 

 

In order to increase the ‘Terms involved in wt’, we develop two algorithms SHA-m1 

and SHA-m2 by modifying recursive equations and the number of shift-rotated-bit of 

SHA-160.  The more nonlinear terms are involved, the more terms of ft and 

a = ROTL5(a) + ft(b,c,d) + e + Kt + wt [3] 

will be effective.  Because the increase of the nonlinear terms really helps to enhance the 

security level of original SHA-160, this analysis could also be used in all SHA-serials or 

other one-way hash functions.  Basing on our result, we can further develop the more 

secure one-way hash function such as SHA-1024 or SHA-2048. 
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Chapter 3   Preliminaries 

 Cryptographic primitives are widely used in network security.  We briefly describe, in 

this chapter, some necessary cryptographic primitives including digital signature, (strong) 

proxy signature, proactive secret sharing, and one-way hash functions.  Based on those 

basic primitives, we can further enhance and improve those original primitives. 

3.1  Digital Signature 

The purpose of a digital signature, which is created to replace the hand-written 

signature in the electronic world, is to bind its identity with a piece of message.  Digital 

signature, which is fundamental in authentication, authorization, and non-repudiation, 

protects two parties exchanging messages from the interception of any third party.  We 

show the signature signing process as follows: 

 

 

 

 

 

 

 

Fig 3.1 Signature Signing Process 

Anyone can verify signature via sender's public key and compare the relationship 

between the signature (decrypted hash code) and hash code of message.  The purpose of 

hash code is to increase the signature signing efficiency and we show the verification 

process as follows. 

Message 
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Fig 3.2 Signature Verification 

Bruce Schneier identifies the characteristics of a good digital signature in his book 

“Applied Cryptography” [Sch96] as follows: 

1. The signature is unforgeable. 

2. The signature is authentic. 

3. The signature is not reusable. 

4. The signed document is unalterable. 

5. The signature cannot be repudiated. 

Diffie and Hellman invented the concept of public key cryptography in 1976 [DH76]. 

There are two kinds of most popular public key cryptosystems; one is the RSA signature 

scheme [RSA78], which was the first method by encrypting the entire message or the hash 

code of message with the sender's private key.  The other is based on the discrete 

logarithm problem [EIG85].  Afterward, many researches have developed alternative 

digital signature techniques. 

3.1.1 Proxy signature 

In the proxy signature scheme, the original signer (such as boss) delegates her/his 

signing capability to the proxy signer (such as secretary), and the proxy signer creates a 

digital signature on behalf of the original signer.  Proxy signature schemes resemble 

digital signature schemes except that they involve a proxy key generation, a proxy key 

Message 

Signature 

Message 

Signature 

Hashing Hash code 

Public key 
Hash code 

Compare 
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verification and a proxy signature-signing phase.  In the proxy signature scheme, the 

original signer does not create a signing key by herself/himself alone.  Instead, both the 

original signer and the proxy signer collaboratively generate the signing key. 

Mambo et al. was first one that introduced the proxy signature scheme in 1996 

[MUO96].  According to Mambo's scheme, there are three types of proxy signatures: full 

delegation, partial delegation, and delegation by warrant. 

 Full delegation: In full delegation, the original signer gives hers/his private key to the 

proxy signer.  In this case, the proxy signature created by the proxy signer is 

indistinguishable from the signature created by the original signer.  This type is 

barely used for security issue. 

 Partial delegation: In partial delegation, a proxy secret is derived from the original 

signer’s private key; and the proxy secret is given to the proxy signer in a secure way.  

However, the processes from the original signer’s private key to the proxy secret 

should be unilateral for security requirement. 

 Delegated by warrant: When delegated by warrant, the proxy signer is authorized 

trustworthily to act on behalf of the original signer under certain conditions, such as a 

valid proxy signer and within the duration of delegation, etc. 

 

Brief Description of Mambo’s scheme 

 We briefly describe Mambo's scheme.  The participants are an original signer, a 

proxy signer and a verifier. The parameters, (p, q, g), are public and are defined as follows. 

 p : a large prime number. 

 q : a prime divisor of p-1. 

 g : an element of *
pZ  with order q. 
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The basic protocol of Mambo’s scheme uses the following algorithms: 

Proxy secret generation 

 The original signer selects a random number x as the private key, where qx <≤1 .  

Also, the corresponding public key is y =gx mod p.  Then, the original signer publishes  

(p, q, g, y). 

 

Proxy key generation 

 The original signer executes following steps to generate proxy key and forwards proxy 

key to proxy signer. 

Step 1.  Select a random number kA∈ *
qZ . 

Step 2.  Compute rA = Akg  mod p. 

Step 3.  Set sA = ( x +kArA) mod q. 

Step 4.  Forward (rA, sA) to the proxy signer in a secure manner. 

 

 Upon receiving the pair (rA, sA), the proxy signer verifies validity of (rA, sA) by 

checking pryg AA r
A

s  mod 
?

⋅= .  If the equality holds, then accepts the pair (rA, sA) and does 

the following steps; otherwise, rejects the pair.  Thus, the proxy private key is sA. 

 

Proxy signature signing 

 The proxy signer can sign a message m on behalf of the original signer by creating a 

signature with the proxy key sA.  The proxy signature is S(sA, m). 
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Proxy signature verification 

 To verify the proxy signature S(sA, m), a verifier first replaces the proxy key sA by y 

and rA where pry Ar
A  mod g As ⋅= , and then checks )),,(,,( mmsSryV AA

?
=True. 

 

 First, the original signer creates a proxy secret sA using her/his private key and 

forwards the proxy secret to a designated signer, called the proxy signer.  Next, the proxy 

signer verifies validity of the proxy key pair (rA, sA) and then signs a message, m, and 

creates a signature S(sA, m) using the proxy key sA.  Finally, a verifier verifies the 

validation of the proxy signature by checking )),,(,,( mmsSryV AA

?
=True. 

 Mambo's proxy signature fulfill following the requirements: 

(i) Verifiability: From a proxy signature, a verifier can be convinced that the original 

signer agrees on signing the message. 

(ii) Unforgeability: The designated proxy signer can create a valid proxy signature on 

behalf of the original signer. 

 

Unfortunately, Mambo's proxy signature is not a proxy-protected signature scheme in 

which the original signer knows how to derive the proxy key on her/his own.  On the 

contrary, in the proxy-protected proxy signature scheme, the original signer and proxy 

signer creates the proxy key interactively so that the original signer cannot derive the proxy 

key alone.  Hence, Lee and Kim [LK99][LKK01a][LKK01b] proposed the concept of the 

strong proxy signature. 
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3.1.2 Strong proxy signature 

Lee and Kim indicated that the strong proxy signature must fulfill following 

requirements [LK99]: 

(i) Verifiability: as mention above. 

(ii) Strong unforgeability: Only the designated proxy signer can create a valid proxy 

signature on behalf of the original signer.  Any other people who are not 

designated as a proxy signer, the original signer included, cannot create a valid 

proxy signature. 

(iii) Strong identiability: Anyone can determine the identity of the corresponding proxy 

signer from a proxy signature. 

(iv) Strong undeniability: Once a proxy signer creates a valid proxy signature for an 

original signer, the proxy signer cannot repudiate his signature creation against 

anyone.  This requirement is also called non-repudiation. 

We describe the strong proxy signature scheme proposed by Lee et al [LK99], which is 

also based on discrete logarithm, as follows: 

 

Proxy secret generation 

An original signer selects a random number kA and computes both rA
Akg≡  (mod p) and 

AAwAA krmhxs +≡ ),(  (mod p-1).  Where p, q, and g follow the definition as in section 

3.1.1.  The message warrant mw indicates the relationship between the original signer and 

the proxy signer such as the identity of each protocol participant, the duration of delegation, 

and the usage of proxy key, etc.  Then, the original signer sends (rA, sA, mw) to a proxy 

signer ‘P’ in a secure manner. 
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Proxy secret verification and proxy key generation 

The proxy signer accepts the delegation if and only if ),(
?

AwA rmh
AA

s yrg ≡  mod p.  Then, 

the proxy signer uses sA to generate proxy key BAp xsx +≡  mod q and the implicitly 

public key AB
rmh

A
x

P ryygy AwP ),(≡≡  mod p. 

 

Proxy signature signing 

The proxy signer can use the proxy key xp to create a signature msign on behalf of the 

original signer.  Therefore, a valid proxy signature is (m, msign, mw, yA, yB, rA). 

 

Verification of the proxy signature 

Firstly, a verifier computes the proxy public key AB
rmh

AP ryyy Aw ),('≡  with parameters 

(mw, yA, yB, rA); and then accepts proxy signature if V(m, msign, 'py ) 
?
=  true. 

 

Change in his dissertation point out that prevention of misuse is also an important 

requirement of proxy signature scheme [Chang05]; we describe as following: 

(v) Prevention of misuse: it is confident that proxy key should be used only for 

creating proxy signature conforming to delegation information.  The proxy key 

pair cannot be used for other purposes. 

3.1.3 Blind signature 

 Blind signature schemes, first introduced by Chaum [Cha83], are another digital 

signature form which allow a person to get a message signed without revealing any 

information about the message.  In on-line vote, we would like to vote anonymously such 
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that no one knows whom we vote for.  Similarly, in e-commerce environment, we would 

like to spend electronic cash under bank legitimation but prevent revealing our privacy to 

bank.  Hence, the blind signature schemes with untraceability (also called unlinkability) 

are widely used in on-line vote and electronic cash applications. 

 Chaum demonstrated the implementation of this concept by using RSA signature.  

For example, Alice would like to have message m to be signed by Bob, but she does not 

want Bob to know any information about m.  Let (n, e) be Bob's public key and (n, d) be 

his private key.  Alice selects a random number r such that gcd(r, n) = 1, and sends x = rem 

mod n to Bob.  The random number r is “blinded” by the value x; hence Bob can derive no 

useful information from x.  Then, Bob returns the signed value t = xd mod n to Alice and 

Alice “un-blinds” the signed value t by computing s = r-1t mod n according to following 

equations: 

s = r-1t mod n 

= r-1t mod n 

= r-1xd mod n 

= r-1(rem)d mod n 

= r-1rmd mod n 

= md mod n 

 Because of untraceability, the blind signature may be used for crimes such as 

blackmail or money laundry.  Therefore, Stadler et al. proposed the fair blind signature 

scheme, which joined by a trustworthy third party to prevent signer’s forge attack and to 

trace doubtful message delivery in 1995 [SPC95].  Further work on blind signatures has 

been carried out in recent years such as efficient blind signature scheme based on QR 

[FL96] and proxy blind signature [TLT02][SH04][LA05] etc. 
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3.1.4 Lamport’s One time signature 

 Lamport’s one-time signature scheme contains three algorithms: key generation, 

signature signing and verification [Lam79]. Let ZYh →:  denote a one-way hash 

function. 

Key generation 

1. Let jiy , ∈Y be randomly chosen, where 1 ≤ i ≤ n, j =1, 0, and n is the length of 

message. 

2. Compute jiz , = )( , jiyh , 1 ≤ i ≤ n and j =1, 0. 

3. The key K consists of the 2n private key y’s and the 2n public key z’s shown as 
follows: 

K = ( jiy , , jiz , : 1 ≤ i ≤ n and j =1, 0) 

 jiy ,  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1,1,21,1

0,0,20,1

...

...

n

n

yyy
yyy

  jiz ,  = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1,1,21,1

0,0,20,1

...
...

n

n

zzz
zzz

 

Signature Signing 

 To sign a n-bit message m = m1,…, mn, the corresponding items of the message 

m1,…,mn are 
11, ,,...,

nm n my y : sigK(m1,… ,mn) = {
11, ,,...,

nm n my y }. 

For example, we want to sign a message m = 01…1. The signature is: 

 sig (m1, …, mn) = 
[ ]

[ ] [ ]⎟⎟⎠
⎞

⎜
⎜
⎝

⎛

1,1,21,1

0,0,20,1

...
...

n

n

yyy
yyy

 = ( )1,1,20,1 ... nyyy  

Verification 

 To verify signature (
11, ,,...,

nm n my y ) on message m, VerK(m1,… ,mn, 
11, ,,...,

nm n my y )= true 

if and only if )( , imiyh =
imiz , holds for 1 ≤ i ≤ n. 

The Lamport’s one-time signature scheme needs large storage for signature and 
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public/private key pairs.  The n-bit length message needs n signature items and 2n items 

for both public and private keys (each of the item requires one hash value).  For example, 

using SHA-160 as a one-way hash function, every one bit of message needs 160 bits 

signature, 2 public and 2 private items respectively; hence, for signing n-bit length message, 

Lamport’s one-time signature scheme requires (n+2n+2n)*160 bits storage. 

3.2 Secret Sharing 

The idea of secret sharing was invented independently by Adi Shamir [Sha79] and 

George Blakley [Bla79].  The secret sharing scheme is a method for distributing a secret 

among a group of participants, each of them takes a share of the secret.  The secret can be 

only reconstructed when all (said n) the shares or parts (said t, where t < n) of the shares 

combined together; individual share will be useless. 

3.2.1 Shamir (t, n) - threshold scheme 

 Let t, n be positive integers, where t ≤ n. A (t, n) - threshold scheme is a method of 

sharing a key among a set of n participants so that no less than t participants can reconstruct 

the key value.  We describe Shamir (t, n) - threshold scheme in Ζp
* as follows: 

1. D (the dealer) chooses n distinct, nonzero elements in Ζp
*, which are public and 

denoted as xi, where 1 ≤ i ≤ n. Then D gives the values xi to Pi. 

2. Suppose D wants to share a key K ∈ Ζp
*.  D secretly chooses (independently at 

random) t-1 elements of Ζp
*, said a1, …, at-1. 

3. D computes yi = f(xi), where f(x) = K + ∑
−

=

1

1

t

j

j
j xa mod p, for 1 ≤ i ≤ n, 

4. D gives the share yi to Pi, for 1 ≤ i ≤ n, 
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Take K=13 for example.  To make four shares of the (3, 4)-threshold scheme, D 

chooses f(x) = x2+2x+13 and p = 17; then the four shares are: s1 = f(1) mod 17 ≡ 16, s2 = f(2) 

mod 17 ≡ 4, s3 = f(3) mod 17 ≡ 11, s4 = f(4) mod 17 ≡ 3.  If we hold three participants s1, s2 

and s3, then we can reconstruct the value of K by the following linear equations: 

,11333
,4222
,16111

3
012

2
012

1
012

==⋅+⋅+⋅

==⋅+⋅+⋅

==⋅+⋅+⋅

sKba
sKba

sKba
 and obtain (a, b, K)=(1, 2, 13). 

3.2.2 Verifiable Secret Sharing 

Shamir secret sharing detects and tolerates Byzantine faults in a certain number of 

participants, but does not detect or tolerate errors on the part of the dealer.  Fortunately, T. 

P. Pedersen proposed the Verifiable Secret Sharing (VSS) schemes in 1991 [Ped91] against 

Byzantine faults in both the dealer and the participants.  Moreover, in the VSS scheme, the 

participants can generate the secret together without dealer. 

A dealer may send incorrect shares to some or all of the participants, and the 

participants may submit incorrect shares during the reconstruction protocol.  Therefore, in 

VSS scheme, let p be a large prime, q be a prime factor of p-1, and g be a generator of order 

q in Zp
*.  Each participant Pi, where 1 ≤ i ≤ n, generate a random polynomial fi(x) of 

degree t over Zp
*.  The constant coefficient of fi(x) is Pi’s secret. 

fi(x) = ai,0 + ∑ −

=

1

1 ,
t

j
j

ji xa (mod q) 

Pi sends fi( j ) to Pj, where j = 1, … , n; i ≠ j) via the secure channel and publish the 

verification values { 0,iag , 1,iag … 1, −tiag }.  Then, participant Pj verifies validity of its 

received share fj( i ) by 
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)(if jg  = ∏
=

=

tk

k

ia k
kjg

0

)( , (mod p) 

 If the verification fails, Pj asks Pi to publish fi( j ).  Pi is disqualified if Pi does not 

posts an consistent fi( j ). 

3.3  Quadratic Residues 

Fan and Lei first proposed efficient blind signature scheme based on QR in 1996 

[FL96].  Our proxy signature based on QR is derived from Fan's signature scheme.  

Therefore, we describe several important QR mathematical properties as follows [Ros05]: 

 

Definition 3.1: Let n be a positive integer.  The integer y is a quadratic residue of n 

(denoted QRn) if gcd(y, n) 1=  and the congruence x2 = y (mod n) exists a 

solution. Otherwise, y is a quadratic nonresidue of n. 

It is infeasible to compute the square root x when the exact factorization of n is 

unknown.  In addition, the Legendre symbol ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y  and Jacobin symbol ⎥⎦

⎤
⎢⎣
⎡

n
y  are useful 

to show whether an integer y is a quadratic residue.  We describe as follows: 

 

Definition 3.2: Let p be an odd prime and y be an integer.  The Legendre symbol ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y  

defines as: 

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = 0   if p | y , 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = 1   if y∈QRn, and 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = –1   if y∈quadratic nonresidue mod n. 
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Definition 3.3: Let n ≥3  and n be an odd integer with prime factorizations n=∏=

k

i
e
i

ip
1

. 

Then the Jacobin symbol ⎥⎦
⎤

⎢⎣
⎡

n
y  is defined as ∏= ⎥

⎦

⎤
⎢
⎣

⎡k

i

e

i

i

p
y

1
 

If n is prime, then the Jacobin symbol is reduced to the Legendre symbol. 

Definition 3.4: A natural number n is a Blum integer if n = pq where p and q are prime 

numbers that are congruent to 3 mod 4. 

 

If n is Blum integer, each quadratic residue has exactly four square roots, one of which 

is also a square. For example, one square root of 139 mod 437 is 24; the other three are 185, 

252, and 413 [Sch96].  In addition, it is computationally infeasible to solve the root of 

quadratic residue without knowing any information of n. 

3.4  Digital signature standard 

3.4.1 DSA 

DSA has become FIPS 186 in August 1991; also called DSS.  DSA is a variant of the 

Schnorr [Sch90] and ElGamal [EIG85] signature algorithms.  The algorithm of DSA uses 

the following parameters [NIST00] and publishes the first three parameters: p, q, and g: 

 

1. p = a prime modulus, where 2L-1 < p < 2L for 512 ≤ L ≤1024 and 

L is a multiple of 64. 

2. q = a prime divisor of p - 1, where 2159 < q < 2160. 

3. g = a(p-1)/q mod p, where a is any integer with 1 < a < p - 1 such that 

a(p-1)/q mod p > 1 (g has order q mod p). 

4. x = a randomly or pseudo-randomly generated integer with 0 < x < q, denoted as 
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private key. 

5. y = gx mod p, denoted as public key. 

6. k = a randomly or pseudo-randomly generated integer with 0 < k < q. 

The algorithm of DSA also uses a one-way hash function, h(m), SHA-160 as described 

in section 2.4. To sign a message m: 

1. Alice selects a random number, k, less than q. 

2. Alice generates 

r = (gk mod p) mod q 

s = (k-1(h(m)+xr)) mod q 

where r and s are her signature sent to Bob. 

3. Bob verifies the signature by computing: 

w = s-1 mod q 

u1 = (h(m)*w) mod q 

u2 = (rw) mod q 

v = (( 21 * uu yg ) mod p) mod q 

If v = r, then Bob accepts the signature. 

 

DSA Correctness Analysis 

 We start DSA correctness analysis with a lemma 3.1 to show that gq
 mod p = 1. 

Lemma 3.1: Let p and q be primes so that q divides p - 1, h a positive integer less than p, 

and g = a(p-1)/q mod p.  Then gq
 mod p = 1, and if m mod q = n mod q, then 

gm
 mod p = gn

 mod p. 

Proof: 

gq
 mod p 

= (a(p-1)/q mod p)q
 mod p 



 46

= a(p-1)
 mod p 

= 1 

 

by Fermat's Little Theorem. Let m mod q = n mod q, i.e., m = n + kq for some 

integer k. Then 

gm
 mod p = gn+kq mod p 

= (gn gkq) mod p 

= ((gn
 mod p) (gq

 mod p)k) mod p 

= gn
 mod p 

since gq
 mod p = 1.            □ 

 

Theorem 3.1: If m'= m, r' = r, and s' = s in the signature verification, then v = r'. 

Proof: 

w = s'-1 mod q = s-1
 mod q 

u1 = (h(m')*w) mod q = (h(m)*w) mod q 

u2 = (r'w) mod q = (rw) mod q 

Now y = gx mod p, so that by the lemma 3.1, 

v  = ( 21 * uu yg  mod p) mod q 

= ( rwwmh yg *)*(  mod p) mod q 

= ( xrwwmh gg *)*(  mod p) mod q 

= ( wxrmhg *))(( + mod p) mod q. 

Also 

s = (k-1(h(m)+xr)) mod q. 

 

Hence 

w = (k(h(m)+xr) -1) mod q 
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(h(m)+xr)*w mod q = k mod q. 

Thus by the above lemma, 

v = ( wxrmhg *))(( + mod p) mod q 

= (gk
 mod p) mod q 

= r 

= r'.               □ 

 By Theorem 3.1, a verifier can check the valid of signature correctly. 

 

3.4.2 ECDSA 

ECDSA is counterpart of DSA and operates on elliptic curve group E(Zp
*).  ECDSA 

was invented in 1985 and was accepted as FIPS 186-2 [NIST00] IEEE standards in 2000.  

It was also accepted as an ISO standard in 1998.  We describe key generation, signature, 

and verification for ECDSA as follows: 

 

ECDSA key Generation 

1. Selects an elliptic curve E over Zp
*. 

2. Select a point P∈ E (Zp
*) where order is also prime q. 

3. Select a statistically unique and unpredictable integer d in the interval [1, q-1]. 

4. Compute Q = dP. 

5. The public key is (E, P, q, Q); the private key is d. 

 

ECDSA Signature Generation 

1. Select a statistically unique and unpredictable integer k in the interval [1, q-1]. 

2. Compute kP = (x1, y1) and r ≣ x1 mod q.  If r = 0, then go to step 1. 

3. Compute k-1 mod q. 
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4. Compute s = k-1[h(m)+dr] mod q. 

5. If s = 0, then go to step 1. 

6. The signature for the message m is the pair of integers (r, s). 

 

ECDSA Signature Verification 

1. Obtain an authentic copy of Alice’s public key (E, P, q, Q). 

2. Verify that r and s are integers in the interval [1, q-1]. 

3. Compute w≣ s-1 mod q and h(m). 

4. Compute u1≣ h(m)w mod q and u2 ≣ rw mod q. 

5. Compute u1P + u2Q = (x0, y0) and v ≣ x0 mod q. 

6. Accept the signature if and only if v = r. 

 

Theorem 3.2: If the signature of ECDSA is valid, then v = r. 

Proof: 

s = k-1[h(m)+dr] mod q, hence k = s-1[h(m)+dr] mod q 

(x1, y1) = kP = s-1[h(m)+dr]P 

(x0, y0) = u1P + u2Q = h(m) wP + rwdP 

  = [h(m)s-1 + rs-1d]P 

  = s-1[h(m)+dr]P = (x1, y1) 

Therefore,  v = x0 mod q 

= x1 mod q 

= r              □ 

By theorem 3.2, we verify the signature of ECDSA through the equation v = r. 
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Chapter 4   The Proposed Proxy Signatures 

 4.1  Proxy Signature based on Digital Signature Algorithm 

DSA and ECDSA are pretty well known by their security properties so that they have 

been chosen as standard signature schemes.  However, they both lack functionality of 

proxy.  Most of the proxy signature schemes, which have been proposed prior to this date, 

are not based on standard signature such as DSA or ECDSA and have been considered 

infeasible because of their obvious security weaknesses. 

 

In this section, we carefully modify the DSA/ECDSA to be a proxy-protected proxy 

signature scheme to fulfill the strong proxy signature requirements.  Although 

proxy-protected proxy signature scheme becomes more time-consuming for creating the 

proxy key interactively between the original signer and proxy signer, the proxy-protected 

scheme ensures that the original signer cannot derive the proxy key on her/his own; 

therefore, the proxy signer will not be betrayed. 

 

Actually, most proposed proxy signature schemes cannot be proven sufficiently strong, 

secure, and unbreakable in order to against some unknown intentional attacks; in addition, 

they are not based on standard signature.  In fact, all that the proposed proxy signature 

schemes can do till now is to demonstrate the scheme’s power against some existing attacks; 

however, it occurs often that there will be always a new attack invented exactly against 

these schemes [LC03]. 

 

To conquer those disadvantages; therefore, we propose a proxy-protected signature 

scheme combining with standard signature DSA/ECDSA [NIST00] which are pretty well 
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known by their security properties to reinforce the proxy signature.  Combining 

DSA/ECDSA, proxy signature and PKI mechanism, this work could be more useful in 

practice. 

 

4.1.1 Proxy Signature Based on Digital Signature Algorithm 

 

The SHA-serials [NIST02] are used in our scheme and the participants of our scheme 

include an original signer ‘Alice’, a proxy signer ‘Bob’, and a verifier.  Suppose that a 

Certificate Authority (CA) certifies Alice and Bob enrolls proxy key into the PKI when a 

proxy key is created with the original signer interactively.  The useful notations we list as 

follows: 

 

Alice An original signer 

Bob A proxy signer 

p  A prime number, where 2L-1 < p < 2L for 512 ≤ L ≤1024 and L is a multiple of 64 

q A prime divisor of p – 1 in DSA, A prime number, where 2159 < q < 2160 and is 

the order of points over E in ECDSA 

g a(p-1)/q mod p, where a is an integer with 1 < a < p - 1 such that a(p-1)/q mod p > 1 

x A pseudo-randomly generated integer with 0 < x < q-1, denoted as private key. 

y gx mod p, denoted as public key in DSA  

k A randomly or pseudo-randomly generated integer with 0 < k < q. 

E An elliptic curve defined over Fp 

G A point over E having prime order q 

Q A public key with Q = xG over E 

h( ) A one-way hash function, SHA-160[NIST02] 
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There are four algorithms in proposed schemes shown as follows: 

1. Proxy generation and delivery 

2. Proxy verification and proxy key generation 

3. Signing by proxy signer 

4. Verification of Proxy signature 

 

In addition, there are two approaches to implement the proxy signature based on 

digital signature algorithms DSA and ECDSA respectively.  First at all, we describe the 

proxy signature based on DSA in next section.  Besides, we use X.509v3 certificate 

extension [RSA00] to indicate the relationship between an original signer and the proxy 

signer by proxy parameters, and the PKI mechanism can avoid man-in-middle attack 

[MOV96]. 

 

4.1.2 Proxy Signature Based on DSA 

At initialization step, the CA or Registration Authority (RA) verifies the relationship 

of the delegation.  The four algorithms we show as follows: 

Proxy generation and delivery 

1. Bob selects a random σ ∈ *
qZ , where gcd (σ , p-1) =1 and computes g' = σg mod p. 

Then, Bob sends g' to Alice. 

2. After receiving g', Alice selects a random kA ∈ *
qZ , computes, publishes rA = Akg mod p, 

and sets e = Akgh '( mod p) mod q and sA =(xe + kA) mod q.  Then, Alice sends (rA, sA) 

to Bob.   The pair (rA, sA) is a delegation proxy certificate for proving that Alice 

delegates her signing capacity to Bob. 
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Proxy verification and proxy key generation 

1. On receiving (rA, sA), Bob computes e'= σ
Arh(  mod p) mod q and verifies the validity 

by checking if rA =( 'es yg A −  mod p) mod q. 

2. If the equation rA =( 'es yg A −  mod p) mod q holds, Bob sets sB = 1−σAs  mod q as a 

proxy key, sets  (sB, Bsg mod p) as public key pairs and sends the certificate request 

[RSA00] to the RA. 

3. According to certificate policy, RA identifies Bob and then forwards the certificate 

request to the CA for signing proxy certificate.  The process of proxy certificate 

generating is shown in Fig 4.1. 

 

Fig 4.1 Proxy signer initialization in PKI 

Signing by proxy signer 

To sign a message m, Bob should do the following steps: 

1. Select a random k ∈ *
qZ . 

2. Compute r = ( kg ' mod p) mod q 

3. Set s = 1−k (h(m)+ sBr) mod q. 

4. If s = 0 then re-select another random number k and run again. 

The proxy signature is the tuple (g', e', r, s). 
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Verification of Proxy signature 

To verify the proxy signature (g', e', r, s) on message m, a verifier should: 

1. Query repository and check if the certificate of proxy key is valid. 

2. Get and verify valid of rA. 

3. Verify that ≤1  r q≤  and ≤1  s q≤ ; if not reject the signature. 

4. Compute w = s-1 mod q. 

5. Compute u1 = w .h(m) mod q, u2 = rw  mod q, and u3 = e'u2 mod q. 

6. Compute v= ( 1'ug 2u
Ar 3uy  mod p) mod q. 

Accept the signature if v = r. 

We consider that proxy signature based on DSA scheme can be deployed in both the 

DSA with proxy signature capability and the conventional DSA.  This scheme can be a 

conventional DSA if taking the parameters 'g = g, rA = 1 and 'e = 1.  Therefore, this 

scheme is generalized DSA and can also be used in conventional DSA. 

 

4.1.2.1 Correctness of proxy signature scheme based on DSA 

In this section, we will prove the correctness of the proxy signature scheme based on 

DSA scheme. 

Theorem 4.1: If the delegation certificate (rA, sA) is valid, it will pass the verification   rA 

= 'es yg A − mod p. 

Proof: 

Firstly, we proof that e = e' 

e = Akgh '( mod p) mod q and 'e = σ
Arh(  mod p) mod q 

∵ Akg '  mod p = Akg )( σ  mod p = σ)( Akg  mod p = σ
Ar  mod p 
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Therefore, e = 'e . 

∵ sA = (xe + kA) mod q; 

Substitute 'e  for e, then we obtain 

sA =(xe' + kA) mod q. 

Rearrange the above equation as 

kA = (sA - xe') mod q. 

Raise both sides by g; by lemma 3.1 we know that gq mod p = 1. 

Akg = )'( xesAg −  mod p, 

rA = ( 'xes gg A −⋅ ) mod p (∵ rA = Akg mod p) 

rA = ( 'es yg A − ) mod p (∵ y = gx mod p) 

Thus, rA = ( 'es yg A − ) mod p as required.        □ 

 

Theorem 4.2: If the proxy signer generates the proxy signature correctly, it will pass the 

proxy signature verification. 

Proof: 

We have a valid proxy signature s = k-1(h(m) + sBr) mod q. 

Rearrange the signature as 

k = s-1 ( h(m)+ sBr) mod q 

k = s-1 ( h(m)+ rsA
1−σ ) mod q. (∵sB= 1−σAs mod q) 

k = s-1 [ h(m)+(xe + kA) r1−σ ] mod q. (∵sA=(xe + kA) mod q) 

Raise both sides by g' 

kg ' = ( )(1

' mhsg
− 11

'
−− rskAg σ 11

'
−− rsxeg σ  mod p) mod q. 

Substitute following notations respectively: 

kg ' = r, 
1

'
−σAkg = Akg = rA and 

1

'
−σxg  = xg = y (∵ 'g = σg mod p) 
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r = ( )(1

' mhsg
− 1−rs

Ar
1−ersy  mod p) mod q. 

Let w = s-1 mod q, u1 = )(mhw ⋅ mod q, u2 = rw mod q, and u3 = 2'ue mod q. 

We yield the equation: 

r = ( 1'ug 2u
Ar 3uy  mod p) mod q as required.      □ 

 

A verifier has to use both the original signer’s public key and proxy key certificate to 

verify the proxy signature.  Since the proxy key is created interactively between original 

signer and proxy signer, a verifier can be aware of the agreement upon signing the message 

from the original signer.  This property obeys the definition of verifiability; and by 

theorem 4.1 and 4.2, a verifier can check the valid of proxy signature. 

 

4.1.3 Proxy Signature based on ECDSA 

ECDSA, a DSA based on the ECC, was invented in 1985 and accepted as FIPS 186-2 

in 2000 [NIST00].  In this section, we introduce the proxy-protected signature based on 

ECDSA, which is a variant ECDSA with properties of strong proxy signature.  An elliptic 

curve E modulo a prime p denotes as a public-key cryptography.  The operation of elliptic 

curve could be referred to [IEEE05].  We describe the protocol of proxy-protected ECDSA 

as follows.  First we let Alice have private key x and public key Q = xG certificated by a 

certificate authority.  Bob is a designated proxy signer. 

 

Proxy generation and delivery 

Bob:  Select a random number, ko (1< ko < q). 

Compute G' = koG mod q. 
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Bob→ Alice G'. 

Alice: Select a random number, kA (1< kA < q) 

Compute and publish RA = kAG. 

Set (x1, y1) = kAG'. 

Compute e = x1 mod q and set sA = (xe + kA) mod q. 

If x1 = 0, then re-select kA and run again. 

Alice→ Bob  (RA, sA). 

 

Proxy verification and proxy key generation 

Bob:  Let (x2, y2) = koRA, and set e'= x2 mod q. 

Accept the delegation if and only if RA = sAG – e'Q. 

Once Bob accepts the delegation, he will compute sB = sAko
-1mod q as a proxy key; and 

will send the certificate request [RSA00] to the RA.  According to certificate policy, RA 

identifies Bob and then forwards the certificate request to the CA for signing proxy 

certificate. 

 

Signing by the proxy signer 

Bob:  Select a random number k (1< k < q). 

Compute (x3, y3) = kG'. 

Set r = x3. 

Compute s = k-1(h(m) + sBr) mod q. 

If r = 0 or s = 0 then re-select another random number k and run again. 

The proxy signature for the message m is (G', e', r, s). 
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Verification of the proxy signature 

Carol: Get and verify RA. 

Verify that r and s are integers in interval [1, q-1]. 

Compute w = s-1 mod q. 

Compute u1 = h(m)w mod q. 

Compute u2 = rw mod q. 

Compute u3 = e'u2 mod q. 

Compute X = (x3', y3') = u1G' + u2RA + u3Q. 

If X = O, then reject the signature, else accept the signature if and only if  

x3' = x3= r. 

The proxy-protected ECDSA could be also deployed in ECDSA by taking parameters 

G' = G, RA = 0 and e' = 1.  Furthermore, the proxy-protected ECDSA also maintains the 

properties of strong proxy signature [LK99][LKK01a][LKK01b]. 

 

4.1.3.1 Correctness of proxy signature scheme based on ECDSA 

In this section, we will prove the correctness of the proxy signature scheme based on 

ECDSA scheme. 

 

Theorem 4.3: If the delegation certificate (RA, sA) is valid, then RA = sAG – e'Q, where   

RA = kAG, sA = (xe + kA) mod q, (x2, y2) = koRA, and e'= x2 mod q. 

Proof: 

Firstly, we proof that e = e' 

(x1, y1) = kAG' = kAkoG = koRAG = koRA = (x2, y2); 
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Hence, e = x1 mod q 

= x2 mod q 

= e' 

∵ sA = (xe + kA) mod q; 

Substitute e' for e in above equation, then we obtain 

sA =(xe' + kA) mod q. 

Rearrange the above equation as 

kA =(sA - xe') mod q. 

Multiple G on both sides 

   RA = kAG 

= (sA - xe')G 

= sAG - e'xG 

= sAG - e'Q           □ 

 

Theorem 4.4: If the proxy signer generates the proxy signature correctly, it will pass the 

proxy signature verification. 

Proof: 

We have a valid proxy signature s = k-1(h(m) + sBr) mod q. 

Rearrange the signature as 

k = s-1 ( h(m)+ sBr) mod q 

k = s-1 ( h(m)+ sA
1

0
−k r) mod q. (∵sB = sA

1
0
−k mod q) 

k = s-1 [ h(m)+(xe + kA) 1
0
−k r] mod q. (∵sA = (xe + kA) mod q) 

Multiple G’ on both sides 

kG’ = s-1G’[ h(m)+(xe + kA) 1
0
−k r] 
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     = s-1G’h(m) + s-1xeG’ 1
0
−k r + s-1kAG’ 1

0
−k r 

     = s-1h(m)G’ + s-1xeGr + s-1kAGr (∵G’ 1
0
−k = G) 

     = u1G’+ u2xeG + u2kAG (∵u1 = h(m)w = h(m)s-1; u2= rw = rs-1) 

     = u1G’+ u2xe’G + u2RA (∵e = e’; RA = kAG) 

     = u1G’+ u2RA + u3Q (∵u3 = e’u2G; Q = xG)       □ 

A verifier has to use both the original signer’s public key and proxy key certificate to 

verify the proxy signature.  This proof show that the proxy signature scheme based on 

ECDSA fulfills verifiability property; and by theorem 4.3 and 4.4, a verifier can check the 

valid of proxy signature. 

 

4.1.3.2 Proxy Signature based on ECDSA example demonstration 

In some reports concerning security estimation, the elliptic curve based on 

cryptosystem will be secure till the year 2020. It has been suggested that one should take  

p ≈2160. In this section we work through a tiny example to illustrate the computations in the 

proxy-protected ECDSA. 

 

Let E be the elliptic curve y2 = x3 + x + 4 over Z19
*.  The parameter q is the number of 

points in E, also called order of E over Z19
*.  We first compute x3 + x + 4 mod 19 for 

x∈Z19
*, and then try to solve the above equation for y; and set z = x3 + x + 4 mod 19 and test 

if z is a quadratic residue (QR), by Euler’s criterion.  If the modulo prime p = 3 mod 4, we 

could yield the square roots of a quadratic residue z as following formula: 

4/)119( +± z  mod 19 = 5z±  mod 19. 
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The results of the computing are listed in Table 4.1. 

Table 4.1 Points on the elliptic curve x3 + x + 4 mod 19 
x z=x3 + x + 4 mod 19 ='y 5z± mod 19 2)'(y y Is QR? 
0 4 17,2 4 17,2 √ 
1 6 5,14 6 5,14 √ 
2 14 10,9 5   
3 15 2,17 4   
4 15 2,17 4   
5 1 1,18 1 1,18 √ 
6 17 6,13 17 6,13 √ 
7 12 8,11 7   
8 11 7,12 11 7,12 √ 
9 1 1,18 1 1,18 √ 
10 7 11,8 7 11,8 √ 
11 16 4,15 16 4,15 √ 
12 15 2,17 4   
13 10 3,16 9   
14 7 11,8 7 11,8 √ 
15 12 8,11 7   
16 12 8,11 7   
17 13 14,5 6   
18 2 13,6 17   

Because G is a generator, we can take the generator G = (1,5); and compute the 

remaining multiples of G by applying the addition operation on E. 

The addition operation on E is defined as follows: 

Suppose P1 = (x1, y1), P2 = (x2, y2) are the points on E.  If x2 = x1 and y2 = - y1, then 

p1 + p2 = O where O is a special point, called point at infinity; otherwise 

P1 + P2 = (x3, y3), where  

,)( 1313

21
2

3

yxxy
xxx
−−=

−−=
λ
λ
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Therefore, the next multiple is 2G = G + G, 3G = 2G + G, and so on. The results of 

these computations are tabulated in Table 4.2. 

Table 4.2 The multiples of generator G 
G = (1,5) 2G = (5,1) 3G = (14,8) 4G = (9, 18) 5G = (6,13) 

6G = (10,11) 7G = (0,2) 8G = (8,12) 9G = (11,4) 10G = (11,15)
11G = (8,7) 12G = (0,17) 13G = (10,8) 14G = (6,6) 15G = (9,1) 

16G = (14,11) 17G = (5,18) 18G = (1,14) 19G = O  

Suppose that Alice’s private key x is 3, so the public key is Q = 3G = (14, 8). 

 

Proxy generation and delivery 

Bob : Select a random number, ko, said 5; 

  and compute G' = koG = 5G = (6, 13)  

Bob→ Alice G' 

Alice: Select a random number, kA, said 4; 

  and compute RA = kAG = 4G = (9, 18); 

  set kAG' = 4(6, 13) = (1, 5) = (x1, y1). 

Suppose that e = x1 = 1 . Alice computes  

sA = (xe + kA) mod q = (3*1+4) mod 19 = 7 and 

forward (RA, sA) = [(9, 18), 7] to Bob. 

 

Proxy verification and proxy key generation 

Let (x2, y2) = koRA = 5(9,18) = (1, 5), and e' = x2 = 1 . 

   sAG – e'Q 

= 7*(1,5)-1*(14,8) 

= (9,18) 
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= RA 

Then, Bob accepts the delegation because RA = sAG – e'Q. 

The proxy key is: 

sB = sAko
-1 mod q = 7*5-1

 mod 19 = 7*4 mod 19 = 9, 

and we omit the process of enrolls proxy key into the PKI mechanism. 

 

Signing by the proxy signer 

Suppose that the message is m, h(m) = 8 and k = 13. To sign the message, Bob computes 

(x3, y3) = kG' = 13*(6,13) = (8,12), 

sets r = x3 = 8 and creates proxy signature, 

  s = k-1(h(m) + sBr) mod q = 13-1(8 + 9*8) mod 19 = 3*80 mod 19 = 12. 

The proxy signature is (G', e', r, s) = [(6, 13), 1, 8, 12]. 

 

Verification of the proxy signature 

The verifier does the following processes: 

Get and verify RA = (9, 18). 

w = s-1 mod q = 12-1 mod 19 = 8, 

u1 = h(m)w mod q = 8*8 mod 19 = 7, 

u2 = rw mod q = 8*8 mod 19 = 7, 

u3 = e'u2 mod q = 1*7 mod 19 = 7, 

 and  

X = (x3', y3') = u1G' + u2RA + u3Q mod q 

  =7*(6, 13) + 7*(9, 18) + 7*(14, 8) mod 19 

= (35+28+21)G 

= (8,12). 
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The verifier accepts the signature, because x3' = 8 = x3.  This example adequately 

shows the proxy-protected ECDSA can be used in practice.  Nevertheless, the security of 

the proxy-protected ECDSA is as secure as the standard signature ECDSA that we discuss 

the security of proxy-protected DSA/ECDSA in next session. 

 

4.1.4 Security analysis and comparisons 

The security of the proposed scheme is based on the difficulty of breaking a one-way 

hash function as well as the hardness of three discrete logarithm problems.  One of the 

discrete logarithms is in Zq
* where the powerful index-calculus methods applied; the second 

one is in the cyclic subgroup of order q [MOV96]; and the third one is elliptic curve 

discrete logarithm problem.  In this section, we discuss several possible attacks against the 

security of proposed schemes. 

 

Attack Scenario 1: 

I. Proxy signature based on DSA part: 

If an attacker might forge the proxy signature on the message m by selecting a random 

number k; and computing r = kg '  mod p; the attacker needs proxy key 

sB = 1−σ (xe + kA) mod q, k to forge signature s =k-1(h(m) + sBr) mod  q .  It is 

computationally infeasible to determine s without both sB and correct k under the 

assumption of the discrete logarithm problem [MOV96].  In addition, the probability of 

successful conjecture of both sB and correct k is 1/q, which is negligible when q is large 

enough.  Furthermore, the attacker does not have proxy certificate to pass verification. 

II. Proxy signature based on ECDSA part: 
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If an attacker might forge the proxy signature on the message m by selecting a random 

number k; and computing (x3, y3) = kG'  and setting r = x3;  the attacker needs proxy key 

sB = sA
1

0
−k  mod q, k to forge signature s = 1−k (h(m)+ sBr) mod  q .  It is computationally 

infeasible to determine s without both sB and correct k under the assumption of the elliptic 

curve problem [IEEE05].  In addition, the probability of sB and correct k is 1/q, which is 

negligible when q is large enough. 

 

Attack Scenario 2: 

Suppose that another malicious signer impersonates the authorized proxy signer to 

create a proxy key interactively with an original signer (man-in middle attack) by selecting 

another randomσ  (or ko in ECDSA). To prevent this attack, we require only the certificate 

of original/proxy signer's public keys by any kind of authority mechanism such as PKI 

mechanism.  With the verification of public keys’ certificate, the verifier will reject all 

unauthorized proxy keys generated by the fake proxy signer. 

 

Attack Scenario 3: 

I. Proxy signature based on DSA part: 

If a dishonest original signer attempts to forge the proxy key, the proxy signer could 

use a blind factor σ  to blind g' = σg  mod p so that the original signer needs to solve σ  

from g' = σg  mod p.  It is difficult to determine σ  according to the hardness of the 

discrete logarithm problem [MOV96]. 

II. Proxy signature based on ECDSA part: 
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If a dishonest original signer attempts to forge the proxy key, the proxy signer could 

use a blind factor ko to blind G' = koG mod q so that the original signer needs to solve ko 

from G' = koG mod q.  It is difficult to determine ko according to the hardness of the 

elliptic curve problem [IEEE05]. 

Under so-called ‘proxy-protected’ security property restriction, an original signer 

should not be able to derive the authorized proxy signer’s proxy key; otherwise a verifier 

could not distinguish exactly whether the original signer or the proxy signer creates the 

proxy signature. 

 

Attack Scenario 4: 

I. Proxy signature based on DSA part: 

Theorem 4.5: If a malicious proxy signer attempts to impersonate an original signer to 

create a delegation certificate, then the malicious proxy signer can derive the 

secret key of original signer. 

Proof: 

On the other hand, if a malicious proxy signer attempts to impersonate an original 

signer to create a delegation certificate, the malicious proxy signer selects a random number 

kA and computes rA = Akg '  mod p, and e' = )'( Akgh  mod p. 

If a malicious proxy signer can create a delegation certificate, she/he must know sA to 

pass rA = ( 'es yg A −  mod p) mod q in the proxy verification phase and the proxy key 

    sB = sAσ -1 mod q is also derive from sA. 

sA = (xe + kA) mod q; hence the malicious proxy signer can derive: 

x = e-1(sA - kA) mod q.             □ 
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From theorem 4.5, if the malicious proxy signer can create a delegation certificate 

under just knowing original signer's public key y, g' and rA, then she/he can derive the 

secret key x of original signer.  That is a contradiction to the criteria of discrete logarithm 

problem.  Therefore, the proxy signer only can get sA from original signer; and if a verifier 

gets a valid signature, then the verifier can be convinced that the original signer delegates 

her/his authority to the proxy signer. 

II. Proxy signature based on ECDSA part: 

Theorem 4.6: If a malicious proxy signer attempts to impersonate an original signer to 

create a delegation certificate, then the malicious proxy signer can derive the 

secret key of original signer. 

Proof: 

If a malicious proxy signer can create a delegation certificate, she/he may randomly 

select kA (1< kA < q) such that RA = kAG.  Besides, she/he must know sA to pass 

RA = sAG – e'Q in the proxy verification phase and the proxy key sB = sAko
-1 mod q is also 

derive from sA. 

sA = (xe + kA) mod q; hence the malicious proxy signer can derive: 

x = e-1(sA - kA) mod q.             □ 

 

From theorem 4.6, if the malicious proxy signer can create a delegation certificate 

under just knowing original signer’s public key Q, G' and RA, then she/he can derive the 

secret key x of original signer.  That is a contradiction to the criteria of elliptic curve 

cryptosystem.  On the other hand, the proxy signer only can get sA from original signer.  

If a verifier gets a valid signature, then the verifier can be convinced that the original signer 

delegates her/his authority to the proxy signer. 
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After the proxy signer Bob receiving a delegate certificate (rA, sA) (or (RA, sA) in 

ECDSA) correctly from the original signer Alice, he cannot forge another delegate 

certificate to create a proxy key because it is difficult to find another rA (or RA in ECDSA) 

for creating a valid delegation certificate.  On the other hand, Alice can neither forge the 

proxy key because the generator is blinded by a factor σ  (or ko in ECDSA), which is only 

known by Bob.  Thus, only the authorized proxy signer can create the valid proxy key, 

which means the proposed scheme confirms the properties of strong unforgeability 

[LK99][LKK01a][LKK01b] and proxy-protected. 

 

In the proxy signature based on DSA scheme, the size of q is 160 bits and the size of p 

is between 512 and 1024 bits.  For the security reason, a 512-bit prime merely provides 

marginal security such that at least 786 bits is recommended.  Suppose p is a 768-bit 

integer and one modular exponentiation takes on 240 modular multiplications [MOV96].  

In Table 4.3, we compare the time complexity between the proxy signature based on 

DSA/ECDSA scheme and the DSA/ECDAS.  The major portion of time complexity is 

modular multiplications and modular inverses, thus we neglect the time complexity of 

one-way hash function and modular additions.  In the proxy signature based on 

DSA/ECDSA scheme, the time complexity of the proxy signature is similar to the 

DSA/ECDSA, while the time complexity of the proxy signature verification requires only 

one modular exponentiation instead of two modular multiplications for the DSA. 

 

 

 

 



 68

Table 4.3 Time complexity of the proxy signature based on DSA/ECDSA and DSA/ECDSA 
Schemes Key 

Generation 
Proxy 

Generation
Proxy 

Verification
Signature Verification 

DSA 240Tmm   242Tmm+ Tinv 483Tmm+ Tinv 
ECDSA Tm   Tm+2Tmm+2Tinv 2Tm+2Tmm+Tinv

Proxy Signature 
based on DSA 

240Tmm 721Tmm 962 Tmm 242Tmm+ Tinv 725Tmm+ Tinv 

Proxy Signature 
based on ECDSA 

Tm 2Tm+2Tmm 3Tm+Tmm+Tinv Tm+2Tmm+Tinv 3Tm+3Tmm+Tinv

Note: Tm: The number of multiplication. 
Tmm: The number of modular multiplication. 
Tinv: The number of modular inverse with 160-bit. 

 

The proposed schemes are modified from conventional DSA/ECDSA and the 

conventional DSA/ECDSA can be reduced to our proposed scheme in polynomial time.  

Furthermore, no other scheme based on standard signature DSA/ECDSA, so we show the 

differences among DSA/ECDSA, Mambo’s proxy signature scheme and the proposed 

schemes in Table 4.4. 

 

Table 4.4 Differences among DSA/ECDSA, Mambo and proposed schemes 
 Based on 

Signature 
Proxy 

functionality
Combining 
with PKI 

Standard 
Signature 

Proxy- 
protected

DSA ElGamal 
and 

Schnorr 

No No √ No 

ECDSA Elliptic 
Curve 

No No √ No 

Mambo’s Scheme ElGamal √ No No No 
Proposed scheme 
based on DSA 

DSA √ √ Generalized 
Standard 

√ 

Proposed scheme 
based on ECDSA

ECDSA √ √ Generalized 
Standard 

√ 
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4.2  Proxy Signature Based on QR 

The proxy signature scheme based on QR scheme is more efficient than other schemes 

based on discrete logarithms or factoring.  Moreover, the proposed scheme involves 

relatively few multiplications; therefore, the proposed scheme is ideal for low power and 

low computing device such as mobile phones, IC cards, sensor network nodes, and so on.  

The delegation by warrant proxy signature scheme based on QR, DWPSQR comprise four 

phases; we describe as following: 

(1) initial phase, 

(2) proxy phase, 

(3) proxy-signature phase, and 

(4) verification phase. 

 

4.2.1 Delegation by warrant proxy signature scheme based on QR 

SA is lead in the DWPSQR scheme.  The SA holds the secret and public system keys, 

which can grant the delegation capability to an original signer and the signing capability to 

a proxy signer, respectively.  Therefore, the SA prevents the misuse of unqualified proxy 

signers and improves the warrant mechanism used for negotiations between the original and 

proxy signers.  Additionally, the SA takes responsibility for publishing the public keys of 

both original and proxy signers. 

 

During the initial phase, the SA, an original signer and a proxy signer generate the 

secret and public system key pair interactively. Meanwhile, both the original and proxy 

signers create the parameters required for signature authentication.  Subsequently, the 
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original signer signs a warrant information mw in the proxy phase.  The symbol h(·) used 

in the proxy phase denotes a one-way hash function; and the symbol mw indicates a proxy 

signature restriction such as the proxy valid period.  When original signer delivers the 

system key to the proxy signer, the proxy signer will identify the original signer and verify 

the system key. 

 

Within the proxy-signing phase, the proxy signer signs the document m and returns the 

proxy signature to the applicant.  The verifier determines whether the proxy signature is 

valid during the final phase.  Fig 4.2 illustrates the whole phases, and the following 

sections presents the details of the DWPSQR scheme. 
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Fig 4.2 Delegation by warrant proxy signature scheme based on QR 

 

Initial phase 

Step 1: The SA selects the large prime numbers pi with pi 4≡ 3  where i=1, 2, 3, 4 and lets 

n= ∏
=

4

1i
ip .  Thereafter, the SA sets A=p1p2  a nd assigns (n ,  A ) and (p1 ,  p2 ,  p3 ,  p4) 

as the system public and private keys respectively. 
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Step 2: The SA specifies four elements as B={bi j | i=±1; j=±1} in Zn
* 

so that ⎥
⎦

⎤
⎢
⎣

⎡

1

,

p
b ji = i  and ⎥

⎦

⎤
⎢
⎣

⎡

2

,

p
b ji = j . 

Step 3: The original signer selects x and y in Zn
* as original private keys and sends public 

key Y = (x 2 +Ay 2 )  mod n to the SA thereafter.  Relatively, the proxy signer selects 

α and β in Zn
* as proxy private keys and sends public key  D = (α2+Aβ2) 

mod n to the SA. 

Step 4: The SA sends ⎥
⎦

⎤
⎢
⎣

⎡

ip
Y =ai  and ⎥

⎦

⎤
⎢
⎣

⎡

ip
D =ri , i=1, 2, 3, 4 to the original signer and the 

proxy signer respectively. 

Step 5: The SA publishes the public key of system, as well as those for original signer and 

proxy signer. 

 

Proxy phase 

Step 1: The original signer sends warrant message mw  to the SA. 

Step 2: The SA selects a proper integer Bbo ∈  such that 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2
2

1
1

 

 

a
p
b

a
p
b

o

o

 

Step 3: The SA chooses u∈Zn
* such that v= h ( u*mw)  in Zn

* and 

 

⎪
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, where K= ( u 2 + Av 2 )  mod n 
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Step 4: The SA sends (bo, u, v) to the original signer. Thereafter the original signer lets 

 c = (xu + Ayv) mod n 

 d = (yu - xv) mod n 

Step 5: The original signer sends (c, d) to the SA. The SA uses system private key p1 ,  p2,  

p3  and p4  to solve the square root t of bo( c 2 +Ad 2 )  in O(log n) time complexity [Per86]. 

Step 6: The SA sends square root t to the original signer. 

Step 7: The original signer sends (t, bo, u, c, d, mw) to the proxy signer.  After receiving  

(t, bo, u, c, d, mw), the proxy signer examines whether t2YK n
?
≡ bo(c2+Ad2)2 or not.  In 

addition, the proxy signer can compute K= ( u 2 +Av 2 )  mod n with v= h ( u*mw)  herself/ 

himself and retrieve the original signer’s public key Y from the SA. 

 

Proxy-signing phase 

Step 1: After receiving message m from an applicant, the proxy signer sends m to the SA. 

Step 2: The SA selects a proper integer Bbp ∈  such that  
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Step 3: The SA chooses γ∈Zn
* such that ω= h(γ*m) in Zn

* and  
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 where C =(γ2+Aω2) mod n 

Step 4: The SA sends (bp,γ,ω) to the proxy signer. 
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Step 5: The proxy signer lets 

 e = (αγ + Aβω) mod n 

 f = (βγ - αω) mod n 

Step 6: The proxy signer sends (e, f) to the SA. The SA uses the system private key p1 ,  p2 ,  

p3  and p4  to solve the square root s of b p t 2 DC  with O(log n) time complexity. 

Step 7: The SA sends square root s to proxy signer. 

Step 8: The proxy signer sends the proxy signature (s, bo, bp, u, e, f, γ, mw) of message m 

back to the applicant. 

 

Verification phase 

The verifier checks whether s2DC n
?
≡  b o b p YK ( e 2 +Af 2 ) 2  to examine the validity 

of proxy signature (s, bo, bp, u, e, f, γ, mw).  

The verifier can retrieve C = ( γ 2+A ω 2) and K = ( u 2 + Av 2 )  automatically.  

Furthermore, D = (α2+Aβ2)  mod n and Y = (x 2 +Ay 2 )  mod n are the public keys of the 

proxy signer and original signer respectively. 

 

4.2.2 Correctness analysis of DWPSQR 

 

Lemma 4.1: c 2 +Ad 2
n≡ YK,  where c n≡ x u+Ay v , d n≡ y u - x v ,  Y = (x 2 + Ay 2 )  mod n and 

K = ( u 2 +Av 2 )  mod n 

Proof: 

Place c n≡ x u+Ay v  and d n≡ y u - x v  onto c 2 + Ad 2 , then we can compute: 
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c 2 +Ad 2  

n≡ ( x u+Ay v ) 2 +A ( y u - xv ) 2  

n≡ ( x u ) 2 + ( Ayv ) 2 + 2Axyuv+ A ( y u ) 2 + A ( x v ) 2 -2Axyuv  

n≡ ( x u ) 2 + ( Ayv ) 2 +A (y u ) 2 + A ( x v ) 2  

n≡ ( x 2 +Ay 2 ) (u 2 +Av 2 )  

n≡ YK.               □ 

 

Lemma 4.2: ⎥
⎦

⎤
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⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4. 

Proof: 
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By the Jacobi symbol, 

⎥
⎦

⎤
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1p
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= ⎥
⎦

⎤
⎢
⎣

⎡

1p
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⎣

⎡
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1p
bo   

= a1 

 Similarly, ⎥
⎦

⎤
⎢
⎣

⎡

2p
Kbo  = a2. 

 Hence, ⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
Kb

 = ai, where i=1, 2, 3, 4. 

⎥
⎦
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i

o

p
YKb

 

= ⎥
⎦
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⎢
⎣

⎡

ip
Y
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⎤
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⎡

i

o

p
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= ( a i ) 2 

= 1. 

Therefore, ⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4.       □ 

⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4; therefore, t2
n≡ b o ( c 2 +Ad 2 )  belongs to QRn. 

 

Theorem 4.7: The proxy signer can verify the validity of delegation (t, bo, u, c, d, mw) by 

checking whether t2YK n≡ b o ( c 2 +Ad 2 ) 2 ,  where K = ( u 2 +Av 2 )  mod n 

and v = h (u*m w) . 

Proof: 

Lemma 4.2 show that t2
n≡ b o ( c 2 +Ad 2 )  belongs to QRn; and based on proposed 
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protocol, if t is valid, then t2
n≡ b o ( c 2 +Ad 2 ) .  

Form lemma 4.1, we know that c 2 +Ad 2
n≡ YK; hence: 

t2YK n≡ b o ( c 2 +Ad 2 ) ( c 2 +Ad 2 )  

n≡ b o ( c 2 +Ad 2 ) 2 .            □ 

4.2.3 Security requirements of DWPSQR 

 

Lemma 4.3: e 2 +Af 2
n≡ DC, where e n≡ (αγ + Aβω), f n≡ (βγ - αω),  C =(γ2+Aω2) mod n 

and D = (α2+Aβ2) mod n 

Proof: 

Place e n≡ (αγ + Aβω) and f n≡ (βγ - αω) onto e 2 + Af 2 , then we can compute: 

e 2 +Af 2  

n≡
22 )()( αϖβγβϖαγ −++ AA  

n≡ αβγϖαϖβγαβγϖβϖαγ AAAAA 2)()(2)()( 2222 −++++  

n≡
2222 )()()()( αϖβγβϖαγ AAA +++  

n≡ ))(( 2222 ϖγβα AA ++  

n≡ DC               □ 

 

Similarly to lemma 4.2, we know that ⎥
⎦

⎤
⎢
⎣

⎡

i

p

p
DCb

 = 1, where i=1, 2, 3, 4.  Therefore, 

s2=b p t 2 DC belongs to QRn. 
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Theorem 4.8: Every valid proxy signature (s, bo, bp, u, e, f,γ, mw) satisfies 

s2DC n≡ b o b p YK ( e 2 + Af 2 ) 2  

Proof: 

s2=b p t 2 DC  and from lemma 4.3, we know that e 2 +Af 2
n≡ DC; hence 

s2DC 

n≡ b p t 2 ( DC ) 2  

n≡ b p b o ( c 2 +Ad 2 )  ( DC ) 2  

n≡ b o b p YK ( DC ) 2  

n≡ b o b p YK ( e 2 +Af 2 ) 2 .           □ 

 

Theorem 4.7 show that the proxy key of the DWPSQR scheme is valid from original 

signer and theorem 4.8 show that the DWPSQR scheme satisfies verifiable requirement.  

The following discussion demonstrates that the DWPSQR scheme satisfies the strong 

unforgeability requirement.  Attackers will encounter difficulty in solving the square root 

s and t without knowing the system private key (p1 ,  p2 ,  p3 , p4) [FL96][FL98].  Although 

the attackers could select a modulus pair (c', d') to pass nt ≡2 b o ( c'2 +Ad'2 )  verification, it 

is still difficult for (c', d') pair to pass (c'2 +Ad'2 ) n≡ YK examination [PS87].  Accordingly, 

the attackers have difficulty in forging a proxy authentication (t, bp, u, c, d, mw) during the 

proxy phase. 

The SA prevents unqualified original signers from delegating warrant; moreover, 

prevents unqualified proxy signers from signing a document. Consequently, the SA 

mechanism enhances the warrant mechanism and avoids original signers from abusing 

her/his delegation in the same time. 

During the proxy-signing phase, proxy signers use their private keys α and β to 
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create a proxy signature (s, bo, bp, u, e, f,γ, mw) on document m. This security mechanism 

means that attackers cannot forge e and f unless they know α and β. 

During the verification phase, any verifier can identify the corresponding proxy signer 

by using the public key of each proxy signer to check if (e 2 +Af 2 ) n≡ DC.  The DWPSQR 

scheme thus satisfies the strong identifiability requirement. 

Additionally, a proxy signer cannot repudiate that they are the issuers of their signature 

because no one can create a proxy signature during polynomial time without knowing the 

private keys of the system and proxy.  Consequently, the DWPSQR scheme fulfills the 

strong undeniability requirement.  From above discussions, the DWPSQR scheme meets 

the security requirements defined by B. Lee [LK99][LKK01a]. 

 

4.2.4 Time complexity and security analysis 

The complexity of one-way hash function can be negligible compared to that of the 

multiplication operation. The proposed proxy signature based on QR scheme does not use 

exponential and divisional operations throughout the four proposed phases. Consequently, 

an original signer and a proxy signer complete the proxy phase in just 16 multiplications. 

During the proxy-signing phase, the proxy signer also uses just 5 multiplications to create a 

proxy signature. Only 17 multiplications are required to verify the validity of the proxy 

signature.  The above computations are performed under Zn
*.  A modular exponent 

requires about 240 modular multiplications [MOV96]; a 2048-bit modular multiplication is 

of 8 (n3) times complexity than 1024-bit modular multiplication in worse case and 

3
3

)2(2
+⎥⎦

⎥
⎢⎣
⎢ +n = 5 in [KT03].  For convenience, we ignore the negligible time complexity 

of addition operation in Table 4.5.  Therefore, the proxy signature scheme based on QR is 

more efficient than any other scheme based on discrete logarithm. 
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Table 4.5 Time complexity of Manbo’s and proposed scheme 
 Proxy 

Generation 

Proxy 

Verification 

Signature 

Signing 

Verification 

Manbo’s 

Scheme 

(2*240+1) = 

481Tmm 

(240+1)Tmm 240 Tmm (2*240+1) = 

481Tmm 

Proposed 

Scheme (1024) 

16 Tmm 8 Tmm 5 Tmm 17 Tmm 

Proposed 

Scheme (2048) 

†16×8=128 Tmm †8×8=64 Tmm †5×8=40 Tmm †17×8=136 Tmm

Note: Tmm: The number of modular multiplication. 
† For comparing in 1024-bit, we time 8 to keep time complexity consistency. 

 

The security of proposed schemes based on QR assumption.  Since n=p1 p2 p3 p4 and 

A=p1p2, how to choose (p1 ,  p2 ,  p3 ,  p4) is very important.  Comparing to the security level 

of 1024 bit RSA or discrete logarithms; the proposed schemes have to choose (p1, p2, p3, p4) 

such that n is around 2048 bits.  Because A=p1p2 is published, n is easy to be divided into 

A and p3p4 (n = A* p3p4).  To break the proxy signature scheme based on QR can reduce to 

1024 bits RSA in polynomial time.  As a result, the n need 2048-bit for security issue.  

Furthermore, the multiplication in 2048 bits is still remarkable faster than exponential in 

1024 bits as shown in Table 4.5. 
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Chapter 5  Proxy Signature with Proactive Property 

The security of proxy signature scheme guarantees last as long as the secret keys 

remain unrevealed.  Many threshold proxy signature schemes [DF89][Zha97b][KPW97] 

[SLH99][HWW03] are proposed enhance security against the key exposure problem prior 

to this date; but they still lack the property of proactive and proxy.  On the other hand, M. 

Abdalla and L. Reyzin proposed “A new forward-secure digital signature scheme,” in 

Asiacrypt2000 [AR00] to deal with key exposure problem.  Thereafter, Chang, Lin and 

Yeh proposed "Forward Secure Proxy Signature Scheme," which the proxy signer renews 

its proxy keys periodically [CLY03]; but in their scheme the proxy key cannot be recovery. 

 The proactive cryptography was first proposed by Ostrovsky and Yung [OY91] and 

applied by Herzberg et al. in [HJKY95].  In the proactive security scheme, the secret can 

be distributed to each party; and each party can refresh her/his share and verify others share.  

Moreover, if any party lost her/his share, the other parties can help her/him to reconstruct 

her/his share.  We list the properties of proactive security as following: 

1. Distributing the secret 

2. Verifying the shares 

3. Refreshing the shares 

4. Recovering the shares 

 

H. M. Sun, N. Y. Lee, and T. Hwang, proposed " Threshold proxy signatures" in 1999 

[SLH99] with nonrepudiable property to improve Zhang's threshold proxy signature 

scheme [Zha97b], but they still lack the property of renewing and recovery.  W.G. Tzeng 

and Z.J. Tzeng proposed “Robust Forward-Secure Signature Schemes with Proactive 

Security,” in PKC 2001 [TT01] to enhances the security of Abdalla and Reyzin’s [AR00] 
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forward-secure signature scheme via threshold and proactive mechanisms.  V. Nikov and 

S. Nikova investigates the security of Proactive Secret Sharing Schemes [NN04] which 

modifies model of Herzberg’s et al. [HJKY95] by imposing less restriction to the adversary, 

but they still lack the property of proxy. 

 

5.1  Proactive Secret Sharing Scheme 

The proactive secret sharing proxy signature scheme are based on proactive secret 

sharing signature with proxy functionality; hence we describe proactive secret sharing 

signature in this session.  Proactive secret sharing scheme [HJKY95] is based on verifiable 

secret sharing  (VSS) [Ped91].  A VSS scheme allows players to be verified that no other 

players are lying about the contents of their shares.  In other word, a VSS scheme 

distribute a secret to n persons such that each person can verify what he has received 

correct information about the secret without talking to other persons.  We describe the 

proactive secret sharing proxy signature scheme as follows. 

Let p be a large prime, q be a prime factor of p-1, and g be a generator of order q in 

Zp
*.  A proactive secret sharing scheme includes n participants {U1, U2, …, Un}⊂ 

participant group (PG) with (t, n) threshold that at least any t signers can recover the secret.  

And there are three schemes – a verifiable secret sharing scheme [Ped91], a secret sharing 

update scheme, and a secret sharing recovery scheme in a proactive secret sharing scheme 

[HJKY95] which are described as follows: 

Each participant Ui in PG selects a secret si∈Zq
*.  And the secret s = s1 + s2 + … + sn.  

Then, Ui executes Algorithm 5.1 VSS (si, n, t, a) to distribute secret si and publish g ai,0, gai,1, 

gai,2, ... , gai,t-1.  Algorithm 5.1 is a method in which each participant Ui (1 ≤ i ≤ n) 



 83

distributes a secret si into n shares.  Thereafter, Ui can compose her/his own share: 

sharei = ∑
≠=

n

ijj
j if

,1
)( mod q, 

where function fi(x) is defined in Algorithm 5.1. 

 

To prevent participants from distributing wrong shares, Ui needs to publish g ai,0, gai,1, 

gai,2, ... , gai,t-1; Ui can verifies her/his own sharei by checking whether the following 

equation holds: 

∑
= =

n

j
j

i

if
share gg 1

)(

 

= gs∏
−

=

1

1

)(
t

j

ia j
jg mod  

= gs∏
−

=

∑
=

1

1

)( 1
,t

j

i
a

j

n

k
jk

g mod p 

f(x) = s +∑
=

n

k
ka

1
1, x +∑

=

n

k
ka

1
2, x2 + ... + ∑

=
−

n

k
tka

1
1, xt-1 

= s + ∑∑
−

= =

1

1 1
,

t

j

n

k
jka xj  

 

  Without loss generality, we assume that given any t shares share1, …, sharet which 

can rebuild secret s = f(0) by Lagrange interpolating formula [MOV96] as follows: 

s =f (0)= ∑
=

t

k
kshare

1
∏

≠= −
−t

kjj jk
j

,1 )(
)0( (mod q). 
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Algorithm VSS(si: a secret, n : number of participant group, t : number of recovery share, 

a : random coefficient code) 

Summary: A verifiable secret sharing scheme without dealer.  At least t participants from 

{U1, ... , Un} can rebuild the secret s. 

Secret sharing generation 

1. Obtain (p, q, g). 

2. Each participant Ui let ai,0= si and selects random number ai,1, ai,2,… , ai,t-1. 

3. Ui generates a polynomial of degree t-1: fi(x) = ai,0 +∑
−

=

1

1
,

t

k

k
ki xa (mod q). 

4. Then, Ui computes and sends fi( j ) to Uj (for j = 1, … , n; i ≠ j) in a secure manner; 

then Ui publishes g ai,0, gai,1, gai,2, ... , gai,t-1. 

5. Let a1=∑
=

n

k
ka

1
1, , a2=∑

=

n

k
ka

1
2, , …, at-1=∑

=
−

n

k
tka

1
1, ; then 

f(x) = s +∑
=

n

k
ka

1
1, x +∑

=

n

k
ka

1
2, x2 + ... + ∑

=
−

n

k
tka

1
1, xt-1 = s + ∑∑

−

= =

1

1 1
,

t

j

n

k
jka xj. 

Secret sharing acceptance 

4. Each Ui receives fj( i ) (for j = 1, … , n; j ≠ i) from the other participants; then computes 

sharei =∑
=

n

j
j if

1
)( (mod q) as her/his share. 

5. Each Ui verifies sharei by checking the following equation holds: 

∑
= =

n

j
j

i

if
share gg 1

)(

= gs∏
−

=

1

1

)(
t

j

ia j
jg mod p = gs∏

−

=

∑
=

1

1

)( 1
,t

j

i
a

j

n

k
jk

g mod p. 

6. Return sharei. 

Algorithm 5.1 Verifiable Secret Sharing Scheme 
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Secret share update 

Each participant Ui in PG collaborates to renew his own share sharei(old) into new share 

sharei(new) by Algorithm 5.2 ShareUpdate(sharei(old), n, t).  The secret s is still kept, 

because algorithm VSS (0, n, t, a) satisfies constrains f (0) = s and fi (0) = 0 respectively. 

 

Algorithm ShareUpdate(sharei(old): a secret, n : number of participant group, t : number of 

recovery share) 

Summary: Update share without change the secret. 

1. Obtain (p, q, g). 

2. Each participant Ui selects random number bi,1, bi,2,… , bi,t-1. 

3. Ui generates a polynomial: fi(x) =∑
−

=

1

1
,

t

k

k
ki xb (mod q) which satisfy fi (0) = 0. 

4. Ui publishes gbi,1, gbi,2, ..., gbi,t-1. 

5. Ui computes fi( j ) and sends it to Uj. 

6. Ui computes sharei(new)= sharei(old)+ ∑
=

n

j
j if

1
)( (mod q). 

7. Ui verifies sharei(new) by checking  

∑
= =

+
n

j
joldi

newi

ifshare
share gg 1

)(
)(

)(

= gs∏
−

=

1

1

)( )(
t

j

ia j
newjg mod p = gs∏

−

=

+∑
=

1

1

)(

)( 1
,,t

j

i
ba

j

n

k
jkjk

g mod p. 

8. Return sharei(new). 

Algorithm 5.2 Share Update 
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Secret share recovery 

Suppose that Ur is a participant whose share corrupted and could not pass secret 

sharing acceptance of Algorithm 5.1.  At least t participants who pass secret sharing 

acceptance of Algorithm 5.1 can execute Algorithm 5.3 ShareRecovery(r, n, t) to help Ur 

recover sharer.  From the t participants’ help, Ur can rebuild f~ (x).  Because the function 

fi(r) = 0 in Algorithm 5.3, the rebuild function )(~ rf  = f(r) = sharer.  Furthermore, due to 

f~ (0) is randomized without parameter s, Ur can not calculate the secret s. 

 

Algorithm ShareRecovery( r : the under fixed participant Ur, n : the number of participant 

group, t : the number of recovery share) 

Summary: t participants { U1, ... , Ut } collaborate to rebuild the secret share of Ur. 

1. Each participant Ui ∈{ U1, ... , Ut }selects random number ci,0,ci,1, ci,2,… , ci,t-1. 

2. Ui generates a polynomial: fi(x) =∑
−

=

1

0
,

t

k

k
ki xc (mod q) which satisfies fi( r ) = 0. 

3. Ui send fi( j ) to Uj where j = 1, … , t; j≠i. 

4. On receiving fj( i ), Ui computes recoveryri =∑
=

t

j
j if

0
)(  and forwards it to Ur. 

5. Ur uses the return values { recoveryr1, recoveryr2, …, recoveryrt } and Lagrange 

interpolation formula to obtain )(~ xf =∑
=

t

k
rkeryre

1
cov ∏

≠= −
−t

kjj jk
j

,1 )(
)0( (mod q).  Then 

recover her/his share f (r) = )(~ rf (mod q). 

6. Return sharer = f (r). 

Algorithm 5.3 Share Recovery 
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5.2  Proactive Secret Sharing Proxy Signature Scheme 

We are the first one who combine proxy and proactive properties to propose a 

proactive secret sharing proxy signature scheme.  In our scheme, original signer could 

distribute the secret to designated signers, called proxy signers.  The proxy signers could 

renew their own proxy shares periodically without changing the secret.  Moreover, if any 

proxy signer lost her/his share, the other t proxy signers can help her/him to reconstruct 

her/his share.  Therefore, we enhance the security of proxy signature scheme via proactive 

mechanisms to overcomes the key exposure and key recovery problem. 

 

There exist a system authority (SA) and a certificate authority (CA) in the proactive 

secret sharing proxy signature scheme.  The SA manages the public directory and initiates 

the system parameter (p, q, g) used in the following section; and the CA certifies proxy 

signers’ key pair.  In our scheme, the function h(·) denotes as a one-way hash function; 

Alice and { U1, ... , Un } ⊂ PG (proxy group) denotes an original signer and proxy signers 

respectively.  Alice’s key pairs are (x0, y0 = gx0 mod p) and each proxy signer Ui has 

iid and key pairs (xi, yi= gxi mod p, where i=1, … , n) which are certified by the CA.  

Between an original signer Alice and proxy signers { U1, ... , Un }, there is a warrant mw to 

describe the relationship of delegation including the identities of PG, the original signer, 

Alice and proxy duration etc. 

 

 The proactive secret sharing proxy signature scheme contains five sub-functions: 

proxy generation, proxy share update, proxy signature generation, proxy signature 

verification and proxy key share recovery.  We describe as follows: 
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5.2.1 Proxy Generation 

Step 1. (Group key generation) 

SA chooses a random number xG as a group key and selects random numbers d1, ... , 

1−td  to create fG(x) as following: 

fG(x) = xG + d1x+…+ 1
1

−
−

t
t xd (mod q). 

Then, SA sends the shares γi = fG(i) (mod q) to each corresponding proxy signer 

Ui∈PG (where i=1, …, n) in a secure manner and publishes: 

gxG, D1= gd1, … , Dt-1= gdt-1. 

Step 2. (Proxy key generation) 

The original signer Alice chooses randomly k ∈ Zq
*; computes K = gk mod p, and 

creates proxy key as following and publish gσ: 

σ = k + x0h(mw, K) (mod q). 

Step 3. (Proxy sharing) 

The original signer Alice executes algorithm 5.1 VSS(σ, n, t, b) to share proxy key 

σ and the shares are b0( = σ), b1, … , bt-1.  Let Bj = gdj mod p, j = 0, … , t-1.  Then 

Alice distributes fj( i ) (i, j = 1, …, n) and (mw, K) to the corresponding proxy signers 

in a secure manner and publishes Bj (j=0, …, t-1).  The function f(x) will be: 

f(x) = σ +∑
=

n

k
kb

1
1, x +∑

=

n

k
kb

1
2, x2 + ... + ∑

=
−

n

k
tkb

1
1, xt-1 = s + ∑∑

−

= =

1

1 1
,

t

j

n

k
jkb xj  

Step 4. (Group key acceptance) 

Once proxy signer Ui ∈ PG receiving γi and fj( i ) (i, j = 1, …, n), she/he computes 

her/his own share sharei = ∑
≠=

n

ijj
j if

,1
)(  and executes acceptance of algorithm 5.1 to 
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check validity of sharei and γi. 

Step 5.  (Proxy key share generation) 

If the shares are valid, each proxy signer Ui ∈ PG creates her/his proxy key share: 

σ'i= sharei + γi h(mw, K)(mod q) 

 

5.2.2 Proxy share update 

Step 1. Each proxy signer Ui ∈ PG executes algorithm 5.2 ShareUpdate(sharei(old), n, t) and 

obtains sharei(new), i = 1, … , n. 

Step 2. Each proxy signer Ui ∈ PG sends fi( j ) mod q(i, j = 1, … , n) to Alice and 

re-computes her/his own proxy key share σ'i(new) = sharei(new) + γi h(mw, K)(mod q). 

Step 3. Alice update the function f (x):  

f(new)(x) = f(old)(x) +∑
=

n

j
j xf

1
)( ; 

 The function f(new)(x) still satisfies f(new)(0) = s. 

 

5.2.3 Proxy signature generation 

Without loss of generality, we assume that {U1, … , Ut} ⊂ PG is a set of proxy signers, 

who collaborate to sign a message m on behalf of the original signer. 

Step 1. Each proxy signer Ui ∈ {U1, … , Ut} executes algorithm 5.1 VSS (α, n, t, c) for 

sharing a random number α (α = c0, Cj = jcg mod p, j = 0, … , t-1), obtains shareki; 

and publishes Cj, where i = 0, … , t-1. 
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Step 2. To create a proxy signature of the message m, each proxy signer Ui ∈ {U1, … , Ut}   

computes SPi = shareki + σ'i h(m, C0)(mod q).  Then sends SPi and σ'i to other 

proxy signers Uj,  j = 1, … , t, j≠i. 

On receiving all the SPi and σ'i, Uj (j = 1, … , t) rebuilds σ using Lagrange 

interpolating formula.  And Uj checks whether 

gσ = K(y0)h(mw, K) and 

jSPg = ∏
−

=

1

0

t

i

j
i

i

C [∏
−

=

1

0

t

i

j
i

i

B ( gxG∏
−

=

1

1

t

i

j
i

i

D ) h(mw, K)]h(m,C0)(mod p) 

Step 3. Each proxy signer Ui ∈ {U1, … , Ut} computes T = c0 + σh(m, C0) by applying 

Lagrange interpolating formula to SPi.  The proxy signature on m is: 

(m, mw, T, C0, K). 

 

5.2.4 Proxy signature verification 

 A verifier can verify the validity of the proxy signature (m, mw, T, C0, K) by checking 

whether following equation holds. 

gT = C0[K(y0
h(mw,K))]h(m, C0) 

because  gT = gc0 + σh(m, C0) = gc0gσh(m, C0) 

= C0[gσ]h(m, C0) = C0[gσ]h(m, C0) 

= C0[gk + x0h(mw, K)]h(m, C0) 

= C0[Kgx0h(mw, K)]h(m, C0) 

= C0[K(y0
h(mw,K))]h(m, C0) 
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5.2.5 Proxy share recovery 

Suppose the result of which a proxy signer Ur verifies the share update is failed. At 

least t  proxy signers can help Ur recovery her/his share by executing algorithm 5.3 

ShareRecovery(Ur, n, t). 

 

5.3  Comparing to other schemes 

The proactive secrete sharing proxy signature scheme also uses CA to identify group 

key and identities of both the original signer and proxy signers.  Furthermore, our scheme 

periodical update key to prevent possible attack.  If some proxy signer lost her/his own 

share, we also can recovery her/his own share through at least t shares of legal proxy 

signers.  We compare to the other scheme in following table. 

 

Table 5.1 Comparing of Proactive Secrete Sharing Proxy Signature 
 Proxy 

Functionality
Group- 
oriented

Verifiable Secret 
Sharing

Share 
Renewing 

Share 
Recovery

Manbo’s Proxy 
[MUO96] 

√      

HJKY’s Proactive 
[HJKY95] 

 √ √ √ √ √ 

Sun's Threshold 
[SLH99] 

√ √ √ √   

Tzeng’s Proactive 
[TT01] 

 √ √ √ √ √ 

HWW threshold 
[HWW 03] 

√ √  √   

Chang’ Forward Proxy 
[CLY03] 

√    √  

Our proposed scheme √ √ √ √ √ √ 
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Chapter 6   Conclusion 

6.1 Conclusion 

In this dissertation, we survey lots of related works and propose a novel proxy 

signature scheme based on QR, strong proxy signature schemes based on DSA and ECDSA 

respectively and a proactive secret sharing proxy signature scheme.  On the other hand, we 

also analyze one-way hash function, SHA-160, useful technique using in proxy signature 

scheme, on message schedule and propose an extended SHA-160 and proposed dynamic 

extended DES respectively. 

Through the investigation, most of proxy signature schemes are based on discrete 

logarithm problem; and the proxy signature schemes based on ECC and factoring are 

proposed in 2002 and 2003 respectively.  We discuss QR approach and propose a proxy 

signature scheme based on QR, which is a new approach to implement proxy signature. 

Moreover, most of the proposed proxy signature schemes are not feasible in practice 

because the security of those schemes cannot be really proved.  Therefore, based on 

standard signature, DSA/ECDSA, we propose the proxy signature schemes based on 

DSA/ECDSA, which is pretty well known by their security properties.  In addition, the 

proposed schemes not only satisfy all the requirements of strong proxy signature, which 

proposed by Lee, et al. but also can combine PKI to prevent man-in-middle attack. 

To solve key exposure problem, many threshold proxy signature schemes are proposed 

in which the k out of n threshold schemes deployed; but they still lack the proactive 

property.  As a result, we propose a proactive secret sharing proxy signature scheme to 

enhance the security of proxy signature.  The proxy shares of proposed scheme are 

periodically renewed; therefore, even if the proxy shares are compromised in some one 
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period, it will be hurtless.  In addition, if any proxy share is ruined, the other proxy signer 

can help her/him to recovery her/his share. 

Plenty of digital signatures such DSA, ECDSA, proxy signature etc. apply a one-way 

hash function to make they efficient.  SHA-serials are most famous one-way hash 

functions and also are standard one-way hash function in United States and Europe.  

Although FIPS-2, strengthened version of the SHA-1, is proposed, lots of applications are 

using SHA-160 prior to this date.  We, therefore, analyze message schedule of SHA-160 

and discover the decay phenomenon; nevertheless, we introduce two SHA-160 corrections 

to enhance the security of SHA-160. 

Electronic Signature Law is established in many countries, the proxy signature scheme 

is one of most important digital signature applications.  We hope our enhancement and 

proposed schemes can make proxy signature schemes feasible in practice. 

 

6.2 Future works 

 Via SHA-160 analysis, we know that the more nonlinear terms are involved, the more 

terms of  ft  will be effective.  Basing on our result, we will analyze message schedule  

wt = (wt-t1)b1♁(wt-t2)b2♁(wt-t3)b3♁(wt-16)b4 of SHA-160 to make the optimal development in 

the future.  Wang et al. developed efficient methods to find collisions in SHA-160 with 

time complexity 269; as a result, the SHA-160 faces seriously potential attacks to be used in 

many applications. We will continue our analysis on SHA-256, 384, 512 and further 

develop the more secure one-way hash function. 

 The proxy signature based on QR is more efficient than proxy signature based on 

discrete logarithm or factoring but there are too many parameters in the proxy signature 
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scheme based on QR.  To reduce complexity of parameters, and find another way to 

implement proxy signature based on QR without SA are future works.  In addition, to 

compare to other bases proxy signature scheme is our future work too. 

 The proxy signature scheme can be used in mobile agents, which are autonomous 

software entities to migrate across different execution environments.  Non-repudiation 

property is also considered in the electronic commerce circumstance. So a customer (proxy 

signer) representing an original signer generates and loads delegation key pair to the mobile 

agent for the heterogeneous environment.  The proxy signature applying on mobile agents 

is an interesting topic for future works. 
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Appendix A 

Appendix A list the result of t1, t2, t3 in the equation 

wt = ROTL1(wt-t1♁wt-t2♁wt-t3♁wt-t4), where 16 ≤ t ≤ 79 }. 

 

t1 t2 t3 Total terms
Maximum number of 
involved terms in wt 

Average terms 
involved of all wt

1 2 3 7222 177 112.5938 
1 2 4 7143 203 111.3594 
1 2 5 7377 172 115.0156 
1 2 6 7173 169 111.8281 
1 2 7 8383 194 130.7344 
1 2 8 7065 171 110.1406 
1 2 9 7427 169 115.7969 

1 2 10 7279 175 113.4844 
1 2 11 8670 212 135.2188 
1 2 12 7189 182 112.0781 
1 2 13 8663 212 135.1094 
1 2 14 7155 190 111.5469 
1 2 15 6705 169 104.5156 
1 3 4 6547 151 102.0469 
1 3 5 5670 134 88.34375 
1 3 6 6706 161 104.5313 
1 3 7 6025 149 93.89063 
1 3 8 6050 136 94.28125 
1 3 9 6136 133 95.625 
1 3 10 6873 165 107.1406 
1 3 11 6312 157 98.375 
1 3 12 5937 153 92.51563 
1 3 13 7436 172 115.9375 
1 3 14 5701 137 88.82813 
1 3 15 7337 172 114.3906 
1 4 5 6070 140 94.59375 

1 4 6 6372 157 99.3125 
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1 4 7 4686 129 72.96875 
1 4 8 5903 146 91.98438 
1 4 9 5940 132 92.5625 
1 4 10 4364 116 67.9375 
1 4 11 6636 165 103.4375 
1 4 12 6234 149 97.15625 
1 4 13 4176 111 65 
1 4 14 6663 156 103.8594 
1 4 15 7066 180 110.1563 
1 5 6 5716 137 89.0625 
1 5 7 5454 126 84.96875 
1 5 8 5051 116 78.67188 
1 5 9 4654 102 72.46875 
1 5 10 6057 137 94.39063 
1 5 11 5608 126 87.375 
1 5 12 5352 125 83.375 
1 5 13 5161 120 80.39063 
1 5 14 5987 139 93.29688 
1 5 15 5993 135 93.39063 
1 6 7 6247 172 97.35938 
1 6 8 5691 144 88.67188 
1 6 9 5176 122 80.625 
1 6 10 6004 161 93.5625 
1 6 11 3234 83 50.28125 
1 6 12 5904 162 92 
1 6 13 5944 170 92.625 
1 6 14 5640 140 87.875 
1 6 15 6049 169 94.26563 
1 7 8 6325 170 98.57813 
1 7 9 5331 121 83.04688 
1 7 10 4835 143 75.29688 
1 7 11 6093 165 94.95313 
1 7 12 6229 168 97.07813 
1 7 13 4722 132 73.53125 
1 7 14 6041 166 94.14063 
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1 7 15 6109 155 95.20313 
1 8 9 5574 132 86.84375 
1 8 10 5747 141 89.54688 
1 8 11 5863 154 91.35938 
1 8 12 5219 144 81.29688 
1 8 13 6259 178 97.54688 
1 8 14 5646 146 87.96875 
1 8 15 5286 146 82.34375 
1 9 10 5276 121 82.1875 
1 9 11 4819 106 75.04688 
1 9 12 5022 119 78.21875 
1 9 13 4615 103 71.85938 
1 9 14 4925 111 76.70313 
1 9 15 4776 112 74.375 
1 10 11 5813 167 90.57813 
1 10 12 5156 134 80.3125 
1 10 13 4716 130 73.4375 
1 10 14 5149 131 80.20313 
1 10 15 5907 162 92.04688 
1 11 12 5491 150 85.54688 
1 11 13 5263 152 81.98438 
1 11 14 5241 139 81.64063 
1 11 15 5306 145 82.65625 
1 12 13 5713 157 89.01563 
1 12 14 4503 124 70.10938 
1 12 15 5474 155 85.28125 
1 13 14 5123 148 79.79688 
1 13 15 4984 122 77.625 
1 14 15 4567 123 71.10938 
2 3 4 4002 118 62.28125 
2 3 5 4243 138 66.04688 
2 3 6 4233 134 65.89063 
2 3 7 4308 134 67.0625 
2 3 8 4208 113 65.5 
2 3 9 4267 130 66.42188 
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2 3 10 4094 112 63.71875 
2 3 11 4519 135 70.35938 
2 3 12 3936 129 61.25 
2 3 13 4633 151 72.14063 
2 3 14 3764 139 58.5625 
2 3 15 3694 130 57.46875 
2 4 5 3714 99 57.78125 
2 4 6 2972 83 46.1875 
2 4 7 3981 107 61.95313 
2 4 8 2394 62 37.15625 
2 4 9 3875 109 60.29688 
2 4 10 3086 77 47.96875 
2 4 11 4058 110 63.15625 
2 4 12 2846 79 44.21875 
2 4 13 4272 119 66.5 
2 4 14 2866 73 44.53125 
2 4 15 4345 121 67.64063 
2 5 6 3980 111 61.9375 
2 5 7 4009 126 62.39063 
2 5 8 3175 89 49.35938 
2 5 9 3648 111 56.75 
2 5 10 3328 101 51.75 
2 5 11 3568 108 55.5 
2 5 12 3734 105 58.09375 
2 5 13 3462 113 53.84375 
2 5 14 3729 107 58.01563 
2 5 15 3885 117 60.45313 
2 6 7 3458 109 53.78125 
2 6 8 2772 78 43.0625 
2 6 9 3386 111 52.65625 
2 6 10 2770 75 43.03125 
2 6 11 3450 108 53.65625 
2 6 12 2900 81 45.0625 
2 6 13 3560 111 55.375 
2 6 14 2946 90 45.78125 
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2 6 15 3780 127 58.8125 
2 7 8 3538 114 55.03125 
2 7 9 3212 101 49.9375 
2 7 10 3289 101 51.14063 
2 7 11 3443 116 53.54688 
2 7 12 2891 93 44.92188 
2 7 13 3524 112 54.8125 
2 7 14 3369 102 52.39063 
2 7 15 3550 113 55.21875 
2 8 9 3000 90 46.625 
2 8 10 2874 74 44.65625 
2 8 11 3109 85 48.32813 
2 8 12 2730 71 42.40625 
2 8 13 3355 99 52.17188 
2 8 14 2654 71 41.21875 
2 8 15 3258 92 50.65625 
2 9 10 2875 88 44.67188 
2 9 11 2820 84 43.8125 
2 9 12 2792 81 43.375 
2 9 13 2772 85 43.0625 
2 9 14 2744 82 42.625 
2 9 15 2717 80 42.20313 
2 10 11 3204 98 49.8125 
2 10 12 2808 81 43.625 
2 10 13 2896 90 45 
2 10 14 2546 64 39.53125 
2 10 15 3249 95 50.51563 
2 11 12 2997 82 46.57813 

2 11 13 3152 92 49 
2 11 14 3099 90 48.17188 
2 11 15 3159 98 49.10938 
2 12 13 3101 90 48.20313 
2 12 14 2608 74 40.5 
2 12 15 3060 92 47.5625 
2 13 14 2855 86 44.35938 
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2 13 15 2875 88 44.67188 
2 14 15 2574 82 39.96875 
3 4 5 2566 70 39.84375 
3 4 6 2540 74 39.4375 
3 4 7 2578 72 40.03125 
3 4 8 2324 56 36.0625 
3 4 9 2724 77 42.3125 
3 4 10 2614 78 40.59375 
3 4 11 2938 80 45.65625 
3 4 12 2402 68 37.28125 
3 4 13 2919 79 45.35938 
3 4 14 2413 65 37.45313 
3 4 15 2346 66 36.40625 
3 5 6 2606 80 40.46875 
3 5 7 2275 69 35.29688 
3 5 8 2503 65 38.85938 
3 5 9 2455 68 38.10938 
3 5 10 2726 78 42.34375 
3 5 11 2553 71 39.64063 
3 5 12 2349 72 36.45313 
3 5 13 2599 79 40.35938 
3 5 14 2364 76 36.6875 
3 5 15 2846 85 44.21875 
3 6 7 2571 86 39.92188 
3 6 8 2344 74 36.375 
3 6 9 2172 69 33.6875 
3 6 10 2255 72 34.98438 
3 6 11 2398 74 37.21875 
3 6 12 2378 78 36.90625 
3 6 13 2336 80 36.25 
3 6 14 2579 86 40.04688 
3 6 15 2449 76 38.01563 
3 7 8 2151 68 33.35938 
3 7 9 2291 73 35.54688 
3 7 10 2358 68 36.59375 
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3 7 11 2042 64 31.65625 
3 7 12 2334 83 36.21875 
3 7 13 2321 74 36.01563 
3 7 14 2413 86 37.45313 
3 7 15 2196 77 34.0625 
3 8 9 2346 68 36.40625 
3 8 10 2299 65 35.67188 
3 8 11 2345 71 36.39063 
3 8 12 2081 60 32.26563 
3 8 13 1934 57 29.96875 
3 8 14 2271 75 35.23438 
3 8 15 2367 73 36.73438 
3 9 10 2407 70 37.35938 
3 9 11 2256 68 35 
3 9 12 2113 64 32.76563 
3 9 13 2195 68 34.04688 
3 9 14 2230 71 34.59375 
3 9 15 1866 58 28.90625 
3 10 11 2312 65 35.875 
3 10 12 2127 63 32.98438 
3 10 13 2005 58 31.07813 
3 10 14 2071 58 32.10938 
3 10 15 2139 60 33.17188 
3 11 12 2110 59 32.71875 
3 11 13 2084 59 32.3125 
3 11 14 2207 66 34.23438 
3 11 15 2031 58 31.48438 
3 12 13 2099 63 32.54688 
3 12 14 1890 60 29.28125 
3 12 15 2089 61 32.39063 
3 13 14 1979 68 30.67188 
3 13 15 1974 63 30.59375 
3 14 15 1759 54 27.23438 
4 5 6 1845 56 28.57813 
4 5 7 1919 58 29.73438 
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4 5 8 1706 45 26.40625 
4 5 9 1990 53 30.84375 
4 5 10 1956 63 30.3125 
4 5 11 2027 58 31.42188 
4 5 12 1816 53 28.125 
4 5 13 2083 65 32.29688 
4 5 14 1795 63 27.79688 
4 5 15 1781 61 27.57813 
4 6 7 1811 61 28.04688 
4 6 8 1240 34 19.125 
4 6 9 1832 51 28.375 
4 6 10 1476 43 22.8125 
4 6 11 1829 55 28.32813 
4 6 12 1348 43 20.8125 
4 6 13 1969 65 30.51563 
4 6 14 1464 45 22.625 
4 6 15 1976 66 30.625 
4 7 8 1661 44 25.70313 
4 7 9 1758 49 27.21875 
4 7 10 1090 30 16.78125 
4 7 11 1831 53 28.35938 
4 7 12 1757 50 27.20313 
4 7 13 1246 38 19.21875 
4 7 14 1799 54 27.85938 
4 7 15 1828 53 28.3125 
4 8 9 1617 41 25.01563 
4 8 10 1374 36 21.21875 
4 8 11 1603 45 24.79688 
4 8 12 896 23 13.75 
4 8 13 1601 48 24.76563 
4 8 14 1390 38 21.46875 
4 8 15 1573 41 24.32813 
4 9 10 1552 40 24 
4 9 11 1806 52 27.96875 
4 9 12 1674 46 25.90625 
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4 9 13 1734 50 26.84375 
4 9 14 1449 42 22.39063 
4 9 15 1678 45 25.96875 
4 10 11 1488 44 23 
4 10 12 1298 34 20.03125 
4 10 13 1075 29 16.54688 
4 10 14 1350 40 20.84375 
4 10 15 1403 38 21.67188 
4 11 12 1504 37 23.25 
4 11 13 1704 50 26.375 
4 11 14 1629 46 25.20313 
4 11 15 1665 45 25.76563 
4 12 13 1504 41 23.25 
4 12 14 1360 40 21 
4 12 15 1544 46 23.875 
4 13 14 1485 47 22.95313 
4 13 15 1484 45 22.9375 
4 14 15 1357 43 20.95313 
5 6 7 1389 45 21.45313 
5 6 8 1355 35 20.92188 
5 6 9 1503 36 23.23438 
5 6 10 1447 37 22.35938 
5 6 11 1464 40 22.625 
5 6 12 1498 45 23.15625 
5 6 13 1591 48 24.60938 
5 6 14 1305 39 20.14063 
5 6 15 1355 38 20.92188 
5 7 8 1336 38 20.625 
5 7 9 1288 36 19.875 
5 7 10 1434 37 22.15625 
5 7 11 1350 37 20.84375 
5 7 12 1307 37 20.17188 
5 7 13 1490 45 23.03125 
5 7 14 1380 42 21.3125 
5 7 15 1473 43 22.76563 
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5 8 9 1304 34 20.125 
5 8 10 1256 34 19.375 
5 8 11 1245 33 19.20313 
5 8 12 1325 35 20.45313 
5 8 13 1398 39 21.59375 
5 8 14 1299 33 20.04688 
5 8 15 1438 40 22.21875 
5 9 10 1403 37 21.67188 
5 9 11 1325 33 20.45313 
5 9 12 1440 42 22.25 
5 9 13 1206 32 18.59375 
5 9 14 1406 38 21.71875 
5 9 15 1404 39 21.6875 
5 10 11 1481 46 22.89063 
5 10 12 1328 37 20.5 
5 10 13 1296 40 20 
5 10 14 1327 36 20.48438 
5 10 15 1164 32 17.9375 
5 11 12 1380 44 21.3125 
5 11 13 1281 36 19.76563 
5 11 14 1288 36 19.875 
5 11 15 1327 39 20.48438 
5 12 13 1307 40 20.17188 
5 12 14 1209 40 18.64063 
5 12 15 1370 44 21.15625 
5 13 14 1257 43 19.39063 
5 13 15 1223 36 18.85938 
5 14 15 1118 36 17.21875 
6 7 8 1062 28 16.34375 
6 7 9 1138 29 17.53125 
6 7 10 1183 31 18.23438 
6 7 11 1145 35 17.64063 
6 7 12 1183 38 18.23438 
6 7 13 1268 38 19.5625 
6 7 14 1063 32 16.35938 
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6 7 15 1145 37 17.64063 
6 8 9 1112 29 17.125 
6 8 10 860 21 13.1875 
6 8 11 1084 30 16.6875 
6 8 12 832 20 12.75 
6 8 13 1211 34 18.67188 
6 8 14 870 24 13.34375 
6 8 15 1148 29 17.6875 
6 9 10 1103 29 16.98438 
6 9 11 1117 31 17.20313 
6 9 12 1060 30 16.3125 
6 9 13 1192 34 18.375 
6 9 14 1179 32 18.17188 

6 9 15 1110 30 17.09375 

6 10 11 1037 31 15.95313 

6 10 12 938 25 14.40625 

6 10 13 1103 35 16.98438 

6 10 14 900 24 13.8125 

6 10 15 1148 30 17.6875 

6 11 12 1014 29 15.59375 

6 11 13 1023 29 15.73438 

6 11 14 1007 28 15.48438 

6 11 15 998 29 15.34375 

6 12 13 1087 34 16.73438 

6 12 14 918 25 14.09375 

6 12 15 1080 36 16.625 

6 13 14 1061 39 16.32813 

6 13 15 1059 38 16.29688 

6 14 15 958 33 14.71875 

7 8 9 929 23 14.26563 

7 8 10 913 23 14.01563 

7 8 11 992 28 15.25 

7 8 12 905 26 13.89063 

7 8 13 1069 31 16.45313 

7 8 14 892 28 13.6875 
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7 8 15 987 29 15.17188 

7 9 10 942 25 14.46875 

7 9 11 931 25 14.29688 

7 9 12 961 27 14.76563 

7 9 13 951 31 14.60938 

7 9 14 995 29 15.29688 

7 9 15 998 25 15.34375 

7 10 11 948 25 14.5625 

7 10 12 967 29 14.85938 

7 10 13 598 16 9.09375 

7 10 14 917 25 14.07813 

7 10 15 952 25 14.625 

7 11 12 1015 34 15.60938 

7 11 13 929 30 14.26563 

7 11 14 1005 33 15.45313 

7 11 15 875 26 13.42188 

7 12 13 958 32 14.71875 

7 12 14 902 30 13.84375 

7 12 15 958 32 14.71875 

7 13 14 871 31 13.35938 

7 13 15 870 27 13.34375 

7 14 15 827 31 12.67188 

8 9 10 777 19 11.89063 

8 9 11 850 21 13.03125 

8 9 12 788 23 12.0625 

8 9 13 877 25 13.45313 

8 9 14 813 24 12.45313 

8 9 15 859 23 13.17188 

8 10 11 820 24 12.5625 

8 10 12 612 15 9.3125 

8 10 13 828 30 12.6875 

8 10 14 670 17 10.21875 

8 10 15 866 26 13.28125 

8 11 12 757 21 11.57813 

8 11 13 885 27 13.57813 
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8 11 14 768 21 11.75 

8 11 15 878 28 13.46875 

8 12 13 736 20 11.25 

8 12 14 624 19 9.5 

8 12 15 762 22 11.65625 

8 13 14 761 27 11.64063 

8 13 15 798 27 12.21875 

8 14 15 717 24 10.95313 

9 10 11 731 19 11.17188 

9 10 12 655 18 9.984375 

9 10 13 738 23 11.28125 

9 10 14 684 18 10.4375 

9 10 15 757 24 11.57813 

9 11 12 699 18 10.67188 

9 11 13 708 18 10.8125 

9 11 14 775 25 11.85938 

9 11 15 708 20 10.8125 

9 12 13 738 23 11.28125 

9 12 14 714 23 10.90625 

9 12 15 687 21 10.48438 

9 13 14 680 23 10.375 

9 13 15 648 25 9.875 

9 14 15 639 19 9.734375 

10 11 12 558 13 8.46875 

10 11 13 625 17 9.515625 

10 11 14 591 15 8.984375 

10 11 15 656 19 10 

10 12 13 623 16 9.484375 

10 12 14 468 14 7.0625 

10 12 15 613 18 9.328125 

10 13 14 592 15 9 

10 13 15 586 17 8.90625 

10 14 15 564 14 8.5625 

11 12 13 517 13 7.828125 

11 12 14 505 15 7.640625 
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11 12 15 552 19 8.375 

11 13 14 575 16 8.734375 

11 13 15 515 13 7.796875 

11 14 15 516 14 7.8125 

12 13 14 442 12 6.65625 

12 13 15 482 14 7.28125 

12 14 15 448 14 6.75 

13 14 15 366 13 5.46875 
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