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Chapter 1  
Introduction 
 
 We have seen that there are a lot of experiments designed to reveal neutrino mixing 
parameters in neutrino oscillation. For three-flavor neutrino oscillation, the 
Pontecorvo-Maki-Nakagawa-Sakata mixing matrix which transforms the neutrino mass 
eigenstates iν ( 3,2,1=i ) into flavor eigenstates αν ( τµα ,,e= ) can be parameterized as 
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where the first matrix corresponds to atmospheric neutrino oscillation, the second one is 
responsible for reactor neutrino oscillation, and the last one corresponds to the solar neutrino 
oscillation. The Super-Kamiokande [1] experiment for atmospheric neutrino gives 

92.02sin,eV104.3eV105.1 23
2232

31
23 >×<∆<× −− θm                   (1.1) 

at 90% C.L. Another result based on L/E analysis in [2] gives  

9.02sin,eV100.3eV109.1 23
2232

31
23 >×<∆<× −− θm                 (1.2) 

where the best-fit values are given by sin22θ23 = 1 and 2 3 2
31 2.4 10 eVm −∆ = × . The atmospheric  

oscillation is also confirmed by the accelerator based experiment K2K [3]. Similarly, the solar 
neutrino mixing parameters are also confirmed by the KamLAND experiment [4]. The 
updated 2σ parameter ranges are [5] 

371.02sin267.0,eV1063.8eV1021.7 12
2252

21
25 <<×<∆<× −− θm           (1.3) 

The best-fits values are sin2θ12 = 0.314 and =∆ 2
21m 7.92×10-5 eV2. Moreover, the mixing 

parameter for reactor neutrino θ13 is constrained by the CHOOZ experiment [6] with 
2

13 13sin 2 0.1 ( 9 )θ θ< <  for large 2
31m∆ . Despite the above achievements, the octant of θ23 and 

the sign of 2
31m∆  are still undetermined.  

 
 Furthermore, the CP-violation phase δCP is also unknown so far. In this thesis, we probe 
the octant of θ23 by combining the appearance oscillation νe → νμ and disappearance 
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oscillation νμ → νμ. We study these oscillation modes at the magic baseline where the effect of 
CP-violation phase δCP can be ignored. 
 
 This thesis is organized as follows. In chapter 2, we review the neutrino oscillation 
equations of motion, and give analytic results for oscillation probabilities νe → νμ and νμ → νμ. 
We will also define the magic baseline [7] and calculate its value both analytically and 
numerically. In chapter 3, we present a combined νe → νμ and νμ → νμ oscillation analysis for 
probing the θ23 octant in a 20-GeV neutrino factory operated at magic baseline. The effect of 
CP-violation phase δCP is shown to be negligible in such a baseline. We conclude in chapter 4. 
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Chapter 2 
Neutrino Oscillation and the Magic Baseline 
 

Neutrino oscillation is a known phenomenon that has been confirmed by many 
experimental data [2, 3, 4, 8]. It is due to the non-coincidence between neutrino mass 
eigenstates, iν ( 3,2,1=i ), and neutrino flavor eigrnstates, αν ( τµα ,,e= ). These 
eigenstates are related by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix given 
by 
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           (2.1) 

through ∑=
i

iiU νν αα , where jijis θsin≡  and jijic θcos≡ . One can assume that θij lies  

between 0 and π/2 for generality, while CP-violation phase δCP lies between 0 and 2π. The 
ratio of neutrinos with different flavors changes during neutrino propagation, and the 
evolution is governed by the following equation: 
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           (2.2) 

where 222
jiji mmm −=∆ , mass-squared difference between i-th and j-th mass eigenstates. 

Besides, the effective potential )(2)( xNGxV eF≡ introduces the matter effect arising from 
the interaction between eν  and electrons in the medium [9], where Ne(x) is the electron 
number density, and GF is the Fermi constant.  
 

2.1  The magic baseline 
 
 CP-violation phase δCP is still an unknown parameter. In order to make a clear 
measurement of other neutrino oscillation properties, it is necessary to consider the case when 
the CP-violation phase can be dropped out. In this section, we are going to follow the 
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discussion in [7]. One will see here that when the baseline length is equal to the integer of 
refraction length, the solar amplitude AS in neutrino oscillation probability, which is 
accompanied with CP-violation phase, becomes zero. In such a case, we can drop out the 
effect of CP-violation phase by simply setting it to zero. 
 

2.1.1  Where does the magic baseline come from? 
 
 One can first rewrite PMNS mixing matrix as UPMNS = U23 Iδ U13 I-δ U12 with Uij the 
rotation matrix performed in ij-plane by the angle θij, and Iδ = diag (1 ,1 , eiδ) is the matrix of 
CP-violation phase. The probability of νe → νμ can then be represented as [7, 10]: 

                 
2

23 23( ) cos sinCPi
e S AP A e Aδ

µν ν θ θ→ = +                     (2.3) 

where AS is the solar amplitude depending mainly on 2
21m∆  and 12θ , and AA is the 

atmospheric amplitude depending on 2
31m∆  and 13θ . Notice that this is the case expanding up 

to the lowest order of 2
31

2
21 / mm ∆∆  and sin2θ13 [11]. With constant density medium profile, 

which will be discussed in the next section, one can obtain up to a phase factor that  

2
sin2sin 12

m
Sm

SA
φ

θ=                            (2.4) 

where m
12θ  is the 1-2 mixing angle, and 2 /m

S mL lϕ π=  is the oscillation phase with  
lm the oscillation length [12], and L the baseline length. The index m expresses those 
parameters in matter. One can find that when L is equal to lm, the solar amplitude AS vanishes. 
In this case, the baseline length L is called the magic baseline Lmagic, since the exact value of 
δCP can be neglected at such baseline length. In this way, to find out how long the oscillation 
length lm is becomes crucial for the determination of the magic baseline Lmagic. Further 
consideration of oscillation length lm is stated below. 
 

By neglecting the U13 transformation matrix in PMNS in equation (2.2), one can first 
obtain the result [13] as: 

               2
12

2
21

2
12

2
2121 )2cos()2sin( θθ mVmmm ∆−+∆=∆               (2.5) 

and rewrite the equation with the definition of oscillation length l = 4πE/ 2
21m∆ [12]  

as 
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where 0 2 /l Vπ= . According to equations (2.5) and (2.6), one will obtain 0llm ≈  if neutrinos 
travel in the medium with a very large density or carry large energies ( 0l l>> ). The lower 
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limit of the neutrino energy (0.5 ~ 1GeV) for this equality to hold can be estimated by 
comparing the value of l and l0 [7]. The oscillation phase thus becomes 

                             
0

2
l

Lm
S

πφ =                                 (2.7) 

As 0lL = , oscillation phase equals to 2π, and the solar amplitude AS vanishes. This leads to 

2
23( ) sine AP Aµν ν θ→ ≈ .                          (2.8) 

The dependence on CP-violation phase and solar neutrino amplitude therefore disappears if 
the baseline length just equals to 0l . This is the so-called magic baseline. 
 

Furthermore, one can define 0l as the refraction length, the distance that an additional 
phase difference ε which neutrinos acquire due to the interaction with matter equals to 2π. 
That is 
                             πε 20 == lV                                (2.9) 

where 2 F eV G N≡ is the potential difference for νe and νμ in the usual matter. In this  
way, when the baseline length is equal to the integer of refraction length, the effect of 
CP-violation phase can be dropped out. 
 

2.1.2  Corrections to the magic baseline 
 
 Since some approximations have been made in the previous calculation, discussion of 
corrections due to the negligence of the higher order of 2

31
2
21 / mm ∆∆  and sin2θ13 is needed. The 

first one is due to 0ml l≠ , and another one comes from the dependence of AS on 1-3 mixing 
angle. These corrections can be as large as 3%. 
 

Since only the first term of expansion is taken at the 0l l>> limit in last section, we have 
the following correction from equation (2.7) by taking the second term into account when the 
limit, 0l l>> , is not satisfied perfectly 

2
0 21

0 12 0 121 cos 2 1 cos 2
2mmagic

l mL l l l
l EV

θ θ
 ∆ = ≈ + = +  

   
              (2.10) 

One can see that the correction becomes larger with the decrease of neutrino energy or the 
effective potential. 

 
By considering the explicit calculations of AS [7], one can perform an additional 1-3 

rotation of neutrino basis and make a block-diagonalization of the obtained Hamiltonian. The 
final modified magic baseline length in [7] is 
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20
0 12 131 cos 2magic

lL l s
l

θ ≈ + + 
 

                        (2.11) 

 
We can see that in section 2.1.1, the magic baseline is derived under the assumption that 

θ13 is very small. With corrections in section 2.1.2, the magic baseline equality is still 
approximately satisfied. In order to obtain a more explicit value of the magic baseline, we will 
perform numerical calculations in the next chapter. 

 

2.2  The neutrino oscillation probability 
 

To obtain analytic expression for neutrino oscillation probabilities, we introduce an 
approximation of the earth density profile. For a given medium, one can divide the neutrino 
propagation length L into several segments with varying densities. If Li is the length of one 
segment with ρi the corresponding matter density, we can calculate an average density for the 
total path-length as ρ = ( ρ1 L1 + ρ2 L2 + … + ρn Ln ) / L.  
 

In the same way, the Earth can be categorized mainly into two layers, the Earth mantle 
and the Earth core. Therefore, its average density is given by (ρm Rm + ρc Rc)/L if a neutrino 
passes both mantle and core parts of the Earth. On the other hand, if a neutrino traverses only 
the Earth mantle, the average density is ρm, and L equals to 2Rm. In the first case, the total 
path-length L is given by L = 2Rm + Rc with  
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where R = 6371 km is the radius of the Earth and rc = 3480 km is the radius of the Earth core. 
θn is the neutrino incident Nadir angle as shown in Fig. 2.1, and the critical Nadir angle for 
neutrino passing the Earth core is 33.17˚ with the corresponding path-length L = 10674 km. 

 
The probability Pμμ (νμ → νμ) and Peμ (νe → νμ) are given by [14]: 
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Fig. 2.1  The earth geometric parameters.     
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Here )(

31
cmm∆  is defined as 2

13
2
31

)(2
13

2
31 )2cos()2sin( θθ mAm cm

e ∆−+∆ , and 
)()( 22 cm

eF
cm

e ENGA = . The superscripts m and c here denotes the Earth mantle and the Earth 
core respectively.  

 
 In the following chapter, we will perform a numerical calculation with the approximation 
of the earth density profile stated above, and see how the obtained magic baseline performs in 
the determinations of the θ23 octant. 
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Chapter 3  
The Dependencies of Peμ and Pμμ on 
CP-Violation Phases and a Combined Analysis  
for Determining the θ23 Octant 
 
3.1  Quantitative study for dependencies of Peμ on δCP and the 

magic baseline 
 
 According to the results in Fig. 3.1 [14], Peμ is rather sensitive to the CP phase for L = 
1000 km and 5000 km, while Pμμ is not. Here we are going to study the CP phase 
dependencies of Peμ with numerical calculation based on the studies in [14]. Table 3.1 shows 
the value of oscillation parameters we used here. 
 
 For a given baseline length, we can obtain similar results like Fig. 3.1. One can see that, 
in Fig.3.1, the obvious differences of oscillation probabilities between different CP phases 
occur at certain energies. To examine the effects of CP phases on muon neutrino appearance 
probability Peμ, it is useful to find out the maximum and minimum values of Peμ due to 
different CP phases in a given energy and baseline length. In this way, we can figure out a 
specific baseline length where the maximum and minimum values are closest to each other. 
That is the point where the oscillation probability is most insensitive to the CP-violation phase. 
It is the so-called magic baseline where we can neglect the effect of δCP in the calculation by 
setting δCP = 0. Since δCP is still an unknown parameter, knowing this baseline length is useful 
for our determination of θ23 octant. 
 

In this section, we perform calculations in energies between 5 GeV and 20 GeV with a 
1-GeV bin size, and calculate the probability Peμ with baseline length between 0 and the 
diameter of the earth (largest possible baseline for neutrinos traveling in the earth), 12742 km  
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 Value used 
here Allowed region Best-fit value 

232cos θ  0.2 1.02cos 23
2 <θ  0 

12
2sin θ  0.281 371.0sin267.0 12

2 << θ  0.314 

132sin θ  0.2 or 0.3 1.02sin 13
2 <θ   

2
21m∆  25 eV102.8 −×  252

21
25 eV1063.8eV1021.7 −− ×<∆<× m  25 eV1092.7 −×  

2
31m∆  23 eV104.2 −×  232

31
23 eV100.3eV109.1 −− ×<∆<× m  23 eV104.2 −×  

eY  0.5   
 
Table 3.1  Oscillation parameters used here [9, 14, 15]. 
 
with a 1-km bin size. For a given energy and baseline length, we further solve the neutrino 
oscillation probabilities Peμ with equation (2.2) for various CP-violation phases between 0 and 
2π with a 0.02π bin size. From those probabilities associated with different CP-violation 
phases, one can find the difference or ratio between the maximum and the minimum ones.  
Fig. 3.2 ~ Fig. 3.5 show the results. Different colors of lines in Fig. 3.2 ~ Fig. 3.5 represent 
different energies. The bluer the line is (or the shorter the dashed line is), the higher energy 
neutrinos have. 
 

Fig. 3.2 (a) shows the numerical calculation of max min
e eP Pµ µ− . We see that there is a region  

that all max min
e eP Pµ µ−  approach zero as we discussed in the beginning of this section. By  

inspecting Fig. 3.2 (b), the enlarged region of those minimum points in Fig. 3.2 (a), one can  
see that the baseline length where the minimum difference between max

ePµ  and min
ePµ occurs 

are sensitive to neutrino energies. Fig. 3.3 shows the results for min max/e eP Pµ µ , and Fig 3.3 (b) 

displays the baseline points that maximum the ratio of min max/e eP Pµ µ  (approaches unity) occurs.  

The energy dependence of the magic baseline can be easily observed here as well. Fig. 3.4 
shows similar graphs with 132sin θ  taken to be 0.3. One may see in Fig. 3.4 that the shifting 
of the magic baseline due to different neutrino energies is much more obvious, which agrees 
with equation (2.11). 
 

We made both difference and ratio graphs of max
ePµ  and min

ePµ  in Fig.3.2 ~Fig. 3.4.  

With analysis of the baseline lengths where max
ePµ is closest to min

ePµ , we obtained Fig. 3.5.  

In Fig 3.5(a), the magic baseline lengths in low energy are much larger than those in higher 
energies, which generate a 2.6% difference approximately. The analytic results of equation 
(2.11) are also plotted in Fig. 3.5 (a), while there is no big difference over energies 5 GeV~20 
GeV. Furthermore, in numerical calculations the magic baseline lengths in higher energies 
decrease about 0.84% when sin2θ13 changes from 0.2 to 0.3, while it increases about 1.29% in 
analytic ones. These differences come from the different definitions of the magic baseline. In 
comparison with the definition we took in numerical calculation, the one in analytic  
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                          (a) 

 

                         (b) 
 
Fig. 3.1  The CP phase dependencies of Peμ and Pμμ for baseline length L = 1000 km (a) and 
5000 km (b) [14]. 
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calculation is defined as the baseline length when the solar amplitude in equation (2.4) equals 
to zero. One may also notices that the magic baseline obtained here is not perfect, since  

max min
e eP Pµ µ−  does not exactly equal to zero, and min max/e eP Pµ µ  does not equal to unity at the  

magic baseline. However, we will see later that this does not influence the results of the 
determination of θ23 octant. We also show numerical results of the magic baseline obtained by  
different definitions in Fig 3.5 (b). Both sets of max min

e eP Pµ µ− and min max/e eP Pµ µ curves match very  

well, especially for the case sin2θ13 = 0.2.  
 

From those numerical calculations, we do find a specific baseline length where Peμ is 
almost independent of δCP. However, calculations for different mixing angles and different 
energies show that the magic baseline length still depends on the mixing angle θ13 and 
neutrinos energy. The difference can be more than 300 km. The shifts are obvious when the 
energy is below 12 GeV. When the neutrino energy is 20 GeV, the magic baseline is equal to 
7513 km when sin2θ13 is equal to 0.2, and is equal to 7455 km when sin2θ13 changes to be 0.3. 
We will adopt this result in the next section. 
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                                    (a) 

 
 

                                     (b) 
 
Fig. 3.2  The difference of max

ePµ  and min
ePµ  as a function of baseline length for  

energies 5 GeV (red, solid line), 6 GeV (pink, longest dashed line), 7 GeV (yellow), 10 GeV 
(green), 15 GeV (blue), and 20 GeV (purple, shortest dashed line). (a) shows the results of 
entire baseline lengths. (b) shows the results around magic baseline. 
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                                    (a) 
 

 
                                    (b) 
 

Fig. 3.3  The ratio of max
ePµ  and min

ePµ  as a function of baseline length for  

energies 5 GeV (red, solid line), 6 GeV (pink, longest dashed line), 7 GeV (yellow), 10 GeV 
(green), 15 GeV (blue), and 20 GeV (purple, shortest dashed line). (a) shows the results of 
entire baseline lengths. (b) shows the results around magic baseline. 
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                                    (a) 
 

 
                                    (b) 
 
Fig. 3.4  The difference (a) and the ratio (b) of max

ePµ  and min
ePµ  as a function of baseline  

length for energies 5 GeV (red, solid line), 6 GeV (pink, longest dashed line), 7 GeV (yellow), 
10 GeV (green), 15 GeV (blue), and 20 GeV (purple, shortest dashed line). Here we take 
sin2θ13 = 0.3. 
 
 
 



 15 

 
 
 

 

                             (a) 

 

                             (b) 
 
Fig. 3.5  Magic baseline lengths as a function of energy for both 132sin θ = 0.2 and 0.3 in 
numerical (both max

ePµ - min
ePµ and min

ePµ / max
ePµ cases) and analytic calculations. 
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3.2  Combined analysis of appearance and disappearance 

modes at the magic baseline 
 

3.2.1  The breaking of θ23 degeneracy 
 
 Other than the CP-violation phase dependencies of Peμ studied in the last section, we 
further take a look at θ23 and θ13 dependencies of Peμ and Pμμ. It is instructive to rewrite 
equation (2.13) into 

)1(),(
)1()(),( 2

−−==

−+++−==

yzygP
yyzyfP

e γ

ββαα

µ

µµ                    (3.1) 

where y ≡ cos2θ23 and z ≡ sin2θ13 with 

],)sin()cos[(
4
1 22 tvtu −+−−=α          

])sin()cos[(
4
1)1(

2
1 2222 tvtuvu −+−+−−=β               (3.2) 

βαγ +=−−= )1(
2
1 22 vu  

u and v are defined in (2.14). Note that these results are valid under the condition with 
2 2
21 31/ 0m m∆ ∆ = . One can see in equation (3.1) that the θ23 degeneracy is broken in both Peμ  

and Pμμ due to terms linear in y. Hence they are independent of the CP-violation phase δCP. 
The effect of the linear term is determined by α + β, and it becomes obvious when the 
baseline length is longer than 7000 km [14]. In this way, it is instructive to choose magic 
baseline (around 7500 ~7600 km) as the baseline length for probing the octant of θ23. In the 
following sections, we are going to see if θ23 degeneracy can be broken with a 20-GeV 
neutrino factory. 
 

3.2.2  Framework of combined analysis 
 
 It has been mentioned before that the solar neutrino amplitude disappears when the 
baseline length equals to the integer multiple of refraction length:  

eF
magic NG

nL
2
2π

=                               (3.3) 

In such a case, the effect of δCP can be ignored. Here we take the shortest baseline length by 
choosing n = 1, and obtain: 
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km162572
=== ∫

eF
ee NG
dLNLN π                       (3.2) 

Given the earth density profile, one obtains L ≈ 7600 km [13]. We will first illustrate the 
framework of the combined analysis in a neutrino factory and show the results in [15] where 
δCP is set to be zero at baseline length 7600 km. 
 
 A neutrino factory produces electron neutrino and anti-neutrino beams through the 
following muon decay processes: 

e

e

e

e
µ

µ

µ ν ν

µ ν ν

+ +

− −

→ + +

→ + +
 

and detect the muons generated from final neutrinos after propagating a baseline. The detector 
mass is of the order kilotons. The differential event rates for νi → νf can be written as 

)'()',()()()(
'

EEEREEPEdEN
dE

dn
ffi

fi
ffi

εσφ ννν ×××××= ∫ →
→             (3.3) 

where E is the incident neutrino energy, E’ is the reconstructed neutrino detected energy, iφ is 
the incident neutrino flux, 

fi
P νν → is the oscillation probability form flavor i to flavor j, 

fνσ is 
the νf - nucleon scattering cross section, Rf is the energy resolution function, εf is the detection  
efficiency of νf, and N is the normalization constant given by 

dAy MNnN ×××= 910                             (3.4) 

where ny is the running years of this experiment, NA is the Avogadro’s number, and Md is the 
detector mass in kilotons. In this work, ny is taken to be 4 years for both μ+ and μ- modes, and 
Md = 50. The initial νe of appearance mode νe → νμ arises from the μ+ decay, while the initial 
νμ of appearance mode νμ → νμ comes from the μ- decay. Their expected fluxes in this work 
are given by [16] 

)/()( 2 µ
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µµ

π
φ EEg

Lm
EN

E ii 
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





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=                            (3.5) 

where Nμ is the number of muon decays per year with x ≡ E / Eμ, )(xg
eν

 

)1(12)( 2 xxxg
e

−==
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, )23(2)()( 2 xxxgxg −==
µµ νν , Eμ = 20GeV, L = 7600 km. We take 

20105×== −+ µµ
NN  as discussed in [17]. The energy resolution function Rf  is represented 

in Gaussian form as 
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                       (3.6) 

The Gaussian width λf is taken to be 0.15E for either µν or µν , the final states we are 
interested. The detection efficiency εf for these final states is given by  
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





 −= 1

4
'

4
)'( EE f

f

η
ε                             (3.7) 

where the efficiency factor ηf is 0.35 for oscillation mode νe → νμ and µµ νν → , while it is 
0.45 for µνν →e  and νμ→ νμ  [17]. The last parameter, νf - nucleon scattering cross section, 
is equal to 38 2(0.677 0.014) 10 cm /GeVE−± × for muon neutrino and is equal to 

38 2(0.34 0.020) 10 cm /GeVE−± ×  for anti-muon neutrino [18] [19]. 
 
  With equation (3.3), neutrino mixing parameters mentioned in Table 3.1 can be input 
for generating a simulated νμ spectra from 5 GeV to 20 GeV with a 1-GeV bin size. Here we  
take 2.02sin 13 =θ , and perform the combined analysis in normal hierarchy 02

31 >∆m . By  
determining the 2σ and 3σ contours of mixing parameters θ23 and 2

31m∆ , we are able to see  
how the θ23 degeneracy is lifted by the combined analysis of muon neutrino appearance and 
disappearance modes. The χ2-function of the fit is given by [20] 
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xxx
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where n is the numbers of bins, xi is the number of events in i-th bin, while ix is the expected 
number of events in i-th bin calculated by the input best-fit parameters in Table 3.1. The left 
panel of Fig. 3.6 shows the contours for both appearance and disappearance modes. One can 
see that the fitting to the disappearance mode results in two small regions, while the fitting to  
 
 

 
 
Fig. 3.6  The 1σ (red), 2σ (green), and 3σ (blue) contours for ranges of neutrino mixing 
parameters θ23 and 2

31m∆  for sin2θ13 = 0.2, and the input values θ23 = 50.768˚  
and 2 3 2

31 2.4 10 (eV )m −∆ = × . The dashed lines come from the analysis of appearance mode Peμ, 
and the solid lines come from disappearance mode Pμμ for 20-GeV neutrinos. 
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the appearance mode results in a larger area due to a low statistics. By combining both fittings, 
the θ23 degeneracy is lifted. The best-fit point is located at θ23 = 51.8 ˚and  

2 3 2
31 2.33 10 (eV )m −∆ = × , which also coincides well with input values, θ23 = 50.77 ˚ and 
2 3 2
31 2.4 10 (eV )m −∆ = × . It is instructive to see that the appearance and disappearance  

modes complement each other well. In this case, if one can measure Peμ and Pμμ with enough 
statistics, it is possible to resolve the octant of θ23. More studies of 20-GeV neutrino factory 
for resolving θ23 octant can be found in [15]. 
 
3.2.3  The combined analysis at different CP-violation phases 
 
 So far only the case of CP-violation phase δCP = 0 has been calculated at the magic 
baseline, 7600 km. In this subsection, we will perform the combined analysis for other 
CP-violation phases as well. Table 3.2 shows some best-fit points obtained both in muon 
neutrino appearance and disappearance modes and the ones after the combined fitting. In 
order to find out how CP-violation phases affect best-fit points at the magic baseline, we first 
assume that the real CP-violation phase value is equal to zero. Furthermore, we input the other 
different CP-violation phase (wrong CP phases) values while performing the χ2-function 
fitting. In this way, we can see that whether we still perform this fitting well or not even if we 
make a wrong guess of the CP-violation phase. One can clearly see in the Table 3.2 that the 
obtained best-fit points do not change much as we change the CP-violation phase. Note that 
we list two best-fit points for each octant of θ23 in Pμμ mode. 
 
We can see that the best-fit points of 2

31m∆  do not change significantly like θ23. Large 
fluctuations of θ23 are due to the low statistics of appearance mode Peμ. One can see in  
 

 Peμ Pμμ Combined fitting 

CPδ  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  

0 43.567 2.56 
40.1061 

2.4 50.7685 2.4 
50.7685 

3
7
π  43.8538 2.56 

40.1061 
2.4 50.4764 2.4 

50.4764 
8
7
π  43.2801 2.56 

39.8185 
2.4 50.4764 2.4 

50.4764 
12

7
π  43.2801 2.56 

40.1061 
2.4 50.7685 2.4 

50.7685 
 
Table 3.2  Best-fit points calculated through various CP-violation phases at magic baseline 
with input values 32

3123 104.2and768.50 −×=∆°= mθ (eV2). 
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Fig. 3.6 that contours for allowed 2
31m∆  values do not stretch widely as contours for allowed  

θ23 do. Finally, it is reasonable to set CP-phase to zero in the first place at the magic baseline. 
The result for the combined fitting always falls into the correct octant. 
 
 In the case that the input value of θ23 changes into °232.39 , the fitting still goes very well. 
The results are shown in Fig. 3.7 and Table 3.3, and the best-fit point came out in a similar 
value with the input one. Furthermore, we also performed the analysis at the magic baseline 
 

 
 
Fig. 3.7  The 1σ (red), 2σ (green), and 3σ (blue) contours for ranges of neutrino mixing 
parameters θ23 and 2

31m∆  for sin2θ13 = 0.2, and the input values θ23 = 39.232˚ and 
2 3 2
31 2.4 10 (eV )m −∆ = × . The dashed lines come from the analysis of appearance mode Peμ, 

and the solid lines come from disappearance mode Pμμ for a 20-GeV neutrino factory. 
 
 

 Peμ Pμμ Combined fitting 

CPδ  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  

0 36.571 2.44 
38.9388 

2.4 38.9388 2.4 
51.9433 

3
7
π  36.8699 2.44 

38.6455 
2.4 38.6455 2.4 

51.9433 
8
7
π  36.571 2.44 

38.6455 
2.4 38.6455 2.4 

51.6485 
12

7
π  36.571 2.44 

38.9388 
2.4 38.9388 2.4 

51.9433 
 
Table 3.3  Best-fit points calculated through various CP-violation phases at the magic 
baseline with input values 32

3123 104.2and232.39 −×=∆°= mθ (eV2).  
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L = 7513 km which we obtained with the numerical calculation. The results are shown in  
Table 3.4. Once again, the fitting goes very well, which indicates that the possible magic 
baseline length can vary for several kilometers. 
 
 

 Peμ Pμμ Combined fitting 

CPδ  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  23θ  )10( 32
31

−×∆m  

0 48.1577 2.44 
40.3966 2.4 

50.7685 2.44 
50.7685 2.44 

3
7
π  47.8696 2.44 

40.3966 2.4 
50.7685 2.44 

50.7685 2.44 
8
7
π  47.5818 2.44 

40.1061 2.4 
50.4764 2.44 

50.4764 2.44 
12

7
π  47.8696 2.44 

40.3966 2.4 
50.7685 2.44 

50.7685 2.44 
 
Table 3.4  Combined analysis of muon neutrino appearance and disappearance modes at 
baseline length L = 7513 km with input values 32

3123 104.2and768.50 −×=∆°= mθ (eV2). 
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Chapter 4  
Summary and Conclusion 
 
 We can see from this work that even we know nothing about the CP-violation phase, it is 
still possible to probe neutrino mixing parameters at the magic baseline. The analytic value of 
magic baseline is first defined and derived in Chapter 2, and we also adopt this magic baseline 
Lmagic = 7600 km in the analysis with respect to the muon neutrino appearance and 
disappearance modes. Furthermore, we consider some possible corrections to the 
approximations used in deriving the magic baseline, and found that the magic baseline lengths 
can vary with different neutrino energies if the neutrino energy is smaller than 1GeV. The 
value of sin2θ13 also affects the value of magic baseline. However, θ13 is only constrained to  
be 2

13 13sin 2 0.1 ( 9 )θ θ< <  . 
 
 We also determine the magic baseline numerically. We calculate both the cases of sin2θ13 

= 0.2 and 0.3 to see how sin2θ13 affects magic baseline length, and we also scan through the 
energies between 5 GeV and 20 GeV. The results show that there is not much difference 
between the cases of sin2θ13 = 0.2 and 0.3. However, the effect due to the energy difference is 
up to several hundred kilometers. This becomes obvious especially when the neutrino energy 
is smaller than 12 GeV. Stable values for larger energies are also different from the analytic 
results Lmagic = 7600 km. To verify how these magic baseline lengths can be useful for 
extracting neutrino oscillation parameters, we performed a combined neutrino oscillation 
analysis of muon neutrino appearance and disappearance modes. 
 
 By following the combined analysis of appearance and disappearance modes in [15], 
which considers oscillations at the magic baseline Lmagic = 7600 km and set the effect of 
CP-violation phase to zero, here we calculate as well the cases when the CP-violation phases 
equals to 3π / 7, 8π / 7 and 12π / 7. Results come out quite independent of the CP-violation 
phase, which confirms that there is no need to consider the CP-violation phase at this specific 
magic baseline. We also see in this combined analysis of muon neutrino appearance and 
disappearance modes that the best-fit values of θ23 and 2

31m∆ coincide well with the input ones. 
It shows that a 20-GeV neutrino factory running over 4 years for each of μ+ and μ- modes 
accompanied with a 50-kiloton detector provides enough statistics for resolving these 
parameters. In this analysis, we also take the magic baseline to be 7513 km which is obtained 
numerically. 
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