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Nonparametric Monotone Regression for
Generalized Linear Models

Student: Cheng-Chih Wen Advisor: Dr. Jyh-Jen Horng Shiau

Institute of Statistic
National Chiao Tung University

Abstract

In this study, motivated by-the ' WAT-EC:problem, we develop a nonparametric
monotone smoothing spline smgother for analyzing responses from exponential families
by combining the methodologies provided-in-Gu (2002) and Zhang (2004) along with
our modification. An algorithm with implementation’ details is provided. Computation
is efficient because we utilize the“characteristics of the natural cubic splines. The
effectiveness of the proposed method is studied by simulation. The simulation results
demonstrate that the proposed method performs well in the regression models with
both the Bernoulli and Poisson responses. When the “true” function is monotonic, the
proposed monotone estimator performs about the same as the unconstrained smoother
in terms of the averaged squared error for the cases when the latter performs well.
On the other hand, constrained smoother outperforms the unconstrained smoother
when the unconstrained smoother produces non-monotone estimates. As an illustrative
example, we demonstrate the proposed method can be used in screening WAT test
items for more stringent engineering control and in setting appropriate control limits.
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1 Introduction

The Wafer Acceptance Test (WAT) in semiconductor manufacturing is aimed at mon-
itoring whether the electric characteristics of devices, such as voltage, current, and re-
sistance, are regular or not. In Fab, every wafer must go through WAT device testing.
In addition, a more stringent control, hereinafter referred to as “engineering control
(EC)”, is further imposed on passing wafers. For implementing EC, engineers would
need to select a set of critical WAT test items and determine more stringent “control”
limits (than that of the regular WAT) for each of them. A wafer will be “held” up
for further investigation when any of the EC items fails (i.e., exceeding the prescribed
EC limits). However, without any objective assessment on how critical the WAT test
items are toward the yield, engineers tend to select potential items as many as possible
(sometimes even in hundreds) to perform the extrasengineering control. Unfortunately,
more than tolerable number of false alarms often occur with this practice. As a result,
annoyed by the excess number of falselalarms, engineers tend to ignore them, despite
the extra efforts and costs spent in performing EC.Hence, to make EC more effective,
it would be helpful if an assessment tool"for screening EC test items is available for
engineers and for evaluating the adequacy of the predetermined EC control limits as
well.

Motivated by the above problem, as an assessment tool, we propose developing an
EC performance curve for each WAT test item. The proposed EC performance curve
of a test item aims at presenting the relationship between the EC passing rate and the
circuit probe (C,) yield of the wafers, where the EC passing rate is the probability that
a randomly selected wafer passes this EC test item and the C), yield is the proportion
of the chips on the wafer that pass the functional test called the circuit probe test. The
logic behind defining the EC performance curve as such is that an effective control of
a critical EC test item would improve the process, which in turn leads to a higher C),
yield. Thus an EC test item that can discriminate the C), yield to some extent would be

worthwhile to perform the extra engineering control. As an illustrative example, Figure



1 displays the EC performance curves of three EC test items showing respectively the
probabilities, denoted by p(C,) as a function of the C, yield, of a wafer passing these
EC test items. The dashed curve depicts that the passing probability is one or almost
one for C),, > .15, indicating that most of wafers with (), greater than .15 would pass
this test easily. In other words, such an EC test item can only discriminate low-yield
wafers. Conversely, the dotted curve discriminates only wafers with high yields. The
solid curve discriminates better for the middle values of the C), yield. Thus engineers
can pick the EC test items based on the process under study or monitoring. For
example, for a process with a fairly high C,, yield, an EC test with a performance curve
similar to the dotted curve may be a good candidate for the engineering control.

We remark that a set of inappropriate control limits may make the performance
curve of a critical-in-nature EC test itemlose’seme or all of its discrimination power.
Thus engineers may be able to adjust the control limits of an EC test to an appropriate
level so that this particular EC test would have a désirable discrimination power for
effective control.

Furthermore, although the WAT-EC. tests and the circuit probe tests are quite
different in nature, one tends to expect that the two test results of the same wafer
should be somewhat positively associated. Thus it is reasonable to assume that the
EC performance curves are monotonic.

An example of some similarity in nature as our WAT-EC problem is the item
responses estimation problem discussed in Rossi, Wang, and Ramsay (2002). The data
set consists of the responses of N examinees to n question items in a test. Assume
that each item is answered either right or wrong. The authors proposed to estimate
nonparametrically the probability that examinee j gets item ¢ right from the discrete
data and a covariate such as the IQ score for each of the N examinees via the EM
Algorithm. Moreover, the discrimination power of the test items was also discussed in
the paper.

To develop the EC performance curve for an EC test item, we adopt the non-

parametric regression approach to estimating the functional relationship between the



passing rate and the C), yield. In the nonparametric regression approach, the only
assumption on the regression function is smoothness and no functional form needs to
be specified, which provides a great advantage of flexibility in function estimation and
some convenience in modeling. The price we pay for adopting the nonparametric regres-
sion approach instead of the parametric regression approach is the slight inefficiency.
However, this inefficiency only happens when the specified parametric regression model
is adequate.

The statistical model we consider for the WAT-EC data is as follows. The indepen-
dent variable (i.e., the covariate) of the regression is a random variable X representing
the C), yield of a wafer. The dependent variable Y is the corresponding pass/fail result
of the WAT-EC test item for that wafer. Recall that p(z) is the passing probability of
the wafer with the C, yield X = z._{Fhen the dependent variable Y has a Bernoulli
distribution with a passing probability p(z). Asmentioned before, we will estimate the
EC performance curve p(-) by nénparametric monotone regression.

Although this study is motivated by the ' WAT-EC application, the nonparametric
monotone regression estimation method. developed in this work can be applied to ap-
plications with the dependent variable Y from the exponential family. For example,
the number of particles on a wafer with a covariate affecting the number of particles
may be modeled by a Poisson distribution in which the mean number of particles may
be of interest and could be described as a monotone function of the covariate. Or the
number of defects in a product item may be again modeled by a Poisson distribution
and the covariate could be a process condition that is monotonically associated with
the number of defects when the product item was manufactured.

The topic of monotone function smoothing has been discussed for quite a long time
in the literature. One of the major techniques used in the monotone regression focuses
on the first derivative of the function to be estimated. Under the assumption that
the random errors follow the normal distribution, Ramsay (1998) proposed expressing
the first derivative of a monotone function as the exponential of a smooth function

and estimating the smooth exponent by a B-spline. Under the same Gaussian model



for random errors, by adopting the penalized least squares approach, Zhang (2004)
developed a simple method trying to obtain a monotone function estimate by forc-
ing the estimated first derivative of the function to be non-negative or non-positive in
computation. Based on the method constructed by Ramsay (1998), Wang (2000) ex-
tended the distribution to the exponential family and developed a two-step algorithm
to implement a monotonic regression technique. For more research works on nonpara-
metric monotone regression, see Ramsay (1998), Wang (2000), Zhang (2004), and the
references cited therein.

In this study, we adopt a different approach from that in Wang (2000). Instead
of the exponent approach by Ramsay (1998), We combine the penalized likelihood
approach given in Gu (2002) for estimating the parameter function when responses are
from exponential families with the Zhang’s approach of forcing the estimated parameter
function to be monotonic. With this approach, it.is miore natural that we use smoothing
splines rather than B-splines. We remark that Zhang’s method has a hard-to-see flaw
and with this flaw the monotonieity of theestimated function cannot be guaranteed.
We modify Zhang’s method to ensure the monotonicity.

The rest of the paper is organized as follows. Section 2 reviews the three components
we use in developing our estimation method, including smoothing splines as described in
Green and Silverman (1994), Zhang’s approach to forcing a smoothing spline estimate
to be monotonic, and Gu’s approach and algorithm for nonparametric regression when
data are from exponential families. Section 3 describes the estimation method and
the algorithm we propose in this paper. Section 4 examines the effectiveness of the
proposed method by a simulation study for the cases of Bernoulli data and Poisson data.
A comparison study is conducted to demonstrate the value of adding the monotone
constraint. Section 5 returns to the motivated WAE-EC example and illustrates how
to use the proposed method as an assessment tool. Section 6 concludes the paper with

a brief summary and some discussions.



2 Literature Review

In the following subsections, we review the three components we use in developing the
proposed method, including smoothing splines (in natural cubic splines), monotone
smoothing splines (also in natural cubic splines), and smoothing splines for responses

from exponential families.

2.1 Smoothing Splines - Natural Cubic Splines

Smoothing splines has been a very popular smoothing technique for decades. For
computational purpose, we only review smoothing cubic splines as described in Green
and Silverman (1994). For other aspects of smoothing splines, readers are referred to
Wahba (1990), Eubank (1999), and Gu (2002) and the research works cited therein.
Consider the problem of fitting aeurve from aset of noisy data {(z1, Y1), ..., (zn, Yn)},
where z; € [a,b],i = 1,...,n. Let Sy[a, bf denote the space of functions that are dif-
ferentiable on [a,b] with absolutely continuous first derivative and square integrable
second derivative. Given any function ¢'in Ss[a, bj, Tet the penalized sum of squares of
g be
_15

S0V - 9w 42 [ o @) )

i=1

S(g)

n

where A\ > 0 is the smoothing parameter controlling the tradeoff between the closeness
to data and the smoothness of the fitted curve. The smoothing spline estimate ¢ is
defined as the minimizer of the functional S(g) over all g € S[a, b].

Suppose the real numbers 1, ..., x, are given on interval [a, b] such that a < z; <
Ty < ... < x, < b A function g defined on [a,b] is called a cubic spline when
the following two conditions are satisfied: (i) g is a cubic polynomial on each of the
subintervals (a,z1), (z1,%2), ..., (2,,b); (ii) the first and second derivatives of g are
continuous at each knot x;. If, in addition, the second and third derivatives of g are
zero at a and b, then ¢ is said to be a natural cubic spline. More specifically, a natural
cubic spline is linear on the two boundary subintervals [a,x;] and [z,,b]. It is well

known that the smoothing spline estimate ¢ is a natural cubic spline (de Boor, 2001;



Wahba, 1990).
Suppose that ¢ is a natural cubic spline on interval [a,b] with knots z1,...,z,.
Denote

gi = g(z;) and ~; =¢"(z;) for i=1,... n.

According to the definition of a natural cubic spline, the second derivative of g at x;
and x, are zero, that is, vy = v, = 0. Let g be the vector (gl,...,gn)T and v be
the vector (72, ...,7n—1)" . They constructed the following two matrices Q and R for
computation. Denote h; = x;41 — x; for i = 1,...,n — 1. Let @ be the n x (n — 2)

matrix with elements g;; given by
1 -1 -1 -1
qj-1,5 = hj_p%‘,j = _hj—l - hj yQj+1,5 = hj )

and ¢;; = 0 for |t — j| > 2 for i =4,7..,n and’j, = 2,...,n — 1. Note that the top
left element of () is ¢12 and the-bottem right element is ¢, ,—1. R is the symmetric

(n —2) x (n — 2) band matrix with nonzeroe elements r;; given by

1
i = ghisdhy) forl2<i<n—1,
1
Tiit1 = Ti“’i:ghi for 2<i<n-2.

The matrix R is strictly diagonal dominant, that is, |ry| > >, |ri;| for each i. It

follows that R is strictly positive definite. Define an n x n matrix K by
K=QR'Q".

Green and Silverman (1994) proved that the vectors g and - can specify a natural
cubic spline g if and only if the condition Q7g = R~ is satisfied. When this condition

holds, the roughness penalty satisfies

b
/a {¢"()}?dt =~"Rvy = g" Kg.

Return to the curve fitting problem. Since the smoothing spline estimator g is a

natural cubic spline, to minimize the penalized sum of squares functional (1), we only



need to search over a finite-dimensional class of functions, i.e., the natural cubic splines
with knots at the x;’s, instead of the infinite-dimensional space Ss[a, b].

Let g be the natural cubic spline formed by the vectors g and =, and matrices
() and R. Rewrite S(g) in terms of these vectors and matrices as follows. Let Y =
(Y1,...,Y,)". Express the residual sum of squares about g as (Y —g)" (Y — g) and

the roughness penalty term [{¢”(z)}*dz as g/ Kg to obtain

Stg) = (Y -g)" (Y~ g) + 6" Ke

1
= - {g"(I+nAK)g —2Y g+ Y'Y}

Since K is non-negative definite, the matrix I + nAK is strictly positive definite. It

therefore follows that S(g) has a unique minimum, which can be expressed as
g = (I AN Y. (2)

Green and Silverman (1994) showed that the veetor g can define the smoothing spline
¢ uniquely. That is, over the spagce of all natural cubic splines with knots z;, S(g) has
the unique minimum satisfying (2).. Furfhermore, the value of g(z) at any point = can
be specified by the vectors g and ~, where-sy ¢anl be obtained by solving Qg = R~.
More specifically, on each subinterval [x;, z;11], 1 <i <n —1, it can be shown that

(x — x;) giv1 + (Tig1 — ) g;
h;

g(z) =
1

T — T Tivy1 — T

If = is in the two boundary subintervals, by the fact that a natural cubic spline is linear
on the boundary subintervals, we have

g(xr) = g1 — (z1—2x)g (21) for x < x4,

9(x) = gn+ (z—x0)g (x,) for z >z,

where ¢'(x1) and ¢'(x,) are derivatives of g at x; and x,, respectively, which can be

obtained by

/ _ g2 — g1 _ 1 _
g(z1) = vy — 11 6(332 1) Y2,
n ~— Yn— 1
g/(xn) = J In-1 + *<xn - xnfl) Yn—1-

Ty — Tpo1 O

7



2.2 Monotone Smoothing Splines

Zhang (2004) proposed a simple and efficient monotone smoother based on smoothing
spline estimation. The main idea is to impose a monotone constraint on the derivative
of the estimated regression function.

Assume that data {(z;,Y;), i = 1,...,n} are sampled from the following nonpara-

metric regression model
Y;:f(])z)—FEz, izl,...,n,

where f(z) is an unknown smooth function with thrice continuous derivatives on inter-
val [a, b] and the random errors ¢;’s are white noise with mean zero and standard devi-
ation o. For simplicity, assume that the design points z; satisfy a < z; < ... <z, <b.

A smooth estimator of f can be definied as the'minimizer f of the following penalized

least squares criterion:

LV QA () ®3)

where again A > 0 is the smoothing parameter:
To derive closed-form formulas for both f(z) and its derivative, write f(z) in terms
of g(z) = f'(x) as
fla) = (o) + [ glu)du e

Substitute (4) into (3) to obtain the following regularization criterion:

L Xi) (Vi = f(ay) — / g(2)dz} + A / (g" ()} da. (5)

n =
Let (f(z1),§) be the minimizer of (5).

By treating ¢ as a natural cubic spline with knots x;’s for ¢ = 1,...,n, Zhang
(2004) established the relationship between the function f and its derivative g using
the method of Green and Silverman (1994) and gave the closed-form formulas for f
and g, respectively, as in the following.

Denote f; = f(x;), g; = g(x;), and ~; = ¢"(x;) for i = 1,... n. Since g is a natural
cubic spline, it follows that v = v, = 0. Let f = (f1,..., fn)T, g= (g1, ,gn)T, and

8



¥ = (y2,.-- ,%_I)T. Let h; = x;jp1—x;,i=1,2,...,n—1,and Q, R, K be the matrices
as defined in Green and Silverman (1994, pages 12,13) (also defined in Subsection 2.1).
According to their Theorem 2.1, it can be shown that g is a natural cubic spline with

knots 1, ..., x, if and only if v = R~'QTg. As mentioned before,

b
K =QR'Q" and / ¢"(z)’dz = g"Kg.

T

Denote the n-dimensional column vector of zeros by 0, . Let C' = (cy,...,¢c,) and

D =(dy,...,d,)", where ¢; = 0,, d; = 0,5, and, for i = 2,3,...,n,

c, = (hl, hl + hQ, e hz;g + hifl, h,-,l,O, RN ,0)T,

di = (BB+hd. K, +n k0.0

Note that ¢; and d; are n x 1 and (m#*2)ix.1 vectors, respectively. According to
Proposition 1 in Zhang (2004), the vector f ¢an be expressed in terms of C, D, @, R,

and g as
1

S W

DRQ"}g.
To find the estimator of the function /f, denote

1 1 1T = i ~ * 1 0}
=-(C—-—— = =(1, M = n .
M 2C’ 24DR Q ., g (g , M ( n ) , and K 0

Then the minimizer of the regularization problem (5) is

G- ( J; ) (BTN 4 AR TY (6)

where Y = (Y7, -+, Y;,)T. We then have the estimator f = Mg.
We remark that Zhang (2004) has a typo that the matrix M is defined as an

(1 0o
- (1, %)

which cannot be right since the vector Y in (6) is an n x 1 vector.

(n+1) x (n+ 1) matrix

Zhang (2004) developed a simple method with an attempt to obtain to a monotone
estimate. Without loss of generality, assume that f is non-decreasing, hence g is non-

negative. Then one would wish the estimator g to be non-negative as well. To achieve

9



this goal, Zhang (2004) replaced g(x) by g4 (x) = maz(g(x),0). He then estimated f
by

where g1 = (G4 (1), -+, g+ ()"

Unfortunately, the monotonicity of f cannot be guaranteed. The reason is that the
i-th element of f, denoted by f;, is not exactly the value of f(z;) + Joi g (u)du as
desired. Instead, it is f(z1)+ [} G4 (u)du, where the function g, (-) is the natural cubic
spline interpolating {(z;, g4 (z;),7 = 1,...,n} and there is no guarantee that it would

be nonnegative.

2.3 Regression with Responses from Exponential Families

For the response variable Y from an, exponential family distribution along with a co-

variate x, consider the following donditional density ' function

F(yle) = atp( VD) ‘j(”(”’” oy, )}, )

where ¢, and ¢ are known functions, #(z) is the parameter function to be estimated,
and ¢ > 0 is a known dispersion parameter independent of x. It is well known that
E[Yl|x] = ¢'(n(z)) = p(x) and Var[Y|z] = ¢"(n(x))¢.

Assume the responses Y; corresponding to the covariate x;, i = 1,---,n, are i.i.d.
from the exponential family distribution (7). Then the penalized log-likelihood func-

tional can be expressed as

o > Vin(e) gt} + 570 ®

where J(A) is the roughness penalty. Gu (2002) showed that the minimizer of (8) can
be computed via the Newton iteration, which updates 77 (the 1 obtained in the last

iteration) by the minimizer of the following penalized weighted least squares functional
1 .~ 2
S3 GV — (@)} + M),
i=1

where Y; = 7j(z;) — 4;/w; with 4; = —Y; 4+ ¢'(7i(x;)) and @; = ¢"(7(x;)). Note that
@; > 0 since Var[Y|z] = ¢"(n(x))¢ > 0 when n(-) = 7(-).

10



3 Proposed Method

3.1 Penalized Weighted Least Squares Function Estimator for
Exponential Families

Consider the nonparametric regression for a generalized linear model specified within
the exponential family. The data observed are i.i.d. samples (z;,Y;), for i = 1,...,n,
from an exponential family distribution. The covariate variable z; is within some

interval [a, b] and the density of Y; is

yn(x) — q(n(z))

f(ylz) = exp{

where ¢ and ¢ are known functions, and ¢ > 0 is either known or considered as a
nuisance parameter. The unknown parameter function n(x) is the central aim of esti-
mation. In our study, n(z) needs 0 meet both smoothness and monotone conditions
on interval [a,b]. Instead of maximizing the log:likelihood, we choose to minimize the

following penalized log-likelihood functional

S (Vin(e) ~ dtofgphe | (Dt o)

where A is the smoothing parameter.

Gu (2002) gave a quadratic approximation of —Y;n(x;) + q(n(x;)) at n(x;) as
1 i |
0 () — i) + 23 +C

where 4; = =Y; + ¢ (n(x;)), & = ¢"(7(x;)), and C; is not related to n(x;). Without
imposing the constraint that n(z) is monotonic, the minimizer of the penalized log
likelihood functional (9) can be obtained by recursively finding the minimizer of the

penalized weighted least squares functional
sz{y n(z)} + /\/ (D™ ()] 2dx (10)

via Newton iteration until convergence, where Y; = 7(x;) — @;/;.

11



3.2 Monotone Natural Spline Estimator

To impose the monotone constraint in the estimation of 7(x), we focus on the estimation
of the first derivative of n(z). Since n(x) is non-increasing (or non-decreasing), the
derivative 7/(x) is non-positive (or non-negative). There are reasons for dealing with
n'(z). Firstly, in practice, it is easier to impose non-positiveness (or non-negativeness)
on 7'(z) than to impose monotonicity on n(x). Secondly, we can derive a closed-form
formula for () easily by the property of natural cubic splines as given in Green and
Silverman (1994).

Assume that x;, i = 1,...,n, are real numbers on interval [a,b], which satisfy
a <z <y <...<ux, <b Since we are more focused on the smoothness of 7'(x)
than that of n(x), it is natural to choose m = 3 in the roughness penalty functional of
(10). For any z € [a, b],

(@) =@l [ gl

Substituting the above expression into (10}, we-have

1= ST = (el @iy + [l @) e (1)

We remark that Zhang (2004) specified that ¢, the minimizer of (5), is a natural
cubic spline; however, according to Wahba (1990), ¢ should be a piecewise quartic
polynomial in [z1, x,] and linear in the two boundary subintervals if the function space
to search for the minimizer is Ss[a, b].

Mainly for the computational purpose and also for simplicity, we shall restrict the
function space to search for the minimizer of (11), denoted by g, to be the class of
natural cubic splines. That is, ¢ is set to be a natural cubic spline. We remark that
the class of natural cubic splines is a smaller space than Ss[a,b] but it is rich enough
for approximating any reasonably smooth function.

Using the same notation as in Green and Silverman (1994), let n = (91, ...,7),
Y= ¥m-1)’ 8 = (91,- - gn)", where n; = n(x;), g; = g(x;), and v; = g"(x;)
for i =1,...,n. If g is a natural cubic spline, v; = v, = 0. We modify the method of

12



Zhang (2004) by expressing n(x) as n(x) = n(a)+ [ g(u)du instead of n(x1)+ [; g(u)du.
Then the matrices of C' and D need to be modified as well. Denote n(a) by 7,.

Let h; = 24—, fori = 1,... ,n—1, hg = x1—a, ky = ho (24+ho/h1), ks = —ho? /4,
and k3 = —2hZh;. Let the matrices @, R, and K be defined as in Subsection 2.1.
Modify the matrices C' and D by replacing c; with c; + k; - € + k2 - €} and d; with
d; + k3 - e, where e} is the k-dimensional unit vector with the ith element being 1 and
0 elsewhere. In words, the matrix C' is modified by adding k; to the first column and
ko to the second column. Similarly, D is modified by adding k3 to the first column.
Let M = 3C — .DR™'QT as before.

Proposition 1 gives the relationship between n and g. All the proofs in this paper

are given in the Appendix A.

Proposition 1 n="mn,1,+Mg.

The main reason that we consider 7(a)-rather than n(x;) is that the matrix M
constructed in this way is invertible while the matrix M in Zhang (2004) is not. Another
advantage is that n(a) can be specified by thevector g, utilizing the fact that a natural
cubic spline is linear on the boundary subinterval [a, x1], see the Appendix A.

Proposition 2 shows that the matrix M in Proposition 1 is invertible. In the follow-
ing, when the dimension of a matrix or vector helps reading, we will add the dimension

as the subscript in the notation. For example, M,, ,, denotes the n by n matrix M.
Proposition 2 M, ,, is invertible for all n > 3.
According to Proposition 1, the vector i can be specified by g and n,. Given 7,,
(11) can be written in matrix form as
1 - T o~ & T
I = g(Y—Mg) W(Y — Mg)+ \g' Kg
1 . o N
= {g"(M"WM +n\K)g —2Y " WMg+Y WY}, (12)
n
where Y = {}71 — Ny Y — na}T and W = diag(&r, ..., 0n).

Since K is semi-positive definite, the matrix MTW M is strictly positive definite by

Proposition 2 and @; > 0 for ¢ = 1,...,n, it follows that (12) has a unique minimum
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at

&= (MTWM +n\K)" MTWY. (13)
Suppose the parameter function 7 is monotone increasing. Then g must be non-negative
everywhere. To achieve this, we follow the same approach adopted by Zhang (2004)
by setting g(z;) to 0 when g(x;) < 0. Let g, = (¢.(z1), -+, g+ (z,))T, where g, (z;) =

max(g(z;),0). We then use g, to construct vector 7 instead of using g. That is,
f':ﬁa'ln_’_Mg—I—' (14)

It is interesting to observe that Mg, can be conceived as integrating the natural cubic
spline that interpolates the points {(z;, g+ (z;)), i = 1,...,n}. Denote the interpolating
natural cubic spline by g.. Unfortunately, when g, (xx) = g4 (zx4+1) = 0 for some k, it
is impossible to have g, (z) > 0 for all’@"€ (€211 1]. Then the monotonicity of 7 is
lost. To remedy this problem, we modify-the estimate to ensure the monotonicity as
follows.

Forx; <z <wiq,i=1,...,n=1,let

inen(@) = i0) + 75 PG+ 72 [ (e
iz - i

where 7; is an indicator function defined as 1 if 7; > 7;_; and 0 otherwise and 7, = 1
when [ gy (u)du > 0 and 0 otherwise. Note that the value of [ g, (u)du can be
obtained as described in Subsection 2.1 since g, is a natural cubic spline. It is obvious
Nmon 1S Monotonic.

For computational purpose, we shall express 7,0, = (Mmon.1s -+ Tmonn) . i matrix

form. Let M be the (n+ 1) x (n + 1) matrix given by

(1o
M_@HM>.

Let N be the n x (n + 1) matrix with elements n;;, 1 < 4,5 < n, given by n; = —1,
nii+1 = 1 for 1 <i < n and n;; = 0 elsewhere. Let S = (s1,s2,...,s,) be the n x n
matrix given by s; = (07,7 - 17, ) fori=1,...,n.

Proposition 3 Ton = Na - 1n + SNMg | where g = ( ga )
+
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Note that

f]a ﬁl_ﬁa
NMg:NM<ga>:N 77} _ 772f771 7
+ : :
ﬁn ﬁn_ﬁn—l

which computes the integral [7* g, (u)du for each subinterval. The effect of S is to

accumulate these integrals up to x; but skip those integrals [;'*' g(u)du for which
M < i1
3.3 Algorithm

We propose using the back-fitting approach to obtain estimators 7, and g,. For back-
fitting, see Hastie and Tibshirani (1990). Recall that the log-likelihood function for

the exponential family is

'= _71@ i{m(wz) — q(n(z)} + % /ab[g”(x)]de, (15)

where n(z;) = 1.+ M[i, .]g, if g is"a natural‘eubic spline. Given g, we can get a suitable

value of 7, by solving the equation

o 1y, Oa(n(xi),
Ma n;{y’ M =0

Substitute the new 7, into (12) to obtain the new estimate of g by (13). Thus, re-
peat the iteration until the value of 7, converges. Since the equation 9l/dn, = 0 is
non-linear, we propose using the Newton-Ralphson method to get the new estimate of

n(a). For details of the Newton-Ralphson method, see, for example, Burden and Faires

(2001).
Back-fitting Algorithm

Step 1

Given the covariate (x1,...,z,), calculate the n x n matrix C', n X (n — 2) matrices
Q and D, (n —2) x (n — 2) matrix R, then compute the matrices K = QR 'Q* and
M =1iC—- 4 DR'Q".

2
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Step 2
T
Begin with iteration k = 0. Set g = (3{”,...,3©)" and 4”) to some initial values.

Set the tolerance level T.

Step 3
Given g update #*) by 7%+ the minimizer of (15), with the Newton-Ralphson

a

method.

Step 4

Construct the n x n diagonal matrix W and Y with g® and 7+ Then update g*)
by g*+1) = (MTWM +n\K)  MTWY.

Step 5

If ’ﬁ(’““)(a)fﬁ““’(a)

7*) (a)
erwise, set g<k> — gﬂ“ ) and ﬁfﬁ) ~ g ﬁc(zk—i_l)

< T, stop iterating atid Setrvector i = A*+D - 1, + SNMg+. Oth-

, return to. Step 3.

4 Simulation Studiés
4.1 Performance Evaluation

To evaluate the effectiveness of the proposed method, we apply the monotone regression
smoother on some data generated from exponential family models, including Bernoulli
and Poisson data as illustrative examples. The smoothing parameter \ is chosen by the

Generalized Cross Validation (GCV) method proposed by Craven and Wahba (1979).
4.1.1 Bernoulli Data

n observations, {(z;,Y;),i = 1,---,n}, are generated independently, in which x;’s are
generated independently from interval [0, 1] uniformly and Y; is generated from the
Bernoulli distribution with the probability function P(Y; = 1|x;) = p(x;), where p(z)

is a smooth monotone function for all z € [0,1]. The conditional density function of
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the Bernoulli response Y given the covariate x can be written as

flylz) = exp{y n(z) —log(1 + exp(n(z)))},

where 7(z) = log(p(z)/(1 — p(x))).

As an illustrative example, we choose n=200 and p(z) = 1—(1—21°)?5 for z € [0, 1].
That is, z; ~ U(0,1), Y; ~ Bernoulli(p(z;)), ¢ = 1,...,200. The simulation results
are displayed in Figure 2. The solid line is the target function p(z), the dotted line
is the estimated smooth curve under monotone constraint with smoothing parameter
A = 0.00005 chosen by GCV. It is observed that the estimated function is fairly close
to the target function for this example.

In Figure 2(a), the dots are raw data {(x;,Y;)}, while the dots in Figure 2(b) are
binned data. For binning data, the dnterval [0,1] is divided into 25 equally spaced
subintervals. For each subinterval, we count the points and calculate the proportion
of the 1’s in that subinterval. The points plotted on Figure 2(b) are the proportion
of 1's versus the midpoint of the-corresponding subinterval. While it is hard to read
from the raw data the information of p(a), the binned data can follow the trend of the

underlying target function p(x) pretty well.
4.1.2 Poisson Data

The conditional density of the Poisson distribution can be expressed as

¢(x)” exp (—¢(x))
y!

flylz) = = exp{yn(z) — "™ — log(y")},

where n(z) = log ¢(z). Assume the target function is
o(z) = log(z? + 1) for 1 < x < 3.

200 covariates {z;} are generated independently from U(1,3), and the response Y;
follows Poisson(¢(z;)), for 1 <14 < 200. Figure 3 shows the fitting results. In Figure 3,
the solid line is the target function ¢(x) and the dotted line is the estimated parameter

function ngS(x) with smoothing parameter Agcy = 1.5 chosen by the GCV method. To
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see how well the GCV estimate performs, we also show the “optimal” estimated curve
(the dash-dot line) for which A,,; = 0.5 about this example is the A minimizing the
averaged squared error (ASE) defined as

n

= 3 (Bl — o(z0)

i=1

ASE(¢

Note that ¢(-) depends on .

Again, the dots in Figure 3(a) are raw data {(x;,Y;)} while the dots in Figure 3(b)
are the binned data. When comparing the two estimated curves in terms of ASE, we
find the values of ASE are 0.01190 and 0.01189 for A,,; and Agcv, respectively. There
is no obvious difference between the curves corresponding to A = 1.5 and A = 0.5.

Consider another example in which the curvature of the mean function has more

variation. Let

1 .
+lz = By for 1 <x<3.

Similarly, generate 200 x;’s frontU(1, 3).randomly and Y;’s accordingly. Aoy = 0.25
while A\, = 2.5 X 107° by minimizing ASE criterion. The results are shown in Figure
4. The estimated curve with A\goy has obvieus departures from the target function ¢.
On the other hand, the “optimal” curve with A,,; captures the main trend of the target
function. In addition, the ASE is 0.008 for A, and is 0.031 for Agcv. Note that, as
observed from Figure 4(b), the binned data are so noisy that it is hard to expect a

data-driven method like GCV would perform well.

4.2 Monotone vs. Constraint-Free Smoothing Spline Estima-
tor

We are interested in knowing whether adding the monotone constraint is value-added
in estimation of monotone functions. In other words, if the underlying function is
monotonic, would a regular (unconstrained) smoother performs poorer than or as well
as a constrained smoother? Also, how often a regular smoother would produce a non-

monotone estimate when the true function is monotonic? To answer these questions,
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we compare the proposed method with the method given in Gu (2002) by a simulation
study.

Consider the Bernoulli example in Subsection 4.1.1. The true parameter function
under study is of the form p(x) =1 — (1 — 2%)%, where a and 3 control the shape and
the speed of going upward of the function. When o« > 1 and 3 > 1, p(z) is increasing
for all x € [0, 1]. If B is much larger than «, the curve p(z) climbs up to 1 rapidly. On
the other hand, if § is much smaller than «, the curve reaches 1 slowly. Thus, three
settings are studied: (o, 5) = (1.98,28),(6.28,17.67), and (6.9,1.1) (in the order from
fast to slow). Figure 1 shows these three functions. The effect of the sample size is
also studied with n = 50, 100, and 200.

Let pm(x) denote the estimate under the monotone constraint and p,(z) denote the
unconstrainted estimate developed by Gi'(2002), Define ASE(p) = £ Y0, (p(z;) — p(x;))”
and calculate ASE(p,,) and ASE(p,) for the same data set. For each setting of («, )
and n, repeat the trial 10000 times. Table 1 displays the percentage of monotone
Py in 10000 trials. It is observed that Gu'stestimate (p,) tends to produce more
non-monotone estimates for smallet‘m: Table 2 shows the proportion of ASE(p,) >
ASE(py,). We see that, for all n under study, when the true function rises slowly, p,,
performs better than p,, while p, performs better than p,, for functions rising rapidly.
And for all three target functions, the performance of p,, gets better when the sample
size n gets larger. For illustration, Figure 5 shows some cases with monotone p, and
some with non-monotone p, along with the corresponding p,,.

For distribution comparison, boxplots of the 10000 ASE(p,) and the corresponding
10000 ASE(p,,) are displayed in Figures 6-8. The sample quartiles of these estimates
are given in Table 3. It seems there is no significant difference between the distributions
of ASE(p,) and ASE(py,). In summary, p,, performs as well as p, in terms of ASE,
while ensuring monotonicity.

To see how bad (well) the unconstrained smoother can be when it produces a non-
monotone (monotone) estimate, we generate 10000 cases of non-monotone (monotone)

Pg’s with n = 100. For the three target functions, Figures 9-11 compare the boxplots of
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10000 p, versus the corresponding 10000 p,, under the condition that p, is monotonic
(in panel (a)) or not monotonic (in panel (b)). It is clear to see from these figures that
the constrained smoother outperforms the unconstrained one when p, is not mono-
tonic, while performing as well as p, when p, is monotonic. In summary, constraining
monotonicity prevents the chance of poor estimation while attaining about the same

performance for cases the unconstrained method performs well.

5 Examples

Return to the motivated WAT-EC example described above. In this section, we demon-
strate the proposed method can be useful in setting appropriate EC limits to achieve
better discrimination power and in the process of screening WAT test items for further
engineering control.

For the first purpose, we generate responses Y s directly by checking if the measure-
ments are within the control limits. Suppose that 200 wafers are taken from some lots
and measured the voltage at some testkeys-on-each wafer. Consider the relationship

between the C), yield and the mean voltage (), ;) for the i-th wafer satisfying
1(Cpi) =1+0.1 exp(—=1.5C;,) Ty,

where C),; is the yield of the i-th wafer generated randomly from the beta distribution
Beta(8,2) and T; is a random variable with probability P(7; = 1) = P(T; = —1) = 0.5,
for i =1...,200. Beta(8,2) is chosen to mimic the reality because it is skewed to the
left. The function p(C),) indicates that the mean voltage approaches to the target
voltage level 1 as (), increases to 1. Suppose the distribution of voltage for the i-th
wafer follows the normal distribution with mean p(C,;) and standard deviation 0.1. 9
measurements are generated for each wafer and the mean voltage v; is computed. Figure
12 presents a histogram of these 200 mean voltages, for which the sample mean is 1.005
and sample standard deviation is 0.06. Suppose an engineer sets the upper (UCL) and
lower control limits (UCL) at LCL=0.88 and UCL=1.12, respectively. Define Y; = 1 if
v; is within the control limits and Y; = 0 otherwise. With data {(C,, Y;)}, the passing
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rate for C, yield is estimated and displayed in Figure 13(a). The passing rate curve
seems to lack the discrimination power for C}, > .6 while showing high discrimination
power for C,, in (0.4,0.5). Such an EC performance curve is not useful for most of the
current processes in IC industries If this test item is critical in nature, the undesirable
low discrimination power may be caused by the ad hoc choices of control limits. To
demonstrate this, we reset the control limits to LCL=.93 and UCL=1.07. Then the
EC performance curve displayed in Figure 13(b) indicates a fairly good discrimination
power in the range of (.4, 1). A further reduction of the control limits to LCL=.97 and
UCL=1.03 is too stringent, since the passing rate drops down to about 60% or below
even for very high C,.

Moreover, consider the case that there is no significant relationship between the C,
yield and voltage. Assume C),; ~ Beta(8,2) and mean voltage u; ~ Beta(10,10)+0.5,
for i =1,...,200, and they are independent. Generate 200 v; accordingly as described
above. For these 200 v;, the sample mean is 0.99 ahd sample standard deviation is
0.10. Let UCL=1.1 and LCL=0.9. The eorresponding passing rate presented in Figure
13(d) is flat for most of the C, range;-lf we.change the control limits, the resulting
passing rate changes only in the level but has a similar pattern. A test items with such
kind of EC performance curve indicates the test results may be not so much related to
the C, yield. Including this test item for EC may merely increase the number of false

alarms. Consequently, this test item should not be chosen for engineering control.

6 Conclusions

In this study, motivated by the WAT-EC problem, we develop a nonparametric mono-
tone smoothing spline smoother for analyzing responses from exponential families by
combining the methodologies provided in Gu (2002) and Zhang (2004) along with our
modification. An algorithm with implementation details is provided. Computation is
efficient because we utilize the characteristics of the natural cubic splines. The simu-

lation results demonstrate that the proposed method performs well in the regression
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models with both the Bernoulli and Poisson responses. When the “true” function is
monotonic, the proposed monotone estimator performs about the same as the uncon-
strained smoother in terms of the averaged squared error for the cases when the latter
performs well. On the other hand, constrained smoother outperforms the unconstrained
smoother when the unconstrained smoother produces non-monotone estimates. Thus,
the choice is obvious. If the function is monotonic in nature, then we should choose
the method with the monotone constraint imposed.

As an illustrative example, we demonstrate the proposed method can be used in
screening test items for engineering control and in setting appropriate control limits.

With the nonparametric regression in nature, the proposed method has the great
advantage of model flexibility. Also since the method can be applied to all kinds of data
as long as they follow the exponentialifamily,’it: can find many potential applications

in areas such as industries, medicine, reducation; social studies, and so on.
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A Appendix: Proofs

Proposition 1.

n="n,1,+ Mg.

Proof. Define x; —x;_1 = h;_1, fori=2,... n, and let hy = x1 — a. Since the function

¢ is linear in subinterval [a, z1], it shows that

[ guu = P00 +9(e)

By Green and Silverman (1994),

92—91_1@ _ o)y
G VEE

g =
and
g(z) = g1 — (@1 ="@)gy for v < ;.

Then g(a) can be expressed in terms [of g5 g2, and ¥ as

h h 1
3 092 + —hohi7s.

ola) = @ JN9ra el

Substituting the above expression iute (16), we get

ho ho?

1 1
/a g(u)du *{h0(2 + I —)g1 — h01 g2} — ﬂ{—%o%ﬂz}

According to the proposition in Zhang (2004),

xr)dr = =c; g——dT'y for 1 <i <n,
2" 24"
x1

where g and ¢; are n x 1 vectors, v and d; are (n — 2) X 1 vectors.

(16)

(17)

c;, and d; are

the same as that in Zhang (2004). Denoting k; = (2 + ho/h1)ho, ko = —ho?/hy, and

ks = —2ho?hy, we have

n = n(a)%—/:i g(x)dr = +/ d:v+/ ig(m)d:p
= n(a)+ ;(klgl + kaga + ¢/ g) —

1 n n
= 77(a)+§(0i+k1‘91 + ko -ep)t g—24(

1
—(d; + ke 2)

(18)

where ef is the k-dimensional unit vector with the ith element being 1 and 0 elsewhere.

Since v = R~'Q"g, Proposition 1 then holds by (18).
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Proposition 2. M, , is invertible for all n > 3.

Proof. Let G, = %Cn,n and H,, o = iDnm,Q. Then M,,,, = Gnm—Hn’nﬁR,ﬁQ’nﬁQT

It suffices to show that det(M,, ) # 0. Define the (2n —2) x (2n — 2) matrix No,_o by

N. o Gn,n Hn,n72
2n—2 — T :
n—2mn Rn—2,n—2

By the properties of block matrix decomposition,

Gunnw  Hpno | [ I HR? M,, O I O
T o I O R RQT I |’

7L72,TL RTL—2,7’L—2
Since the matrix R is invertible, we then know that det(M,,,,) x det(Ns,—2). Thus, we

only need to prove that det(Ns, o) #«0Mor@all n > 3. More specifically, we simplify

the matrix N by some elementary: matrix éperations into the matrix N’

/ /
Gn,n Hn,n—?
'T

det(Nayy, o) o det (NG, o) = )
n—=2n Rn—2,n—2

, (19)

where G/, ,, is the matrix with entties ¢; ; given by 'g;; = giiv1 = hi__ll for 2 < i < n,

n,n

g1 = k1/2, g12 = k2/2, and g;; = 0 elsewhere; the matrix H), , has elements

. hi—1 _ —him _ h _
Vig, for 2 < i < (n—1), Vijo = Vigm1 = 255, Vi1 = 5 L1 = BolVnn—2 =
I . . .
h’l’g L, and 0 elsewhere; @, ,, is the (n — 2) x n matrix with elements ¢; ;, where
i1 = —2hit —2h7Y for 1 < i < (n—2) and 0 elsewhere; the matrix R, ., is
2+ 7 i+1 ) n—2,n—2

a symmetric band matrix with entries r;;, 7; = i(hl + hiyq) for 1 < i < (n—2),
Tiitl = Tit1; = %hiﬂ for 1 <i < (n—3), and 0 otherwise. When n = 2, N/ is a
2 x 2 matrix, where the first row is (ky/2, k»/2) and the second row is (hy', h'). It is
clearly that det(N}) > 0 since ki > ko.

According to Lemma 1 stated below, for all n > 3, the determinant of Nj, _, can

be expressed in terms of Né(n—l)—Z by
1
det(Ny,_,) = Zd€t<N£(n71)72) + K,

where K, is a positive number. Since det(N5) > 0, it follows clearly that det(N, ) > 0

for all n > 3, which implies that the matrix M, ,, is invertible. O
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For illustration, Appendix B gives NVj, , for n = 4 and 5 and expresses Nj,. , in

terms of NJ., .
Lemma 1. For the square matriz N, o defined by (19), for n > 3,
! ]' !/
det(Ny,_5) = 1d€t<N2(n71)72) + Ko, (20)
for some K, > 0.

Proof. We will show the equality (20) by induction.
Step 1:
When n = 2, it is clear that det(N4) = ho (ho + h1)/hi® > 0.

When n = 3,
ho (3ho (hy + he) +2hy (2h1 4 8hs))
det(N}) =
et(Ni) 120202
_ Do (3o +303) e (3hohi®+2°) o (6o hy +5h1%)
B 12 hy? 12 by % hy? 12 hi% hy

1
= Zdet(]\fé) + Kg,

ho (3h0 h12+2h13) ho (6h0 h1+5h12)
12 h1? ho? 12h12 ho

where K3 = > 0. Thus (20) holds for n = 3.

When n = 4, we calculate the determinant of Nj,, ,. It follows that

1
det(Ng§) = Zdet(J\Li) + Ky,

where
p ho (9 ho b2 ho? + 6 hy® ho® + 12 ho hy ho® + 10 by 2 ho® + 4 ho ho* + 4 by h24)
S 144 1,2 hy? hy?
ho (18 ho hi® hy + 12 hy® by + 30 ho hy ho? + 25 hy2 ho? + 12 ho ho® + 12 by h23)
* 144 hy? hy? hy '

It is clear that (20) holds since hg, hy, ho, hg > 0.

Step 2:
We would like to prove (20) for general n by induction. For a fixed k& > 5, assume

that det(Nj, 5) > 0 for n =k — 3 and (20) holds forn =k —2 and n =k — 1.
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When n = k, consider the matrix form for NVj,_,
/ !/
Gir  Hipo
'T /
Qr2r Ri ok

By the structures of G',H',Q)’, and R’, we can write the determinant of NJ, , in terms

/ p—
NQk—2 -

of Né(k—l)—? More specifically, we interchange some column vectors of NVj,_,, such that
the i-th column vector becomes the (i—1)-th column vector for i = k+1,...,2k—1, and
the k-th column vector becomes the (2k — 1)-th column vector by some permutation

operations. Do the same thing with the row vectors. We then obtain

/
NQk—4 U2kf4,2

21
Vo ok 159 (21)

det(N_y) — ]

for some matrices Usg_42, Vo 2k—4, and Ty 5. The matrix in (21) can be transformed into
a lower triangle with some elementary matrix operations. More specifically, the block

matrix in (21) can be written as

[ Noj—g Uskap ] _ [ Noj—3 105 1 . [ I =Ny yUsk s ]
Vook—a  Tho Voowa 15, @ I .

We then obtain det(Nyy, o) = det (Ngy, wy) det(T55). The matrix T , is an upper triangle
matrix, where T} ,[1,1] = b1, and

hkfl + hkfg hk 2N/ 1

T2/,2[2a2] = 4 - 19 2k 4[2k 4,2k — 4]
-1 -1 hifQ hk:—2

By induction hypothesis, det(N, o) = ldet(N’ 1)—2) + K, holds for n = k — 1 and
n=k—2, and det(Ny_5 ,) > 0, we get Nyt [2k — 4,2k — 4] < 4/hy_, by Lemma 2,
and Ny ', [k — 1,2k — 4] > —hy_5/3 by Lemma 3. Tt follows that

hk—l + hk_g h27 4 _ _ h2, hk—2 hk—2
Té’z[Q,Q] > 1 — ]1622 hors + (201, + 2k 1) I£22 T 12 3
h? hp_ hi_1 + hy_
I e L e B

18 3 4
hi—o hi_s hr—1 _ hg—1
= > .
36 + 9hy_1 * 4 4

Then

1 hi_1 hy,
etV ) = T2 2 et ) = (4 (T2 = M) ) o derov .
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Define K, = (T2’72[2,2] — h’“*l) 9etNoa)  Gince 15,(2,2] > M1 and det(Nyg_y) > 0,

4 hi—1 4

then

as required. N

Lemma 2. If det(Ny,_y)_5) = 1det(N§(k_2)_2) + Ky is satisfied, then

Nyt 2k — 4,2k — 4] < for k> 4.

k—2
Proof. 1t is known that the elements of the inverse of Ny,_4 can be expressed in terms

of its cofactor matrix.

det(cofactor(Ny,_,[2k — 4,2k — 4]))
det(Ngj,_4) '

Nyt 2k — 4,2k — 4] =
By the definition of NJ,_,, it is eaSy to sée that

det(cofactor(Ny,_ 2k — 4,2k —4])) =

det(Nyp—_z)—s)-
k-2

Since det(Ny_1)_o) = %det(Né(k_z)_Q) + K48 satisfied by induction hypothesis, we
obtain

ﬁdet(Né(k—Q)ﬁ) B 4 4

Nyt 2k — 4,2k — 4] = = <
2kl ] %det(Né(k_Q)_Q) + Ky-1 g2+ Y hgo

4*Kk,1
hi—2 det(N},,_,))

as required, since Y = ( > 0. O

Lemma 3. If det(Ny, ,) = jdet(Ny,, ) o)+ K, is satisfied forn =k —1, n =k -2,
and det(N},_5) >0 forn =k — 3, then

!

I
Nyt k= 1,2k —4] > -2

for k >5.

Proof. Since N'N'~' = I, it is obvious that N'[k — 1, ]JN'~'[-,2k — 4] = 0, where
N'[k —1,] is the (k — 1)-th row of N” and N'~'[-,2k — 4] is the (2k — 4)-th column of

N1, More specifically, it can be shown that
h /
Ny tulk — 2,2k — 4] + Ny 'y [k — 1,2k — 4] = ’1“22N2k14[2k 4,2k — 4].
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Consider the cofactor of Nj,_,[k — 2,2k — 4]. By the structure of NJ,_,, we obtain

Noitulk — 2,2k — 4] o< det(cofator(Ny, [k — 2,2k — 4])) = — 1223
k2

det(A),

where A is a (2k — 6) x (2k — 6) matrix and all elements in A are the same as the
elements in N, _, except A[2k —6, k — 3] and A[2k —6, 2k — 6], where A[2k—6,k—3] =

—2h;,—3hity < Ny _g[2k—6, k—3] and A[2k—6,2k—6] = "= 4 "2 Similarly, using

clementary matrix operations, the det(Ng;,_g) and det(A) can be formed by Ny 5 .

We obtain that

1A

Nyj_g  Oap—sp2
1A

Voor—s  Xoo

1A
Ny—g  Ook-s2

/ J—
det(NQkfﬁ) = V2/,2k—8 Yo )

and det(A) = '

where both of X and Y are upper triangle matrices with X[1,1] = Y[1,1] = h; !5, and

i B

X[2,2] %+ Zg—c—Ngk_G[%—G,kz—i’)]d,
hie—st i

Y[2,2] = ]“62+%—0—A[2k—6,k—3]d,

2
hk—3
12

det(Nyy,_g) = det(Nj, ) - X[1,1] - X[272) =11det(Ny;,_g) + Ki—o > 0 is satisfied, we
find that

2
hk

Ny ts[2k — 8,2k 8] 'and d = kg8 Mes N [ — 4,2k — 8], Since

where ¢ =

hi—3
4

Kj—s = hi'y ( —c¢— Noy_ g2k — 6,k — 3]d> > 0.

It follows that

s —c—A[Qk—G,k—3]d>}T’—C—Nék_ﬁ[2k—6,k—3]d>0.

Then det(A) = det(N}, ) - Y[1,1] - Y[2,2] > 0 and Nyl [k — 2,2k — 4] < 0. Since
Ny 22k — 4,2k — 4] < % is satisfied by Lemma 2, we obtain the the inequality

Ny tulk — 1,2k — 4] > —h’“?:? as required. 0
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B Appendix: The Construction of N; , in Propo-
sition 2

When n =4, we find

_ N i}
ho | 2+372
0 ( +hl) —h02 0 O —(h02 hl) 0
2 2 hy }112
h% h% 0 0 1 0
/ 1 1 ho ho
Noyy_o = 0 h 2 (1) 12 1>
= = n3
0 0 hs hs 0 12
L e T L B S
-2 _ 2 ho haths
- O O h2 h3 O 12 4 -
If n =5, then
_ . )
ho (2+ﬁ) o 0 0 0 _(hoz hl) 0 0
T on 2
= = ni
w0 B 0 0
= = na n2
b ekl o o
! —— b £ n3 n3
Nyys_o = 0 0 hs s ? 0 12 12
= —_ n4
0 2 ’ 2 . ha ha Oh l? 12
0 i 0 0 0 IZ 2 2 0
0 0 ;g 0 0 hy hoths — hg
=2l 2 hs hs+ha
L 0 0 0 BT g 0 0 12 E—

By some permutation operations, det(NNj,s_,) can be expressed in terms of det(N5,, ).

That is,
ho 2+h—0 _ 2
( ; ) Sho” 0 0 G
i i 0 0 by 0 0 0
0 hs hs 0 BB 0 0
det(Np5p) = | 0 0 m m 0o 0 3
o @-z 00 mmo koo
0 0 2oz 0 by haths = ?
1 1 4
o o o =Mz g n N ok
h3 ha 12 4
| Vs Usp
B Vo Too
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Table 1: The proportion of Monotony in 10000 repeats

n = 50 n = 100 n — 200
=198 77.89% 91.38% 96.2%
ﬁ =28 ’ 0 . 0 .27/0
A a = 6.28
Po | g_1767 79.43% 93.46% 97.27%
=09 85.54% 93.36% 94.67%
B=1.1
: 1 ASE(pg)
Table 2: Proportion of ASE(gm) > 1
n = 50 n = 100 n — 200
=198 39.91% 43.76% 48.34%
ﬁ = 28 : 0 . 0 . 0
a = 06.28
3=17.67 49.27% 52.5% 56.12%
—6.9
411 56.3% | 61.45%IMMGA7%%

Table 3: The distribution summaryyfor ASE(p,) and-ASE(p,,), where Q1 is the first

quartile , Q3 is the third quartile. The unitis 1073,

QT Median Mean Q3

n=50 L —ss o

g |n=to0 e o - i T
n=200 By i 3 30

At s S S S S Y T Y
Ol N N S B W B
n=200 P TH T 1F

St s I T N N T

Go01 |notooplep GO o T i
neoo0 Pl B2 L 2 2
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Table 4: For sample size n = 100 and 10000 monotone p,, the Distribution
summary of ASE(p,) and ASE(p,,), where the Q1 is the first quartile ,
Q3 is the third quartile. The unit is 1073.

Q1 Median Mean Q3
a=1.98 Dy 0.7 1.6 2.5 3.3
B =28 Do 0.8 1.7 2.6 35
a=628 | p, 0.8 1.8 2.8 3.7
B8 =17.67 | p., 0.7 1.7 2.6 3.9
a=26.9 Dg 1.3 2.5 3.4 4.4
6=1.1 DPm 1.1 2.2 3.1 4.1

Table 5: For sample size n = 100"and 10000 non-monotone pgy, the dis-
tribution summary of ASE(p,) and ASE(p,,); where the Q1 is the first
quartile , Q3 is the third quartiles Theamit1s102,

Q1 Median Mean Q3
a = 1.98 Dy 5.4 8.1 9.2 11.5
6 =28 Dm 0.8 1.8 2.7 3.6
a = 6.28 Dy 5.0 7.4 8.4 10.5
B8 =17.67 | p,, 0.8 1.8 2.8 3.7
a=06.9 Dy 4.1 6.4 7.5 9.7
b=1.1 D 1.1 2.3 3.3 4.3
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Figure 2: Bernoulli data. The solid line is the target function p(x) =1 — (1 — z45)%5.
The dotted line is the estimated curve with monotone constraint. Dots in the left panel
represent samples (x;,y;), ¢ = 1,...,200. Dots in the right panel are binned data.
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AX)
Ax)

0.0
0.0

Figure 3: Poisson data. The solid line is the target function ¢(z) = log(z*+1). Dotted
line is the estimated curve by GCV method. Dash-dot line is the estimated curve with
smoothing parameter 1.5. Dots in the left panel are points (z;,v;), ¢ = 1,...,200. Dots
in the right panel are binned data.
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sin(m :p)

Figure 4: Poisson data. The solid line is the target function ¢(z) = g et tr——
The dotted line is the estimated curve by GCV method. Dash-dot line is the estlmated
curve with smoothing parameter 2.5 x 107>. Dots in the left panel are points (z;, ),
t=1,...,200. Dots in the right panel are binned data.
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Figure 5: Illustrative examples. The solid line is the target function p(z) = 1 —

(1 —2*)”. For panels from top to bottom, (a, ) are (1.98,28), (6.28,17.67), and
(6.9,1.1), respectively. The dashed line is the estimated curve p, by Gu(2002). The
dash-dot line is the estimated curve p,, with monotone constraint. The dots are data
points. The left three panels shows the cases with monotone py, while p, in the right
panels are not monotonic. The sample size n = 100.
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Figure 6: Box-plots of 10000 ASE(p,) and 10000 ASE(p,). p(x) = 1 — (1 — 21982,
Panels (a), (b), and (c) are for sample size n=50, 100, and 200, respectively. For each
panel, “Gu” indicates py, and “monotone” indicates py,.
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“Gu” is py, and “monotone” is py,.
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Figure 8: Box-plots of 10000 ASE(p,) and 10000 ASE(py,). p(x) =1 — (1 — 2%9)1-1L.
“Gu” is py, and “monotone” is py,.
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Figure 9: Box-plots of 10000 ASE(py) and 10000, ASE(p,,). p(z) =1 — (1 — z"9%)*
and n = 100. "Gu” is p,, and " Monotone*is py,. Panel (a) is for 10000 monotone Py
while panel (b) is for 10000 non-monotone py s shows. in panel (b)
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Figure 10: Box-plots of 10000 ASE(p,) and 10000 ASE(py,). p(z) = 1—(1—x628)1767,
“Gu” is pg, and “Monotone” is p,,. Panel (a) is for 10000 monotone p) s while panel (b)
is for 10000 non-monotone p,s shows in panel (b)
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Figure 11: Box-plots of 10000 ASE(p,)tand-10000 ASE(py,). p(z) =1 — (1 — 269)41,
“Gu” is pg, and “Monotone” is p,,+ Panel (a).is for 10000 monotone ﬁ’gs while panel
(b) is for 10000 non-monotone py's shows in panel (b)
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Figure 12: Histogram of 200 mean voltages . The sample mean is 1.005 and standard
deviation is 0.06.
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Figure 13: Estimated passing rates(i.e., EC performance curves) under three con-
trol limits. (LCL,UCL) of mean voltage for panels (a), (b), and (c) are (0.88,1.12),
(0.93,1.07), (0.97,1.03), respectively. Panel (d) is an EC performance curve when mean
voltage is independent of the C), yield.
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