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摘  要 

本論文考慮以半母數推論方法估計在半競爭風險資料受限於左截切下的關連性。半

競爭風險是多重事件發生的過程。以糖尿病的例子做說明，觀察值在罹患糖尿病之後往

往會伴隨著一些併發症，如腎臟病或眼睛的病變而導致死亡，併發症與死亡之間的關係

通常為醫學研究者所感興趣的。然而一些研究時間的限制，使得一些觀察值無法進入研

究而被觀察到，我們稱這樣的觀察值受到截切。本論文的推論方法就是合併這兩個資料

結構而進行，我們回顧了一些相關文獻，其中 Jiang 等人在 2005 年以 concordance 方法

對同樣的資料結構做推論。而我們所提出的方法是以觀察值建立一系列 two-by-two 列聯

表，此法可以視為 Clayton 在 1978 年對二維設限資料所提出的條件概似估計法的延伸。

concordance 方法與 two-by-two 列聯表皆利用了 log-rank 的概念建立估計函數，我們將

以模擬的結果比較 concordance 方法與我們所提出的方法。 
 
 
 
關鍵字:半競爭風險資料；左截切；two-by-two 列聯表；設限。 
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Abstract 

The thesis considers semi-parametric inference for estimating the association parameter 

for a copula model based on semi-competing risks data which are further subject to left 

truncation. We review related literature including the paper by Jiang et al. (2005) who suggest 

solving the same problem by using concordant indicators. Alternatively we propose to 

construct an estimating function based on a series of two-by-two tables. Our method can be 

viewed as an extension of the conditional likelihood approach proposed by Clayton (1978) 

who originally considered bivariate censored data. Simulations are performed to assess the 

finite-sample performance. 

 

Keywords: Archimedean copulas model; Left truncation; Semi-competing risks data; 

Two-by-two table. 
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Chapter 1 Introduction 

1.1 Background 

In the thesis, we consider semi-parametric inference for Archimedean copulas models 

based on semi-competing risks data subject to left truncation. The Archimedean copulas (AC) 

family is a popular sub-class of copula models which have been frequently used to model 

bivariate failure-time variables. Copula models have the nice feature that the dependence 

structure can be studied separately from marginal analysis. Semi-parametric inference 

methods for estimating the association parameter without specifying the marginal 

distributions have been applied to different types of incomplete data. This research direction 

has brought substantial attentions due to its wide applicability and theoretical attractiveness.  

Early work focused on bivariate censored data. The landmark paper by Clayton (1978) 

proposed a useful copula model and a semi-parametric inference procedure for estimating the 

association parameter. Specifically Clayton’s proposal is based on a conditional likelihood 

that measures the association on selected grid points without making any assumption on the 

marginal distributions. This approach was later shown to have a direct relationship with 

two-by-two tables constructed based on the grid points. Under the same model assumption, 

Oakes (1982, 1986) proposed to estimate the association parameter by utilizing the 

concordant information provided by paired observations. These two approaches have been 

further extended to more complicated data structures. For example, Fine et al. (2001) adapted 

Oakes’ (1986) closed-form estimator to semi-competing risks data. Jiang et al (2005) 

proposed the estimating function under semi-competing risks data subject to left truncation.  

1.2 Overview of the thesis 

In this thesis, we consider the same type of data structure as in Jiang et al. (2005) and 

propose a different approach by constructing an estimating function based a series of 

two-by-two tables, our idea can be viewed as an extension of the conditional likelihood 



 

 - 2 -

proposed by Clayton (1978). 

The outline of the thesis is summarized as follows. In Section 2.1, we introduce three 

types of data structure. The data type that we will study later is a combination of these three 

data types. We first introduce typical bivariate data, semi-competing risks data, and then 

truncation data. The related results developed for those three data types are discussed in 

Section 2.2. Chapter 3 contains a review of different inference methods for estimating the 

association parameter of a copula model. The conditional likelihood approach proposed by 

Clayton (1978), which was developed for bivariate right censored data, is discussed in Section 

3.1. In Section 3.2, we study estimating functions constructed based on concordant indicators 

for bivariate right censored data (Oakes, 1986) and semi-competing risks data (Fine et al., 

2001), respectively. In Section 3.3, we study the method using the information provided by a 

series of two-by-two tables (Day et al., 1997; Wang, 2003). Chapter 4 contains the main 

results of the thesis in which semi-competing risk data subject to left truncation is of interest. 

After introducing the concordance approach by Jiang et al. (2005) in Section 4.2, we present 

our proposal in Section 4.3. The modification of the proposed method for censored data will 

be discussed in Section 4.3. The results of simulation are showed in Chapter 5, which are 

divided two parts without external censoring and with external censoring, respectively. 

Chapter 6 contains some concluding remarks.  
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Chapter 2 Literature Review 

Let ),( YX  be a pair of failure time variables which may be correlated. Sometimes due 

to the constraint of the observational scheme, these two variables may be subject to censoring 

or truncation. In Section 2.1, we introduce three different data structures which are commonly 

seen in applications. The data structure that we will study later is a combination of these three 

data structures. The related results of estimation for those three data structures are studied in 

Section 2.2. 

2.1 Three Data Structures  

To simplify the presentation, we may use the same notation for quantities with similar 

meanings under different data structures. For example, we use X ′  to denote the observed 

version of X  with an indicator )( XXIδ =′= . However the condition that 1=δ  is 

different for different data structures. 

 

 

Figure 2.1: Typical Bivariate Data 

 

A. Typical Bivariate Data 

Suppose that ),( YX  represent lifetimes of twins or failure times occurred to paired 

organs. For the former, the dependence can be attributed to shared genetic or environmental 
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factors. For the latter, the relationship may be explained by the same internal biological 

system of the subject. Figure 2.1 depicts such data in which replications of ),( YX  have no 

specific restriction. 

External censoring may occur to each member of the pair. Let ),( 21 CC  be external 

censoring times so that one only observes ),,',( 21 δδYX ′  such that 1CXX ∧=′ , 

2CYY ∧=′ , )CI(Xδ 11 <=  and )( 22 CYIδ <= , where ∧  denotes the minimum and 

)(⋅I  is the indicator function. It is usually assumed that ),( 21 CC  are independent of ),( YX . 

The observed data can be expressed as { })1(),( 21 ,....,ni,δ,δY,X iiii =′′ , where iii CXX 1∧=′ , 

iii CYY 2∧=′ , )CI(Xδ iii 11 <=  and )CI(Yδ iii 22 <= , are random replicates of 

),,',( 21 δδYX ′ . This type of data is most commonly seen in the literature of survival analysis.  

 

B. Bivariate Analysis － Semi-competing Risks Data 

Consider that ),( YX  represent the time to morbidity and the time to mortality of a 

specific disease on the same subject, respectively. Hence X  is subject to right censoring by 

Y  but not vice versa. Temporarily we ignore external censoring. Figure 2.2 depicts the 

structure of semi-competing risks data. Notice that observations of ),( YX  are located on the 

upper wedge. For those with YX > , we only observe ),Y( YYX =∧  which is located on 

the diagonal line. This type of data is called “semi-competing risks data” by Fine et al. (2001). 

When external censoring occurs, it is reasonable to set CCC == 21  since ),( YX  

represent different failure times on the same subject. Usually it is assumed that C  is 

independent of ),( YX . When X  is right censored by CY ∧  and Y  is right censored by 

C , the observed data can be written as })1(),({ ,....,ni,δ,ηY,X iiii =′′ , where iiii CYXX ∧∧=′ , 

iii CYY ∧=′ , ))( iiii C(YXIη ∧<= , and )( iii CYIδ <= . 
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Figure 2.2: Semi-competing risks Data 

 

C. Truncation Data  

Here we consider a pair of failure times ),( AY  which have a truncation relationship. 

Specifically we can observe ),( AY  only if AY > . We can say that Y  is subject to left 

truncation by A  while A  is subject to right truncation by Y . Note that, unlike 

semi-competing risks data, we have no information when AY < . In Figure 2.3, observations 

on the lower wedge will be completely missing and even their existence is unknown. Many 

applications consider left truncation in which Y  is the variable of interest which is subject to 

truncation by A . 

 

Figure 2.3: Truncation Data 

? 
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2.2 Nonparametric Inferences under Three Data Structures 

A. Typical Bivariate Data 

For univariate survival data, Kaplan and Meier (1958) expressed the survival function as 

a product integral of the cumulative hazard function,  

)Pr( tT > .
)Pr(

)),[Pr(1∏
≤ ⎭

⎬
⎫

⎩
⎨
⎧

≥
+∈

−=
tu uT

duuuT                 (2.1) 

For the bivariate case, the Kaplan-Meier estimator can be still applied to estimate each of 

)Pr( xX >  and )Pr( yY > , respectively. When censoring occurs, )Pr( xX >  and )Pr( yY >  

are estimated based on )},...,1(),{( 1 ni,δX ii =′  and )},...,1(),{( 2 ni,δY ii =′ , respectively. The 

K-M estimator of )Pr( tX >  and )Pr( tY >  are 

∏
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Let ),( yxS  be the joint survival function of X  and Y , where ),( yxS  ),Pr( yYxX >>= . 

There exist several nonparametric estimators of the joint survival function ),( yxS . The most 

well-known one was proposed by Dabrowska (1988).  

 

B. Bivariate Analysis － Semi-competing risks data 

With semi-competing risks data, the Kaplan-Meier estimator of )Pr( yY >  is still valid. 

However, due to dependent censoring, the Kaplan-Meier estimator of )Pr( xX >  is biased. 

Actually the distribution of X  is not identifiable nonparametrically.  

 Suppose that the external censoring is taken into account, one can estimate ),( yxS  for 

yx <  nonparametrically by 
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However, to recover the dependence structure between X  and Y , we not only need a valid 

estimator of ),( yxS  but also both of the marginal estimators as well. This implies that the 

dependence structure can not be recovered non-parametrically for semi-competing risks data. 

Therefore most authors have considered semi-parametric inference to investigate the 

dependence structure. The common model assumption is the Archimedean copula family 

which will be discussed in Section 2.3. We also adopt this approach in the thesis. 

 

C. Truncation Data 

Estimating the survival function of Y  conditional on AY >  by the Kaplan-Meier estimator 

may be biased. Under truncation, we observe ),{( ii AY , )},...,1( ni =  only if ii AY > . Hence 

},...,{ 1 nYY  is no longer a random sample of Y .  

 

Figure 2.4 Risk Set for Truncation Data 
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Figure 2.5: Modified Risk Set for Truncation Data  

 

Figure 2.4 explains the truncation mechanism on the hazard estimation. After truncation, the 

original risk set { }  uY ≥   becomes { } , AYuY >≥ , the shaded area on Figure 2.4. The 

failure region { }  uY =  changes to { } , AYuY >= , the slash area on the figure. 

If we use the set { } , AYuY >≥  to be the new risk set and { } , AYuY >=  to be the 

new instantaneous risk set, it follows that  

[ )
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The resulting estimator of )Pr( tY >  tends to over-estimate the true survival function. To 

correct this bias, Lynden-Bell modified the set { } , AYuY >≥  by cutting the set further. 

Lynden-Bell proposed that the new risk set is { } , uAuY <≥ , the shaded area on Figure 2.5. 

The new instantaneous risk set is { } , uAuY <= , the slash area on the figure. 

Under the assumption that Y  and A  are independent, one can show that  

)Pr(
)Pr(

)Pr(
)Pr(

uY
uY

Au,uY
Au,uY

≥
=

=
≥≥
≥= . 

Consequently the modified estimator proposed by Lynden-Bell,  
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is a valid estimator for )Pr( tY > . 

Suppose that there is an external censoring variable C  for Y . It is assumed that C  is 

independent of Y . The observed data are { }) ,......,1(),  ni,δA,Y iii =′  conditional on ii AY >′ , 

where iii CYY ∧=′  and )( iii CYI <=δ . It follows that  
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The resulting Lynden-Bell’s estimator becomes 
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 Tsai (1991) claimed that most existing procedures for truncation data are still correct 

under a weaker assumption of quasi-independence, and then proposed a test to verify this 

condition. The recent paper by Chaieb et al. (2006) consider the assumption that Y  and A  

are correlated and proposed a semi-parametric inference procedure under a “semi-survival” 

Archimedean copula model. Note that in the thesis, we only assume quasi-independence 

between the truncation time A  and the survival time Y . 

  

2.3 Copula Models and Archimedean Copula Model 

Copula models are often used to describe the association between two failure time 

variables. For the bivariate case, a copula function can be written as ),( vuC , which may be 

parameterized as ),( vuCα  for [ ]1,0, ∈vu . The Archimedean copula (AC) family is a 

subclass of copula models. A copula is said to be Archimedean copula (AC) if it can be 

expressed in the following form,  

     )}()({),( 1 vuvuC αααα φφφ += − ,                    (2.5) 
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where [ ] [ ]∞→ ,01,0:αφ  satisfying 0)1( =αφ , 0)( <′ tφα  and 0)( >′′ tαφ . Note that the AC 

family simplifies the bivariate relationship via the univariate function )(⋅αφ . The function 

)(⋅αφ  is the generator of the copula. Important proporties of AC models have been derived in 

Genest et al. (1986), Oakes (1989) and Genest et al. (1993).  

One of the most well-known AC model is the Clayton model with αφ α
α )1()( −= −tt  

for some 0>α , then 

ααα
α

1}1{),( −−− −+= vuvuC .                    (2.6) 

In applications, the copula structure is imposed on ),( YX  such that one can write  

)}Pr(),{Pr(),( yYxXCyxS >>= α                   (2.7) 

Accordingly an AC model defined on the joint survival function can be written as  

)}}{Pr()}{Pr([),( 1 yYxXyxS >+>= −
ααα φφφ .  

The AC family has nice analytic properties which are useful for further statistical inference. 

For example, consider the odds ratio function proposed by Oakes (1989): 

yx,ySxx,yS
yxx,ySx,ySyx
∂∂⋅∂∂
∂∂∂⋅

=
/)(/)(

/)()(),(
2

*θ                   (2.8) 

For an AC model ),(* yxθ  can be simplified as )),,(( yxSαθ  where 

).(/)()(* vvvv αα φφθ ′′′−=                       (2.9) 
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Chapter 3 Review of Semi-Parametric Analysis 

In this chapter, we review three semi-parametric inference methods for estimating the 

copula association parameter under different data structures. In Section 3.1 and 3.2, each 

inference method will be first applied to bivariate data without censoring and then to a more 

general situation including external censoring. In addition, the application to semi-competing 

risks data is also considered. In Section 3.3, two-by-two table method by Wang (2003) is 

directly applied to semi-competing risks data without censoring. Without losing generality, we 

assume there is no tie in the sample for the observed data. 

3.1 The Conditional Likelihood Approach 

This approach was first proposed by Clayton in his landmark paper (Clayton, 1978). To 

simplify the discussion and without loss of generality, we temporarily assume that a random 

sample of ),( YX  can be observed without censoring and denoted as )},..,1(),,{( niYX ii = . 

Clayton (1978) defined the following set of grid points, denoted as ϕ , such that 

⎭
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==

yxyx,YXIyx,YXIyx
n

i
ii

n

i
ii ,0|1)(,1)(:),(

11
ϕ .    (3.1) 

 

 

Figure 3.1: An Example of The Set ϕ  for An Artificial Data Set 

 

Figure 3.1 depicts the set ϕ  for an artificial data set which consists of three observations, 
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),( 11 yx , ),( 32 yx , and ),( 23 yx , marked as “ ╳ ” . According to the definition, the set ϕ  

consists of four grid points ),( 11 yx , ),( 32 yx , ),( 23 yx , and ),( 22 yx . Note that ),( 22 yx  

on Figure 3.1 is not an observed failure point. We mark such a point by “○”. Define  

⎪
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===
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i
ii

yYxXIyYxXI

yYxXI
yx      3.2) 

Note that 1)y,x( =Δ  implies the grid point )(x,y  is associated with an observation of 

)(X, Y (i.e. a point marked by “ ╳ ”). If 0)(Δ =x,y , the point )(x,y  is not an observed point 

(i.e. ),( 22 yx  in the above example and marked by “○”). Define ∑
=

≥≥=
n

i
ii yYxXIyxR

1
),(),(  

which counts the number at risk at time )(x,y . Conditional on the value of ),( yxR , ),( yxΔ  

follows a Bernoulli distribution with the probability )},(,),(|1),(Pr{ yxRyxyx ϕ∈=Δ . For 

an AC model,  

1),()),((
)),((

)},(,),(|1),(Pr{
−+

=∈=Δ
yxRyxS

yxS
yxRyxyx

α

α

θ
θ

ϕ .         (3.3) 

For the Clayton model with αθα =)),(( yxS , we have 

1),(
)},(,),(|1),(Pr{

−+
=∈=Δ

yxR
yxRyxyx

α
αϕ ,            (3.4) 

which does not involve the nuisance parameter ),( yxS .  

Clayton (1978) suggested that the distribution of }),( )(Pr{ ϕ∈= yxr|x,yR  may be 

ignored in the likelihood construction since it may contain only little information about α . 

Under a working assumption that )(Δ x,y  and )(Δ y,x ′′  are independent for different grid 

points )(x,y  and ϕ∈′′ )( y,x , the “conditional” likelihood for an AC model can be written as 

the product over the conditional probabilities of )(Δ x,y  for all grid points in the set ϕ . 

Specifically   

[ ]

[ ] .)},(,),(|0),(Pr{                                      

)},(,),(|1),(Pr{)),(,(

),(1 

),(

),(

yx

yx

yx

yxRyxyx

yxRyxyxyxSL

Δ−

∈

Δ

∈=Δ×

∈=Δ= ∏

ϕ

ϕα
ϕ     (3.5) 

For the Clayton model, the corresponding log-likelihood is given by 
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{ } .
1),(

1),(log),(1 
1),(

log),()(
),(
∑

∈
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−

Δ−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

Δ=
ϕ αα

αα
yx yxR

yxRyx
yxR

yxl    (3.6) 

So that the estimating equation becomes 

,
1),(

),()(
),(
∑

∈ ⎭
⎬
⎫

⎩
⎨
⎧

+−
−Δ=

∂
∂

ϕ α
α

η
η

yx yxR
yxl                  (3.7) 

where αη log= . The solution can be denoted as 

{ }∑
∑

∈

∈

Δ−

Δ×−
=

ϕ

ϕα

),(

),(

 ),(1   

),(}1),({   
ˆ

yx

yx
L yx

yxyxR
. 

For general AC models, we can maximize )),(ˆ,( yxSL α , where ),(ˆ yxS  is the empirical 

estimator of ),( yxS . However the resulting estimator of α  may not have an explicit 

formula.  

When censoring is taken into account, the set ϕ  can be modified as  

⎭
⎬
⎫

===′≥′
⎩
⎨
⎧

==≥′=′ ∑∑
==

1)1,,(,1)1,,(:),(
1

2
1

1

n

i
iii

n

i
iii yYxXIyYxXIyx δδ .   (3.8) 

The definition of ),( yxΔ  is changed to  

⎪
⎪
⎩

⎪⎪
⎨

⎧

===′>′==>′=′

====′=′
=Δ

∑∑

∑

==

=

.1)1(,1)1( if  ,0

                                     ; 1)1( if  ,1
),(

1
2

1
1

1
21

n

i
iii

n

i
iii

n

i
iiii

y,δYx,XIy,δYx,XI

δy,δYx,XI
yx     (3.9) 

The resulting estimating function under AC model involves the plugged-in estimator, ),(ˆ yxS , 

which can be the Dabrowska’s estimator. The estimator can be modified accordingly. The 

same principle can also be applied to different data structures, such as semi-competing risks 

data, in which  

.
)(ˆ

),(
),(ˆ 1

yGn

yYxXI
yxS

n

i
ii∑

=

≥′≥′
=  
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3.2 Estimating Functions Based on Concordance Indicators 

Let ) ( ii ,YX  and ) ( jj ,YX  be independent replications of ),( YX . Define the indicator, 

0}))({( >=Δ jijiij -YY-XXI . The two pairs are said to be concordant if ijΔ =1 and discordant 

if ijΔ =0. This indicator reveals dependence relationship between X  and Y . Oakes (1989) 

proposed the following time-dependent association measure： 

 ,
)~~  0(Pr
)~~  1(Pr

)(
yYx,X|
yYx,X|

x,y
ijijij

ijijij

===Δ

===Δ
=θ    ∞≤< yx,0             (3.10) 

where jiij XXX ∧=~  and jiij YYY ∧=~ . For Clayton’s model, we can find that 

αθ =)(x,y for ∞≤< yx,0  and  )1/()~~  Δ( +=== ααyYx,X|E ijijij . The information can be 

utilized in the inference of α . Assuming the Clayton model, Oakes (1982) proposed the 

estimating function, 

∑∑
= >

⎟
⎠
⎞

⎜
⎝
⎛

+
−=

n

i ijj
ij α

ααU
1 ; 1

Δ)( .                      (3.11) 

The solution can be written as  

∑∑

∑∑

= >

= >

Δ−

Δ
= n

i ijj
ij

n

i ijj
ij

C

1 ;

1 ;

)1(
α̂  

Note that the concordant estimator Cα̂  is a U-statistic which is useful in the establishment of 

large-sample theory.  

To further extend the above idea to incomplete data, the challenge is that some values of 

ijΔ  may be uncertain due to censoring. The following discussion is about how the effects of 

censoring affects the information of ijΔ . We can write  

{( ) 0} {( ) 0}+ {( ) 0} {( ) 0}ij i j i j i j i jI X - X I Y -Y I X - X I Y -YΔ = > × > < × < .    (3.12) 
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This means that to know the value of ijΔ , we need to know the marginal orders of both 

),( ji XX  and ),( ji YY . Given ),( 2iiY δ′  and ),( 2 jjY δ′ , the order of  ),( ji YY  is certain if  

ji YY ′∧′  is associated with an uncensored observation. The phenomenon can be explained by 

the following figures： 

 

 

(a)：Order is certain. 

 

 

(b)：Order is certain. 

 

 

(c)：Order is uncertain. 

× ： 1=δ ， ◇ ： 0=δ  

Figure 3.2 : The Effect of Censoring on the Order of Two Pairs 

 

Notice that in Figure 3.2 (a) and Figure 3.2 (b), the orders of the two pairs are certain, 

while in Figure 3.2 (c) is not. Define that jiij YYY ′∧′=′~  which is observed if only if it is 

smaller than both ji CC 2.2 and . Mathematically, we can write the above condition as 

ijij CY 2
~~ <′ , where jiij CCC 222

~
∧= . Similar conclusions can be applied to determine the order 

of iX  and jX . As long as ijij CX 1
~~ <′ , where jiij XXX ′∧′=′~  and ijC~  ji CC ∧= , the order 

relationship is certain. Combining the two conditions discussed above, it follows that ijΔ  is 

certain if both ijij CY 2
~~ <′  and ijij CX 1

~~ <′  are satisfied. Hence for bivariate right censored data, 
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the condition that the two pairs is “orderable” if .~~and~~
12 ijijijij CXCY <′<′  Oakes (1986) 

defined ,CXIZ ijijij 1
~~( <= )~~

2ijij CY <  as the indicator of an “orderable” event. This means 

that ijΔ  can be computable if 1=ijZ . For an AC model,  

1))~,~((
))~,~((

]1,~,~|[
+

==Δ
ijij

ijij
ijijijij YXS

YXS
ZYXE

α

α

θ

θ
.              (3.12) 

Under the assumption of Clayton’s model, 

1
]1,~,~|[

+
==Δ
α
α

ijijijij ZYXE ,                     (3.13) 

and the resulting estimating function, which has taken censoring into account, can be written 

as  

,
1

)~,~(~)(~
1 ;
∑∑
= >

⎟
⎠
⎞

⎜
⎝
⎛

+
−Δ××=

n

i ijj
ijijijij ZYXWU

α
αα α                  (3.14) 

where )(~ ⋅W  is a weight function which is chosen to improve efficiency of the resulting 

estimator.  

For semi-competing risks data with an external censoring, X  is right censored by Y  or C  

and Y  is right censored by C . The “orderable” condition becomes  ijijij CYX ~~~ <′<′ . Fine et 

al. (2001) defined )~~~( ijijijij CYXID <<=  as the indicator of orderable event. For an AC 

model, we have  

   
1))~,~((

))~,~((
]1,~,~|[

+
==Δ

ijij

ijij
ijijijij YXS

YXS
DYXE

α

α

θ
θ

.               (3.15) 

If Clayton’s model is assumed,  

1
]1,~,~|[

+
==Δ
α
α

ijijijij DYXE .                    (3.16) 

The resulting estimating function becomes: 

∑∑
= >

⎥⎦
⎤

⎢⎣
⎡

+
−Δ××=

n

i
ijij

ijj
ijij DYXWU

1 ; 1
)~,~()(

α
αα α , 
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where )(⋅W  is a weight function having the effect on the efficiency as described earlier.  

 

3.3  Estimating Functions Based on Two-by-two Tables 

The paper by Day et al. (1997) and Wang (2003) show that the odds ratio of a 

two-by-two table contains the information of association between ),( YX  at time ),( yx . In 

this section, we directly discuss that the developed estimating function for semi-competing 

risks data by Wang (2003). To simplify the discussion, we temporarily ignore the external 

censoring. The observed data are )},..,1(),,,{( niYX iii =′ η , where iii YXX ∧=′  and 

)( iii YXI <=η . For a observed point ),( yx , where xy > , we can construct the two-by-two 

table depicted in Figure 3.3. 

 

 

 

 

      

 

Figure 3.3 : two-by-two table at time ),( yx  

 

The counts in the cell and the margins can be defined as  

,),1,(),(
1

11 ∑
=

===′=
n

i
iii yYxXIdydxN η  

                     ,),(),(
1

1 ∑
=

• =≥′=
n

i
ii yYxXIdyxN  

                     ,),1,(),(
1

1 ∑
=

• ≥==′=
n

i
iii yYxXIydxN η  

                     .),(),(
1
∑
=

≥≥′=
n

i
ii yYxXIyxN  

Given the marginal counts, ),(11 dydxN  follows a hyper-geometric distribution with 

 xX =  xX >   

yY =  ),(11 dydxN  ),(1 dyxN •

yY >     

 ),(1 ydxN•  )(x,yN  
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expectation  

)},(),,(),,(|),({ 1111 yxNdyxNydxNdydxNE ••  

),(),(),(),(
),(),(),(

11

11

ydxNyxNydxNyx
dyxNydxNyx

••

••

−+
=

α

α

θ
θ

               (3.17) 

Day et al. (1997) and Wang (2003) suggested to construct an estimating functions for α  

by taking the (weighted) difference between the observed count ),(11 dydxN  and its 

model-based expectation ),,(),,(|),({ 1111 dyxNydxNdydxNE ••  

)},( yxN . Under the assumption of no ties and αyxθα =),( , the estimating function can be 

expressed as 

∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
),(

11 1),(
)(),()(

yx yxN
dx,dyNyxWU

α
αα

((
,             (3.18) 

where ),( yxW
(

 is a weight function. 
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Chapter 4 Inference for Semi-competing Risks Data  

subject to Left Truncation 

In this chapter, we will study a data structure which is a combination of the three data 

types discussed in Section 2.1. Furthermore, we will propose an inference approach to 

analyzing this data structure. To simplify the discussion, in Section 4.1 and 4.2 external 

censoring is ignored. Modification of the proposed method for censored data will be discussed 

in Section 4.3. 

4.1 Data Description 

To interpret the data structure studied in this chapter, we use the example of “diabetes 

diagnosis” which has been introduced in the paper by Peng et al. (2006). After the diagnosis 

of diabetes, a proportion of patients may suffer from some kind of morbidity, such as 

nephropathy or retinopathy. The relationship between morbidity and mortality is often of 

interest. However if researchers only include patients of diabetes who are alive at the time 

when the study begins, patients who die before the study time will never be included. Such a 

constraint of the observational scheme tends to exclude patients with shorter survival time 

after diagnosis. Without taking this fact into account, the subsequent analysis will be biased 

especially if the proportion of potential patients being excluded in the study is not low.  

Using our previous notations, we observe semi-competing risks variables ),,( ηYX ′ , 

where Y  is the time to mortality and X  the time to morbidity , X ′  is maximum of the 

time to morbidity and mortality, and )( YXI <=η . Let A  be the time to the staring date of 

the study which is independent of ),( YX . All the three variables are measured from 

diagnosis of the study. Hence only those with AY >  can be included in the sample. Hence 

the observed data are )},....,1(),,,{( niYX iii =′ η  only if ii AY > . We assume ),( YX  follow 

the Clayton model on the upper wedge, 
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{ } )(,1)Pr()Pr(),Pr( 1/111 yxyYxXyYxX ≤−>+>=>>
−−− ααα      (4.1) 

Figure 4.1 is showed in the paper by Peng et al. (2006). Notice that only those who were 

alive at the beginning of the study could be included in the sample, i.e. the solid lines on 

Figure 4.1. Thus two (out of six) persons in the figure will be excluded to the study, i.e. the 

dashed lines on the figure. The study period in the diagram is long enough to observe the 

death events of all the subjects in the sample and hence external censoring does not exist.  

 

 

Figure 4.1: Lexis Diagram for Semi-competing Risks Data 

subject to Left Truncation 

 

4.2 The Concordance Approach  

As we have seen in Section 3.2, an estimating function for the association parameter can 

be constructed by using the information of the concordance indicator. This approach has been 

applied to analyze semi-competing risks data subject to left truncation.  

Recall that under semi-competing risks data, we know that the information of ijΔ   is 

based on the orderable condition, ijij YX ~~ <′ , which handles the censoring effect and does not 
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involve the truncation scheme. For left truncation data, )(A,Y  is observed only if YA < . 

Consider the “comparable event” defined as  ijij YA ~<
(

, where ),max( jiij AAA =
(

. When this 

event happens, )  ( ii Y,A  and )  ( jj Y,A  are both located in upper wedge, 

}0:),{( ∞<<< yaya . This means as long as the point )~( ijij Y,A
(

 is located on the upper 

wedge of the support of )(A,Y , where AY > , the j),(i  pairs are comparable. See Figure 

4.2 for illustration. Combine the orderable and comparable conditions, which implies that 

both ijij YX ~~ <′  and ijij YA ~<
(

 are satisfied, define }~)~{( ijijijij YXAIO <∨=
(

 as the indicator 

of an “orderable” and “comparable” event.  

 

 

Figure 4.2: An Example of a Comparable Condition 

 

For an AC model, it follows that 

1))~,~((
))~,~((

]1O,~,~|[
+

==Δ
ijij

ijij
ijijijij YXS

YXS
YXE

α

α

θ

θ
.                 (4.2) 

For Clayton’s model, we have  

1
]1O,~,~|[

+
==Δ
α
α

ijijijij YXE ,                       (4.3) 

Hence the resulting estimating function for the Clayton’s model becomes 
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∑∑
= >

⎥⎦
⎤

⎢⎣
⎡

+
−Δ××=

n

i
ijij

ijj
ijij OYXWU

1 ; 1
)~,~()(

α
αα α ,                 (4.4) 

where )(⋅W  is a weight function. 

 

4.3 The Proposed Method Based on Two-by-Two Tables 

In this section, we still use the notations of the cell and the margins of the table on Figure 

3.3. Recall that in Section 2.2, Lynden-Bell’s estimator uses the idea of further cutting the risk 

set at yY =  by setting yA < . In Figure 4.3, the modified risk set can be written as 

},:),{( yYyAya ≥≤ . 

 

 

Figure 4.3 : Risk Set for Y modified for Truncation 

 

 For an observed failure point with ),(),( yxYX = , members in the original (unadjusted) 

risk set include those with },:{i yYxX ii ≥≥ . In presence of truncation, we impose 

additional criteria: },:{i yYyA ii ≥≤ . Subjects fall in the intersection of the two sets will be 

included in the proposed modified risk set. The corresponding two-by-two table is given 

below:  
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Figure 4.3 : The Proposed two-by-two Table at time ),( yx  

 

The definitions of the cells and margins in the table are given as follows: 

∑
=

<===′=
n

i
iiii yAyYηxXIdydxN

1
11 ),,1,(),( , 

                  ∑
=

• <=≥′=
n

i
iii yAyYxXIdyxN

1
1 ),,(),( , 

                  ∑
=

• <≥==′=
n

i
iiii yAyYxXIydxN

1
1 ),,1,(),( η , 

                  ∑
=

<≥′≥′=
n

i
iii yAyYxXIyxN

1
),,(),( . 

It follows that ),(|)( 111 dyxNdx,dyN •  follows a binomial distribution with 

),(( 1 dyxN • ), 1p , where  

)1Pr(
)1Pr(

1 =<=≥′
=<==′

=
y,ηy,Ax,YX
y,ηy,Ax,YXp .                    (4.5) 

Under the assumption that ),( YX  and A  are independent, one can show that 

)Pr(
)Pr(

)Pr(
)Pr(

)1Pr(
)1Pr(

yx,YX
yx,YX

yy,Ax,YX
yy,Ax,YX

y,ηy,Ax,YX
y,ηy,Ax,YX

=≥
==

=
<=≥
<==

=
=<=≥′
=<==′  

Similar conclusion for the cell counts, ),(01 ydxN  follows a binomial distribution 

with, )),,(),(( 21 pdyxNyxN •−  where  

)Pr(
)Pr(

2 yx,YX
yx,YXp

>≥
>=

= .                         (4.6) 

Hence we can find that given the margins counts, ),(11 dydxN  still follows a hypergeometric 

distribution with expectation  

)},(),,(),,(|),({ 1111 yxNdyxNydxNdydxNE ••  

 xX =  xX >   

yAyY <= , ),(11 dydxN  ),(1 dyxN •  

yAyY <> , ),(01 ydxN   

 ),(1 ydxN•  )(x,yN  
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),(),(),(),(
),(),(),(

11

11

ydxNyxNydxNyx
dyxNydxNyx

••

••

−+
=

α

α

θ
θ                  (4.7) 

Note that (4.4), (4.5) and (4.6) are derived in appendix. For Clayton’s model with 

αyxθα =),( and under the assumption of no tie and, the estimating function can be expressed 

as 

∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
),(

11 1),(
)(),()(

yx yxN
dx,dyNyxWU

α
αα ,              (4.8) 

where ),( yxW  is a weight function.  

With semi-competing risks data subject to left truncation and right censoring, the 

observed data are )},....,1(),,,,{( niYX iiii =′′ δη . The definition of the cell and the margins are 

modified as following： 

∑
=

<==′==′=
n

i
iiiii yAyYxXIdydxN

1
11 ),1,,1,(),( δη , 

                ∑
=

• <==≥′=
n

i
iiii yAyYxXIdyxN

1
1 ),1,,(),( δ , 

                ∑
=

• <≥==′=
n

i
iiii yAyYxXIydxN

1
1 ),,1,(),( η , 

                ∑
=

<≥′≥′=
n

i
iii yAyYxXIyxN

1
),,(),( . 

The estimating function has the same form as above.  
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Chapter 5 Numerical Analysis 

In this chapter, we evaluate the finite-sample performance of several estimators via 

simulation. Here we evaluate semi-competing risks data subject to left truncation. The former 

analysis ignores external censoring and the latter part includes censoring. As we have 

assumed that failure time variable ),( YX  follow the Clayton model. Here X  and Y  is 

denoted as the time to morbidity and the time to mortality, respectively. The joint distribution 

can be expressed as  

[ ] [ ]{ } . 1)Pr()Pr(),Pr(
)1/(111 ααα −−− −>+>=>> yYxXyYxX  

Let X  and Y  follow the exponential distribution with parameter 1λ  and 2λ , respectively. 

We can write 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−+−−
⋅−

=

−−=

−
−−−−− ],)1()1()1(1log[

)1(
1

],1log[1

)1(
)1()1(

2

1

α
α

αα

λα

λ

VUUY

UX
         (5.1) 

where )1,0( uniform~U  and )1,0( uniform~V . In this simulation, we set 5.021 == λλ . 

The association parameter α  is transformed to Kendall’s tau,  

1
1

+
−

=
α
ατ .                              (5.2) 

Given a value of tau, α  is produced. The truncation variable A  is generated from a 

exponential distribution with parameter γ . The pair ),( YX  are generated subject to AY > . 

Sample size n  are chosen with 100 and 200, respectively. Each combination of α  and n  

is simulated 1000 times.  

(1) Without External Censoring 

To fit the constraint of truncation in simulation, we have to decide the percentage of the 

original population being truncated. According to our simulation settings, we find that 

=> )Pr( AY ),/( 2 γλγ +                         (5.3) 

which means the probability of Y  truncated by A  is determined by 2λ  and γ . Here if we 
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let => )Pr( AY  50%, we get γ =0.5. We set X ′  = ),min( YX  and the indicator 

)( YXIη <= . The generated data are )},.....,1(),,,,{( niAYX iiii =′ η  conditional on ii AY > . 

Two types of estimators are evaluated. One is based on the concordance approach:  

∑∑
= >

⎥⎦
⎤

⎢⎣
⎡

+
−Δ××=

n

i
ijij

ijj
ijijC OYXWU

1 ; 1
)~,~()(

α
αα ,  

where )~)~(( ijijijij YXAIO <∨=
(

. Here we consider two weight functions. One is 1),( =yxW  

and we denote the corresponding solution as Cα̂ . The other weight function is  

nyYxXIyxW
n

i
ii /),(),(

1
∑
=

≥≥′=  

and we denote the corresponding solution as Cα
~ . The above estimating function ca be solved 

by the Newton-Raphson algorithm. The second method is our proposal which is based on the 

two-by-two table approach:  

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
)(

11 1),(
)(),()(

x,y
T yxN

dx,dyNyxWU
α

αα .  

We denote the corresponding solution as Tα̂ . The above estimating function is also solved by 

the Newton-Raphson algorithm. 

The results are contained in Table 5.1 ~ Table 5.3. We see that in all the cases, the 

estimators of the association parameter are unbiased. Numerically the estimated variance is 

consistent. Especially the proposed estimator Tα̂  has smaller MSE in all the cases with 

different values of τ  which measures the association between X  and Y . 
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Table 5.1: Comparison of the two types of estimators for α  

with τ =0.75 and in absence of external censoring 

 Method n =100 n =200 

Concordance  
0.2481 

(1.8595) 
0.0833 

(0.7483) 

Weighted 
Concordance 

0.2182 
(1.9149) 

0.0877 
(0.7251) 

Average Bias 
(MSE) 

Two-by-Two Table
0.2248 

(1.6624) 
0.0879 

(0.6569) 

 

Table 5.2: Comparison of the two types of estimators for α  

with τ =0.5 and in absence of external censoring 

 Method n =100 n =200 

Concordance  
0.0407 

(0.2667) 
0.0220 

(0.1347) 

Weighted 
Concordance 

0.0701 
(0.2735) 

0.0522 
(0.1271) 

Average Bias 
(MSE) 

Two-by-Two Table
0.0564 

(0.2458) 
0.0400 

(0.1189) 

 

Table 5.3: Comparison of the two types of estimators for α  

with τ =0.25 and in absence of external censoring 

 Method n =100 n =200 

Concordance  
0.0209 

(0.0756) 
0.0165 

(0.0352) 

Weighted 
Concordance 

0.0348 
(0.0756) 

0.0160 
(0.0343) 

Average Bias 
(MSE) 

Two-by-Two Table
0.0296 

(0.0685) 
0.0343 

(0.0316) 
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(2) With External Censoring 

Let C  be the censoring variable which follows a exponential distribution with the 

parameter μ . With censoring taking into account, the truncation criteria becomes conditional 

on AY >′ , where ),min( CYY =′ . Thus the percentage of the original population being 

truncated are adjusted as  

),/()Pr( 2 γμλγ ++=>′ AY                        (5.4) 

Specially the percentage of the truncated sample being censored by C  can be calculated as 

)/()|Pr( 2 μλμ +=>′> AYCY .                     (5.5) 

Under the above two conditions the censoring and truncated probabilities can be determined 

by those three parameters, .and,,2 μγλ . Here if we let =>′ )Pr( AY  50% and 

=>′> )|Pr( AYCY 80%, we get γ =0.625 and μ =0.125. We set ),,min( CYXX =′ , the 

indicator )),min(( CYXI <=η ,  ),min( CYY =′  and the indicator )( CYI <=δ . The 

generated data are )},.....,1(),,,,{( niYX iiii =′′ δη  conditional on ii AY >′ .  

Two types of estimators are evaluated. One is based on the concordance approach:  

∑∑
= >

⎥⎦
⎤

⎢⎣
⎡

+
−Δ××=

n

i
ijij

ijj
ijijC QYXWU

1 ; 1
)~,~()(~

α
αα ,  

where )~~)~(( ijijijijij CYXAIQ <<∨=
(

. We have considered the two weight functions. One is 

1),( =yxW  and we denote the corresponding solution as Cα̂ . The other weight function is  

nyYxXIyxW
n

i
ii /),(),(

1
∑
=

≥′≥′=  

and we denote the corresponding solution as Cα
~ . The estimating function is solved by the 

Newton-Raphson algorithm. The second method is based on the two-by-two table approach:  

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
)(

11 1),(
)(),()(~

x,y
T yxN

dx,dyNyxWU
α

αα .  

We denote the corresponding solution as Tα̂ . The above estimating function is also solved by 

the Newton-Raphson algorithm. 

The results are contained in Table 5.4 ~ Table 5.6. We see that in all case, the estimators 
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of the association parameter are still unbiased. Numerically the estimated variance is 

consistent. Especially the proposed estimator Tα̂  has smaller MSE in all the cases with 

different values of τ  which measures the association between X  and Y . 

 

Table 5.4: Comparison of the two types of estimators for α  

with τ =0.75 and in presence of external censoring 

 Method n =100 n =200 

Concordance  
0.1477 

(2.1712) 
0.1521 

(1.0069) 

Weighted 
Concordance 

0.2305 
(2.3071) 

0.1580 
(0.9734) 

Average Bias 
(MSE) 

Two-by-Two Table
0.1770 

(2.0012) 
0.1449 

(0.8757) 

 
 

Table 5.5: Comparison of the two types of estimators for α  

with τ =0.5 and in presence of external censoring 

 Method n =100 n =200 

Concordance  
0.0894 

(0.3635) 
0.0337 

(0.1546) 

Weighted 
Concordance 

0.1076 
(0.3548) 

0.0509 
(0.1487) 

Average Bias 
(MSE) 

Two-by-Two Table
0.0965 

(0.3250) 
0.0424 

(0.1361) 
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Table 5.6: Comparison of the two types of estimators for α  

with τ =0.25 and in presence of external censoring 

 Method n =100 n =200 

Concordance  
0.0274 

(0.1025) 
0.0080 

(0.0431) 

Weighted 
Concordance 

0.0361 
(0.0913) 

0.0147 
(0.0411) 

Average Bias 
(MSE) 

Two-by-Two Table
0.0338 

(0.0865) 
0.0121 

(0.0379) 
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Chapter 6 Conclusion 

 In the thesis, we compare two types of inference procedures for estimating the 

association parameter of a copula model for semi-competing risks data subject to left 

truncation. If the truncation mechanism is ignored, the resulting analysis will be biased. We 

propose a log-rank type estimating function and find that it produces better results in 

simulations compared with the functions constructed based on the concordance indicators. 

Both methods involve deletion of some observations in the analysis to eliminate the bias due 

to truncation. A possible future extension is to utilize all the observations but apply a 

weighting approach to adjust for the sampling bias.  
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Appendix 

To simplify the expressions, here we treat ),( YX  as discrete random variables since the 

probability calculations can be easily converted to the continuous case. It is obvious that  

)),,((~),(|),( 11111 pdyxNBINdyxNdydxN •• , 

where  

)Pr(
)1Pr(

1 yy,Ax,YX
yy,A,Yx,ηXp

<=≥′
<===′

= , 

and 

)),,(-),((~),(-),(|)( 21101 pdyxNyxNBINdyxNyxNdx,yN •• , 

where  

)Pr(
)1Pr(

2 yy,Ax,YX
yy,A,Yx,ηXp

<≥≥′
<≥==′

= . 

Now we show that 1p  and 2p  can be free of the truncation scheme. Under the assumption 

that ),( YX  and A  are independent, one can show that 

,
)Pr(
)Pr(

)Pr()Pr(
)Pr()Pr(

)Pr(
)Pr(

)Pr(
)1Pr(

)Pr(
)1Pr(

1

yx,YX
yx,YX

yAyx,YX
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yy,Ax,YX
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yy,Ax,YYX
yy,A,Yx,ηYX
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and  

.
)Pr(
)Pr(

)Pr()Pr(
)Pr()Pr(

)Pr(
)Pr(
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)1Pr(

)Pr(
)1Pr(

2

yx,YX
yx,YX
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Since given nydxN =),(  and •• = 11 ),( nydxN , we can know that the variable ),(11 dydxN  

is independent of )(01 dx,yN  intuitively. We have that 

)),(,),(,),(|),(Pr( 11111111 •••• ==== nydxNnydxNnydxNndydxN
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When ),( YX  follow the Clayton model, we can see that given the marginal counts 

),(11 dydxN  follows a hypergeometric distribution with the probability function equal to  
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