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Abstract 

In Huang et al [6] the single rate research is provided by a lot of statistical 

methods. Now we want to develop a new method to analyze the transition data with 

risk factors. With the conditional Markov model we can solve the dependent data 

question.  

 Use this method we need a large “enough” sample in each cell of transition 

probability. So we recode the continuous factors and use some tests to find more 

influential factors.  

 Under the model, bootstrap method can help us to construct a confidence interval 

for each parameter. Thus we still can test the parameter if it is significant. 

 The results include all the transition probability of the process of the disease. 

Then we can compare the rates among the factor. In this report we use ARM 

(age-related maculopathy) data to demonstrate the method and provide the previous 

research in analysis of ARM data. 
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轉移機率含因子的分析方法 

研究生： 艾雪芳     指導教授： 彭南夫 博士 

國立交通大學統計學研究所 

摘要 

在過去的文獻[6]中提供了很多針對單一比率(發生率、惡化率…)的統計方

法，而今我們想要發展的分析方法是針對含有風險因子的轉移資料(transition data 

with risk factors). 在條件馬可夫模型下我們可以解決資料不獨立的問題。 

使用這個方法，我們需要足夠大的樣本所以我們把一些連續型的變數重新編

碼，且用一些檢定找出比較有影響的因子，來建立統計模型。 

 在模型下，我們使用拔靴法(bootstrap method)來估計每個參數的信賴區間，

據此來檢定各參數是否顯著。 

最後我們可以看到這個疾病所有歷程上的轉移機率。所以我們可以做不同的

比率(發生率、惡化率…)在不同的風險因子之間的比較。在本研究中，我們使用

退化性視網膜黃斑部病變(ARM)的資料來展示這個方法，且提供之前對 ARM 資

料分析的回顧。 

 
 
 
 
 
 
 
 
關鍵字：退化性視網膜黃斑部病變、轉移機率、條件馬可夫鏈 
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1 Introduction 

1.1  Purpose of Research 

 The study we present is a new analysis of transition data with factors by using Markov 

chain. Select the factors to build a statistical model and will pay more attention. In the 

cohort study we will follow the same participants in each time echo however the 

information they provide will dependent. Today we add a Markov property assumption to 

solve difficulty in the analysis of dependent data. Conditional on covariates the process of 

each person will be a Markov chain to solve difficulty in the analysis of dependent data. 

The new strait in the analysis is that we need an “enough” sample size. In this example 

with many factors then the size of subgroup is small not mention to the continuous factors. 

Our method is to break the continuous data to categorical data simplified the level of 

factor and use homogeneity and stationarity tests to pick up the influential factors. 

1.2  Background 

Vision composition 

The visional system consists of retina of eyes which connected optic nerve to the 

visional center of brain. The maculopathy on the retina is against to the pupil with 5.5 mm 

larger than the pupil. If we look straightly then the maculopathy can controls 20 degree of 

viewpoint. Highly sensitive visional cells are located at the maculopathy although its area 

occupied the all retina is just 2%. The visional center uses more then one half of cells to 

analyze the information by it received. 

The vision consists of retina and the maculopathy is not only the geographic center but 

also the center of visional center. Once the maculopathy has pathologies then the vision is 
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effected by it even loosed one's sight. 

1.3  Literature review 

The previous researches in the Beaver Dam Eye Study [7-17] provide some statistical 

method but most of them are focus on the single events rate such prevalence rate or 

procession rate et al. Our method in this paper not only solve the dependent data but also 

provide a global view to understand how a factor/factors act on the ARM. 

These risk factors were chosen because of a strong relation with age-related 

maculopathy in previous studies. In the Beaver Dam Eye Study, smoking was related to the 

prevalence of age-related maculopathy [12], heavy drinking and hypertension were 

associated with exudative macular degeneration, a lesion that defined late age-related 

maculopathy [14, 16], and serum cholesterol was inversely associated with age-related 

maculopathy [10]. Vitamin use was found to be associated with the incidence of 

age-related maculopathy in a clinical trial [1]. Definitions of these confounding variables 

have been described in detail elsewhere [2, 12, 14 and 19]. In brief, a subject was classified 

as a current smoker if he/she had smoked more than 100 cigarettes in his/her lifetime and 

had not stopped smoking; as a former smoker if he/she had smoked more than this number 

but had not smoked within the last year prior to the examination; and as a nonsmoker if 

he/she had smoked fewer than 100 cigarettes in his/her lifetime. A current heavy drinker 

was defined as a person consuming four or more servings of alcoholic beverages daily, a 

former heavy drinker had consumed four or more servings daily in the past but not within 

the last year, and a non-heavy drinker had never consumed four or more servings daily on a 

regular basis. A person was classified as a current vitamin user if he/she had taken at least 

one vitamin per week in the month prior to the examination; as a past vitamin user if he/she 

had ever regularly taken vitamins at least once a week but not within the last month; and as 

never using vitamins if she/she never took vitamins regularly. Hypertension was defined as 
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a systolic blood pressure of 160 mmHg and/or a diastolic blood pressure of 95 mmHg 

and/or a history of hypertension using antihypertensive medication at the time of the 

examination. We adjusted for these potential confounding variables in each model. 

Measurements of risk factors were taken at each examination; however, multivitamin use 

and cholesterol level were not available at the 10-year follow-up. In the following analysis, 

we use the 5-year multivitamin use and cholesterol level as the 10-year measurements. 

The possible reasons for nonparticipation include death, moving out of the area, and 

refusal [9, 11 and 13] .Comparisons between participants and non-participants at all three 

examinations have been presented elsewhere [9, 11 and 13]. 

 

1.4  Procedures 

Procedures for obtaining and evaluating photographs of participants' eyes have been 

described elsewhere [9, 17]. At each examination, 30° color stereoscopic fundus 

photographs were taken of both of each participant's eyes. Preliminary and detailed grading 

was then carried out on the fundus photographs to determine the presence and severity of 

specific lesions associated with age-related maculopathy, including largest drusen size, 

most severe drusen type (in order of increasing severity: hard distinct drusen, soft distinct 

drusen, soft indistinct drusen, and reticular drusen), increased retinal pigment, retinal 

pigment epithelial depigmentation, exudative macular degeneration (retinal pigment 

epithelial detachment, subretinal hemorrhage, subretinal fibrosis), and geographic atrophy.  

In this reporter, we adopt 6-level scale. Experienced graders used the photographs to 

evaluate the severity of lesions of ARM, which were graded on a 6-level scale, such as 10 

20 … 60 [14]. 
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The scale will be re-classified to three levels (the detail is the following definition), in 

order to increase severity: level 0 = disease free, level 1 = early ARM and  

level 2 = late ARM. Results presented here use each individual's ARM level in the worse 

eye. [6] 

Define 1.1 the states of ARM 

Level 0: disease free if 6-level=10 
Level 1: early ARM if 6-level=20/30/40 
Level 2: late ARM if 6-level=50/60 
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2 Methodology 

2.1  Statistical model 

 We want to model the transition probability with covariates. The probability form state 

i to state j is  
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 The procedure is as following. 

  1. Pick up the complete data in all time echoes. 

  2. Test each covariate if it is significant.  

  3. Pick up the complete data again focus on the significant covariates. 

  4. Estimate the mle and the confidence intervals. 
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2.2  Select the influential factors 

The Markov chain needs an enough sample size and uniform data to construct the 
model so we hope just select influential factors which can affect the over all transition. The 
first thing we have to do is to scan all the factors and put the influential ones in our model. 
The follow tests [3, 18] will help us select the influential factors. 
 

Test for stationarity of the Transition probability Matrix 

 a. The approximant distribution of likelihood ratio 

   If  is the likelihood function, ( )PL ( ) ( )( )PP Ll ln=  

    is the likelihood ratio then Λ
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   The degree of freedom is m (m-1) 

 b. Test for stationarity 
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Test for homogeneity across several Markov Chain 

 If there are S samples of Markov Chain, each transition probability is    
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2.3  Estimate the parameters 
The next we want to find the mle accord to the model.  

Now we have N individual in t time,  is a special factor in kth individual dependant 

on t, but its parameter 

t
kx

ijβ does not dependant on t. 

We will democrat I=J=3 for some state i will transient to next state. 
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The partial likelihood function is 
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The partial log-likelihood function is  
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Intuitively the mle of transition probability is
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le, the function of mle will give a maximum 

likelihood estimator of the function. i.e 

We can divide data to subgroups and estimate all the transition probabilities in each 
subgroup. According to the invariance of m

)ˆ()(ˆ ββ ff =  
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Under no such risk factor the transition probability is  

0,.

0,

0,
ˆ

=

=

=
=

xi

xij

xij x
x

P , and 
1,.

1,

1,
ˆ

=

=

=
=

xi

xij

xij x
x

P  

 

For instance the model assumption is ijxij bP =
=0,

, ( )xbP ijijxij β−=
=

exp
1,

 On the other 

hand ( ) ( )ijxijxijij fPPfb P==
== 0,0,

,  each transition probability is uncorrelated ( )ijij fb P̂ˆ =  

and the same as ( )ijij g P̂ˆ =β  

The multiple factors will use the same concept to derive. 
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2.3  The confidence intervals of parameter 

Since finding a close form to the variance is different and not the only way to estimate 

the confidence interval of parameters. We try a simple method to evaluate the confidence 

interval of parameters. The method we used is so called parametric bootstrap method [4]. 

First estimate the mle of parameters and then we put all the factor history and initial state to 

the model. Generate the new sample and estimate the new sample mle then use all mle to 

develop the confidence intervals.  

We trust the method will provide a reasonable variance. Bootstrap method has second 

order accuracy and however the Delta method is just first order accuracy. 

In the beginning, the ideal is such that the following. 

( ) ( )2
1

*** ˆˆ
1

1ˆvar ∑
=

−
−

=
nn

i
inn

θθθ   

However if n is large then it is impossible to use the formula. Fortunately the new one 

is available. 

( ) ( )2
1

*** ˆˆ
1

1ˆvar ∑
=

−
−

=
B

i
iB B

θθθ  B: bootstrap sample size 

When n and B is large enough the bootstrap method has good properties. 

( ) ( )θθ ˆvarˆvar ** ⎯⎯ →⎯ →∞B
B  (Converge in probability) 

( ) ( )θθ ˆvarˆvar* ⎯⎯ →⎯ ∞→n  

According to the new sample we can get a new mle. Sort all mle’s to take 5th% and 

95th% as the 90% CI. 

ne factors model the estimators are complex but we still can use the same 

concept to do. 

 

More then o
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To understand better the process and algorithm are like the following. 
 

Process  

1. Pick up predictors. 

2. Construct the model. 

3. Estimate the model parameters (maximum likelihood estimators). 

4. Use the model, parameters, initial data and factor history to generate samples.  

5. Go to 3 until the enough number of samples. 

6. Order the parameters to construct the confidence intervals for each parameter. 

 

Parametric bootstrap Algorithm 

 1. For some time t the transition probability with covariates x [Pt
x]ij (simply pij(x)). 

  The state is from S1≦i≦SI and S1≦j≦SJ , where I=J 

2. m=0, N subjects with their covariate classes xm and initial state im for all m<N. 

3. For m<N generate a r.v. Um or goto 5. The transition probability form stat im with 

covariate class xm is pij(xm). If Um<summation of pij(xm) wher j is from S1 to j*+1 

then assign jm=j* 

 4. Estimate the mlem then Go to 3  

 5. Sort all mle and get the 95% quintile and 5% quintile as the 90% CI. 
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3 Numerical method 

3.1  Data exhibit 

The Beaver Dam Eye Study is a longitudinal population based cohort study that aims 

at determining the long-term course of common vision-threatening conditions in adult 

Americans [9, 17]. Between September 15, 1987, and May 4, 1988, a private census was 

performed to identify residents of the city or township of Beaver Dam, Wisconsin, who 

were 43–84 years of age. A total of 5,924 persons were invited to participate in the study.  

 We pick up the all following participates. The total account is 927.Use these data to 

test homogeneity and stationarity. Then pick up the factors which are significant in above 

testing. 

Table 3.1.1 The factor means or the count in different coding 

Factor Baseline 5-year 10-year 15-year 
Year of birth  1932.87 1932.87 1932.87 1932.87 
Gender(1/0) 0.54 0.54 0.54 0.54 

Age 55.43 60.22 65.48 70.25 
hypertension(1/0) 0.28 0.36 0.46 0.58 

Cholesterol 232.25 241 210.6  
History of drink 0.28 0.3 0.26 0.17 

0/1/2 709/178/40 681/217/29 705/201/21 783/131/13 
Smoke 1.32 1.25 1.19 1.17 
0/1/2 20/587/320 17/665/245 18/719/190 0/770/157 

Packages per year 27.96 28.92 29.24 29.16 
Self reported  
vitamin use 

0.88 1.17   

0/1/2 409/219/299 274/226/427   

3-level scale of 
 worse eye (0/1/2) 

779/144/4 737/183/7 716/200/11 677/226/24 
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Table 3.1.2 The codebook (for discrete data) 

item\code 0 1 2 
Gender Female male x 

Hypertension normotensive high BP x 
History of drink Never past current 

Smoke Never past current 
Vitamin supplement type None yes yes (multivitamin)
Self reported vitamin use Never past current 

 

Table 3.1.3 The units in continuous data. 

Item Unit 
Year of birth year 

Age year 
Total cholesterol mg/dL 

Pack years smoked package 
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3.2  Results of numerical method 

In order to simply the analysis we just select some categorical factors like smoke (the 

information of package of year included), history of drinking and vitamin used and two 

continuous factors age (if someone is older than 65) and year of birth (if someone is birth 

before than 1922) divided each into two subgroups. The data we use is all following in four 

times. 

Table 3.2.1 Stationarity test 

   stationarity  
 Subgroup X=0 p-value X=1 p-value X=2 p-value 
#2 Yob 3.477076 0.991136 5.25255 0.949007   
#3 Sex 6.182426 0.906608 4.491437 0.972851   
#4-7 Age 2.387382 0.998539 4.171494 0.980139   
#8-11 Hypten 9.453649 0.663772 3.101827 0.994781   
#15-18 hist 6.053536 0.913359 6.64387 0.880224 3.762936 0.987344
#19-22 smoke 1.780665 0.999675 4.837689 0.963182 12.53825 0.403476
#30-31 vithx 1.739159 0.999713 2.240092 0.998939 8.210214 0.768495
 X is the risk factor code. X can be {0,1 and 2 }or just {0, 1} 

Table 3.2.2 Homogeneity test 

   Homogeneity   
  times 1 p-value 2 p-value 3 p-value 
#2 yob 21.0670 0.00178 20.3829 0.00237 28.6282 0.00007       

#3 sex 3.7381 0.71208 0.3694 0.99909 3.5203  0.74126 
#4-7 age 18.2841 0.00556 18.2841 0.00556 23.7751 0.00057       

#8-11 hypten 5.8456 0.44071 4.4790 0.61214 10.3536  0.11053 
#15-18 hist 27.5529 0.00011   6.1372 0.40800 3.1723  0.78694 
#19-22 smoke 2.7631 0.83794 13.4480 0.03645 9.3461  0.15503 
#30-31 vithx 7.5825 0.27031 3.9208 0.68739 9.1054  0.16774 

Table 3.2.3 the correlation of age and year of birth 

 age age2 age3 
yob -0.9953759 -0.9960287 -0.9956532 
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Although the year of birth is influential but year of birth and age are highly collinear. 

The different methods [7, 8] show the birth cohort effect but in this report we do not deal 

with both just select age in the model. 

Finally, we select the age (x1) and history of drink (x2) in our model. The stationarity 

test is insignificant so we combine all the times under the Markov property assumption the 

next time a participant provides a independent data. In the assumption we believe that the 

risk factor would multiple the original probability then the statistical model is as following: 

[ ] ( )
⎩
⎨
⎧

≠≠∀
Σ−

=−−−−=
== 2,

1
0,exp 022122,11,0, iji

PxxxxP
P

i

ijijijijij
ij

γβββ
P  

{ } ∑
≠

=Σ∈
ij

iji pxx   and  ,1,0, where 21  

0    1    2 0    1    2 

0    1    2 0    1    2 

 
Figure 3.2.1 the transition probability of data 

Figure 3.2.1 contains 4 graph illustrations of transition probabilities in each 
different covariate. The horizontal axes represent the starting state; the vertical axes 
represent the sum of the transition probability. 
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0    1    2 0    1    2 

0    1    2 0    1    2 

 

Figure 3.2.2 the transition probability of model 

Figure 3.2.2 contains 4 graph illustrations of transition probabilities in each 
different covariate. The horizontal axes represent the starting state; the vertical axes 
represent the sum of the transition probability. 

 

Table 3.2.4 mle of the parameters 

 ( )0
ˆexp β− ( )1

ˆexp β− ( )2
ˆexp β− ( )γ̂exp −  

(0,1) 0.0462 2.7385 0.8354 1.0572  
(1,0) 0.1105 0.9449 0.8653 1.2947  
(1,2) 0.0103 8.2766 1.6913 0.3695  
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Table 3.2.5 parameter CIs using 100 rounds  
each round has 5955 samples 

  ( )0
ˆexp β−  ( )1

ˆexp β−  ( )2
ˆexp β−  ( )γ̂exp −  

  L U L U L U L U 
(0,1) 0.0394 0.0527 2.2240 3.2164  0.5743 1.1639 0.5662 1.8719
(1,0) 0.0874 0.1440 0.7217 1.3078 0.4228 1.3530 0.6861 2.6281
(1,2) 0.0026 0.0180 4.2324 34.6112 0.5638 10.1478 0.0439 1.2775  

 The underline represents significant. 
 

Table 3.2.6 parameter CIs using 300 rounds  
each round has 5955 samples 

  ( )0
ˆexp β−  ( )1

ˆexp β−  ( )2
ˆexp β−  ( )γ̂exp −  

  L U L U L U L U 
(0,1) 0.0397 0.0527 2.2709 3.2750 0.5304 1.1166 0.6116 1.8667 
(1,0) 0.0874 0.1362 0.6922 1.2958 0.4510 1.4160 0.6125 2.8056 

(1,2) 0.0026 0.0206 4.0129 
30.0967 

0.5638 8.4565 0.0630 1.2305 

The underline represents significant. 

 
Table 3 ounds  

Each round has 5955 samples 

 

 

.2.7 parameter CIs using 1000 r

 ( )0
ˆexp β−  ( )1

ˆexp β−  ( )2
ˆexp β−  ( )γ̂exp −  

  L U L U L U L U 
(0,1) 0.0397 0.0531 2.2604 3.3016 0.5338 1.1852 0.5939 1.7702 
(1,0) 0.0823 0.1362 0.6824 1.3293 0.4510 1.4025 0.5698 2.8269 

(1,2) 0.0026 0.0180 4.2637 
32.3540 

0.5638 6.7652 0.0595 1.1562 

 The underline represent significant. 
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3.3  Interpretation 

 Since the stationarity test is insignificant so we combine the different times to analysis 

and reduce the model to stationary model. Some probability is too small like (0,2) , (2,1), 

(2,2) so we assumption they are 0 in the model. 

 The testing data is used the all following that means no missing data in the data set 

and the total is 927 in three transient times . Once we select the factors then we used the no 

missing data just in the interesting factors so the number of data is increasing the total is 

1985. 

Before generate the CIs see Figure 3.2.1 the transition probability plot show that the 

history of drink is insignificant by compare with the factor present or not. With the Table 

form 3.2.5 to 3.2.7 it is consist with the figure. 

 Some factors are effect in previous paper but they are not significant this. The reason 

may be some factors affect the ARM in part and the test is over all testing so they become 

not significant. 

 From the mle estimate we can see that the age will 2.7385 times from ARM free to 

early-ARM and 8.2766 times form early-ARM to late-ARM. Beside it seems to prevent 

from early-ARM to ARM free (0.9449 times but not significant). 

 In the common scene we may think the elder and the worse the ARM. In fact, age will 

not effect the disappear of ARM. 
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4 Conclusion 

 In this report we develop a new analysis of transition data with factors. Under the 

Markov property assumption we can easily solve the dependent data question but we need 

an “enough” sample size the better is uniform in each cell of probability. Use this method 

we will have a global view of a disease different from other methods in the past.  

We use the ARM data to demonstrate the method in this example age happened to a 

factor so we do not need to develop a non-stationary model of course we can do it also. 

 The parametric model you can try any reasonable intuitively for factors and disease.  

It’s quite flexible. 

 The future work may try to develop a continuous time Markov chain with factors in 

the example five year maybe a little long.  
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