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Semi-parametric Inference for
Semi-competing Risks Data subject to Left Truncation

Student : Yichun Lin Advisor : Weijing Wang

Institute of Statistics
National Chiao Tung University

Abstract

The thesis considers semi-parametric inference for estimating the association parameter
for a copula model based on semi-competing risks data which are further subject to left
truncation. We review related literature including the paper by Jiang et al. (2005) who suggest
solving the same problem by using concordant indicators. Alternatively we propose to
construct an estimating function based on a series of two-by-two tables. Our method can be
viewed as an extension of the conditional likelihood approach proposed by Clayton (1978)
who originally considered bivariate censored data. Simulations are performed to assess the

finite-sample performance.

Keywords: Archimedean copulas model; Left truncation; Semi-competing risks data;

Two-by-two table.
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Chapter 1 Introduction

1.1 Background

In the thesis, we consider semi-parametric inference for Archimedean copulas models
based on semi-competing risks data subject to left truncation. The Archimedean copulas (AC)
family is a popular sub-class of copula models which have been frequently used to model
bivariate failure-time variables. Copula models have the nice feature that the dependence
structure can be studied separately from marginal analysis. Semi-parametric inference
methods for estimating the association parameter without specifying the marginal
distributions have been applied to different types of incomplete data. This research direction
has brought substantial attentions due to its wide applicability and theoretical attractiveness.

Early work focused on bivariate censored data: The landmark paper by Clayton (1978)
proposed a useful copula model anda semi-parametric inference procedure for estimating the
association parameter. Specifically “Clayton’s‘proposal is based on a conditional likelihood
that measures the association on selected grid points‘without making any assumption on the
marginal distributions. This approach was later shown to have a direct relationship with
two-by-two tables constructed based on the grid points. Under the same model assumption,
Oakes (1982, 1986) proposed to estimate the association parameter by utilizing the
concordant information provided by paired observations. These two approaches have been
further extended to more complicated data structures. For example, Fine et al. (2001) adapted
Oakes’ (1986) closed-form estimator to semi-competing risks data. Jiang et al (2005)

proposed the estimating function under semi-competing risks data subject to left truncation.
1.2 Overview of the thesis

In this thesis, we consider the same type of data structure as in Jiang et al. (2005) and
propose a different approach by constructing an estimating function based a series of
two-by-two tables, our idea can be viewed as an extension of the conditional likelihood
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proposed by Clayton (1978).

The outline of the thesis is summarized as follows. In Section 2.1, we introduce three
types of data structure. The data type that we will study later is a combination of these three
data types. We first introduce typical bivariate data, semi-competing risks data, and then
truncation data. The related results developed for those three data types are discussed in
Section 2.2. Chapter 3 contains a review of different inference methods for estimating the
association parameter of a copula model. The conditional likelihood approach proposed by
Clayton (1978), which was developed for bivariate right censored data, is discussed in Section
3.1. In Section 3.2, we study estimating functions constructed based on concordant indicators
for bivariate right censored data (Oakes, 1986) and semi-competing risks data (Fine et al.,
2001), respectively. In Section 3.3, we study the method using the information provided by a
series of two-by-two tables (Day et al, 1997, Wang, 2003). Chapter 4 contains the main
results of the thesis in which semi-competing risk.data subject to left truncation is of interest.
After introducing the concordance approach by Jiang et al. (2005) in Section 4.2, we present
our proposal in Section 4.3. The modification of the proposed method for censored data will
be discussed in Section 4.3. The results of simulation are showed in Chapter 5, which are
divided two parts without external censoring and with external censoring, respectively.

Chapter 6 contains some concluding remarks.



Chapter 2 Literature Review

Let (X,Y) be a pair of failure time variables which may be correlated. Sometimes due
to the constraint of the observational scheme, these two variables may be subject to censoring
or truncation. In Section 2.1, we introduce three different data structures which are commonly
seen in applications. The data structure that we will study later is a combination of these three
data structures. The related results of estimation for those three data structures are studied in

Section 2.2.

2.1 Three Data Structures

To simplify the presentation, we may use the same notation for quantities with similar
meanings under different data structures. For example, we use X' to denote the observed

version of X with an indicator ¢ = [(X"=X).. However the condition that §=1 is

different for different data structures:

Yl\

»
L

X

Figure 2.1: Typical Bivariate Data

A. Typical Bivariate Data

Suppose that (X,Y) represent lifetimes of twins or failure times occurred to paired

organs. For the former, the dependence can be attributed to shared genetic or environmental
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factors. For the latter, the relationship may be explained by the same internal biological
system of the subject. Figure 2.1 depicts such data in which replications of (X,Y) have no
specific restriction.

External censoring may occur to each member of the pair. Let (C,,C,) be external

censoring times so that one only observes (X',Y',5,,6,) such that X'=XAC, ,

Y'=YAC,, 6,=I(X<C,) and J,=1(Y <C,), where A denotes the minimum and

I() 1s the indicator function. It is usually assumed that (C,,C,) are independent of (X,Y).
The observed data can be expressed as {(X],Y..d,,0,,),(i=1,...,n)}, where X/=X,AC,,,

Y'=Y.nC,, , 0,=1(X,<C,) and 6, =1Y,<C,) , are random replicates of

(X',Y',0,,0,) . This type of data is most commonly seen in the literature of survival analysis.

B. Bivariate Analysis — Semi-compeéting Risks Data

Consider that (X,Y) represent the. time to_morbidity and the time to mortality of a
specific disease on the same subject, respeetively..Hence X is subject to right censoring by
Y but not vice versa. Temporarily we ignore external censoring. Figure 2.2 depicts the
structure of semi-competing risks data. Notice that observations of (X,Y) are located on the
upper wedge. For those with X >Y, we only observe (X AY =Y,Y) which is located on
the diagonal line. This type of data is called “semi-competing risks data” by Fine et al. (2001).

When external censoring occurs, it is reasonable to set C, =C, =C since (X,Y)
represent different failure times on the same subject. Usually it is assumed that C is
independent of (X,Y). When X is right censored by Y AC and Y is right censored by
C, the observed data can be written as {(X/,Y.)%,,0,),(i =1,....,n)}, where X=X, Y, AC,,

Y=Y AC,, n,=1(X,<(Y,AC)),and 0,=1(,<C,).



[
>

X

Figure 2.2: Semi-competing risks Data

C. Truncation Data

Here we consider a pair of failure times (Y, ) which have a truncation relationship.
Specifically we can observe (Y, A) sonly if=¥-># . "We can say that Y is subject to left
truncation by 4 while A is subject to right truncation by Y . Note that, unlike
semi-competing risks data, we have no information when Y < 4. In Figure 2.3, observations
on the lower wedge will be completely missing and even their existence is unknown. Many
applications consider left truncation in which Y is the variable of interest which is subject to

truncation by A4 .

Figure 2.3: Truncation Data
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2.2 Nonparametric Inferences under Three Data Structures

A. Typical Bivariate Data

For univariate survival data, Kaplan and Meier (1958) expressed the survival function as

a product integral of the cumulative hazard function,

B _ Pr(T e[u,u+du))
Pr(T > t) = H{l T 1) } 2.1)

u<t

For the bivariate case, the Kaplan-Meier estimator can be still applied to estimate each of
Pr(X >x) and Pr(Y > y), respectively. When censoring occurs, Pr(X >x) and Pr(Y > y)
are estimated based on {(X/0,),(i=1...,n)} and {(Y/0,,),(i =1,...,n)}, respectively. The
K-M estimator of Pr(X >¢) and Pr(Y >¢) are

DX =1,6,=)

Pr(X > 1) = [J31==
g DX > 1)
=l

il(Yi':t,&zl. =1)

Pr(Y > 1) =] [{1-E=

ust Zl(Yi’Z l‘)
i=1

Let S(x,y) be the joint survival function of X and Y, where S(x,y) =Pr(X >x,Y>y).
There exist several nonparametric estimators of the joint survival function S(x,y). The most

well-known one was proposed by Dabrowska (1988).

B. Bivariate Analysis — Semi-competing risks data

With semi-competing risks data, the Kaplan-Meier estimator of Pr(¥Y > y) is still valid.
However, due to dependent censoring, the Kaplan-Meier estimator of Pr(X > x) is biased.
Actually the distribution of X is not identifiable nonparametrically.

Suppose that the external censoring is taken into account, one can estimate S(x,y) for

x < y nonparametrically by



n

S IX] 2 x,Y> y)

S(x,y) =" - : (2.2)
nG(y)
where
DI =u,5,=0)
G =1111-"—

usy ZI(YI’Z M)
i=1

However, to recover the dependence structure between X and Y, we not only need a valid
estimator of S(x,y) but also both of the marginal estimators as well. This implies that the
dependence structure can not be recovered non-parametrically for semi-competing risks data.
Therefore most authors have considered semi-parametric inference to investigate the
dependence structure. The common model assumption is the Archimedean copula family

which will be discussed in Section 2.3. Weralso adopt this approach in the thesis.

C. Truncation Data

Estimating the survival function of Y. eonditional on Y > 4 by the Kaplan-Meier estimator
may be biased. Under truncation, we observe {(Y;,4,),(i=1,...,n)} only if Y, > 4,. Hence
{Y,,....,Y,} 1isno longer a random sample of Y.

Y4
Y>A

5

I\

Figure 2.4 Risk Set for Truncation Data



Y>A

5

'\

Figure 2.5: Modified Risk Set for Truncation Data

Figure 2.4 explains the truncation mechanism on the hazard estimation. After truncation, the
original risk set {Y >u} becomes {Y¥ >u,Y > A4}, the shaded area on Figure 2.4. The
failure region { Y=u } changes to { Y=uY>4 }, the slash area on the figure.

If we use the set {Y >u,Y > 4} _to be the' new risk set and {¥ =u,Y > 4} to be the

new instantaneous risk set, it follows that

DY, =u)
= Pr(Y e [u,u + du),Y > A) » Pr(Y €[u,u + du))

77 PHY >u,Y > A) Pr(Y > u)

I, 2 u)
i=1
The resulting estimator of Pr(Y >¢) tends to over-estimate the true survival function. To
correct this bias, Lynden-Bell modified the set {Y 2u,Y > A} by cutting the set further.
Lynden-Bell proposed that the new risk set is { Y>u,A<u }, the shaded area on Figure 2.5.
The new instantaneous risk set is { Y=u,A<u }, the slash area on the figure.

Under the assumption that ¥ and A4 are independent, one can show that

Pr(Y =uu>A) Pr(Y =u)
Pr(Y 2uu>A) Pr(Y >u)

Consequently the modified estimator proposed by Lynden-Bell,



ust ZI(Y’ 2u,u> A4;)

i=l1

is a valid estimator for Pr(¥Y >1).

Suppose that there is an external censoring variable C for Y. It is assumed that C is
independent of Y. The observed data are {Y/. 4,,0,),(i =1,.....,n)} conditional on ¥'> 4.,

where Y=Y, AC, and &, =I1(Y, <C,). It follows that

1

Pr(Y' =uo=1Lu>A4) Pr(Y =uu>A4) Pr(Y=u)
Pr(Y' > u,u > A) Pr(Y >uu>A) Pr(Y>u)

The resulting Lynden-Bell’s estimator becomes

DA =ud, =1u> 4)
Pry>n=[]{1- ' o
ust DAY > uu> A)

i=1

Tsai (1991) claimed that most existing procedures: for truncation data are still correct
under a weaker assumption of quasi-independence, and then proposed a test to verify this
condition. The recent paper by Chaieb et al. (2006) consider the assumption that ¥ and A4
are correlated and proposed a semi-parametric inference procedure under a “semi-survival”
Archimedean copula model. Note that in the thesis, we only assume quasi-independence

between the truncation time A and the survival time Y .

2.3 Copula Models and Archimedean Copula Model

Copula models are often used to describe the association between two failure time
variables. For the bivariate case, a copula function can be written as C(u,v), which may be
parameterized as C,(u,v) for u,ve[O,l]. The Archimedean copula (AC) family is a
subclass of copula models. A copula is said to be Archimedean copula (AC) if it can be

expressed in the following form,

C, (u,v) =4, {¢, () + ¢, ()}, (2.5)
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where ¢, :[0,1]] > [0,00] satisfying ¢,(1)=0, ¢.(£)<0 and ¢"(t)>0. Note that the AC
family simplifies the bivariate relationship via the univariate function ¢, (). The function

@, (-) is the generator of the copula. Important proporties of AC models have been derived in

Genest et al. (1986), Oakes (1989) and Genest et al. (1993).
One of the most well-known AC model is the Clayton model with ¢, (¢)= (¢t —1)/ a

for some o >0, then
C,(u,v)={u " +v* -1}, (2.6)
In applications, the copula structure is imposed on (X,Y) such that one can write
S(x,y)=C_{Pr(X >x),Pr(Y > y)} (2.7)

Accordingly an AC model defined on the joint survival function can be written as

S(x,y) = ¢, [#,4PHX > )i §, {Pr(Y > y)}} .

The AC family has nice analytic properties which are useful for further statistical inference.

For example, consider the odds ratio-function-proposed by Oakes (1989):
U8(xy)- 07 S(xy)/ oxoy

*

0 (x,y)= 2.8
(x.) oS(x,y)/ox-0S(x,y)/ Oy (2-8)
For an AC model #"(x,y) can be simplified as 6, (S(x,y)), where
0,(v)=—vg"(v)/ $,(v). (2.9)
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Chapter 3 Review of Semi-Parametric Analysis

In this chapter, we review three semi-parametric inference methods for estimating the
copula association parameter under different data structures. In Section 3.1 and 3.2, each
inference method will be first applied to bivariate data without censoring and then to a more
general situation including external censoring. In addition, the application to semi-competing
risks data is also considered. In Section 3.3, two-by-two table method by Wang (2003) is
directly applied to semi-competing risks data without censoring. Without losing generality, we

assume there is no tie in the sample for the observed data.

3.1 The Conditional Likelihood Approach

This approach was first proposed by Clayton in his landmark paper (Clayton, 1978). To
simplify the discussion and without loss of generality, we temporarily assume that a random
sample of (X,Y) can be observed without censoring and denoted as {(X,,Y,),(i =1,..,n)}.

Clayton (1978) defined the following set of grid points, denoted as ¢, such that

goz{(x,y):ZI(X,. =xY, 2p)=1> (X 2xY, :y)=1|0<x,ySoo}. (3.1
i=1

i=1

YJ h
¥3 P&
¥2 & XK
yi P
¥} X2 x3 X

Figure 3.1: An Example of The Set ¢ for An Artificial Data Set

Figure 3.1 depicts the set ¢ for an artificial data set which consists of three observations,
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(x,»), (x,,»;), and (x;,y,), marked as “x” . According to the definition, the set ¢
consists of four grid points (x,,»,), (x,,»;), (x;,»,), and (x,,y,). Note that (x,,y,)

on Figure 3.1 is not an observed failure point. We mark such a point by “0”. Define

L if Y I(X, =x,Y,=y)=1;
A(x,y)= =1 3.2)

0,if > I(X,=xY,>y)=1and D I(X,>xY,=y)=1.

i=1 i=1

Note that A(x,y)=1 implies the grid point (x,y) is associated with an observation of

(X, Y)(i.e. a point marked by “ ). If A(x,y) =0, the point (x,y) is not an observed point

(i.e.(x,,y,) in the above example and marked by “0”). Define R(x,y)= ZI(XZ. >x,Y,>2y)

i=1

which counts the number at risk at time (x,)). Conditional on the value of R(x,y), A(x,y)

follows a Bernoulli distribution with the probability Pr{A(x,y)=1]|(x,y) € @,R(x,y)}. For

an AC model,
0, (S(x,))
Pr{A(x, y) =1|(x, ) €@, R(x, y) = - : (3.3)
9& (S(xay)) + R(an’) -1
For the Clayton model with 8, (S(x;))) = ¢, we have
a
Pr{A(x,y) =1](x,y) €@,R(x, y)} = (3.4)

a+R(x,y)-1’

which does not involve the nuisance parameter S(x,y).

Clayton (1978) suggested that the distribution of Pr{R(x,y)=r|(x,y) € @} may be
ignored in the likelihood construction since it may contain only little information about « .
Under a working assumption that A(x,y) and A(x’,y") are independent for different grid
points (x,y) and (x')") € ¢, the “conditional” likelihood for an AC model can be written as
the product over the conditional probabilities of A(x,y) for all grid points in the set ¢.

Specifically

La,S(x,y) = [T[PriAGx, ) =11(x,) € @, R(x, )} s
(x,y)ep .

x [Pr{A(x,») = 0] (x,») € @, R(x, »)}] ",

For the Clayton model, the corresponding log-likelihood is given by
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Ha)= ), {A(x, y)log(

(x,)ep

]+ {1-A(x, y)}log[%ﬂ. (3.6)

a
R(x,y)-1+«a (x,y)-l+«a

So that the estimating equation becomes

ol(n) _ . a
on _(;ew{A(x’y ) R(x,y)_1+a}° (3.7)

where 7 =loga . The solution can be denoted as

> {R(x,p) - L% Ax, )
A (xy)ep
> A1-AGx,y)

o, =
(x,y)ep

For general AC models, we can maximize L(«, S’(x, v)), where S’(x, y) 1s the empirical

estimator of S(x,y). However the resulting estimator of & may not have an explicit

formula.

When censoring is taken into account, the set. ¢ - can be modified as

{(x,y) Y I(X] = x, Y2 o == X > x,Y/ =y,5, =1)= 1}. (3.8)

i=1 i=]

The definition of A(x,y) is changed to

Lif Y I(X]=xY'=y0, =06, =1)=1;
A(x,y) = 5 , (3.9)
0, if Y I(X!=xY/>y0,=1)=1) I(X]>xY'=y0d, =1)=L.
i=1 i=1

The resulting estimating function under AC model involves the plugged-in estimator, S‘(x, V),

which can be the Dabrowska’s estimator. The estimator can be modified accordingly. The
same principle can also be applied to different data structures, such as semi-competing risks

data, in which

Y IX] = xY/>y)
S(x,y) =+ 0

-13 -



3.2 Estimating Functions Based on Concordance Indicators
Let (X,.,Y) and (X,,Y,) be independent replications of (X,Y). Define the indicator,
A, =1{(X-X,;)(¥-Y;)>0}. The two pairs are said to be concordant if A, =1 and discordant

if A;=0. This indicator reveals dependence relationship between X and Y. Oakes (1989)

proposed the following time-dependent association measure :

J

Pr(A, =11 X, =xY, = )
Pr(A, =0| X, =x7, =)’

O(x,y) =

0<x,y<o (3.10)

where )N(_‘.:XA/\X, and Z/:Y[AY_/. For Clayton’s model, we can find that

O(xy)=afor 0<x,y<oo and E(A, |)?!7 = xZ/ =y)=a/(a+1). The information can be

utilized in the inference of « . Assuming the Clayton model, Oakes (1982) proposed the

estimating function,

_N .
U(a)—ZZ(Aij a+1j' (3.11)

=1 >0

The solution can be written as

> A,

A i=1 j;j>i

Qe =—""—
ZZ(I_A@/)

=l jij>i

Note that the concordant estimator & is a U-statistic which is useful in the establishment of

large-sample theory.

To further extend the above idea to incomplete data, the challenge is that some values of

A; may be uncertain due to censoring. The following discussion is about how the effects of
censoring affects the information of A, . We can write

Ay =X, - X,)> 0y x T{(Y,-Y,) > O3+ {(X, - X,) <O} [{(Y;-Y,) <0} . (3.12)
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This means that to know the value of A;, we need to know the marginal orders of both
(X;,X,) and (Y,Y;). Given (Y,6,,) and (Y],0,;), the order of (¥,Y,) is certain if

Y/AY] is associated with an uncensored observation. The phenomenon can be explained by

the following figures :

F 23 F 23 Y
(a) : Order is certain.

> © Y
(b) : Order is certain.

© » Y

(¢) : Order isuncertain.
X 5:1 )il 5:()

Figure 3.2 : The Effect of Censoring on the Order of Two Pairs

Notice that in Figure 3.2 (a) and Figure 3.2 (b), the orders of the two pairs are certain,

while in Figure 3.2 (¢) is not. Define that 17,/' =Y/AY; which is observed if only if it is

smaller than both C,, and C,,. Mathematically, we can write the above condition as

17,/' < 52”., where Qy =C,, AC,;. Similar conclusions can be applied to determine the order

of X, and X,. As long as )?;<5

1ij >

where )?,', =X/A X' and 6;‘,‘ =C, AC,, the order
relationship is certain. Combining the two conditions discussed above, it follows that A, is

certain if both 17;’ < 527 and X i < 515]. are satisfied. Hence for bivariate right censored data,
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the condition that the two pairs is “orderable” if Y < 521]. and X i < 5”].. Oakes (1986)

)

defined 7, =1 (X < C i < C ;) as the indicator of an “orderable” event. This means

that A, canbe computable if Z, =1. For an AC model,

0,(S(X,.Y))
ETA, \Xy, Ly =1]= T (3.12)
0 (S(XU,Y,))+1
Under the assumption of Clayton’s model,
a
ETA, |Xl/, U,Z =1]=—— (3.13)
a+l’

and the resulting estimating function, which has taken censoring into account, can be written

as

ﬁ(a)ziZWa()?y,Y)xZ x(A —L] (3.14)

i=l j;j>i a+l1
where W(-) is a weight function which is chosen.to improve efficiency of the resulting

estimator.

For semi-competing risks data with an external censoring, X is right censored by Y or C
and Y isright censored by C. The “orderable” condition becomes X i < )71/' < 5@/' Fine et

al. (2001) defined D, =1 ()N( i < I7U < @) as the indicator of orderable event. For an AC

model, we have

> =2 (S(X,,, ¥))

E[A; | X;,Y;,D; =1]= 6 (5K T+l (3.15)
7}
If Clayton’s model is assumed,
ElA, |1 X,.Y,,D, =1]=ﬁ. (3.16)

The resulting estimating function becomes:

U(a) = ZZW(XU, ¥)xD, X[A —L},

i=l j;j>i 1+a
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where W (-) is a weight function having the effect on the efficiency as described earlier.

3.3 Estimating Functions Based on Two-by-two Tables

The paper by Day et al. (1997) and Wang (2003) show that the odds ratio of a
two-by-two table contains the information of association between (X,Y) attime (x,y). In
this section, we directly discuss that the developed estimating function for semi-competing
risks data by Wang (2003). To simplify the discussion, we temporarily ignore the external
censoring. The observed data are {(X),Y,7,),(i=1L..,n)}, where X =X, Y, and
n, =1(X, <Y,). For a observed point (x,y), where y > x, we can construct the two-by-two

table depicted in Figure 3.3.

X=X X>x
Y=y | N (dx,dy) N, (x,dy)
Y>y
N, (dx,y) N(xy)

Figure 3.3 : two-by-two table at time (x,y)

The counts in the cell and the margins can be defined as

Nll(dx9dy)=ZI(X;:xa77j =1aY,’ =y),

i=1

N (xdy) =Y I(X] 2 x,Y, =y),

i=1

No(dx,y) =3 1(X] = x,7, =LY, 2 p),

i=1

N(x,y):ZI(XI.'Zx,Yi > y).

i=1

Given the marginal counts, N, (dx,dy) follows a hyper-geometric distribution with
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expectation
E{Nll(dxsdy) | Ncl(dxay)aNlo(xady)aN(xoy)}

_ 0, (x, )N, (dx, )N, (x,dy)
0,(x,y)N, (dx,y)+N(x,y)— N, (dx,y)

(3.17)

Day et al. (1997) and Wang (2003) suggested to construct an estimating functions for «
by taking the (weighted) difference between the observed count N, (dx,dy) and its
model-based expectation E{N, (dx,dy)| N, (dx,y),N, (x,dy),

N(x,»)}. Under the assumption of no ties and 6, (x,y) = a, the estimating function can be

expressed as

- -~ a
U= j {)W(my)[zv“(dx,dy)— — N(x,y)_J’ (3.18)

where W(x,y) isa weight function.
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Chapter 4 Inference for Semi-competing Risks Data

subject to Left Truncation

In this chapter, we will study a data structure which is a combination of the three data
types discussed in Section 2.1. Furthermore, we will propose an inference approach to
analyzing this data structure. To simplify the discussion, in Section 4.1 and 4.2 external
censoring is ignored. Modification of the proposed method for censored data will be discussed

in Section 4.3.

4.1 Data Description

To interpret the data structure studied in this chapter, we use the example of “diabetes
diagnosis” which has been introduced in the paper by Peng et al. (2006). After the diagnosis
of diabetes, a proportion of patients;may suffer from some kind of morbidity, such as
nephropathy or retinopathy. The relationship 'between morbidity and mortality is often of
interest. However if researchers only inelude patients of diabetes who are alive at the time
when the study begins, patients who die'before thestudy time will never be included. Such a
constraint of the observational scheme tends to exclude patients with shorter survival time
after diagnosis. Without taking this fact into account, the subsequent analysis will be biased
especially if the proportion of potential patients being excluded in the study is not low.

Using our previous notations, we observe semi-competing risks variables (X',Y,7),
where Y is the time to mortality and X the time to morbidity , X' is maximum of the
time to morbidity and mortality, and 7 =71(X <Y).Let A4 be the time to the staring date of
the study which is independent of (X,Y). All the three variables are measured from
diagnosis of the study. Hence only those with ¥ > 4 can be included in the sample. Hence

the observed data are {(X],Y,,7n,),(i=1....,n)} only if ¥, > 4,. We assume (X,Y) follow

the Clayton model on the upper wedge,
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1/1-a

Pr(X >x,Y > )= {Pr(X > ) +Pr(¥ > ) -1 "™, (x<y) (4.1

Figure 4.1 is showed in the paper by Peng et al. (2006). Notice that only those who were
alive at the beginning of the study could be included in the sample, i.e. the solid lines on
Figure 4.1. Thus two (out of six) persons in the figure will be excluded to the study, i.e. the
dashed lines on the figure. The study period in the diagram is long enough to observe the

death events of all the subjects in the sample and hence external censoring does not exist.

Enfry Time of Study End of Study

P
%)

Age (years)

*+ Onset of Disease
4 Onset of Morbidity
% LCeath

a
g

Registry Time (calendar year)

Figure 4.1: Lexis Diagram for Semi-competing Risks Data

subject to Left Truncation

4.2 The Concordance Approach

As we have seen in Section 3.2, an estimating function for the association parameter can
be constructed by using the information of the concordance indicator. This approach has been

applied to analyze semi-competing risks data subject to left truncation.

Recall that under semi-competing risks data, we know that the information of A, is

based on the orderable condition, X ; < Z.j, which handles the censoring effect and does not



involve the truncation scheme. For left truncation data, (A4,Y) is observed only if A<Y.

Consider the “comparable event” defined as ;1!7 < Z/, where ;14‘/ =max(4;,4,). When this

event happens, (4,,Y) and (4,,Y,) are both located in upper wedge,

{(a,y):0<a< y<ox}. This means as long as the point (;1 f/l;) is located on the upper

ij’
wedge of the support of (A4,Y), where Y > A4, the (i,j) pairs are comparable. See Figure

4.2 for illustration. Combine the orderable and comparable conditions, which implies that

~

both X/ <7,

g

~

and ‘24‘/ <Y

y

are satisfied, define O, =1 {(;Iy. v X i) < Zj} as the indicator

of an “orderable” and “comparable” event.

& —> not comparable

X

A

Figure 4.2: An Example of a Comparable Condition

For an AC model, it follows that

0,(S(X,.Y,))

E[A, | X,,Y,,0,=1]= i : 4.2
L4 14,50, =1l 6,(S(X;,Y,))+1 *2
For Clayton’s model, we have
X,.7.,0,=1=-"2 4.3
E[AU| ijaYij’Og/'_ ]_ma ()

Hence the resulting estimating function for the Clayton’s model becomes
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U(“)zizWa(jy’Zf)Xny{Av_L} (4.4)

i=1 jij>i I+«

where W(:) is a weight function.

4.3 The Proposed Method Based on Two-by-Two Tables

In this section, we still use the notations of the cell and the margins of the table on Figure
3.3. Recall that in Section 2.2, Lynden-Bell’s estimator uses the idea of further cutting the risk

set at Y=y by setting A< y. In Figure 4.3, the modified risk set can be written as

{(a,y): A<y, Y 2 y}.

Y4
Y>A

»
>

A

Figure 4.3 : Risk Set for Y modified for Truncation

For an observed failure point with (X,Y) = (x, y), members in the original (unadjusted)
risk set include those with {i: X, >x,Y, >y} . In presence of truncation, we impose
additional criteria: {i: 4, <,Y, > y}. Subjects fall in the intersection of the two sets will be
included in the proposed modified risk set. The corresponding two-by-two table is given

below:
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X=x X>x

Y'=y,4<y N, (dx,dy) N.(x,dy)

Y >y, A<y Ny(dx,y)

N, (dx,y) N(xy)

Figure 4.3 : The Proposed two-by-two Table at time (x, y)

The definitions of the cells and margins in the table are given as follows:

Nn(dx:dy):zl(X; =x,, =LY, =y,4,<y),

i=1

N, (x,dy) :ZI(X; 2x,Y, =y,4,<y),
i=1

N (dv,y)= Y IXF=n ShY, > 3,4, < ),

i=1

N(x,p) =D KX 2xY 29, 4:<3) .

i=1

It follows that N, (dx,dy)N, (x,dy) follows a binomial distribution with

(N, (x,dy) , p;), where

_Pr(X'=xY=yA<yn=1)
Py Pr(X'Zx,Yzy,A<y,;7:1)'

(4.5)

Under the assumption that (X,Y) and A are independent, one can show that

Pr(X'=xY=yA<yn=1) Pr(X=xY=y4<y) Pr(X=xY=y)
Pr(X'>x,Y=ypA<yn=1) Pr(X>xY=y4d<y) Pr(X>xY=y)

Similar conclusion for the cell counts, N, (dx,y) follows a binomial distribution

with, (N(x, ) = N,,(x.dv), p,) where

_Pr(X =xY>y)
P b X 2y > )

(4.6)

Hence we can find that given the margins counts, N,,(dx,dy) still follows a hypergeometric

distribution with expectation

E{Nll(dxady) | N-l(dxay)aNlo(xady)aN(xay)}
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_ 0,(x,y)N, (dx, y)N,,(x,dy) @7
0,(x,y)N, (dx,y)+N(x,y)— N, (dx,y)

Note that (4.4), (4.5) and (4.6) are derived in appendix. For Clayton’s model with

0,(x,y) = a and under the assumption of no tie and, the estimating function can be expressed

as

(4.8)

a
U(a) = (J:[)W(X,y){]vu(dx’dy)_ a+ N(x,y) _J ’

where W(x,y) isa weight function.

With semi-competing risks data subject to left truncation and right censoring, the

observed data are {(X,Y/,n,,9,),(i =1,....,n)} . The definition of the cell and the margins are

modified as following :

N, (dx,dy) = ZI(X; =X =lY =v,6 =1,4 < y),
i=1

N, (x,dy) =D KX 2xY =06, =14, <y),

i=1

N.l(dxay)=zl(X; ==k, 27,4, <),
i=1

N(x,y) =ZI(X; >x, Y2y 4 <y).
i1

The estimating function has the same form as above.
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Chapter 5 Numerical Analysis

In this chapter, we evaluate the finite-sample performance of several estimators via
simulation. Here we evaluate semi-competing risks data subject to left truncation. The former
analysis ignores external censoring and the latter part includes censoring. As we have
assumed that failure time variable (X,Y) follow the Clayton model. Here X and Y is
denoted as the time to morbidity and the time to mortality, respectively. The joint distribution

can be expressed as

1/(1-a)

PH(X > %Y > )= | [Pr(X > )] +[Pr(¥ > )] 1]
Let X and Y follow the exponential distribution with parameter A, and A,, respectively.

We can write

1
X =——log[l-U]J,
P

(a-1) (5.1)
logfl-d=U) “2¥@-t)"“"1-v) <« ],

Yy=——
(a-1-4,
where U ~ uniform (0,1) and V ~ uniform(0,1):In this simulation, we set 4, =4, =0.5.

The association parameter « is transformed to Kendall’s tau,

a-—1

(5.2)

T= .
a+1
Given a value of tau, o is produced. The truncation variable A is generated from a
exponential distribution with parameter y. The pair (X,Y) are generated subjectto Y > 4.

Sample size n are chosen with 100 and 200, respectively. Each combination of o and n

is simulated 1000 times.

(1) Without External Censoring

To fit the constraint of truncation in simulation, we have to decide the percentage of the
original population being truncated. According to our simulation settings, we find that

Pr(Y > A=y /(A +y), (5.3)

which means the probability of Y truncated by A4 is determined by A, and y. Here if we
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let Pr(Y>A)= 50%, we get y=0.5. We set X' = min(X,Y) and the indicator
n=1(X <Y).The generated data are {(X/,Y,,4,,7,),(i=1,....,n)} conditionalon Y, > 4,.

Two types of estimators are evaluated. One is based on the concordance approach:

n ~ ~ a
Ucla)=2 D W (X,;.Y;)x0, ><|:Al.j ——},

=l j;j>i l+a

where O, =1 ((;15]. vX i) < 17”) . Here we consider two weight functions. One is W (x,y) =1
and we denote the corresponding solution as ¢ . The other weight function is

W(x,y) :ZI(Xi' >x,Y,>2y)/n

i=1

and we denote the corresponding solution as ¢ .. The above estimating function ca be solved

by the Newton-Raphson algorithm. The second method is our proposal which is based on the

two-by-two table approach:

) y (24
UT<a>—@zy)W<x’y)[N“(dx’dy) a+N(x=J’)_J

We denote the corresponding solution as &, . The above estimating function is also solved by
the Newton-Raphson algorithm.

The results are contained in Table 5:1 i~ Table 5.3. We see that in all the cases, the
estimators of the association parameter are unbiased. Numerically the estimated variance is

consistent. Especially the proposed estimator ¢, has smaller MSE in all the cases with

different values of 7 which measures the association between X and Y.
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Table 5.1: Comparison of the two types of estimators for «

with 7 =0.75 and in absence of external censoring

Method n=100 n=200
0.2481 0.0833
Concordance
(1.8595) (0.7483)
Average Bias Weighted 0.2182 0.0877
(MSE) Concordance (1.9149) (0.7251)
0.2248 0.0879
Two-by-Two Table
(1.6624) (0.6569)

Table 5.2: Comparison of the two types of estimators for «

with 7 =0.5 and in absence of external censoring

Method n=100 n=200
0.0407 0.0220
Concordance
(0.2667) (0.1347)
Average Bias Weighted 0:0701 0.0522
(MSE) Concordance (0.2735) (0.1271)
0.0564 0.0400
Two-by-Two Table
(0.2458) (0.1189)

Table 5.3: Comparison of the two types of estimators for «

with 7 =0.25 and in absence of external censoring

Method n=100 n=200
0.0209 0.0165
Concordance

(0.0756) (0.0352)

Average Bias Weighted 0.0348 0.0160
(MSE) Concordance (0.0756) (0.0343)

0.0296 0.0343

Two-by-Two Table

(0.0685) (0.0316)

-27 -



(2) With External Censoring

Let C be the censoring variable which follows a exponential distribution with the
parameter u . With censoring taking into account, the truncation criteria becomes conditional
on Y' >4, where Y'=min(Y,C). Thus the percentage of the original population being
truncated are adjusted as

Pr(Y'> A=y (A, +u+y), (5.4)
Specially the percentage of the truncated sample being censored by C can be calculated as
Pr(Y >C|Y' > A)=ul(A, + u). (5.5)
Under the above two conditions the censoring and truncated probabilities can be determined
by those three parameters, A,,7,and 4. . Here if we let Pr(Y'>A4)= 50% and
Pr(Y > C|Y' > 4A) =80%, we get y=0.625 and x=0.125. We set X' =min(X,Y,C), the
indicator 7 =I(X <min(Y,C)), ¥'=min(¥;C). and the indicator & =I1(Y <C). The
generated data are {(X/,Y.n,,0,),(@=,.....,n)} conditional on Y/> 4,.

Two types of estimators are evaluated, One-is'based-on the concordance approach:

Ue(@) :i 2 WX T))x0, X{Ay‘ _L}’

= j;j>i l+a

where O, =1 ((;1”. vX i) < I7U < 5!./.). We have considered the two weight functions. One is
W(x,y)=1 and we denote the corresponding solution as ¢_.. The other weight function is

W(x,y) :ZI(Xi' >x,Y'>y)/n

i=1

and we denote the corresponding solution as .. The estimating function is solved by the

Newton-Raphson algorithm. The second method is based on the two-by-two table approach:

~ a
Upr(e)= %W(x’y){]v“(dx'dy) @+ N(xy) —1}

We denote the corresponding solution as &, . The above estimating function is also solved by
the Newton-Raphson algorithm.

The results are contained in Table 5.4 ~ Table 5.6. We sce that in all case, the estimators
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of the association parameter are still unbiased. Numerically the estimated variance is

consistent. Especially the proposed estimator ¢, has smaller MSE in all the cases with

different values of 7 which measures the association between X and Y.

Table 5.4: Comparison of the two types of estimators for «

with 7 =0.75 and in presence of external censoring

Method n=100 n=200
0.1477 0.1521
Concordance
(2.1712) (1.0069)
Average Bias Weighted 0.2305 0.1580
(MSE) Concordance (2.3071) (0.9734)
0.1770 0.1449
Two-by-Twao Table

(2.0012) (0.8757)

Table 5.5: Comparison of the two-types-of estimators for «

with 7 =0.5 and in presence‘of external censoring

Method n=100 n=200
0.0894 0.0337
Concordance
(0.3635) (0.1546)
Average Bias Weighted 0.1076 0.0509
(MSE) Concordance (0.3548) (0.1487)
0.0965 0.0424
Two-by-Two Table

(0.3250) (0.1361)
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Table 5.6: Comparison of the two types of estimators for «

with 7 =0.25 and in presence of external censoring

Method n=100 n=200
0.0274 0.0080
Concordance

(0.1025) (0.0431)

Average Bias Weighted 0.0361 0.0147
(MSE) Concordance (0.0913) (0.0411)

0.0338 0.0121

Two-by-Two Table

(0.0865) (0.0379)
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Chapter 6 Conclusion

In the thesis, we compare two types of inference procedures for estimating the
association parameter of a copula model for semi-competing risks data subject to left
truncation. If the truncation mechanism is ignored, the resulting analysis will be biased. We
propose a log-rank type estimating function and find that it produces better results in
simulations compared with the functions constructed based on the concordance indicators.
Both methods involve deletion of some observations in the analysis to eliminate the bias due
to truncation. A possible future extension is to utilize all the observations but apply a

weighting approach to adjust for the sampling bias.
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Appendix
To simplify the expressions, here we treat (X,Y) as discrete random variables since the

probability calculations can be easily converted to the continuous case. It is obvious that

Ny (dx,dy) | Ny, (x,dy) ~ BIN(N,,(x,dy), p,),

where
_Pr(X'=xn=1Y=yA4<y)
Pi= Pr(X'>x,Y=yA<y)
and
N (dxy) | N(x,p) - Ny (x,dy) ~ BIN(N(x, y) - N,,(x,dy), p,) »
where

_Pr(X'=xn=1Y2yA<y)
Pr(X'>xY2ypAd<y)

)2

Now we show that p, and p, can befree of the truncation scheme. Under the assumption
that (X,Y) and A are independenit, one can show that

_Pr(X'=xn=1Y=y4<y) Pr(XA¥Y=xn=1Y=yA<y)

P T (X > 5 Y = p A< y) PHX AY>% Y= 1,4 < y)
 Pr(X=xY=y4<y) Pr(X=x¥Y=p)Pr(4d<y)
Pr(XzxY=y4<y) Pr(X=2xY=y)Pr(d<y)
_Pr(X=xY=y)
Pr(X>xY=y)
and
» P X'=xn=1Y>yA<y) P (XAY=xn=LY>yA4<y)
, = =

Pr(X'>xY > yA<y) Pr(X AY 2xY >ypA<y)
Pr(X =xY >ypA4<y) Pr(X=xY>y)Pr(4<y)

TP(X2xY > ypAd<y) PHX>xY > p)Pr(A<y)

_Pr(X =xY >y)

- Pr(X >xY >y)

Since given N(dx,y)=n and N, (dx,y)=n,, we can know that the variable N,,(dx,dy)

is independent of N, (dx,y) intuitively. We have that

Pr(N,,(dx,dy) =n, | N,,(dx,y) =n,,N(dx,y)=n,N (dx,y)=n,)
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_ Pr{N,,(dx,dy) =n,,, N, (dx,dy) + Ny, (dx, y) =n,,}
Pr{N, (dx,dy)+ N, (dx,y)=n,}
_ Pr{N, (dx,dy) =n,, Ny, (dx, y) = n, —n,,}
Pr(N,,(dx,dy) + Ny, (dx,y) =n,,}
_ Pr{N, (dx,dy) = n,,)Pr(N,,(dx,y) = n, —n,}
Pr{N, (dx,dy)+ N, (dx,y) = n,}

n . ’111 nl.*nll n - n . "l.l*nll n*nl.*n,ﬁ—n“
[ 1 jpl (I-p) (n _ 1 Jpz (I1-p,)
o

ny ny

min( N, (dx,y),Ny, (x,dy)) nlo n— nlo
Z pl’"ll (1 _ pl)"h—"n p;’-l_nll (1 _ pz)n_nlo_"-l+nll
ol

nyy=max(0,N,, (dx,y)~N (x,y)+ Ny, (xdy)) \ 1 —ny,

[nl.J[ n_nlo j( pl /l_pl j H( p2 j " (l_pl)nl. (l_pz)n—nl.
_ ny N\, —ny \ p,/1-p, 1-p,
min(N,; (dx,y),N,, (x,dy)) n, J( n—n, ]{ » - P Jﬂ“( o jn.l
(I=p)™(1=p,)"™
ny,=max(0,N,, (dx,)/)Z—N(x,y)+N1,(x,dy))(nll n,—n, \ p,/1-p, 1-p, 1 ’
[”1- J( n—ny, j( p/1-p, Jn”
_ ny \ng —ny \ py/1- py
min(N.l(dx,i),Nl.(X,dy)) [nl. )( n —nl. J( pl /1_ pl jn”
nyy=max(0,N,, (dx, )N (x,0)+ Ny, () \ T A\ Hsg T )\ P2 e p;
(HIOJ( n-n, ][Pr(){ =x, Y= y) Pr(X>x,Y >y)]nll

ny, \ng —n \ Pr(X > X, ¥ =) Pr(X =x,Y > y)

min(N.l(dx,i),Nh(x,dy)) n, n-n, PI'(X =X, Y = y) PI'(X sxY> y) nyy
ny \ng—n, \Pr(X>x,Y=y) Pr(X=x,Y>y)

ny=max(0, N,y (de,y) =N (r.)+ Ny, (x.d))
When (X,Y) follow the Clayton model, we can see that given the marginal counts

N, (dx,dy) follows a hypergeometric distribution with the probability function equal to
[nl. j( n ) nl. j n
a 11
)\ My — 1y

min(N,, (dr )Ny, (x.dy) n,\ n—n, :
>
ny=max(0,N,y (d,)-N (x,)+ Ny (edy) \ Tl N\ Tt — Ty
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