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摘要 

本篇文章裡，為解決WAT(Wafer Acceptance Test)-EC(Engineering 

Control)的問題，我們發展了單調無母數迴歸。藉由Gu(2002)，

Zhang(2004)所提出的方法加以結合及修正，將反應變數拓展至整個指

數族上，與此相關的演算法也會在本文中提出。我們利用Natural Cubic 

Splines的性質發展出有效率的計算法，並用模擬資料來探討其效率。

當反應變數為Bernoulli或Poisson分部時，其模擬的結果都有不錯的

表現。此外，在“真實函數＂具有單調性的情形下，有單調限制估計

量之ASE(Averages Square Error)與無單調限制並沒有明顯差異。然

而，當無單調限制之估計量呈現出非單調時，則單調限制估計量在ASE

上之表現會明顯優於前者。最後，我們將說明如何利用此方法來篩選

EC中的WAT測試項目並且建立適當的管制上下限。 
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Abstract

In this study, motivated by the WAT-EC problem, we develop a nonparametric
monotone smoothing spline smoother for analyzing responses from exponential families
by combining the methodologies provided in Gu (2002) and Zhang (2004) along with
our modification. An algorithm with implementation details is provided. Computation
is efficient because we utilize the characteristics of the natural cubic splines. The
effectiveness of the proposed method is studied by simulation. The simulation results
demonstrate that the proposed method performs well in the regression models with
both the Bernoulli and Poisson responses. When the “true” function is monotonic, the
proposed monotone estimator performs about the same as the unconstrained smoother
in terms of the averaged squared error for the cases when the latter performs well.
On the other hand, constrained smoother outperforms the unconstrained smoother
when the unconstrained smoother produces non-monotone estimates. As an illustrative
example, we demonstrate the proposed method can be used in screening WAT test
items for more stringent engineering control and in setting appropriate control limits.
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1 Introduction

The Wafer Acceptance Test (WAT) in semiconductor manufacturing is aimed at mon-

itoring whether the electric characteristics of devices, such as voltage, current, and re-

sistance, are regular or not. In Fab, every wafer must go through WAT device testing.

In addition, a more stringent control, hereinafter referred to as “engineering control

(EC)”, is further imposed on passing wafers. For implementing EC, engineers would

need to select a set of critical WAT test items and determine more stringent “control”

limits (than that of the regular WAT) for each of them. A wafer will be “held” up

for further investigation when any of the EC items fails (i.e., exceeding the prescribed

EC limits). However, without any objective assessment on how critical the WAT test

items are toward the yield, engineers tend to select potential items as many as possible

(sometimes even in hundreds) to perform the extra engineering control. Unfortunately,

more than tolerable number of false alarms often occur with this practice. As a result,

annoyed by the excess number of false alarms, engineers tend to ignore them, despite

the extra efforts and costs spent in performing EC. Hence, to make EC more effective,

it would be helpful if an assessment tool for screening EC test items is available for

engineers and for evaluating the adequacy of the predetermined EC control limits as

well.

Motivated by the above problem, as an assessment tool, we propose developing an

EC performance curve for each WAT test item. The proposed EC performance curve

of a test item aims at presenting the relationship between the EC passing rate and the

circuit probe (Cp) yield of the wafers, where the EC passing rate is the probability that

a randomly selected wafer passes this EC test item and the Cp yield is the proportion

of the chips on the wafer that pass the functional test called the circuit probe test. The

logic behind defining the EC performance curve as such is that an effective control of

a critical EC test item would improve the process, which in turn leads to a higher Cp

yield. Thus an EC test item that can discriminate the Cp yield to some extent would be

worthwhile to perform the extra engineering control. As an illustrative example, Figure

1



1 displays the EC performance curves of three EC test items showing respectively the

probabilities, denoted by p(Cp) as a function of the Cp yield, of a wafer passing these

EC test items. The dashed curve depicts that the passing probability is one or almost

one for Cp > .15, indicating that most of wafers with Cp greater than .15 would pass

this test easily. In other words, such an EC test item can only discriminate low-yield

wafers. Conversely, the dotted curve discriminates only wafers with high yields. The

solid curve discriminates better for the middle values of the Cp yield. Thus engineers

can pick the EC test items based on the process under study or monitoring. For

example, for a process with a fairly high Cp yield, an EC test with a performance curve

similar to the dotted curve may be a good candidate for the engineering control.

We remark that a set of inappropriate control limits may make the performance

curve of a critical-in-nature EC test item lose some or all of its discrimination power.

Thus engineers may be able to adjust the control limits of an EC test to an appropriate

level so that this particular EC test would have a desirable discrimination power for

effective control.

Furthermore, although the WAT-EC tests and the circuit probe tests are quite

different in nature, one tends to expect that the two test results of the same wafer

should be somewhat positively associated. Thus it is reasonable to assume that the

EC performance curves are monotonic.

An example of some similarity in nature as our WAT-EC problem is the item

responses estimation problem discussed in Rossi, Wang, and Ramsay (2002). The data

set consists of the responses of N examinees to n question items in a test. Assume

that each item is answered either right or wrong. The authors proposed to estimate

nonparametrically the probability that examinee j gets item i right from the discrete

data and a covariate such as the IQ score for each of the N examinees via the EM

Algorithm. Moreover, the discrimination power of the test items was also discussed in

the paper.

To develop the EC performance curve for an EC test item, we adopt the non-

parametric regression approach to estimating the functional relationship between the
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passing rate and the Cp yield. In the nonparametric regression approach, the only

assumption on the regression function is smoothness and no functional form needs to

be specified, which provides a great advantage of flexibility in function estimation and

some convenience in modeling. The price we pay for adopting the nonparametric regres-

sion approach instead of the parametric regression approach is the slight inefficiency.

However, this inefficiency only happens when the specified parametric regression model

is adequate.

The statistical model we consider for the WAT-EC data is as follows. The indepen-

dent variable (i.e., the covariate) of the regression is a random variable X representing

the Cp yield of a wafer. The dependent variable Y is the corresponding pass/fail result

of the WAT-EC test item for that wafer. Recall that p(x) is the passing probability of

the wafer with the Cp yield X = x. Then the dependent variable Y has a Bernoulli

distribution with a passing probability p(x). As mentioned before, we will estimate the

EC performance curve p(·) by nonparametric monotone regression.

Although this study is motivated by the WAT-EC application, the nonparametric

monotone regression estimation method developed in this work can be applied to ap-

plications with the dependent variable Y from the exponential family. For example,

the number of particles on a wafer with a covariate affecting the number of particles

may be modeled by a Poisson distribution in which the mean number of particles may

be of interest and could be described as a monotone function of the covariate. Or the

number of defects in a product item may be again modeled by a Poisson distribution

and the covariate could be a process condition that is monotonically associated with

the number of defects when the product item was manufactured.

The topic of monotone function smoothing has been discussed for quite a long time

in the literature. One of the major techniques used in the monotone regression focuses

on the first derivative of the function to be estimated. Under the assumption that

the random errors follow the normal distribution, Ramsay (1998) proposed expressing

the first derivative of a monotone function as the exponential of a smooth function

and estimating the smooth exponent by a B-spline. Under the same Gaussian model

3



for random errors, by adopting the penalized least squares approach, Zhang (2004)

developed a simple method trying to obtain a monotone function estimate by forc-

ing the estimated first derivative of the function to be non-negative or non-positive in

computation. Based on the method constructed by Ramsay (1998), Wang (2000) ex-

tended the distribution to the exponential family and developed a two-step algorithm

to implement a monotonic regression technique. For more research works on nonpara-

metric monotone regression, see Ramsay (1998), Wang (2000), Zhang (2004), and the

references cited therein.

In this study, we adopt a different approach from that in Wang (2000). Instead

of the exponent approach by Ramsay (1998), We combine the penalized likelihood

approach given in Gu (2002) for estimating the parameter function when responses are

from exponential families with the Zhang’s approach of forcing the estimated parameter

function to be monotonic. With this approach, it is more natural that we use smoothing

splines rather than B-splines. We remark that Zhang’s method has a hard-to-see flaw

and with this flaw the monotonicity of the estimated function cannot be guaranteed.

We modify Zhang’s method to ensure the monotonicity.

The rest of the paper is organized as follows. Section 2 reviews the three components

we use in developing our estimation method, including smoothing splines as described in

Green and Silverman (1994), Zhang’s approach to forcing a smoothing spline estimate

to be monotonic, and Gu’s approach and algorithm for nonparametric regression when

data are from exponential families. Section 3 describes the estimation method and

the algorithm we propose in this paper. Section 4 examines the effectiveness of the

proposed method by a simulation study for the cases of Bernoulli data and Poisson data.

A comparison study is conducted to demonstrate the value of adding the monotone

constraint. Section 5 returns to the motivated WAE-EC example and illustrates how

to use the proposed method as an assessment tool. Section 6 concludes the paper with

a brief summary and some discussions.
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2 Literature Review

In the following subsections, we review the three components we use in developing the

proposed method, including smoothing splines (in natural cubic splines), monotone

smoothing splines (also in natural cubic splines), and smoothing splines for responses

from exponential families.

2.1 Smoothing Splines - Natural Cubic Splines

Smoothing splines has been a very popular smoothing technique for decades. For

computational purpose, we only review smoothing cubic splines as described in Green

and Silverman (1994). For other aspects of smoothing splines, readers are referred to

Wahba (1990), Eubank (1999), and Gu (2002) and the research works cited therein.

Consider the problem of fitting a curve from a set of noisy data {(x1, Y1), . . . , (xn, Yn)},

where xi ∈ [a, b], i = 1, . . . , n. Let S2[a, b] denote the space of functions that are dif-

ferentiable on [a, b] with absolutely continuous first derivative and square integrable

second derivative. Given any function g in S2[a, b], let the penalized sum of squares of

g be

S(g) =
1

n

n∑
i=1

{Yi − g(xi)}2 + λ
∫ b

a
{g′′(x)}2dx, (1)

where λ > 0 is the smoothing parameter controlling the tradeoff between the closeness

to data and the smoothness of the fitted curve. The smoothing spline estimate ĝ is

defined as the minimizer of the functional S(g) over all g ∈ S2[a, b].

Suppose the real numbers x1, . . . , xn are given on interval [a, b] such that a ≤ x1 <

x2 < . . . < xn ≤ b. A function g defined on [a, b] is called a cubic spline when

the following two conditions are satisfied: (i) g is a cubic polynomial on each of the

subintervals (a, x1), (x1, x2), . . . , (xn, b); (ii) the first and second derivatives of g are

continuous at each knot xi. If, in addition, the second and third derivatives of g are

zero at a and b, then g is said to be a natural cubic spline. More specifically, a natural

cubic spline is linear on the two boundary subintervals [a, x1] and [xn, b]. It is well

known that the smoothing spline estimate ĝ is a natural cubic spline (de Boor, 2001;
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Wahba, 1990).

Suppose that g is a natural cubic spline on interval [a, b] with knots x1, . . . , xn.

Denote

gi = g(xi) and γi = g′′(xi) for i = 1, . . . , n.

According to the definition of a natural cubic spline, the second derivative of g at x1

and xn are zero, that is, γ1 = γn = 0. Let g be the vector (g1, . . . , gn)T and γ be

the vector (γ2, . . . , γn−1)
T . They constructed the following two matrices Q and R for

computation. Denote hi = xi+1 − xi for i = 1, . . . , n − 1. Let Q be the n × (n − 2)

matrix with elements qij given by

qj−1,j = h−1
j−1, qj,j = −h−1

j−1 − h−1
j , qj+1,j = h−1

j ,

and qij = 0 for |i − j| ≥ 2 for i = 1, . . . , n and j = 2, . . . , n − 1. Note that the top

left element of Q is q12 and the bottom right element is qn,n−1. R is the symmetric

(n− 2)× (n− 2) band matrix with nonzero elements rij given by

rii =
1

3
(hi−1 + hi) for 2 ≤ i ≤ n− 1,

ri,i+1 = ri+1,i =
1

6
hi for 2 ≤ i ≤ n− 2.

The matrix R is strictly diagonal dominant, that is, |rii| >
∑

j 6=i |rij| for each i. It

follows that R is strictly positive definite. Define an n× n matrix K by

K = QR−1QT .

Green and Silverman (1994) proved that the vectors g and γ can specify a natural

cubic spline g if and only if the condition QTg = Rγ is satisfied. When this condition

holds, the roughness penalty satisfies

∫ b

a
{g′′(t)}2dt = γT Rγ = gT Kg.

Return to the curve fitting problem. Since the smoothing spline estimator ĝ is a

natural cubic spline, to minimize the penalized sum of squares functional (1), we only
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need to search over a finite-dimensional class of functions, i.e., the natural cubic splines

with knots at the xi’s, instead of the infinite-dimensional space S2[a, b].

Let g be the natural cubic spline formed by the vectors g and γ, and matrices

Q and R. Rewrite S(g) in terms of these vectors and matrices as follows. Let Y =

(Y1, . . . , Yn)T . Express the residual sum of squares about g as (Y− g)T (Y − g) and

the roughness penalty term
∫
{g′′(x)}2dx as gT Kg to obtain

S(g) =
1

n
(Y− g)T (Y− g) + λgT Kg

=
1

n

{
gT (I + nλK)g − 2YTg + YTY

}
.

Since K is non-negative definite, the matrix I + nλK is strictly positive definite. It

therefore follows that S(g) has a unique minimum, which can be expressed as

g = (I + nλK)−1Y. (2)

Green and Silverman (1994) showed that the vector g can define the smoothing spline

ĝ uniquely. That is, over the space of all natural cubic splines with knots xi, S(g) has

the unique minimum satisfying (2). Furthermore, the value of g(x) at any point x can

be specified by the vectors g and γ, where γ can be obtained by solving QTg = Rγ.

More specifically, on each subinterval [xi, xi+1], 1 ≤ i ≤ n− 1, it can be shown that

g(x) =
(x− xi) gi+1 + (xi+1 − x) gi

hi

−1

6
(x− xi)(xi+1 − x)

{(
1 +

x− xi

hi

)
γi+1 +

(
1 +

xi+1 − x

hi

)
γi

}
for xi ≤ x ≤ xi+1.

If x is in the two boundary subintervals, by the fact that a natural cubic spline is linear

on the boundary subintervals, we have

g(x) = g1 − (x1 − x)g′(x1) for x ≤ x1,

g(x) = gn + (x− xn)g′(xn) for x ≥ xn,

where g′(x1) and g′(xn) are derivatives of g at x1 and xn, respectively, which can be

obtained by

g′(x1) =
g2 − g1

x2 − x1

− 1

6
(x2 − x1) γ2,

g′(xn) =
gn − gn−1

xn − xn−1

+
1

6
(xn − xn−1) γn−1.
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2.2 Monotone Smoothing Splines

Zhang (2004) proposed a simple and efficient monotone smoother based on smoothing

spline estimation. The main idea is to impose a monotone constraint on the derivative

of the estimated regression function.

Assume that data {(xi, Yi), i = 1, . . . , n} are sampled from the following nonpara-

metric regression model

Yi = f(xi) + εi, i = 1, . . . , n,

where f(x) is an unknown smooth function with thrice continuous derivatives on inter-

val [a, b] and the random errors εi’s are white noise with mean zero and standard devi-

ation σ. For simplicity, assume that the design points xi satisfy a ≤ x1 < . . . < xn ≤ b.

A smooth estimator of f can be defined as the minimizer f̂ of the following penalized

least squares criterion:

1

n

n∑
i=1

{Yi − f(xi)}2 + λ
∫
{f ′′′(x)}2dx, (3)

where again λ > 0 is the smoothing parameter.

To derive closed-form formulas for both f̂(x) and its derivative, write f(x) in terms

of g(x) = f ′(x) as

f(x) = f(x1) +
∫ x

x1

g(u)du. (4)

Substitute (4) into (3) to obtain the following regularization criterion:

1

n

n∑
i=1

{Yi − f(x1)−
∫ xi

x1

g(x)dx}
2

+ λ
∫
{g′′(x)}2dx. (5)

Let (f̂(x1), ĝ) be the minimizer of (5).

By treating g as a natural cubic spline with knots xi’s for i = 1, . . . , n, Zhang

(2004) established the relationship between the function f and its derivative g using

the method of Green and Silverman (1994) and gave the closed-form formulas for f̂

and ĝ, respectively, as in the following.

Denote fi = f(xi), gi = g(xi), and γi = g′′(xi) for i = 1, . . . , n. Since g is a natural

cubic spline, it follows that γ1 = γn = 0. Let f = (f1, . . . , fn)T , g = (g1, . . . , gn)T , and
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γ = (γ2, . . . , γn−1)
T . Let hi = xi+1−xi, i = 1, 2, . . . , n−1, and Q, R, K be the matrices

as defined in Green and Silverman (1994, pages 12,13) (also defined in Subsection 2.1).

According to their Theorem 2.1, it can be shown that g is a natural cubic spline with

knots x1, . . . , xn if and only if γ = R−1QTg. As mentioned before,

K = QR−1QT and
∫ b

a
g′′(x)

2
dx = gT Kg.

Denote the n-dimensional column vector of zeros by 0n . Let C = (c1, . . . , cn)T and

D = (d1, . . . ,dn)T , where c1 = 0n, d1 = 0n−2, and, for i = 2, 3, . . . , n,

ci = (h1, h1 + h2, . . . , hi−2 + hi−1, hi−1, 0, . . . , 0)T ,

di = (h3
1 + h3

2, . . . , h
3
i−2 + h3

i−1, h
3
i−1, 0, . . . , 0)

T
.

Note that ci and di are n × 1 and (n − 2) × 1 vectors, respectively. According to

Proposition 1 in Zhang (2004), the vector f can be expressed in terms of C, D, Q, R,

and g as

f = f(x1) · 1n + {1
2
C − 1

24
DR−1QT}g.

To find the estimator of the function f , denote

M =
1

2
C − 1

24
DR−1QT , g̃ =

(
f1

g

)
, M̃ =

(
1n M

)
, and K̃ =

(
1 0T

n

0n K

)
.

Then the minimizer of the regularization problem (5) is

ˆ̃g =

(
f̂1

ĝ

)
= (M̃T M̃ + nλK̃)

−1
M̃TY, (6)

where Y = (Y1, · · · , Yn)T . We then have the estimator f̂ = M̃ ˆ̃g.

We remark that Zhang (2004) has a typo that the matrix M̃ is defined as an

(n + 1)× (n + 1) matrix

M̃ =

(
1 0T

n

1n M

)
,

which cannot be right since the vector Y in (6) is an n× 1 vector.

Zhang (2004) developed a simple method with an attempt to obtain to a monotone

estimate. Without loss of generality, assume that f is non-decreasing, hence g is non-

negative. Then one would wish the estimator ĝ to be non-negative as well. To achieve
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this goal, Zhang (2004) replaced ĝ(x) by ĝ+(x) = max(ĝ(x), 0). He then estimated f

by

f̂ = M̃

(
f̂1

ĝ+

)
,

where ĝ+ = (ĝ+(x1), · · · , ĝ+(xn))T .

Unfortunately, the monotonicity of f̂ cannot be guaranteed. The reason is that the

i-th element of f̂ , denoted by f̂i, is not exactly the value of f̂(x1) +
∫ xi
x1

ĝ+(u)du as

desired. Instead, it is f̂(x1)+
∫ xi
x1

g̃+(u)du, where the function g̃+(·) is the natural cubic

spline interpolating {(xi, ĝ+(xi), i = 1, ..., n} and there is no guarantee that it would

be nonnegative.

2.3 Regression with Responses from Exponential Families

For the response variable Y from an exponential family distribution along with a co-

variate x, consider the following conditional density function

f(y|x) = exp{yη(x)− q(η(x))

φ
+ c(y, φ)}, (7)

where q, and c are known functions, η(x) is the parameter function to be estimated,

and φ > 0 is a known dispersion parameter independent of x. It is well known that

E[Y |x] = q′(η(x)) = µ(x) and V ar[Y |x] = q′′(η(x))φ.

Assume the responses Yi corresponding to the covariate xi, i = 1, · · · , n, are i.i.d.

from the exponential family distribution (7). Then the penalized log-likelihood func-

tional can be expressed as

− 1

n

n∑
i=1

{Yiη(xi)− q(η(xi))}+
λ

2
J(η), (8)

where J(λ) is the roughness penalty. Gu (2002) showed that the minimizer of (8) can

be computed via the Newton iteration, which updates η̃ (the η obtained in the last

iteration) by the minimizer of the following penalized weighted least squares functional

1

n

n∑
i=1

ω̃i{Ỹi − η(xi)}
2
+ λJ(η),

where Ỹi = η̃(xi) − ũi/w̃i with ũi = −Yi + q′(η̃(xi)) and w̃i = q′′(η̃(xi)). Note that

ω̃i > 0 since V ar[Y |x] = q′′(η(x))φ > 0 when η(·) = η̃(·).
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3 Proposed Method

3.1 Penalized Weighted Least Squares Function Estimator for
Exponential Families

Consider the nonparametric regression for a generalized linear model specified within

the exponential family. The data observed are i.i.d. samples (xi, Yi), for i = 1, . . . , n,

from an exponential family distribution. The covariate variable xi is within some

interval [a, b] and the density of Yi is

f(y|x) = exp{yη(x)− q(η(x))

φ
+ c(y, φ)},

where q and c are known functions, and φ > 0 is either known or considered as a

nuisance parameter. The unknown parameter function η(x) is the central aim of esti-

mation. In our study, η(x) needs to meet both smoothness and monotone conditions

on interval [a, b]. Instead of maximizing the log-likelihood, we choose to minimize the

following penalized log-likelihood functional

− 1

n

n∑
i=1

{Yiη(xi)− q(η(xi))}+
λ

2

∫ b

a
[D(m)η(x)]2dx, (9)

where λ is the smoothing parameter.

Gu (2002) gave a quadratic approximation of −Yiη(xi) + q(η(xi)) at η̃(xi) as

1

2
ω̃i{η(xi)− η̃(xi) +

ũi

w̃i

}
2

+ Ci,

where ũi = −Yi + q′(η̃(xi)), ω̃i = q′′(η̃(xi)), and Ci is not related to η(xi). Without

imposing the constraint that η(x) is monotonic, the minimizer of the penalized log

likelihood functional (9) can be obtained by recursively finding the minimizer of the

penalized weighted least squares functional

l =
1

n

n∑
i=1

ω̃i{Ỹi − η(xi)}
2
+ λ

∫ b

a
[D(m)η(x)]2dx (10)

via Newton iteration until convergence, where Ỹi = η̃(xi)− ũi/w̃i.

11



3.2 Monotone Natural Spline Estimator

To impose the monotone constraint in the estimation of η(x), we focus on the estimation

of the first derivative of η(x). Since η(x) is non-increasing (or non-decreasing), the

derivative η′(x) is non-positive (or non-negative). There are reasons for dealing with

η′(x). Firstly, in practice, it is easier to impose non-positiveness (or non-negativeness)

on η′(x) than to impose monotonicity on η(x). Secondly, we can derive a closed-form

formula for η′(x) easily by the property of natural cubic splines as given in Green and

Silverman (1994).

Assume that xi, i = 1, . . . , n, are real numbers on interval [a, b], which satisfy

a ≤ x1 < x2 < . . . < xn ≤ b. Since we are more focused on the smoothness of η′(x)

than that of η(x), it is natural to choose m = 3 in the roughness penalty functional of

(10). For any x ∈ [a, b],

η(x) = η(a) +
∫ x

a
g(u)du.

Substituting the above expression into (10), we have

l =
1

n

n∑
i=1

ω̃i{Ỹi − η(a)−
∫ xi

a
g(x)dx}

2

+ λ
∫ b

a
[g′′(x)]

2
dx. (11)

We remark that Zhang (2004) specified that ĝ, the minimizer of (5), is a natural

cubic spline; however, according to Wahba (1990), ĝ should be a piecewise quartic

polynomial in [x1, xn] and linear in the two boundary subintervals if the function space

to search for the minimizer is S2[a, b].

Mainly for the computational purpose and also for simplicity, we shall restrict the

function space to search for the minimizer of (11), denoted by ĝ, to be the class of

natural cubic splines. That is, ĝ is set to be a natural cubic spline. We remark that

the class of natural cubic splines is a smaller space than S2[a, b] but it is rich enough

for approximating any reasonably smooth function.

Using the same notation as in Green and Silverman (1994), let η = (η1, . . . , ηn),

γ = (γ2, . . . , γn−1)
T , g = (g1, . . . , gn)T , where ηi = η(xi), gi = g(xi), and γi = g′′(xi)

for i = 1, . . . , n. If g is a natural cubic spline, γ1 = γn = 0. We modify the method of
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Zhang (2004) by expressing η(x) as η(x) = η(a)+
∫ x
a g(u)du instead of η(x1)+

∫ x
x1

g(u)du.

Then the matrices of C and D need to be modified as well. Denote η(a) by ηa.

Let hi = xi+1−xi, for i = 1, . . . , n−1, h0 = x1−a, k1 = h0 (2+h0/h1), k2 = −h0
2/h1,

and k3 = −2h2
0 h1. Let the matrices Q, R, and K be defined as in Subsection 2.1.

Modify the matrices C and D by replacing ci with ci + k1 · en
1 + k2 · en

2 and di with

di +k3 ·en
1 , where ek

i is the k-dimensional unit vector with the ith element being 1 and

0 elsewhere. In words, the matrix C is modified by adding k1 to the first column and

k2 to the second column. Similarly, D is modified by adding k3 to the first column.

Let M = 1
2
C − 1

24
DR−1QT as before.

Proposition 1 gives the relationship between η and g. All the proofs in this paper

are given in the Appendix A.

Proposition 1 η = ηa · 1n + M g.

The main reason that we consider η(a) rather than η(x1) is that the matrix M

constructed in this way is invertible while the matrix M in Zhang (2004) is not. Another

advantage is that η(a) can be specified by the vector g, utilizing the fact that a natural

cubic spline is linear on the boundary subinterval [a, x1], see the Appendix A.

Proposition 2 shows that the matrix M in Proposition 1 is invertible. In the follow-

ing, when the dimension of a matrix or vector helps reading, we will add the dimension

as the subscript in the notation. For example, Mn,n denotes the n by n matrix M .

Proposition 2 Mn,n is invertible for all n ≥ 3.

According to Proposition 1, the vector η can be specified by g and ηa. Given ηa,

(11) can be written in matrix form as

l =
1

n
(Ỹ −Mg)

T
W̃ (Ỹ −Mg) + λgT Kg

=
1

n
{gT (MT W̃M + nλK)g − 2ỸT W̃Mg + ỸT W̃ Ỹ}, (12)

where Ỹ = {Ỹ1 − ηa, . . . , Ỹn − ηa}
T

and W̃ = diag(ω̃1, . . . , ω̃n).

Since K is semi-positive definite, the matrix MT W̃M is strictly positive definite by

Proposition 2 and ω̃i > 0 for i = 1, . . . , n, it follows that (12) has a unique minimum
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at

ĝ = (MT W̃M + nλK)
−1

MT W̃ Ỹ. (13)

Suppose the parameter function η̂ is monotone increasing. Then ĝ must be non-negative

everywhere. To achieve this, we follow the same approach adopted by Zhang (2004)

by setting ĝ(xi) to 0 when ĝ(xi) < 0. Let ĝ+ = (ĝ+(x1), · · · , ĝ+(xn))T , where ĝ+(xi) =

max(ĝ(xi), 0). We then use ĝ+ to construct vector η̂ instead of using ĝ. That is,

η̂ = η̂a · 1n + M ĝ+. (14)

It is interesting to observe that M ĝ+ can be conceived as integrating the natural cubic

spline that interpolates the points {(xi, ĝ+(xi)), i = 1, . . . , n}. Denote the interpolating

natural cubic spline by g̃+. Unfortunately, when ĝ+(xk) = ĝ+(xk+1) = 0 for some k, it

is impossible to have ĝ+(x) ≥ 0 for all x ∈ [xk, xk+1]. Then the monotonicity of η̂ is

lost. To remedy this problem, we modify the estimate to ensure the monotonicity as

follows.

For xi ≤ x ≤ xi+1, i = 1, ..., n− 1, let

η̂mon(x) = η̂(a) +
i∑

j=1

τj

∫ xj

xj−1

ĝ+(u)du + τx

∫ x

xi

ĝ+(u)du,

where τi is an indicator function defined as 1 if η̂i > η̂i−1 and 0 otherwise and τx = 1

when
∫ x
xi

ĝ+(u)du > 0 and 0 otherwise. Note that the value of
∫ x
xi

ĝ+(u)du can be

obtained as described in Subsection 2.1 since ĝ+ is a natural cubic spline. It is obvious

η̂mon is monotonic.

For computational purpose, we shall express η̂mon = (ηmon,1, ..., ηmon,n)T in matrix

form. Let M̃ be the (n + 1)× (n + 1) matrix given by

M̃ =

(
1 0T

n

1n M

)
.

Let N be the n × (n + 1) matrix with elements nij, 1 ≤ i, j ≤ n, given by nii = −1,

ni,i+1 = 1 for 1 ≤ i ≤ n and nij = 0 elsewhere. Let S = (s1, s2, . . . , sn) be the n × n

matrix given by si = (0T
i−1, τi · 1T

n−i+1)
T

for i = 1, . . . , n.

Proposition 3 η̂mon = η̂a · 1n + SNM̃ ḡ , where ḡ =

(
η̂a

ĝ+

)
.

14



Note that

NM̃ḡ = NM̃

(
η̂a

ĝ+

)
= N


η̂a

η̂1
...

η̂n

 =


η̂1 − η̂a

η̂2 − η̂1
...

η̂n − η̂n−1

 ,

which computes the integral
∫ xi+1
xi

g̃+(u)du for each subinterval. The effect of S is to

accumulate these integrals up to xi but skip those integrals
∫ xi+1
xi

g(u)du for which

η̂i ≤ η̂i−1.

3.3 Algorithm

We propose using the back-fitting approach to obtain estimators η̂a and ĝ+. For back-

fitting, see Hastie and Tibshirani (1990). Recall that the log-likelihood function for

the exponential family is

l = − 1

n

n∑
i=1

{Yiη(xi)− q(η(xi))}+
λ

2

∫ b

a
[g′′(x)]2dx, (15)

where η(xi) = ηa+M [i, .]g, if g is a natural cubic spline. Given g, we can get a suitable

value of ηa by solving the equation

∂l

∂ηa

= − 1

n

n∑
i=1

{Yi −
∂q(η(xi))

∂ηa

} = 0.

Substitute the new ηa into (12) to obtain the new estimate of g by (13). Thus, re-

peat the iteration until the value of ηa converges. Since the equation ∂l/∂ηa = 0 is

non-linear, we propose using the Newton-Ralphson method to get the new estimate of

η(a). For details of the Newton-Ralphson method, see, for example, Burden and Faires

(2001).

Back-fitting Algorithm

Step 1

Given the covariate (x1, . . . , xn), calculate the n × n matrix C, n × (n − 2) matrices

Q and D, (n − 2) × (n − 2) matrix R, then compute the matrices K = QR−1QT and

M = 1
2
C − 1

24
DR−1QT .
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Step 2

Begin with iteration k = 0. Set ĝ(0) = (ĝ
(0)
1 , . . . , ĝ(0)

n )
T

and η̂(0)
a to some initial values.

Set the tolerance level T.

Step 3

Given ĝ(k), update η̂(k)
a by η̂(k+1)

a , the minimizer of (15), with the Newton-Ralphson

method.

Step 4

Construct the n× n diagonal matrix W̃ and Ỹ with ĝ(k) and η̂(k+1)
a . Then update ĝ(k)

by ĝ(k+1) = (MT W̃M + nλK)
−1

MT W̃ Ỹ.

Step 5

If
∣∣∣ η̂(k+1)(a)−η̂(k)(a)

η̂(k)(a)

∣∣∣ < T , stop iterating and set vector η̂ = η̂(k+1)
a · 1n + SNM̃ ḡ+. Oth-

erwise, set ĝ(k) ← ĝ
(k+1)
+ and η̂(k)

a ← η̂(k+1)
a , return to Step 3.

4 Simulation Studies

4.1 Performance Evaluation

To evaluate the effectiveness of the proposed method, we apply the monotone regression

smoother on some data generated from exponential family models, including Bernoulli

and Poisson data as illustrative examples. The smoothing parameter λ is chosen by the

Generalized Cross Validation (GCV) method proposed by Craven and Wahba (1979).

4.1.1 Bernoulli Data

n observations, {(xi, Yi), i = 1, · · · , n}, are generated independently, in which xi’s are

generated independently from interval [0, 1] uniformly and Yi is generated from the

Bernoulli distribution with the probability function P (Yi = 1|xi) = p(xi), where p(x)

is a smooth monotone function for all x ∈ [0, 1]. The conditional density function of
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the Bernoulli response Y given the covariate x can be written as

f(y|x) = exp{y η(x)− log(1 + exp(η(x)))},

where η(x) = log(p(x)/(1− p(x))).

As an illustrative example, we choose n=200 and p(x) = 1−(1−x4.5)2.5 for x ∈ [0, 1].

That is, xi ∼ U(0, 1), Yi ∼ Bernoulli(p(xi)), i = 1, . . . , 200. The simulation results

are displayed in Figure 2. The solid line is the target function p(x), the dotted line

is the estimated smooth curve under monotone constraint with smoothing parameter

λ = 0.00005 chosen by GCV. It is observed that the estimated function is fairly close

to the target function for this example.

In Figure 2(a), the dots are raw data {(xi, Yi)}, while the dots in Figure 2(b) are

binned data. For binning data, the interval [0, 1] is divided into 25 equally spaced

subintervals. For each subinterval, we count the points and calculate the proportion

of the 1’s in that subinterval. The points plotted on Figure 2(b) are the proportion

of 1′s versus the midpoint of the corresponding subinterval. While it is hard to read

from the raw data the information of p(x), the binned data can follow the trend of the

underlying target function p(x) pretty well.

4.1.2 Poisson Data

The conditional density of the Poisson distribution can be expressed as

f(y|x) =
φ(x)y exp (−φ(x))

y!
= exp{yη(x)− eη(x) − log(y!)},

where η(x) = log φ(x). Assume the target function is

φ(x) = log(x2 + 1) for 1 ≤ x ≤ 3.

200 covariates {xi} are generated independently from U(1, 3), and the response Yi

follows Poisson(φ(xi)), for 1 ≤ i ≤ 200. Figure 3 shows the fitting results. In Figure 3,

the solid line is the target function φ(x) and the dotted line is the estimated parameter

function φ̂(x) with smoothing parameter λGCV = 1.5 chosen by the GCV method. To
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see how well the GCV estimate performs, we also show the “optimal” estimated curve

(the dash-dot line) for which λopt = 0.5 about this example is the λ minimizing the

averaged squared error (ASE) defined as

ASE(φ̂(x)) =
1

n

n∑
i=1

(
φ̂(xi)− φ(xi)

)2
.

Note that φ̂(·) depends on λ.

Again, the dots in Figure 3(a) are raw data {(xi, Yi)} while the dots in Figure 3(b)

are the binned data. When comparing the two estimated curves in terms of ASE, we

find the values of ASE are 0.01190 and 0.01189 for λopt and λGCV , respectively. There

is no obvious difference between the curves corresponding to λ = 1.5 and λ = 0.5.

Consider another example in which the curvature of the mean function has more

variation. Let

φ(x) =
1

e
− e−x + x− sin(π x)

π
for 1 ≤ x ≤ 3.

Similarly, generate 200 xi’s from U(1, 3) randomly and Yi’s accordingly. λGCV = 0.25

while λopt = 2.5× 10−5 by minimizing ASE criterion. The results are shown in Figure

4. The estimated curve with λGCV has obvious departures from the target function φ.

On the other hand, the “optimal” curve with λopt captures the main trend of the target

function. In addition, the ASE is 0.008 for λopt and is 0.031 for λGCV . Note that, as

observed from Figure 4(b), the binned data are so noisy that it is hard to expect a

data-driven method like GCV would perform well.

4.2 Monotone vs. Constraint-Free Smoothing Spline Estima-
tor

We are interested in knowing whether adding the monotone constraint is value-added

in estimation of monotone functions. In other words, if the underlying function is

monotonic, would a regular (unconstrained) smoother performs poorer than or as well

as a constrained smoother? Also, how often a regular smoother would produce a non-

monotone estimate when the true function is monotonic? To answer these questions,
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we compare the proposed method with the method given in Gu (2002) by a simulation

study.

Consider the Bernoulli example in Subsection 4.1.1. The true parameter function

under study is of the form p(x) = 1− (1− xα)β, where α and β control the shape and

the speed of going upward of the function. When α ≥ 1 and β ≥ 1, p(x) is increasing

for all x ∈ [0, 1]. If β is much larger than α, the curve p(x) climbs up to 1 rapidly. On

the other hand, if β is much smaller than α, the curve reaches 1 slowly. Thus, three

settings are studied: (α, β) = (1.98, 28), (6.28, 17.67), and (6.9, 1.1) (in the order from

fast to slow). Figure 1 shows these three functions. The effect of the sample size is

also studied with n = 50, 100, and 200.

Let p̂m(x) denote the estimate under the monotone constraint and p̂g(x) denote the

unconstrainted estimate developed by Gu (2002). Define ASE(p̂) = 1
n

∑n
i=1 (p̂(xi)− p(xi))

2

and calculate ASE(p̂m) and ASE(p̂g) for the same data set. For each setting of (α, β)

and n, repeat the trial 10000 times. Table 1 displays the percentage of monotone

p̂g in 10000 trials. It is observed that Gu’s estimate (p̂g) tends to produce more

non-monotone estimates for smaller n. Table 2 shows the proportion of ASE(p̂g) ≥

ASE(p̂m). We see that, for all n under study, when the true function rises slowly, p̂m

performs better than p̂g, while p̂g performs better than p̂m for functions rising rapidly.

And for all three target functions, the performance of p̂m gets better when the sample

size n gets larger. For illustration, Figure 5 shows some cases with monotone p̂g and

some with non-monotone p̂g along with the corresponding p̂m.

For distribution comparison, boxplots of the 10000 ASE(p̂g) and the corresponding

10000 ASE(p̂m) are displayed in Figures 6-8. The sample quartiles of these estimates

are given in Table 3. It seems there is no significant difference between the distributions

of ASE(p̂g) and ASE(p̂m). In summary, p̂m performs as well as p̂g in terms of ASE,

while ensuring monotonicity.

To see how bad (well) the unconstrained smoother can be when it produces a non-

monotone (monotone) estimate, we generate 10000 cases of non-monotone (monotone)

p̂g’s with n = 100. For the three target functions, Figures 9-11 compare the boxplots of
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10000 p̂g versus the corresponding 10000 p̂m under the condition that p̂g is monotonic

(in panel (a)) or not monotonic (in panel (b)). It is clear to see from these figures that

the constrained smoother outperforms the unconstrained one when p̂g is not mono-

tonic, while performing as well as p̂g when p̂g is monotonic. In summary, constraining

monotonicity prevents the chance of poor estimation while attaining about the same

performance for cases the unconstrained method performs well.

5 Examples

Return to the motivated WAT-EC example described above. In this section, we demon-

strate the proposed method can be useful in setting appropriate EC limits to achieve

better discrimination power and in the process of screening WAT test items for further

engineering control.

For the first purpose, we generate responses Yi’s directly by checking if the measure-

ments are within the control limits. Suppose that 200 wafers are taken from some lots

and measured the voltage at some testkeys on each wafer. Consider the relationship

between the Cp yield and the mean voltage µ(Cp,i) for the i-th wafer satisfying

µ(Cp,i) = 1 + 0.1 exp(−1.5 C3
p,i) Ti,

where Cp,i is the yield of the i-th wafer generated randomly from the beta distribution

Beta(8, 2) and Ti is a random variable with probability P (Ti = 1) = P (Ti = −1) = 0.5,

for i = 1 . . . , 200. Beta(8, 2) is chosen to mimic the reality because it is skewed to the

left. The function µ(Cp) indicates that the mean voltage approaches to the target

voltage level 1 as Cp increases to 1. Suppose the distribution of voltage for the i-th

wafer follows the normal distribution with mean µ(Cp,i) and standard deviation 0.1. 9

measurements are generated for each wafer and the mean voltage v̄i is computed. Figure

12 presents a histogram of these 200 mean voltages, for which the sample mean is 1.005

and sample standard deviation is 0.06. Suppose an engineer sets the upper (UCL) and

lower control limits (UCL) at LCL=0.88 and UCL=1.12, respectively. Define Yi = 1 if

v̄i is within the control limits and Yi = 0 otherwise. With data {(Cp,i, Yi)}, the passing
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rate for Cp yield is estimated and displayed in Figure 13(a). The passing rate curve

seems to lack the discrimination power for Cp ≥ .6 while showing high discrimination

power for Cp in (0.4, 0.5). Such an EC performance curve is not useful for most of the

current processes in IC industries If this test item is critical in nature, the undesirable

low discrimination power may be caused by the ad hoc choices of control limits. To

demonstrate this, we reset the control limits to LCL=.93 and UCL=1.07. Then the

EC performance curve displayed in Figure 13(b) indicates a fairly good discrimination

power in the range of (.4, 1). A further reduction of the control limits to LCL=.97 and

UCL=1.03 is too stringent, since the passing rate drops down to about 60% or below

even for very high Cp.

Moreover, consider the case that there is no significant relationship between the Cp

yield and voltage. Assume Cp,i ∼ Beta(8, 2) and mean voltage µi ∼ Beta(10, 10)+0.5,

for i = 1, . . . , 200, and they are independent. Generate 200 v̄i accordingly as described

above. For these 200 v̄i, the sample mean is 0.99 and sample standard deviation is

0.10. Let UCL=1.1 and LCL=0.9. The corresponding passing rate presented in Figure

13(d) is flat for most of the Cp range. If we change the control limits, the resulting

passing rate changes only in the level but has a similar pattern. A test items with such

kind of EC performance curve indicates the test results may be not so much related to

the Cp yield. Including this test item for EC may merely increase the number of false

alarms. Consequently, this test item should not be chosen for engineering control.

6 Conclusions

In this study, motivated by the WAT-EC problem, we develop a nonparametric mono-

tone smoothing spline smoother for analyzing responses from exponential families by

combining the methodologies provided in Gu (2002) and Zhang (2004) along with our

modification. An algorithm with implementation details is provided. Computation is

efficient because we utilize the characteristics of the natural cubic splines. The simu-

lation results demonstrate that the proposed method performs well in the regression
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models with both the Bernoulli and Poisson responses. When the “true” function is

monotonic, the proposed monotone estimator performs about the same as the uncon-

strained smoother in terms of the averaged squared error for the cases when the latter

performs well. On the other hand, constrained smoother outperforms the unconstrained

smoother when the unconstrained smoother produces non-monotone estimates. Thus,

the choice is obvious. If the function is monotonic in nature, then we should choose

the method with the monotone constraint imposed.

As an illustrative example, we demonstrate the proposed method can be used in

screening test items for engineering control and in setting appropriate control limits.

With the nonparametric regression in nature, the proposed method has the great

advantage of model flexibility. Also since the method can be applied to all kinds of data

as long as they follow the exponential family, it can find many potential applications

in areas such as industries, medicine, education, social studies, and so on.
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A Appendix: Proofs

Proposition 1.

η = ηa · 1n + Mg.

Proof. Define xi−xi−1 = hi−1, for i = 2, . . . , n, and let h0 = x1−a. Since the function

g is linear in subinterval [a, x1], it shows that∫ x1

a
g(u)du =

h0(g1 + g(a))

2
. (16)

By Green and Silverman (1994),

g′1 =
g2 − g1

x2 − x1

− 1

6
(x2 − x1)γ2

and

g(x) = g1 − (x1 − x)g′1 for x ≤ x1.

Then g(a) can be expressed in terms of g1, g2, and γ2 as

g(a) = (1 +
h0

h1

)g1 −
h0

h1

g2 +
1

6
h0h1γ2.

Substituting the above expression into (16), we get∫ x1

a
g(u)du =

1

2
{h0(2 +

h0

h1

)g1 −
h0

2

h1

g2} −
1

24
{−2h0

2h1γ2}. (17)

According to the proposition in Zhang (2004),∫ xi

x1

g(x)dx =
1

2
cT

i g− 1

24
dT

i γ for 1 ≤ i ≤ n,

where g and ci are n × 1 vectors, γ and di are (n − 2) × 1 vectors. ci and di are

the same as that in Zhang (2004). Denoting k1 = (2 + h0/h1)h0, k2 = −h0
2/h1, and

k3 = −2h0
2h1, we have

ηi = η(a) +
∫ xi

a
g(x)dx = η(a) +

∫ x1

a
g(x)dx +

∫ xi

x1

g(x)dx

= η(a) +
1

2
(k1g1 + k2g2 + cT

i g)− 1

24
(dT

i γ + k3γ2)

= η(a) +
1

2
(ci + k1 · en

1 + k2 · en
2 )Tg− 1

24
(di + k3 · en−2

1 )
T
γ, (18)

where ek
i is the k-dimensional unit vector with the ith element being 1 and 0 elsewhere.

Since γ = R−1QTg, Proposition 1 then holds by (18).
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Proposition 2. Mn,n is invertible for all n ≥ 3.

Proof. Let Gn,n = 1
2
Cn,n and Hn,n−2 = 1

24
Dn,n−2. Then Mn,n = Gn,n−Hn,n−2R

−1
n−2,n−2Q

T
n−2,n.

It suffices to show that det(Mn,n) 6= 0. Define the (2n− 2)× (2n− 2) matrix N2n−2 by

N2n−2 =

[
Gn,n Hn,n−2

QT
n−2,n Rn−2,n−2

]
.

By the properties of block matrix decomposition,[
Gn,n Hn,n−2

QT
n−2,n Rn−2,n−2

]
=

[
I HR−1

O I

] [
Mn,n O

O R

] [
I O

R−1QT I

]
.

Since the matrix R is invertible, we then know that det(Mn,n) ∝ det(N2n−2). Thus, we

only need to prove that det(N2n−2) 6= 0 for all n ≥ 3. More specifically, we simplify

the matrix N by some elementary matrix operations into the matrix N ′

det(N2n−2) ∝ det(N ′
2n−2) =

∣∣∣∣∣ G′
n,n H ′

n,n−2

Q
′T
n−2,n R′

n−2,n−2

∣∣∣∣∣ , (19)

where G′
n,n is the matrix with entries gi,j given by gi,i = gi,i+1 = h−1

i−1 for 2 ≤ i ≤ n,

g1,1 = k1/2, g1,2 = k2/2, and gi,j = 0 elsewhere; the matrix H ′
n,n−2 has elements

νi,j, for 2 ≤ i ≤ (n − 1), νi,i−2 = νi,i−1 = hi−1

12
, ν1,1 =

−h2
0 h1

12
, ν2,1 = h1

12
,νn,n−2 =

hn−1

12
, and 0 elsewhere; Q

′T
n−2,n is the (n − 2) × n matrix with elements qi,j, where

qi,i+1 = −2h−1
i − 2h−1

i+1 for 1 ≤ i ≤ (n − 2) and 0 elsewhere; the matrix R′
n−2,n−2 is

a symmetric band matrix with entries ri,i, ri,i = 1
4
(hi + hi+1) for 1 ≤ i ≤ (n − 2),

ri,i+1 = ri+1,i = 1
12

hi+1 for 1 ≤ i ≤ (n − 3), and 0 otherwise. When n = 2, N ′
2 is a

2× 2 matrix, where the first row is (k1/2, k2/2) and the second row is (h−1
1 , h−1

1 ). It is

clearly that det(N ′
2) > 0 since k1 > k2.

According to Lemma 1 stated below, for all n ≥ 3, the determinant of N ′
2n−2 can

be expressed in terms of N ′
2(n−1)−2 by

det(N ′
2n−2) =

1

4
det(N ′

2(n−1)−2) + Kn,

where Kn is a positive number. Since det(N ′
2) > 0, it follows clearly that det(N ′

2n−2) > 0

for all n ≥ 3, which implies that the matrix Mn,n is invertible.
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For illustration, Appendix B gives N ′
2n−2 for n = 4 and 5 and expresses N ′

2∗5−2 in

terms of N ′
2∗4−2.

Lemma 1. For the square matrix N ′
2n−2 defined by (19), for n ≥ 3,

det(N ′
2n−2) =

1

4
det(N ′

2(n−1)−2) + Kn, (20)

for some Kn > 0.

Proof. We will show the equality (20) by induction.

Step 1:

When n = 2, it is clear that det(N ′
2) = h0 (h0 + h1)/h1

2 > 0.

When n = 3,

det(N ′
4) =

h0 (3h0 (h1 + h2) + h1 (2h1 + 3h2))

12h2
1h

2
2

=
h0 (3 h0 + 3 h1)

12 h1
2 +

h0

(
3 h0 h1

2 + 2 h1
3
)

12 h1
2 h2

2 +
h0

(
6 h0 h1 + 5 h1

2
)

12 h1
2 h2

=
1

4
det(N ′

2) + K3,

where K3 =
h0 (3 h0 h1

2+2 h1
3)

12 h1
2 h2

2 +
h0 (6 h0 h1+5 h1

2)
12 h1

2 h2
> 0. Thus (20) holds for n = 3.

When n = 4, we calculate the determinant of N ′
2∗4−2. It follows that

det(N ′
6) =

1

4
det(N ′

4) + K4,

where

K4 =
h0

(
9 h0 h1

2 h2
2 + 6 h1

3 h2
2 + 12 h0 h1 h2

3 + 10 h1
2 h2

3 + 4 h0 h2
4 + 4 h1 h2

4
)

144 h1
2 h2

2 h3
2

+
h0

(
18 h0 h1

2 h2 + 12 h1
3 h2 + 30 h0 h1 h2

2 + 25 h1
2 h2

2 + 12 h0 h2
3 + 12 h1 h2

3
)

144 h1
2 h2

2 h3

.

It is clear that (20) holds since h0, h1, h2, h3 > 0.

Step 2:

We would like to prove (20) for general n by induction. For a fixed k > 5, assume

that det(N ′
2n−2) > 0 for n = k − 3 and (20) holds for n = k − 2 and n = k − 1.
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When n = k, consider the matrix form for N ′
2k−2

N ′
2k−2 =

[
G′

k,k H ′
k,k−2

Q
′T
k−2,k R′

k−2,k−2

]
.

By the structures of G′,H ′,Q′, and R′, we can write the determinant of N ′
2k−2 in terms

of N ′
2(k−1)−2. More specifically, we interchange some column vectors of N ′

2k−2, such that

the i-th column vector becomes the (i−1)-th column vector for i = k+1, . . . , 2k−1, and

the k-th column vector becomes the (2k − 1)-th column vector by some permutation

operations. Do the same thing with the row vectors. We then obtain

det(N ′
2k−2) =

∣∣∣∣∣ N ′
2k−4 U2k−4,2

V2,2k−4 T2,2

∣∣∣∣∣ (21)

for some matrices U2k−4,2, V2,2k−4, and T2,2. The matrix in (21) can be transformed into

a lower triangle with some elementary matrix operations. More specifically, the block

matrix in (21) can be written as[
N ′

2k−4 U2k−4,2

V2,2k−4 T2,2

]
=

[
N ′

2k−4 O2k−4,2

V2,2k−4 T ′
2,2

]
·
[

I −N
′−1
2k−4U2k−4,2

O I

]
.

We then obtain det(N ′
2k−2) = det(N ′

2k−4)·det(T ′
2,2). The matrix T ′

2,2 is an upper triangle

matrix, where T ′
2,2[1, 1] = h−1

k−1 and

T ′
2,2[2, 2] =

hk−1 + hk−2

4
−

h2
k−2

12
N

′−1
2k−4[2k − 4, 2k − 4]

+ (2h−1
k−2 + 2h−1

k−1)

{
h2

k−2

12
+

hk−2

12
N

′−1
2k−4[k − 1, 2k − 4]

}
. (22)

By induction hypothesis, det(N ′
2n−2) = 1

4
det(N ′

2(n−1)−2) + Kn holds for n = k − 1 and

n = k− 2, and det(N ′
2(k−3)−2) > 0, we get N

′−1
2k−4[2k− 4, 2k− 4] < 4/hk−2 by Lemma 2,

and N
′−1
2k−4[k − 1, 2k − 4] > −hk−2/3 by Lemma 3. It follows that

T ′
2,2[2, 2] >

hk−1 + hk−2

4
−

h2
k−2

12

4

hk−2

+ (2h−1
k−2 + 2h−1

k−1)

{
h2

k−2

12
− hk−2

12

hk−2

3

}

>
h2

k−2

18
(2h−1

k−2 + 2h−1
k−1)−

hk−2

3
+

hk−1 + hk−2

4

=
hk−2

36
+

h2
k−2

9hk−1

+
hk−1

4
>

hk−1

4
.

Then

det(N ′
2k−2) = T ′

2,2[2, 2]
1

hk−1

det(N ′
2k−4) =

(
hk−1

4
+

(
T ′

2,2[2, 2]− hk−1

4

))
1

hk−1

det(N ′
2k−4).
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Define Kk =
(
T ′

2,2[2, 2]− hk−1

4

)
det(N ′

2k−4)

hk−1
. Since T ′

2,2[2, 2] > hk−1

4
and det(N2k−4) > 0,

then

det(N ′
2k−2) =

1

4
det(N ′

2k−4) + Kk > 0

as required.

Lemma 2. If det(N ′
2(k−1)−2) = 1

4
det(N ′

2(k−2)−2) + Kk−1 is satisfied, then

N
′−1
2k−4[2k − 4, 2k − 4] <

4

hk−2

for k ≥ 4.

Proof. It is known that the elements of the inverse of N2k−4 can be expressed in terms

of its cofactor matrix.

N
′−1
2k−4[2k − 4, 2k − 4] =

det(cofactor(N ′
2k−4[2k − 4, 2k − 4]))

det(N ′
2k−4)

.

By the definition of N ′
2k−4, it is easy to see that

det(cofactor(N ′
2k−4[2k − 4, 2k − 4])) =

1

hk−2

det(N ′
2(k−2)−2).

Since det(N ′
2(k−1)−2) = 1

4
det(N ′

2(k−2)−2) + Kk−1 is satisfied by induction hypothesis, we

obtain

N
′−1
2k−4[2k − 4, 2k − 4] =

1
hk−2

det(N ′
2(k−2)−2)

1
4
det(N ′

2(k−2)−2) + Kk−1

=
4

hk−2 + Y
<

4

hk−2

as required, since Y = 4∗Kk−1

(hk−2 det(N ′
2k−4

))
> 0.

Lemma 3. If det(N ′
2n−2) = 1

4
det(N ′

2(n−1)−2) + Kn is satisfied for n = k− 1, n = k− 2,

and det(N ′
2n−2) > 0 for n = k − 3, then

N
′−1
2k−4[k − 1, 2k − 4] > −hk−2

3
for k ≥ 5.

Proof. Since N ′N ′−1 = I, it is obvious that N ′[k − 1, ·]N ′−1[·, 2k − 4] = 0, where

N ′[k − 1, ·] is the (k − 1)-th row of N ′ and N
′−1[·, 2k − 4] is the (2k − 4)-th column of

N
′−1. More specifically, it can be shown that

N
′−1
2k−4[k − 2, 2k − 4] + N

′−1
2k−4[k − 1, 2k − 4] = −

h2
k−2

12
N

′−1
2k−4[2k − 4, 2k − 4].
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Consider the cofactor of N ′
2k−4[k − 2, 2k − 4]. By the structure of N ′

2k−4, we obtain

N
′−1
2k−4[k − 2, 2k − 4] ∝ det(cofator(N ′

2k−4[k − 2, 2k − 4])) = − hk−3

12hk−2

det(A),

where A is a (2k − 6) × (2k − 6) matrix and all elements in A are the same as the

elements in N ′
2k−6 except A[2k−6, k−3] and A[2k−6, 2k−6], where A[2k−6, k−3] =

−2h−1
k−2−3h−1

k−3 < N ′
2k−6[2k−6, k−3] and A[2k−6, 2k−6] = hk−3

4
+ hk−2

6
. Similarly, using

elementary matrix operations, the det(N ′
2k−6) and det(A) can be formed by N ′

2(k−3)−2.

We obtain that

det(N ′
2k−6) =

∣∣∣∣∣ N ′
2k−8 O2k−8,2

V ′
2,2k−8 X2,2

∣∣∣∣∣ and det(A) =

∣∣∣∣∣ N ′
2k−8 O2k−8,2

V ′
2,2k−8 Y2,2

∣∣∣∣∣ ,
where both of X and Y are upper triangle matrices with X[1, 1] = Y [1, 1] = h−1

k−3, and

X[2, 2] =
hk−2

4
+

hk−3

4
− c−N ′

2k−6[2k − 6, k − 3]d,

Y [2, 2] =
hk−2

6
+

hk−3

4
− c− A[2k − 6, k − 3]d,

where c =
h2

k−3

12
N

′−1
2k−8[2k − 8, 2k − 8] and d =

h2
k−3

12
+ hk−3

12
N

′−1
2k−8[k − 4, 2k − 8]. Since

det(N ′
2k−6) = det(N ′

2k−8) · X[1, 1] · X[2, 2] = 1
4
det(N ′

2k−8) + Kk−2 > 0 is satisfied, we

find that

Kk−2 = h−1
k−3

(
hk−3

4
− c−N ′

2k−6[2k − 6, k − 3]d

)
> 0.

It follows that

hk−3

4
− c− A[2k − 6, k − 3]d >

hk−3

4
− c−N ′

2k−6[2k − 6, k − 3]d > 0.

Then det(A) = det(N ′
2k−8) · Y [1, 1] · Y [2, 2] > 0 and N

′−1
2k−4[k − 2, 2k − 4] < 0. Since

N
′−1
2k−4[2k − 4, 2k − 4] < 4

hk−2
is satisfied by Lemma 2, we obtain the the inequality

N
′−1
2k−4[k − 1, 2k − 4] > −hk−2

3
as required.
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B Appendix: The Construction of N ′2n−2 in Propo-

sition 2

When n = 4, we find

N ′
2∗4−2 =



h0

(
2+

h0
h1

)
2

−h0
2

2 h1
0 0

−(h0
2 h1)

12
0

1
h1

1
h1

0 0 h1

12
0

0 1
h2

1
h2

0 h2

12
h2

12

0 0 1
h3

1
h3

0 h3

12

0 −2
h1
− 2

h2
0 0 h1+h2

4
h2

12

0 0 −2
h2
− 2

h3
0 h2

12
h2+h3

4


.

If n = 5, then

N ′
2∗5−2 =



h0

(
2+

h0
h1

)
2

−h0
2

2 h1
0 0 0

−(h0
2 h1)

12
0 0

1
h1

1
h1

0 0 0 h1

12
0 0

0 1
h2

1
h2

0 0 h2

12
h2

12
0

0 0 1
h3

1
h3

0 0 h3

12
h3

12

0 0 0 1
h4

1
h4

0 0 h4

12

0 −2
h1
− 2

h2
0 0 0 h1+h2

4
h2

12
0

0 0 −2
h2
− 2

h3
0 0 h2

12
h2+h3

4
h3

12

0 0 0 −2
h3
− 2

h4
0 0 h3

12
h3+h4

4


.

By some permutation operations, det(N ′
2∗5−2) can be expressed in terms of det(N ′

2∗4−2).

That is,

det(N ′
2∗5−2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h0

(
2+

h0
h1

)
2

−h0
2

2 h1
0 0

−(h0
2 h1)

12
0 0 0

1
h1

1
h1

0 0 h1

12
0 0 0

0 1
h2

1
h2

0 h2

12
h2

12
0 0

0 0 1
h3

1
h3

0 h3

12
0 h3

12

0 −2
h1
− 2

h2
0 0 h1+h2

4
h2

12
0 0

0 0 −2
h2
− 2

h3
0 h2

12
h2+h3

4
0 h3

12

0 0 0 1
h4

0 0 1
h4

h4

12

0 0 0 −2
h3
− 2

h4
0 h3

12
0 h3+h4

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ N ′
2∗4−2 U6,2

V2,6 T2,2

∣∣∣∣∣ .

29



References

[1] Burden, R. L. and Faires, J. D. (2001). Numerical Analysis, Brooks/Cole, Aus-

tralia.

[2] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions:

estimating the correct degree of smoothing by the method of generalized cross-

validation, Numerical Mathematik, 31, 377-403.

[3] de Boor, C. (2001). A Practial Guide to Splines: with 32 figures, Rev. ed., Springer,

New York.

[4] Eubank, R. L.(1990). Nonparametric Regression and Spline Smoothing, 2nd ed.,

Marcel Dekker, New York.

[5] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, Chapman

and Hall, London.

[6] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and General-

ized Linear Models: a Roughness Penalty Approach, Chapman and Hall, London.

[7] Gu, C. (2002). Smoothing Spline ANOVA Models, Springer, New York.

[8] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed.,

Springer, New York.

[9] Rossi, N., Wang, X., and Ramsay, J. O. (2002). Nonparametric item response

function estimates with the EM algorithm, Journal of Educational and Behavioral

Statistics, 27, 291-317.

[10] Wahba, G. (1991). Spline Models for Observational Data, Philadelphia, Pennsyl-

vania/SIAM.

[11] Wang, Z. (2000). An algorithm for generalized monotonic smoothing, Journal of

Applied Statistics, 27, 495-507.

30



[12] Zhang, J. T. (2004). A simple and efficient monotone smoother using smoothing

splines, Nonparametric Statistics, 16(5), 779-796.

31



Table 1: The proportion of Monotony in 10000 repeats

n = 50 n = 100 n = 200
α = 1.98
β = 28

77.89% 91.38% 96.2%

p̂g
α = 6.28
β = 17.67

79.43% 93.46% 97.27%

a=6.9
β = 1.1

85.54% 93.36% 94.67%

Table 2: Proportion of ASE(p̂g)
ASE(p̂m)

≥ 1

n = 50 n = 100 n = 200
α = 1.98
β = 28

39.91% 43.76% 48.34%

α = 6.28
β = 17.67

49.27% 52.5% 56.12%

α = 6.9
β = 1.1

56.3% 61.45% 66.47%

Table 3: The distribution summary for ASE(p̂g) and ASE(p̂m), where Q1 is the first
quartile , Q3 is the third quartile. The unit is 10−3.

Q1 Median Mean Q3
p̂g 2.3 4.9 7.0 9.3

n = 50
p̂m 2.3 4.9 6.8 9.1
p̂g 1.6 2.8 4 5.1α = 1.98

β = 28
n = 100

p̂m 1.5 2.7 3.7 4.9
p̂g 1.0 1.7 2.2 2.8

n = 200
p̂m 0.83 1.5 2.0 2.6
p̂g 1.2 2.9 4.6 6.1

n = 50
p̂m 1.2 2.9 4.6 6.1
p̂g 0.71 1.7 2.7 3.6α = 6.28

β = 17.67
n = 100

p̂m 0.7 1.6 2.5 3.4
p̂g 0.52 1.08 1.62 2.14

n = 200
p̂m 0.44 0.95 1.39 1.87
p̂g 1.4 3.1 4.8 6.3

n = 50
p̂m 1.8 3.2 5.6 6.9
p̂g 0.91 2.0 2.9 3.8α = 6.9

β = 1.1
n = 100

p̂m 1.1 2.2 3.0 4.0
p̂g 0.54 1.1 1.6 2.1

n = 200
p̂m 0.59 1.2 1.6 1.2
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Table 4: For sample size n = 100 and 10000 monotone p̂g, the Distribution
summary of ASE(p̂g) and ASE(p̂m), where the Q1 is the first quartile ,
Q3 is the third quartile. The unit is 10−3.

Q1 Median Mean Q3
p̂g 0.7 1.6 2.5 3.3α = 1.98

β = 28 p̂m 0.8 1.7 2.6 3.5
p̂g 0.8 1.8 2.8 3.7α = 6.28

β = 17.67 p̂m 0.7 1.7 2.6 3.5
p̂g 1.3 2.5 3.4 4.4α = 6.9

β = 1.1 p̂m 1.1 2.2 3.1 4.1

Table 5: For sample size n = 100 and 10000 non-monotone p̂g, the dis-
tribution summary of ASE(p̂g) and ASE(p̂m), where the Q1 is the first
quartile , Q3 is the third quartile. The unit is 10−3.

Q1 Median Mean Q3
p̂g 5.4 8.1 9.2 11.5α = 1.98

β = 28 p̂m 0.8 1.8 2.7 3.6
p̂g 5.0 7.4 8.4 10.5α = 6.28

β = 17.67 p̂m 0.8 1.8 2.8 3.7
p̂g 4.1 6.4 7.5 9.7α = 6.9

b=1.1 p̂m 1.1 2.3 3.3 4.3
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Figure 1: Examples of three EC performance curves.
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Figure 2: Bernoulli data. The solid line is the target function p(x) = 1− (1− x4.5)2.5.
The dotted line is the estimated curve with monotone constraint. Dots in the left panel
represent samples (xi, yi), i = 1, . . . , 200. Dots in the right panel are binned data.
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Figure 3: Poisson data. The solid line is the target function φ(x) = log(x2 +1). Dotted
line is the estimated curve by GCV method. Dash-dot line is the estimated curve with
smoothing parameter 1.5. Dots in the left panel are points (xi, yi), i = 1, . . . , 200. Dots
in the right panel are binned data.
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Figure 4: Poisson data. The solid line is the target function φ(x) = 1
e
−e−x+x− sin(π x)

π
.

The dotted line is the estimated curve by GCV method. Dash-dot line is the estimated
curve with smoothing parameter 2.5× 10−5. Dots in the left panel are points (xi, yi),
i = 1, . . . , 200. Dots in the right panel are binned data.

35



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

●●●●●●●●●●●●●

●

●●●● ●

●

●

●●

●●●●

●

● ●

●

●

●

●

●●● ● ●● ●●●●● ●● ●● ●●●● ●●●●● ● ● ●●●●●●●● ● ● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●● ●●●●●●●

Target
Gu
Mono

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

●●● ●●●●●

●●●●● ●

●●

●● ● ●●●

●

●● ●● ●● ●●●●●●●● ●●●●●● ●●● ● ●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●

Target
Gu
Mono

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

● ●●● ●● ● ●●●●●●●● ●●●●● ●●●●● ● ●●●●●●●●●●●● ●● ●●●● ●●●●

●

● ●●●

●●●

●●●●

●

●

●

●

● ●● ●●●●●●● ●●●

●

●●●● ●●●●● ●●●●●●● ●● ●●●●

Target
Gu
Mono

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

●●●● ● ●●●●●● ● ●●●● ●●●●● ●●●● ●●●● ●●● ●● ●●● ●●●●●●●● ●● ●● ●●●

● ●

●

●●●● ● ●● ●●

●

●●

●

●●●●●●●● ●● ●●●● ● ● ●●●●●●●●●●●●●●●●

Target
Gu
Mono

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

●●●●●●●●● ●●●●●● ● ●●●●●●● ●●●● ●●●●●●●●● ● ●●●●●●●● ● ●●● ●●●●●●●●●●●● ●●●● ●●●●●

●

●●● ● ●● ●●●

●

●● ● ●● ●

●●

●

● ●●

●●

● ●●●●

Target
Gu
Mono

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
x)

●●●●●●●●● ●●●●●●● ● ● ● ●●● ●●●●●●●● ●●●● ●● ●●● ●● ●●●●●●●●● ●●

●

●●●●●●● ●●●●●●●● ●● ●●●●

●

●

●●

●● ●● ● ●●● ●●●

●

●

●

●

● ●●● ●●●

Target
Gu
Mono

(f)

Figure 5: Illustrative examples. The solid line is the target function p(x) = 1 −
(1− xα)β. For panels from top to bottom, (α, β) are (1.98,28), (6.28,17.67), and
(6.9,1.1), respectively. The dashed line is the estimated curve p̂g by Gu(2002). The
dash-dot line is the estimated curve p̂m with monotone constraint. The dots are data
points. The left three panels shows the cases with monotone p̂g, while p̂g in the right
panels are not monotonic. The sample size n = 100.
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Figure 6: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1 − (1 − x1.98)28.
Panels (a), (b), and (c) are for sample size n=50, 100, and 200, respectively. For each
panel, “Gu” indicates p̂g, and “monotone” indicates p̂m.
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Figure 7: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1− (1−x6.28)17.67.
“Gu” is p̂g, and “monotone” is p̂m.
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Figure 8: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1 − (1 − x6.9)1.1.
“Gu” is p̂g, and “monotone” is p̂m.
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Figure 9: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1 − (1 − x1.98)28

and n = 100. ”Gu” is p̂g, and ”Monotone” is p̂m. Panel (a) is for 10000 monotone p̂′gs
while panel (b) is for 10000 non-monotone p̂′gs shows in panel (b)
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Figure 10: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1−(1−x6.28)17.67.
“Gu” is p̂g, and“Monotone” is p̂m. Panel (a) is for 10000 monotone p̂′gs while panel (b)
is for 10000 non-monotone p̂′gs shows in panel (b)
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Figure 11: Box-plots of 10000 ASE(p̂g) and 10000 ASE(p̂m). p(x) = 1− (1− x6.9)1.1.
“Gu” is p̂g, and “Monotone” is p̂m. Panel (a) is for 10000 monotone p̂′gs while panel
(b) is for 10000 non-monotone p̂′gs shows in panel (b)
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Figure 12: Histogram of 200 mean voltages . The sample mean is 1.005 and standard
deviation is 0.06.
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Figure 13: Estimated passing rates(i.e., EC performance curves) under three con-
trol limits. (LCL,UCL) of mean voltage for panels (a), (b), and (c) are (0.88, 1.12),
(0.93, 1.07), (0.97, 1.03), respectively. Panel (d) is an EC performance curve when mean
voltage is independent of the Cp yield.
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