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Analysis of transition probability with covariates

Student: Hsueh-Fang Ai Advisor: Dr. Nan-Fu Peng

Institute of Statistic

National Chiao Tung University

Abstract

In Huang et al [6] the single rate research is provided by a lot of statistical
methods. Now we want to develop a new method to analyze the transition data with
risk factors. With the conditional.Markoy:model we'can solve the dependent data
question.

Use this method we need alarge-“enough™ sample in each cell of transition
probability. So we recode the continuous factors and use some tests to find more
influential factors.

Under the model, bootstrap method can help us to construct a confidence interval
for each parameter. Thus we still can test the parameter if it is significant.

The results include all the transition probability of the process of the disease.
Then we can compare the rates among the factor. In this report we use ARM
(age-related maculopathy) data to demonstrate the method and provide the previous

research in analysis of ARM data.

Keyword: ARM, transition probability and conditional Markov Chain
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1 Introduction

1.1  Purpose of Research

The study we present is a new analysis of transition data with factors by using Markov
chain. Select the factors to build a statistical model and will pay more attention. In the
cohort study we will follow the same participants in each time echo however the
information they provide will dependent. Today we add a Markov property assumption to
solve difficulty in the analysis of dependent data. Conditional on covariates the process of
each person will be a Markov chain to solve difficulty in the analysis of dependent data.

The new strait in the analysis is that we need an “enough” sample size. In this example
with many factors then the size of subgroup-is small not mention to the continuous factors.

Our method is to break the:continuous data to categorical data simplified the level of

factor and use homogeneity and stationarity teststo-pick up the influential factors.

1.2  Background

Vision composition

The visional system consists of retina of eyes which connected optic nerve to the
visional center of brain. The maculopathy on the retina is against to the pupil with 5.5 mm
larger than the pupil. If we look straightly then the maculopathy can controls 20 degree of
viewpoint. Highly sensitive visional cells are located at the maculopathy although its area
occupied the all retina is just 2%. The visional center uses more then one half of cells to
analyze the information by it received.

The vision consists of retina and the maculopathy is not only the geographic center but

also the center of visional center. Once the maculopathy has pathologies then the vision is



effected by it even loosed one's sight.

1.3 Literature review

The previous researches in the Beaver Dam Eye Study [7-17] provide some statistical
method but most of them are focus on the single events rate such prevalence rate or
procession rate et al. Our method in this paper not only solve the dependent data but also
provide a global view to understand how a factor/factors act on the ARM.

These risk factors were chosen because of a strong relation with age-related
maculopathy in previous studies. In the Beaver Dam Eye Study, smoking was related to the
prevalence of age-related maculopathy [12], heavy drinking and hypertension were
associated with exudative macular degeneration, a lesion that defined late age-related
maculopathy [14, 16], and serum cholesterol was inversely associated with age-related
maculopathy [10]. Vitamin use was.found to be associated with the incidence of
age-related maculopathy in a clinicalitrial J1}.-Definitions of these confounding variables
have been described in detail elsewhere [2, 12,14 and 19]. In brief, a subject was classified
as a current smoker if he/she had smoked more than 100 cigarettes in his/her lifetime and
had not stopped smoking; as a former smoker if he/she had smoked more than this number
but had not smoked within the last year prior to the examination; and as a nonsmoker if
he/she had smoked fewer than 100 cigarettes in his/her lifetime. A current heavy drinker
was defined as a person consuming four or more servings of alcoholic beverages daily, a
former heavy drinker had consumed four or more servings daily in the past but not within
the last year, and a non-heavy drinker had never consumed four or more servings daily on a
regular basis. A person was classified as a current vitamin user if he/she had taken at least
one vitamin per week in the month prior to the examination; as a past vitamin user if he/she
had ever regularly taken vitamins at least once a week but not within the last month; and as

never using vitamins if she/she never took vitamins regularly. Hypertension was defined as
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a systolic blood pressure of 160 mmHg and/or a diastolic blood pressure of 95 mmHg
and/or a history of hypertension using antihypertensive medication at the time of the
examination. We adjusted for these potential confounding variables in each model.
Measurements of risk factors were taken at each examination; however, multivitamin use
and cholesterol level were not available at the 10-year follow-up. In the following analysis,
we use the 5-year multivitamin use and cholesterol level as the 10-year measurements.
The possible reasons for nonparticipation include death, moving out of the area, and
refusal [9, 11 and 13] .Comparisons between participants and non-participants at all three

examinations have been presented elsewhere [9, 11 and 13].

1.4 Procedures

Procedures for obtaining and evaluating photographs of participants' eyes have been
described elsewhere [9, 17]. At'each examination, 30° color stereoscopic fundus
photographs were taken of both of each participant's eyes. Preliminary and detailed grading
was then carried out on the fundus photographs to determine the presence and severity of
specific lesions associated with age-related maculopathy, including largest drusen size,
most severe drusen type (in order of increasing severity: hard distinct drusen, soft distinct
drusen, soft indistinct drusen, and reticular drusen), increased retinal pigment, retinal
pigment epithelial depigmentation, exudative macular degeneration (retinal pigment
epithelial detachment, subretinal hemorrhage, subretinal fibrosis), and geographic atrophy.

In this reporter, we adopt 6-level scale. Experienced graders used the photographs to
evaluate the severity of lesions of ARM, which were graded on a 6-level scale, such as 10

20 ... 60 [14].



The scale will be re-classified to three levels (the detail is the following definition), in
order to increase severity: level 0 = disease free, level 1 = early ARM and
level 2 = late ARM. Results presented here use each individual's ARM level in the worse
eye. [6]

Define 1.1 the states of ARM

Level O: disease free if 6-level=10
Level 1: early ARM if 6-level=20/30/40
Level 2: late ARM if 6-level=50/60



2 Methodology

2.1 Statistical model

We want to model the transition probability with covariates. The probability form state
i to state j is

m=n ij

p
P = exp(ﬂ0 + ) BoXy + Z]/rtn,nxltnxrt‘lj
m=L

where p is the number of covariates and the t is the time echo.

X,, : covariate (risk factor)

[, : minus log transition prob. of based line

B, - decrese the log transition prob. for specified risk factor m
7. - decrese the log transition prob. for risk.factor mand n

The procedure is as following.
1. Pick up the complete data in all time echoes.
2. Test each covariate if it is significant.
3. Pick up the complete data again focus on the significant covariates.

4. Estimate the mle and the confidence intervals.



2.2 Select the influential factors

The Markov chain needs an enough sample size and uniform data to construct the
model so we hope just select influential factors which can affect the over all transition. The
first thing we have to do is to scan all the factors and put the influential ones in our model.
The follow tests [3, 18] will help us select the influential factors.

Test for stationarity of the Transition probability Matrix
a.  The approximant distribution of likelihood ratio
If L(P) is the likelihood function, 1(P)=In(L(P))
A is the likelihood ratio then
—~2In(A) =9

If the transition probability with m states then

)2 E) et 25 S |-

The degree of freedom is m (m-1)

b.  Test for stationarity

At time t the transition probability is P, = P[X (t+1)=j| X (t)=i]

1 1 1

ni1 ni2 nim

2 2 2

r-]il r]i2 r]im

T T T
T r']il r]i2 nim




Hy R} =P, (1=12-T)

. . T m m nit' ,
-2 In(A) - 2['-(1’t )_ L(p)]= ZZZZ nitj In t—1J REAEVE
t=1 i=1 j=1 n; Pij

Test for homogeneity across several Markov Chain

If there are S samples of Markov Chain, each transition probability is

m
P'le{l--,S} and nj :transition countand n{ =>n;
i1

|
~ n.
Each mle of different sample is Pij' =n—'|J and the mle of pooled transition probability

0" ij
s ( I _n'P )2
DD I
3 -1 =i
Rt n! P (S Hmm-1)



2.3  Estimate the parameters

The next we want to find the mle accord to the model.

Now we have N individual in t time, x, is a special factor in kg, individual dependant

on t, but its parameter /; does not dependant on t.

We will democrat I=J=3 for some state i will transient to next state.
1 ; pu b12 eXp(— ﬂlzxt ) b13 exp(_ ﬂ13xt )
[pu ]_ b,, ex ( BoX ) 1‘% pijt B, EXp(_ ﬂzaxt)
b31 exp( :lext) b32 exp(_ ﬂsz Xt) 1- é pijt
p:j,k = bij exp(— B X|t< ) pEi,k =1- Zbij exp(— B X|t< )

i#]

The partial likelihood function is

L) =TT @b, [0 00 o A3 5 11020 - 1,33 1100

t=1k=1 t=lo k=L t=1 k=1

(ﬁ INT(]- - b12 eXp(_ ﬂlZIt (1’1)X|t< )_ b13 eXp(_ ﬂlslt (1’1))(& ))j

t=1k=!

N

The partial log-likelihood function is

1(B.b)., iilt 12)In(b, )+ > > 1(1,2)In(b Ziilt(l,z)xf(—ﬁlBiiIt(l,S)xf(

t=1 k=1 t=1 k=1 t=1 k=1

We will solve the mle by differentiation.
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A

13

A

12

i_ I' (L1, expl A1 (L))

-3 I'(LUxby, expl- Aol (L2)x,)
X ; ; 1- 612 EXp(_ ﬂAlzlt (l,l)Xli )_ b13 EXp(_ ,3\131t (1’1))(& )
_ buenlf)
1(11),x=1 1- b12 eXp(_ ﬂlz )_ b13 exp(— 1313)

3 613 exp(— :éls) % 613

= z - . ~ — = 5 o
1nx=11—-Dby, exp(— P )— i exp(— ﬂm) 1011~ P12 = Pus

N X _ Prs

nll,x:l 1- plz - p13

jﬁ(l_ ﬁlz)z pls(l"' X13 J

nll,>(:1 11,x=1

_ X13(1_ ﬁlZ)

(nll,x:l + Xm)
—~1_ f) _ Nygx + Xyg = x13(1_ ﬁlZ) _ Nygx1 — X1 612
” (nll,x:l + X13) (nll,x:l + X13)
— XlZ(l_ 613)

Mgy + Xy
= Py, (nll,x:l + Xy, ) = Xy (1_ 613)

nll,x:l - X13 P12
(nll,x:l + Xl3)

X2 X3 XNy
My + X13)

= Py (nll,x:l + X12)= X1

= p12[n11,x—1 + X — ( - (nll,x:l + X13)

= 612 ((nll,x:l + X12 anl,x:l + X13 )_ X12X13 ) = I’]ll,x:leZ

9

F51-b,, expl- A1 LK )b, expl- A1 L))

=Ny

P13

1- ﬁlz - 613



nll x:leZ X12 _ x12

- 612 = u = =
nll,X:l(nll,X:l + X12 + X13) nll,X:l + XlZ + X13 Xll + X12 + X13

A X
P, =
X+ Xpp + Xyg

X13

then as the same from p,, =
Xll + XlZ + Xl3

The next
olB.b) _
dby,
0 3N —exp( Al tgl,l)xi) ]
b, by, expl- A1 (L)X )~ b expl- Bl L), )

Y .
l(ll)x \1- b l(ll) X_ll_blz EXp(_ 12)_ 13 EXp(_ ﬂ13)
. = ( b, J 5 by, ex ( ,5’ )
12 = ~ = =
fanx=o{ 1— b12 b13 s b12 exp( /812) b Xp(— ﬂls)
b,
- S X =N =ol = 7~ ~_ + X
I(ll)x 0[1 b 13} 12 11, _0(1—b12 _b13 12
= N =Ny 0( Ablz = J"’ X1
’ 1- b12 M3
N, X12 12
Mo 1-b,—by
~ n., — X ~ ~
blZ = %(1_ blZ - bls)
11,x=0
= 612(1+ Ny, — XlzJ: nlrz]_ X1 (1_613)
11,x=0 11,x=0

g, (X))

nll x=0 + n12 le
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Ng = nll,{ﬁ} + X13
M2 T M3

613 _ N — Xy, (1_612 _613): Nz — Xy [1_ (n12 - Xlz)(1_613)+ 613}

nll,O nll,O nll,x:O + n12 - X12

N 61 1+ N — X13} _ N — X13 (1_ (nlz — Xlz)(l—Blg)J

nll,x:O +n, — X12

r]11,0 r]11,0

N nll,x:O + Ny — X13 J _ n,— X13 nll,x:O - b13(n12 - X12)

nll,x:O nll,x:O nll,x:O + n12 - le

> | Mo + Mg — X3 _ (nlz ~ Xy )(n13 — X13) j — Nys = Xy3 [ My 0 J
n

nll,x:O nll,x:O (nll,x:O +n, - X12) nll,x:O 11,x=0 +n, - X12

— 6 Ny o + Mg — Xy _ (n12 — Xy )(n13 - X13) _ N — Xg
13 -
nll,x:O n11,x=0 (nll,x:O 0= XlZ) nll,x:O +n, - X12

- (n13 - X13 )nll,x=0

= bls((nn,x=o TN~ X13 anl,x=0 el X12)_(n12 - >(12 )(nls - X13 )): n +n,—-X
11,x=0 T 112 12

N (nlS - X13) = N3 -0
13
Ny, — X12 + Ny — x13 + nll,x:O an,x:O + nlS,x:O + nll,x:O

o

6 _ N3 x0 6 . n12,x:0
r +N.. 4N +n

12 —
n

n +Nn

12,x=0 13,x=0 11,x=0 12,x=0 13,x=0 11,x=0

Finally wegetall p; and 6“. then we can get all [5’

~ X
Intuitively the mle of transition probability is B; = —.
X

We can divide data to subgroups and estimate all the transition probabilities in each
subgroup. According to the invariance of mle, the function of mle will give a maximum

likelihood estimator of the function. i.e f(,B) = f(,é)
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Under no such risk factor the transition probability is

XU,X:l

ij,x:l - X.

i.,x=0 1., x=1

For instance the model assumptionisP; _ =b;, B;  =b; exp(— B x) On the other

hand by = f(P P ): f(Pij) each transition probability is uncorrelated 6”. = f(ﬁij)

ij x=0"" i x=0

and the same as  f; = g(f’ij)

The multiple factors will use the same concept to derive.

12



2.3  The confidence intervals of parameter

Since finding a close form to the variance is different and not the only way to estimate
the confidence interval of parameters. We try a simple method to evaluate the confidence
interval of parameters. The method we used is so called parametric bootstrap method [4].
First estimate the mle of parameters and then we put all the factor history and initial state to
the model. Generate the new sample and estimate the new sample mle then use all mle to
develop the confidence intervals.

We trust the method will provide a reasonable variance. Bootstrap method has second
order accuracy and however the Delta method is just first order accuracy.

In the beginning, the ideal is such that the following.
)2

However if n is large then it is impossible-to use the formula. Fortunately the new one

A

var*(é)z nl 1%(6&*—

n —153

Q|

is available.

Y
var, (9): ﬁ;(&, - 9*) B: bootstrap sample size

When n and B is large enough the bootstrap method has good properties.

var, (é)&) var*(é) (Converge in probability)

var*(é)% var(é)

According to the new sample we can get a new mle. Sort all mle’s to take 5% and
95(,% as the 90% CI.

More then one factors model the estimators are complex but we still can use the same

concept to do.
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To understand better the process and algorithm are like the following.

Process

1.

2.

Pick up predictors.

Construct the model.

Estimate the model parameters (maximum likelihood estimators).

Use the model, parameters, initial data and factor history to generate samples.
Go to 3 until the enough number of samples.

Order the parameters to construct the confidence intervals for each parameter.

Parametric bootstrap Algorithm

1.

For some time t the transition probability with covariates x [P%];; (simply pi(X)).
The state is from S; =i=Syand S; =j=S; where I=J

m=0, N subjects with their covariate.classes x, and initial state i, for all m<N.
For m<N generate a r.v. U0r.goto-5..The'transition probability form stat iy, with
covariate class Xp is pij(Xm). H Un<summation of pij(xm) wher j is from S; to j*+1
then assign jm=j*

Estimate the mle,, then Goto 3

Sort all mle and get the 95% quintile and 5% quintile as the 90% CI.

14



3 Numerical method

3.1 Data exhibit

The Beaver Dam Eye Study is a longitudinal population based cohort study that aims
at determining the long-term course of common vision-threatening conditions in adult
Americans [9, 17]. Between September 15, 1987, and May 4, 1988, a private census was
performed to identify residents of the city or township of Beaver Dam, Wisconsin, who
were 43-84 years of age. A total of 5,924 persons were invited to participate in the study.

We pick up the all following participates. The total account is 927. Use these data to

test homogeneity and stationarity. Then pick up the factors which are significant in above

testing.
Table 3.1.1 The factor means or the count in different coding
Factor Baseline S-year 10-year 15-year
__Yearofbith | 193280 ¥ TISZG 193287 1932.87
______ Gender(1/0) | 054 “Fimnw®: 054 054
___________ Age |43 6022 6548 7025
hypertension(1/0) | 0.28 0.36 0.46 0.58
~ Cholesterol | 232.25 241 206
 History of drink | 028 03 026 017
S 709/178/40  681/217/29  705/201/21 78313113
Smoke 1.32 1.25 1.19 1.17
S 20/587/320  17/665/245  18/719/190 OI770/157
Packages per year 27.96 28.92 29.24 29.16
selfreported |
vitamin use 088 L7
Lo L 409/219/299  27Ai226/427
3-level scale of
779/144/4 737/183/7 716/200/11 677/226/24
worse eye (0/1/2)

15



Table 3.1.2 The codebook (for discrete data)

item\code 0 1 2
Gender Female male X
Hypertension normotensive high BP X
History of drink Never past current
Smoke Never past current
Vitamin supplement type None yes yes (multivitamin)
Self reported vitamin use Never past current

Table 3.1.3 The units in continuous data.

Item Unit
Year of birth year
Age year
Total cholesterol mg/dL
Pack years smoked package

16



3.2 Results of numerical method

In order to simply the analysis we just select some categorical factors like smoke (the
information of package of year included), history of drinking and vitamin used and two
continuous factors age (if someone is older than 65) and year of birth (if someone is birth

before than 1922) divided each into two subgroups. The data we use is all following in four

times.
Table 3.2.1 Stationarity test
stationarity

Subgroup X=0 p-value X=1 p-value X=2 p-value
#2 Yob |3.477076 0.991136 5.25255 0.949007
#3 Sex 6.182426 0.906608 4.491437 0.972851
#4-7 Age |2.387382 0.9985391:4,171494 0.980139
#8-11 Hypten | 9.453649 .0.6637/2.,3.101827 0.994781
#15-18 hist 6.053536  0.913359:" 6:64387 0.880224 3.762936 0.987344
#19-22 smoke |1.780665 0.999675 4.837689 0.963182 12.53825 0.403476
#30-31 vithx | 1.739159 .0.999713-2:240092 0.998939 8.210214 0.768495

X is the risk factor code. X canbe {0,1 and 2-}or just {0, 1}
Table 3.2.2 Homogeneity test

Homogeneity

times 1 p-value 2 p-value 3 p-value
#2 yob 21.0670 0.00178 20.3829 0.00237 28.6282 0.00007
#3 sex 3.7381 0.71208 0.3694 0.99909 3.5203 0.74126
#4-7 age 18.2841 0.00556 18.2841 0.00556 23.7751 0.00057
#8-11 hypten | 58456 0.44071 4.4790 0.61214 10.3536 0.11053
#15-18 hist 27.5529 0.00011  6.1372 0.40800 3.1723 0.78694
#19-22 smoke 2.7631 0.83794 13.4480 0.03645 9.3461 0.15503
#30-31 vithx 7.5825 0.27031 3.9208 0.68739 9.1054 0.16774

Table 3.2.3 the correlation of age and year of birth

‘ age age2 age3
yob ‘ -0.9953759 -0.9960287 -0.9956532

17



Although the year of birth is influential but year of birth and age are highly collinear.
The different methods [7, 8] show the birth cohort effect but in this report we do not deal
with both just select age in the model.

Finally, we select the age (x1) and history of drink (x) in our model. The stationarity
test is insignificant so we combine all the times under the Markov property assumption the
next time a participant provides a independent data. In the assumption we believe that the

risk factor would multiple the original probability then the statistical model is as following:

By =exp(= B0 By X — B oX — 7 ) P =0
P= Pij]: ij ( ij,0 |j,1X1 ij,27%2 IJX1 2) 02 Vi # J i ¢2
1-3.
where X, x, € {01}, and =, =" p,
j#
Age<65 & Drink:none Age>=65 & Drink:none
o _| e
] ]
=1 _| == _|
2 o] o]
= | =
] ]
0 1 2 0 1 2
Diata transition probahility Diata transition probahility
Age<65 & Drink:ever Age>=65 & Drink:ever
o | oo |
] ]
=t _ b o _
] ]
[ =
= =
0 1 2 0] 1 2
Diata transition probability Diata transition probability

Figure 3.2.1 the transition probability of data
Figure 3.2.1 contains 4 graph illustrations of transition probabilities in each
different covariate. The horizontal axes represent the starting state; the vertical axes
represent the sum of the transition probability.
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Figure 3.2. bability of model

Figure 3.2.2 contains 4 g
different covariate. The horizontal epresent the starting state; the vertical axes
represent the sum of the transition probability.

Table 3.2.4 mle of the parameters

expl-5,) expl-4) expl-4,) expl-7)

1) | 00462 27385 08354  1.0572
(1,0) | 01105 009449 08653 12947
(1,2) | 00103 82766 16913  0.3695
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Table 3.2.5 parameter CIs using 100 rounds
each round has 5955 samples

opl-4y)  ewld)  ewlp)  ew-7)
L u L U L U L U

(0.1)
(1,0)
(1.2)

0.0394 0.0527 2.2240 3.2164 0.5743 1.1639 0.5662 1.8719
0.0874 0.1440 0.7217 1.3078 0.4228 1.3530 0.6861 2.6281
0.0026 0.0180 4.2324 34.6112 0.5638 10.1478 0.0439 1.2775

The underline represents significant.

Table 3.2.6 parameter CIs using 300 rounds
each round has 5955 samples

expl- ;) epl-4)  ewl-p)  exn(-7)
L U L U L U L U

(0.1)
(1,0)

(1.2)

0.0397 0.0527 2.2709 3.2750 0.5304 1.1166 0.6116 1.8667
0.0874 0.1362 0.6922:11.2958 0.4510 1.4160 0.6125 2.8056
30.0967

0.0026 0.0206 -4.0129 0.5638 8.4565 0.0630 1.2305

The underline represents-significant.

Table 3.2.7 parameter CIs using 1000 rounds
Each round has 5955 samples

exp(— BO) exp(— /3’1) exp(— ,32) exp(-7)
L U L U L U L U

(0.1)
(1,0)

(1.2)

0.0397 0.0531 2.2604 3.3016 0.5338 1.1852 0.5939 1.7702
0.0823 0.1362 0.6824 1.3293 0.4510 1.4025 0.5698 2.8269

32.3540
0.0026 0.0180 4.2637 0.5638 6.7652 0.0595 1.1562

The underline represent significant.
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3.3 Interpretation

Since the stationarity test is insignificant so we combine the different times to analysis
and reduce the model to stationary model. Some probability is too small like (0,2) , (2,1),
(2,2) so we assumption they are 0 in the model.

The testing data is used the all following that means no missing data in the data set
and the total is 927 in three transient times . Once we select the factors then we used the no
missing data just in the interesting factors so the number of data is increasing the total is
1985.

Before generate the Cls see Figure 3.2.1 the transition probability plot show that the
history of drink is insignificant by compare with the factor present or not. With the Table
form 3.2.5 to 3.2.7 it is consist with-the figure.

Some factors are effect in previous paper-but they are not significant this. The reason
may be some factors affect the ARMin part-and-the test is over all testing so they become
not significant.

From the mle estimate we can see that the age will 2.7385 times from ARM free to
early-ARM and 8.2766 times form early-ARM to late-ARM. Beside it seems to prevent
from early-ARM to ARM free (0.9449 times but not significant).

In the common scene we may think the elder and the worse the ARM. In fact, age will

not effect the disappear of ARM.
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4 Conclusion

In this report we develop a new analysis of transition data with factors. Under the
Markov property assumption we can easily solve the dependent data question but we need
an “enough” sample size the better is uniform in each cell of probability. Use this method
we will have a global view of a disease different from other methods in the past.

We use the ARM data to demonstrate the method in this example age happened to a
factor so we do not need to develop a non-stationary model of course we can do it also.

The parametric model you can try any reasonable intuitively for factors and disease.
It’s quite flexible.

The future work may try to develop a continuous time Markov chain with factors in

the example five year maybe a little long.
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