
摘 要 
 

我們以瞬間正則模的方法計算水在偶極感應下的拉曼光譜，在此方法，每個

瞬間正則模對polarizability anisotropy INM spectrum 的貢獻權重不一。此

論文中，計算了每個模的權重因子。我們也藉由比較分子動力模擬方法而得的拉

曼光譜來討論此方法所得的結果。 

 另一方面，也探究了水的低頻譜的緣由。低頻譜的微觀來由還未有一致的論

點。此論文使用Voronoi多面體分析來研究局部結構對水的拉曼光譜的影響。雖

然結果並不夠清楚來辨識局部結構對水拉曼光譜的影響，但新的方法(Voronoi

多面體分析應用於水的拉曼光譜)已被探究。 
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Abstract

We have calculated the Raman spectrum of liquid water in dipole-induced-dipole

interaction in terms of instantaneous normal mode method. In this method, polar-

izability anisotropy INM spectrum is calculated with each INM weighted differently,

where “INM”is abbreviated from “instantaneous normal mode”. In this thesis, the

weighting factor of each INM is calculated. We also discuss the results of Raman

spectrum in INM method by comparing with those obtained by the MD simulation.

On the other hand, the origin of the low-frequency spectrum of water is also

studied. Designations for the origin of the low-frequency spectrum from microscopic

point of view are still not determined. In this thesis, the Voronoi polyhedral analyses

are used for investigating the effect of local structure on Raman spectrum of liquid

water. Although the results are not clear enough to identify the effect of local

structures in Raman spectrum of liquid water, new approach (VP analyses on Raman

spectrum) has been studied.



 

誌 謝 
 

一本論文的誕生，意味著人生旅途的一個段落。回首碩士班的這兩年旅程，

所受到的恩典，細細回想，足令人動容。 
感謝昆憲學長，從碩一開始學習電腦軟硬體、程式的教學、模擬方法等等，

在研究上一路的提供很多的協助與細心地教導。 
感謝邦杰學長，在計算上的輔助、並熱切與耐心地讓我諮詢大大小小的問題。 
感謝平翰兄，一路相伴在左，在我研究上有困頓時，可以有人請教，適時得

到協助，得以繼續進行。 
最後尤其感謝天鳴老師，除了提供研究環境資源、循序漸進式的帶領，讓我

體會按部就班，從做中學等學習與處事方法，也很感謝老師對學生的關心與教誨。 
一路走來，能夠順遂，全歸計算模擬實驗室的幫助與提攜，當然，還有其他

許多人曾經做過的努力，使我可以站在巨人的肩膀上做研究。 
 

除了在研究上的精進，生活上，幸運有知心好友們的傾聽與指點、交大豐富

的人事物，讓我的心胸、想法開拓不少。 
 

能進入交大的環境，從事一點科學研究的機會，還須感謝一大群人，尤其是

父母、家人，及師長們的支持與鼓勵。 
 最後，在未來的旅程上，帶著這些曾受過恩賜，向前邁進！ 

 iii



Contents

1 Introduction 1

2 Theoretical Methods 3

2.1 Molecular dynamics (MD) simulation . . . . . . . . . . . . . . . 3

2.2 Basic instantaneous normal mode (INM) theory for rigid model

of liquid water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Introduction of INM theory . . . . . . . . . . . . . . . . 3

2.2.2 The INM Hamiltonian . . . . . . . . . . . . . . . . . . . 4

2.2.3 The INM dynamics and density of states . . . . . . . . . 6

2.3 Voronoi polyhedral analyses for local structures . . . . . . . . . 7

3 Depolarized Raman Spectrum 14

3.1 MD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 INM theory of polarizability anisotropy dynamics . . . . . . . . 15

3.3 The correlation between polarizability anisotropy INM spec-

trum ρpol(ω) and depolarized Raman spectrum R(ω) . . . . . . 16

3.4 Collective polarizability of liquid water . . . . . . . . . . . . . . 17

3.4.1 Effective molecular polarizability . . . . . . . . . . . . . 17

3.4.2 Collective polarizability . . . . . . . . . . . . . . . . . . 18

3.5 Decomposition of polarizability anisotropy INM spectrum ρpol(ω) 19

3.6 Voronoi polyhedral analyses of local structure effects on Raman

spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Results and Discussions 23

4.1 Polarizability anisotropy INM spectrum . . . . . . . . . . . . . . 23

4.2 Depolarized Raman spectrum . . . . . . . . . . . . . . . . . . . 23

4.3 Voronoi polyhedral (VP) analyses of depolarized Raman spectrum 24

5 Conclusions 37

iv



A List of notations 38

B Computational details of ∂Πxz

∂qα
39

C Computational details of Voronoi polyhedral analyses for Ra-

man spectrum 41

D The derivation of the average contribution of spectrum per

molecule in every group 43

E The derivation of another kind of method beyond we used for

example 45

v



List of Figures

2.1 Triplet cluster of water. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Water molecule in the SPC/E model. . . . . . . . . . . . . . . . 10

2.3 Water molecular axes. . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The coordinate axes in the lab. frame and the molecular axes

in the body frame. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The INM approach. . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Normalized polarizability anisotropy INM spectrum . . . . . . . 27

4.2 The six components of the normalized INM spectrum. . . . . . . 28

4.3 (a): Depolarized Raman spectrum R(ω) calculated by the INM

approach; (b): The result R(ω) obtained by time correlation

function; (c): The INM DOS of liquid water for SPC/E model . 29

4.4 Depolarized Raman spectrum of MM component . . . . . . . . . 30

4.5 Voronoi analysis according to asphericity with polarizability

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Voronoi analysis according to asphericity with coordinate clas-

sification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Voronoi analysis according to volume with polarizability classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Voronoi analysis according to volume with coordinate classifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 The diagrams representing collective polarizability and partial

derivation with respect to the coordinate. . . . . . . . . . . . . . 33

4.10 The derivation of translational induced-interaction part of ( ∂Π
∂qα

)

in L group, ( ∂Π
∂qα

)I,trans
L with polarizability classification. . . . . . 34

4.11 The derivation of translational induced-interaction part of ( ∂Π
∂qα

)

in L group, ( ∂Π
∂qα

)I,trans
L with coordinate classification. . . . . . . 35

4.12 The 2 same terms and 3 different terms in ( ∂Π
∂qα

)I,trans
L between

polarizability classification and coordinate classification . . . . 36

vi



List of Tables

1 The parameters of SPC/E model . . . . . . . . . . . . . . . . . 48

2 The principle polarizability components . . . . . . . . . . . . . . 48

3 Definitions of the ranges of the Voronoi polyhedral groups(VGs)

according to asphericity and scaled Voronoi volume. . . . . . . . 48

vii



Chapter 1

Introduction

Since 1930s, the low-frequency spectrum of liquid water has been detected

by several experimental techniques[1][2]. In the spectrum, there are two bands,

60 cm−1 and 180 cm−1. Interpretation of the origins of these band from mi-

croscopic point of view are in dispute. Designation of the high frequency, 180

cm−1, is H bond stretching or O...O stretching, and they are similar in physics.

As to the lower frequency, 60 cm−1 band, there are many designations for it.

Here are a series of examples. Walrafen and co-workers[3] assigned this band

to the bending of a triplet cluster, which is one molecule and two H-bonded

neighbors(Fig.2.1). The bending motion is perpendicular to a H-bond. Also,

the two bands under the interpretation of triplet cluster are considered as

arising from the restricted translations. However, Padro and Marti[1] give a

different interpretation that this band should not be related to hydrogen bond,

because an analogous frequency band in density of states obtained by veloc-

ity autocorrelation function is also found in nonhydrogen liquids. It should

be translations frustrated by cage effect. De Santis et al.[4] later commented

that both of two low-frequency bands can be obtained in density of states of

melting and supercooled liquids of argon, but the cage form by four H-bonds

enhance the intensity of density of states when comparing with it. Therefore,

both of the bands are due to the H-bond formation.

The motivation of this research is to study the origin of the low-frequency

spectrum of water. The Voronoi polyhedral analyses has been used to anal-

ysis the local structures of liquid water. This analysis was used to study the

roles of local structures in the relaxation of orientational dynamics via MD

simulation[5], and this analysis indicates that the Voronoi polyhedra of water

molecules are highly deviated from sphericity, and the local structures are ba-

sically tetrahedral. Recently, this analysis was applied to the density of states
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for liquid water[2][6]. The result on the translational density of states[2] in-

dicates that the 60 cm−1 band is O...O...O bending mode. In this research,

the Voronoi polyhedral analyses are used for investigating the effect of local

structure on Raman spectrum of liquid water.

There are two ways to calculate Raman spectrum. One is caculated by

MD simulation. The other is called the INM method. In MD simulation, de-

polarized Raman spectrum is evaluated via time autocorrelation function of

anisotropic part of collective polarizability tensor. In INM method, because

collective polarizability of a system is a function of molecular coordinates, it

can be expressed by normal modes. INM analysis is used to evaluate depolar-

ized Raman spectrum for short time approximation. But INM method only

need initial equilibrium configurations and some eigen-analysis which does not

involve time. By the INM method, the spectrum is obtained without the

dynamics[7].

In this thesis, theoretical approaches including basic INM theory and Voronoi

polyhedral analysis are described in the following chapter. In chapter 3, Raman

spectrum R(ω) by MD simulation and INM calculational method, and Vor-

ronoi polyhedra analysis applying to Raman spectrum are introduced. Chap-

ter 4 shows the results of Raman spectrum and Voronoi analyses. In the last

chapter, we summarize our works and give conclusions of this thesis.

2



Chapter 2

Theoretical Methods

2.1 Molecular dynamics (MD) simulation

In this introduction, equilibrium configurations of liquid water generated

by the method of MD simulation are analyzed by the INM approach. The

model of water we adopted is SPC/E, a three-site rigid model. In the SPC/E

model, the potential energy is the sum of the Coulomb interactions and the

LJ interactions[8].

V =
1

2

∑
i,j( 6=i)

[∑
α,β

qiαqjβ
riα,jβ

+ 4ε

(
(

σ

riO,jO

)12 − (
σ

riO,jO

)6)

)]
. (2.1)

riα,jβ is the distance between α site of molecule i and β site of molecule j.

The parameters of SPC/E model are given in Table 1, and the model of water

molecule is shown in Fig. 2.2. Following the previous works [8], we collected

the configurations every 400fs, so that the the configurations should be less

correlated to avoid the statistic error in ensemble average. In our simulation,

the temperature and density of water are 300K and 1g/ cm3, respectively. The

number of molecules in simulation is 256, and the periodic boundary conditions

are used.

2.2 Basic instantaneous normal mode (INM) theory for
rigid model of liquid water

2.2.1 Introduction of INM theory

In classical mechanics, once an initial state is given, the dynamics of this

system in later time is determined. Here, the initial state is generated by

MD simulation. That is, we can solve the eq. of motion by simulation, and
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obtain the solutions for the evolution of the positions and velocities of the water

molecules in the system. The molecules in the liquid system interact with each

other, and their dynamics are coupled together. However, we can always find a

set of normal coordinates, which describe the motions with specific frequencies

in virtue of the INM approximation[10].

The following is the INM formalism[8][11][12].

2.2.2 The INM Hamiltonian

The dynamic properties of a system is determined by its Hamiltonian[13].

The Hamiltonian can be represented by different kinds of coordinates.

• General coordinates

The Hamiltonian is the sum of kinetic energy of all molecules in the system

and the potential energy of the system. The kinetic energy is composed

of the translational and rotational parts of each rigid molecule.

H =
∑

j

(
1

2
mṙ2

j +
1

2

∑
µ

Ijµω
2
jµ

)
+ V (R) (2.2)

where m denotes the mass of a water molecule and rj = {Xj, Yj, Zj}
denotes the center-of-mass position of molecule j. Ijµ is the momentum

of inertial along principle axis µ = {x, y, z} for molecule j and ωjµ is the

angular velocity along molecular axis µ, which rotates with the molecule

observed in the lab. frame, as represented in Fig.2.4. The orientations

of molecular axes are determined by a set of Euler angles Ω = {φ, θ, ψ}
observed in the lab. frame[14][15]ωjx

ωjy

ωjz

 =

sin θj sinψj cosψj 0

sin θj cosψj − sinψj 0

cos θj 0 1


φ̇j

θ̇j

ψ̇j

 . (2.3)

V(R) given in eq.2.1 are a function of R= {rj,Ωj}, for j=1,2,...,N, which

is the general coordinates of a configuration.

• Mass-weighted generalized coordinates

We define the 6N-dimensional mass-weighted coordinates

Z = {zj}, j = 1, . . . , N, (2.4)
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and the components of zj,

zj = {zjµ}, µ = 1, . . . , 6

= {
√
mxj,

√
myj,

√
mzj,

√
Ixζjx,

√
Iyζjy,

√
Izζjz}, (2.5)

ζj is the orientation of molecule j and is expressed in the body frame for

the instantaneous configuration R0 = {r0
j ,Ω

0
j}, where Ω0

j = {φ0
j , θ

0
j , ψ

0
j}ζjxζjy

ζjz

 =

sin θ0
j sinψ0

j cosψ0
j 0

sin θ0
j cosψ0

j − sinψ0
j 0

cos θ0
j 0 1


φj

θj

ψj

 , (2.6)

where ζj and Ωj are functions of t∗.

In the mass-weighted coordinates, the Hamiltonian can be expressed as

H =
1

2
ŻŻ + V (Z). (2.7)

In the INM approximation, we expand V (Z) in a Taylor series up to the

second order with respect to the displacement at time t from t=0, and

H =
1

2
ŻŻ+V (R0)−F(R0)(Zt−Z0)+

1

2
(Zt−Z0)D(R0)(Zt−Z0), (2.8)

where F(R0) is a 6N-dimensional force vector whose elements are

Fjµ(R0) = − ∂V (R)

∂zjµ

∣∣∣∣
R0

(2.9)

and

D(jµ)(kν)(R0) =
∂V (R)

∂zjµ∂zkν

∣∣∣∣
R0

(2.10)

• Instantaneous normal coordinates

Let U(R0) be 6N×6N orthogonal matrix, which comprise 6N eigenvectors

of Hessian matrix D(R0). As well known, U(R0) is the matrix which

transforms Hessian matrix in the mass-weighted coordinates{zjµ} into

that in normal coordinates {qα}, α = 1, 2, . . . , 6N.

D(R0) in the normal coordinates is diagonalized, and expressed as A

A = UTDU, (2.11)

∗ζ is the same physical observation with Euler angle Ωj , but is observed in the body frame whose axes
are assumed to be fixed instantaneously.
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with elements to be the eigenvalues of D(R0)

ω2
α =

∑
jµ,kν

Uα,jµDjµ,kνUkµ,α (2.12)

The transformed forces are given as

fα(R0) =
∑
jµ

Uα,jµ(R0)Fjµ(R0) (2.13)

and the instantaneous normal coordinates are

qα(t,R0) =
∑
jµ

Uα,jµ(R0)[zjµ(t)− zjµ(0)]. (2.14)

The Hamiltonian in eq.(2.8), can be rewritten by as

H = V (R0) +
6N∑
α=1

(
1

2
q̇2
α +

1

2
ω2

αq
2
α − fαqα

)
. (2.15)

If we defined the shifted normal coordiates

xα ≡ qα −
fα

w2
α

(2.16)

the Hamiltonian is written as the form

H = V (R0) +
6N∑
α=1

(
1

2
ẋ2

α +
1

2
ω2

αx
2
α −

fα

2ω2
α

)
. (2.17)

The physical picture of the INM approximation is discribed in Fig. 2.5

2.2.3 The INM dynamics and density of states

The Harmiltonian in eq.(2.17) is a set of 6N harmonic oscillators, and its

dynamic solutions are

xα(t) = xα(0) cosωαt+
ẋ(0)

ωα

sinωαt (2.18)

vα(t) ≡ ẋα(t) = ẋα(0) cosωαt+ xα(0)ωα sinωαt (2.19)

The velocity autocorrelation function of any normal mode is

〈vα(0)vα(t)〉 = kBT cos (wαt), (2.20)

because velocities and positions of molecules are independent with one another,

< ẋα(0)xβ(0) >= 0 and the velocity autocorrelation function of the initial

conditions give < υα(0)υβ(0) >= kBTδαβ from the equipartition theorem.
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Averaged over a liquid configuration which has 6N degrees of freedom, the

velocity autocorrelation function can be expressed in terms of frequency spec-

trum.
1

6N

6N∑
α=1

< υα(0)υα(t) >= kBT

∫
dwD(w) cos(wt), (2.21)

where

D(w) =<
1

6N

6N∑
α=1

δ(w − wα) >, (2.22)

is the normalized density of states.
∫
D(ω)dw = 1. Because the number of

modes of a condensed system is large and the mode frequencies of a system

are dense, the density of states are usually represent by the average number

of modes within a frequency window, so that the normalized density of states

depicts the probability distribution of normal modes.

2.3 Voronoi polyhedral analyses for local structures

The Voronoi cell of a particle in a liquid system is the smallest polyhedron

formed by equi-partitional planes between any two particles, so that there is

only one particle in the Voronoi cell. Any point inside the Voronoi cell of a

particle is closer to that particle than any other ones. Voronoi cell is therefore

a generalization of the Wigner-Seitz unit cell of a crystal. In this thesis, the

Voronoi polyhedra of the O atoms are classified into four groups according to

two kinds of dimensionless parameters, asphericity η and the scaled volume Ṽ ,

which are defined as[2] [6]

η =
A3

36πV 2
(2.23)

and

Ṽ =
V

Vavg

, (2.24)

where V and A are the volume and surface of a Voronoi polyhedron, respec-

tively. Vavg is the averaged volume per molecule in the system. The ranges of

η or Ṽ for the four groups defined in the thesis are given in Table 3.

In formalism, selection operator Θi(L) is introduced to specify Voronoi

groups.

Θi(L) =

{
1 if molecule i belongs to Voronoi group L

0 otherwise

7



Summation of the four selection operators equals to identity operator.

IV∑
L=I

Θi(L) = 1 (2.25)
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Figure 2.1: Triplet cluster of water. The dashed lines represent hydrogen bonds.
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Figure 2.2: Water molecule in the SPC/E model.
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Figure 2.3: Water molecular axes

11



  

‧

X 

Z 

Y 

r
v

Y'

X'

Z'

Figure 2.4: The coordinate axes(X, Y, Z) in the lab. frame and the molecular axes(X’, Y’,
Z’) in the body frame. ~r is the center of mass of the molecule.
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Figure 2.5: The INM approach. The point X at the potential energy hypersurface repre-
sents the potential of specific configuration. Consider α-direction, potential is depicted by a
parabola as using INM approach. Configuration 1 and 2 are at the extreme of the hypersur-
face and also in the equilibrium of the INM approach harmonic oscillation; configuration 3
and 4 do not. The shift quantity fα

ω2
α

from an extreme of INM approach parabola is the dis-
placement from the equilibrium of INM approach harmonic oscillation at t=0. Two figures
in the insets are referred from Ref.[11]
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Chapter 3

Depolarized Raman Spectrum

3.1 MD method

The depolarized Raman spectrum R(ω) is expressed by[16]

R(ω) = (1− e−~ω/kBT )

∫ ∞

0

dt sin(ωt)[−∂Ψ(t)

∂t
], (3.1)

with Ψ(t) the time correlation function of the off-diagonal component of the

collective polarizability tensor, which is defined as

Ψ(t) =
15

Nγ2
〈Πxz(0)Πxz(t)〉, (3.2)

where γ = 1
2
[(α0

11−α0
22)

2+(α0
22−α0

33)
2+(α0

11−α0
33)

2] is polarizability anisotropy

and α0
mm the principle polarizability components.

Nuclear response function is defined as

Rnuclei(t) = − 1

kBT

∂Ψ(t)

∂t
, (3.3)

which can be detected by OKE experiments. The OKE experimental signal

in the time domain is sensitive to the ultrafast intermolecular dynamics that

affects the electric polarization of the liquid molecular system.[17]

The nuclear response function represented in the frequency domain is called

OKE spectrum χ(ω),

Im[χ(ω)] =

∫ ∞

0

sin(ωt)Rnuclei(t)dt. (3.4)

Depolarized Raman spectrum is related to the OKE spectrum through the

following formula

R(ω) = (1− e−~ω/kBT )Im[χ(ω)], (3.5)

where (1− e−~ω/kBT ) is the quantum correction factor.
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3.2 INM theory of polarizability anisotropy dynamics

Polarizability anisotropy velocity time correlation is defined as the second

derivative of Ψ(t) with respect to t

Gxz(t) = −Ψ̈xz(t). (3.6)

According to the definition of Ψ(t) in eq.(3.2) and the property of second

derivative of time correlation function with respect to t ∗[18],

Gxz(t) = − 15

Nγ2
〈Πxz(0)Π̈xz(t)〉 =

15

Nγ2
〈Π̇xz(0)Π̇xz(t)〉. (3.7)

Gxz(t) is time correlation function of the first derivative of off-diagonal element

of polarizability, and is named as the polarizability anisotropy velocity time

correlation function.

The following is the INM theory for expressing Gxz(t) in terms of normal

coordinates qα[19]. The collective polarizability depends on the coordinates of

molecules, and we expand off-diagonal element of the collective polarizability

in terms of normal modes first.

Πxz(t) = Πxz(qα(t))

=Πxz(qα(0)) +
∑

α

(
∂Πxz

∂qα
)
t=0

qα(t) +
∑

α

∑
β

(
∂Πxz

∂ qα∂qβ
)
t=0

qαqβ + · · · . (3.8)

Then, by using the linear approximation (the INM approximation for short

time), the quadratic and higher-order terms can be neglected. This approxi-

mation gives

Π̇xz(t) ∼=
∑

α

(
∂Πxz

∂qα
)
t=0

q̇α(t). (3.9)

Finally, substitute the approximated Π̇xz(t) in eq.(3.9) into eq.(3.7)

Gxz(t) ∼=
15

Nγ2
〈
∑

α

(
∂Πxz

∂qα
)
t=0

q̇α(0)
∑

β

(
∂Πxz

∂qβ
)
t=0

q̇β(t)〉. (3.10)

Since the velocity(q̇) and position(q) of each molecule are independent, the

velocity(q̇) can be seperated apart from position(q). Also different degrees of

freedom are independent, the correlation function of cross terms of different

degrees vanish. The velocity autocorrelation of INM, eq.(2.20), is used, hence

Gxz(t) ∼= kBT
15

Nγ2

∑
α

〈(∂Πxz

∂qα
)2〉

t=0

cos (ωαt) (3.11)

∗ d2

dt2
〈B(t)A〉 = −〈Ḃ(t)Ȧ(t)〉
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Through above derivation, we replace the summation with integral.

Gxz(t) = kBT

∫
ρpol(ω) cos (ωt)dω, (3.12)

where

ρpol(ω) =
15

Nγ2

∑
α

〈(∂Πxz

∂qα
)2δ(ω − ωα)〉 (3.13)

is polarizability anisotropy INM spectrum. The normalized spectrum is

Dpol(ω) =
ρpol(ω)∫
ρpol(ω)dω

. (3.14)

Compared with the density of states (eq.(2.22)) of liquid water which has

been reported[8], the polarizability anisotropy INM spectrum is similar as

the density of states (DOS), but each mode is weighted by a factor (∂Πxz

∂qα
)2.

The polarizability anisotropy velocity time correlation Gxz and polarizabil-

ity anisotropy INM spectrum ρpol (eq.(3.12) and eq.(3.13)) are analogous to

the velocity autocorrelation function and the density of states (eq.(2.21) and

(2.22)), respectively. One is in time domain, and the other is in frequency

domain.The relation between them is a Fourier transformation†.

3.3 The correlation between polarizability anisotropy
INM spectrum ρpol(ω) and depolarized Raman spec-
trum R(ω)

From eq.(3.1) and eq.(3.3),

R(ω) = kBT [1− e−~ω/kBT ]

∫ ∞

0

dt sin(ωt)Rnuclei(t). (3.15)

Rnuclei(t) is proportional to ∂Ψ(t)
∂t

(eq.(3.3)), and by the definition ofGxz(t)(eq.(3.6)),
∂Ψ(t)

∂t
is proportional to integral of Gxz(t)

Rnuclei(t) =
1

kBT

∫ t

0

Gxz(τ)dτ. (3.16)

By means of the substitution of eq.(3.12) and the integral with respect to τ

from 0 to t,

Rnuclei(t) =

∫
ρpol(ω)

sinωt

ω
dω. (3.17)

†Because autocorrelation is even function, Fourier cosine transformation of spectrum is used, and we
used to plot positive regime of spectrum, the negative in spectrum is usually represented the quantity of
imaginary frequency.
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After Rnuclei(t) in eq.(3.17) substituted into eq.(3.15), the integral with respect

to t is perform from 0 to ∞‡. Therefore,

R(w) ∼ [1− e−~ω/kBT ]

ω
ρpol(ω). (3.18)

This formula depicts the relation of ρpol(ω) and R(ω).
(
1− e−~ω/kBT

)
is the

quantum correction factor. When ~ω � kBT , the factor
(
1− e−~ω/kBT

)
re-

duced to ω, and R(ω) can be represented by ρpol.

3.4 Collective polarizability of liquid water

3.4.1 Effective molecular polarizability

Consider the effective dipole moment µi of molecule of liquid water in laser

field Eext. Water molecule is a polar one, and has a permanent dipole moment

µp. The extrinsic dipole moment of molecule i in liquid water is induced

by laser field and polar molecules around it. Therefore, the effective dipole

moment of molecule i in liquid water is

µi = µp
i + αM

i Eext + αM
i

N∑
j( 6=i)

Tij · µj, (3.19)

where Tij is dipole interaction tensor given as Tij =
3rijrij−r2

ijI

r5
ij

, and only

depends on the distance between the center of mass of molecules i and j.

Tij · µj is the electric field on molecule i due to molecule j.

The polarizability of molecule i in liquid water is defined as

αi ≡ lim
Eext→0

∂µi

∂Eext , (3.20)

where µi is given as eq.3.19. Thus

αi = αM
i + αM

i

∑
j( 6=i)

Tij

∂µj

∂Eext +
∂αM

i

∂Eext

∑
j( 6=i)

Tijµj

= αM
i + αM

i

∑
j( 6=i)

Tijαj + βM
i

∑
j( 6=i)

Tijµj, (3.21)

where βM
i ≡ ∂αM

i

∂Eext called the hyperpolarizability is the first derivative of αM
i

with respect to electric field. The enhanced polarizability αj and dipole µj

are solved iteratively according to the two self-consistent equations, eq. 3.19

and eq. 3.21.

‡∫∞
0 sin ωt sin ω′tdt = π

2
[δ(ω − ω′)− δ(ω + ω′)], and we do not care about the negative frequency.
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3.4.2 Collective polarizability

Collective polarizability, denoted by Π, can be expressed as superposition of

the effective polarizability of molecules embedded in the condensed phase. The

effective polarizability of every molecule is considered as point polarizability

located at the center of mass.

Π =
∑

i

αi (3.22)

and from eq.(3.21)

Π =
∑

i

[αM
i + αM

i ·
∑
j( 6=i)

Tij ·αj + βM
i ·

∑
j( 6=i)

Tij · µj]. (3.23)

Π can be separated to two parts, molecular polarizability and induced po-

larizability: Π = ΠM + ΠI .

ΠM =
∑

i

αM
i , (3.24)

ΠI =
∑

i

(αM
i ·

∑
j( 6=i)

Tij ·αj + βM
i ·

∑
j( 6=i)

Tij · µj). (3.25)

The molecular part(ΠM) is the sum of isolated molecular polarizability. The

induced part(ΠI) arises from the intermolecular interaction. In this thesis,

only the first term of ΠI , αTα, which is the first order approximation of the

enhanced polarizaility is considered. That is,

Π =
∑

i

[αM
i + αM

i ·
∑
j( 6=i)

Tij ·αj]. (3.26)

This approximation regards αM
i as a constant with respect to Eext. Hence,

the existence of dipole moment is excluded to collective polarizability. αj

in eq.(3.26) is the solution of eq.(3.21), but here we take an approximation

αj
∼= αM

j . Therefore,

Π =
∑

i

[αM
i + αM

i ·
∑
j( 6=i)

Tij ·αM
j ] (3.27)

is used to calculate the weight of modes, (∂Πxz

∂qα
)2, in this thesis.
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3.5 Decomposition of polarizability anisotropy INM spec-
trum ρpol(ω)

To separate the translational and rotational parts in ∂Πxz

∂qα
[19],

∂Πxz

∂qα
=

(
∂Πxz

∂qα

)trans

+

(
∂Πxz

∂qα

)rot

, (3.28)

the projection operators are introduced as

P = UTU = δ, (3.29)

whose elements

Pαβ =
∑

j

∑
µ

Uα,jµUjµ,β. (3.30)

Because P is just an identity matrix, we can write down the equality

∂Πxz

∂qα
=
∑

β

Pαβ
∂Πxz

∂qβ
. (3.31)

By separating the project operator into the translational and rotational parts,

Pαβ = P trans
αβ + P rot

αβ , (3.32)

we can obtain the translational and rotational portion of ∂Πxz

∂qα
,(

∂Πxz

∂qα

)trans

=
∑

β

P trans
αβ

∂Πxz

∂qβ(
∂Πxz

∂qα

)rot

=
∑

β

P rot
αβ

∂Πxz

∂qβ
, (3.33)

where

P trans
αβ =

∑
j

∑
µ=1,2,3

Uα,jµUjµ,β , and P
rot
αβ =

∑
j

∑
µ=4,5,6

Uα,jµUjµ,β. (3.34)

According to derivative chain rule of differential,

∂Πxz

∂qα
=
∑
kµ

∂Πxz

∂zkµ

∂zkµ

∂qα
=
∑
kµ

∂Πxz

∂zkµ

Ukµ,α, (3.35)

to calculate the weight of each mode
(

∂Πxz

∂qα

)2

, ∂Πxz

∂zjµ
and the eigenvector are
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needed. Derive eq.(3.27) with respect to zkµ,

∂Π

∂zkµ

=
∑

i

∂αM
i

∂zkµ︸ ︷︷ ︸(
∂ΠM

∂zkµ

)
+
∑

i

∂αM
i

∂zkµ

∑
j( 6=i)

Tijα
M
j + αM

i

∑
j( 6=i)

Tij

∂αM
j

∂zkµ


︸ ︷︷ ︸(

∂ΠI

∂zkµ

)rot

+

∑
i

αM
i

∑
j( 6=i)

∂Tij

∂zkµ

αM
j


︸ ︷︷ ︸(

∂ΠI

∂zkµ

)trans

. (3.36)

Hence, ∂Πxz

∂zjµ
includes three terms: the contribution due to isolated molecule,

which are only associated with rotational motions, the translational and rota-

tional parts due to DID interaction. The details of the calculations for these

terms are given in Appendix B.

Now, there are two ways to decompose the polarizability anisotropy INM

spectrum according to above analyses. One way is to decompose ρpol(ω) into

the molecular, DID interaction and their cross components,

ρMM
pol = ρMM

pol ,

ρII
pol = ρIrIr

pol + ρItIt
pol + ρIrIt

pol ,

ρMI
pol = ρMIr

pol + ρMIt
pol . (3.37)

The other way is to decompose ρpol(ω) into the rotational and translational

components and their cross terms,

ρRot
pol = ρMM

pol + ρMIr
pol + ρIrIr

pol ,

ρTrans
pol = ρItIt

pol ,

ρCross
pol = ρMIt

pol + ρIrIt
pol , (3.38)
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where

ρMM
pol =

15

Nγ2

〈∑
α

(
∂ΠM

xz

∂qα

)2

δ(ω − ωα)

〉
, (3.39a)

ρIrIr
pol =

15

Nγ2

〈∑
α

(
∂ΠI

xz

∂qα

)2

rot

δ(ω − ωα)

〉
, (3.39b)

ρItIt
pol =

15

Nγ2

〈∑
α

(
∂ΠI

xz

∂qα

)2

trans

δ(ω − ωα)

〉
, (3.39c)

ρMIr
pol =

30

Nγ2

〈∑
α

(
∂ΠM

xz

∂qα

)(
∂ΠI

xz

∂qα

)
rot

δ(ω − ωα)

〉
, (3.39d)

ρMIt
pol =

30

Nγ2

〈∑
α

(
∂ΠM

xz

∂qα

)(
∂ΠI

xz

∂qα

)
trans

δ(ω − ωα)

〉
, (3.39e)

and ρIrIt
pol =

30

Nγ2

〈∑
α

(
∂ΠI

xz

∂qα

)
rot

(
∂ΠI

xz

∂qα

)
trans

δ(ω − ωα)

〉
. (3.39f)

3.6 Voronoi polyhedral analyses of local structure ef-
fects on Raman spectrum

We apply Voronoi polyhedral analysis on depolarized Raman spectrum in

order to investigate the local geometry and structure effect in liquid water.

This is similar as the Voronoi analyses applied to the INM DOS of liquid

water[2][6].

There are two ways of Voronoi polyhedra analyses applied to Raman spec-

trum in this research. One is to classify the collective polarizability into four

groups and examine the variation of each sub-collective polarizability ΠL with

normal coordinates; the other is to classify coordinates into four groups and

to investigate the variation of collective polarizability with each group of co-

ordinates. The former method is a classification before differential, while the

later is a classification after differential. The details of the derived procedure

are given in Appendix C.

To analysis the geometric effect of local structure of each molecules, the

fraction of each group should be considered. Thus, the average contribution
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per molecule in every group to the spectrum is given as

ρLL
pol(ω) =

15

γ2

∑
α

〈
1

NL

(
∂Π

∂qα

)2

L

δ(ω − ωα)

〉
; (3.40a)

ρLH
pol (ω) =

30

γ2

∑
α

〈
1√

NLNH

(
∂Π

∂qα

)
L

(
∂Π

∂qα

)
H

δ(ω − ωα)

〉
, (3.40b)

where eq.(3.40a) is the pure term due to group L and eq.(3.40b) is the cross

term due to the group L and H. L and H can be I,II,III,or IV, but L6= H

for eq.(3.40b) There are four pure terms and six cross terms. The detailed

derivation is given in Appendix D.
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Chapter 4

Results and Discussions

4.1 Polarizability anisotropy INM spectrum

The polarizability anisotropy INM spectra of liquid water are shown in

Fig. 4.1. It is surprised to find that the results of decomposition by different

ways (eq.(3.37) and eq.(3.38)) are extremely similar. The six components in

eq.(3.39) are plotted in Fig. 4.2. It shows thatDIrIr
pol (ω), DMIr

pol (ω) andDIrIt
pol (ω)

are small. This implies that the rotational part of DID interaction contributes

insignificantly. If we neglect those extremely small terms, the dominant terms

of the two ways of decomposition, eq.(3.37) and eq.(3.38), are the same. As

only intrinsic molecular polarizability and αTα terms are considered, the ro-

tational, translational, and rotational-translational cross contributions corre-

spond to the intrinsic molecular(DMM
pol ), the interaction-induced(DII

pol), and the

rotational-translational cross (DMI
pol ) components, respectively.

4.2 Depolarized Raman spectrum

The polarizability anisotropy INM spectrum ρpol(ω) is related to depolar-

ized Raman spectrum R(ω) that the experiment can directly measured. The

factor
(

1−e−~ω/kBT

ω

)
in eq.(3.18) for our system (T=300K) amplifies the inten-

sities at low frequencies. The interaction-induced component RII(ω) and the

low-frequency molecular component RMM(ω) are enhanced due to the quan-

tum correction from the classical dynamics. Thus, around 230 cm−1, R(ω) is

changed from a shoulder to a peak and around 800 cm−1, R(ω) from a peak

to a smooth shoulder.

Shown in Fig. 4.4, R(ω) is compared with the result of the time correlation

function obtained by MD method[17]. Although the INM method is applied
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for the short time dynamic, the shape of molecular part RMM(ω) looks very

similar for the two methods. However, there are differences in R(ω) between

the results we obtain and that given in Ref.[17], in which not only αTα term,

but also βTµ and one step further in the level of approximation for induced

collective polarizability are considered. The DID component, RII(ω)(or trans-

lational part Rtrans(ω)), in Fig. 4.3(a) contributes only in the region of low

frequencies and almost vanishes beyond 500 cm−1. This is the same with the

translational part of DOS (Fig. 4.3(c)). However, as considering the higher-

order approximation of ΠI Fig. 4.3(b), there is still contribution to R(ω)

beyond 500 cm−1. This means that the translational modes at high frequen-

cies contribute more to Raman spectrum as the high-order terms of ΠI are

considered.

The MI-cross term we calculated (Fig. 4.3(a)) is obviously much smaller

than the other two components, but MI-cross component in Fig. 4.3(c) does

not. The MI-cross term in Fig. 4.3(a) has a smaller hump at 150 cm−1 and

becomes negative in high-frequency region; The differences mentioned above

are attributed to approximation in ΠI we used and that of the INM method.

4.3 Voronoi polyhedral (VP) analyses of depolarized
Raman spectrum

The results are shown in Fig. 4.5, 4.6, 4.7, and 4.8.

The pure terms due to the rotational part of depolarized Raman spectrum

Rrot
LL(ω) are the same, no matter which method of the Voronoi analysis is used,

because the formalism eq.(C.3) and (C.5) of them are the same. (Because the

contribution from RIrot(ω) is small, Rrot(ω) is dominated by RMM(ω).) The

main difference comes from Rtrans
LH (ω). Each pure term Rtrans

LL (ω) according

to the coordinate classification has a peak at 60 cm−1 about, but the result

according to the polarizaility classification does not. Rtrans
LL (ω) of the two

classifications have different formulism. Feynman diagrams are introduced to

find out the difference of them.

The diagrams are given in Fig. 4.9. The derivation of translational interaction-

induced part of ( ∂Π
∂qα

) in group L, ( ∂Π
∂qα

)I,trans
L , are shown in Fig. 4.10 with the

polarizaility classification and Fig.4.11 with the coordinate classification. We

easily find that the different terms and the same ones between the two meth-

ods by Feynman diagrams. In Fig. 4.12, two terms are the same in each

24



( ∂Π
∂qα

)I,trans
L ; while three terms are different. The weight of a mode in group L

is a square of ( ∂Π
∂qα

)I,trans
L , so that there are 10 terms for Rtrans

LL (ω), and 3 of

them are the same; while there are 25 terms for Rtrans
LH (ω), and 4 of them are

the same.

The physical significances for liquid water are discussed in the following:

• Rotational part of R(ω)

For molecules with strongly aspherical VP, their local structures are basi-

cally tetrahedral[5] and the molecule is more ordered and hard to rotate.

Therefore, as asphericity increase, the intensities at the high-frequency

modes increase (Fig. 4.5(b) and 4.6(b)). This agrees with Ref.[6]. The

results of classifying according to volume of VP are inverse to those of

the asphericity , the larger the volume, the lower the frequency of modes

(Fig. 4.7(b) and Fig. 4.8(b)). This means that the molecules with larger

volume are easier to rotate.

• Translational part of R(ω)

There is no peak in Rtrans
LL (ω) by polarizability classification; while there

are by coordinate classification. It is worth to note that the total Rtrans(ω)

does not have peak around 60 cm−1(Fig. 4.3), thus, this peak appearing

in pure term Rtrans
LL (ω) by coordinate classification may be attributed to

the negative contribution of cross terms Rtrans
LH (ω) to Rtrans(ω). In Fig.

4.6(c), if we only consider pure terms, the larger the asphericity, the

higher the intensity of spectrum. Thus, we recognize that the molecule

with larger asphericity is tetrahedral. This imply that the peak is cage

effect form by H-bond according to Santis et al.[4], who regard the higher

intensity in DOS of liquid water than that of the nonhydragen liquid at the

same frequency as the cage effect form by H-bonds. While in Fig. 4.8(c),

Rtrans
LL (ω) are ordered when neglecting Rtrans

L=1,L=1(ω), the larger the volume,

the higher the intensity of spectrum. This agrees with the interpretation

of O...O...O bending[2].

Since Raman spectrum of VP group has cross terms, we can not obtain the

direct information about the effect of the local structures like DOS as the VP

analyses on Raman spectrum. Maybe we should try another classification

methods beyond the two we adopted. For example, to obtain the weight

of every mode for each group
(

∂Π
∂qα

)2

L
, classify first

(
∂Π
∂qα

)
by the method of
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classifying coordinate and then perform multiplying total
(

∂Π
∂qα

)
to these four

groups instead of squaring. This method is derive from the method of the VP

applying to velocity autocorrelation function, as one classifies VP of the initial

configuration. The detail derivation is in Appendix E.
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Figure 4.1: Normalized polarizability anisotropy INM spectrum Dpol(ω). (a) is the contri-
butions of the molecule(MM), interaction-induced(II) and cross(MI) components; (b) is the
rotational, translational and rotational-translational cross components.
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Figure 4.2: The six components of the normalized INM spectrum Dpol(ω): DTotal
pol (ω)( solid

line), DMM
pol (dashed line), DItIt

pol (dotted line), and the DMIt
pol (dot-dashed line). Inset shows

terms whose contribution are small. The dot-dot-dashed line is DIrIr
pol (ω), the dash-dash-

dotted line is DMIr
pol (ω), and the solid line is DIrIt

pol (ω).
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(a)

Figure 4.3: In (a), Depolarized Raman spectrum R(ω) calculated by the INM approach with
only the intrinsic molecular polarizability and the αTα term being considered. (b) is the
result R(ω) obtained by time correlation function[17]. In (c), the INM DOS of liquid water
for SPC/E model [8].
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Figure 4.4: Depolarized Raman spectrum of MM component: (a)the INM approach, and
(b)the MM line in Fig. 4.3(b).
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Figure 4.5: Voronoi analysis according to asphericity with polarizability classification.
(a),(b),(c),(d) are RLH(ω), Rrot

LH(ω)(or RMM
LH (ω)), Rtrans

LH (ω)(or RII
LH(ω)), Rcross

LH (ω)(or
RMI

LH(ω)), respectively, where L, H=I, II, III, or IV group. Thick lines are the pure terms:
black(11), red(22), green(33), blue(44). Thin lines are the cross terms: violet(23), ma-
genta(34), etc. the symbol (LL) and (LH) is defined in eq. 3.40.
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Figure 4.6: Voronoi analysis according to asphericity with the method of classifying
coordinate. The order and the colors of lines are the same with Fig.4.5
.
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Figure 4.7: Voronoi analysis according to volume with the method of classifying
polarizability. The order and colors of lines are the same with Fig.4.5.
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Figure 4.8: Voronoi analysis according to volume with the method of classifying coordinate.
The order and the colors of lines are the same with Fig.4.5.
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∂zk
, and

thick circles label k=i or k=j.
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Chapter 5

Conclusions

First, in this thesis, the method, different from MD method, based on INM

theory is used to calculate Raman spectrum of liquid water. We identify the

contributions of rotation, translation, and their cross correlations to polar-

izability anisotropy INM spectrum ρpol(ω), and another contributions: the

molecular, DID interaction and their cross components. We find that the two

ways of composition are the same as only considering αTα for ΠI . We also

find the 60 cm−1 peak in DOS vanish in the Raman spectrum.

Second, We compareR(ω) we calculate with that obtained from MD method

and considered more accuracy for ΠI . The molecular, DID interaction and

their cross components are also compared. Although there is an approximation

in INM method, but the MM component is similar to each other.

The last, the results with the classifications we used have cross terms and

are not clear to identify the effect of local structures in Raman spectrum of

liquid water. New application(VP analyses on Raman spectrum) is put into

practice. Although there is no new discovery in the origin of the low frequency

of liquid water, the VP analyses does succeed to separate Raman spectrum

according to the parameters of VP.
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Appendix A

List of notations

kB: Bolzman constant

q: charge

m: mass of molecule

T: temperature

i, j, k: index of molecules

α, β: index of modes

N: the total number of molecules in the system

qα:normal mode

η:asphericity of Voronoi cell

Ṽ:scaled volume of Voronoi cell

ρpol(ω): polarizability anisotropy INM spectrum

χ(ω): OKE spectrum

R(ω): depolarized Raman spectrum

Rnuclei(t): nuclear response function

Ψ(t): time correlation function of the off-diagonal component of the collective

polarizability tensor

γ: polarizability anisotropy

α0: principle polarizability component

Gxz(t): polarizability anisotropy velocity time correlation

Eext: external field

αM : intrinsic molecular polarizability tensor

Π: Collective polarizability tensor

Tij: dipole tensor between molecule i and j
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Appendix B

Computational details of ∂Πxz
∂qα

The derivatives of the polarizability anisotropy with respect to mass-weighted

coordinate, ∂Πxz

∂zkµ
, include three terms:

• Isolated molecule contribution(
∂Π

∂zkµ

)M

=
∑

i

∂αM
i

∂zkµ

=
∂αM

k

∂zkµ

(B.1)

• Rotational part of the dipole-induced-dipole contribution(
∂ΠI

∂zkµ

)rot

=
∑

i

∂αM
i

∂zkµ

∑
j( 6=i)

Tijα
M
j + αM

i

∑
j( 6=i)

Tij

∂αM
j

∂zkµ


=

N∑
j=1

∂αM
k

∂zkµ

Tkjα
M
j +

N∑
i=1

αM
i Tik

∂αM
k

∂zkµ

=
N∑

p=1(6=k)

(
∂αM

k

∂zkµ

Tkpαp + αM
p Tpk

∂αM
k

∂zkµ

)
(B.2)

• Translational part of the dipole-induced-dipole contribution(
∂ΠI

∂zkµ

)trans

=
∑

i

αM
i

∑
j( 6=i)

∂Tij

∂zkµ

αM
j


=

∑
j=1(6=k)

αM
k

∂Tkj

∂zkµ

αM
j +

∑
i=1(6=k)

αM
i

∂Tik

∂zkµ

αM
k

=
N∑

p=1(6=k)

(
αM

k

∂Tkp

∂zkµ

αM
p + αM

p

∂Tpk

∂zkµ

αM
k

)
(B.3)

Because the system of liquid water is isotropic, off-diagonal elements of col-

lective polarizability are the same. We average all off-diagonal elements of ∂Π
∂zkµ
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as ∂Πxz

∂zkµ
. Then, partial derivatives of Πxz with respect to normal coordinates,(

∂Πxz

∂qα

)M

=
∑

k

∑
µ=4,5,6

(
∂Πxz

∂zkµ

)M

Ukµ,α (B.4a)

(
∂Πxz

∂qα

)Irot

=
∑

k

∑
µ=4,5,6

(
∂Πxz

∂zkµ

)Irot

Ukµ,α (B.4b)

(
∂Πxz

∂qα

)Itrans

=
∑

k

∑
µ=1,2,3

(
∂Πxz

∂zkµ

)Itrans

Ukµ,α (B.4c)
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Appendix C

Computational details of
Voronoi polyhedral analyses for
Raman spectrum

The weight of mode α is
(

∂Π
∂qα

)2

. ∂Π
∂qα

can be classified to four groups,

∂Π

∂qα
=
∑

L

(
∂Π

∂qα

)
L

. (C.1)

In this thesis, there are two ways that we classify ∂Π
∂qα

:

• Classification according to collective polarizabilities of subgroups

∵
∂Π

∂qα
=

∂

[
Π
∑
L

Θi(L)

]
∂qα

=
∑

L

(
∂ [ΠΘi(L)]

∂qα

)
=
∑

L

(
∂Π

∂qα

)
L

, (C.2)

∴

(
∂Π

∂qα

)
L

=
∂ [ΠΘi(L)]

∂qα
=
∑
kµ

∂zkµ

∂qα

∂

∂zkµ

[ΠΘi(L)]︸ ︷︷ ︸
ΠL

=
∑
kµ

∂zkµ

∂qα

∂

∂zkµ

∑
i

[αiΘi(L) +
∑

i

αiΘi(L)
∑
j( 6=i)

Tijαj]

=
∑
kµ

∂zkµ

∂qα
[
∂αk

∂zkµ

Θk(L)︸ ︷︷ ︸(
∂ΠM

L
∂zkµ

)
+
∂αk

∂zkµ

Θk(L)
∑
j( 6=k)

Tkjαj +
∑
i( 6=k)

αiΘi(L)Tik
∂αk

∂zkµ︸ ︷︷ ︸(
∂ΠI

L
∂zkµ

)rot

+

αkΘk(L)
∑
j( 6=k)

∂Tkj

∂zkµ

αj +
∑
i( 6=k)

αiΘi(L)
∂Tik

∂zkµ

αk︸ ︷︷ ︸(
∂ΠI

L
∂zkµ

)trans

]. (C.3)
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• Classification according to the coordinates of the subgroups

∵
∂Π

∂qα
=
∂Π

∂qα

∑
L

Θi(L) =
∑

L

(
∂Π

∂qα

)
Θi(L) =

∑
L

(
∂Π

∂qα

)
L

, (C.4)

∴

(
∂Π

∂qα

)
L

=

(
∂Π

∂qα

)
Θi(L) =

∑
kµ

∂zkµ

∂qα

∂Π

∂zkµ

Θk(L) =
∑

k∈L,µ

∂zL
kµ

∂qα

∂Π

∂zL
kµ

=
∑
k,µ

∂zkµ

∂qα
[
∂αk

∂zkµ

Θk(L)︸ ︷︷ ︸(
∂ΠM

∂zkµ

)
L

+
∂αk

∂zkµ

Θk(L)
∑
j( 6=k)

Tkjαj +
∑
i( 6=k)

Θk(L)αiTik
∂αk

∂zkµ︸ ︷︷ ︸(
∂ΠI

∂zkµ

)rot

L

+

αkΘk(L)
∑
j( 6=k)

∂Tkj

∂zkµ

αj +
∑
i( 6=k)

αi
∂Tik

∂zkµ

Θk(L)αk︸ ︷︷ ︸(
∂ΠI

∂zkµ

)trans

L

]. (C.5)
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Appendix D

The derivation of the average
contribution of spectrum per
molecule in every group

Polarizability anisotropy INM spectrum

ρpol(ω) =
15

γ2N

∑
α

〈(
∂Π

∂qα

)2

δ(ω − ωα)

〉

=
15

γ2

∑
α

〈
[

1√
N

∑
L

(
∂Π

∂qα

)
L︸ ︷︷ ︸

eq.C.1

]2δ(ω − ωα)

〉

=
15

γ2

∑
α

〈[∑
L

√
χL

1√
NL

(
∂Π

∂qα

)
L

]2

δ(ω − ωα)

〉
=
∑

L

ρ′LL + 2
∑

L

∑
H( 6=L)

ρ′LH , (D.1)

where

ρ′LL =
15

γ2
χL

1

NL

∑
α

〈(
∂Π

∂qα

)2

L

δ(ω − ωα)

〉
(D.2)

ρ′LH =
15

γ2

√
χLχH

1√
NLNH

∑
α

〈(
∂Π

∂qα

)2

L

δ(ω − ωα)

〉
(D.3)

χL is average fraction of L over configurations, χL = NL

N
. NL is average

number of molecules in L group. Thus, the average contribution of spectrum
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per molecule in every group

ρLL =
15

γ2

1

NL

∑
α

〈(
∂Π

∂qα

)2

L

δ(ω − ωα)

〉
(D.4)

ρLH =
15

γ2

1√
NLNH

∑
α

〈(
∂Π

∂qα

)2

L

δ(ω − ωα)

〉
(D.5)
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Appendix E

The derivation of another kind
of method beyond we used for
example

From eq.(3.10), polarizability anisotropy velocity time correlation

Gxz(t) ∼=
15

Nγ2
〈
∑

α

(
∂Πxz

∂qα
)
t=0

q̇α(0)
∑

β

(
∂Πxz

∂qβ
)
t=0

q̇β(t)〉.

According to the method of the VP analysis applying to velocity autocorrela-

tion function, only initial configurations are performed classifying. Thus,

Gxz(t) ∼=
15

Nγ2
〈
∑

α

(
∂Πxz

∂qα
)
t=0

q̇α(0)
∑

L

Θi(L)
∑

β

(
∂Πxz

∂qβ
)
t=0

q̇β(t)〉

=
15

Nγ2
〈
∑

α

< [(
∂Πxz

∂qα
)
∑

L

Θi(L)](
∂Πxz

∂qα
) > < q̇α(0)q̇β(t) >︸ ︷︷ ︸

kBT cos ωαt

=
15

Nγ2
〈
∑

α

< [(
∂Πxz

∂qα
)
∑

L

Θi(L)](
∂Πxz

∂qα
) > kBT cosωαt

= kBT

∫
ρpol(ω) cosωtdω (E.1)

Thus,

ρpol =
15

Nγ2

∑
α

〈

[
∂Πxz

∂qα

∑
L

Θk(L)

]
∂Πxz

∂qα
δ(ω − ωα)〉, (E.2)

where

[
∂Πxz

∂qα

∑
L

Θk(L)

]
is classification according to coordinates of the sub-

groups in Appendix C.
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Table 1: The parameters of SPC/E model: charges, angle between OH bond, OH bond
length, LJ potential parameters in eq. 2.1 [9]

qH(e) qO (e) θ(o) l(Å) σ(Å) ε(kJ mol−1)

+0.4238 -0.8476 109.47 1 3.166 0.650

Table 2: elements of polarizability tensor in body frame, and the coordinate is Fig. 2.3 [20]

αxx αyy αzz

1.17 1.04 1.00

Table 3: Definition of Voronoi polyhedral groups according to asphericity and Voronoi vol-
ume V scaled by the averaged molecular volume, Vavg (Ṽ= V

Vavg
) [2][6]

Group I Group II Group III Group IV

η ≤ 1.46 1.46 < η ≤ 1.72 1.72 < η ≤ 1.98 1.98 < η

Ṽ ≤ 0.84 0.84 < Ṽ ≤ 1.0 1.0 < Ṽ ≤ 1.24 1.24 < Ṽ
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