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Copula 模式之下 雙變元存活資料之統計推論 

學生: 花文妤       指導教授: 王維菁 博士 

 

國立交通大學統計研究所 

 

 

 

 

摘要 

本論文主要是考慮在 Copula 模式之下,雙變元存活資料受限於右設限之半

母數推論.目前存在許多估計相關性參數之半母數推論方法.我們比較三

種推論方法針對不存在解釋變數之同質性資料.並利用迴歸的概念將現有

的方法延伸至處理邊際異質的資料.最後,藉由模擬結果檢視上述方法之

有限樣本的表現. 

 

 

 

 

 

 

 

 

關鍵字: 雙變元存活資料;Cox 比例風險模式;相關存活時間;Clayton 模

式;Copula 模式;半母數推論;二階段估計式;2×2 表格 
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Statistical Inference for Bivariate Survival Data  

Based on Copula Models 

Student: Hua, Wen-Yu       Adivsor: Dr. Weijing Wang 

 

Institute of Statistics Notional Chiao Tung University 

 

 

Abstract 

 

 The thesis considers semi-parametric inference based on Copula models for 

bivariate survival data subject to right censoring. There exist several semi-parametric 

inference approaches to estimating the association parameter. We examine and 

compare three approaches developed for homogeneous data in absence of covariates. 

Then we extend these methods to a regression setting that accounts for marginal 

heterogeneity explained by the covariates. Finite-sample performances are examined 

by simulations. 

 

 

 

 

 

 

Key words: Bivariate survival data; Cox proportional hazard model; Correlated 

failure times; Clayton model; Copula model; Semi-parametric inference; Two-stage 

estimation; Two-by-two tables. 
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Chapter 1 Introduction 

1.1 Background 

Multivariate survival analysis has wide applications in various fields. Consider an 

application in the study of familial aggregation for age onset data. The outcomes of 

age-at-onset within families may be correlated due to genetic and shared environmental risk 

factors among family members. Understanding the pattern of association may shed light on 

the disease etiology and is an important step useful for further scientific investigation.  

Let ( nTT ,...,1 ) be the failure time variables for k  members in a family. Note that iT  and 

jT  for ji ≠ are often correlated. To simplify the analysis we let 2=k . In the thesis, we 

assume that ( 21 ,TT ) follows a copula model. The major goal is to estimate the association 

parameter of the imposed model assumption based on right censored data. The situation for 

homogeneous data (i.e. without covariate information) will be discussed first. We will review 

existing methods and present our proposal. Then we will discuss a more complicated situation 

that includes the covariate information. Extension of the former inference methods will be 

discussed. 

 

1.2 Notations and Outline of the Thesis 

The failure times, nTT ,...,1 , are subject to censoring by nCC ,...,1 . Denoted the observed 

data by );,,,,,{( 212121 jjjjjj ZZXX δδ nj ,..,2,1= }, where, for an individual i , iX  is the 

observed time and iδ  indicates the corresponding censoring status. If 1=iδ , iX  is 

actually the observed failure time, iT . Otherwise if 0=iδ , iX  is the censoring time, iC . 

Let )1(: ×pZi  be a vector of covariates for 2,1=i . It is assumed that iT  and iC  are 

independent.  

In Chapter 2, we briefly review properties of copula models and introduce Archimedean 

copula models which constitutes a useful sub-family of copula models. Chapter 3 discusses 
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semi-parametric inference approaches to estimating the association parameter of a copula 

model in absence of covariates. Three methods will be examined in Section 3.1~3.3. In 

Section 3.4, we compare the three approaches.   

In Chapter 4, we consider a more general situation in presence of covariates. Assuming 

that the covariates only affect the marginal distributions, we will extend the previous methods 

to account for marginal heterogeneity. In Chapter 5, we examine finite-sample performances 

of the methods via simulation studies. In Chapter 6, we give some concluding remarks. The 

appendix contains our further analysis about the estimator proposed by Hsu and Prentice 

(1996). Since this estimator does not have satisfactory performance in our simulations, we 

examine its computation algorithm in more detail to investigate the problem.  
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Chapter 2 Literature Review 

2.1 Copula Models 

Suppose that C  is the joint survival function of two correlated )1,0(U  random 

variables defined on the unit square 2]1,0[ . Let ),( 21 TT  be a pair of positive failure variables 

with marginal survival functions ),( 21 SS respectively. Note that if ),( 21 TT  are continuous, 

both of )( ii TS  for 2,1=i  are distributed as )1,0(U . Hence, the joint survival distribution 

function of ( 21 ,TT ) can be expressed as: 

  

 }.)(),({S              
))(),(Pr(              

))()(),()(Pr(              
),Pr(),(

2211

222111

22221111

221121

tStC
tSUtSU

tSTStSTS
tTtTttS

=
≥≥=

≥≥=
≥≥=

          (2.1) 

The above expression was names as a “copula model” by Sklar (1959). Notice that via the 

copula modeling, the space of joint analysis is transferred from 2),0[ ∞  to 2]1,0[ . Hence 

copula models have been frequently used for describing the association between two failure 

variables which are often skewed. From the viewpoint of statistical inference, copula models 

have the nice feature that the dependence structure can be studied separately from the 

marginal distributions.  

Usually the function ),( 21 uuC  is parameterized and denoted by ),( 21 uuCα , where the 

parameter α  measures the association between ( 21,TT ). Kendall’s τ  is a rank-invariant 

association measurement, defined as 

}0))(Pr{(}0))(Pr{( 2
*

21
*

12
*

21
*

1 <−−−≥−−= TTTTTTTTτ ,       (2.2) 

where ),( 21 TT  and ),( *
2

*
1 TT  are independent but have the same distribution. The copula 

parameter α  is related to Kendall’s τ  such that  

1),(),(4 21
21

21
2

21 −
∂∂

∂
= ∫ ∫ dudu

uu
uuCuuC α

ατ .              (2.3) 

By equation (2.3), we see that there is a direct relationship between α  and τ . For many 

well-known copula models, such a relationship has a nice one-to-one correspondence.  
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2.2 Archimedean Copula Models 

 The family of copula models has a useful sub-class, called the Archimedean copula (AC) 

family, in which ),( 21 uuCα  can be further simplified as 

 )}()({},{ 21
1

21 uuuuC αααα ϕϕϕ += − ,                  (2.4) 

where )0()()( 21 ααα ϕϕϕ ≤+ uu  and ],0[]1,0[:(.) ∞→αϕ  is the generating function 

satisfying 0
)(

)(   and   0
)(

)(,  0)1( 2

2
''' >=<==

dt
td

t
dt

td
t α

α
α

αα
ϕ

ϕ
ϕ

ϕϕ . The AC family has nice 

analytic properties useful for more detailed investigation.  

 Three examples of AC models are presented below: 

(i) Clayton model (Clayton, 1978) 

   
⎪⎩

⎪
⎨
⎧

=
>−+=

−−−

1if  
1if    )1(),(

21

1
1

1
2

1
121

α
αααα

α
uu

uuuuC , and 

   )1/()1()( 1 αννϕ α
α −−= − . 

(ii) Frank model (Frank, 1979) 

   
⎪
⎩

⎪
⎨

⎧

=

<<
⎭
⎬
⎫

⎩
⎨
⎧ −−
+

=

1 if ,                

10 if  , 
1-

)1)(1(1log
),(

21

21

21

α

α
α

αα
α

α

uu
uuC

uu

, and 

   )}1/()1log{()( ν
α αανϕ −−= . 

(iii) Positive stable frailty model (Hougaard, 1986) 

   
⎪⎩

⎪
⎨
⎧

=
<<+=

1if,                       
10 if,  }}]))(-log()g(exp{-[{-lo),(

21

1

2

1

121
α

αααα
α

uu
uuuuC , and 

   α
α νϕ

1
)}log({)( v−= . 
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Chapter 3 Inference without Covariates 

Consider a pair of failure times ),( 21 TT  which are assumed to be absolutely continuous. 

In presence of right censoring, we only observe ( 2121 ,,, δδXX ), where 

)2,1()(, =≤=∧= iCTICTX iiiiii δ , and ),( 21 CC  are a pair of censoring times 

independent of ),( 21 TT . Observed data can be denoted as { ),,,( 2121 jjjj XX δδ , 

( =j n,...,2,1 )}. We assume that the joint survival function follows copula models:   

)]}([)]([{ })(),({ ),Pr( 2211
-1

22112211 tStStStSCtTtT ααα ϕϕϕ +==≥≥      (3.1) 

The objective is to estimate α  without specifying the marginal distributions. 

 In this chapter, we will review three semi-parametric inference approaches. In Section 

3.1, we first review the concept of martingales which has been used by Hsu and Prentice 

(1996) to construct an estimating equation for estimating α . In Section 3.2, we review the 

paper of Shih and Louis (1995) who proposed a two-stage of estimation procedure. 

Specifically they suggest to estimate the marginal distribution first. Then these marginal 

estimates are treated as pseudo-observations of )}(),({ 2211 TSTS  in the likelihood based on 

(.,.)αC . In Section 3.3, we apply the idea of the Log-Rank statistic by constructing a series of 

two-by-two tables to estimate the association parameter. This idea has been used by Day et al. 

(1997) and Wang (2003) for analyzing semi-competing risks data. 

3.1 Estimation based on Martingale Residuals 

3.1.1 Preliminary on Counting Processes and Martingales 

Based on observed variables, one can define )1,()( =≤= δtXItN  which is a counting 

process and the filtration ]0;)0,(),([ tuuTIuNFt ≤≤=≤= δσ , which describes the history 

of )(tN  prior to or at time t .  

Define the cumulative intensity process: 

∫ ≥=Λ
t

duuuXIt
0

)()()( λ ,                       (3.2) 

where  
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Δ
≥Δ+∈

=
→Δ

)|),[Pr(lim)(
0

uTuuTuλ  

is the hazard of T  at time u . Then define  

)()()(}{)1,()(
0

ttNduuuXItXItM
t

Λ−=≥−=≤= ∫ λδ .       (3.3) 

According to the Doob-Meyer decomposition (Fleming and Harrington, 1991), the 

expectation of )(tM  is a mean-zero martingale. Now we briefly verify the properties of 

)(tM : 

(A) Given tF  which contains the history of the process prior the time of t , the expectation 

of )(tdN  be an intensity process, such as: 

 )|1,Pr()()|1,Pr()()|)(( tTtXtXItTtXtXIFtdNE t ≤==≤+≥==≥= δδ  

 
).(

)()(
)Pr(

)1,Pr()(

td
dtttXI

tX
tXtXI

Λ=
≥=

≥
==

≥=

λ

δ

                            (3.4) 

(B) By the Doob-Meyer decomposition, the expectation of )(tdM  equals to zero, such that: 

 0)|)()(()|)(( =Λ−= tt FtdtdNEFtdME .                            (3.5) 

3.1.2 Estimation of α  

For the bivariate case, define  

),()()()()1,()(
0

ttNduuuXItXItM ii

t

iiiii Λ−=≥−=≤= ∫ λδ      (3.6) 

where )(uiλ  is the hazard of ).2,1( =iTi When 1T  and 2T  are correlated, )( 11 tM  and 

)( 22 tM  are also correlated. Hsu and Prentice (1996) define the following cumulative 

covariance function, or the covariance rate, as: 

∫ ∫= 1 2

0 0 2121 ),(),(
τ τ

ψττψ dtdt ,                     (3.7) 

where 

}.,|)()({),( 2211221121 tTtTdtMdtMEdtdt ≥≥=ψ  

The function ),( 21 ττψ  contains the information of association and can be estimated either 

non- parametrically or under a specified model.  
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A nonparametric estimator of ),( 21 dtdtψ  is given by  

),(

)(ˆ)(ˆ

),(ˆ
21

),(
2211

21
21

ttr

dtMdtM
dtdt ttRj

jj∑
∈=ψ ,                (3.8) 

where ∑
=

≥≥=
n

j
jj tXtXIttr

1
221121 ),(),(  and )2,1()(ˆ)()(ˆ =∧Λ−= iTttNtM iiiiiii .  

If ),( 21 TT  follow a copula model, the model-restricted version of ),( 21 ttψ  can be expressed 

as: 

∫ ∫= 1 2

0 0 2121 );,();,(
τ τ

αψαττψ dtdt ,                   (3.9) 

where )()(});(),({);,( 22112211021 dtdttStSdtdt ΛΛ= αψαψ  and 

),(),({};,{ 21
)10(

21
)11(

210 uuCuuCuu αααψ −= 1
212121

)01( ),()},( ),( −+− uuCuuCuuC ααα , 

    
),(

),(
21

21
2

21
)11(

uu
uuC

uuC
∂∂

∂
= α

α ,
1

21
21

)10( ),(
),(

u
uuC

uuC
∂

∂
= α

α  and  

   
2

21
21

)01( ),(),(
u

uuCuuC
∂

∂
= α

α . 

We have seen that, besides α , the model-based expression of the covariance function 

contains nuisance parameters. If the marginal functions )(and)( dttS ii Λ  ( 2,1=i ) can be 

estimated, say by the Kaplan-Meier and Aalen’s estimators, respectively. One can estimate 

),( 21 dtdtψ  by 

)(ˆ)(ˆ});(ˆ),(ˆ{);,( 22112211021 dtdttStSdtdt ΛΛ= αψαψ .          (3.10) 

Hsu and Prentice (1996) suggested the following estimating equation based on the weighted 

difference between the nonparametric estimator of ),( 21 ttψ  and its model-based estimator: 

0)};,(ˆ),(ˆ{),()(ˆ 1 2

0 21210 21
1 =−= ∫ ∫− τ τ

αψψα dtdtdtdtttrnU n .       (3.11) 

 

Example: the Clayton model 

1
1

1
2

1
121 )1(),( −

−+−+− −+= ααα
α uuuuC                  (3.12) 

The model-based expression of ),( 21 ttψ  is 
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∫ ∫= 1 2

0 0 2121 );,();,(
t t

dudutt αψαψ ,                  (3.13) 

where )()(});(),({);,( 22112211021 duduuSuSdudu ΛΛ= αψαψ  and 

   11
2

1
1

21
2

1
1

1
2

1
1210 )1()1(};,{ −+−+−−+−+−+−+− −+−−+= ααααααααψ uuuuuuuu . 

3.2 Two-Stage Estimation 

 We can view ),( 21 uuCα  as the joint survival function of ),( 21 UU = ))(),(( 2211 TSTS . 

If one can obtain a random sample of ),( 21 TT , denoted as { ),..,2,1(),,( 21 njTT jj = }, and 

)2,1()( =⋅ iSi  are completely specified, the likelihood of α  can be written as 

∏
=

n

j
jj uuC

1
21

)11( ),(α ,                        (3.14) 

where ).,...,2,12,1()( njitSu ijiij ===  When ),( 21 TT  are subject to right censoring, the 

likelihood of α  can be modified as: 

.),(),(),( )1)(1(
21

)1(
21

01

1

)1(
21

10 212121 jjjjjj
jjjj

n

j
jj uuCuuCuuC δδ

α
δδ

α
δδ

α
−−−

=

− ××∏   (3.15) 

However, ))(),(( 2211 TSTS  cannot be observed directly in practice. Shih and Louis (1995) 

propose a straightforward method to estimate α . The ideas are to estimate ))(),(( 2211 TSTS  

first and then plug in the likelihood function of α . There are two methods for estimating the 

marginal distribution. One is the parametric approach in which the marginal distributions are 

specified up to some unknown parameters. By applying the maximum likelihood approach for 

estimating the marginal parameters, one can estimate ))(),(( 2211 XSXS  by 

))(~),(~( 2211 XSXS . The other approach does not assume the form of the marginal distributions, 

the Kaplan-Meier method can be applied for estimating )2,1()( =iTS ii . We illustrate this 

approach using the Clayton model as an example.  

Example: the Clayton model 

1
1

1
2

1
121 )1(),( −

−+−+− −+= ααα
α uuuuC                 (3.16) 

And the likelihood function of α  is: 
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  ∏
=

−
n

j
jjjj

jjjj uuCuuC
1

)1(
21

)10(
21

)11( 2121 ),(),( δδ
α

δδ
α  

)1)(1(
21

)1(
21

)01( 2121 ),(),( jjjj
jjjj uuCuuC δδ

α
δδ

α
−−−× ,     (3.17) 

where  

2
1

1
1

2
1

12121
)11( )1(),(

−
−+−+−−− −+××= ααααα

α α uuuuuuC , 

       
1

1
1

1
2

1
1121

)10( )1(),(
−

−+−+−− −+×= αααα
α uuuuuC  

and 

  
1

1
1

1
2

1
1221

)01( )1(),(
−

−+−+−− −+×= αααα
α uuuuuC . 

In presence of censoring, we observe ),,,{( 2121 jjjj XX δδ )},...,2,1( nj = . If the marginal 

distributions are specified, say )1exp( =λ , the maximum likelihood estimator of )( iji XS  is 

)(~
iji XS , where 

   njiX
X

XS ijn

j
ij

n

j
ij

iji ,...,2,1and2,1for;)exp()(~

1

1 ==−=

∑

∑

=

=

δ
.       (3.18) 

If the marginal form is unknown, we estimate )( ii XS  by Kaplan-Meier estimator: 

.,...,2,1and2,1for;
)(

)1,(
1)(ˆ

1

1 nji
uXI

uXI
XS n

j
ij

n

j
ijij

xu
iji

ij

==

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

==
−=

∑

∑
Π

=

=

≤

δ
 (3.19) 
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3.3 Estimation based on Two-by-Two Tables 

3.3.1 The Proposed Method 

In this section, we propose an estimator of α  for an Archimedean Copula Models of 

the form:  

 )]}([)]([{ })(),({ ),Pr( 2211
-1

22112211 tStStStSCtTtT ααα ϕϕϕ +==≥≥ .  (3.20) 

This idea is actually an application of the papers of Day et al. (1997) and Wang (2003) who 

considered semi-competing risks data. In presence of censoring, we observe 

)}.,...,1(),,,{( 2121 njXX jjjj =δδ  The proposed estimating procedure is related to the 

Log-Rank statistic which can be constructed based on a series of two-by-two tables. At an 

observed failure points ),( 21 tt , we can construct the following two-by-two tables as follows: 

 

 

 

 

 

Table: Two-by-Two Tables at time ),( 21 tt  

The cell counts are defined as follows. Let 

   ∑
=

=====
n

j
jjjj tXtXIdtdtN

1
2221112111 )1,,1,(),( δδ , 

   ∑
=

≥===
n

j
jjj tXtXItdtN

1
221112110 ),1,(),( δ , 

   ∑
=

==≥=
n

j
jjj tXtXIdttN

1
222112101 )1,,(),( δ   

and 

   ∑
=

≥≥=
n

j
jj tXtXIttR

1
221121 ),(),( . 

 

 

 1, 222 == δtX 22 tX >   

1, 111 == δtX  ),( 2111 dtdtN   ),( 2110 tdtN  

11 tX >     

 ),( 2101 dttN   ),( 21 ttR  
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Notice that the odds ratio of the table converges to 

),Pr(),Pr(

),Pr(),Pr(
),(

2211
2

2211
1

22112211
21

2

21

tTtT
t

tTtT
t

tTtTtTtT
tttt

≥≥
∂
∂

≥≥
∂
∂

≥≥≥≥
∂∂
∂

=θ .          (3.21) 

For models in the AC family, ),( 21 ttθ  can be simplified as 

)),(Pr(~),( 221121 tTtTtt ≥≥= αθθ ,                   (3.22) 

where )(~
⋅αθ  is an univariate function satisfying 

)(
)(

)(~
v
v

vv
α

α
α ϕ

ϕ
θ

′
′′

×−= .                         (3.23) 

Conditioning on the marginal counts, ),( 2111 dtdtN follows a hypergeometric distribution with 

mean: 

),(),(),(),(
),(),(),(

),,(
211021211021

2101211021
2111 tdtNttRtdtNtt

dttNtdtNtt
dtdtE

−+
=
θ

θ
α         (3.24) 

       
),(),(),(),(Pr(~

),(),()),(Pr(~

21102121102211

210121102211

tdtNttRtdtNtXtX
dttNtdtNtXtX

−+≥≥
≥≥

=
α

α

θ
θ

.  

By equating the empirical count with its model-based expected value and combining the 

tables with different ),( 21 tt , we can construct the following estimating equation: 

  ∫ ∫ =−= − 1 2

0 0 21211121
1 0)},,(),(){,()(

τ τ
αα dtdtEdtdtNttWnL ,   (3.25) 

where ),( 21 ttW  is the weight function. It has been suggested to use  

)),((
)),((),(

21

21
21 ttS

ttSttW
α

α

θ
θ&

= ,                         (3.26) 

where ),Pr(),( 221121 tTtTttS ≥≥=  and 
α
νθ

νθ α
α ∂

∂
=

)(
)(& .  

Example: the Clayton model 

1
1

1
2

1
121 )1(),( −

−+−+− −+= ααα
α uuuuC                  (3.27) 

For Clayton model with )1(,1)( )1( >−= −− αϕ α
α tt , we can obtain the model based expectation 

of ,( 111 dtN )2dt : 
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),(),(),(
),(),(

),,(
2110212110

21012110
2111 tdtNttRtdtN

dttNtdtN
dtdtE

−+×
×

=
α

α
α .       (3.28) 

3.4 Discussion 

 Shih and Louis (1995) proposed a two-stage estimation procedure. This approach is 

semi-parametric in the sense that the first stage can be estimated non-parametrically. However 

in some complicated data structures, such as semi-competing risk, nonparametric estimation 

in the first stage is not applicable. Hsu and Prentice (1996) constructed their estimating 

function based on martingale residuals. However the model-based expression involves too 

many high-dimensional nuisance parameters and therefore the resulting estimating equation 

becomes very complicated. Practical performance of this estimator heavily depends on the 

accuracy of the plug-in estimates in all data range. In our simulations, we have found that 

estimation in the tail region is not satisfactory. 

 The latter two approaches only use the conditions of the moments. It seems that the 

approach based on two-by-two tables is a more natural way for describing the dependence 

structure for AC models. Specifically for the Clayton model ),,( 2111 αdtdtE  does not even 

contain any nuisance parameters. The key is that the theoretical odds ratio of the tables can 

well capture the association information for AC models. In contrast, );,( 21 αψ tt  is much less 

natural. It involves high-dimensional nuisance parameters that affect the subsequent inference 

procedure.  
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Chapter 4 Inference with Covariates 

 In this chapter, we discuss the estimation of α  when there exist covariates that may 

affect the marginal distributions. Let ),( 21 TT  and ),( 21 CC  be failure times and censoring 

times, respectively. Let )2,1(1: =× ipZi  be the covariate vectors. In presence of right 

censoring, observed data can be expressed as ,,,,{( 2121 jjjj XX δδ  )},...,2,1(),, 21 njZZ jj = , 

where =ijX ijij CT ∧  and ijij TI (=δ )ijC< , for 2,1=i  and =j  .,...,2,1 n  

Here we assume that iZ  only affects iT  )2,1( =i , marginally. Let 

).2,1()|Pr()|( =≥== iZtTZtSU iiiii                (4.1) 

Furthermore, we assume that  

).,(),Pr( 212211 uuCuUuU α=≥≥                   (4.2) 

In the following analysis, we assume that marginally the covariate effect follow the Cox 

Proportional Hazard model, such that 

),2,1()exp()()( '
0, == iZtt iiii βλλ                   (4.3) 

where )(0, tiλ is the baseline hazard function. In Section 4.1, we modify the two-stage 

estimation approach. In Section 4.2, we apply our idea based on two-by-two tables to handle 

this more generalized situation. 

4.1 Two-Stage Estimation 

 The first stage involves estimating pseudo-observations of ),( 21 UU . Note that, under 

the Cox PH model,. ).2,1()()|( )exp(
0,

'

=== itSZtSU iiZ
iiiiii

β  This implies that we need to 

estimate iβ  and )(0, ii tS  first. The regression parameter iβ  can be estimated by 

maximizing the following likelihood  

).2,1(
)exp()(

)exp()1,(
)(

1

1 =
′×≥

′×==
= ∏

∑

∑

=

= i
ZuXI

ZuXI
L

ufailure
iij

n

j
ij

iij

n

j
jij

i

β

βδ
β           (4.4) 
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The estimator of the baseline function can be expressed by Breslow’s estimator: 

).2,1()
)ˆexp(

)1,(
1()(ˆ

)(

)(

}
'

)(

)(

0, =

==

−=
∑

∑
Π

∈

≤

i
Z

tXI
tS

Rt
iji

t
iji

tt
ii

j

j

iii β

δ
             (4.5) 

Then we can obtain and)(ˆ )ˆexp(
10,11

1
' βZTSU = 2U = )ˆexp(

20,2
2

'

)(ˆ βiZTS . Based on 

),,,{( 2121 jjjj UU δδ  )},...,2,1( nj = , we can estimate α  by the following likelihood 

function:  

  )1(
21

)10(
21

)11( 2121 ),(),()( jjjj
jjjj

jj
uuCuuCL δδ

α
δδ

αα −ΠΠ =  

    ).,..,1(),(),( )1)(1(
21

)1)(1(
21

)01( 2121 njuuCuuC jjjj
jjjj =× −−−− δδ

α
δδ

α  (4.6) 

For Clayton’s model with 1
1

1
2

1
121 )1(),( −

−+−+− −+= ααα
α uuuuC , the above likelihood equals 

  )1(
21

)10(
21

)11( 2121 ),(),()( jjjj
jjjj

jj
uuCuuCL δδ

α
δδ

αα −ΠΠ =  

    ).,..,1(),(),( )1)(1(
21

)1)(1(
21

)01( 2121 njuuCuuC jjjj
jjjj =× −−−− δδ

α
δδ

α  (4.7) 

where 
2

1
1

1
2

1
12121

)11( )1(),(
−

−+−+−−− −+××= ααααα
α α uuuuuuC , 

       
1

1
1

1
2

1
1121

)10( )1(),(
−

−+−+−− −+×= αααα
α uuuuuC   

and 

    
1

1
1

1
2

1
1221

)01( )1(),(
−

−+−+−− −+×= αααα
α uuuuuC . 
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4.2 Estimation based on Two-by-Two Tables 

 Based on pseudo-observations )},...,1(),,,{( 2121 njUU jjjj =δδ , we can construct the 

following two-by-two table: 

 

 

 

 

 
Table: Two-by-Two Table based on pseudo-observations 

The cell counts are defined as follows. Let 

   ∑
=

=====
n

j
jjjj uUuUIduduN

1
2221112111 )1,,1,(),( δδ , 

   ∑
=

≥===
n

j
jjj uUuUIuduN

1
221112110 ),1,(),( δ , 

   ∑
=

==≥=
n

j
jjj uUuUIduuN

1
222112101 )1,,(),( δ  

and 

   ∑
=

≥≥=
n

j
jj uUuUIuuR

1
221121 ),(),( . 

Accordingly the estimating function becomes: 

∫ ∫ =−= − 1 2

0 0 21211121
1 0)},,(),(){,()(

τ τ
αα duduEduduNuuWnL ,      (4.8) 

where  

),(),(),(),(
),(),(),(

),,(
211021211021

2101211021
2111 uduNuuRuduNuu

duuNuduNuu
duduE

−+
=
θ

θ
α . 

Consider the Clayton model: 

1
1

1
2

1
121 )1(),( −

−+−+− −+= ααα
α uuuuC .                (4.9) 

The above likelihood function of α  can be simplified using the fact that ),( 21 uuθ =α . 

 

 1, 222 == δuU 22 uU >  

1, 111 == δuU  ),( 2111 duduN   ),( 2110 uduN  

11 uU >     

 ),( 2101 duuN   ),( 21 uuR  
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Chapter 5  Simulations 

5.1 Data Generation 

 Via simulations, we will examine finite-sample performances of several estimators of α  

without and with covariates. We consider generating ),( 21 TT  from the Clayton model of the 

form: 

⎪⎩

⎪
⎨
⎧

=
>−+=

−
−+−+−

).1(
)1()1(),(

21

1
1

1
2

1
121

α
αααα

α
uu

uuuuC               (5.1) 

Note that ττα 2/)1( −= , where τ  is Kendall’s τ . In particular, we will adopt the data 

generation algorithm for the Clayton model proposed by Prentice and Cai (1992). 

5.1.1 Data Generation without Covariates 

Step (i) Specify the value of τ  and compute 
τ
τα

−
+

=
1
1 . 

Step (ii) Generate independent variables )},,...,1(),{( 21 njUU jj =  where ~ijU    

 )2,1()1,0( =iU . 

Step (iii) Generate )},...,2,1(),{( 21 njTT jj = , such that: 

  ,)1(
1

2
αγ

−
−= jj U  

  ],)1(1log[ 1
1

11
αγγα +

−
−+−×= jjjj UT  

  .)1(
1

22
α

−
−= jj UT  

        Then ),( 21 jj TT  follows Clayton )(α  and marginally ).1exp(~)2,1( =iTij  

Step (iv) Generate )},...,2,1()C,C{( 21 njjj = , both of which are uniformly  

distributed.  

Finally with )},...,1( ),,,{( 2121 njCCTT jjjj = , we can create observed data ,,{( 21 jj XX  

)},...,2,1(), 21 njjj =δδ  such that ijijij CTX ∧=  and )( ijijij CTI ≤=δ  for 2,1=i .  
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5.1.2 Date Generation with Covariates 

 Now we generate data which include a binary covariate. We assume the marginal effect 

follows the Cox proportional hazard model (1972), such as: 

,)()( )exp(
0,

'
iiZ

ii tStS β=                         (5.2) 

where iZ  is the covariate and )(0, tSi  is the baseline survival function at time t  )2,1( =i . 

The general procedure can be stated as follows. Let UTS =)( , where )1,0(~ UU , and under 

the Cox proportional hazard model, we have UTS Z =′ )exp(
0 )( β . Hence it follows that  

)exp(
)log())(log( 0 βZ

UTS
′

= ,                       (5.3) 

which implies that  

⎥
⎦

⎤
⎢
⎣

⎡
′

= − )
)exp(

)log(exp(1
0 βZ

UST .                     (5.4) 

We still need to specify the form of )(0 tS . For most distributions, the inverse of )(0 tS  may 

not have an explicit expression which increases the numerical difficulty in the analysis. In our 

simulations, we specify the baseline survival function to be  )exp()(0 ttS −=  and obtain the 

following explicit expression:  

)exp(
)log(

βZ
UT
′

−
= ,                          (5.5) 

where )log(U−  which follows exp(1).  

The data generation procedure is summarized below.  

Step (i) Generate ijZ  from Bernoulli(0.5) for 2,1=i . 

Step (ii) Generate failure times ( *
2

*
1 , jj TT ) for the baseline group with         

0=ijZ  using the above algorithm, where ).2,1()1exp(~* =iTij  

Step (iii) Given the value of iβ , for those with 1=ijZ , we set   
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)exp( '

*

iij

ij
ij Z

T
T

β
= ).2,1( =i  

Step (iv) Generate )},...,2,1()C,C{( 21 njjj = , both of which are exponential distributed.  

Finally with )},...,1( ),,,,,{( 212121 njZZCCTT jjjjjj = , we can create observed data 

)},...,2,1(),,,,,{( 212121 njZZXX jjjjjj =δδ  such that ijijij CTX ∧=  and )( ijijij CTI ≤=δ .  

5.2 Simulation Results 

5.2.1 Results without Covariates 

 In this section, we evaluate two approaches based on two-stage estimation and the 

construction of two-by-two tables. Two sample sizes with 100=n  and 500=n  are 

considered. The parameter α  ranges form 2.1  to 19 which correspond to τ  from 0.1 to 

0.9. For each estimator, the average bias and standard deviation of α  are reported based on 

500 replications. To achieve the targeted censoring rates, 30 % and 60 %, we set  iC  to 

follow U (0,5.5) and U (0,2.5), respectively for 2,1=i . 

 Table 1.1 summarizes the results in absence of censoring. Note that for the approach of 

two-stage estimation, we also present the results when the first stage of estimation is 

performed parametrically. Recall that we assume the marginal distribution of failure time X  

is )1exp( =λ . Hence, for the parametric two-stage procedure, we use  

∑

∑

=

== n

j
j

n

j
j

x
1

1ˆ
δ

λ  (in complete data 
x
1ˆ =λ )             (5.6) 

to plug in the second stage for estimating α . This approach yields better results (smaller bias 

and smaller variation) than the semi-parametric two-stage procedure. As for the approach 

constructed based on two-by-two tables, it produces fairly nice results despite that it makes no 

assumption on the marginal distributions. Specifically it is fairly unbiased and the variance is 

only slightly larger than the parametric two-stage procedure. Note that the variation of all the 
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estimators becomes larger when α  increases.  

 Table 1.2 and 1.3 are the results in presence of external censoring. Although variation of 

the estimators are larger than those without external censoring, the estimators still perform 

well. For Table 1.1 ~ 1.3, the variation is close to zero with the increasing of sample size 

(from 100 to 500). Hence, we can conclude that all of the estimations satisfy the property of 

consistency. 
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5.2.2 The Method Proposed by Hsu & Prentice 

 In this section, we examine the performance of the estimator proposed by Hsu and 

Prentice (1996) under the same settings. The results based on complete data are summarized 

below. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Strangely, based on Table A, we found that α̂  seems to be not consistent when 

3.2≥α . To investigate what caused the problem, we checked several things. The details are 

summarized in the Appendix. We suspected that the problem may be attributed to the 

estimation instability of );,( 21 αψ tt  in (3.10) in some region of ),( 21 tt . The plugged-in 

marginal estimators are usually unstable in the tail area. Hence we trimmed the integration 

area from ),0[),0[ ∞×∞  to a bounded region. Because this modification has no theoretical 

justification, we only evaluate the case without censoring. 

 Table B below contains the results for the modified estimator which is analyzed in a 

bounded region. Specifically, for each margin, we trim 50 % of the tail region. Based on Table 

B, we can know that both of bias and standard deviation of α̂  have significant improvement. 

With the sample size increases from 100 to 500, the standard deviation of α̂  have less 

n=500 
α  

)10(st.error10bias -22 ×× −

21.  -2.283 (5.861) 
1.5 -6.701 (7.396) 

1.85714 -15.267 (8.659) 

32.  -31.961 (8.996) 

3.0 -66.637 (7.981) 
4.0 -138.223 (5.786) 

6.5  -284.485 (3.156) 
9.0 -606.891 (1.162) 
19.0 -1602.436 (0.860) 

Table A: Original version of Hsu & Prentice’s estimator with no censoring 
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variation. Despite of the improvement, the method still performs not as well as the previous 

two approaches. One possible reason is that the model-based expectation );,( 21 αψ tt  in 

(3.10) contains more nuisance parameters than the other two approaches. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n=500 n=100 
α  

)10(st.error10bias -22 ×× −  

21.  0.229 (10.741)  4.398 (24.211) 
1.5 -0.162 (13.234)  3.805 (31.675) 

1.85714 -0.145 (16.388)  3.804 (39.416) 
32.  -0.489 (20.883)  4.530 (49.133) 

3.0 -0.161 (28.358)  5.530 (64.276) 
4.0 0.922 (39.522)  9.705 (89.874) 

6.5  2.931 (63.757)  12.754 (149.819) 
9.0 13.172 (147.715) 43.050 (351.349) 
19.0 104.310 (678.372) 322.146 (1652.888) 

Table B: Modified version of Hsu and Prentice’s estimator with no censoring 
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5.2.3 Results with Covariates 

 We have proposed to extend two inference approaches to a more complex situation that 

covariates affect the marginal distribution. Now we check the validity of the extension by 

simulations. Here we assume the Cox Proportional Hazard model to describe marginal 

heterogeneity. For the two-stage estimation approach, we only report the results that the 

marginal distributions are estimated non-parametrically. The parameter of α  ranges from 

2.1  to 19 and 21 ββ = =0.8. We also evaluate the situation in presence of censoring with 30 

% and 60 % censoring. To achieve the targeted censoring rates, we let iC  follow 

)5.3exp( =λ  and )5.1exp( =λ , respectively ( 2,1=i ). Two sample sizes with 100=n  and 

500=n  are evaluated. For each estimator, the average bias and standard deviation are 

reported based on 500 replications.  

 Table 2.1 summaries the result with covariates in absence of censoring. Our focus is on 

comparing the two methods after adjustment for the effects of 21 and ββ . The variation of 

the two approaches is close. However, the two-by-two table approach seems to produce less 

biased estimates. Table 2.2 and 2.3 are the results in presence of right censoring. The 

estimators of α  have larger variation but still perform well. All of the estimators are 

consistent when the sample size increases. In the simulations not reported here, we find that 

the estimators of α  become invalid if the marginal heterogeneity is ignored. 

 

 

 

 

 

 

 

 



- 23 - 

Chapter 6 Conclusion 

 In the thesis, we review three inference approaches for estimating the association 

parameter for copula models. The existing methods are originally developed for analyzing 

homogeneous data. Here we extend these methods to account for marginal heterogeneity 

explained by covariates. 

The two-stage estimation procedure proposed by Shih and Louis (1995) is easy to 

implement but not applicable under more complicated data structures such as semi-competing 

risks data that involves dependent censoring. The proposed approach based on two-by-two 

tables is motivated by the Log-Rank statistics. In comparison, it is a simple procedure from 

both aspects of analytic derivations and computation. It also has nice performance in 

simulations. Since this approach only utilizes some moment conditions, it can be easily 

modified for different data structures. The estimator of Hsu and Prentice (1996) has poor 

performance in our simulations. If our numerical algorithm is correct, the poor performance 

may be caused by the plugged-in estimators of the nuisance functions.  

The proposed method and the method by Hsu and Prentice (1996) are both 

moment-based procedures but their performances are very different. We have found that, for 

AC models, the odds ratio of the two-by-two table provides a better descriptive measure for 

the association. In contrast, the covariance function of martingale residuals proposed by Hsu 

and Prentice is much less natural. That is why it produces an estimating function that involves 

many nuisance parameters.  
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 Table 1.1 Comparison of two approaches without external censoring. 

 
 
 
 
 
 

)10(st.error10bias -22 ×× −  

n=500 n=100 
Two-Stage Two-Stage 

 

 
α  

parametric semi-parametric 
Two-by-Two Table

Parametric semi-parametric 
Two-by-Two Table 

21.  -0.213 (8.114) 0.669 (8.382) -0.026 (8.275) 0.968 (14.767) 3.8 (16.271) 0.383 (15.232) 
1.5 -0.191 (10.047) 1.179 (10.531) 0.065 (10.536) 1.464 (19.040) 6.054 (20.966) 0.28 (20.749) 

1.85714 -0.252 (12.514) 1.192 (13.326) 0.031 (13.401) 2.138 (23.801) 7.592 (26.739) -0.074 (27.063) 
32.  -0.393 (15.841) 0.844 (17.039) -0.042 (17.170) 2.793 (30.204) 7.993 (33.793) -0.028 (34.737) 

3.0 -0.578 (20.526) 0.018 (22.080) -0.208 (22.244) 3.637 (39.343) 7.128 (43.565) -1.11 (45.182) 
4.0 -0.882 (27.588) -1.561 (29.449) -0.306 (29.807) 4.775 (53.258) 4.507 (57.379) -2.252 (60.220) 

6.5  -1.438 (39.439) -5.398 (41.709) -0.683 (42.362) 6.37 (76.751) -2.423 (81.810) -0.963 (85.493) 
9.0 -2.532 (63.241) -16.53 (65.670) -1.721 (66.599) 9.213 (123.879) -29.453 (128.361) 0.159 (136.928) 

19.0 -5.370 (134.733) -72.600 (138.037) -2.178 (142.870) 16.84 (264.620) -173.33 (271.930) 9.597 (303.381) 
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 Table 1.2 Comparison of two approaches with censoring rate 0.3. 

 
 
 
 
 
 

)10(st.error10bias -22 ×× −  

n=500 n=100 
Two-Stage Two-Stage 

 

 
α  

parametric semi-parametric 
Two-by-Two Table 

Parametric semi-parametric 
Two-by-Two Table 

21.  0.073 (9.088) 0.566 (9.182) 0.142 (9.068) 2.061 (16.984) 4.258 (18.502) 1.702 (17.562) 
1.5 0.234 (11.437) 1.024 (11.641) 0.34 (11.635) 2.747 (22.384) 5.737 (23.998) 1.252 (23.918) 

1.85714 0.19 (14.198) 0.965 (14.721) 0.334 (14.909) 3.487 (27.112) 6.941 (29.197) 1.423 (30.365) 
32.  0.024 (17.916) 0.395 (18.709) 0.244 (19.105) 4.139 (34.322) 7.02 (36.550) 1.254 (39.061) 

3.0 -0.314 (22.888) -0.743 (24.042) 0.255 (24.793) 4.853 (44.807) 5.003 (47.158) 0.051 (51.647) 
4.0 -1.224 (30.484) -3.377 (31.640) 0.078 (33.127) 3.853 (60.379) -2.213 (61.451) 0.297 (69.924) 

6.5  -2.872 (43.457) -9.567 (44.718) 0.114 (47.279) 0.406 (86.207) -21.197 (83.557) 5.469 (99.999) 
9.0 -9.223 (68.992) -31.33 (69.585) 0.634 (74.918) -21.92 (141.180) -88.543 (128.043) 16.75 (165.275) 
19.0 -70.26 (158.490) -189.043 (152.155) 3.405 (161.384) -212.22 (348.587) -481.44 (260.105) 33.59 (369.187) 
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Table 1.3 Comparison of two approaches with censoring rate 0.6. 

 

 

 

 
 

)10(st.error10bias -22 ×× −
 

n=500 n=100 

Two-Stage Two-Stage 

 
 
α  

parametric semi-parametric
Two-by-Two Table

parametric semi-parametric 

Two-by-Two Table 
 

21.  0.44 (10.714) 0.584 (10.759) 0.53 (10.736) 4.018 (21.149) 5.067 (22.596) 0.846 (21.655) 

1.5 0.323 (13.202) 0.703 (13.357) 0.442 (13.401) 4.091 (27.924) 6.032 (29.777) 0.639 (29.280) 

1.85714 0.317 (16.350) 0.685 (16.582) 0.409 (16.822) 5.072 (34.088) 7.577 (36.085) 1.563 (36.934) 

32.  0.199 (20.272) 0.409 (20.862) 0.416 (21.371) 6.378 (42.449) 8.277 (43.924) 0.798 (46.024) 

3.0 0.073 (26.114) -0.205 (27.040) 0.577 (28.097) 7.54 (54.756) 7.428 (55.933) 0.861 (60.081) 

4.0 -0.299 (34.732) -1.645 (36.026) 0.928 (37.965) 7.942 (72.487) 2.874 (73.717) 2.214 (83.575) 

6.5  -1.692 (49.035) -5.835 (50.423) 1.059 (53.934) 6.253 (104.281) -10.142 (103.610) 7.152 (119.437) 

9.0 -7.103 (78.580) -19.496 (79.399) 2.336 (86.260) -6.881 (166.990) -53.666 (159.488) 25.38 (196.765) 

19.0 -54.14 (175.675) -124.01 (168.489) 6.457 (184.836) -165.24 (373.784) -377.02 (315.480) 32.51 (453.817) 
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Table 2.1 Comparison of two approaches under marginal heterogeneity without external censoring. 

 

 
 
 
 
 
 

)10(st.error10bias -22 ×× −  

n=500 n=100 
Two-Stage Two-by-Two Two-Stage Two-by-Two α  

 

21 ββ =
 α̂  1β̂  2β̂  

α̂  1β̂  2β̂  

21.  -0.501 (6.391) 0.059 (6.288) -0.385 (9.188) -0.188 (9.640) -0.694 (14.900) -0.396 (14.132) 0.022 (21.557) -0.758 (21.390) 
1.5 -1.983 (7.925) -1.230 (7.934) -0.257 (9.150) -0.345 (9.759) -3.612 (17.381) -2.002 (17.066) -0.526 (20.297) 1.460 (21.300) 

1.85714 -3.055 (9.437) -1.924 (9.747) 0.729 (9.110) 0.194 (9.501) -7.404 (21.619) -5.029 (21.922) 1.015 (21.017) 0.766 (22.258) 
32.  -4.229 (11.624) -2.016 (11.763) -0.265 (8.924) 0.400 (9.970) -11.885 (25.475) -6.569 (26.423) 1.496 (21.028) 1.476 (21.540) 

3.0 -5.615 (15.486) -2.360 (15.760) 0.626 (9.976) 0.494 (9.766) -15.534 (34.260) -6.149 (36.794) 1.836 (21.810) 2.830 (22.377) 
4.0 -7.863 (20.590) -2.752 (21.118) 1.845 (9.404) 1.580 (9.646) -25.774 (47.262) -10.616 (50.432) 1.717 (22.160) 2.244 (23.109) 

6.5  -14.769 (26.894) -5.651 (27.678) -0.111 (9.259) 0.027 (9.180) -42.934 (59.398) -14.262 (66.131) -0.876 (21.050) -0.829 (21.554) 
9.0 -31.589 (42.410) -11.676 (43.023) 0.402 (9.888) 0.364 (9.788) -98.841 (99.761) -34.205 (105.528) 0.519 (21.985) 0.929 (21.968) 
19.0 

0.8 
 

-114.648 (89.175) -41.539 (93.940) 0.494 (9.542) 0.473 (9.435) -341.087 (219.164) -127.069 (245.475) 0.420 (23.016) 0.205 (22.920) 
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Table 2.2 Comparison of two approaches under marginal heterogeneity with censoring rate 0.3. 

 

 
 
 
 
 
 

)10(st.error10bias -22 ×× −  

n=500 n=100 
Two-Stage Two-by-Two Two-Stage Two-by-Two 

 
 
α  

 

 

21 ββ =  α̂  1β̂  2β̂  
α̂  1β̂  2β̂  

21.  -0.267 (7.589) -0.250 (8.413) -0.345 (10.011) 0.080 (10.170) 0.638 (16.577) 1.978 (18.085) -0.614 (22.271) 0.593 (23.457) 
1.5 -1.858 (9.418) -1.567 (10.379) 0.083 (9.424) -0.124 (10.435) -2.140 (21.365) -1.309 (23.301) -0.466 (22.783) 1.363 (25.114) 

1.85714 -1.963 (10.775) -1.007 (11.722) 0.337 (9.852) 1.079 (10.411) -4.958 (23.924) -0.703 (28.945) 0.933 (22.150) 0.658 (23.185) 
32.  -3.272 (14.306) -0.576 (16.869) 0.232 (10.123) 0.704 (10.714) -10.582 (31.164) -3.821 (36.515) -0.872 (23.256) -0.840 (24.870) 

3.0 -6.165 (17.556) -1.408 (20.790) 0.327 (10.057) 0.704 (10.849) -21.709 (37.096) -10.014 (45.931) 1.367 (24.254) 1.187 (23.103) 
4.0 -7.834 (23.841) 0.285 (27.205) -0.431 (11.057) -0.273 (10.434) -24.520 (52.442) 3.311 (69.246) 1.304 (24.693) 1.672 (24.308) 

6.5  -17.583 (31.227) -1.378 (36.732) 0.574 (10.675) 0.352 (10.524) -57.033 (69.257) -2.362 (98.199) 1.592 (23.854) 1.033 (23.943) 
9.0 -109.124 (55.087) -58.938 (66.582) 0.586 (10.134) 0.349 (10.517) -259.518 (111.386) -135.602 (152.304) 2.719 (23.804) 0.992 (24.344) 
19.0 

0.8 
 

-292.511 (127.019) -97.013 (136.070) 0.397 (11.115) 0.562 (11.293) -668.705 (210.578) -183.206 (335.635) 2.082 (24.015) 2.155 (24.233) 
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Table 2.3 Comparison of two approaches under marginal heterogeneity with censoring rate 0.6. 

)10(st.error10bias -22 ×× −  

n=500 n=100 
Two-Stage Two-by-Two Two-Stage Two-by-Two 

 
 
α  

 

 

21 ββ =  α̂  1β̂  2β̂  
α̂  1β̂  2β̂  

21.  -0.022 (9.175) 0.647 (11.317) 0.480 (11.516) 0.484 (12.338) 0.535 (19.467) 5.426 (27.392) 0.403 (27.579) 1.314 (28.132) 
1.5 -0.700 (11.438) 0.997 (14.396) -0.311 (11.200) 0.597 (12.072) 0.269 (27.556) 2.762 (34.610) -0.788 (25.720) 0.609 (27.642) 

1.85714 -1.103 (13.657) 0.187 (16.934) -0.092 (11.824) 0.619 (11.884) -2.658 (29.413) 1.710 (39.691) 1.143 (26.587) 4.003 (29.461) 
32.  -2.726 (18.460) 0.039 (23.483) -0.025 (11.456) 0.230 (12.124) -4.620 (40.159) 5.159 (57.367) -0.679 (27.484) -0.800 (28.109) 

3.0 -5.260 (21.654) -1.091 (27.524) -0.243 (11.857) 0.166 (11.525) -14.801 (51.198) -1.219 (74.896) 1.004 (28.668) 2.123 (27.966) 
4.0 -13.133 (28.383) -5.477 (37.248) 0.005 (12.170) 0.090 (11.847) -34.456 (62.953) 2.777 (97.260) 1.595 (27.887) -0.243 (26.747) 

6.5  -22.755 (42.830) -6.343 (56.938) -0.314 (11.934) 1.115 (13.131) -70.193 (94.419) -13.234 (133.771) 0.490 (27.494) 0.838 (26.873) 
9.0 -70.929 (68.613) -24.824 (92.450) -0.423 (12.367) 0.509 (11.945) -196.595 (142.673) -53.852 (234.286) 0.169 (29.724) -1.050 (26.876) 

19.0 

0.8 
 

-395.364 (166.251) -185.900 (228.931) 0.254 (12.735) 0.040 (12.080) -840.543 (281.685) -326.036 (561.663) 2.275 (29.854) 0.901 (28.127) 
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Appendix: Checking the Validity of the Method by Hsu and Prentice 

 

Investigation #1: Is the distribution of α̂  reasonable? 

 

 
Figure A.1 

 

 

 

 

 

 

 

 

 

 

 

Finding: There seems to be a bound on α̂ . 
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Investigation #2: Whether the above problem is caused by the root-finding procedure? 

 

 

 
Figure A.2 plot of α = 9 

 

Finding: The estimating equation has a unique but wrong solution in some situation. 
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Investigation #3: Whether the plug-in estimators for the nuisance functions are not 

accurate? 

 

 
Figure A.3 the marginal survival function and its estimator 

 

 
Figure A.4 the cumulative hazard function and its estimator 

 
 

Finding: The plugged-in estimator have reasonable performance only in some region. 
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