水分子嵌入對 Na_xCoO₂·yH₂O 電子結構的影響

學生:陳雅鈴

指導教授:林俊源

國立交通大學物理研究所碩士班

摘要

我們利用 KMnO₄ 溶液除去 Na₀₆₈CoO₂ 薄膜部分的鈉離子,並置入潮濕 室使水進入 Na_xCoO₂結構中,形成 Na_xCoO₂·yH₂O 薄膜。而 Na_xCoO₂·yH₂O 粉末的製備,則是將 Na_{0.7}CoO₂ 粉末浸入 Br₂/CH₃CN 溶液中除去部分鈉離 子,並置入潮濕室使水進入 Na_xCoO₂ 粉末浸入 Br₂/CH₃CN 溶液中除去部分鈉離 子,並置入潮濕室使水進入 Na_xCoO₂ 結構中,形成 Na_xCoO₂·yH₂O 粉末。 我們發現與 Na_xCoO₂ 的 Co *K*-edge 及 O *K*-edge X 光吸收光譜比較起來, Na_xCoO₂·yH₂O($y = 0.7 \times 1.4$)較 Na_xCoO₂·yH₂O(y = 0) 之鈷的價數低,推測 是由於水的結構影響了鈷的價數。也就是說,Na_{0.35}CoO₂·yH₂O($y = 0.7 \times 1.4$) 之鈷的價數不是只由鈉的含量來決定的 3.65,反之,可能是因 H₃O⁺存在或 其它因素所造成的 3.4~3.5。因此,我們認為在 Na_xCoO₂·yH₂O 中, $y = 0 \times$ 0.7、及 1.4 的電子結構不同。另外,由 O *K*-edge X 光吸收光譜我們也發現 與能帶理論計算相同的結果,就是 a_{lg} 軌域的能帶寬為 Na_{0.35}CoO₂ > $Na_{0.35}CoO_2 \cdot 0.7H_2O > Na_{0.35}CoO_2 \cdot 1.4H_2O \ \circ$

Effects of water intercalation on the electronic structure of

$Na_xCoO_2 \cdot yH_2O$

student : Ya-Ling Chen

Advisors : Dr. Jiunn-Yuan Lin

Institute of Physics National Chiao Tung University

ABSTRACT

Na_xCoO₂ · *y*H₂O thin films deposited on Al₂O₃(0001) have been fabricated using the KMnO_{4(aq)} chemical deintercalation method, which leads to partial deintercalation of Na⁺ ions and intercalation of H₂O molecules. Measurements of polarization dependent Co-*K* edge and O-*K* edge XAS (X-ray Absorption Spectroscopy) have been performed on Na_xCoO₂ · *y*H₂O powders and thin films with y = 0.7 and y = 1.4. The spectra reveal the variations of cobalt valence causing Na_xCoO₂ · *y*H₂O for different *y*'s. It has recently been pointed out that the valence of Co ions in this material is not +3.65 as naively expected from the Na content *x* of ~0.35. Instead, the actual valence is +3.4 ~ 3.5 irrespective of *x* perhaps because of the presence of oxonium ions (H₃O⁺) or other unknown factors. We argue that the electronic structures are different between Na_xCoO₂ · yH₂O and Na_xCoO₂. We compare our O-*K* edge XAS with first-principle band structure calculations and find that, for the bandwidth, Na_{0.35}CoO₂ > Na_{0.35}CoO₂ · 0.7H₂O > Na_{0.35}CoO₂ · 1.4H₂O in the a_{1g} band around the Fermi energy .

Thank you all !

中文摘要	 i
英文摘要	 iii
誌謝	 v
目錄	 vi
圖目錄	 viii
表目錄	 xi

第一章	序論	1
第二章	材料介紹	7
2.1	鈉鈷氧之介紹	7
2.1.1	鈉鈷氧之結構	7
2.1.2	超導之介紹	9
2.1.3	Na _x CoO ₂ ·yH ₂ O之介紹	10
2.2	熱電材料	11
第三章	實驗方法	19
3.1	樣品製備-薄膜製備	19
3.1.1	靶材製備	19
3.1.2	薄膜製備	19
3.1.3	Na _{0.68} CoO ₂ 薄膜的製備	21
3.1.4	Na _x CoO ₂ ·yH ₂ O 薄膜的製備	22
3.2	樣品製備-粉末製備	23
3.2.1	Na _{0.7} CoO ₂ 粉末的製備	23
3.2.2	Na _x CoO ₂ ·yH ₂ O 粉末的製備	24
3.3	特性量測分析	24
3.3.1	X-ray 繞射分析	24
3.3.2	X光吸收光譜近邊緣結構(XANES)	25
3.3.2(a)	XANES 原理簡介	25
3.3.2(b)	自我吸收光譜(self-absorption)校正	26
3.3.2(c)	HSGM 裝置簡介	27
3.3.3	X光吸收邊緣延續光譜細微結構(EXFAS)	27
3.3.3(a)	EXAFS 原理簡介	27
3.3.3(b)	EXAFS 數據分析	29
第四章	實驗結果與討論	40
4.1	實驗設計	40
4.2	材料特性分析	40

4.2.1	XANES 分析 - Co K-edge	41
4.2.1(a)	X 光繞射實驗結果	42
4.2.1(b)	Co K-edge X 光吸收光譜之吸收邊緣實驗結果	43
4.2.1(c)	Co K-edge X 光吸收光譜之吸收邊緣前的實驗結果	45
4.2.1(d)	Co K-edge X 光吸收光譜之擬合結果	47
4.2.1(e)	Co K-edge X 光吸收光譜之實驗結論	49
4.2.2	XANES 分析 - O K-edge	49
4.2.2(a)	X 光繞射實驗結果	49
4.2.2(b)	OK-edge X 光吸收光譜之吸收邊緣實驗結果	51
4.2.2(c)	O K-edge X 光吸收光譜之實驗結論	56
第五章	總結	93
附錄 A	Co L-edge X 光吸收光譜	95
附錄 B	α -Na _{0.7} MnO _{2+y}	97
B-1	Na-Mn-O 系列之用途	97
B-2	Na _{0.7} MnO _{2+y} 結構介紹	97
B-3	α-Na _{0.7} MnO _{2+y} 材料分析	98
參考文獻		106

圖 目 錄

圖 1-1	LDA 算出 NaCo ₂ O ₄ 於 kz = 0 以及 kz = 1/2 的費米面[3]	5
圖 1-2	HB. Yang et al. APRES 實驗結果[4]	6
圖 2-1	Na _{0.7} CoO ₂ 的結構	13
圖 2-2	八面體及 3d 軌域能階分裂示意圖	14
圖 2-3	Na _x CoO ₂ 豐富相圖[28]	15
圖 2-4	Na _x CoO ₂ 及Na _x CoO ₂ ·yH ₂ O結構示意圖[2]	16
圖 2-5	釔鋇銅氧之晶格結構圖	17
圖 2-6	冷卻機與電能產生器示意圖	18
圖 3-1	雷射蒸鍍系統裝置圖	30
圖 3-2	Na _{0.68} CoO ₂ 薄膜壓成圓錠示意圖	31
圖 3-3	製備 Na _{0.68} CoO ₂ 薄膜流程圖	32
圖 3-4	製作 Na _x CoO ₂ ·yH ₂ O 薄膜示意圖	33
圖 3-5	粉末樣品製作流程示意圖	34
圖 3-6	製備 Na _x CoO ₂ ·yH ₂ O 粉末的流程圖	35
圖 3-7	X光螢光產率原理圖	36
圖 3-8	6m HSGM 光束線光學系統配置圖	37
圖 3-9	6m HSGM 儀器配置圖 95	38
圖 3-10	EXAFS 原理示意圖	39
圖 4-1	Na _{0.35} CoO ₂ · 0.7H ₂ O 及 Na _{0.35} CoO ₂ · 1.4H ₂ O 粉末之 x-ray	
	繞射分析圖	58
圖 4-2	Na _x CoO ₂ ·yH ₂ O 及標準樣品之 Co K-edge X 光吸收光	50
	謹	59
圖 4-3	Na _x CoO ₂ · yH ₂ O 之歸一化 Co K-edge X 光吸收光 譜	60
圖 4-4	Ref. 18 之 Co K-edge X 光吸收光譜	61
圖 4-5	Co K-edge X 光吸收光譜之反曲點能量與鈷價數關係	
	圖	63
圖 4-6	Na _{0.7} CoO ₂ 與Ref. 18及38中之Na _x CoO ₂ ·yH ₂ O Co K-edge	
	X 光吸收光譜	64
圖 4-7	Ref. 18 之 Co K-preedge X 光吸收光譜	65
圖 4-8	Ref. 38 之 Co K-edge X 光吸收光譜	66
圖 4-9	Na _x CoO ₂ ·yH ₂ O之CoK-preedgeX光吸收光譜	67
圖 4-10	Na _x CoO ₂ ·yH ₂ O 及 Na _x CoO ₂ 之 Co K-preedge X 光吸收光	

	冠 	68
圖 4-11	$Na_{0.35}CoO_2 \cdot 0.7H_2O \cdot Na_{0.35}CoO_2 \cdot 1.4H_2O \cdot $ 及 $Na_{0.35}CoO_2$	
	Co <i>K</i> -edge 做 \mathbf{k}^{3} 加權傅立葉轉換	6
圖 4-12	Na _{0.7} CoO ₂ 的k ³ χ-K以及其傅立葉分析後實驗值與理論擬	
	合的比較	70
圖 4-13	Na _{0.35} CoO ₂ ·0.7H ₂ O的k ³ χ-K以及其傅立葉分析後實驗値	
	與理論擬合的比較	7
圖 4-14	Na _{0.35} CoO ₂ ·1.4H ₂ O的k ³ γ-K以及其傅立葉分析後實驗値	
	與理論擬合的比較	72
圖 4-15	Na0.35CoO2 · 0.7H2O 薄膜之 x-ray 繞射分析圖	74
圖 4-16	Na0.35CoO2 · 1.4H2O 薄膜之 x-ray 繞射分析圖	7:
圖 4-17	Na0.35CoO2 · 1.4H2O 薄膜之 x-ray 繞射分析圖	70
圖 4-18	Na0.35CoO2 · 0.7H2O 粉末之 x-ray 繞射分析圖	7′
圖 4-19	Na _x CoO ₂ ·yH ₂ O 及液相水之 O K-edge X 光吸收光譜	78
圖 4-20	Na _{0.33} CoO ₂ 、Na _{0.68} CoO ₂ 、及 Na _{0.75} CoO ₂ 之O <i>K</i> -edge X 光	79
	吸收光譜	
圖 4-21	八面體及 3d 軌域能階分裂示意圖及電子躍遷能圖	80
圖 4-22	Na _x CoO ₂ ·yH ₂ O之OK-edgeX光吸收光譜	8
圖 4-23	Na _x CoO ₂ ·yH ₂ O 及標準樣品之 O K-edge X 光吸收光譜	82
圖 4-24	Na _x CoO ₂ ·yH ₂ O薄膜與標準樣品之 x-ray 繞射分析圖	8.
圖 4-25	Na _x CoO ₂ ·yH ₂ O 薄膜與標準樣品之 O K-edge X 光吸收光	
	譜	84
圖 4-26	Ryotaro Arita 透過理論計算算出單層水(MLH)與雙層水	
	(BLH)的能帶結構	8:
圖 4-27	C. A. Marianetti 等人透過 LDA 算出 Na _{1/3} CoO ₂ 與	
	Na _{1/3} CoO ₂ (H ₂ O) _{4/3} 的能帶結構	80
圖 4-28	O K-edge 的 X 光吸收光譜曲線擬合(curve fitting)結	
	果	8′
圖 4-29	Na _x CoO ₂ ·yH ₂ O之 E//c 525~550 eV O K-edge X 光吸收光	_
	諩 	9(
圖 4-30	Na _x CoO ₂ ·yH ₂ O之 E//c 525~535 eV O K-edge X 光吸收光	_
	諩 	9
圖 4-31	Na _x CoO ₂ ·yH ₂ O之 綜合方向性OK-edgeX光吸收光譜	92
圖 a-1	Co L-edge 的 X 光吸收光譜	90
圖 b-1	Na _{0.70} MnO _{2+y} 結構示意圖1	100
圖 b-2	Na _{0.70} MnO _{2+y} 之 x-ray 繞射分析圖1	10
圖 b-3	Na _{0.70} Co _{0.99} Mn _{0.01} O ₂ 、Na _{0.70} MnO _{2+y} 與標準樣品之 Mn	
	<i>L</i> -edge X 光吸收光譜 ¹	102

圖 b-4	Ref. 47 中 Mn <i>L</i> -edge 及 <i>K</i> -edge Na _x Co _{1-z} Mn _z O ₂ · y H ₂ O 與	
	標準樣品的 X 光吸收光譜	103
圖 b-5	Ref. 46 中 Na _{0.70} CoO _{2.05} 之磁化率與溫度的關係圖	104
圖 b-6	磁場為 0.1 T 時, Na _{0.70} MnO _{2+y} 薄膜之磁矩強度與溫度的	
	關係圖	105

表 目 錄

附表一	引用 Ref. 14 中的 Table 1,其為各樣品的鈷價數與化學組	
	成	57
附表二	擬合後 Na _{0.7} CoO ₂ 、Na _{0.35} CoO ₂ · 0.7H ₂ O、Na _{0.35} CoO ₂ ·	
	1.4H2O、CoO、及LiCoO2之鍵長、配位數、及Debye-Waller	
	因子	73

