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Statistical Inference for Bivariate Survival Data

Based on Copula Models

Student: Hua, Wen-Yu Adivsor: Dr. Weijing Wang

Institute of Statistics Notional Chiao Tung University

Abstract

The thesis considers semi-parametric -inference based on Copula models for
bivariate survival data subject to right censoring. There exist several semi-parametric
inference approaches to estimating the association parameter. We examine and
compare three approaches developed for homogeneous data in absence of covariates.
Then we extend these methods to a regression setting that accounts for marginal
heterogeneity explained by the covariates. Finite-sample performances are examined

by simulations.

Key words: Bivariate survival data; Cox proportional hazard model; Correlated
failure times; Clayton model; Copula model; Semi-parametric inference; Two-stage

estimation; Two-by-two tables.
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Chapter 1 Introduction
1.1 Background
Multivariate survival analysis has wide applications in various fields. Consider an
application in the study of familial aggregation for age onset data. The outcomes of
age-at-onset within families may be correlated due to genetic and shared environmental risk
factors among family members. Understanding the pattern of association may shed light on

the disease etiology and is an important step useful for further scientific investigation.

Let (T,,...,T,) be the failure time variables for k members in a family. Note that T, and

T, for i= jare often correlated,-To simplify. the analysis we let k =2. In the thesis, we

assume that (T,,T,) follows a copula model. The major goal is to estimate the association
parameter of the imposed model-assumption-based on right censored data. The situation for
homogeneous data (i.e. without covariate information) will be discussed first. We will review
existing methods and present our proposal. Then we will discuss a more complicated situation
that includes the covariate information. Extension of the former inference methods will be

discussed.

1.2 Notations and Outline of the Thesis

The failure times, T,,...,T,, are subject to censoring by C,,...,C,. Denoted the observed

data by {(X,;,X,;,6,;,6,;,Z,;,Z5;); 1=12,..,n}, where, for an individual i, X; is the

observed time and ¢, indicates the corresponding censoring status. If o6, =1, X, is
actually the observed failure time, T,. Otherwise if &, =0, X, is the censoring time, C,.
Let Z, :(px1) be a vector of covariates for i=212. It is assumed that T, and C, are
independent.

In Chapter 2, we briefly review properties of copula models and introduce Archimedean

copula models which constitutes a useful sub-family of copula models. Chapter 3 discusses

-1-



semi-parametric inference approaches to estimating the association parameter of a copula
model in absence of covariates. Three methods will be examined in Section 3.1~3.3. In
Section 3.4, we compare the three approaches.

In Chapter 4, we consider a more general situation in presence of covariates. Assuming
that the covariates only affect the marginal distributions, we will extend the previous methods
to account for marginal heterogeneity. In Chapter 5, we examine finite-sample performances
of the methods via simulation studies. In Chapter 6, we give some concluding remarks. The
appendix contains our further analysis about the estimator proposed by Hsu and Prentice
(1996). Since this estimator does not have satisfactory performance in our simulations, we

examine its computation algorithm in more detail to investigate the problem.



Chapter 2 Literature Review
2.1 Copula Models
Suppose that C is the joint survival function of two correlated U(0,1) random
variables defined on the unit square [0,1]*. Let (T,,T,) be a pair of positive failure variables
with marginal survival functions (S,,S,) respectively. Note that if (T,,T,) are continuous,
both of S,(T;) for i=12 are distributed as U(0,1). Hence, the joint survival distribution

function of (T,,T,) can be expressed as:
S(t,,t,)=Pr(T, >t,,T, >t,)

= Pr(Sy(1) =S, ()5, (T,) > S, (t,))
=Pr(U > S{(t):U; =S, (t,))

= C{S1 (tl)l Sz (tz )}

The above expression was names as a “copula_model’” by Sklar (1959). Notice that via the

2.1)

copula modeling, the space of joint analysis is transferred from [0,o0)* to [0,1]*. Hence
copula models have been frequently used for describing the association between two failure
variables which are often skewed. From the viewpoint of statistical inference, copula models
have the nice feature that the dependence structure can be studied separately from the
marginal distributions.

Usually the function C(u,,u,) is parameterized and denoted by C,(u,,u,), where the
parameter « measures the association between (T,,T,). Kendall’s 7 is a rank-invariant
association measurement, defined as

r=Pr{(T, -T,))(T, -T,) > 0}—Pr{(T, -T,)(T, -T,) <0}, (2.2)
where (T,,T,) and (T,,T,) are independent but have the same distribution. The copula
parameter « s related to Kendall’s z such that

0°C,(u,,u

_ 2) _
r=4[]c, (ul,uz)Wdulduz 1, (2.3)

By equation (2.3), we see that there is a direct relationship between « and 7. For many

well-known copula models, such a relationship has a nice one-to-one correspondence.



2.2 Archimedean Copula Models

The family of copula models has a useful sub-class, called the Archimedean copula (AC)

family, in which C_(u,,u,) can be further simplified as

C.{u,u,}= (p;l{(Da () +¢,(U,)}, (2.4)
where ¢, (u,)+¢,U,)<¢,(0) and ¢, (.):[01] —>[0,0] is the generating function

do, () d?p, (t)
dt dt?

<0 and ¢, (t) =

satisfying ¢, (1) =0 ,¢,(t) = > 0. The AC family has nice

analytic properties useful for more detailed investigation.
Three examples of AC models are presented below:

(i) Clayton model (Clayton, 1978)

1
C,(u,u,)= U U =D ifa>1 gng
uu, ifa=1

0, (V)= (V" =D /1=e).

(if) Frank model (Frank, 1979)

log {1+ (o ~(e™ -Y)  if0<a<1
Ca(ul’uz): a-1 ,
u1u2 y |f a :1
9, (V) =log{l-a)/(1-a")}.
(iii) Positive stable frailty model (Hougaard, 1986)
1 1
C. (uy,u,) = | XPET{-l0g() + (log(u,)“}“} if 0 <@ <1 gng
U, u, Jfa=1

0, (v) ={-log(v)} =



Chapter 3 Inference without Covariates
Consider a pair of failure times (T,,T,) which are assumed to be absolutely continuous.
In presence of right censoring, we only observe ( X,,X,,8,,0, ), Wwhere
X, =T, AC;,0,=I(T, £C;)(i=12) , and (C,,C,) are a pair of censoring times

independent of (T,,T,) . Observed data can be denoted as { (X,;, X;;,6,;,9;;) ,

(J=212,...,n)}. We assume that the joint survival function follows copula models:

Pr(T, >, T, 2 t,) = C{S, (1,), S, (t, )} = ¢, {0, [S, (L)] + », [S, (t,)]} (3.1)

The objective is to estimate « without specifying the marginal distributions.

In this chapter, we will review three semi-parametric inference approaches. In Section
3.1, we first review the concept of martingales which has been used by Hsu and Prentice
(1996) to construct an estimating equation for-estimating « . In Section 3.2, we review the
paper of Shih and Louis (1995) who proposed a two-stage of estimation procedure.
Specifically they suggest to estimate the marginal distribution first. Then these marginal
estimates are treated as pseudo-observations of {S,(T,),S,(T,)} in the likelihood based on
C,(.,.). In Section 3.3, we apply the idea of the Log-Rank statistic by constructing a series of
two-by-two tables to estimate the association parameter. This idea has been used by Day et al.
(1997) and Wang (2003) for analyzing semi-competing risks data.
3.1 Estimation based on Martingale Residuals
3.1.1 Preliminary on Counting Processes and Martingales

Based on observed variables, one can define N(t) =1(X <t,6 =1) which is a counting
process and the filtration F, = o[N(u), I (T <u,8 =0);0 <u <t], which describes the history
of N(t) priortoorattimet.

Define the cumulative intensity process:
At) = jo‘l(x > u)A(u)du, (3.2)

where



A(u) = lim Pr(T e[u,u+A)|T >u)

A—0 A

is the hazard of T attime u. Then define

M(t)=1(X <t,6=1) —J'; I{X > u}A(u)du = N(t) - A(t) . (3.3)
According to the Doob-Meyer decomposition (Fleming and Harrington, 1991), the
expectation of M(t) is a mean-zero martingale. Now we briefly verify the properties of
M (t):
(A) Given F, which contains the history of the process prior the time of t, the expectation

of dN(t) be an intensity process, such as:

E@AN(t)|F)=1(X 2t)Pr(X =t,6 =1|T 2 t) + I(X <t)Pr(X =t,6 =1|T <t)

_ (X >1) Pr(X =t,0 =1)

Pr(X >1t)
= (X >t)A(t)dt (3.4)
= dA(t).

(B) By the Doob-Meyer decomposition, the expectation of dM (t) equals to zero, such that:
E(dM (t)| F) = E(dN (t) - dA(t) | F) =0. (3.5)
3.1.2 Estimation of «

For the bivariate case, define
M, () = 1(X,; <t,0, =1)—£I(Xi > U)A, (u)du = N, (t) — A, (1), (3.6)
where A.(u) is the hazard of T, (i=12).When T, and T, are correlated, M,(t,) and

M,(t,) are also correlated. Hsu and Prentice (1996) define the following cumulative

covariance function, or the covariance rate, as:

w(r, 7,)= jo’l jo w(dt,, dt,), (3.7)
where
w(dt,,dt,) = E{M (dt,)M,(dt,)|T, >t,,T, >t,}.
The function w(z;,7,) contains the information of association and can be estimated either

non- parametrically or under a specified model.
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A nonparametric estimator of (dt;,dt,) is given by

> My, (dt, )M, (dt,)

7(dt,  dt,) = IRk , 3.8
V/( 1 2) r(tl,tz) (3.8)

where r(t,t,)=> 1(X; 2t,X,, 2t,) and M, (t)=N,(t)-A,(t AT) (i=12).
j=1

If (T,,T,) follow acopula model, the model-restricted version of w(t;,t,) can be expressed

as.
w(r, )= [ [Tw(dy,dt;e), (3.9)
where y(dt,,dt,;a) =y {S,(t,), S, (t,);a}A, (dt))A, (dt,) and

g//o{ul,uz;a}:{co((ﬂ) (u;,uy) _CSO) (u,uy) - Co(z()l) (u;,uy) + C, (ul’UZ)}Ca (ulluz)&

8°C, (u,,U,)

CE(u, ;) = 8, ;) = ) g

ou,ou, ou,
C0([01) (ul’uz) — aCa (u11u2) :
ou,

We have seen that, besides « , the model-based expression of the covariance function

contains nuisance parameters. If the marginal functions S, (t) and A, (dt) (i=12) can be

estimated, say by the Kaplan-Meier and Aalen’s ‘estimators, respectively. One can estimate
w(dt,,dt,) by
w(dty, 0ty @) = wofS, (), S, (t,)iadA, (dt)A, (dt,). (3.10)

Hsu and Prentice (1996) suggested the following estimating equation based on the weighted

difference between the nonparametric estimator of w(t;,t,) and its model-based estimator:

U, (e) =n [ [ r(t,, t, M (dt, dt,) - (dty, dit,;)3 = 0. (3.11)

Example: the Clayton model

1

C, (U, U,) = (U +uy ™t =) (3.12)

The model-based expression of (t,,t,) is



Wt a) = j; j; w(du,,du,;a), (3.13)
where w(du,,du,;a) =y,{S,(u,),S,(u,);a}A,(du,)A,(du,) and
wofu, Uy ad=ou, M, U U, =D - (U a0 )
3.2 Two-Stage Estimation
We can view C_(u,,u,) as the joint survival function of (U,,U,)= (S,(T,),S,(T,)).
If one can obtain a random sample of (T,,T,), denoted as {(T;,T,;),(j=12,..,n)}, and

S, () (1=212) are completely specified, the likelihood of « can be written as
[T1C%Wy;.u,), (3.14)
j=1

where u; =S;(t;) (1=12 j=12,..,n). When (T,,T,) are subject to right censoring, the

likelihood of o can be modified as:

n - ~ - ~ -
TTC2 (uy;u,,) ™ S €2 g ) T4 % C, (U, u,,) 2. (3.15)

j=L

However, (S,(T,),S,(T,)) cannot be observed directly-in practice. Shih and Louis (1995)
propose a straightforward method to estimate « . The ideas are to estimate (S,(T,),S,(T,))
first and then plug in the likelihood function of « . There are two methods for estimating the
marginal distribution. One is the parametric approach in which the marginal distributions are
specified up to some unknown parameters. By applying the maximum likelihood approach for

estimating the marginal parameters, one can estimate (S,(X,),S,(X,)) by

(§1(X1), S~2(X2)) . The other approach does not assume the form of the marginal distributions,
the Kaplan-Meier method can be applied for estimating S, (T;) (i =12). We illustrate this

approach using the Clayton model as an example.

Example: the Clayton model

1

C, (U, U,) = (U +uy =) (3.16)

And the likelihood function of « is:



n
510 5,1 (16,
Co(zll) (ulj Uy )é“ ! Co(:lo) (ulj Uy )é“( )
j=1

0 61 (1-655) (1-6,;)(1-6, )
XCo(z l)(uljaUZj) VG, (U, Uy ) (3.17)
where
)
C(Slll) (ul’uz) =X ul—auz—a x (ul—aJrl + uz—aJrl _1)1_0[ ’
Ly
CSO) (ul’ uz) = ul—a % (ul—a+l + uz—aﬁl _1)1—a
and

1
_ —1
C(E{Ol) (ulluz) — U2 a % (U]__a+1 + uz—a+1 _1)115 .

In presence of censoring, we observe{(X,;, X,;,0,;,90,;) (] =12,...,n)}. If the marginal
distributions are specified, say exp(1 =1), the maximum likelihood estimator of S;(X;) is

§i (X;), where

n

2.9

S.(X;)=exp(-=—X;);fori=12andj=12..,n. (3.18)

2 X

j=1
If the marginal form is unknown, we estimate S,(X,) by Kaplan-Meier estimator:
DX =u,6; =)

Si(Xy)=TT11- fori=12and j=12,..,n. (3.19)
u<x; zl(xij ZU)
j=1




3.3 Estimation based on Two-by-Two Tables
3.3.1 The Proposed Method
In this section, we propose an estimator of « for an Archimedean Copula Models of

the form:

Pr(T, 2t,,T, 2t,) = C{S, (1,), S, (t,)}= 0. {, [S. (t)] + 0, [S, (1)1} (3.20)
This idea is actually an application of the papers of Day et al. (1997) and Wang (2003) who
considered semi-competing risks data. In presence of censoring, we observe
{(Xy;,X;;,0,;,0,;) (J =1..,n)}. The proposed estimating procedure is related to the

Log-Rank statistic which can be constructed based on a series of two-by-two tables. At an

observed failure points (t;,t,), we can construct the following two-by-two tables as follows:

A =t Xt
X, =t,0,=1] N (dt;dt,) N, (dt;,t,)
X, >t

N, (t,,dt,) R(t,,t,)

Table: Two-by-Two Tables at time (t,,t,)

The cell counts are defined as follows. Let

Nll(dtl’dtZ):zl(le :t1’51j :1,)(2] :t2152j =1),

j=1

NlO(dtl’tZ):ZI(xlj :tl’é‘lj :1’X2j >t,),

=

Noy(ty, dt,) =D 1(Xy; =1, X, =t,,6,; =1)

j=1

and

R(t,,t,) =D 1(Xy; 2t,X,; >t,).
j=1

-10 -



Notice that the odds ratio of the table converges to

2

Pr(T, >t,,T, >t,)Pr(T, >t,,T, >t,)

ot,ot
e(tl'tZ) = al 2 a ' (3'21)
SOPHL 2T, 20) Pl 2T, 1)

1 2

For models in the AC family, &(t,,t,) can be simplified as

6(t,,t,) =6, (Pr(T, >t,,T, >1,)), (3.22)
where 50, (-) isan univariate function satisfying
0. (v) = —vx¢7—°’). (3.23)
Pq (V)
Conditioning on the marginal counts, N, (dt,,dt,) follows a hypergeometric distribution with

mean:

E (dt dt a): e(tl’tZ)Nlo(dtl’tZ)Nol(tl'dtZ) (324)
n ALt )N, (dt,t,) + R(t,,t,) — N (dt,,t,)

0, (PrOX XL, )Ny, (dt ) Ny 8, dt,)
0, (Pr(X, > 1%, > t,)Nig (@t t,) + Rt t,) — Ny (0t )

By equating the empirical count with its model-based expected value and combining the

tables with different (t,,t,), we can construct the following estimating equation:
L(er)=n" [ [ "Wt t, )Ny (dt, dt,) - E(dt, dt, @)} =0, (3.25)

where W (t,,t,) is the weight function. It has been suggested to use

Wit t,) =M, (3.26)
0, (St 1))
where S(t;,t,) =Pr(T, 2t,,T, 2t,) and 9,1 (v) = 695 (V)‘.
Example: the Clayton model
1
C, (U, up) = (U™ +u, " =1) (3.27)

For Clayton model with ¢_(t) =t “™® -1, (o >1), we can obtain the model based expectation

of N, (dt, dt,):

-11 -



ax Ny (dt, t,) N, (t;, dt,)

E,,(dt,,dt,,a) = '
11( 1 2 a) a X Nlo(dt1,t2)+R(tl,t2)_N1o(dt1’t2)

(3.28)

3.4 Discussion

Shih and Louis (1995) proposed a two-stage estimation procedure. This approach is
semi-parametric in the sense that the first stage can be estimated non-parametrically. However
in some complicated data structures, such as semi-competing risk, nonparametric estimation
in the first stage is not applicable. Hsu and Prentice (1996) constructed their estimating
function based on martingale residuals. However the model-based expression involves too
many high-dimensional nuisance parameters and therefore the resulting estimating equation
becomes very complicated. Practical performance of this estimator heavily depends on the
accuracy of the plug-in estimates in all data.range. In our simulations, we have found that
estimation in the tail region is not satisfactory.

The latter two approaches only use the conditions-of the moments. It seems that the
approach based on two-by-two tables is*a-more natural way for describing the dependence
structure for AC models. Specifically for the ‘Clayton model E,,(dt,,dt,,«) does not even
contain any nuisance parameters. The key is that the theoretical odds ratio of the tables can
well capture the association information for AC models. In contrast, w(t,,t,;) is much less
natural. It involves high-dimensional nuisance parameters that affect the subsequent inference

procedure.

-12 -



Chapter 4 Inference with Covariates
In this chapter, we discuss the estimation of « when there exist covariates that may
affect the marginal distributions. Let (T,,T,) and (C,,C,) be failure times and censoring

times, respectively. Let Z. :px1(i=12) be the covariate vectors. In presence of right

censoring, observed data can be expressed as {(X,;, X;;,0,;,0,;, Z;,Z;;), (1 =12,...,n)},

where X;; =T; AC; and &; =1(T; <Cy),for i=12 and j= 12..,n
Here we assume that Z, only affects T, (i =1,2), marginally. Let
U, =S (t|Z,)=Pr(T >t]|Z,)(i=12). 4.1)
Furthermore, we assume that
PrlU, 2u;,U, >u;).=C,_(u;,u,). 4.2)
In the following analysis, we assume that marginally the covariate effect follow the Cox

Proportional Hazard model, such that
4O =4, () expZ,B,) (i =12), (4.3)
where 4, ,(t) is the baseline hazard function. In Section 4.1, we modify the two-stage

estimation approach. In Section 4.2, we apply our idea based on two-by-two tables to handle
this more generalized situation.
4.1 Two-Stage Estimation

The first stage involves estimating pseudo-observations of (U,,U,). Note that, under
the Cox PH model,.U, =S, (t, |Z,) = S, (t;)*®®™ (i =12). This implies that we need to
estimate g and S, (t) first. The regression parameter S, can be estimated by

maximizing the following likelihood

(X, =u,8, =1 xexp(Z{3)
LB) =[] (i=12). (4.4)
felure ZI(Xij > u)xexp(Z;5)

-13-



The estimator of the baseline function can be expressed by Breslow’s estimator:

DX, =t 6 =1

éi,o(ti) =J1@- w —= ) (i=12).
<t D exp(Z,5)
tj)eR
Then we can obtain U, = SAlVO(Tl)eXp(Z'B“ and U, = S,,(T,)* %

(4.5)

Based on

{U,;,U,,,6,;,6,;) (i=12..,n)}, we can estimate « by the following likelihood

function:

816y 41j(1-635)
HL(Ot) ZHCSD (Uy,U,;)™ ZICSO) (U, Uy;) ™
j j

X CL Uy ) HC, (g0 ) T (j=1,00). (46)

1
—a+1

For Clayton’s model with C_ (u,,u,) =(u;*? +u,*%-1) = the above likelihood equals

01j07 6, (1-065;)
Hl—(a)zncgl)(uljvuzj) JZJCSO)(uu:Uz,‘) N -
j j

x CL (uyy ) ) I fut ug) Y (j=10m). (A7)

1
v . . L
where  C™(u,,u,) = axu, “u,” x (U, ** +u, "t e

1
—a _ _ —1
C0([10) (up,u,) =u; “ x(uy oy u2a+1 1)t

and

1
=
COu,uy) =u, ™ x (U™ +u, "t =1t

-14 -



4.2 Estimation based on Two-by-Two Tables

Based on pseudo-observations {(U,;,U,;,d,;,6,;) (j=1...,n)}, we can construct the

following two-by-two table:

U,=u,,0,=1 U,>u,
U,=u,0,=1| Ny(duy,du,) N,,(du,,u,)
U,>u
N, (u,,du,) R(u,,u,)

Table: Two-by-Two Table based on pseudo-observations
The cell counts are defined as follows. Let
Ny, (duy,du;) = Z I (Ulj = U055 =LU,; =U,,0,; =1),
j=1

NlO(dul’uz):zl(Ulj :u1’51j :1’U2j Zuz)’

=t

Nop Uy, duy) = D" 1Uy; 2 U Ugr=ty, 55 =1)

=

and
R(u,,u,) = Jznl: U, 2u,,U,; >2uy).
Accordingly the estimating function becomes:
L(a)=n"" jo : jo”w(ul,uz){Nn(dul,duz) — E(du,,du,,a)}=0, (4.8)

where

6(uy, U, )Ny (duy, Uy )N, (g, du,)

E,.(du,,du,,a) = :
&(u;, U, )Ny (dug,u,) + R(ug,u,) = Nyg (duy,uy)

Consider the Clayton model:

1

C, (U, Uy) = (U™ +u, ™t =1) =1, (4.9)

The above likelihood function of « can be simplified using the fact that &(u,,u,) =« .
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Chapter 5  Simulations

5.1 Data Generation
Via simulations, we will examine finite-sample performances of several estimators of «
without and with covariates. We consider generating (T,,T,) from the Clayton model of the

form:

1
C, (U, uy) = 7 +U 1) (a>D) G.1)
u,u, (ax=1).

Note that ¢ =(1—7)/2z, where 7 is Kendall’s 7. In particular, we will adopt the data
generation algorithm for the Clayton model proposed by Prentice and Cai (1992).

5.1.1 Data Generation without Covariates

Step (i) Specify the value of z and compute a:i—j

Step (ii) Generate independent variables {(U,;,U,;) (j=1,...,n)}, where U; ~
U0l (i=12).

Step (iii) Generate {(T,;,T,;) (j =12,...,n)}, such that:

1
Vi :(1_U2j) “,

1

Ty =axlogll-y; +7,(-Uy)) *],
1
T, =0-U,,) ~
Then (T,;,T,;) follows Clayton(a) and marginally T; (i =1,2) ~ exp(1).
Step (iv) Generate {(C,;,C,;) (j =12,...,n)}, both of which are uniformly
distributed.

Finally with {(T,;,T,;,C,;,C,;)(j =1..,n)}, we can create observed data {(X,;, X,;,

01;,0,;) (1=12,..,n)} suchthat X; =T; AC; and &; =I(T; <C;) for i=12.
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5.1.2 Date Generation with Covariates
Now we generate data which include a binary covariate. We assume the marginal effect

follows the Cox proportional hazard model (1972), such as:

S,(t) =S, ()™, (5.2)
where Z; is the covariate and S, ,(t) is the baseline survival function at time t (i=12).
The general procedure can be stated as follows. Let S(T)=U , where U ~U(0,1), and under

the Cox proportional hazard model, we have S,(T)**“*”) =U . Hence it follows that

log(U)
log(S, =—") 53
09(S,(T)) exp(Z'f) (5.3)
which implies that
o log(U)
T =8% [eXp(exp(Z ’,[)’))] (5.4)

We still need to specify the form of =S, (t) . For most distributions, the inverse of S,(t) may

not have an explicit expression which increases the-numerical difficulty in the analysis. In our

simulations, we specify the baseline survival function:to be S, (t) =exp(-t) and obtain the

following explicit expression:

T —log(U) | (5.5)
exp(Z’p)

where —log(U) which follows exp(1).

The data generation procedure is summarized below.

Step (i) Generate Z; from Bernoulli(0.5) for i=12.
Step (ii) Generate failure times (T,;,T,,) for the baseline group with
Z; =0 using the above algorithm, where T, ~ exp(1) (i =1,2).

Step (iii) Given the value of g, for those with Z; =1, we set
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*

T, = N (i=12).
eXp(Zij ﬁ.)

Step (iv) Generate {(C,;,C,;) (j =12,...,n)}, both of which are exponential distributed.

Finally with {(T,;,T,;,C,;,C,;,2Z,;,Z5;)(J=1..,n)} , we can create observed data

jl
{(Xy;, X3;,61j,0,;,24;,Z,;) (1 =12,...,n)} suchthat X; =T; AC; and &; =I(T; <C;).

5.2 Simulation Results
521 Results without Covariates

In this section, we evaluate two approaches based on two-stage estimation and the
construction of two-by-two tables. Two sample sizes with n=100 and n=500 are
considered. The parameter o ranges form 1.2 to 19 which correspond to z from 0.1 to
0.9. For each estimator, the average bias and.standard deviation of « are reported based on
500 replications. To achieve the targeted censoring rates, 30 % and 60 %, we set C, to
follow U (0,5.5) and U (0,2.5), respectivelyfor=i1=12.

Table 1.1 summarizes the results in‘absence of censoring. Note that for the approach of
two-stage estimation, we also present the results when the first stage of estimation is
performed parametrically. Recall that we assume the marginal distribution of failure time X

is exp(4 =1). Hence, for the parametric two-stage procedure, we use

2.9,

j=1

A= - (in complete data A= %) (5.6)
X

2%

=

n

to plug in the second stage for estimating « . This approach yields better results (smaller bias
and smaller variation) than the semi-parametric two-stage procedure. As for the approach
constructed based on two-by-two tables, it produces fairly nice results despite that it makes no
assumption on the marginal distributions. Specifically it is fairly unbiased and the variance is

only slightly larger than the parametric two-stage procedure. Note that the variation of all the

-18 -



estimators becomes larger when « increases.

Table 1.2 and 1.3 are the results in presence of external censoring. Although variation of
the estimators are larger than those without external censoring, the estimators still perform
well. For Table 1.1 ~ 1.3, the variation is close to zero with the increasing of sample size
(from 100 to 500). Hence, we can conclude that all of the estimations satisfy the property of

consistency.
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5.2.2 The Method Proposed by Hsu & Prentice
In this section, we examine the performance of the estimator proposed by Hsu and

Prentice (1996) under the same settings. The results based on complete data are summarized

below.
n=500
o
biasx107% (st.error x107?)
1.2 -2.283(5.861)
1.5 -6.701(7.396)
1.85714 -15.267 (8.659)
2.3 -31.961(8.996)
3.0 -66.637 (7.981)
4.0 2138:223 (5.786)
5.6 -284.485(3.156)
9.0 -606.891(1.162)
19.0 -1602.436 (0.860)

Table A: Original version of Hsu & Prentice’s estimator with no censoring

Strangely, based on Table A, we found that & seems to be not consistent when
a > 2.3. To investigate what caused the problem, we checked several things. The details are
summarized in the Appendix. We suspected that the problem may be attributed to the
estimation instability of y(t,,t,;) in (3.10) in some region of (t,,t,). The plugged-in
marginal estimators are usually unstable in the tail area. Hence we trimmed the integration
area from [0,00)x[0,0) to a bounded region. Because this modification has no theoretical
justification, we only evaluate the case without censoring.

Table B below contains the results for the modified estimator which is analyzed in a
bounded region. Specifically, for each margin, we trim 50 % of the tail region. Based on Table
B, we can know that both of bias and standard deviation of & have significant improvement.

With the sample size increases from 100 to 500, the standard deviation of & have less
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variation. Despite of the improvement, the method still performs not as well as the previous
two approaches. One possible reason is that the model-based expectation w(t,,t,;a) in

(3.10) contains more nuisance parameters than the other two approaches.

n=500 n=100

bias%107? (st.errorx107?)

1.2 0.229 (10.741) 4.398 (24.211)
1.5 -0.162 (13.234) 3.805 (31.675)
1.85714  -0.145 (16.388) 3.804 (39.416)
2.3 -0.489(20.883) 4.530 (49.133)
3.0 -0.161 (28.358) 5.530 (64.276)
4.0 0.922 (39.522) 9.705 (89.874)
5.6 2.931 (63.757) 12.754 (149.819)
9.0  13.172(147.715)  43.050 (351.349)
19.0 104.310 (678.372) 322.146 (1652.888)

Table B: Modified version of Hsu and Prentice’s estimator with no censoring
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5.2.3 Results with Covariates

We have proposed to extend two inference approaches to a more complex situation that
covariates affect the marginal distribution. Now we check the validity of the extension by
simulations. Here we assume the Cox Proportional Hazard model to describe marginal
heterogeneity. For the two-stage estimation approach, we only report the results that the
marginal distributions are estimated non-parametrically. The parameter of « ranges from
1.2 to 19 and B, = 3,=0.8. We also evaluate the situation in presence of censoring with 30
% and 60 % censoring. To achieve the targeted censoring rates, we let C, follow
exp(4 =3.5) and exp(4 =1.5), respectively. (i=1,2). Two sample sizes with n=100 and
n=500 are evaluated. For each estimator, the average bias and standard deviation are
reported based on 500 replications.

Table 2.1 summaries the result with covariates in absence of censoring. Our focus is on
comparing the two methods after adjustment for the effects of g, and f5,. The variation of
the two approaches is close. However, the two-by-two table approach seems to produce less
biased estimates. Table 2.2 and 2.3 are the results in presence of right censoring. The
estimators of « have larger variation but still perform well. All of the estimators are
consistent when the sample size increases. In the simulations not reported here, we find that

the estimators of « become invalid if the marginal heterogeneity is ignored.
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Chapter 6 Conclusion

In the thesis, we review three inference approaches for estimating the association
parameter for copula models. The existing methods are originally developed for analyzing
homogeneous data. Here we extend these methods to account for marginal heterogeneity
explained by covariates.

The two-stage estimation procedure proposed by Shih and Louis (1995) is easy to
implement but not applicable under more complicated data structures such as semi-competing
risks data that involves dependent censoring. The proposed approach based on two-by-two
tables is motivated by the Log-Rank statistics: In._ comparison, it is a simple procedure from
both aspects of analytic derivations and .computation. It also has nice performance in
simulations. Since this approach only utilizes some moment conditions, it can be easily
modified for different data structures. The estimator of Hsu and Prentice (1996) has poor
performance in our simulations. If our numerical algorithm is correct, the poor performance
may be caused by the plugged-in estimators of the nuisance functions.

The proposed method and the method by Hsu and Prentice (1996) are both
moment-based procedures but their performances are very different. We have found that, for
AC models, the odds ratio of the two-by-two table provides a better descriptive measure for
the association. In contrast, the covariance function of martingale residuals proposed by Hsu
and Prentice is much less natural. That is why it produces an estimating function that involves

many nuisance parameters.
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Table 1.1 Comparison of two approaches without external censoring.

biasx107* (st.error x107?)

n=500 n=100
“ i Two-Stage_ i Two-by-Two Table i Two-Stage ) i Two-by-Two Table
parametric semi-parametric Parametric semi-parametric

1.2 -0.213(8.114) 0.669 (8.382) -0.026 (8.275) 0.968 (14.767) 3.8(16.271) 0.383 (15.232)

1.5 -0.191(10.047) 1.179 (10.531) 0.065 (10.536) 1.464 (19.040) 6.054 (20.966) 0.28 (20.749)
1.85714 -0.252 (12.514) 1.192 (13.326) 0.031 (13.401) 2.138 (23.801) 7.592 (26.739) -0.074 (27.063)

2.3 -0.393(15.841) 0.844 (17.039) -0.042 (17.170) 2.793 (30.204) 7.993 (33.793) -0.028 (34.737)

3.0 -0.578(20.526) 0.018 (22.080) -0.208 (22,244) 3.637 (39.343) 7.128 (43.565) -1.11 (45.182)

40 -0.882(27.588) -1.561 (29.449) -0.306 (29.807) 4.775 (53.258) 4.507 (57.379) -2.252 (60.220)

5.6  -1.438(39.439) -5.398 (41.709) -0.683 (42.362) 6.37 (76.751) -2.423 (81.810) -0.963 (85.493)

9.0 -2.532(63.241) -16.53 (65.670) -1.721 (66.599) 9.213 (123.879) -29.453 (128.361) 0.159 (136.928)

19.0 -5.370(134.733) -72.600 (138.037) -2.1787(142.870) 16.84 (264.620) -173.33 (271.930) 9.597 (303.381)
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Table 1.2 Comparison of two approaches with censoring rate 0.3.

biasx107* (st.error x107?)

n=500 n=100
“ i Two-Stage_ ) Two-by-Two Table i Two-Stage ) i Two-by-Two Table
parametric semi-parametric Parametric semi-parametric

1.2 0.073 (9.088) 0.566 (9.182) 0.142 (9.068) 2.061 (16.984) 4.258 (18.502) 1.702 (17.562)

1.5 0.234 (11.437) 1.024 (11.641) 0.34 (11.635) 2.747 (22.384) 5.737 (23.998) 1.252 (23.918)
1.85714 0.19 (14.198) 0.965 (14.721) 0.334 (14.909) 3.487 (27.112) 6.941 (29.197) 1.423 (30.365)

2.3 0.024 (17.916) 0.395 (18.709) 0.244 (19.105) 4.139 (34.322) 7.02 (36.550) 1.254 (39.061)

3.0 -0.314 (22.888) -0.743 (24.042) 0.255 (24.793) 4.853 (44.807) 5.003 (47.158) 0.051 (51.647)

4.0 -1.224 (30.484) -3.377 (31.640) 0.078 (33.127) 3.853 (60.379) -2.213 (61.451) 0.297 (69.924)

5.6 -2.872 (43.457) -9.567 (44.718) 0.114(47.279) 0.406 (86.207) -21.197 (83.557) 5.469 (99.999)

9.0 -9.223 (68.992) -31.33 (69.585) 0.634(74.918) -21.92 (141.180) -88.543 (128.043) 16.75 (165.275)

19.0 -70.26 (158.490) -189.043 (152.155) 3.405 (161:384) -212.22 (348.587) -481.44 (260.105) 33.59 (369.187)
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Table 1.3 Comparison of two approaches with censoring rate 0.6.

biasx107* (st.errorx107)

n=500 n=100
o -Two-Stag(-a  Two-by-Two Table | Two-Stage | | Two-by-Two Table
parametric semi-parametric parametric semi-parametric

1.2 0.44 (10.714)  0.584 (10.759) 0.53 (10.736) 4.018 (21.149) 5.067 (22.596) 0.846 (21.655)

15  0.323(13.202)  0.703(13.357)  0.442 (13.401) 4.091 (27.924) 6.032 (29.777) 0.639 (29.280)
1.85714 0.317 (16.350)  0.685(16.582)  0.409 (16.822) 5.072 (34.088) 7.577 (36.085) 1.563 (36.934)

23 0.199(20.272)  0.409 (20.862)  0.416 (21.371) 6.378 (42.449) 8.277 (43.924) 0.798 (46.024)

3.0 0.073(26.114) -0.205(27.040)  0.577 (28.097) 7.54 (54.756) 7.428 (55.933) 0.861 (60.081)

40 -0.299(34.732) -1.645(36.026)  0.928 (37.965) 7.942 (72.487) 2.874 (73.717) 2.214 (83.575)

5.6 -1.692(49.035) -5.835(50.423)  1.059 (53.934) 6.253 (104.281) -10.142 (103.610) 7.152 (119.437)

9.0 -7.103(78.580) -19.496(79.399)  2.336 (86.260) -6.881 (166.990) -53.666 (159.488) 25.38 (196.765)

19.0 -54.14 (175.675) -124.01 (168.489) 6.457 (184.836) -165:24 (373.784) -377.02 (315.480) 32.51 (453.817)
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Table 2.1 Comparison of two approaches under marginal heterogeneity without external censoring.

bias x107* (st.error x107?)

n=500 n=100

(04 = - -pVv- ~ ~ - -by- - -~

B.=p, Two-Stage . Two-by-Two i P Two-Stage Two-by-Two 5 7
12 -0.501 (6.391) 0.059 (6.288)  -0.385(9.188) -0.188 (9.640) -0.694 (14.900)  -0.396 (14.132)  0.022 (21.557) -0.758 (21.390)
15 -1.983 (7.925) -1.230 (7.934)  -0.257 (9.150) -0.345 (9.759) -3.612 (17.381) -2.002 (17.066) -0.526 (20.297) 1.460 (21.300)
1.85714 -3.055 (9.437) -1.924 (9.747) 0.729 (9.110) 0.194 (9.501) -7.404 (21.619) -5.029 (21.922) 1.015(21.017) 0.766 (22.258)
23 03 -4.229 (11.624)  -2.016 (11.763) -0.265 (8.924) 0.400 (9.970) -11.885 (25.475)  -6.569 (26.423)  1.496 (21.028) 1.476 (21.540)
3.0 -5.615 (15.486)  -2.360 (15.760)  0.626 (9.976) 0.494 (9.766) -15.534 (34.260)  -6.149 (36.794)  1.836 (21.810) 2.830 (22.377)
4.0 -7.863(20.590)  -2.752(21.118)  1.845 (9.404) 1.580(9.646) -25.774 (47.262)  -10.616 (50.432)  1.717 (22.160) 2.244 (23.109)
5.6 -14.769 (26.894) -5.651 (27.678) -0.111 (9.259) 0.027(9.180) -42.934 (59.398) -14.262 (66.131) -0.876 (21.050) -0.829 (21.554)
9.0 -31.589 (42.410)  -11.676(43.023)  0.402 (9.888)..0.364 (9.788). -98.841 (99.761)  -34.205 (105.528) 0.519 (21.985) 0.929 (21.968)
19.0 -114.648 (89.175)  -41.539 (93.940)  0.494 (9.542) 0.473(9.435) -341.087 (219.164) -127.069 (245.475)  0.420 (23.016)  0.205 (22.920)
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Table 2.2 Comparison of two approaches under marginal heterogeneity with censoring rate 0.3.

biasx107* (st.error x107?)

n=500 n=100
Two-Stage Two-by-Two A A Two-Stage Two-by-Two A A
¢ p-p B, B, B B,
1 2

1.2 -0.267 (7.589) -0.250 (8.413) -0.345(10.011)  0.080(10.170)  0.638 (16.577) 1.978 (18.085) -0.614 (22.271) 0.593 (23.457)
1.5 -1.858 (9.418) -1.567 (10.379)  0.083(9.424) -0.124(10.435) -2.140(21.365)  -1.309(23.301) -0.466 (22.783) 1.363(25.114)
1.85714 -1.963 (10.775)  -1.007 (11.722)  0.337(9.852)  1.079(10.411) -4.958(23.924) -0.703 (28.945) 0.933(22.150) 0.658 (23.185)
2.3 0.8 -3.272 (14.306)  -0.576 (16.869)  0.232(10.123) 0.704 (10.714) -10.582 (31.164)  -3.821(36.515) -0.872(23.256) -0.840 (24.870)
3.0 -6.165 (17.556)  -1.408 (20.790)  0.327 (10.057) 0.704 (10.849) -21.709 (37.096) -10.014 (45.931) 1.367 (24.254) 1.187 (23.103)
4.0 -7.834 (23.841) 0.285(27.205)  -0.431(11.057) -0.273(10:434) -24.520 (52.442) 3.311 (69.246)  1.304 (24.693) 1.672 (24.308)
5.6 -17.583 (31.227)  -1.378(36.732)  0.574 (10.675) ,0.352/(10.524). -57.033 (69.257)  -2.362(98.199) 1.592 (23.854) 1.033(23.943)
9.0 -109.124 (55.087) -58.938 (66.582)  0.586 (10.134) ... 0.349 (10.517) -259.518 (111.386) -135.602 (152.304) 2.719 (23.804) 0.992 (24.344)
19.0 -292.511 (127.019) -97.013 (136.070) 0.397 (11.115) 0.562(11.293)/-668.705 (210.578) -183.206 (335.635) 2.082 (24.015) 2.155 (24.233)
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Table 2.3 Comparison of two approaches under marginal heterogeneity with censoring rate 0.6.

biasx107* (st.error x107?)

n=500 n=100
Two-Stage Two-by-Two n A Two-Stage Two-by-Two n n
¢ A-p A, B, A, B,
1 2

1.2 -0.022 (9.175) 0.647 (11.317)  0.480(11.516) 0.484(12.338) 0.535(19.467) 5.426 (27.392)  0.403 (27.579) 1.314 (28.132)
15 -0.700 (11.438) 0.997 (14.396)  -0.311(11.200) 0.597 (12.072)  0.269 (27.556) 2.762 (34.610) -0.788 (25.720) 0.609 (27.642)
1.85714 -1.103 (13.657) 0.187(16.934)  -0.092 (11.824) 0.619(11.884) -2.658 (29.413) 1.710 (39.691) 1.143(26.587) 4.003 (29.461)
2.3 0.8 -2.726 (18.460) 0.039 (23.483) -0.025 (11.456) 0.230(12.124) -4.620 (40.159) 5.159 (57.367) -0.679 (27.484) -0.800 (28.109)
3.0 -5.260 (21.654)  -1.091 (27.524)  -0.243 (11.857) 0.166 (11.525) -14.801(51.198)  -1.219(74.896) 1.004 (28.668) 2.123 (27.966)
4.0 -13.133(28.383)  -5.477(37.248)  0.005 (12.170)  0.090 (11.847) -34.456 (62.953) 2.777 (97.260)  1.595 (27.887) -0.243 (26.747)
5.6 -22.755 (42.830)  -6.343(56.938)  -0.314 (11.934). 1.115(13.131) -70.193(94.419) -13.234(133.771) 0.490 (27.494) 0.838(26.873)
9.0 -70.929 (68.613) -24.824 (92.450) -0.423 (12.367) 0.509 (11.945) =196.595 (142.673) -53.852 (234.286) 0.169 (29.724) -1.050 (26.876)
19.0 -395.364 (166.251) -185.900 (228.931)  0.254 (12.735) * 0.040 (12.080) -840.543 (281.685) -326.036 (561.663) 2.275 (29.854) 0.901 (28.127)
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Appendix: Checking the Validity of the Method by Hsu and Prentice

Investigation #1: Is the distribution of & reasonable?
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Finding: There seems to be a bound on « .
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Investigation #2: Whether the above problem is caused by the root-finding procedure?
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Finding: The estimating equation has a unique but wrong solution in some situation.
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Investigation #3: Whether the plug-in estimators for the nuisance functions are not

accurate?
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Figure A.3 the marginal survival function and its estimator
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Figure A.4 the cumulative hazard function and its estimator

Finding: The plugged-in estimator have reasonable performance only in some region.
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