
國 立 交 通 大 學

資訊工程系

博 士 論 文

代理簽章與前向預防式代理簽章之研究

Studies on Proxy Signatures with/without Proactive Property

研 究 生：陳以德

指導教授：葉義雄 教授

中 華 民 國 九 十 四 年 十二 月

 ii

代理簽章與前向預防式代理簽章之研究

Studies on Proxy Signatures with/without

Proactive Property

研 究 生：陳以德 Student：I-Te Chen

指導教授：葉義雄 Advisor：Yi-Shiung Yeh

國 立 交 通 大 學
資 訊 工 程 系
博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

December 2005

HsinChu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 十二 月

 iii

國 立 交 通 大 學

博碩士論文全文電子檔著作權授權書

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系，

94 學年度第 1 學期取得博士學位之論文。

論文題目：代理簽章與前向預防式代理簽章之研究

Studies on Proxy Signatures with/without Proactive Property

指導教授：葉義雄

■ 同意 □不同意

本人茲將本著作，以非專屬、無償授權國立交通大學與台灣聯合大學

系統圖書館：基於推動讀者間「資源共享、互惠合作」之理念，與回

饋社會與學術研究之目的，國立交通大學及台灣聯合大學系統圖書館

得不限地域、時間與次數，以紙本、光碟或數位化等各種方法收錄、

重製與利用；於著作權法合理使用範圍內，讀者得進行線上檢索、閱

覽、下載或列印。

論文全文上載網路公開之範圍及時間：

本校及台灣聯合大學系統區域網路 ■中華民國 95 年 9 月 1 日公開

校外網際網路 ■中華民國 96 年 9 月 1 日公開

授 權 人：陳 以 德

親筆簽名：______________________

中華民國 94 年 12 月 30 日

 iv

國 立 交 通 大 學

博碩士紙本論文著作權授權書

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系，

94 學年度第 1 學期取得博士學位之論文。

論文題目：代理簽章與前向預防式代理簽章之研究

Studies on Proxy Signatures with/without Proactive Property

指導教授：葉義雄

■ 同意

本人茲將本著作，以非專屬、無償授權國立交通大學，基於推動讀者

間「資源共享、互惠合作」之理念，與回饋社會與學術研究之目的，

國立交通大學圖書館得以紙本收錄、重製與利用；於著作權法合理使

用範圍內，讀者得進行閱覽或列印。

授 權 人：陳 以 德

親筆簽名：______________________

中華民國 94 年 12 月 30 日

 v

國家圖書館博碩士論文電子檔案上網授權書

ID:GT008617818

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系，

 94 學年度第 1 學期取得博士學位之論文。

論文題目：代理簽章與前向預防式代理簽章之研究

Studies on Proxy Signatures with/without Proactive Property

指導教授：葉義雄

茲同意將授權人擁有著作權之上列論文全文（含摘要），非專屬、無償授權

國家圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數位化方

式將上列論文重製，並得將數位化之上列論文及論文電子檔以上載網路方

式，提供讀者基於個人非營利性質之線上檢索、閱覽、下載或列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文，應依著作權法相關規

定辦理。

授 權 人：陳 以 德

親筆簽名：______________________

中華民國 94 年 12 月 30 日

 vi

代理簽章與前向預防式代理簽章之研究

學生：陳以德 指導教授：葉義雄博士

國立交通大學資訊工程系博士班

摘 要

網際網路的發達，使得政府及工商業界的文書往來，漸漸地由紙式文件，

改為利用網際網路傳遞的電子式文件；簽章部分也由傳統的印章改為電子簽

章。因應此一電子化的趨勢，世界各國紛紛制訂電子簽章法來推行電子簽章；

中華民國政府也於 2001 公告自 2002 開始施行電子簽章法。

電子簽章又稱數位簽章，其發展到 1996 年，Mambo 才提出代理簽章的概

念。代理簽章提供了原始簽章者，可以授權給代理簽章者代簽電子簽章的功能，

是近十年來，蓬勃發展的電子簽章應用之一。許多學者也提出增進代理簽章安

全性及不同的代理簽章演算方法來實現代理簽章。但這些方法被質疑能否實際

應用於現實生活，所以我們除了提出架構在 Quadratic Residues 上的代理簽章

外；也建議代理簽章建構在標準的簽章法，如 DSA 及 ECDSA 等；並提出了建

構在 DSA/ECDSA 的代理簽章法，藉由已充分討論過安全性的標準簽章法，使

代理簽章成為現實可行的簽章機制。

為了解決金鑰曝光的問題，我們在現有的代理簽章法加入前向預防式

(proactive) 的概念，而提出了 proactive secret sharing proxy signature scheme。

藉由定時更新金鑰的方式，確保了某一段時間內，簽章的安全性。proactive secret

sharing proxy signature scheme 的復原機制，更可以在某一代理簽章者的 share

遺失或無法使用時，由其他的代理簽章者來復原其 share。

 vii

單向雜湊函數經常配合簽章使用來增進簽章的效率，自從王小雲教授提出

在 269的時間複雜度內可以找到單向雜湊函數 SHA-160 的碰撞後；我們也分析

SHA-160 的訊息處理模式，發現 SHA-160 有衰減(Decay)的現象，所以我們提

出兩個改進 SHA-160 的訊息處理模式安全性的方法。期望我們對單向雜湊函數

與代理簽章的分析與改進，能使電子簽章能實際地運用於日常生活中。

 viii

Studies on Proxy Signatures with/without

Proactive Property

Student：I-Te Chen Advisor：Yi-Shiung Yeh

Department of Computer Science

College of Computer Science
National Chiao Tung University

Abstract

Due to the rapid progress of Internet, governments and enterprises change their

paper-based documents to electronic ones; as well as hand-made signatures to digital

signatures. The electronic signature relative regulations are established all over the world.

Taiwan has also established the Electronic Signature Laws in 2001 and put into operation in

2002.

Mambo et al. are the first group who introduced the proxy signature scheme in 1996.

The proxy signatures, with which the original signers can delegate their signing capability

to the proxy signers, are the most popular application of digital signatures in the last decade.

Lots of researchers proposed improvement or alternative mathematic base of proxy

signatures without adopting Digital Signature Algorithm (DSA) or Elliptic Curve Digital

Signature Algorithm (ECDSA); however, most of the proposed proxy signature schemes are

not feasible in practice because their securities cannot be really proved. Therefore, we

propose the proxy signature adopting DSA and ECDSA and firstly introduce Quadratic

 ix

Residues’ concepts. Our scheme keeps not only the properties of the DSA/ECDSA but

also fulfills the strong requirements of proxy signatures.

To solve key exposure problem, we adopt proactive concept into proxy signature and

propose proactive secret sharing proxy signature scheme. The proactive secret sharing

proxy signature scheme is based on verifiable secret sharing to against the active attacker.

Consequently, the proactive secret sharing proxy signature scheme, which is a

group-oriented scheme, provides the functionality of proxy signers' shares renewing and

recovering.

One-way hash functions are important skills to make digital signatures efficient.

Wang et al. reported their method to find a collision efficiently in SHA-160 within 269 hash

steps in February 2005. In fact, we can still discover the decay phenomenon with the

application of a message schedule’s judgment when inspecting how SHA-160 generates

message schedule actually. Therefore, we would like to introduce two SHA-160

corrections to enhance the security of SHA-160. In general, we hope our enhancement of

SHA-160 and new proxy signature schemes could be used in practice.

 x

誌 謝

感謝老師、學長、同學、學弟妹們的幫忙與支持，才使我能獲得這個

博士學位；這一份榮耀將分享給所有協助、支持我的人們。首先感謝有著

長者的風範的指導教授 - 葉義雄老師，在我碩、博士修業期間，給我學

業上的指導及生活上的輔導；其學術成就及待人處世之道，均為我表率。

其次感謝明信學長無私的協助，使我得以順利完成學位，是我畢生難得的

益友。

感謝論文口試委員呂及人教授、孫宏民教授、黃士昆教授、詹進科教

授、雷欽隆教授與蔡錫鈞教授(以上按姓氏筆劃排列)的深入指導與建議，

對於我論文之教誨，也是我往後做學問隨時需警惕的原則。

感謝中華電信研究所，提供我與研究相關的工作機會，尤其是張耿豪

經理、謝東明博士、王文正博士與景榮兄的提攜與照顧，在此誠心感謝。

我也將最多的榮耀分享給我父母、岳父母與妻子，感謝他們支持，使

我得以安心進修，完成這個學位。僅以這一點名位，聊表無限的感激。感

謝在美國的表姐及在法國的以禮幫我校稿；也感謝實驗室眾兄弟姐妹們

(不論已畢業或在學中)的鼓勵與幫助，尤其是兩宇-定宇與鎮宇給我的幫

忙；其餘無法一一表謝，在此一併致謝。

 xi

Contents

博碩士論文全文電子檔著作權授權書... III

博碩士紙本論文著作權授權書... IV

國家圖書館博碩士論文電子檔案上網授權書...V

摘 要 ... VI

ABSTRACT .. VIII

誌 謝 ...X

CONTENTS... XI

LIST OF TABLES ...XIV

LIST OF FIGURES.. XV

CHAPTER 1 INTRODUCTION ...1

1.1 MOTIVATION AND RELATED WORK ..1

1.2 ORGANIZATION OF DISSERTATION ..6

CHAPTER 2 CRYPTOGRAPHY ...7

2.1 CRYPTOSYSTEM ...7

2.2 SYMMETRIC CIPHERS...8

2.2.1 Encryption Standard in U.S..9

2.2.2 Dynamic Extended DES ...9

2.2.3 NESSIE ...16

2.3 ASYMMETRIC CIPHERS ..16

 xii

2.3.1 RSA Cryptosystem ..17

2.3.2 Discrete Logarithm problem ..18

2.3.3 Description of Elliptic Curves..19

2.4 ONE WAY HASH FUNCTIONS..24

2.4.1 Secure Hash Standard ..24

2.4.2 Analyze SHA-160 in message schedule..25

2.4.3 The First Modification scheme of SHA-160 (SHA-m1)27

2.4.4 The Second Trial of SHA-160...29

2.4.5 The Third Modification scheme of SHA-160 (SHA-m2)...................30

CHAPTER 3 PRELIMINARIES ..32

3.1 DIGITAL SIGNATURE...32

3.1.1 Proxy signature...33

3.1.2 Strong proxy signature..37

3.1.3 Blind signature ...38

3.1.4 Lamport’s One time signature ..40

3.2 SECRET SHARING..41

3.2.1 Shamir (t, n) - threshold scheme ..41

3.2.2 Verifiable Secret Sharing..42

3.3 QUADRATIC RESIDUES ...43

3.4 DIGITAL SIGNATURE STANDARD ...44

3.4.1 DSA...44

3.4.2 ECDSA..47

CHAPTER 4 THE PROPOSED PROXY SIGNATURES....................49

4.1 PROXY SIGNATURE BASED ON DIGITAL SIGNATURE ALGORITHM49

4.1.1 Proxy Signature Based on Digital Signature Algorithm50

 xiii

4.1.2 Proxy Signature Based on DSA..51

4.1.3 Proxy Signature based on ECDSA ...55

4.1.4 Security analysis and comparisons ..63

4.2 PROXY SIGNATURE BASED ON QR ...69

4.2.1 Delegation by warrant proxy signature scheme based on QR.........69

4.2.2 Correctness analysis of DWPSQR ...74

4.2.3 Security requirements of DWPSQR..77

4.2.4 Time complexity and security analysis ...79

CHAPTER 5 PROXY SIGNATURE WITH PROACTIVE PROPERTY

..81

5.1 PROACTIVE SECRET SHARING SCHEME..82

5.2 PROACTIVE SECRET SHARING PROXY SIGNATURE SCHEME87

5.2.1 Proxy Generation ...88

5.2.2 Proxy share update...89

5.2.3 Proxy signature generation ..89

5.2.4 Proxy signature verification ...90

5.2.5 Proxy share recovery ..91

5.3 COMPARING TO OTHER SCHEMES..91

CHAPTER 6 CONCLUSION ..92

6.1 CONCLUSION..92

6.2 FUTURE WORKS..93

REFERENCES ...95

APPENDIX A..102

 xiv

List of Tables

Table 2.1 The similarity of new and original S-boxes.12
Table 2.2 Extended S-boxes. ..13
Table 2.3 Points on the Elliptic Curve E(Z19

*)20
Table 2.4 Comparison between all SHA-serial algorithms24
Table 2.5 Different message block between SHA and SHA-160.......26
Table 2.6 w27 in SHA and in SHA-160...26
Table 2.7 Notations of proposed scheme..28
Table 2.8 Parts of experiments for choosing {t1, t2, t3}28
Table 2.9 Four groups of SHA-160 on wt = ROTLb(wt-3♁wt-8♁wt-14♁wt-16)

..30
Table 4.1 Points on the elliptic curve x3 + x + 4 mod 19....................60
Table 4.2 The multiples of generator G..61
Table 4.3 Time complexity of the proxy signature based on
DSA/ECDSA and DSA/ECDSA ...68
Table 4.4 Differences among DSA/ECDSA, Mambo and proposed
schemes ..68
Table 4.5 Time complexity of Manbo’s and proposed scheme..........80
Table 5.1 Comparing of Proactive Secrete Sharing Proxy Signature 91

 xv

List of Figures

Fig 2.1 Encryption and Decryption ..8
Fig 2.2 128-bit extended DES .. 11
Fig 2.3 One round of 128-bit extended DES...................................... 11
Fig 2.4 P and Q are two distinct points ..21
Fig 2.5 the addition of an elliptic curve point21
Fig 2.6 Terms involved between SHA and SHA-16027
Fig 2.7 Comparison between SHA-160 and SHA-m1.......................29
Fig 2.8 Comparison |wi| between SHA-160 and SHA-m231
Fig 3.1 Signature Signing Process..32
Fig 3.2 Signature Verification...33
Fig 4.1 Proxy signer initialization in PKI ..52
Fig 4.2 Delegation by warrant proxy signature scheme based on QR71

 1

Chapter 1 Introduction

Due to the rapid progress of Internet, the evidence of possessing documents is

especially important in the electronic world. The digital signature is developed to replace

ordinary hand-written signatures without losing the properties of signer authenticity, data

integrity and non-repudiation. Proxy signature scheme is one kind of digital signature

applications. In this dissertation, we survey lots of proxy signature schemes and propose

several novel proxy signature schemes. On the other hand, a one-way hash function is

also an important skill to make digital signature efficient. Therefore, the security of

one-way hash functions is also worth discussing in this dissertation.

1.1 Motivation and Related Work

When original signers cannot sign a document by themselves, they might delegate

their signing capability to trustworthy proxy signers. For example, when the manager of a

company will leave for the vacation, she/he needs to authorize her/his secretary to sign

messages on behalf of her/him. To deliver manager’s private key directly to her/his

secretary is dangerous, nevertheless, the traditional digital signature does not provide

functionality of proxy, either.

A proxy signature scheme was introduced by Mambo et al. [MUO96] to solve the

proxy problem so that the original signer could delegate her/his signing capability to proxy

signer without revealing her/his secret information. However, Mambo’s scheme does not

provide non-repudiation property [Zha97a][Sun99]; thus several papers propose

non-repudiation proxy signature scheme [Zha97a][Sun99][HWW03][LHW98][LKK01b]

which means both original and proxy signers cannot deny the signatures those are created

exactly by themselves.

 2

In addition, Mambo's proxy signature scheme is not a strong proxy signature scheme

because it is not a proxy-protected signature scheme in which the original signer knows and

can derive the proxy key on her/his own. On the contrary, in the proxy-protected proxy

signature scheme, the original signer and proxy signer create the proxy key interactively so

that the proxy signer can be protected from a malicious original signer. Hence, Lee and

Kim [LK99][LKK01a][LKK01b] proposed the concept of the strong proxy signature,

which defined the four requirements of the proxy signature: verifiability, strong

unforgeability, strong identiability, and strong undeniability. The strong proxy signature

should complete all the requirements of proxy signature.

In the first, most of proxy signatures are based on discrete logarithm problem [EIG85]

including Mambo's one, so that Li, Tzeng and Hwang proposed generalization of proxy

signature based on discrete logarithms [LTH03]. After that, Wu and Varadharajan

proposed a proxy signature based on Chinese remainder theorem [WV99]. In 2002, Chen,

Liu and Chung proposed a proxy-protected signature scheme based on elliptic curve

cryptosystem [CLC02], then Hwang et al proposed generalization of proxy signature based

on elliptic curves [HTT04]. Furthermore, Z. H. Shao proposed the proxy signature

schemes based on factoring in 2002 [Shao02] and Qingshui Xue, Zhenfu Cao proposed

"Factoring based proxy signature schemes," in 2005 [XC05]. It is desirable to design

proxy signature schemes based on Quadratic Residues (QR) problem.

Fan and Lei proposed efficient blind signature scheme based on QR in 1996 [FL96]

and improved their scheme in 1998 [FL98]. Therefore, by adopting Fan's signature

scheme, we propose the proxy signature based on QR to provide another mathematical

implement.

Unfortunately, most of the proposed proxy signature schemes prior to this date are not

feasible in practice because the security of those schemes cannot be really proved without

 3

adopting standard signature such as DSA/ECDSA. The Digital Signature Algorithm

(DSA) based on ElGamal [EIG85] and Schnorr’s [Sch90] signature schemes is a useful

digital signature scheme and has become a U.S. Federal Information Process Standard

(FIPS 186) in August, 1991; called as the Digital Signature Standard (DSS) [NIST00]. In

addition, the Elliptic Curve Digital Signature Algorithm (ECDSA), a DSA reinforced by the

Elliptic curve cryptosystems (ECC), was invented in 1985 [ANSI99], which was also

accepted as a FIPS standard (FIPS 186-2) in 2000 [NIST00].

To conquer those disadvantages, therefore, we are the first one who propose

proxy-protected signature scheme combining standard signature DSA/ECDSA, as well as

the Public key infrastructure (PKI) mechanism [AF99][BPH02][CFSMW03], which are

pretty well known by their security properties to reinforce the proxy signature in order to be

used in practice.

In many applications, the security is assured whenever the secret key remains

unrevealed; therefore, a proxy key exposure is also a serious problem for proxy signature

schemes. Chang, Lin and Yeh proposed "Forward Secure Proxy Signature Scheme" in

NCS 2003 to deal with the key exposure problem [CLY03]. In forward secure proxy

signature scheme, the proxy signer renews her/his proxy keys and deletes the previous

proxy keys periodically. Those deleted proxy keys cannot be recovered, needless to

mention being revealed. In addition, many threshold proxy signature schemes are

proposed in which the k out of n threshold schemes [DF89][Zha97b][KPW97][SLH99]

[HWW03]. However, those threshold proxy signature schemes may be insufficient to

construct a long-live scheme with the proactive properties to reinforce security and the

proxy share cannot be recovery either.

The proactive secret sharing scheme [HJKY95], which is based on Verifiable Secret

Sharing [Ped91], provides strong security for a secret sharing against the active attacker.

 4

Consequently, the proactive secret sharing scheme is a verifiable group-oriented scheme,

which provides shares renewing and recovery properties. Therefore, we adopt the concept

of proactive to propose a proactive secret sharing proxy signature scheme.

A proactive secret sharing proxy signature could permit the shares of designated

signers, called proxy signers, being renewed periodically without changing the secret. In

particular, we apply the (t, n) threshold proxy signature scheme to allow any t or more then

t signers to form a designated group from n proxy signers to sign messages on behalf of the

original signer. The proxy shares of proposed scheme are periodically renewed; therefore,

it will be hurtless even when the adversary obtains the proxy shares information in some

period. In our proactive secret sharing proxy signature scheme; furthermore, one proxy

signer can recover her/his own share from the other t proxy shares without revealing any

information about the other proxy shares. Unless more than t other proxy signers

cooperate and collude, the secret share algorithm is always secure.

Proxy blind signature scheme is a variant proxy signature scheme prior to this date

[TLT02][SH04][LA05]. Blind signature allows a user receiving a given message signed

by the original signer without revealing any information about the message itself. By

using Schnorr blind signature, Tan et al. proposed two digital proxy blind signature

schemes based on DLP and ECDLP in 2002 respectively [TLT02]. Moreover, Lal and

Awasthi further pointed out that Tan et al.’s proxy blind signature schemes suffer from a

kind of forgery attack and proposed a more efficient proxy blind signature scheme, which

means Tan et al.’s schemes do not fulfill the unforgeability and unlinkability properties.

Lal and Awasthi’s scheme, however, does not satisfy the unlinkability property either.

Therefore, Sun and Hsieh discuss the security of Tan and Lal's schemes in 2004 particularly

[SH04].

Most documents are too large in size to sign digital signature; thus one-way hash

 5

functions are important skills to make digital signature scheme efficient. SHA-160 is one

of popular one-way hash functions and the security of SHA-160 is worth discussing. In

1998, F. Chabaud and A. Joux presented a method to find collisions in Secure Hash

Algorithm (SHA)[NIST02] with 261 time complexities [CJ98]. In 2004’s crypto

conference and in Feb. 2005, Wang et al. [WFLY05][WY05] developed efficient methods

to find collisions in MD5, as well as in SHA-160 with time complexity of 239 and 269 hash

steps respectively. Furthermore, Biham and Chen [BC04] announced new analytical

discoveries concerning SHA-160. Their results include a collision in a reduced-round

version of SHA-160, which can be found less than 40 rounds.

Suppose the output size of one-way hash function is n-bit. According to the birthday

paradox attack property [MOV96], we could expect certain collisions after trying 2n/2

possible input values. Van Oorschot and Wiener [OW94] have explained how such a

brute-force attack might be implemented. That implies any cryptanalysis method with

higher complexity than the birthday paradox attack will be regarded as inefficient. F.

Chabaud and A. Joux find collision in SHA with 261 complexities, related to differential

cryptanalysis of block ciphers [CJ98], and their method is theoretically faster than birthday

paradox attack. Unfortunately, in SHA-160, their method is unable to detect collision

faster than the birthday paradox attack.

In fact, we can still discover the decay phenomenon with the application of a message

schedule’s judgment when inspecting how SHA-160 generates message schedule actually.

Furthermore, we find a reason why move SHA to SHA-160. The more nonlinear terms

are involved, the more terms in message schedule process will be effective. Therefore, we

would like to introduce two SHA-160 corrections to enhance the security of SHA-160.

This analysis could also be used in all SHA-serials or other one-way hash functions.

 6

1.2 Organization of Dissertation

We describe our motivation and related work in this chapter; and then report some

fundamental cryptosystem knowledge and discuss one-way hash functions in chapter 2.

In chapter 3, we describe some preliminaries of digital signature, (strong) proxy signature,

Quadratic Residues, secret sharing, DSA, ECDSA, etc. In chapter 4, we propose novel

proxy signatures based on QR, DSA and ECDSA respectively and analyze security of

proposed proxy signature schemes. And then, we proposed a proactive secret sharing

proxy signature in chapter 5 to deal with key exposure and key recovery problems.

Finally, we summarize a conclusion in chapter 6 and list references respectively.

 7

Chapter 2 Cryptography

2.1 Cryptosystem

 A cryptosystem can provide following properties [Sta03]: 1. Secrecy: It can

prohibit the eavesdroppers from receiving plaintext. 2. Authentication: It can identify a

message from its origin for the receiver and the eavesdroppers cannot disguise as someone.

3. Integrity: It can verify that a message has not been modified so that eavesdroppers

can’t replace a legal message by a false one in transmission. 4. Non-repudiation: It can

prove the message of the sender who may falsely deny later that he had sent the message.

And a cryptosystem is composed of five basic components:

m : plaintext message space.

c : ciphertext message space.

K : key space.

E : Encryption.

D : Decryption.

 We show mathematic form and figure as follows:

ekE (m) = c For a given key k K∈

dkD (c) = m For a given key k K∈

 8

Fig 2.1 Encryption and Decryption

In Fig 2.1, cryptosystem uses keys ke and kd for Encryption and Decryption

respectively. Simmons [Sim79] classifies the cryptosystems as symmetric (one key) and

asymmetric (two keys). In symmetric cryptosystem, also called secret-key cryptosystem,

the encryption key and the decryption key are the same or can be easily determined from

each other. On the other hand, in asymmetric cryptosystem, also called public-key

cryptosystem, the encryption key and the decryption key are different.

In Kerckhoffs’s assumption [Ker83], the strength of a cryptographic system cannot

rely on attacker’s unawareness about the cryptosystem algorithm. A secure cryptographic

system must be published and unbreakable even under the most fatal attack by the world’s

best cryptographers for years.

2.2 Symmetric Ciphers

There are two kinds of symmetric ciphers, stream ciphers and block ciphers. The

stream ciphers encrypt plaintext one byte or one bit in one time span; one-time pad is one

kind of stream ciphers. On the other hand, the block ciphers operate on fixed-length

groups of bits to form the blocks.

m

Encryption

c

Decryption

ke kd

 9

2.2.1 Encryption Standard in U.S.

FIPS (Federal Information Processing Standard) - 46: DES (Data Encryption Standard)

announced by U.S. Government in 1977 has been generally used. DES is a 64-bit block

cipher with the key length of 56 bits. Unfortunately, Electronic Frontier Foundation (EFF)

using a special purpose "DES cracker" machine proved DES insecure in July 1998 [EFF98].

Therefore, NIST (National Institute of Standards and Technology) announced Triple DES

as FIPS 46-3 to enhance original DES. Triple DES uses three keys and three executions

of the DES algorithm following an encrypt-decrypt-encrypt sequence.

Triple DES with 168 bits key and 64 bits the same block size as DES is not for

long-term use [Sta03]. For reasons of both efficiency and security, a larger block size is

desirable. Hence, NIST began the process of replacing DES with AES (Advanced

Encryption Standard) in 1997 and Rijndael was published as AES: FIPS – 197 in 2001

[NIST01]. AES uses a 128 bits block size and its key length that can be 128, 192, and 256

bits. Four different stages are used in AES: substitute bytes (S-box), shift rows, mix

columns, and add round key.

2.2.2 Dynamic Extended DES

The original S-boxes of DES are important design to resist differential attack.

Furthermore, Yeh and Hsu proposed the extended DES [YH02], which developed eight

more new S-boxes with the same cryptographic properties as original S-boxes in DES.

These 16 S-boxes are used to construct the extended DES, which double the block cipher

and key size. As a result, the time complexity of differential cryptanalysis of the extended

 10

DES is 2110. We propose an intricate extended DES that includes permutation on S-boxes.

By keeping the permutation information in secret, the new version of extended DES is

stronger to defeat differential and linear attacks by 20922789888000 times.

The Extended DES

The extended DES [YH02] has exactly the same data flow and concept as DES. The

eight more S-boxes are used in the extended DES to double the block cipher and key size.

Some modifications are necessary on P-box and key scheduling algorithms.

The extended DES encrypts a 128-bit data block with a 112-bit key. All data bits go

through an initial permutation. The data bits then split into two 64-bit data blocks called as

right and left data blocks. Two data blocks then go through 32 identical rounds, there is

no swap of two data blocks in the last round. After the last round, two data blocks are

combined into a 128-bit block. The result will be through the inverse initial permutation.

In each round, the right data block and 96-bit sub-key (Ri and Ki in Figure 2.2) are

combined by a round function called F. The output of F is then combined with the left

part data block by XOR operation. The two data blocks swap in the next round.

 11

Fig 2.2 128-bit extended DES

Fig 2.3 One round of 128-bit extended DES

R31 =L30⊕F(R30,k31)

128-bit Plaintext

IP

F(R0,K0)
R0L0

F(R0,K0)F(R0,K0)
R0L0

F(R1,K1)
R1=L0⊕F(R0,k1)L1

F(R1,K1)F(R1,K1)
R1=L0⊕F(R0,k1)L1

K1

K2

F(R31,K32)
L31

K32

IP-1

128-bit Ciphertext

S-boxes

P-box

F(Ri-1,Ki)

Ri-1Li-1

Ri
Li

Ki

112-bit key

shift shift

Key compression

112-bit key

Expansion

 12

The 64-bit right data block is expanded to 96 bits by expansion permutation after

combining with the 96-bit sub-key; the 96-bit data is distributed to all 16 S-boxes as input.

Each S-box has 4 output bits. Therefore, 64-bit data is used in the next step where P-box is

the permutation box.

Eight more new S-boxes are proposed in following tables. Table 2.1 shows the

cryptographically similarity of new S-boxes and original S-boxes. They are also

semi-similar. The new S-boxes are listed in Table 2.2.

Table 2.1 The similarity of new and original S-boxes.
New

design
Original LST B1 B2 C order GD ID OD L1 L2 L3 L4 GL

None-zero

rate

S-box #9 S-box #1 20 3 3 1 9.31 32.25 46.56 18 20 22 18 78 79.4%

S-box #10 S-box #2 28 3 3 1 11.22 35.81 56.32 22 20 18 18 78 78.6%

S-box #11 S-box #3 24 3 4 1 12.65 41.70 63.62 18 22 20 18 78 79.6%

S-box #12 S-box #4 12 3 2 2 8.16 32.66 44.00 22 22 22 22 88 68.5%

S-box #13 S-box #5 20 3 2 1 9.90 35.81 55.32 22 20 18 20 80 76.5%

S-box #14 S-box #6 24 3 3 1 11.31 38.85 59.53 20 20 20 20 80 80.4%

S-box #15 S-box #7 24 3 3 1 12.17 43.45 65.18 18 22 14 20 74 77.2%

S-box #16 S-box #8 20 3 2 1 10.95 38.71 56.21 22 20 20 22 84 77.1%

LST: Linear structure tolerance.
B1: First order 0-1 balance tolerance.
B2: Second order 0-1 balance tolerance.
C order: Maximum order of completeness.
GD: Global SAC-map distance.
ID: Input SAC-map distance
OD: Output SAC-map distance
Li: Nonlinearity of output bit i.
GL: Global nonlinearity
None-zero rate: Percentage of none zero entry in the DDT map.

 13

Table 2.2 Extended S-boxes.
3 0 9 7 15 12 6 11 14 13 2 1 5 10 8 4

0 3 5 8 9 15 12 6 13 10 11 7 14 4 2 1

15 5 12 2 0 11 9 14 4 3 1 8 10 6 7 13

9 15 0 5 10 6 3 8 2 12 13 11 4 1 14 7

S-box #9

1 10 15 12 8 3 6 5 13 4 0 7 14 9 11 2

4 7 10 0 15 9 1 12 8 14 3 13 5 2 6 11

2 5 4 10 7 12 9 3 11 8 14 1 13 6 0 15

7 0 9 3 4 15 10 6 2 13 5 14 11 8 12 1

S-box #10

15 4 12 1 5 10 2 13 3 8 6 11 0 7 9 14

6 13 15 2 8 4 5 11 0 7 9 12 3 10 14 1

4 13 15 10 2 1 8 6 14 3 0 5 11 12 7 9

13 3 1 4 11 14 2 8 7 10 12 15 0 5 9 6

S-box #11

10 7 15 12 4 2 1 11 0 13 5 3 9 14 6 8

6 13 12 0 1 7 11 14 3 8 9 15 10 4 5 2

4 1 2 11 15 12 8 6 7 10 14 5 0 9 13 3

1 11 7 14 12 0 2 5 13 6 4 9 3 10 8 15

S-box #12

4 7 1 12 14 11 8 2 13 10 6 9 0 5 3 15

13 0 2 7 4 14 1 11 3 12 5 10 15 9 8 6

10 1 12 11 9 2 7 14 6 13 15 4 5 8 0 3

7 11 9 4 2 1 14 13 0 6 10 3 12 15 5 8

S-box #13

2 14 15 0 12 11 9 5 4 13 8 3 1 6 7 10

12 5 9 10 7 0 2 15 3 6 14 13 8 11 4 1

12 2 3 14 15 4 10 9 11 1 5 8 6 13 0 7

1 15 12 5 10 9 7 2 6 8 0 14 3 4 13 11

S-box #14

13 2 4 7 3 12 8 1 0 15 14 9 5 10 11 6

3 8 14 13 9 2 5 11 15 4 0 10 12 7 6 1

2 11 8 13 15 0 4 14 12 5 1 6 10 3 7 9

13 6 1 8 2 11 14 5 10 9 12 3 7 4 0 15

S-box #14

12 2 10 7 1 4 15 8 11 14 0 9 13 3 6 5

2 1 9 4 7 14 12 11 13 8 3 15 10 5 0 6

1 11 15 8 4 13 2 7 14 0 5 6 3 10 9 12

11 13 6 1 8 2 5 14 4 7 10 12 15 9 3 0

S-box #16

Permuted S-boxes

Extended DES has 16 fixed S-boxes, each of them is a mapping from {0, ...,63} to

{0, …,15}, or formulated as S: [0...63] [0...15], used in a settled order. Unfortunately,

this usage is convenient for cryptanalysis. To remedy the situation, more complicated use

of S-boxes should be effectuated.

The change is to rearrange the order of S-boxes in the succeeding round. In detail, a

permutation mappings p: [1...16] [1...16] is used to construct the new order. The ith

S-box in the jth round will be equal to the p(i)th S-box in the (j-1)th round. For example,

the S-boxes sequence in the former round is S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

 14

S16 and given the permutation as (3,9,16,2,11,7,10,8,1,12,4,14,6,13,5,15); in the next round,

the S-boxes sequence then becomes S3 S9 S16 S2 S11 S7 S10 S8 S1 S12 S4 S14 S6 S5 S15 .

By keeping the permutation information in secret, the exact usage of S-boxes is not

explicit. This increases the difficulty of cryptanalysis.

Substitution Words Access

The whole S-boxes data can be filled into a table that forms as a two-dimension,

16x64, matrix. Without loss of generality, let the table be M[1...16, 1...64] and the initial

S-boxes sequence be S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16. The kth word (4-bit)

of Si is placed in M[i, k]. While applying an S-boxes permutation p, the S-boxes sequence

of first encrypting round will be Sp(1) Sp(2) Sp(3) Sp(4) Sp(5) Sp(6) Sp(7) Sp(8) Sp (9) Sp (10) Sp (11)

Sp (12) Sp (13) Sp (14) Sp (15) Sp (16); that is, the kth word of the ith S-box is placed in M[p(i), k]

now. Generally, the S-boxes sequence of the jth round is:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
S S S S S S S S S S S S S S S Sj j j j j j j j j j j j j j j jp p p p p p p p p p p p p p p p ,

where pj(i) denotes to execute the mapping p with j times such as p(p(...p(p(i))...)). It is

obviously that the kth word of the ith S-box of the jth round is placed in M[pj(i), k].

According to the above derivation, we know that a word in an S-box can still be easily

read from the S-boxes table while including the S-boxes permutation. The increasing

calculations are just some mapping operations and never exceed 16 times of nested

mapping because of the restriction of 16 rounds in extended-DES. Therefore, the new

algorithm is considered as the same efficient as extended-DES. While decrypting, the

same 16 S-boxes sequences in encryption are used but in reverse order. This does not

increase the computing time complexity.

 15

Permutation Materials

The adopted S-boxes permutation should be kept in secret. It can be added up some

other secret information like an independent key to the system. This will increases the

quantity of secret information; system will be more secure in this viewpoint. On the other

hand, there turns out more secret data to be managed which may raise the burden for users.

Alternatively, the S-boxes permutation can be also derived from the key. For

example, we can choose the smallest integer between A and B, which is larger than the key

value and relatively prime to 16 as the multiplier. The ith value of the permutation

function p, will be p(i)=(A+i*B mod 16)+1.

Security Analysis on Dynamic Extended DES

Both differential and linear attacks need to know the exact usage of S-boxes. If we

can keep the permutation in secret, it will be difficult for the adversary to apply the two

attacks. The attack may guess the permutation with rare
1

20922789888000 probability

because 16 S-boxes can derive 16! = 20922789888000 different permutations. It is

computational inefficiency to guess the right permutation.

Furthermore, if higher security is required, the permutations used in each round can be

different. That is, using 16 different permutations to construct the initial S-boxes

sequence, and applying them in different rounds. The probability to guess the right

permutation reduces to ≅1680002092278988
1

2141034869.1
1
×

 to be computational

impossible.

Dynamic Extended DES permutes the S-boxes order in the succeeding round; as a

result, the usage of S-boxes becomes more confused. This change can enhance extended

DES to resist differential and linear attacks. In addition, this method can be also used in

 16

any other S-boxes. However, the permutation information should be always kept in secret;

otherwise, not only the confusion effect will no more exists, but also become even

favorable for the cryptanalysis.

2.2.3 NESSIE

New European Schemes for Signature, Integrity, and Encryption (NESSIE) project has

launched out the next generation of cryptographic algorithms in 2000 [Nessie04]. The

NESSIE portfolio of cryptographic primitives has been announced in February 2003. In

block cipher scheme, MISTY1 (64-bit), AES (128-bit), Camellia (128-bit), SHACAL-2

(256-bit) are recommended algorithms. MISTY1 is similar to the block cipher KASUMI,

which has been scrutinized prior to its adoption as a 3GPP standard, so many analyses for

KASUMI would be also applicable to MISTY1. AES is FIPS – 197 announced by U.S.

NIST; and Camellia has many similarities to the AES. SHACAL-2 is based on a one-way

hash function upon SHA [NIST02] used in encryption mode. The strength of SHACAL-2

is inheritance from the extensive analysis that has been made on SHA. Although RC6 is

also a secure block cipher, the NESSIE felt unable to consider RC6 [RRSY98] owing to

ongoing serious Intellectual Property Rights issues.

2.3 Asymmetric Ciphers

 Diffie Whitfield and Hellman introduced asymmetric ciphers in 1976 [DH76].

Asymmetric ciphers rely on one key for encryption and a different but related key for

decryption; nevertheless, it is computationally infeasible to determine the decryption key

given only the knowledge of the algorithm and encryption key. For example, asymmetric

ciphers cryptosystem encrypting the sender’s messages by using recipient’s “public” key

 17

and the recipient’s “private” key can decrypt the messages. RSA [RSA78], ElGamal

[ElG85] and Elliptic curve [Men93][ANSI99][Han04] are most popular asymmetric

cryptosystems that we describe as follows:

2.3.1 RSA Cryptosystem

 Rivest, Shamir, and Adleman developed the RSA algorithm in 1977 [RSA78]; the

letters RSA are the initials of their surnames. The RSA scheme makes use of factoring

problem to generate key pairs described as follows:

1. Let p and q are large primes such that p ≠ q and n = pq.

2. Compute the Euler's totient function φ(n) = (p-1)(q-1).

3. Choose a integer e, where 1 < e < φ(n) and e is coprime to φ(n) i.e. gcd (e, φ(n))=1.

4. Compute d such that ed = 1 mod φ(n).

5. The public key is (e, n) and the private key is (d, n).

Euler’s theorem shows that αφ (n) mod n =1; thus to encrypt message m, we could

compute me mod n = c to obtain ciphertext c. And to decrypt ciphertext c, we could

compute as follows:

cd mod n

= (me mod n) mod n

= med mod n

= m(kφ (n) + 1) mod n

= m1 mod n

= m

 18

We use artificially small parameters here; but we can also use OpenSSL [OpenSSL] to

generate and examine key pairs. For example, let p = 101, q = 53, n = 101*53 = 5353, the

message m = 4657, and choose e = 743 for public key. Via Euclidean algorithm, we could

compute the private key d = 7 so that the public and the private key are (743, 5353) and

(7, 5353) respectively. The encryption function is

E743(4657) = 4657743 mod 5353 = 1003

and the decryption function is:

D7(1003) = 10037 mod 5353 = 4657

Both of these computations can be done efficiently using the square-and-multiply

algorithm for modular exponentiation. RSA is much slower than symmetric cryptosystems.

In practice, sender typically encrypts a secret message with a symmetric algorithm,

encrypts the symmetric key with RSA, and transmits both the RSA-encrypted symmetric

key and the symmetrically- encrypted message to receiver.

2.3.2 Discrete Logarithm problem

Discrete logarithms are defined in group theory, which is a collection of elements

together with a binary operation. A primitive root g∈ a finite group Zp
*, a number x under

multiplication modulo the prime p, and gx denoting the element obtained by multiplying g

itself by x times; by Fermat's little theorem, we know that for a primitive root g∈Zp
*,

gp = g mod p, and the set of group is:

{g, g2, g3,…, gp-1} = {1, …, p−1}.

 19

The discrete logarithm problem is as follows: given a primitive root g in Zp
* and

another element y∈Zp
*, finding an integer x such that gx = y mod p. For example, the

solution to the problem 3x = 15 (mod 17) is 6, because 36 = 729 = 15 (mod 17). If in Zn
*,

where n is not a prime number, by Euler’s theorem, αφ (n) mod n = 1, the set of group will

be:

{α, α2, α3,…, αφ (n)}.

 The ElGamal cryptosystem [ElG85] is based on the discrete logarithm problem. For

a generator (primitive root) g ∈ Zp
* of order p, Alice chooses a random x from {0, … , p−1}

and computes y = gx. The values p, g, and y are the public keys and x is a private key of

Alice. To encrypt a message m to Alice, we show as follows:

1. Convert m to into an element of Zp
*

2. Choose a random k from {0, … , p−1}

3. Calculate c1 = gk mod p and c2 = myk mod p

4. Send the ciphertext (c1, c2) to Alice

Then, Alice can decrypt ciphertext by computing c2 (c1
x)-1.

 c2 (c1
x)-1 = myk(gkx)-1 = mgx k(gkx)-1 = m mod p.

2.3.3 Description of Elliptic Curves

In general, elliptic curves take the form: y2+ axy + by = x3+ cx2+ dx + e where a, b, c,

d, and e are the real numbers satisfying to some conditions [Han04]. There are two finite

fields Zp
* and nZ

2
*. The elliptic curve E over Zp

* and nZ
2

* are defined as definition 2.1

and 2.2 respectively:

 20

Definition 2.1: Let a, b ∈ Zp
* be constants such that 4a3+27b2 ≠ 0. An elliptic curve is the

set E of solutions (x, y) ∈ Zp
*, to the equation:

y2 = x3 + ax + b (2.1)

together with a special point O called the point at infinity.

Definition 2.2: Let a, b ∈ nZ
2

* be constants such that b ≠ 0. An elliptic curve is the set E

of solutions (x, y) ∈ nZ
2

*, to the equation:

y2 + xy = x3 + ax2 + b (2.2)

together with a special point O called the point at infinity.

We concentrate on elliptic curves over finite fields Zp
*. An example of elliptic curve

E over Zp
* as following:

Let p = 19 and consider the elliptic curve E: y2 = x3 + x + 4 defined over Z19
*. In this

case, a = 1 and b = 4. We have 4*13+27*42(mod 19) = 18 ≠ 0, which satisfies the condition

for an elliptic group mod 19. The order of points in E(Z19
*) is also 19 and all the points

and O are list as following:

Table 2.3 Points on the Elliptic Curve E(Z19
*)

(0, 2) (6,13) (11, 4)
(0,17) (8, 7) (11,15)
(1, 5) (8,12) (14, 8)
(1,14) (9, 1) (14,11)
(5, 1) (9,18) O
(5,18) (10, 8)
(6, 6) (10,11)

 21

 The addition and multiplication operation in ECC are counterpart of modular

multiplication and exponentiation in RSA, respectively. Let P = (x1, y1) and Q = (x2, y2)

be two points on an elliptic curve E. Then, P + Q = R, we show it as Fig 2.4 and Fig 2.5

geometrically.

Fig 2.4 P and Q are two distinct points

Fig 2.5 the addition of an elliptic curve point

 First at all, we have to find the slope of PQ , where P≠Q or the tangent line of P,

where P = Q. We show as following:

12

12

xx
yy

−
− if P≠Q, where λ is slope of line PQ .

1

2
1

2
3

y
ax +

 if P = Q, where λ is tangent line of P. (2.3)
λ =

P

Q

R

x

y
L

P

R

x

y
L

 22

 The equation of line L is y = λx + v. The P = (x1, y1) and Q = (x2, y2) is on L so that:

y1 = λx1 + v and y2 = λx2 + v. We substitute y = λx + v into the equation (2.1), getting the

following:

 (λx + v)2 = x3 + ax + b

 x3 - λ2x2 + (a-2λv)x + b –v2 = 0 (2.4)

 x1 and x2 are two roots of equation (2.4), which are real. As the result, the third root,

said x3, must also be real.

 (x - x1)(x – x2)(x – x3)

 = x3 – (x1 + x2 + x3)x2 +(x1x2 + x2x3 + x1x3)x-x1x2x3 = 0 (2.5)

 Comparing equation (2.4) and (2.5), we know that λ2 = x1 + x2 + x3. Hence,

 x3 = λ2 - x1 - x2

 The slope λ =
12

12

xx
yy

−
− =

13

13

xx
yy

−
−−

; hence:

 y3 = λ(x1 – x3) – y1

 The rules for the sum of two points and the double of one point, we summarize as

follows: for all P, Q ∈ E (Zp
*) [Han04]:

1. P + O = P

2. If P = (x, y), then the point (x, -y) denoted as - P and P + (- P) = O

3. Let P = (x1, y1) and Q = (x2, y2), where P≠Q, then P + Q = (x3, y3) where

 x3 = λ2 - x1 - x2,

 y3 = λ(x1- x3) - y1, where the slope λ shows as equation (2.2).

4. Let n be the smallest integer such that nP = O, then n is the order of P over E.

 23

Elliptic curve cryptography (ECC) [Kob87] is a public-key cryptography based on the

elliptic curve discrete logarithm problem (ECDLP) proposed by Neal Koblitz and Victor

Miller in 1985. Given an elliptic curve E, over a Galois field GF(q), the operation “+” is

defined as above paragraph and the operation “*” defined as Z×E(q) → E(q) where E(q) is

rational points form (x, y), and both x and y are in GF(q). If P is some point in E(q), then

we define:

2*P = P + P,

3*P = 2*P + P = P + P + P, and so on.

The ECDLP is then to determine integer k in k*P = Q, where P and Q are the given

points. For a specific base point G is selected and published for use with the curve E(q),

Alice chooses a private key k as random integer and then the value P = k*G is published as

the public key. To encrypt a message m to Alice, we show as follows:

1. Convert message m (where 0 ≤ m < k

p
2

) to into an element Pm of E(q)

 We append k bits at the end of the message

 Compute x = 2km + i, for i = 0, 1, …, until (
p

baxx ++3

) = 1.

2. Choose a random integer r

3. Calculate ciphertext Cm = {rG, Pm+rP}

4. Send the ciphertext Cm to Alice

Alice can decrypt ciphertext by multiplying the first point in the pair of Alice's secret

key and subtracts the result from the second point:

 Pm + rP – k(rG)

= Pm + r(kG) – k(rG)

= Pm.

 24

2.4 One way hash functions

A one-way hash function, h(m), operates on an arbitrary-length message m, and returns

a fixed-length hash value, called digest. One-way hash functions are widely deployed in

electronic mail, electronic funds transfer, software distribution, data storage, and other

applications, which require the assurance of data integrity.

2.4.1 Secure Hash Standard

SHA, one kind of popular one-way hash functions, was originally applied to DSA

(Digital Signature Algorithm), issued by the NIST and published as a federal information

processing standard (FIPS PUB 180) in 1993; a revised version was issued as FIPS PUB

180-1 in 1995 [NIST95] and is generally referred to as SHA-160. SHA and SHA-160

operate on an arbitrary-length message as input; and then output a 160-bit digest.

FIPS 180-2 [NIST02] is announced by NIST on May 30, 2001. FIPS 180-2 is a

strengthened version of the SHA-160, which offers four secure hash algorithms including

SHA-160, SHA-224, SHA-256, SHA-384, and SHA-512. Table 2.4 presents the basic

properties of FIPS 180-2.

Table 2.4 Comparison between all SHA-serial algorithms
Algorithm Message Size Block Size Word size Message Digest Size Security*

SHA-160 <264 512 32 160 80

SHA-224 <264 512 32 224 112

SHA-256 <264 512 32 256 128

SHA-384 <2128 1024 64 384 192

SHA-512 <2128 1024 64 512 256

Note: *In this context, “security” refers to the fact that a birthday attack on a message digest of size n

produces a collision with a work factor of approximately 2n/2.

 25

The input of SHA and SHA-160 is processed in a 512-bit message block [NIST95].

First at all, for a 512-bit block, append padding and length after the message. The

message block is transformed from 16 32-bit words (m0, m1, …, m15) to 80 32-bit words

(w0, w1, …, w79) by the following algorithm: The difference between SHA and SHA-160

is that SHA-160 rotates 1 bit left: ROTL1.

wt = mt ,0 ≤ t ≤ 15

wt = ROTL1(wt-3♁wt-8♁wt-14♁wt-16) ,16 ≤ t ≤ 79

Each of the 80 steps of the processing one 512-bit block form as:

A, B, C, D, E ← [ROTL5(A)+ ft (B,C,D)+E+wt+kt], A, ROTL30(B), C, D

Where ft defines in belowing section and the logical operators (AND, OR, NOT, XOR)

are represented by the symbols (^, ∨, ¬, ⊕). kt are constants, please refer to [NIST02].

ft (x,y,z) = Ch(x,y,z) = (x^ y)∨(¬x^ z) , 0 ≤ t ≤ 19

ft (x,y,z) = Parity(x,y,z) = x ⊕ y ⊕ z ,20 ≤ t ≤ 39

ft (x,y,z) = Maj(x,y,z) = (x^y) ∨ (x^z) ∨ (y^z) ,40 ≤ t ≤ 59

ft (x,y,z) = Parity(x,y,z) = x ⊕ y ⊕ z ,60 ≤ t ≤ 79

The output of each round becomes initial value of next round until finish whole blocks.

The final output is the concatenation of A, B, C, D, E.

2.4.2 Analyze SHA-160 in message schedule

We examine the changes from SHA to SHA-160 and discover the decay phenomenon

with the application of a message schedule’s judgment when inspecting how SHA-160

generates message schedule actually.

 26

One reason from SHA to SHA-160: Firstly, we define notation xn = ROTLn mod 32 (x).

The message schedule of wt of SHA-160 and SHA shall be prepared respectively as

follows:

Table 2.5 Different message block between SHA and SHA-160
SHA SHA-160

wt = mt ,0 ≤ t ≤ 15

wt = wt-3♁wt-8♁wt-14♁wt-16 ,16 ≤ t ≤ 79

wt = mt ,0 ≤ t ≤ 15

wt = ROTL1(wt-3♁wt-8♁wt-14♁wt-16) ,16 ≤ t ≤ 79

The other reason why ROTL1 function can upgrade the security level is the increase of

involved terms of mt. For example, when comparing w27 in both SHA and SHA-160

(shown as follows), there are only 6 terms involved in SHA compared with 14 terms

involved in SHA-160.

Table 2.6 w27 in SHA and in SHA-160
SHA involved 6 terms w27

 = m2♁m3♁m4♁m7♁m8♁m15

SHA-160 involved 14

terms

w27
 = m2

4♁m3
2♁m4

4♁(m5
2♁m5

3)♁m7
3♁m8

2♁(m10
2♁

m10
4)♁(m11

1♁m11
2)♁(m13

1♁m13
3)♁m15

4

W27 becomes independent of m5 in the end even though m5 has been involved twice in

SHA. But in SHA-160, m5 is involved under ROTL function thus m5
2 and m5

3 will not be

eliminated. Belowing is a figure comparing the number of terms involved in message

schedules of both SHA and SHA-160. X-axis presents the index, and y-axis presents the

number of terms.

 27

Fig 2.6 Terms involved between SHA and SHA-160

Not only the paper “Differential collisions in SHA-0” shows the security level of

SHA-160 is greatly higher than SHA [BC04], we also shows the terms involved in

SHA-160 is much more than in SHA in Fig 2.6. Furthermore, we find the decay

phenomenon in message schedule, which points out the existence of some inefficient

calculations in SHA-160. If the inefficient calculations could be modified such that the

decay phenomenon postpones, much more terms will be involved in later wt. Therefore,

we would like to introduce two SHA-160 corrections to enhance the security of SHA-160.

2.4.3 The First Modification scheme of SHA-160 (SHA-m1)

Firstly, we re-write the original recursive equation into a general form:

wt = mt ,0 ≤ t ≤ 15
wt = ROTL1(wt-t1♁wt-t2♁wt-t3♁wt-t4) ,16 ≤ t ≤ 79

And, we define some notations with convenience and generality. Let m(i) be an input

block, i = 0, … , 15; and wj, j = 0,…,79 be the message words.

 28

Table 2.7 Notations of proposed scheme
ROTLb Left rotation of b bits

ROTRb Right rotation of b bits

mi
b Left rotation of b bits on mi, i = 0, … , 15

wi
b Left rotation of b bits on wi, i = 0, … , 79

jpbb
jm1 jpb

j
b
j

b
j mmm K⊕⊕= 21 , j = 0, … , 15

jqbb
jw1 jqb

j
b
j

b
j www K⊕⊕= 21 , j = 0, … , 79

|| Concatenation

| X | Number of X

As a result, in the original SHA-160 algorithm, (t1, t2, t3, t4) equals to (3,8,14,16)

according to following basic constraints:

a. 1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 = 16

b. gcd (t1, t2, t3) = 1

There are C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3

15
 = 455 possibilities to assign (t1,t2,t3), where 1 ≤ t1＜t2＜t3 ≤ 15.

We list parts of experiments in Table 2.8 and the comparison between SHA-m1 and

SHA-160 in Fig 2.7. We list whole experiments of assign (t1,t2,t3) in appendix A.

According to our experiments, the best choice is (t1,t2,t3) = {1,2,11}.

Table 2.8 Parts of experiments for choosing {t1, t2, t3}
t1 t2 t3 Total

terms
Maximum number of
involved terms in wt

Average terms
involved of all wt

…
1 2 10 7279 175 113.4844
1 2 11 8670 212 135.2188
1 2 12 7189 182 112.0781

…

 29

Fig 2.7 Comparison between SHA-160 and SHA-m1

SHA-m1 algorithm costs as much time as SHA-160; however, the terms involved in

SHA-m1 are significantly more than in SHA-160 as shown in Fig 2.7; as well as the decay

phenomenon postpones.

2.4.4 The Second Trial of SHA-160

Another viewpoint to modify SHA-160 is based on the ROTL1 function. We re-write

the original equation and summarize 3 conclusions as follows:

wt = mt ,0 ≤ t ≤ 15

wt = ROTLb(wt-3♁wt-8♁wt-14♁wt-16) ,16 ≤ t ≤ 79

1. ROTLb and ROTL32-b cause the same effect;

2. The smaller gcd(32, b) is, the more involved terms will be; and

3. ROTLn and ROTLm will cause the same effect if gcd(n,32)=gcd(m,32).

 30

Table 2.9 Four groups of SHA-160 on wt = ROTLb(wt-3♁wt-8♁wt-14♁wt-16)
 gcd(b,32) variations

Total Terms

b = {1,2,3,5,6,7,9,10,11,13,14,15,17,

18,19,21,22,23,25,26,27,29,30,31}

{1,2} {31,15} 2271

b = {4,12,20,28} 4 7 1733

b = {8,24} 8 3 1265

b = 16 16 1 725

We classify four groups as listed in Table 2.9. The original SHA-160 is one of the

24 experiments with the most terms involved. The same experiments on SHA-m1 are

classified into five groups by the largest common divisor of 32 and the variable b. As a

result, rotating one bit is the best choice already both in SHA-160 and SHA-m1.

2.4.5 The Third Modification scheme of SHA-160 (SHA-m2)

We re-write the wt in another form:

wt = mt ,0 ≤ t ≤ 15

wt = (wt-3)b1♁(wt-8) b2♁(wt-14) b3♁(wt-16) b4 ,16 ≤ t ≤ 79 where 0 ≤ b1, b2, b3, b4≤ 31.

Based on the results in second trial, we make one supposition that “The largest number

of ' Terms involved in wt' will appear when b1, b2, b3 and b4 are all odds”. Hence, the time

complexity to determine b1, b2, b3, and b4 is reduced from 324 to 164. We conclude two

results:

1. The maximal number of ‘Terms involved in wt’ founded in 1280 experiments is 2509;

one of them is {b1, b2, b3, b4} = {1,3,9,3}.

2. The minimum number of ‘Terms involved in wt’ founded in 256 experiments is 1023;

one of them is {b1, b2, b3, b4}={1,1,3,7}.

 31

We develop SHA-m2 by using one of the best choice {b1, b2, b3, b4}={1,3,9,3} and

show the comparison between SHA-160 and SHA-m2 as follows:

Fig 2.8 Comparison |wi| between SHA-160 and SHA-m2

In order to increase the ‘Terms involved in wt’, we develop two algorithms SHA-m1

and SHA-m2 by modifying recursive equations and the number of shift-rotated-bit of

SHA-160. The more nonlinear terms are involved, the more terms of ft and

a = ROTL5(a) + ft(b,c,d) + e + Kt + wt [3]

will be effective. Because the increase of the nonlinear terms really helps to enhance the

security level of original SHA-160, this analysis could also be used in all SHA-serials or

other one-way hash functions. Basing on our result, we can further develop the more

secure one-way hash function such as SHA-1024 or SHA-2048.

 32

Chapter 3 Preliminaries

 Cryptographic primitives are widely used in network security. We briefly describe, in

this chapter, some necessary cryptographic primitives including digital signature, (strong)

proxy signature, proactive secret sharing, and one-way hash functions. Based on those

basic primitives, we can further enhance and improve those original primitives.

3.1 Digital Signature

The purpose of a digital signature, which is created to replace the hand-written

signature in the electronic world, is to bind its identity with a piece of message. Digital

signature, which is fundamental in authentication, authorization, and non-repudiation,

protects two parties exchanging messages from the interception of any third party. We

show the signature signing process as follows:

Fig 3.1 Signature Signing Process

Anyone can verify signature via sender's public key and compare the relationship

between the signature (decrypted hash code) and hash code of message. The purpose of

hash code is to increase the signature signing efficiency and we show the verification

process as follows.

Message

Hashing

Hash code

Private key

Signature

Message

Signature

 33

Fig 3.2 Signature Verification

Bruce Schneier identifies the characteristics of a good digital signature in his book

“Applied Cryptography” [Sch96] as follows:

1. The signature is unforgeable.

2. The signature is authentic.

3. The signature is not reusable.

4. The signed document is unalterable.

5. The signature cannot be repudiated.

Diffie and Hellman invented the concept of public key cryptography in 1976 [DH76].

There are two kinds of most popular public key cryptosystems; one is the RSA signature

scheme [RSA78], which was the first method by encrypting the entire message or the hash

code of message with the sender's private key. The other is based on the discrete

logarithm problem [EIG85]. Afterward, many researches have developed alternative

digital signature techniques.

3.1.1 Proxy signature

In the proxy signature scheme, the original signer (such as boss) delegates her/his

signing capability to the proxy signer (such as secretary), and the proxy signer creates a

digital signature on behalf of the original signer. Proxy signature schemes resemble

digital signature schemes except that they involve a proxy key generation, a proxy key

Message

Signature

Message

Signature

Hashing Hash code

Public key
Hash code

Compare

 34

verification and a proxy signature-signing phase. In the proxy signature scheme, the

original signer does not create a signing key by herself/himself alone. Instead, both the

original signer and the proxy signer collaboratively generate the signing key.

Mambo et al. was first one that introduced the proxy signature scheme in 1996

[MUO96]. According to Mambo's scheme, there are three types of proxy signatures: full

delegation, partial delegation, and delegation by warrant.

 Full delegation: In full delegation, the original signer gives hers/his private key to the

proxy signer. In this case, the proxy signature created by the proxy signer is

indistinguishable from the signature created by the original signer. This type is

barely used for security issue.

 Partial delegation: In partial delegation, a proxy secret is derived from the original

signer’s private key; and the proxy secret is given to the proxy signer in a secure way.

However, the processes from the original signer’s private key to the proxy secret

should be unilateral for security requirement.

 Delegated by warrant: When delegated by warrant, the proxy signer is authorized

trustworthily to act on behalf of the original signer under certain conditions, such as a

valid proxy signer and within the duration of delegation, etc.

Brief Description of Mambo’s scheme

 We briefly describe Mambo's scheme. The participants are an original signer, a

proxy signer and a verifier. The parameters, (p, q, g), are public and are defined as follows.

 p : a large prime number.

 q : a prime divisor of p-1.

 g : an element of *
pZ with order q.

 35

The basic protocol of Mambo’s scheme uses the following algorithms:

Proxy secret generation

 The original signer selects a random number x as the private key, where qx <≤1 .

Also, the corresponding public key is y =gx mod p. Then, the original signer publishes

(p, q, g, y).

Proxy key generation

 The original signer executes following steps to generate proxy key and forwards proxy

key to proxy signer.

Step 1. Select a random number kA∈ *
qZ .

Step 2. Compute rA = Akg mod p.

Step 3. Set sA = (x +kArA) mod q.

Step 4. Forward (rA, sA) to the proxy signer in a secure manner.

 Upon receiving the pair (rA, sA), the proxy signer verifies validity of (rA, sA) by

checking pryg AA r
A

s mod
?

⋅= . If the equality holds, then accepts the pair (rA, sA) and does

the following steps; otherwise, rejects the pair. Thus, the proxy private key is sA.

Proxy signature signing

 The proxy signer can sign a message m on behalf of the original signer by creating a

signature with the proxy key sA. The proxy signature is S(sA, m).

 36

Proxy signature verification

 To verify the proxy signature S(sA, m), a verifier first replaces the proxy key sA by y

and rA where pry Ar
A mod g As ⋅= , and then checks)),,(,,(mmsSryV AA

?
=True.

 First, the original signer creates a proxy secret sA using her/his private key and

forwards the proxy secret to a designated signer, called the proxy signer. Next, the proxy

signer verifies validity of the proxy key pair (rA, sA) and then signs a message, m, and

creates a signature S(sA, m) using the proxy key sA. Finally, a verifier verifies the

validation of the proxy signature by checking)),,(,,(mmsSryV AA

?
=True.

 Mambo's proxy signature fulfill following the requirements:

(i) Verifiability: From a proxy signature, a verifier can be convinced that the original

signer agrees on signing the message.

(ii) Unforgeability: The designated proxy signer can create a valid proxy signature on

behalf of the original signer.

Unfortunately, Mambo's proxy signature is not a proxy-protected signature scheme in

which the original signer knows how to derive the proxy key on her/his own. On the

contrary, in the proxy-protected proxy signature scheme, the original signer and proxy

signer creates the proxy key interactively so that the original signer cannot derive the proxy

key alone. Hence, Lee and Kim [LK99][LKK01a][LKK01b] proposed the concept of the

strong proxy signature.

 37

3.1.2 Strong proxy signature

Lee and Kim indicated that the strong proxy signature must fulfill following

requirements [LK99]:

(i) Verifiability: as mention above.

(ii) Strong unforgeability: Only the designated proxy signer can create a valid proxy

signature on behalf of the original signer. Any other people who are not

designated as a proxy signer, the original signer included, cannot create a valid

proxy signature.

(iii) Strong identiability: Anyone can determine the identity of the corresponding proxy

signer from a proxy signature.

(iv) Strong undeniability: Once a proxy signer creates a valid proxy signature for an

original signer, the proxy signer cannot repudiate his signature creation against

anyone. This requirement is also called non-repudiation.

We describe the strong proxy signature scheme proposed by Lee et al [LK99], which is

also based on discrete logarithm, as follows:

Proxy secret generation

An original signer selects a random number kA and computes both rA
Akg≡ (mod p) and

AAwAA krmhxs +≡),((mod p-1). Where p, q, and g follow the definition as in section

3.1.1. The message warrant mw indicates the relationship between the original signer and

the proxy signer such as the identity of each protocol participant, the duration of delegation,

and the usage of proxy key, etc. Then, the original signer sends (rA, sA, mw) to a proxy

signer ‘P’ in a secure manner.

 38

Proxy secret verification and proxy key generation

The proxy signer accepts the delegation if and only if),(
?

AwA rmh
AA

s yrg ≡ mod p. Then,

the proxy signer uses sA to generate proxy key BAp xsx +≡ mod q and the implicitly

public key AB
rmh

A
x

P ryygy AwP),(≡≡ mod p.

Proxy signature signing

The proxy signer can use the proxy key xp to create a signature msign on behalf of the

original signer. Therefore, a valid proxy signature is (m, msign, mw, yA, yB, rA).

Verification of the proxy signature

Firstly, a verifier computes the proxy public key AB
rmh

AP ryyy Aw),('≡ with parameters

(mw, yA, yB, rA); and then accepts proxy signature if V(m, msign, 'py)
?
= true.

Change in his dissertation point out that prevention of misuse is also an important

requirement of proxy signature scheme [Chang05]; we describe as following:

(v) Prevention of misuse: it is confident that proxy key should be used only for

creating proxy signature conforming to delegation information. The proxy key

pair cannot be used for other purposes.

3.1.3 Blind signature

 Blind signature schemes, first introduced by Chaum [Cha83], are another digital

signature form which allow a person to get a message signed without revealing any

information about the message. In on-line vote, we would like to vote anonymously such

 39

that no one knows whom we vote for. Similarly, in e-commerce environment, we would

like to spend electronic cash under bank legitimation but prevent revealing our privacy to

bank. Hence, the blind signature schemes with untraceability (also called unlinkability)

are widely used in on-line vote and electronic cash applications.

 Chaum demonstrated the implementation of this concept by using RSA signature.

For example, Alice would like to have message m to be signed by Bob, but she does not

want Bob to know any information about m. Let (n, e) be Bob's public key and (n, d) be

his private key. Alice selects a random number r such that gcd(r, n) = 1, and sends x = rem

mod n to Bob. The random number r is “blinded” by the value x; hence Bob can derive no

useful information from x. Then, Bob returns the signed value t = xd mod n to Alice and

Alice “un-blinds” the signed value t by computing s = r-1t mod n according to following

equations:

s = r-1t mod n

= r-1t mod n

= r-1xd mod n

= r-1(rem)d mod n

= r-1rmd mod n

= md mod n

 Because of untraceability, the blind signature may be used for crimes such as

blackmail or money laundry. Therefore, Stadler et al. proposed the fair blind signature

scheme, which joined by a trustworthy third party to prevent signer’s forge attack and to

trace doubtful message delivery in 1995 [SPC95]. Further work on blind signatures has

been carried out in recent years such as efficient blind signature scheme based on QR

[FL96] and proxy blind signature [TLT02][SH04][LA05] etc.

 40

3.1.4 Lamport’s One time signature

 Lamport’s one-time signature scheme contains three algorithms: key generation,

signature signing and verification [Lam79]. Let ZYh →: denote a one-way hash

function.

Key generation

1. Let jiy , ∈Y be randomly chosen, where 1 ≤ i ≤ n, j =1, 0, and n is the length of

message.

2. Compute jiz , =)(, jiyh , 1 ≤ i ≤ n and j =1, 0.

3. The key K consists of the 2n private key y’s and the 2n public key z’s shown as
follows:

K = (jiy , , jiz , : 1 ≤ i ≤ n and j =1, 0)

 jiy , = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1,1,21,1

0,0,20,1

...

...

n

n

yyy
yyy

 jiz , = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1,1,21,1

0,0,20,1

...
...

n

n

zzz
zzz

Signature Signing

 To sign a n-bit message m = m1,…, mn, the corresponding items of the message

m1,…,mn are
11, ,,...,

nm n my y : sigK(m1,… ,mn) = {
11, ,,...,

nm n my y }.

For example, we want to sign a message m = 01…1. The signature is:

 sig (m1, …, mn) =
[]

[] []⎟⎟⎠
⎞

⎜
⎜
⎝

⎛

1,1,21,1

0,0,20,1

...
...

n

n

yyy
yyy

 = ()1,1,20,1 ... nyyy

Verification

 To verify signature (
11, ,,...,

nm n my y) on message m, VerK(m1,… ,mn,
11, ,,...,

nm n my y)= true

if and only if)(, imiyh =
imiz , holds for 1 ≤ i ≤ n.

The Lamport’s one-time signature scheme needs large storage for signature and

 41

public/private key pairs. The n-bit length message needs n signature items and 2n items

for both public and private keys (each of the item requires one hash value). For example,

using SHA-160 as a one-way hash function, every one bit of message needs 160 bits

signature, 2 public and 2 private items respectively; hence, for signing n-bit length message,

Lamport’s one-time signature scheme requires (n+2n+2n)*160 bits storage.

3.2 Secret Sharing

The idea of secret sharing was invented independently by Adi Shamir [Sha79] and

George Blakley [Bla79]. The secret sharing scheme is a method for distributing a secret

among a group of participants, each of them takes a share of the secret. The secret can be

only reconstructed when all (said n) the shares or parts (said t, where t < n) of the shares

combined together; individual share will be useless.

3.2.1 Shamir (t, n) - threshold scheme

 Let t, n be positive integers, where t ≤ n. A (t, n) - threshold scheme is a method of

sharing a key among a set of n participants so that no less than t participants can reconstruct

the key value. We describe Shamir (t, n) - threshold scheme in Ζp
* as follows:

1. D (the dealer) chooses n distinct, nonzero elements in Ζp
*, which are public and

denoted as xi, where 1 ≤ i ≤ n. Then D gives the values xi to Pi.

2. Suppose D wants to share a key K ∈ Ζp
*. D secretly chooses (independently at

random) t-1 elements of Ζp
*, said a1, …, at-1.

3. D computes yi = f(xi), where f(x) = K + ∑
−

=

1

1

t

j

j
j xa mod p, for 1 ≤ i ≤ n,

4. D gives the share yi to Pi, for 1 ≤ i ≤ n,

 42

Take K=13 for example. To make four shares of the (3, 4)-threshold scheme, D

chooses f(x) = x2+2x+13 and p = 17; then the four shares are: s1 = f(1) mod 17 ≡ 16, s2 = f(2)

mod 17 ≡ 4, s3 = f(3) mod 17 ≡ 11, s4 = f(4) mod 17 ≡ 3. If we hold three participants s1, s2

and s3, then we can reconstruct the value of K by the following linear equations:

,11333
,4222
,16111

3
012

2
012

1
012

==⋅+⋅+⋅

==⋅+⋅+⋅

==⋅+⋅+⋅

sKba
sKba

sKba
 and obtain (a, b, K)=(1, 2, 13).

3.2.2 Verifiable Secret Sharing

Shamir secret sharing detects and tolerates Byzantine faults in a certain number of

participants, but does not detect or tolerate errors on the part of the dealer. Fortunately, T.

P. Pedersen proposed the Verifiable Secret Sharing (VSS) schemes in 1991 [Ped91] against

Byzantine faults in both the dealer and the participants. Moreover, in the VSS scheme, the

participants can generate the secret together without dealer.

A dealer may send incorrect shares to some or all of the participants, and the

participants may submit incorrect shares during the reconstruction protocol. Therefore, in

VSS scheme, let p be a large prime, q be a prime factor of p-1, and g be a generator of order

q in Zp
*. Each participant Pi, where 1 ≤ i ≤ n, generate a random polynomial fi(x) of

degree t over Zp
*. The constant coefficient of fi(x) is Pi’s secret.

fi(x) = ai,0 + ∑ −

=

1

1 ,
t

j
j

ji xa (mod q)

Pi sends fi(j) to Pj, where j = 1, … , n; i ≠ j) via the secure channel and publish the

verification values { 0,iag , 1,iag … 1, −tiag }. Then, participant Pj verifies validity of its

received share fj(i) by

 43

)(if jg = ∏
=

=

tk

k

ia k
kjg

0

)(, (mod p)

 If the verification fails, Pj asks Pi to publish fi(j). Pi is disqualified if Pi does not

posts an consistent fi(j).

3.3 Quadratic Residues

Fan and Lei first proposed efficient blind signature scheme based on QR in 1996

[FL96]. Our proxy signature based on QR is derived from Fan's signature scheme.

Therefore, we describe several important QR mathematical properties as follows [Ros05]:

Definition 3.1: Let n be a positive integer. The integer y is a quadratic residue of n

(denoted QRn) if gcd(y, n) 1= and the congruence x2 = y (mod n) exists a

solution. Otherwise, y is a quadratic nonresidue of n.

It is infeasible to compute the square root x when the exact factorization of n is

unknown. In addition, the Legendre symbol ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y and Jacobin symbol ⎥⎦

⎤
⎢⎣
⎡

n
y are useful

to show whether an integer y is a quadratic residue. We describe as follows:

Definition 3.2: Let p be an odd prime and y be an integer. The Legendre symbol ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y

defines as:

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = 0 if p | y ,

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = 1 if y∈QRn, and

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
y = –1 if y∈quadratic nonresidue mod n.

 44

Definition 3.3: Let n ≥3 and n be an odd integer with prime factorizations n=∏=

k

i
e
i

ip
1

.

Then the Jacobin symbol ⎥⎦
⎤

⎢⎣
⎡

n
y is defined as ∏= ⎥

⎦

⎤
⎢
⎣

⎡k

i

e

i

i

p
y

1

If n is prime, then the Jacobin symbol is reduced to the Legendre symbol.

Definition 3.4: A natural number n is a Blum integer if n = pq where p and q are prime

numbers that are congruent to 3 mod 4.

If n is Blum integer, each quadratic residue has exactly four square roots, one of which

is also a square. For example, one square root of 139 mod 437 is 24; the other three are 185,

252, and 413 [Sch96]. In addition, it is computationally infeasible to solve the root of

quadratic residue without knowing any information of n.

3.4 Digital signature standard

3.4.1 DSA

DSA has become FIPS 186 in August 1991; also called DSS. DSA is a variant of the

Schnorr [Sch90] and ElGamal [EIG85] signature algorithms. The algorithm of DSA uses

the following parameters [NIST00] and publishes the first three parameters: p, q, and g:

1. p = a prime modulus, where 2L-1 < p < 2L for 512 ≤ L ≤1024 and

L is a multiple of 64.

2. q = a prime divisor of p - 1, where 2159 < q < 2160.

3. g = a(p-1)/q mod p, where a is any integer with 1 < a < p - 1 such that

a(p-1)/q mod p > 1 (g has order q mod p).

4. x = a randomly or pseudo-randomly generated integer with 0 < x < q, denoted as

 45

private key.

5. y = gx mod p, denoted as public key.

6. k = a randomly or pseudo-randomly generated integer with 0 < k < q.

The algorithm of DSA also uses a one-way hash function, h(m), SHA-160 as described

in section 2.4. To sign a message m:

1. Alice selects a random number, k, less than q.

2. Alice generates

r = (gk mod p) mod q

s = (k-1(h(m)+xr)) mod q

where r and s are her signature sent to Bob.

3. Bob verifies the signature by computing:

w = s-1 mod q

u1 = (h(m)*w) mod q

u2 = (rw) mod q

v = ((21 * uu yg) mod p) mod q

If v = r, then Bob accepts the signature.

DSA Correctness Analysis

 We start DSA correctness analysis with a lemma 3.1 to show that gq
 mod p = 1.

Lemma 3.1: Let p and q be primes so that q divides p - 1, h a positive integer less than p,

and g = a(p-1)/q mod p. Then gq
 mod p = 1, and if m mod q = n mod q, then

gm
 mod p = gn

 mod p.

Proof:

gq
 mod p

= (a(p-1)/q mod p)q
 mod p

 46

= a(p-1)
 mod p

= 1

by Fermat's Little Theorem. Let m mod q = n mod q, i.e., m = n + kq for some

integer k. Then

gm
 mod p = gn+kq mod p

= (gn gkq) mod p

= ((gn
 mod p) (gq

 mod p)k) mod p

= gn
 mod p

since gq
 mod p = 1. □

Theorem 3.1: If m'= m, r' = r, and s' = s in the signature verification, then v = r'.

Proof:

w = s'-1 mod q = s-1
 mod q

u1 = (h(m')*w) mod q = (h(m)*w) mod q

u2 = (r'w) mod q = (rw) mod q

Now y = gx mod p, so that by the lemma 3.1,

v = (21 * uu yg mod p) mod q

= (rwwmh yg *)*(mod p) mod q

= (xrwwmh gg *)*(mod p) mod q

= (wxrmhg *))((+ mod p) mod q.

Also

s = (k-1(h(m)+xr)) mod q.

Hence

w = (k(h(m)+xr) -1) mod q

 47

(h(m)+xr)*w mod q = k mod q.

Thus by the above lemma,

v = (wxrmhg *))((+ mod p) mod q

= (gk
 mod p) mod q

= r

= r'. □

 By Theorem 3.1, a verifier can check the valid of signature correctly.

3.4.2 ECDSA

ECDSA is counterpart of DSA and operates on elliptic curve group E(Zp
*). ECDSA

was invented in 1985 and was accepted as FIPS 186-2 [NIST00] IEEE standards in 2000.

It was also accepted as an ISO standard in 1998. We describe key generation, signature,

and verification for ECDSA as follows:

ECDSA key Generation

1. Selects an elliptic curve E over Zp
*.

2. Select a point P∈ E (Zp
*) where order is also prime q.

3. Select a statistically unique and unpredictable integer d in the interval [1, q-1].

4. Compute Q = dP.

5. The public key is (E, P, q, Q); the private key is d.

ECDSA Signature Generation

1. Select a statistically unique and unpredictable integer k in the interval [1, q-1].

2. Compute kP = (x1, y1) and r ≣ x1 mod q. If r = 0, then go to step 1.

3. Compute k-1 mod q.

 48

4. Compute s = k-1[h(m)+dr] mod q.

5. If s = 0, then go to step 1.

6. The signature for the message m is the pair of integers (r, s).

ECDSA Signature Verification

1. Obtain an authentic copy of Alice’s public key (E, P, q, Q).

2. Verify that r and s are integers in the interval [1, q-1].

3. Compute w≣ s-1 mod q and h(m).

4. Compute u1≣ h(m)w mod q and u2 ≣ rw mod q.

5. Compute u1P + u2Q = (x0, y0) and v ≣ x0 mod q.

6. Accept the signature if and only if v = r.

Theorem 3.2: If the signature of ECDSA is valid, then v = r.

Proof:

s = k-1[h(m)+dr] mod q, hence k = s-1[h(m)+dr] mod q

(x1, y1) = kP = s-1[h(m)+dr]P

(x0, y0) = u1P + u2Q = h(m) wP + rwdP

 = [h(m)s-1 + rs-1d]P

 = s-1[h(m)+dr]P = (x1, y1)

Therefore, v = x0 mod q

= x1 mod q

= r □

By theorem 3.2, we verify the signature of ECDSA through the equation v = r.

 49

Chapter 4 The Proposed Proxy Signatures

 4.1 Proxy Signature based on Digital Signature Algorithm

DSA and ECDSA are pretty well known by their security properties so that they have

been chosen as standard signature schemes. However, they both lack functionality of

proxy. Most of the proxy signature schemes, which have been proposed prior to this date,

are not based on standard signature such as DSA or ECDSA and have been considered

infeasible because of their obvious security weaknesses.

In this section, we carefully modify the DSA/ECDSA to be a proxy-protected proxy

signature scheme to fulfill the strong proxy signature requirements. Although

proxy-protected proxy signature scheme becomes more time-consuming for creating the

proxy key interactively between the original signer and proxy signer, the proxy-protected

scheme ensures that the original signer cannot derive the proxy key on her/his own;

therefore, the proxy signer will not be betrayed.

Actually, most proposed proxy signature schemes cannot be proven sufficiently strong,

secure, and unbreakable in order to against some unknown intentional attacks; in addition,

they are not based on standard signature. In fact, all that the proposed proxy signature

schemes can do till now is to demonstrate the scheme’s power against some existing attacks;

however, it occurs often that there will be always a new attack invented exactly against

these schemes [LC03].

To conquer those disadvantages; therefore, we propose a proxy-protected signature

scheme combining with standard signature DSA/ECDSA [NIST00] which are pretty well

 50

known by their security properties to reinforce the proxy signature. Combining

DSA/ECDSA, proxy signature and PKI mechanism, this work could be more useful in

practice.

4.1.1 Proxy Signature Based on Digital Signature Algorithm

The SHA-serials [NIST02] are used in our scheme and the participants of our scheme

include an original signer ‘Alice’, a proxy signer ‘Bob’, and a verifier. Suppose that a

Certificate Authority (CA) certifies Alice and Bob enrolls proxy key into the PKI when a

proxy key is created with the original signer interactively. The useful notations we list as

follows:

Alice An original signer

Bob A proxy signer

p A prime number, where 2L-1 < p < 2L for 512 ≤ L ≤1024 and L is a multiple of 64

q A prime divisor of p – 1 in DSA, A prime number, where 2159 < q < 2160 and is

the order of points over E in ECDSA

g a(p-1)/q mod p, where a is an integer with 1 < a < p - 1 such that a(p-1)/q mod p > 1

x A pseudo-randomly generated integer with 0 < x < q-1, denoted as private key.

y gx mod p, denoted as public key in DSA

k A randomly or pseudo-randomly generated integer with 0 < k < q.

E An elliptic curve defined over Fp

G A point over E having prime order q

Q A public key with Q = xG over E

h() A one-way hash function, SHA-160[NIST02]

 51

There are four algorithms in proposed schemes shown as follows:

1. Proxy generation and delivery

2. Proxy verification and proxy key generation

3. Signing by proxy signer

4. Verification of Proxy signature

In addition, there are two approaches to implement the proxy signature based on

digital signature algorithms DSA and ECDSA respectively. First at all, we describe the

proxy signature based on DSA in next section. Besides, we use X.509v3 certificate

extension [RSA00] to indicate the relationship between an original signer and the proxy

signer by proxy parameters, and the PKI mechanism can avoid man-in-middle attack

[MOV96].

4.1.2 Proxy Signature Based on DSA

At initialization step, the CA or Registration Authority (RA) verifies the relationship

of the delegation. The four algorithms we show as follows:

Proxy generation and delivery

1. Bob selects a random σ ∈ *
qZ , where gcd (σ , p-1) =1 and computes g' = σg mod p.

Then, Bob sends g' to Alice.

2. After receiving g', Alice selects a random kA ∈ *
qZ , computes, publishes rA = Akg mod p,

and sets e = Akgh '(mod p) mod q and sA =(xe + kA) mod q. Then, Alice sends (rA, sA)

to Bob. The pair (rA, sA) is a delegation proxy certificate for proving that Alice

delegates her signing capacity to Bob.

 52

Proxy verification and proxy key generation

1. On receiving (rA, sA), Bob computes e'= σ
Arh(mod p) mod q and verifies the validity

by checking if rA =('es yg A − mod p) mod q.

2. If the equation rA =('es yg A − mod p) mod q holds, Bob sets sB = 1−σAs mod q as a

proxy key, sets (sB, Bsg mod p) as public key pairs and sends the certificate request

[RSA00] to the RA.

3. According to certificate policy, RA identifies Bob and then forwards the certificate

request to the CA for signing proxy certificate. The process of proxy certificate

generating is shown in Fig 4.1.

Fig 4.1 Proxy signer initialization in PKI

Signing by proxy signer

To sign a message m, Bob should do the following steps:

1. Select a random k ∈ *
qZ .

2. Compute r = (kg ' mod p) mod q

3. Set s = 1−k (h(m)+ sBr) mod q.

4. If s = 0 then re-select another random number k and run again.

The proxy signature is the tuple (g', e', r, s).

 53

Verification of Proxy signature

To verify the proxy signature (g', e', r, s) on message m, a verifier should:

1. Query repository and check if the certificate of proxy key is valid.

2. Get and verify valid of rA.

3. Verify that ≤1 r q≤ and ≤1 s q≤ ; if not reject the signature.

4. Compute w = s-1 mod q.

5. Compute u1 = w .h(m) mod q, u2 = rw mod q, and u3 = e'u2 mod q.

6. Compute v= (1'ug 2u
Ar 3uy mod p) mod q.

Accept the signature if v = r.

We consider that proxy signature based on DSA scheme can be deployed in both the

DSA with proxy signature capability and the conventional DSA. This scheme can be a

conventional DSA if taking the parameters 'g = g, rA = 1 and 'e = 1. Therefore, this

scheme is generalized DSA and can also be used in conventional DSA.

4.1.2.1 Correctness of proxy signature scheme based on DSA

In this section, we will prove the correctness of the proxy signature scheme based on

DSA scheme.

Theorem 4.1: If the delegation certificate (rA, sA) is valid, it will pass the verification rA

= 'es yg A − mod p.

Proof:

Firstly, we proof that e = e'

e = Akgh '(mod p) mod q and 'e = σ
Arh(mod p) mod q

∵ Akg ' mod p = Akg)(σ mod p = σ)(Akg mod p = σ
Ar mod p

 54

Therefore, e = 'e .

∵ sA = (xe + kA) mod q;

Substitute 'e for e, then we obtain

sA =(xe' + kA) mod q.

Rearrange the above equation as

kA = (sA - xe') mod q.

Raise both sides by g; by lemma 3.1 we know that gq mod p = 1.

Akg =)'(xesAg − mod p,

rA = ('xes gg A −⋅) mod p (∵ rA = Akg mod p)

rA = ('es yg A −) mod p (∵ y = gx mod p)

Thus, rA = ('es yg A −) mod p as required. □

Theorem 4.2: If the proxy signer generates the proxy signature correctly, it will pass the

proxy signature verification.

Proof:

We have a valid proxy signature s = k-1(h(m) + sBr) mod q.

Rearrange the signature as

k = s-1 (h(m)+ sBr) mod q

k = s-1 (h(m)+ rsA
1−σ) mod q. (∵sB= 1−σAs mod q)

k = s-1 [h(m)+(xe + kA) r1−σ] mod q. (∵sA=(xe + kA) mod q)

Raise both sides by g'

kg ' = ()(1

' mhsg
− 11

'
−− rskAg σ 11

'
−− rsxeg σ mod p) mod q.

Substitute following notations respectively:

kg ' = r,
1

'
−σAkg = Akg = rA and

1

'
−σxg = xg = y (∵ 'g = σg mod p)

 55

r = ()(1

' mhsg
− 1−rs

Ar
1−ersy mod p) mod q.

Let w = s-1 mod q, u1 =)(mhw ⋅ mod q, u2 = rw mod q, and u3 = 2'ue mod q.

We yield the equation:

r = (1'ug 2u
Ar 3uy mod p) mod q as required. □

A verifier has to use both the original signer’s public key and proxy key certificate to

verify the proxy signature. Since the proxy key is created interactively between original

signer and proxy signer, a verifier can be aware of the agreement upon signing the message

from the original signer. This property obeys the definition of verifiability; and by

theorem 4.1 and 4.2, a verifier can check the valid of proxy signature.

4.1.3 Proxy Signature based on ECDSA

ECDSA, a DSA based on the ECC, was invented in 1985 and accepted as FIPS 186-2

in 2000 [NIST00]. In this section, we introduce the proxy-protected signature based on

ECDSA, which is a variant ECDSA with properties of strong proxy signature. An elliptic

curve E modulo a prime p denotes as a public-key cryptography. The operation of elliptic

curve could be referred to [IEEE05]. We describe the protocol of proxy-protected ECDSA

as follows. First we let Alice have private key x and public key Q = xG certificated by a

certificate authority. Bob is a designated proxy signer.

Proxy generation and delivery

Bob: Select a random number, ko (1< ko < q).

Compute G' = koG mod q.

 56

Bob→ Alice G'.

Alice: Select a random number, kA (1< kA < q)

Compute and publish RA = kAG.

Set (x1, y1) = kAG'.

Compute e = x1 mod q and set sA = (xe + kA) mod q.

If x1 = 0, then re-select kA and run again.

Alice→ Bob (RA, sA).

Proxy verification and proxy key generation

Bob: Let (x2, y2) = koRA, and set e'= x2 mod q.

Accept the delegation if and only if RA = sAG – e'Q.

Once Bob accepts the delegation, he will compute sB = sAko
-1mod q as a proxy key; and

will send the certificate request [RSA00] to the RA. According to certificate policy, RA

identifies Bob and then forwards the certificate request to the CA for signing proxy

certificate.

Signing by the proxy signer

Bob: Select a random number k (1< k < q).

Compute (x3, y3) = kG'.

Set r = x3.

Compute s = k-1(h(m) + sBr) mod q.

If r = 0 or s = 0 then re-select another random number k and run again.

The proxy signature for the message m is (G', e', r, s).

 57

Verification of the proxy signature

Carol: Get and verify RA.

Verify that r and s are integers in interval [1, q-1].

Compute w = s-1 mod q.

Compute u1 = h(m)w mod q.

Compute u2 = rw mod q.

Compute u3 = e'u2 mod q.

Compute X = (x3', y3') = u1G' + u2RA + u3Q.

If X = O, then reject the signature, else accept the signature if and only if

x3' = x3= r.

The proxy-protected ECDSA could be also deployed in ECDSA by taking parameters

G' = G, RA = 0 and e' = 1. Furthermore, the proxy-protected ECDSA also maintains the

properties of strong proxy signature [LK99][LKK01a][LKK01b].

4.1.3.1 Correctness of proxy signature scheme based on ECDSA

In this section, we will prove the correctness of the proxy signature scheme based on

ECDSA scheme.

Theorem 4.3: If the delegation certificate (RA, sA) is valid, then RA = sAG – e'Q, where

RA = kAG, sA = (xe + kA) mod q, (x2, y2) = koRA, and e'= x2 mod q.

Proof:

Firstly, we proof that e = e'

(x1, y1) = kAG' = kAkoG = koRAG = koRA = (x2, y2);

 58

Hence, e = x1 mod q

= x2 mod q

= e'

∵ sA = (xe + kA) mod q;

Substitute e' for e in above equation, then we obtain

sA =(xe' + kA) mod q.

Rearrange the above equation as

kA =(sA - xe') mod q.

Multiple G on both sides

 RA = kAG

= (sA - xe')G

= sAG - e'xG

= sAG - e'Q □

Theorem 4.4: If the proxy signer generates the proxy signature correctly, it will pass the

proxy signature verification.

Proof:

We have a valid proxy signature s = k-1(h(m) + sBr) mod q.

Rearrange the signature as

k = s-1 (h(m)+ sBr) mod q

k = s-1 (h(m)+ sA
1

0
−k r) mod q. (∵sB = sA

1
0
−k mod q)

k = s-1 [h(m)+(xe + kA) 1
0
−k r] mod q. (∵sA = (xe + kA) mod q)

Multiple G’ on both sides

kG’ = s-1G’[h(m)+(xe + kA) 1
0
−k r]

 59

 = s-1G’h(m) + s-1xeG’ 1
0
−k r + s-1kAG’ 1

0
−k r

 = s-1h(m)G’ + s-1xeGr + s-1kAGr (∵G’ 1
0
−k = G)

 = u1G’+ u2xeG + u2kAG (∵u1 = h(m)w = h(m)s-1; u2= rw = rs-1)

 = u1G’+ u2xe’G + u2RA (∵e = e’; RA = kAG)

 = u1G’+ u2RA + u3Q (∵u3 = e’u2G; Q = xG) □

A verifier has to use both the original signer’s public key and proxy key certificate to

verify the proxy signature. This proof show that the proxy signature scheme based on

ECDSA fulfills verifiability property; and by theorem 4.3 and 4.4, a verifier can check the

valid of proxy signature.

4.1.3.2 Proxy Signature based on ECDSA example demonstration

In some reports concerning security estimation, the elliptic curve based on

cryptosystem will be secure till the year 2020. It has been suggested that one should take

p ≈2160. In this section we work through a tiny example to illustrate the computations in the

proxy-protected ECDSA.

Let E be the elliptic curve y2 = x3 + x + 4 over Z19
*. The parameter q is the number of

points in E, also called order of E over Z19
*. We first compute x3 + x + 4 mod 19 for

x∈Z19
*, and then try to solve the above equation for y; and set z = x3 + x + 4 mod 19 and test

if z is a quadratic residue (QR), by Euler’s criterion. If the modulo prime p = 3 mod 4, we

could yield the square roots of a quadratic residue z as following formula:

4/)119(+± z mod 19 = 5z± mod 19.

 60

The results of the computing are listed in Table 4.1.

Table 4.1 Points on the elliptic curve x3 + x + 4 mod 19
x z=x3 + x + 4 mod 19 ='y 5z± mod 19 2)'(y y Is QR?
0 4 17,2 4 17,2 √
1 6 5,14 6 5,14 √
2 14 10,9 5
3 15 2,17 4
4 15 2,17 4
5 1 1,18 1 1,18 √
6 17 6,13 17 6,13 √
7 12 8,11 7
8 11 7,12 11 7,12 √
9 1 1,18 1 1,18 √
10 7 11,8 7 11,8 √
11 16 4,15 16 4,15 √
12 15 2,17 4
13 10 3,16 9
14 7 11,8 7 11,8 √
15 12 8,11 7
16 12 8,11 7
17 13 14,5 6
18 2 13,6 17

Because G is a generator, we can take the generator G = (1,5); and compute the

remaining multiples of G by applying the addition operation on E.

The addition operation on E is defined as follows:

Suppose P1 = (x1, y1), P2 = (x2, y2) are the points on E. If x2 = x1 and y2 = - y1, then

p1 + p2 = O where O is a special point, called point at infinity; otherwise

P1 + P2 = (x3, y3), where

,)(1313

21
2

3

yxxy
xxx
−−=

−−=
λ
λ

 61

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=+

≠−−
=

−

−

QPyax

QPxxyy

 if ,)2)(3(

 if ,))((
1

1
2
1

1
1212λ

, and

Therefore, the next multiple is 2G = G + G, 3G = 2G + G, and so on. The results of

these computations are tabulated in Table 4.2.

Table 4.2 The multiples of generator G
G = (1,5) 2G = (5,1) 3G = (14,8) 4G = (9, 18) 5G = (6,13)

6G = (10,11) 7G = (0,2) 8G = (8,12) 9G = (11,4) 10G = (11,15)
11G = (8,7) 12G = (0,17) 13G = (10,8) 14G = (6,6) 15G = (9,1)

16G = (14,11) 17G = (5,18) 18G = (1,14) 19G = O

Suppose that Alice’s private key x is 3, so the public key is Q = 3G = (14, 8).

Proxy generation and delivery

Bob : Select a random number, ko, said 5;

 and compute G' = koG = 5G = (6, 13)

Bob→ Alice G'

Alice: Select a random number, kA, said 4;

 and compute RA = kAG = 4G = (9, 18);

 set kAG' = 4(6, 13) = (1, 5) = (x1, y1).

Suppose that e = x1 = 1 . Alice computes

sA = (xe + kA) mod q = (3*1+4) mod 19 = 7 and

forward (RA, sA) = [(9, 18), 7] to Bob.

Proxy verification and proxy key generation

Let (x2, y2) = koRA = 5(9,18) = (1, 5), and e' = x2 = 1 .

 sAG – e'Q

= 7*(1,5)-1*(14,8)

= (9,18)

 62

= RA

Then, Bob accepts the delegation because RA = sAG – e'Q.

The proxy key is:

sB = sAko
-1 mod q = 7*5-1

 mod 19 = 7*4 mod 19 = 9,

and we omit the process of enrolls proxy key into the PKI mechanism.

Signing by the proxy signer

Suppose that the message is m, h(m) = 8 and k = 13. To sign the message, Bob computes

(x3, y3) = kG' = 13*(6,13) = (8,12),

sets r = x3 = 8 and creates proxy signature,

 s = k-1(h(m) + sBr) mod q = 13-1(8 + 9*8) mod 19 = 3*80 mod 19 = 12.

The proxy signature is (G', e', r, s) = [(6, 13), 1, 8, 12].

Verification of the proxy signature

The verifier does the following processes:

Get and verify RA = (9, 18).

w = s-1 mod q = 12-1 mod 19 = 8,

u1 = h(m)w mod q = 8*8 mod 19 = 7,

u2 = rw mod q = 8*8 mod 19 = 7,

u3 = e'u2 mod q = 1*7 mod 19 = 7,

 and

X = (x3', y3') = u1G' + u2RA + u3Q mod q

 =7*(6, 13) + 7*(9, 18) + 7*(14, 8) mod 19

= (35+28+21)G

= (8,12).

 63

The verifier accepts the signature, because x3' = 8 = x3. This example adequately

shows the proxy-protected ECDSA can be used in practice. Nevertheless, the security of

the proxy-protected ECDSA is as secure as the standard signature ECDSA that we discuss

the security of proxy-protected DSA/ECDSA in next session.

4.1.4 Security analysis and comparisons

The security of the proposed scheme is based on the difficulty of breaking a one-way

hash function as well as the hardness of three discrete logarithm problems. One of the

discrete logarithms is in Zq
* where the powerful index-calculus methods applied; the second

one is in the cyclic subgroup of order q [MOV96]; and the third one is elliptic curve

discrete logarithm problem. In this section, we discuss several possible attacks against the

security of proposed schemes.

Attack Scenario 1:

I. Proxy signature based on DSA part:

If an attacker might forge the proxy signature on the message m by selecting a random

number k; and computing r = kg ' mod p; the attacker needs proxy key

sB = 1−σ (xe + kA) mod q, k to forge signature s =k-1(h(m) + sBr) mod q . It is

computationally infeasible to determine s without both sB and correct k under the

assumption of the discrete logarithm problem [MOV96]. In addition, the probability of

successful conjecture of both sB and correct k is 1/q, which is negligible when q is large

enough. Furthermore, the attacker does not have proxy certificate to pass verification.

II. Proxy signature based on ECDSA part:

 64

If an attacker might forge the proxy signature on the message m by selecting a random

number k; and computing (x3, y3) = kG' and setting r = x3; the attacker needs proxy key

sB = sA
1

0
−k mod q, k to forge signature s = 1−k (h(m)+ sBr) mod q . It is computationally

infeasible to determine s without both sB and correct k under the assumption of the elliptic

curve problem [IEEE05]. In addition, the probability of sB and correct k is 1/q, which is

negligible when q is large enough.

Attack Scenario 2:

Suppose that another malicious signer impersonates the authorized proxy signer to

create a proxy key interactively with an original signer (man-in middle attack) by selecting

another randomσ (or ko in ECDSA). To prevent this attack, we require only the certificate

of original/proxy signer's public keys by any kind of authority mechanism such as PKI

mechanism. With the verification of public keys’ certificate, the verifier will reject all

unauthorized proxy keys generated by the fake proxy signer.

Attack Scenario 3:

I. Proxy signature based on DSA part:

If a dishonest original signer attempts to forge the proxy key, the proxy signer could

use a blind factor σ to blind g' = σg mod p so that the original signer needs to solve σ

from g' = σg mod p. It is difficult to determine σ according to the hardness of the

discrete logarithm problem [MOV96].

II. Proxy signature based on ECDSA part:

 65

If a dishonest original signer attempts to forge the proxy key, the proxy signer could

use a blind factor ko to blind G' = koG mod q so that the original signer needs to solve ko

from G' = koG mod q. It is difficult to determine ko according to the hardness of the

elliptic curve problem [IEEE05].

Under so-called ‘proxy-protected’ security property restriction, an original signer

should not be able to derive the authorized proxy signer’s proxy key; otherwise a verifier

could not distinguish exactly whether the original signer or the proxy signer creates the

proxy signature.

Attack Scenario 4:

I. Proxy signature based on DSA part:

Theorem 4.5: If a malicious proxy signer attempts to impersonate an original signer to

create a delegation certificate, then the malicious proxy signer can derive the

secret key of original signer.

Proof:

On the other hand, if a malicious proxy signer attempts to impersonate an original

signer to create a delegation certificate, the malicious proxy signer selects a random number

kA and computes rA = Akg ' mod p, and e' =)'(Akgh mod p.

If a malicious proxy signer can create a delegation certificate, she/he must know sA to

pass rA = ('es yg A − mod p) mod q in the proxy verification phase and the proxy key

 sB = sAσ -1 mod q is also derive from sA.

sA = (xe + kA) mod q; hence the malicious proxy signer can derive:

x = e-1(sA - kA) mod q. □

 66

From theorem 4.5, if the malicious proxy signer can create a delegation certificate

under just knowing original signer's public key y, g' and rA, then she/he can derive the

secret key x of original signer. That is a contradiction to the criteria of discrete logarithm

problem. Therefore, the proxy signer only can get sA from original signer; and if a verifier

gets a valid signature, then the verifier can be convinced that the original signer delegates

her/his authority to the proxy signer.

II. Proxy signature based on ECDSA part:

Theorem 4.6: If a malicious proxy signer attempts to impersonate an original signer to

create a delegation certificate, then the malicious proxy signer can derive the

secret key of original signer.

Proof:

If a malicious proxy signer can create a delegation certificate, she/he may randomly

select kA (1< kA < q) such that RA = kAG. Besides, she/he must know sA to pass

RA = sAG – e'Q in the proxy verification phase and the proxy key sB = sAko
-1 mod q is also

derive from sA.

sA = (xe + kA) mod q; hence the malicious proxy signer can derive:

x = e-1(sA - kA) mod q. □

From theorem 4.6, if the malicious proxy signer can create a delegation certificate

under just knowing original signer’s public key Q, G' and RA, then she/he can derive the

secret key x of original signer. That is a contradiction to the criteria of elliptic curve

cryptosystem. On the other hand, the proxy signer only can get sA from original signer.

If a verifier gets a valid signature, then the verifier can be convinced that the original signer

delegates her/his authority to the proxy signer.

 67

After the proxy signer Bob receiving a delegate certificate (rA, sA) (or (RA, sA) in

ECDSA) correctly from the original signer Alice, he cannot forge another delegate

certificate to create a proxy key because it is difficult to find another rA (or RA in ECDSA)

for creating a valid delegation certificate. On the other hand, Alice can neither forge the

proxy key because the generator is blinded by a factor σ (or ko in ECDSA), which is only

known by Bob. Thus, only the authorized proxy signer can create the valid proxy key,

which means the proposed scheme confirms the properties of strong unforgeability

[LK99][LKK01a][LKK01b] and proxy-protected.

In the proxy signature based on DSA scheme, the size of q is 160 bits and the size of p

is between 512 and 1024 bits. For the security reason, a 512-bit prime merely provides

marginal security such that at least 786 bits is recommended. Suppose p is a 768-bit

integer and one modular exponentiation takes on 240 modular multiplications [MOV96].

In Table 4.3, we compare the time complexity between the proxy signature based on

DSA/ECDSA scheme and the DSA/ECDAS. The major portion of time complexity is

modular multiplications and modular inverses, thus we neglect the time complexity of

one-way hash function and modular additions. In the proxy signature based on

DSA/ECDSA scheme, the time complexity of the proxy signature is similar to the

DSA/ECDSA, while the time complexity of the proxy signature verification requires only

one modular exponentiation instead of two modular multiplications for the DSA.

 68

Table 4.3 Time complexity of the proxy signature based on DSA/ECDSA and DSA/ECDSA
Schemes Key

Generation
Proxy

Generation
Proxy

Verification
Signature Verification

DSA 240Tmm 242Tmm+ Tinv 483Tmm+ Tinv
ECDSA Tm Tm+2Tmm+2Tinv 2Tm+2Tmm+Tinv

Proxy Signature
based on DSA

240Tmm 721Tmm 962 Tmm 242Tmm+ Tinv 725Tmm+ Tinv

Proxy Signature
based on ECDSA

Tm 2Tm+2Tmm 3Tm+Tmm+Tinv Tm+2Tmm+Tinv 3Tm+3Tmm+Tinv

Note: Tm: The number of multiplication.
Tmm: The number of modular multiplication.
Tinv: The number of modular inverse with 160-bit.

The proposed schemes are modified from conventional DSA/ECDSA and the

conventional DSA/ECDSA can be reduced to our proposed scheme in polynomial time.

Furthermore, no other scheme based on standard signature DSA/ECDSA, so we show the

differences among DSA/ECDSA, Mambo’s proxy signature scheme and the proposed

schemes in Table 4.4.

Table 4.4 Differences among DSA/ECDSA, Mambo and proposed schemes
 Based on

Signature
Proxy

functionality
Combining
with PKI

Standard
Signature

Proxy-
protected

DSA ElGamal
and

Schnorr

No No √ No

ECDSA Elliptic
Curve

No No √ No

Mambo’s Scheme ElGamal √ No No No
Proposed scheme
based on DSA

DSA √ √ Generalized
Standard

√

Proposed scheme
based on ECDSA

ECDSA √ √ Generalized
Standard

√

 69

4.2 Proxy Signature Based on QR

The proxy signature scheme based on QR scheme is more efficient than other schemes

based on discrete logarithms or factoring. Moreover, the proposed scheme involves

relatively few multiplications; therefore, the proposed scheme is ideal for low power and

low computing device such as mobile phones, IC cards, sensor network nodes, and so on.

The delegation by warrant proxy signature scheme based on QR, DWPSQR comprise four

phases; we describe as following:

(1) initial phase,

(2) proxy phase,

(3) proxy-signature phase, and

(4) verification phase.

4.2.1 Delegation by warrant proxy signature scheme based on QR

SA is lead in the DWPSQR scheme. The SA holds the secret and public system keys,

which can grant the delegation capability to an original signer and the signing capability to

a proxy signer, respectively. Therefore, the SA prevents the misuse of unqualified proxy

signers and improves the warrant mechanism used for negotiations between the original and

proxy signers. Additionally, the SA takes responsibility for publishing the public keys of

both original and proxy signers.

During the initial phase, the SA, an original signer and a proxy signer generate the

secret and public system key pair interactively. Meanwhile, both the original and proxy

signers create the parameters required for signature authentication. Subsequently, the

 70

original signer signs a warrant information mw in the proxy phase. The symbol h(·) used

in the proxy phase denotes a one-way hash function; and the symbol mw indicates a proxy

signature restriction such as the proxy valid period. When original signer delivers the

system key to the proxy signer, the proxy signer will identify the original signer and verify

the system key.

Within the proxy-signing phase, the proxy signer signs the document m and returns the

proxy signature to the applicant. The verifier determines whether the proxy signature is

valid during the final phase. Fig 4.2 illustrates the whole phases, and the following

sections presents the details of the DWPSQR scheme.

 71

Fig 4.2 Delegation by warrant proxy signature scheme based on QR

Initial phase

Step 1: The SA selects the large prime numbers pi with pi 4≡ 3 where i=1, 2, 3, 4 and lets

n= ∏
=

4

1i
ip . Thereafter, the SA sets A=p1p2 a nd assigns (n , A) and (p1 , p2 , p3 , p4)

as the system public and private keys respectively.

Verification

Original
signer SA

Applicant
Initial

Proxy

Proxy
signing

Generate p1 p2 p3 p4

n=p1 p2 p3 p4, A= p1 p2 Generate x, y Generateα,β

Y=(x2+Ay2) mod n D=(α2+Aβ2) mod n

Specify B={bi,j| i=±1; j=±1}
Publish n, A, Y, D

i
i

a
p
Y

=⎥
⎦

⎤
⎢
⎣

⎡
i

i

r
p
D

=⎥
⎦

⎤
⎢
⎣

⎡

(bo, u, v)

(t, bo, u, c, d, mw)

Choose bo, u

Choose bp, γ
(bp, γ, ω)

(s, bo, bp, u, e, f, r, mw)

Check
t2YK = bo(c2+Ad2)2

Check
s2DC = bobpYK(e2+Af2)2

Proxy
signer

mw

c=(xu+Ayv)mod n
d =(yu - xv)mod n

t

m m

e=(αγ+Aβω)mod n
f=(βγ-αω)mod n

s

 72

Step 2: The SA specifies four elements as B={bi j | i=±1; j=±1} in Zn
*

so that ⎥
⎦

⎤
⎢
⎣

⎡

1

,

p
b ji = i and ⎥

⎦

⎤
⎢
⎣

⎡

2

,

p
b ji = j .

Step 3: The original signer selects x and y in Zn
* as original private keys and sends public

key Y = (x 2 +Ay 2) mod n to the SA thereafter. Relatively, the proxy signer selects

α and β in Zn
* as proxy private keys and sends public key D = (α2+Aβ2)

mod n to the SA.

Step 4: The SA sends ⎥
⎦

⎤
⎢
⎣

⎡

ip
Y =ai and ⎥

⎦

⎤
⎢
⎣

⎡

ip
D =ri , i=1, 2, 3, 4 to the original signer and the

proxy signer respectively.

Step 5: The SA publishes the public key of system, as well as those for original signer and

proxy signer.

Proxy phase

Step 1: The original signer sends warrant message mw to the SA.

Step 2: The SA selects a proper integer Bbo ∈ such that

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2
2

1
1

a
p
b

a
p
b

o

o

Step 3: The SA chooses u∈Zn
* such that v= h (u*mw) in Zn

* and

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

4
4

3
3

a
p
Kb

a
p
Kb

o

o

, where K= (u 2 + Av 2) mod n

 73

Step 4: The SA sends (bo, u, v) to the original signer. Thereafter the original signer lets

 c = (xu + Ayv) mod n

 d = (yu - xv) mod n

Step 5: The original signer sends (c, d) to the SA. The SA uses system private key p1 , p2,

p3 and p4 to solve the square root t of bo(c 2 +Ad 2) in O(log n) time complexity [Per86].

Step 6: The SA sends square root t to the original signer.

Step 7: The original signer sends (t, bo, u, c, d, mw) to the proxy signer. After receiving

(t, bo, u, c, d, mw), the proxy signer examines whether t2YK n
?
≡ bo(c2+Ad2)2 or not. In

addition, the proxy signer can compute K= (u 2 +Av 2) mod n with v= h (u*mw) herself/

himself and retrieve the original signer’s public key Y from the SA.

Proxy-signing phase

Step 1: After receiving message m from an applicant, the proxy signer sends m to the SA.

Step 2: The SA selects a proper integer Bbp ∈ such that

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2
2

1
1

r
p
b

r
p
b

p

p

Step 3: The SA chooses γ∈Zn
* such that ω= h(γ*m) in Zn

* and

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

4
4

3
3

r
p

Cb

r
p
Cb

p

p

 where C =(γ2+Aω2) mod n

Step 4: The SA sends (bp,γ,ω) to the proxy signer.

 74

Step 5: The proxy signer lets

 e = (αγ + Aβω) mod n

 f = (βγ - αω) mod n

Step 6: The proxy signer sends (e, f) to the SA. The SA uses the system private key p1 , p2 ,

p3 and p4 to solve the square root s of b p t 2 DC with O(log n) time complexity.

Step 7: The SA sends square root s to proxy signer.

Step 8: The proxy signer sends the proxy signature (s, bo, bp, u, e, f, γ, mw) of message m

back to the applicant.

Verification phase

The verifier checks whether s2DC n
?
≡ b o b p YK (e 2 +Af 2) 2 to examine the validity

of proxy signature (s, bo, bp, u, e, f, γ, mw).

The verifier can retrieve C = (γ 2+A ω 2) and K = (u 2 + Av 2) automatically.

Furthermore, D = (α2+Aβ2) mod n and Y = (x 2 +Ay 2) mod n are the public keys of the

proxy signer and original signer respectively.

4.2.2 Correctness analysis of DWPSQR

Lemma 4.1: c 2 +Ad 2
n≡ YK, where c n≡ x u+Ay v , d n≡ y u - x v , Y = (x 2 + Ay 2) mod n and

K = (u 2 +Av 2) mod n

Proof:

Place c n≡ x u+Ay v and d n≡ y u - x v onto c 2 + Ad 2 , then we can compute:

 75

c 2 +Ad 2

n≡ (x u+Ay v) 2 +A (y u - xv) 2

n≡ (x u) 2 + (Ayv) 2 + 2Axyuv+ A (y u) 2 + A (x v) 2 -2Axyuv

n≡ (x u) 2 + (Ayv) 2 +A (y u) 2 + A (x v) 2

n≡ (x 2 +Ay 2) (u 2 +Av 2)

n≡ YK. □

Lemma 4.2: ⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4.

Proof:

From the proxy phase, the SA sets ⎥
⎦

⎤
⎢
⎣

⎡

ip
Y = ai, where i=1, 2, 3, 4. Also, the SA

selects proper bo and u, such that

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2
2

0

1
1

a
p
b

a
p
bo

, and

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

4
4

3
3

a
p
Kb

a
p
Kb

o

o

By the Jacobi symbol,

⎥
⎦

⎤
⎢
⎣

⎡

1p
Kbo

= ⎥
⎦

⎤
⎢
⎣

⎡ +

1

22)(
p

Avubo

= ⎥
⎦

⎤
⎢
⎣

⎡

1p
bo

⎥
⎦

⎤
⎢
⎣

⎡ +

1

22)(
p

Avu

 76

= ⎥
⎦

⎤
⎢
⎣

⎡

1p
bo

⎥
⎦

⎤
⎢
⎣

⎡

1

2

p
u (∵ A = p 1 p 2)

= ⎥
⎦

⎤
⎢
⎣

⎡

1p
bo

= a1

 Similarly, ⎥
⎦

⎤
⎢
⎣

⎡

2p
Kbo = a2.

 Hence, ⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
Kb

 = ai, where i=1, 2, 3, 4.

⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

= ⎥
⎦

⎤
⎢
⎣

⎡

ip
Y

⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
Kb

= (a i) 2

= 1.

Therefore, ⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4. □

⎥
⎦

⎤
⎢
⎣

⎡

i

o

p
YKb

 = 1, where i=1, 2, 3, 4; therefore, t2
n≡ b o (c 2 +Ad 2) belongs to QRn.

Theorem 4.7: The proxy signer can verify the validity of delegation (t, bo, u, c, d, mw) by

checking whether t2YK n≡ b o (c 2 +Ad 2) 2 , where K = (u 2 +Av 2) mod n

and v = h (u*m w) .

Proof:

Lemma 4.2 show that t2
n≡ b o (c 2 +Ad 2) belongs to QRn; and based on proposed

 77

protocol, if t is valid, then t2
n≡ b o (c 2 +Ad 2) .

Form lemma 4.1, we know that c 2 +Ad 2
n≡ YK; hence:

t2YK n≡ b o (c 2 +Ad 2) (c 2 +Ad 2)

n≡ b o (c 2 +Ad 2) 2 . □

4.2.3 Security requirements of DWPSQR

Lemma 4.3: e 2 +Af 2
n≡ DC, where e n≡ (αγ + Aβω), f n≡ (βγ - αω), C =(γ2+Aω2) mod n

and D = (α2+Aβ2) mod n

Proof:

Place e n≡ (αγ + Aβω) and f n≡ (βγ - αω) onto e 2 + Af 2 , then we can compute:

e 2 +Af 2

n≡
22)()(αϖβγβϖαγ −++ AA

n≡ αβγϖαϖβγαβγϖβϖαγ AAAAA 2)()(2)()(2222 −++++

n≡
2222)()()()(αϖβγβϖαγ AAA +++

n≡))((2222 ϖγβα AA ++

n≡ DC □

Similarly to lemma 4.2, we know that ⎥
⎦

⎤
⎢
⎣

⎡

i

p

p
DCb

 = 1, where i=1, 2, 3, 4. Therefore,

s2=b p t 2 DC belongs to QRn.

 78

Theorem 4.8: Every valid proxy signature (s, bo, bp, u, e, f,γ, mw) satisfies

s2DC n≡ b o b p YK (e 2 + Af 2) 2

Proof:

s2=b p t 2 DC and from lemma 4.3, we know that e 2 +Af 2
n≡ DC; hence

s2DC

n≡ b p t 2 (DC) 2

n≡ b p b o (c 2 +Ad 2) (DC) 2

n≡ b o b p YK (DC) 2

n≡ b o b p YK (e 2 +Af 2) 2 . □

Theorem 4.7 show that the proxy key of the DWPSQR scheme is valid from original

signer and theorem 4.8 show that the DWPSQR scheme satisfies verifiable requirement.

The following discussion demonstrates that the DWPSQR scheme satisfies the strong

unforgeability requirement. Attackers will encounter difficulty in solving the square root

s and t without knowing the system private key (p1 , p2 , p3 , p4) [FL96][FL98]. Although

the attackers could select a modulus pair (c', d') to pass nt ≡2 b o (c'2 +Ad'2) verification, it

is still difficult for (c', d') pair to pass (c'2 +Ad'2) n≡ YK examination [PS87]. Accordingly,

the attackers have difficulty in forging a proxy authentication (t, bp, u, c, d, mw) during the

proxy phase.

The SA prevents unqualified original signers from delegating warrant; moreover,

prevents unqualified proxy signers from signing a document. Consequently, the SA

mechanism enhances the warrant mechanism and avoids original signers from abusing

her/his delegation in the same time.

During the proxy-signing phase, proxy signers use their private keys α and β to

 79

create a proxy signature (s, bo, bp, u, e, f,γ, mw) on document m. This security mechanism

means that attackers cannot forge e and f unless they know α and β.

During the verification phase, any verifier can identify the corresponding proxy signer

by using the public key of each proxy signer to check if (e 2 +Af 2) n≡ DC. The DWPSQR

scheme thus satisfies the strong identifiability requirement.

Additionally, a proxy signer cannot repudiate that they are the issuers of their signature

because no one can create a proxy signature during polynomial time without knowing the

private keys of the system and proxy. Consequently, the DWPSQR scheme fulfills the

strong undeniability requirement. From above discussions, the DWPSQR scheme meets

the security requirements defined by B. Lee [LK99][LKK01a].

4.2.4 Time complexity and security analysis

The complexity of one-way hash function can be negligible compared to that of the

multiplication operation. The proposed proxy signature based on QR scheme does not use

exponential and divisional operations throughout the four proposed phases. Consequently,

an original signer and a proxy signer complete the proxy phase in just 16 multiplications.

During the proxy-signing phase, the proxy signer also uses just 5 multiplications to create a

proxy signature. Only 17 multiplications are required to verify the validity of the proxy

signature. The above computations are performed under Zn
*. A modular exponent

requires about 240 modular multiplications [MOV96]; a 2048-bit modular multiplication is

of 8 (n3) times complexity than 1024-bit modular multiplication in worse case and

3
3

)2(2
+⎥⎦

⎥
⎢⎣
⎢ +n = 5 in [KT03]. For convenience, we ignore the negligible time complexity

of addition operation in Table 4.5. Therefore, the proxy signature scheme based on QR is

more efficient than any other scheme based on discrete logarithm.

 80

Table 4.5 Time complexity of Manbo’s and proposed scheme
 Proxy

Generation

Proxy

Verification

Signature

Signing

Verification

Manbo’s

Scheme

(2*240+1) =

481Tmm

(240+1)Tmm 240 Tmm (2*240+1) =

481Tmm

Proposed

Scheme (1024)

16 Tmm 8 Tmm 5 Tmm 17 Tmm

Proposed

Scheme (2048)

†16×8=128 Tmm †8×8=64 Tmm †5×8=40 Tmm †17×8=136 Tmm

Note: Tmm: The number of modular multiplication.
† For comparing in 1024-bit, we time 8 to keep time complexity consistency.

The security of proposed schemes based on QR assumption. Since n=p1 p2 p3 p4 and

A=p1p2, how to choose (p1 , p2 , p3 , p4) is very important. Comparing to the security level

of 1024 bit RSA or discrete logarithms; the proposed schemes have to choose (p1, p2, p3, p4)

such that n is around 2048 bits. Because A=p1p2 is published, n is easy to be divided into

A and p3p4 (n = A* p3p4). To break the proxy signature scheme based on QR can reduce to

1024 bits RSA in polynomial time. As a result, the n need 2048-bit for security issue.

Furthermore, the multiplication in 2048 bits is still remarkable faster than exponential in

1024 bits as shown in Table 4.5.

 81

Chapter 5 Proxy Signature with Proactive Property

The security of proxy signature scheme guarantees last as long as the secret keys

remain unrevealed. Many threshold proxy signature schemes [DF89][Zha97b][KPW97]

[SLH99][HWW03] are proposed enhance security against the key exposure problem prior

to this date; but they still lack the property of proactive and proxy. On the other hand, M.

Abdalla and L. Reyzin proposed “A new forward-secure digital signature scheme,” in

Asiacrypt2000 [AR00] to deal with key exposure problem. Thereafter, Chang, Lin and

Yeh proposed "Forward Secure Proxy Signature Scheme," which the proxy signer renews

its proxy keys periodically [CLY03]; but in their scheme the proxy key cannot be recovery.

 The proactive cryptography was first proposed by Ostrovsky and Yung [OY91] and

applied by Herzberg et al. in [HJKY95]. In the proactive security scheme, the secret can

be distributed to each party; and each party can refresh her/his share and verify others share.

Moreover, if any party lost her/his share, the other parties can help her/him to reconstruct

her/his share. We list the properties of proactive security as following:

1. Distributing the secret

2. Verifying the shares

3. Refreshing the shares

4. Recovering the shares

H. M. Sun, N. Y. Lee, and T. Hwang, proposed " Threshold proxy signatures" in 1999

[SLH99] with nonrepudiable property to improve Zhang's threshold proxy signature

scheme [Zha97b], but they still lack the property of renewing and recovery. W.G. Tzeng

and Z.J. Tzeng proposed “Robust Forward-Secure Signature Schemes with Proactive

Security,” in PKC 2001 [TT01] to enhances the security of Abdalla and Reyzin’s [AR00]

 82

forward-secure signature scheme via threshold and proactive mechanisms. V. Nikov and

S. Nikova investigates the security of Proactive Secret Sharing Schemes [NN04] which

modifies model of Herzberg’s et al. [HJKY95] by imposing less restriction to the adversary,

but they still lack the property of proxy.

5.1 Proactive Secret Sharing Scheme

The proactive secret sharing proxy signature scheme are based on proactive secret

sharing signature with proxy functionality; hence we describe proactive secret sharing

signature in this session. Proactive secret sharing scheme [HJKY95] is based on verifiable

secret sharing (VSS) [Ped91]. A VSS scheme allows players to be verified that no other

players are lying about the contents of their shares. In other word, a VSS scheme

distribute a secret to n persons such that each person can verify what he has received

correct information about the secret without talking to other persons. We describe the

proactive secret sharing proxy signature scheme as follows.

Let p be a large prime, q be a prime factor of p-1, and g be a generator of order q in

Zp
*. A proactive secret sharing scheme includes n participants {U1, U2, …, Un}⊂

participant group (PG) with (t, n) threshold that at least any t signers can recover the secret.

And there are three schemes – a verifiable secret sharing scheme [Ped91], a secret sharing

update scheme, and a secret sharing recovery scheme in a proactive secret sharing scheme

[HJKY95] which are described as follows:

Each participant Ui in PG selects a secret si∈Zq
*. And the secret s = s1 + s2 + … + sn.

Then, Ui executes Algorithm 5.1 VSS (si, n, t, a) to distribute secret si and publish g ai,0, gai,1,

gai,2, ... , gai,t-1. Algorithm 5.1 is a method in which each participant Ui (1 ≤ i ≤ n)

 83

distributes a secret si into n shares. Thereafter, Ui can compose her/his own share:

sharei = ∑
≠=

n

ijj
j if

,1
)(mod q,

where function fi(x) is defined in Algorithm 5.1.

To prevent participants from distributing wrong shares, Ui needs to publish g ai,0, gai,1,

gai,2, ... , gai,t-1; Ui can verifies her/his own sharei by checking whether the following

equation holds:

∑
= =

n

j
j

i

if
share gg 1

)(

= gs∏
−

=

1

1

)(
t

j

ia j
jg mod

= gs∏
−

=

∑
=

1

1

)(1
,t

j

i
a

j

n

k
jk

g mod p

f(x) = s +∑
=

n

k
ka

1
1, x +∑

=

n

k
ka

1
2, x2 + ... + ∑

=
−

n

k
tka

1
1, xt-1

= s + ∑∑
−

= =

1

1 1
,

t

j

n

k
jka xj

 Without loss generality, we assume that given any t shares share1, …, sharet which

can rebuild secret s = f(0) by Lagrange interpolating formula [MOV96] as follows:

s =f (0)= ∑
=

t

k
kshare

1
∏

≠= −
−t

kjj jk
j

,1)(
)0((mod q).

 84

Algorithm VSS(si: a secret, n : number of participant group, t : number of recovery share,

a : random coefficient code)

Summary: A verifiable secret sharing scheme without dealer. At least t participants from

{U1, ... , Un} can rebuild the secret s.

Secret sharing generation

1. Obtain (p, q, g).

2. Each participant Ui let ai,0= si and selects random number ai,1, ai,2,… , ai,t-1.

3. Ui generates a polynomial of degree t-1: fi(x) = ai,0 +∑
−

=

1

1
,

t

k

k
ki xa (mod q).

4. Then, Ui computes and sends fi(j) to Uj (for j = 1, … , n; i ≠ j) in a secure manner;

then Ui publishes g ai,0, gai,1, gai,2, ... , gai,t-1.

5. Let a1=∑
=

n

k
ka

1
1, , a2=∑

=

n

k
ka

1
2, , …, at-1=∑

=
−

n

k
tka

1
1, ; then

f(x) = s +∑
=

n

k
ka

1
1, x +∑

=

n

k
ka

1
2, x2 + ... + ∑

=
−

n

k
tka

1
1, xt-1 = s + ∑∑

−

= =

1

1 1
,

t

j

n

k
jka xj.

Secret sharing acceptance

4. Each Ui receives fj(i) (for j = 1, … , n; j ≠ i) from the other participants; then computes

sharei =∑
=

n

j
j if

1
)((mod q) as her/his share.

5. Each Ui verifies sharei by checking the following equation holds:

∑
= =

n

j
j

i

if
share gg 1

)(

= gs∏
−

=

1

1

)(
t

j

ia j
jg mod p = gs∏

−

=

∑
=

1

1

)(1
,t

j

i
a

j

n

k
jk

g mod p.

6. Return sharei.

Algorithm 5.1 Verifiable Secret Sharing Scheme

 85

Secret share update

Each participant Ui in PG collaborates to renew his own share sharei(old) into new share

sharei(new) by Algorithm 5.2 ShareUpdate(sharei(old), n, t). The secret s is still kept,

because algorithm VSS (0, n, t, a) satisfies constrains f (0) = s and fi (0) = 0 respectively.

Algorithm ShareUpdate(sharei(old): a secret, n : number of participant group, t : number of

recovery share)

Summary: Update share without change the secret.

1. Obtain (p, q, g).

2. Each participant Ui selects random number bi,1, bi,2,… , bi,t-1.

3. Ui generates a polynomial: fi(x) =∑
−

=

1

1
,

t

k

k
ki xb (mod q) which satisfy fi (0) = 0.

4. Ui publishes gbi,1, gbi,2, ..., gbi,t-1.

5. Ui computes fi(j) and sends it to Uj.

6. Ui computes sharei(new)= sharei(old)+ ∑
=

n

j
j if

1
)((mod q).

7. Ui verifies sharei(new) by checking

∑
= =

+
n

j
joldi

newi

ifshare
share gg 1

)(
)(

)(

= gs∏
−

=

1

1

)()(
t

j

ia j
newjg mod p = gs∏

−

=

+∑
=

1

1

)(

)(1
,,t

j

i
ba

j

n

k
jkjk

g mod p.

8. Return sharei(new).

Algorithm 5.2 Share Update

 86

Secret share recovery

Suppose that Ur is a participant whose share corrupted and could not pass secret

sharing acceptance of Algorithm 5.1. At least t participants who pass secret sharing

acceptance of Algorithm 5.1 can execute Algorithm 5.3 ShareRecovery(r, n, t) to help Ur

recover sharer. From the t participants’ help, Ur can rebuild f~ (x). Because the function

fi(r) = 0 in Algorithm 5.3, the rebuild function)(~ rf = f(r) = sharer. Furthermore, due to

f~ (0) is randomized without parameter s, Ur can not calculate the secret s.

Algorithm ShareRecovery(r : the under fixed participant Ur, n : the number of participant

group, t : the number of recovery share)

Summary: t participants { U1, ... , Ut } collaborate to rebuild the secret share of Ur.

1. Each participant Ui ∈{ U1, ... , Ut }selects random number ci,0,ci,1, ci,2,… , ci,t-1.

2. Ui generates a polynomial: fi(x) =∑
−

=

1

0
,

t

k

k
ki xc (mod q) which satisfies fi(r) = 0.

3. Ui send fi(j) to Uj where j = 1, … , t; j≠i.

4. On receiving fj(i), Ui computes recoveryri =∑
=

t

j
j if

0
)(and forwards it to Ur.

5. Ur uses the return values { recoveryr1, recoveryr2, …, recoveryrt } and Lagrange

interpolation formula to obtain)(~ xf =∑
=

t

k
rkeryre

1
cov ∏

≠= −
−t

kjj jk
j

,1)(
)0((mod q). Then

recover her/his share f (r) =)(~ rf (mod q).

6. Return sharer = f (r).

Algorithm 5.3 Share Recovery

 87

5.2 Proactive Secret Sharing Proxy Signature Scheme

We are the first one who combine proxy and proactive properties to propose a

proactive secret sharing proxy signature scheme. In our scheme, original signer could

distribute the secret to designated signers, called proxy signers. The proxy signers could

renew their own proxy shares periodically without changing the secret. Moreover, if any

proxy signer lost her/his share, the other t proxy signers can help her/him to reconstruct

her/his share. Therefore, we enhance the security of proxy signature scheme via proactive

mechanisms to overcomes the key exposure and key recovery problem.

There exist a system authority (SA) and a certificate authority (CA) in the proactive

secret sharing proxy signature scheme. The SA manages the public directory and initiates

the system parameter (p, q, g) used in the following section; and the CA certifies proxy

signers’ key pair. In our scheme, the function h(·) denotes as a one-way hash function;

Alice and { U1, ... , Un } ⊂ PG (proxy group) denotes an original signer and proxy signers

respectively. Alice’s key pairs are (x0, y0 = gx0 mod p) and each proxy signer Ui has

iid and key pairs (xi, yi= gxi mod p, where i=1, … , n) which are certified by the CA.

Between an original signer Alice and proxy signers { U1, ... , Un }, there is a warrant mw to

describe the relationship of delegation including the identities of PG, the original signer,

Alice and proxy duration etc.

 The proactive secret sharing proxy signature scheme contains five sub-functions:

proxy generation, proxy share update, proxy signature generation, proxy signature

verification and proxy key share recovery. We describe as follows:

 88

5.2.1 Proxy Generation

Step 1. (Group key generation)

SA chooses a random number xG as a group key and selects random numbers d1, ... ,

1−td to create fG(x) as following:

fG(x) = xG + d1x+…+ 1
1

−
−

t
t xd (mod q).

Then, SA sends the shares γi = fG(i) (mod q) to each corresponding proxy signer

Ui∈PG (where i=1, …, n) in a secure manner and publishes:

gxG, D1= gd1, … , Dt-1= gdt-1.

Step 2. (Proxy key generation)

The original signer Alice chooses randomly k ∈ Zq
*; computes K = gk mod p, and

creates proxy key as following and publish gσ:

σ = k + x0h(mw, K) (mod q).

Step 3. (Proxy sharing)

The original signer Alice executes algorithm 5.1 VSS(σ, n, t, b) to share proxy key

σ and the shares are b0(= σ), b1, … , bt-1. Let Bj = gdj mod p, j = 0, … , t-1. Then

Alice distributes fj(i) (i, j = 1, …, n) and (mw, K) to the corresponding proxy signers

in a secure manner and publishes Bj (j=0, …, t-1). The function f(x) will be:

f(x) = σ +∑
=

n

k
kb

1
1, x +∑

=

n

k
kb

1
2, x2 + ... + ∑

=
−

n

k
tkb

1
1, xt-1 = s + ∑∑

−

= =

1

1 1
,

t

j

n

k
jkb xj

Step 4. (Group key acceptance)

Once proxy signer Ui ∈ PG receiving γi and fj(i) (i, j = 1, …, n), she/he computes

her/his own share sharei = ∑
≠=

n

ijj
j if

,1
)(and executes acceptance of algorithm 5.1 to

 89

check validity of sharei and γi.

Step 5. (Proxy key share generation)

If the shares are valid, each proxy signer Ui ∈ PG creates her/his proxy key share:

σ'i= sharei + γi h(mw, K)(mod q)

5.2.2 Proxy share update

Step 1. Each proxy signer Ui ∈ PG executes algorithm 5.2 ShareUpdate(sharei(old), n, t) and

obtains sharei(new), i = 1, … , n.

Step 2. Each proxy signer Ui ∈ PG sends fi(j) mod q(i, j = 1, … , n) to Alice and

re-computes her/his own proxy key share σ'i(new) = sharei(new) + γi h(mw, K)(mod q).

Step 3. Alice update the function f (x):

f(new)(x) = f(old)(x) +∑
=

n

j
j xf

1
)(;

 The function f(new)(x) still satisfies f(new)(0) = s.

5.2.3 Proxy signature generation

Without loss of generality, we assume that {U1, … , Ut} ⊂ PG is a set of proxy signers,

who collaborate to sign a message m on behalf of the original signer.

Step 1. Each proxy signer Ui ∈ {U1, … , Ut} executes algorithm 5.1 VSS (α, n, t, c) for

sharing a random number α (α = c0, Cj = jcg mod p, j = 0, … , t-1), obtains shareki;

and publishes Cj, where i = 0, … , t-1.

 90

Step 2. To create a proxy signature of the message m, each proxy signer Ui ∈ {U1, … , Ut}

computes SPi = shareki + σ'i h(m, C0)(mod q). Then sends SPi and σ'i to other

proxy signers Uj, j = 1, … , t, j≠i.

On receiving all the SPi and σ'i, Uj (j = 1, … , t) rebuilds σ using Lagrange

interpolating formula. And Uj checks whether

gσ = K(y0)h(mw, K) and

jSPg = ∏
−

=

1

0

t

i

j
i

i

C [∏
−

=

1

0

t

i

j
i

i

B (gxG∏
−

=

1

1

t

i

j
i

i

D) h(mw, K)]h(m,C0)(mod p)

Step 3. Each proxy signer Ui ∈ {U1, … , Ut} computes T = c0 + σh(m, C0) by applying

Lagrange interpolating formula to SPi. The proxy signature on m is:

(m, mw, T, C0, K).

5.2.4 Proxy signature verification

 A verifier can verify the validity of the proxy signature (m, mw, T, C0, K) by checking

whether following equation holds.

gT = C0[K(y0
h(mw,K))]h(m, C0)

because gT = gc0 + σh(m, C0) = gc0gσh(m, C0)

= C0[gσ]h(m, C0) = C0[gσ]h(m, C0)

= C0[gk + x0h(mw, K)]h(m, C0)

= C0[Kgx0h(mw, K)]h(m, C0)

= C0[K(y0
h(mw,K))]h(m, C0)

 91

5.2.5 Proxy share recovery

Suppose the result of which a proxy signer Ur verifies the share update is failed. At

least t proxy signers can help Ur recovery her/his share by executing algorithm 5.3

ShareRecovery(Ur, n, t).

5.3 Comparing to other schemes

The proactive secrete sharing proxy signature scheme also uses CA to identify group

key and identities of both the original signer and proxy signers. Furthermore, our scheme

periodical update key to prevent possible attack. If some proxy signer lost her/his own

share, we also can recovery her/his own share through at least t shares of legal proxy

signers. We compare to the other scheme in following table.

Table 5.1 Comparing of Proactive Secrete Sharing Proxy Signature
 Proxy

Functionality
Group-
oriented

Verifiable Secret
Sharing

Share
Renewing

Share
Recovery

Manbo’s Proxy
[MUO96]

√

HJKY’s Proactive
[HJKY95]

 √ √ √ √ √

Sun's Threshold
[SLH99]

√ √ √ √

Tzeng’s Proactive
[TT01]

 √ √ √ √ √

HWW threshold
[HWW 03]

√ √ √

Chang’ Forward Proxy
[CLY03]

√ √

Our proposed scheme √ √ √ √ √ √

 92

Chapter 6 Conclusion

6.1 Conclusion

In this dissertation, we survey lots of related works and propose a novel proxy

signature scheme based on QR, strong proxy signature schemes based on DSA and ECDSA

respectively and a proactive secret sharing proxy signature scheme. On the other hand, we

also analyze one-way hash function, SHA-160, useful technique using in proxy signature

scheme, on message schedule and propose an extended SHA-160 and proposed dynamic

extended DES respectively.

Through the investigation, most of proxy signature schemes are based on discrete

logarithm problem; and the proxy signature schemes based on ECC and factoring are

proposed in 2002 and 2003 respectively. We discuss QR approach and propose a proxy

signature scheme based on QR, which is a new approach to implement proxy signature.

Moreover, most of the proposed proxy signature schemes are not feasible in practice

because the security of those schemes cannot be really proved. Therefore, based on

standard signature, DSA/ECDSA, we propose the proxy signature schemes based on

DSA/ECDSA, which is pretty well known by their security properties. In addition, the

proposed schemes not only satisfy all the requirements of strong proxy signature, which

proposed by Lee, et al. but also can combine PKI to prevent man-in-middle attack.

To solve key exposure problem, many threshold proxy signature schemes are proposed

in which the k out of n threshold schemes deployed; but they still lack the proactive

property. As a result, we propose a proactive secret sharing proxy signature scheme to

enhance the security of proxy signature. The proxy shares of proposed scheme are

periodically renewed; therefore, even if the proxy shares are compromised in some one

 93

period, it will be hurtless. In addition, if any proxy share is ruined, the other proxy signer

can help her/him to recovery her/his share.

Plenty of digital signatures such DSA, ECDSA, proxy signature etc. apply a one-way

hash function to make they efficient. SHA-serials are most famous one-way hash

functions and also are standard one-way hash function in United States and Europe.

Although FIPS-2, strengthened version of the SHA-1, is proposed, lots of applications are

using SHA-160 prior to this date. We, therefore, analyze message schedule of SHA-160

and discover the decay phenomenon; nevertheless, we introduce two SHA-160 corrections

to enhance the security of SHA-160.

Electronic Signature Law is established in many countries, the proxy signature scheme

is one of most important digital signature applications. We hope our enhancement and

proposed schemes can make proxy signature schemes feasible in practice.

6.2 Future works

 Via SHA-160 analysis, we know that the more nonlinear terms are involved, the more

terms of ft will be effective. Basing on our result, we will analyze message schedule

wt = (wt-t1)b1♁(wt-t2)b2♁(wt-t3)b3♁(wt-16)b4 of SHA-160 to make the optimal development in

the future. Wang et al. developed efficient methods to find collisions in SHA-160 with

time complexity 269; as a result, the SHA-160 faces seriously potential attacks to be used in

many applications. We will continue our analysis on SHA-256, 384, 512 and further

develop the more secure one-way hash function.

 The proxy signature based on QR is more efficient than proxy signature based on

discrete logarithm or factoring but there are too many parameters in the proxy signature

 94

scheme based on QR. To reduce complexity of parameters, and find another way to

implement proxy signature based on QR without SA are future works. In addition, to

compare to other bases proxy signature scheme is our future work too.

 The proxy signature scheme can be used in mobile agents, which are autonomous

software entities to migrate across different execution environments. Non-repudiation

property is also considered in the electronic commerce circumstance. So a customer (proxy

signer) representing an original signer generates and loads delegation key pair to the mobile

agent for the heterogeneous environment. The proxy signature applying on mobile agents

is an interesting topic for future works.

 95

References

[AF99] C. Adms, S. Farrell, “Internet X.509 public key infrastructure certificate

management protocols,” March 1999.

[ANSI99] ANSI X9.63, “Public key cryptography for the financial services industry:

Key agreement and key transport using elliptic curve cryptography,” Jan 1999.

[AR00] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,”

Proceedings of Advances in Cryptology – Asiacrypt 2000, Springer-Verlag,

2000.

[BC04] Eli Biham, Rafi Chen, "Near-Collisions of SHA-0," Advances in Cryptology -

Crypto' 2004, LNCS 3152, Springer-Verlag, 2004.

[Bla79] G. R. Blakley, “Safeguarding cryptographic keys,” Proceedings of the National

Computer Conference, 1979, American Federation of Information Processing

Societies, v.48, pp. 242-268, 1979.

[BPH02] L. Bassham, W. Polk, R. Housley, ”Algorithms and Identifiers for the Internet

X.509 public key infrastructure certificate and Certificate Revocation List

(CRL) profile,” RFC3279, April 2002.

[CFSMW03] S. Chokhan, W. Ford, R. Sabett, C. Merill, S. Wu, “ Internet X.509 public

key infrastructure certificate policy and certificate practices framework,”

RFC3647, November 2003.

[Cha83] D. Chaum, ”Blind signatures for untraceable payments,” Advances in

Cryptology - Crypto '82, Springer-Verlag, pp.199-203, 1983.

[Chang05] Ming-Hsin Chang, "On proxy signatures with forward-secure and one-time

properties and their application in PKI," National Chiao-Tung University,

Dissertation, March 2005.

[CJ98] F. Chabaud, and A. Joux, "Differential collisions in SHA-0," Crypto'98, H.

Krawczyk ed., LNCS 1462, pp 56-71, 1998.

[CLC02] Tzer-Shyong Chen, Tzuoh-Pyng Liu, Yu-Fang Chung, “A proxy-protected

proxy signature scheme based on the elliptic curve cryptosystem,”

 96

Proceedings of IEEE TENCON'02, pp. 184-187, 2002.

[CLY03] Ming-Hsin Chang, Tzu-Shin Lin, Yi-Shung Yeh, "Forward Secure Proxy

Signature Scheme," Proceedings of National Computer Symposium

(NCS2003), pp.1381-1387, 2003.

[DF89] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” In G. Brassard, editor,

Advances in Cryptology – Crypto'89, LNCS No. 435, Springer–Verlag,

pp.307-315, 1989.

[DH76] W. Diffie, and M. Hellman, “New Directions in Cryptography,” IEEE

Transactions on Information Theory, v.22, pp. 644-654, 1976.

[EFF98] Electronic Frontier Foundation, Cracking DES: Secrets of Encryption

Research, Wiretap Politics, and Chip Design, Sebastopol, CA, O'Reilly, 1998.

[ElG85] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4,

pp. 469-472, July 1985.

[FL96] C. I. Fan, and C. L. Lei, "Efficient blind signature scheme based on quadratic

residues," Electronic Letters, Vol.32, No. 9, pp 811-813, 25th April 1996.

[FL98] C. I. Fan, and C. L. Lei, "User efficient blind signatures," Electronic Letters,

Vol.34, No. 6, pp 544-545, 19th March 1998.

[Han04] Darrel Hankerson, Alfred Menezes and Scott Vanstone, Guide to Elliptic

Curve Cryptography, Springer, 2004.

[HJKY95] Amir Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret

sharing or how to cope with perpetual leakage,” in Advances in Cryptology:

(D. Coppersmith, ed.) CRYPTO '95, vol. 963 of Lecture Notes in Computer

Science, Springer, pp. 339–352, 1995.

[HTT04] Min-Shiang Hwang, Shiang-Feng Tzeng, and Chwei-Shyong Tsai,

"Generalization of proxy signature based on elliptic curves," Computer

Standards & Interfaces, vol.26, pp.73–84, March 2004.

[HWW03] Chien-Lung Hsu, Tzong-Sun Wu, Tzong-Chen Wu, “Improvement of

threshold proxy signature scheme,” Applied Mathematics and Computation,

 97

136, pp. 315–321 2003.

[IEEE05] IEEE P1363, ”Standard specifications for public-key cryptography,” Draft

version D21, July 17, 2005.

[Ker83] Auguste Kerckhoffs, La cryptographie militaire, Journal des sciences

militaires, vol. IX, pp. 5–83, Jan. 1883, pp. 161–191, Feb. 1883.

[Kob87] Neal Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,

48(177), pp. 203-209, 1987.

[KPW97] S. Kim, S. Park, and D. Won, "Proxy signatures, revisited," Proceedings of

ICICS'97, Springer-Verlag, LNCS 1334, pp. 223-232, 1997.

[KT03] Marcelo E. Kaihara and Naofumi Takagi, "VLSI Algorithm for Modular

Multiplication/Division," 16th IEEE Symposium on Computer Arithmetic

(ARITH-16), pp. 220-227, 2003.

[LA05] S. Lal and A.K. Awasthi, "Proxy blind signature scheme," Revised Version,

Transaction on Cryptology, ePrint Archive, pp. 5-11, 2005, available at

http://eprint.iacr.org/2003/072.pdf

[Lam79] L. Lamport, "Constructing digital signatures from a one-way function,"

Technical Report CSL-98, SRI International, 1979.

[LC03] Wei-Bin Lee and Tzung-Her Chen, “Constructing a proxy signature scheme

based on existing security mechanisms,” Information& Security International

Journal, vol. 12, no. 2, pp.250-258, 2003.

[LHW98] Narn-Yih Lee, Tzonelih Hwang, Chih-Hung Wang, “On zhang's nonrepudiable

proxy signature schemes,” ACISP 1998, pp. 415-422, 1998.

[LK99] B. Lee, and K. Kim, "Strong proxy signatures,” IEICE Trans. Fundamentals,

vol. E82-A, no.1, pp.1-11, Jan 1999.

[LKK01a] B. Lee, H. Kim and K. Kim, "Strong proxy signature and its applications,"

Proceedings of SCIS 2001, 11B-1, pp. 603-608, 2001.

[LKK01b] B. Lee, H. Kim, and K. Kim, “Secure mobile agent using strong non-

designated proxy signature”, Proceedings of ACISP2001, LNCS vol. 2119,

 98

Springer-Verlag, pp. 474-486, 2001.

[LTH03] Li-Hua Li, Shiang-Feng Tzeng and Min-Shiang Hwang, “Generalization of

proxy signature-based on discrete logarithms,” Computer & Security, vol. 22,

no. 3, pp. 245-255, 2003.

[Men93] Alfred Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic

Publishers, 1993.

[MOV96] Alfred J. Menezes, Paul C. Van, Oorschot and Scott A. Vanstone, Handbook of

Applied Cryptography, CRC Press, 1996.

[MUO96] M. Mambo, K. Usuda, and E. Okamoto, "Proxy signatures: delegation of the

power to sign messages, " IEICE Trans. Fundamentals, vol. E79-A, no.9,

pp.1338-1354, 1996.

[Nessie04] Nessie Project , “Final report of European project number IST-1999-12324,

named NESSIE,” Information Society Technologies (IST), Springer-Verlag ,

April, 2004. https://www.cosic.esat.kuleuven.ac.be/nessie/

[NIST00] NIST. “Digital Signature Standard (DSS),” Federal Information Processing

Standards Publication 186, November 1994. Revision (To include ECDSA)

186-2, January, 2000.

[NIST01] NIST. “Advanced Encryption Standard,” Federal Information Processing

Standards Publication 197, November 2001.

[NIST02] NIST. “Secure hash standard,” Federal Information Processing Standards

Publication FIPS PUB 180-2, Aug. 2002.

[NIST95] NIST. “Secure hash standard,” Federal Information Processing Standards

Publication 180-1, April 1995.

[NN04] Ventzislav Nikov and Svetla Nikova, “On Proactive Secret Sharing Schemes,”

SAC 2004, LNCS 3357, pp. 308-325, Springer-Verlag, 2005.

[OpenSSL] OpenSSL Project's URL: http://www.openssl.org.

[OW94] P. van Oorschot and M. Wiener, "Parallel collision search with application to

hash functions and discrete logarithms," Proceedings of 2nd ACM Conference

 99

on Computer and Communication Security, 1994.

[OY91] R. Ostrovsky and M. Yung, "How to withstand mobile virus attacks,"

Proceedings of the 10th ACM symposium on Principles of Distributed

Computing (PODC), pp.51-61, 1991.

[Ped91] T. P. Pedersen, “Non-interactive and information theoretic secure verifiable

secret sharing,” Crypto' 91 Proceedings, LNCS Vol. 576, Springer-Verlag, pp.

129-140, 1991.

[Per86] Rene C. Peralta "A simple and fast probabilistic algorithm for computing

square roots modulo a prime number," IEEE Trans on Information Theory, Vol.

IT-32, No. 6, pp. 846-847, November 1986.

[PS87] J. M. Pollard, C. P. Schnorr, "An efficient solution of the congruence

X2 + ky2 = m (mod n)," IEEE Trans. Information Theory, 33 (5), pp. 702-709,

1987.

[Ros05] Kenneth H. Rosen, Elementary Number Theory and its Applications, 5th,

Addison-Wesley publishing company, 2005.

[RRSY98] L. Ronald Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, “The RC6 Block

Cipher ”, Version 1.1, August 20 1998.

[RSA00] RSA Laboratories, “PKCS #10: Certification request syntax specification,”

RFC 2986, Version 1.7, November 2000.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Comm. ACM 21 (2), pp. 120-126,

Feb. 1978.

[Sch90] C.P. Schnorr, "Efficient Signature Generation for Smart Cards," Advances in

Cryptology-Crypto `89, Springer-Verlag, pp. 239-252, 1990.

[Sch96] Bruce Schneier, Applied cryptography 2nd, John Wiley & Sons, 1996.

[SH04] H. M. Sun and B. T. Hsieh, “On the Security of the some proxy blind signature

scheme,” Australasian Information Security Workshop (AISW2004), vol. 32,

pp 75-78, 2004.

[Sha79] A. Shamir, “How to share a secret,” Communications of the ACM, v.22, n.11,

 100

pp. 612-613, 1979.

[Shao02] Zuhua Shao, ”Proxy Signature Schemes Based on Factoring,” Information

Processing Letters 85, pp.137–143, 2002.

[Sim79] Gustavus J. Simmons, “Symmetric and Asymmetric Encryption,“ Computer

surveys Vol. 11(4) pp. 305-330, December 1979.

[SLH99] H. M. Sun, N. Y. Lee, and T. Hwang," Threshold proxy signatures" IEE

proceedings – Computers and Digital Techniques, vol. 146, no. 5, pp. 259-263,

1999.

[SPC95] M. Stadler, J.M. Piveteau and J. Camenisch, “Fair blind Signature,” Advances

in Cryptology-Eurocrypt'95, Lecture Notes in Computer Science, 921,

Springer-Verlag, pp.209-219, 1995.

[Sta03] William Stallings, Cryptography and network security principles and practices

3rd, Prentice Hall, 2003.

[Sti02] Douglas R. Stinson, Cryptography Theory and Practice, 2nd, CRC Press, 2002.

[Sun99] H. M. Sun, "An efficient nonrepudiable threshold proxy signature scheme with

known signers," Computer Communications, vol. 22, no. 8, New York, IPC

Science and Technology Press, pp. 717-722, 1999.

[TLT02] Z. Tan, Z. Liu and C. Tang, "Digital proxy blind signature schemes based on

DLP and ECDLP," MM Research Preprints, No. 21, MMRC, AMSS,

Academia, Sinica, Beijing, pp. 212-217, December 2002.

[TT01] Wen Guey Tzeng and Zhi Jia Tzeng, “Robust Forward-Secure Signature

Schemes with Proactive Security,” PKC2001, LNCS 1992, pp. 264-276,

Springer-Verlag, 2001.

[WFLY05] X. Wang, D. Feng, X. Lai, H. Yu, "Collisions for Hash Functions MD4, MD5,

HAVAL-128 and RIPEMD", Cryptology ePrint Archive, 2005.

[WV99] C. K. Wu and V. Varadharajan., "Modified Chinese Remainder Theorem and

its application to proxy signatures," In ICPP Workshop, pp.146-151, 1999.

[WY05] X. Wang and H. Yu, "How to Break MD5 and Other Hash Functions",

EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.

 101

[YH02] Yi-Shiung Yeh and Ching-Hung Hsu “An Extended DES,” Journal of

Information Science and Engineering, Vol.18, No. 3, pp349-365, May 2002.

[XC05] Qingshui Xue, Zhenfu Cao, "Factoring based proxy signature schemes,"

Journal of Computational and applied mathematics, 2005.

[Zha97a] K. Zhang, "Nonrepudiable proxy signature schemes," Manuscript, Available at

http://citeseer.nj.nec.com/360090.html, 1997.

[Zha97b] K. Zhang, "Threshold Proxy Signature Schemes," 1997 Information Security

workshop, Japan, pp.191-199, Sep. 1997.

 102

Appendix A

Appendix A list the result of t1, t2, t3 in the equation

wt = ROTL1(wt-t1♁wt-t2♁wt-t3♁wt-t4), where 16 ≤ t ≤ 79 }.

t1 t2 t3 Total terms
Maximum number of
involved terms in wt

Average terms
involved of all wt

1 2 3 7222 177 112.5938
1 2 4 7143 203 111.3594
1 2 5 7377 172 115.0156
1 2 6 7173 169 111.8281
1 2 7 8383 194 130.7344
1 2 8 7065 171 110.1406
1 2 9 7427 169 115.7969

1 2 10 7279 175 113.4844
1 2 11 8670 212 135.2188
1 2 12 7189 182 112.0781
1 2 13 8663 212 135.1094
1 2 14 7155 190 111.5469
1 2 15 6705 169 104.5156
1 3 4 6547 151 102.0469
1 3 5 5670 134 88.34375
1 3 6 6706 161 104.5313
1 3 7 6025 149 93.89063
1 3 8 6050 136 94.28125
1 3 9 6136 133 95.625
1 3 10 6873 165 107.1406
1 3 11 6312 157 98.375
1 3 12 5937 153 92.51563
1 3 13 7436 172 115.9375
1 3 14 5701 137 88.82813
1 3 15 7337 172 114.3906
1 4 5 6070 140 94.59375

1 4 6 6372 157 99.3125

 103

1 4 7 4686 129 72.96875
1 4 8 5903 146 91.98438
1 4 9 5940 132 92.5625
1 4 10 4364 116 67.9375
1 4 11 6636 165 103.4375
1 4 12 6234 149 97.15625
1 4 13 4176 111 65
1 4 14 6663 156 103.8594
1 4 15 7066 180 110.1563
1 5 6 5716 137 89.0625
1 5 7 5454 126 84.96875
1 5 8 5051 116 78.67188
1 5 9 4654 102 72.46875
1 5 10 6057 137 94.39063
1 5 11 5608 126 87.375
1 5 12 5352 125 83.375
1 5 13 5161 120 80.39063
1 5 14 5987 139 93.29688
1 5 15 5993 135 93.39063
1 6 7 6247 172 97.35938
1 6 8 5691 144 88.67188
1 6 9 5176 122 80.625
1 6 10 6004 161 93.5625
1 6 11 3234 83 50.28125
1 6 12 5904 162 92
1 6 13 5944 170 92.625
1 6 14 5640 140 87.875
1 6 15 6049 169 94.26563
1 7 8 6325 170 98.57813
1 7 9 5331 121 83.04688
1 7 10 4835 143 75.29688
1 7 11 6093 165 94.95313
1 7 12 6229 168 97.07813
1 7 13 4722 132 73.53125
1 7 14 6041 166 94.14063

 104

1 7 15 6109 155 95.20313
1 8 9 5574 132 86.84375
1 8 10 5747 141 89.54688
1 8 11 5863 154 91.35938
1 8 12 5219 144 81.29688
1 8 13 6259 178 97.54688
1 8 14 5646 146 87.96875
1 8 15 5286 146 82.34375
1 9 10 5276 121 82.1875
1 9 11 4819 106 75.04688
1 9 12 5022 119 78.21875
1 9 13 4615 103 71.85938
1 9 14 4925 111 76.70313
1 9 15 4776 112 74.375
1 10 11 5813 167 90.57813
1 10 12 5156 134 80.3125
1 10 13 4716 130 73.4375
1 10 14 5149 131 80.20313
1 10 15 5907 162 92.04688
1 11 12 5491 150 85.54688
1 11 13 5263 152 81.98438
1 11 14 5241 139 81.64063
1 11 15 5306 145 82.65625
1 12 13 5713 157 89.01563
1 12 14 4503 124 70.10938
1 12 15 5474 155 85.28125
1 13 14 5123 148 79.79688
1 13 15 4984 122 77.625
1 14 15 4567 123 71.10938
2 3 4 4002 118 62.28125
2 3 5 4243 138 66.04688
2 3 6 4233 134 65.89063
2 3 7 4308 134 67.0625
2 3 8 4208 113 65.5
2 3 9 4267 130 66.42188

 105

2 3 10 4094 112 63.71875
2 3 11 4519 135 70.35938
2 3 12 3936 129 61.25
2 3 13 4633 151 72.14063
2 3 14 3764 139 58.5625
2 3 15 3694 130 57.46875
2 4 5 3714 99 57.78125
2 4 6 2972 83 46.1875
2 4 7 3981 107 61.95313
2 4 8 2394 62 37.15625
2 4 9 3875 109 60.29688
2 4 10 3086 77 47.96875
2 4 11 4058 110 63.15625
2 4 12 2846 79 44.21875
2 4 13 4272 119 66.5
2 4 14 2866 73 44.53125
2 4 15 4345 121 67.64063
2 5 6 3980 111 61.9375
2 5 7 4009 126 62.39063
2 5 8 3175 89 49.35938
2 5 9 3648 111 56.75
2 5 10 3328 101 51.75
2 5 11 3568 108 55.5
2 5 12 3734 105 58.09375
2 5 13 3462 113 53.84375
2 5 14 3729 107 58.01563
2 5 15 3885 117 60.45313
2 6 7 3458 109 53.78125
2 6 8 2772 78 43.0625
2 6 9 3386 111 52.65625
2 6 10 2770 75 43.03125
2 6 11 3450 108 53.65625
2 6 12 2900 81 45.0625
2 6 13 3560 111 55.375
2 6 14 2946 90 45.78125

 106

2 6 15 3780 127 58.8125
2 7 8 3538 114 55.03125
2 7 9 3212 101 49.9375
2 7 10 3289 101 51.14063
2 7 11 3443 116 53.54688
2 7 12 2891 93 44.92188
2 7 13 3524 112 54.8125
2 7 14 3369 102 52.39063
2 7 15 3550 113 55.21875
2 8 9 3000 90 46.625
2 8 10 2874 74 44.65625
2 8 11 3109 85 48.32813
2 8 12 2730 71 42.40625
2 8 13 3355 99 52.17188
2 8 14 2654 71 41.21875
2 8 15 3258 92 50.65625
2 9 10 2875 88 44.67188
2 9 11 2820 84 43.8125
2 9 12 2792 81 43.375
2 9 13 2772 85 43.0625
2 9 14 2744 82 42.625
2 9 15 2717 80 42.20313
2 10 11 3204 98 49.8125
2 10 12 2808 81 43.625
2 10 13 2896 90 45
2 10 14 2546 64 39.53125
2 10 15 3249 95 50.51563
2 11 12 2997 82 46.57813

2 11 13 3152 92 49
2 11 14 3099 90 48.17188
2 11 15 3159 98 49.10938
2 12 13 3101 90 48.20313
2 12 14 2608 74 40.5
2 12 15 3060 92 47.5625
2 13 14 2855 86 44.35938

 107

2 13 15 2875 88 44.67188
2 14 15 2574 82 39.96875
3 4 5 2566 70 39.84375
3 4 6 2540 74 39.4375
3 4 7 2578 72 40.03125
3 4 8 2324 56 36.0625
3 4 9 2724 77 42.3125
3 4 10 2614 78 40.59375
3 4 11 2938 80 45.65625
3 4 12 2402 68 37.28125
3 4 13 2919 79 45.35938
3 4 14 2413 65 37.45313
3 4 15 2346 66 36.40625
3 5 6 2606 80 40.46875
3 5 7 2275 69 35.29688
3 5 8 2503 65 38.85938
3 5 9 2455 68 38.10938
3 5 10 2726 78 42.34375
3 5 11 2553 71 39.64063
3 5 12 2349 72 36.45313
3 5 13 2599 79 40.35938
3 5 14 2364 76 36.6875
3 5 15 2846 85 44.21875
3 6 7 2571 86 39.92188
3 6 8 2344 74 36.375
3 6 9 2172 69 33.6875
3 6 10 2255 72 34.98438
3 6 11 2398 74 37.21875
3 6 12 2378 78 36.90625
3 6 13 2336 80 36.25
3 6 14 2579 86 40.04688
3 6 15 2449 76 38.01563
3 7 8 2151 68 33.35938
3 7 9 2291 73 35.54688
3 7 10 2358 68 36.59375

 108

3 7 11 2042 64 31.65625
3 7 12 2334 83 36.21875
3 7 13 2321 74 36.01563
3 7 14 2413 86 37.45313
3 7 15 2196 77 34.0625
3 8 9 2346 68 36.40625
3 8 10 2299 65 35.67188
3 8 11 2345 71 36.39063
3 8 12 2081 60 32.26563
3 8 13 1934 57 29.96875
3 8 14 2271 75 35.23438
3 8 15 2367 73 36.73438
3 9 10 2407 70 37.35938
3 9 11 2256 68 35
3 9 12 2113 64 32.76563
3 9 13 2195 68 34.04688
3 9 14 2230 71 34.59375
3 9 15 1866 58 28.90625
3 10 11 2312 65 35.875
3 10 12 2127 63 32.98438
3 10 13 2005 58 31.07813
3 10 14 2071 58 32.10938
3 10 15 2139 60 33.17188
3 11 12 2110 59 32.71875
3 11 13 2084 59 32.3125
3 11 14 2207 66 34.23438
3 11 15 2031 58 31.48438
3 12 13 2099 63 32.54688
3 12 14 1890 60 29.28125
3 12 15 2089 61 32.39063
3 13 14 1979 68 30.67188
3 13 15 1974 63 30.59375
3 14 15 1759 54 27.23438
4 5 6 1845 56 28.57813
4 5 7 1919 58 29.73438

 109

4 5 8 1706 45 26.40625
4 5 9 1990 53 30.84375
4 5 10 1956 63 30.3125
4 5 11 2027 58 31.42188
4 5 12 1816 53 28.125
4 5 13 2083 65 32.29688
4 5 14 1795 63 27.79688
4 5 15 1781 61 27.57813
4 6 7 1811 61 28.04688
4 6 8 1240 34 19.125
4 6 9 1832 51 28.375
4 6 10 1476 43 22.8125
4 6 11 1829 55 28.32813
4 6 12 1348 43 20.8125
4 6 13 1969 65 30.51563
4 6 14 1464 45 22.625
4 6 15 1976 66 30.625
4 7 8 1661 44 25.70313
4 7 9 1758 49 27.21875
4 7 10 1090 30 16.78125
4 7 11 1831 53 28.35938
4 7 12 1757 50 27.20313
4 7 13 1246 38 19.21875
4 7 14 1799 54 27.85938
4 7 15 1828 53 28.3125
4 8 9 1617 41 25.01563
4 8 10 1374 36 21.21875
4 8 11 1603 45 24.79688
4 8 12 896 23 13.75
4 8 13 1601 48 24.76563
4 8 14 1390 38 21.46875
4 8 15 1573 41 24.32813
4 9 10 1552 40 24
4 9 11 1806 52 27.96875
4 9 12 1674 46 25.90625

 110

4 9 13 1734 50 26.84375
4 9 14 1449 42 22.39063
4 9 15 1678 45 25.96875
4 10 11 1488 44 23
4 10 12 1298 34 20.03125
4 10 13 1075 29 16.54688
4 10 14 1350 40 20.84375
4 10 15 1403 38 21.67188
4 11 12 1504 37 23.25
4 11 13 1704 50 26.375
4 11 14 1629 46 25.20313
4 11 15 1665 45 25.76563
4 12 13 1504 41 23.25
4 12 14 1360 40 21
4 12 15 1544 46 23.875
4 13 14 1485 47 22.95313
4 13 15 1484 45 22.9375
4 14 15 1357 43 20.95313
5 6 7 1389 45 21.45313
5 6 8 1355 35 20.92188
5 6 9 1503 36 23.23438
5 6 10 1447 37 22.35938
5 6 11 1464 40 22.625
5 6 12 1498 45 23.15625
5 6 13 1591 48 24.60938
5 6 14 1305 39 20.14063
5 6 15 1355 38 20.92188
5 7 8 1336 38 20.625
5 7 9 1288 36 19.875
5 7 10 1434 37 22.15625
5 7 11 1350 37 20.84375
5 7 12 1307 37 20.17188
5 7 13 1490 45 23.03125
5 7 14 1380 42 21.3125
5 7 15 1473 43 22.76563

 111

5 8 9 1304 34 20.125
5 8 10 1256 34 19.375
5 8 11 1245 33 19.20313
5 8 12 1325 35 20.45313
5 8 13 1398 39 21.59375
5 8 14 1299 33 20.04688
5 8 15 1438 40 22.21875
5 9 10 1403 37 21.67188
5 9 11 1325 33 20.45313
5 9 12 1440 42 22.25
5 9 13 1206 32 18.59375
5 9 14 1406 38 21.71875
5 9 15 1404 39 21.6875
5 10 11 1481 46 22.89063
5 10 12 1328 37 20.5
5 10 13 1296 40 20
5 10 14 1327 36 20.48438
5 10 15 1164 32 17.9375
5 11 12 1380 44 21.3125
5 11 13 1281 36 19.76563
5 11 14 1288 36 19.875
5 11 15 1327 39 20.48438
5 12 13 1307 40 20.17188
5 12 14 1209 40 18.64063
5 12 15 1370 44 21.15625
5 13 14 1257 43 19.39063
5 13 15 1223 36 18.85938
5 14 15 1118 36 17.21875
6 7 8 1062 28 16.34375
6 7 9 1138 29 17.53125
6 7 10 1183 31 18.23438
6 7 11 1145 35 17.64063
6 7 12 1183 38 18.23438
6 7 13 1268 38 19.5625
6 7 14 1063 32 16.35938

 112

6 7 15 1145 37 17.64063
6 8 9 1112 29 17.125
6 8 10 860 21 13.1875
6 8 11 1084 30 16.6875
6 8 12 832 20 12.75
6 8 13 1211 34 18.67188
6 8 14 870 24 13.34375
6 8 15 1148 29 17.6875
6 9 10 1103 29 16.98438
6 9 11 1117 31 17.20313
6 9 12 1060 30 16.3125
6 9 13 1192 34 18.375
6 9 14 1179 32 18.17188

6 9 15 1110 30 17.09375

6 10 11 1037 31 15.95313

6 10 12 938 25 14.40625

6 10 13 1103 35 16.98438

6 10 14 900 24 13.8125

6 10 15 1148 30 17.6875

6 11 12 1014 29 15.59375

6 11 13 1023 29 15.73438

6 11 14 1007 28 15.48438

6 11 15 998 29 15.34375

6 12 13 1087 34 16.73438

6 12 14 918 25 14.09375

6 12 15 1080 36 16.625

6 13 14 1061 39 16.32813

6 13 15 1059 38 16.29688

6 14 15 958 33 14.71875

7 8 9 929 23 14.26563

7 8 10 913 23 14.01563

7 8 11 992 28 15.25

7 8 12 905 26 13.89063

7 8 13 1069 31 16.45313

7 8 14 892 28 13.6875

 113

7 8 15 987 29 15.17188

7 9 10 942 25 14.46875

7 9 11 931 25 14.29688

7 9 12 961 27 14.76563

7 9 13 951 31 14.60938

7 9 14 995 29 15.29688

7 9 15 998 25 15.34375

7 10 11 948 25 14.5625

7 10 12 967 29 14.85938

7 10 13 598 16 9.09375

7 10 14 917 25 14.07813

7 10 15 952 25 14.625

7 11 12 1015 34 15.60938

7 11 13 929 30 14.26563

7 11 14 1005 33 15.45313

7 11 15 875 26 13.42188

7 12 13 958 32 14.71875

7 12 14 902 30 13.84375

7 12 15 958 32 14.71875

7 13 14 871 31 13.35938

7 13 15 870 27 13.34375

7 14 15 827 31 12.67188

8 9 10 777 19 11.89063

8 9 11 850 21 13.03125

8 9 12 788 23 12.0625

8 9 13 877 25 13.45313

8 9 14 813 24 12.45313

8 9 15 859 23 13.17188

8 10 11 820 24 12.5625

8 10 12 612 15 9.3125

8 10 13 828 30 12.6875

8 10 14 670 17 10.21875

8 10 15 866 26 13.28125

8 11 12 757 21 11.57813

8 11 13 885 27 13.57813

 114

8 11 14 768 21 11.75

8 11 15 878 28 13.46875

8 12 13 736 20 11.25

8 12 14 624 19 9.5

8 12 15 762 22 11.65625

8 13 14 761 27 11.64063

8 13 15 798 27 12.21875

8 14 15 717 24 10.95313

9 10 11 731 19 11.17188

9 10 12 655 18 9.984375

9 10 13 738 23 11.28125

9 10 14 684 18 10.4375

9 10 15 757 24 11.57813

9 11 12 699 18 10.67188

9 11 13 708 18 10.8125

9 11 14 775 25 11.85938

9 11 15 708 20 10.8125

9 12 13 738 23 11.28125

9 12 14 714 23 10.90625

9 12 15 687 21 10.48438

9 13 14 680 23 10.375

9 13 15 648 25 9.875

9 14 15 639 19 9.734375

10 11 12 558 13 8.46875

10 11 13 625 17 9.515625

10 11 14 591 15 8.984375

10 11 15 656 19 10

10 12 13 623 16 9.484375

10 12 14 468 14 7.0625

10 12 15 613 18 9.328125

10 13 14 592 15 9

10 13 15 586 17 8.90625

10 14 15 564 14 8.5625

11 12 13 517 13 7.828125

11 12 14 505 15 7.640625

 115

11 12 15 552 19 8.375

11 13 14 575 16 8.734375

11 13 15 515 13 7.796875

11 14 15 516 14 7.8125

12 13 14 442 12 6.65625

12 13 15 482 14 7.28125

12 14 15 448 14 6.75

13 14 15 366 13 5.46875

	博碩士論文全文電子檔著作權授權書
	博碩士紙本論文著作權授權書
	國家圖書館 博碩士論文電子檔案上網授權書
	摘　　要
	Abstract
	 誌 謝
	 Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation and Related Work
	1.2 Organization of Dissertation

	 Chapter 2 Cryptography
	2.1 Cryptosystem
	2.2 Symmetric Ciphers
	2.2.1 Encryption Standard in U.S.
	2.2.2 Dynamic Extended DES
	2.2.3 NESSIE

	2.3 Asymmetric Ciphers
	2.3.1 RSA Cryptosystem
	2.3.2 Discrete Logarithm problem
	2.3.3 Description of Elliptic Curves

	2.4 One way hash functions
	2.4.1 Secure Hash Standard
	2.4.2 Analyze SHA-160 in message schedule
	2.4.3 The First Modification scheme of SHA-160 (SHA-m1)
	2.4.4 The Second Trial of SHA-160
	Total Terms

	2.4.5 The Third Modification scheme of SHA-160 (SHA-m2)

	 Chapter 3 Preliminaries
	3.1 Digital Signature
	3.1.1 Proxy signature
	Brief Description of Mambo’s scheme

	3.1.2 Strong proxy signature
	Proxy secret generation

	3.1.3 Blind signature
	3.1.4 Lamport’s One time signature

	3.2 Secret Sharing
	3.2.1 Shamir (t, n) - threshold scheme
	3.2.2 Verifiable Secret Sharing

	3.3 Quadratic Residues
	3.4 Digital signature standard
	3.4.1 DSA
	3.4.2 ECDSA

	 Chapter 4 The Proposed Proxy Signatures
	 4.1 Proxy Signature based on Digital Signature Algorithm
	4.1.1 Proxy Signature Based on Digital Signature Algorithm
	4.1.2 Proxy Signature Based on DSA
	4.1.2.1 Correctness of proxy signature scheme based on DSA

	4.1.3 Proxy Signature based on ECDSA
	4.1.3.1 Correctness of proxy signature scheme based on ECDSA
	4.1.3.2 Proxy Signature based on ECDSA example demonstration

	4.1.4 Security analysis and comparisons

	 4.2 Proxy Signature Based on QR
	4.2.1 Delegation by warrant proxy signature scheme based on QR
	4.2.2 Correctness analysis of DWPSQR
	4.2.3 Security requirements of DWPSQR
	4.2.4 Time complexity and security analysis

	 Chapter 5 Proxy Signature with Proactive Property
	5.1 Proactive Secret Sharing Scheme
	Secret sharing acceptance

	 5.2 Proactive Secret Sharing Proxy Signature Scheme
	5.2.1 Proxy Generation
	5.2.2 Proxy share update
	5.2.3 Proxy signature generation
	5.2.4 Proxy signature verification
	5.2.5 Proxy share recovery

	5.3 Comparing to other schemes

	 Chapter 6 Conclusion
	6.1 Conclusion
	6.2 Future works

	 References
	 Appendix A

