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Abstract

We have calculated the Raman spectrum of liquid water in dipole-induced-dipole
interaction in terms of instantaneous normal mode method. In this method, polar-
izability anisotropy INM spectrum is calculated with each INM weighted differently,
where “INM”is abbreviated from “instantaneous normal mode”. In this thesis, the
weighting factor of each INM is calculated. We also discuss the results of Raman
spectrum in INM method by comparing with those obtained by the MD simulation.

On the other hand, the origingof the low=frequency spectrum of water is also
studied. Designations for the origin of the low-freqiency spectrum from microscopic
point of view are still not determined. In this thesis,-the Voronoi polyhedral analyses
are used for investigating the effect of loeal structure on Raman spectrum of liquid
water. Although the results arte not' clear enough to identify the effect of local
structures in Raman spectrum of liquid water, 1iew approach (VP analyses on Raman

spectrum) has been studied.
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Chapter 1

Introduction

Since 1930s, the low-frequency spectrum of liquid water has been detected
by several experimental techniques|1][2]. In the spectrum, there are two bands,
60 cm~t and 180 ecm~!. Interpretation of the origins of these band from mi-
croscopic point of view are in dispute. Designation of the high frequency, 180
em ™1, is H bond stretching or O...O stretching, and they are similar in physics.
As to the lower frequency, 60 cmit=! band, there are many designations for it.
Here are a series of examples: Walrafen and co=workers[3] assigned this band
to the bending of a triplet cluster, which'is ene-molecule and two H-bonded
neighbors(Fig.2.1). The bending motion is. perpendicular to a H-bond. Also,
the two bands under the interpretation of triplet cluster are considered as
arising from the restricted translationss However, Padro and Marti[1] give a
different interpretation that this band should not be related to hydrogen bond,
because an analogous frequency band in density of states obtained by veloc-
ity autocorrelation function is also found in nonhydrogen liquids. It should
be translations frustrated by cage effect. De Santis et al.[4] later commented
that both of two low-frequency bands can be obtained in density of states of
melting and supercooled liquids of argon, but the cage form by four H-bonds
enhance the intensity of density of states when comparing with it. Therefore,
both of the bands are due to the H-bond formation.

The motivation of this research is to study the origin of the low-frequency
spectrum of water. The Voronoi polyhedral analyses has been used to anal-
ysis the local structures of liquid water. This analysis was used to study the
roles of local structures in the relaxation of orientational dynamics via MD
simulation[5], and this analysis indicates that the Voronoi polyhedra of water
molecules are highly deviated from sphericity, and the local structures are ba-

sically tetrahedral. Recently, this analysis was applied to the density of states



for liquid water[2][6]. The result on the translational density of states[2] in-
dicates that the 60 cm~! band is O...0...0 bending mode. In this research,
the Voronoi polyhedral analyses are used for investigating the effect of local
structure on Raman spectrum of liquid water.

There are two ways to calculate Raman spectrum. One is caculated by
MD simulation. The other is called the INM method. In MD simulation, de-
polarized Raman spectrum is evaluated via time autocorrelation function of
anisotropic part of collective polarizability tensor. In INM method, because
collective polarizability of a system is a function of molecular coordinates, it
can be expressed by normal modes. INM analysis is used to evaluate depolar-
ized Raman spectrum for short time approximation. But INM method only
need initial equilibrium configurations and some eigen-analysis which does not
involve time. By the INM method, the spectrum is obtained without the
dynamics[7].

In this thesis, theoretical approaches including basic INM theory and Voronoi
polyhedral analysis are described. il the folléwing chapter. In chapter 3, Raman
spectrum R(w) by MD simulation amd INM ¢alculational method, and Vor-
ronoi polyhedra analysis applying to Raman spectrum are introduced. Chap-
ter 4 shows the results of Raman spec¢trum and Voronoi analyses. In the last

chapter, we summarize our works and-give coneclusions of this thesis.



Chapter 2

Theoretical Methods

2.1 Molecular dynamics (MD) simulation

In this introduction, equilibrium configurations of liquid water generated
by the method of MD simulation are analyzed by the INM approach. The
model of water we adopted is SPC/E, a three-site rigid model. In the SPC/E
model, the potential energy is thesum ‘of-the Coulomb interactions and the

LJ interactions|[8].

=33 [Xﬂjmw(( g (7 >6>)]. (2.1)

i (4) i,j 3 70,50 10,50

Tiajp 15 the distance between ¢ site of molecule i and 3 site of molecule j.
The parameters of SPC/E model are given in Table 1, and the model of water
molecule is shown in Fig. 2.2. Following the previous works [8], we collected
the configurations every 400fs, so that the the configurations should be less
correlated to avoid the statistic error in ensemble average. In our simulation,
the temperature and density of water are 300K and 1g/ cm3, respectively. The
number of molecules in simulation is 256, and the periodic boundary conditions

are used.

2.2 Basic instantaneous normal mode (INM) theory for
rigid model of liquid water

2.2.1 Introduction of INM theory

In classical mechanics, once an initial state is given, the dynamics of this
system in later time is determined. Here, the initial state is generated by

MD simulation. That is, we can solve the eq. of motion by simulation, and



obtain the solutions for the evolution of the positions and velocities of the water
molecules in the system. The molecules in the liquid system interact with each
other, and their dynamics are coupled together. However, we can always find a
set of normal coordinates, which describe the motions with specific frequencies
in virtue of the INM approximation[10].

The following is the INM formalism|8][11][12].

2.2.2 The INM Hamiltonian

The dynamic properties of a system is determined by its Hamiltonian[13].

The Hamiltonian can be represented by different kinds of coordinates.

e General coordinates

The Hamiltonian is the sum of kinetic energy of all molecules in the system
and the potential energy of the system. The kinetic energy is composed

of the translational and rotational parts of each rigid molecule.

e 1
H = Z <§mr? - 3 Z Ijﬂwjzu) +V(R) (2.2)
j 1

where m denotes the mass of a‘water molecule and r; = {X;, Y}, Z;}
denotes the center-of-mass position-of molecule j. I;, is the momentum
of inertial along principle axis.u = {@;4, 2} for molecule j and wj, is the
angular velocity along molecular axis p, which rotates with the molecule
observed in the lab. frame, as represented in Fig.2.4. The orientations
of molecular axes are determined by a set of Euler angles Q = {¢,0, ¢}
observed in the lab. frame[14][15]

Wiz sinf;sinty; costy; 0 ¢.j
wjy | = | sinfjcosy; —siny; 0 éj : (23)
Wjs cos 0, 0 1)\

V(R) given in eq.2.1 are a function of R= {r;, Q;}, for j=1,2,...N, which

is the general coordinates of a configuration.

e Mass-weighted generalized coordinates

We define the 6N-dimensional mass-weighted coordinates

Z={z}, j=1,....N, (2.4)



and the components of z;,

zi ={zju}, n=1...,6

= {\/El'j, \/myja \/EZ]G \/I—ijfm \/ECJEH \/I_ZCJZ}7 (25)

¢; is the orientation of molecule j and is expressed in the body frame for

the instantaneous configuration Ro = {r?, Q}, where Q) = {¢9,69, 49}

Cja sinf)siny§ cosv) 0\ [¢;
Gy | = [ sind)cosyp) —sinvd 0 6; |, (2.6)
Gj» cos 0 0 1) \w;

where ¢; and €2; are functions of t*.

In the mass-weighted coordinates, the Hamiltonian can be expressed as

H = %zz +V(Z). (2.7)

In the INM approximationgswe expand 'V (Z) in a Taylor series up to the

second order with respec¢t to the displacement at time t from t=0, and

H = %ZZ +V(Ro) — PR WZy —Zo) + %(Zt —Zo)D(R)(Z; —Zy), (2.8)

where F(Ry) is a 6N-dimensional force vector whose elements are

_OV(R)

Fju(Ro) = 92 ‘R (2.9)
i 0
and
! OV (R)
Dy k) (Ro) = Do IR (2.10)

e Instantaneous normal coordinates

Let U(Ryp) be 6Nx6N orthogonal matrix, which comprise 6N eigenvectors
of Hessian matrix D(Ry). As well known, U(Ry) is the matrix which
transforms Hessian matrix in the mass-weighted coordinates{z;,} into

that in normal coordinates {q,}, o =1,2,... 6N.

D(Ry) in the normal coordinates is diagonalized, and expressed as A

A =U'DU, (2.11)

*¢ is the same physical observation with Euler angle £2;, but is observed in the body frame whose axes
are assumed to be fixed instantaneously.




with elements to be the eigenvalues of D(Ry)
wzé = Z UavjuDjﬂkaUk/j’va (212)
Jpkv
The transformed forces are given as
fa(Ro) = Z Ua,j#(RO)Fju(RO) (2.13)
JH
and the instantaneous normal coordinates are
Go(t, Ro) = Y Ua ju(Ro)[2j(t) = 2ju(0)]- (2.14)
J

The Hamiltonian in eq.(2.8), can be rewritten by as

6N
1. 1
H=VR)+Y (Ji+ gk~ fura) . (219

- fo
the Hamiltonian is written as theform
CNTS 1 f
H=VR e gL L 2.17
( 0)+;(2xa+2waa 2(«03) ( )

The physical picture of the INM approximation is discribed in Fig. 2.5

2.2.3 The INM dynamics and density of states

The Harmiltonian in eq.(2.17) is a set of 6N harmonic oscillators, and its

dynamic solutions are

(0)

Ta(t) = 24(0) coswat +

sin wqt (2.18)
Va(t) = T0(t) = £4(0) coswal + 20 (0)wy sin wyt (2.19)
The velocity autocorrelation function of any normal mode is

(Va(0)va(t)) = kBT cos (wut), (2.20)

because velocities and positions of molecules are independent with one another,
< T4(0)z3(0) >= 0 and the velocity autocorrelation function of the initial

conditions give < v,(0)vg(0) >= kpTd.p from the equipartition theorem.

6



Averaged over a liquid configuration which has 6N degrees of freedom, the

velocity autocorrelation function can be expressed in terms of frequency spec-

trum.
| N
D < vOult) = kT / dw D (w) cos(wt), (2.21)
a=1
where
T
D(w) =< N ; Mw —wy) >, (2.22)

is the normalized density of states. | D(w)dw = 1. Because the number of
modes of a condensed system is large and the mode frequencies of a system
are dense, the density of states are usually represent by the average number
of modes within a frequency window, so that the normalized density of states

depicts the probability distribution of normal modes.

2.3 Voronoi polyhedral analyses for local structures

The Voronoi cell of a particle in a liquid system is the smallest polyhedron
formed by equi-partitional planes between any, two particles, so that there is
only one particle in the Voronoi cell. “Any point inside the Voronoi cell of a
particle is closer to that particle thamranyrother ones. Voronoi cell is therefore
a generalization of the WignersSeitz unit cell.of a crystal. In this thesis, the
Voronoi polyhedra of the O atoms are‘classified into four groups according to

two kinds of dimensionless parameters, asphericity 1 and the scaled volume v,

which are defined as[2] [6]

AS
-t 2.23
1= 36r12 (2.23)
and v
V= 2.24
‘/;wg’ ( )

where V and A are the volume and surface of a Voronoi polyhedron, respec-
tively. Vg is the averaged volume per molecule in the system. The ranges of
7 or V for the four groups defined in the thesis are given in Table 3.

In formalism, selection operator ©;(L) is introduced to specify Voronoi

groups.

0,(L) = { 1 if molecule i belongs to Voronoi group L

0 otherwise



Summation of the four selection operators equals to identity operator.

Do) =1 (2.25)




Figure 2.1: Triplet cluster of water. The dashed lines represent hydrogen bonds.
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Figure 2.2: Water molecule in the SPC/E model.
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Figure 2.3: Water molecular axes
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Figure 2.4: The coordinate axes(X, Y, Z) in the lab. frame and the molecular axes(X’, Y,
Z’) in the body frame. 7 is the center of mass of the molecule.
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Figure 2.5: The INM approach. The point X at the potential energy hypersurface repre-
sents the potential of specific configuration. Consider a-direction, potential is depicted by a
parabola as using INM approach. Configuration 1 and 2 are at the extreme of the hypersur-
face and also in the equilibrium of the INM approach harmonic oscillation; configuration 3
and 4 do not. The shift quantity 5—‘; from an extreme of INM approach parabola is the dis-
placement from the equilibrium of INM approach harmonic oscillation at t=0. Two figures
in the insets are referred from Ref.[11]
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Chapter 3

Depolarized Raman Spectrum

3.1 MD method

The depolarized Raman spectrum R(w) is expressed by[16]

R(w) = (1 — e~ w/ksT) /OO dt sin(wt)[—gq(;—it)], (3.1)

0
with U(t) the time correlation filnetion of the off-diagonal component of the
collective polarizability tensor, which is definedas

15
where v = 1[(af; —ad,)?+ (a9, =ad;)* + (af, =0 )?] is polarizability anisotropy
and o2 the principle polarizability: components.

Nuclear response function is defined as

1 ov(¢t
Rnuclei(t) = _kB_T%’ (33)

which can be detected by OKE experiments. The OKE experimental signal
in the time domain is sensitive to the ultrafast intermolecular dynamics that
affects the electric polarization of the liquid molecular system.[17]

The nuclear response function represented in the frequency domain is called

OKE spectrum x(w),

Im[x(w)] = /000 sin(wt) Ryyerei (t)dt. (3.4)

Depolarized Raman spectrum is related to the OKE spectrum through the
following formula
R(w) = (1 — e~ ™/ 1) Im[x (w)], (3.5)

e—hw/k?BT)

where (1 — is the quantum correction factor.

14



3.2 INM theory of polarizability anisotropy dynamics

Polarizability anisotropy velocity time correlation is defined as the second

derivative of W(t) with respect to t

According to the definition of ¥(¢) in eq.(3.2) and the property of second

derivative of time correlation function with respect to t *[18],

15 .. 15

G (t) is time correlation function of the first derivative of off-diagonal element

of polarizability, and is named as the polarizability anisotropy velocity time
correlation function.

The following is the INM theory for expressing G,.(t) in terms of normal
coordinates g,[19]. The collective polarizability depends on the coordinates of
molecules, and we expand off-diagenal element of the collective polarizability

in terms of normal modes first.
I, (t) = Ha?z(ch (t))
E)sz 8sz
M)+ Y G =, Gats - (38)

0 qoﬁ% t=0

Then, by using the linear approximation (the INM approximation for short
time), the quadratic and higher-order terms can be neglected. This approxi-

mation gives

. asz .
Moe(t) = D (5.5) dalt). (3.9)
— " 0ga
Finally, substitute the approximated II,(¢) in eq.(3.9) into eq.(3.7)

Gor(t) = 25 (Bley 003 (Bl g0, (3.10)

N2 9Ga " 1=0 3 995 "1y

Since the velocity(¢) and position(q) of each molecule are independent, the
velocity(¢) can be seperated apart from position(q). Also different degrees of
freedom are independent, the correlation function of cross terms of different

degrees vanish. The velocity autocorrelation of INM, eq.(2.20), is used, hence

N 15 oM, .,
G (t) = kT N2 ; (( Pa. ) >t:0 cos (wat) (3.11)

“ & (B(1)A) = —(B()A(t)

15



Through above derivation, we replace the summation with integral.

G (t) = k:BT/ppol(w) cos (wt)dw, (3.12)
where 5 on
Tz\2
[ = 5 - a 313
Ppol (W) N’sza:« 8qa) (W —wa)) (3.13)
is polarizability anisotropy INM spectrum. The normalized spectrum is
Ppot(w)
Dyy(w) = ——F 3.14
o) = (3.14)

Compared with the density of states (eq.(2.22)) of liquid water which has
been reported[8], the polarizability anisotropy INM spectrum is similar as
the density of states (DOS), but each mode is weighted by a factor (%)2.
The polarizability anisotropy velocity time correlation .., and polarizabil-
ity anisotropy INM spectrum p,, (eq.(3.12) and eq.(3.13)) are analogous to
the velocity autocorrelation function and the density of states (eq.(2.21) and
(2.22)), respectively. One is in time domain, and the other is in frequency

domain.The relation betweerr them is-a -Fourier transformation.

3.3 The correlation between _polarizability anisotropy
INM spectrum pyu(w) and depolarized Raman spec-
trum R(w)

From eq.(3.1) and eq.(3.3),

R(w) = kgT[1 — e~ w/ksT] / h dt sin(wt) Ryyerei(t). (3.15)

Ryuciei (1) is proportional to ( ) (q.(3.3)), and by the definition of G, (t)(eq.(3.6)),

8‘3;; ) is proportional to 1ntegral of G,.(t)

nucel IZ '1
Raalt) = 17 / G (3.16)

By means of the substitution of eq.(3.12) and the integral with respect to 7

from 0 to t,
sin wt

Roueiei(t) = /ppol(w) dw. (3.17)

fBecause autocorrelation is even function, Fourier cosine transformation of spectrum is used, and we
used to plot positive regime of spectrum, the negative in spectrum is usually represented the quantity of
imaginary frequency.

16



After Ryucei(t) in eq.(3.17) substituted into eq.(3.15), the integral with respect

to t is perform from 0 to oot. Therefore,

[1 _ e—hw/kBT]

R(w) ~ (), (3.18)

This formula depicts the relation of pp(w) and R(w). (1 — e ™/*#7) is the
quantum correction factor. When hw > kgT', the factor (1 — e/ kBT) re-
duced to w, and R(w) can be represented by ppo;.

3.4 Collective polarizability of liquid water
3.4.1 Effective molecular polarizability

Consider the effective dipole moment g, of molecule of liquid water in laser
field E“*. Water molecule is a polar one, and has a permanent dipole moment
pP. The extrinsic dipole moment of molecule i in liquid water is induced
by laser field and polar molecules around it. Therefore, the effective dipole

moment of molecule i in liquid watber is

N
pi= plF e B Lt N T, (3.19)
7 (#8)
. . . E . 37‘ij1‘ij—TZ~2jI
where T;; is dipole interaction tensor given as T;; = ———=—", and only

ij
depends on the distance between ‘the center of mass of molecules i and j.

Tyj - p; is the electric field on molecule i due to molecule j.

The polarizability of molecule i in liquid water is defined as

. O,
Q; = Eg?lo SE (3.20)
where p,; is given as eq.3.19. Thus
o oaM
M i
- O{ + «; Z (] aEeth aEext Z Tijl"'j
3(#9)
J(#9) J(#9)
where B = agjzf called the hyperpolarizability is the first derivative of a

with respect to electric field. The enhanced polarizability a; and dipole p;
are solved iteratively according to the two self-consistent equations, eq. 3.19
and eq. 3.21.

ifo sinwtsinw’tdt = Z[6(w — w') — §(w + w')], and we do not care about the negative frequency.

17



3.4.2 Collective polarizability

Collective polarizability, denoted by II, can be expressed as superposition of
the effective polarizability of molecules embedded in the condensed phase. The
effective polarizability of every molecule is considered as point polarizability

located at the center of mass.
1= Z Q; (3.22)

and from eq.(3.21)

M=) (o +al Y Ty-a;+8" > Ty p. (3.23)
i J3(F#) J(#)
II can be separated to two parts, molecular polarizability and induced po-
larizability: IT = ITY + IT'.

oV — Z oM, (3.24)

I = (o S Ttlas 8- Y Ty py). (3.25)
i i) ()
The molecular part(IT*) isthe sumi“of isolated molecular polarizability. The
induced part(IT’) arises frony the “ntermolecular interaction. In this thesis,
only the first term of IT!, aT o, which-is the first order approximation of the

enhanced polarizaility is considered. That is,

@ J(#4)

This approximation regards o as a constant with respect to E“”*. Hence,
the existence of dipole moment is excluded to collective polarizability. «;
in eq.(3.26) is the solution of eq.(3.21), but here we take an approximation
o = oaéw . Therefore,

M=) [ +a- ) Ty o} (3.27)

g J(F#0)

is used to calculate the weight of modes, (‘9;1“ )2, in this thesis.

18



3.5 Decomposition of polarizability anisotropy INM spec-
trum pp.(w)

To separate the translational and rotational parts in %[19],

81—.[;” anz trans a]:[,z’z rot
o ( 94a ) i ( 04a ) ’ (3.28)

the projection operators are introduced as
P=U"U=3, (3.29)

whose elements
Pog =Y UajuUjup- (3.30)
j oK
Because P is just an identity matrix, we can write down the equality

_\"p, Pz 31
66]& ; 7 aQB (3 ; )

By separating the project operator intorthe translational and rotational parts,

A T (3.32)
we can obtain the translational and rotational portion of %,

81_[ ) trans
Tz P(irans
< 0qa Z B aq 3

81_[392’ " 'rot
< 0o ) ZPaﬁ 361 (3.53)

where
POté%anS = Z Z Uanj:u‘Uj:ufvﬁ 7and ngt = Z Z Uav.]/‘LUJIUﬂB (334>
Jj w=123 J p=4,5,6
According to derivative chain rule of differential,

anz 8Hm aZk'u Z 3Hm

= o 3.35
azk# k# ( )

aQa Ky azk,u aQQ

2
to calculate the weight of each mode (?”) , %Hf” and the eigenvector are
do Z5

19



needed. Derive eq.(3.27) with respect to 2z,

oIl oaM daM oaM
Oy Z 02y Z Oz Z 7 ’ Z T 02k,
- J(#0) 3(#) .

Z aﬁwZ&aM : (3.36)

Ol -
b Ozj

which are only associated with rotational motions, the translational and rota-

Hence includes three terms: the contribution due to isolated molecule,
tional parts due to DID interaction. The details of the calculations for these
terms are given in Appendix B.

Now, there are two ways to decompose the polarizability anisotropy INM
spectrum according to above analyses. One way is to decompose ppo(w) into

the molecular, DID interaction and their ¢ross eomponents,
M MM
ppol y ppol )

I wlvle Itit Irlt
ppol _ppol +pp0l +ppol ’

Dol = Dbt T Dpo - (3.37)

The other way is to decompose p,o(w) into the rotational and translational

components and their cross terms,

Rot _ MM MIr Irlr

ppol _ppol +pp0l +pp0l )

Trans __  ITtlt

ppol - ppol )

Cross __  _MIt Irlt

ppol - ppol + ppol ) (338>
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where

) ((EZMZ)QM - wa>> | (3.390)

> (%HT) 5o wa>> , (3.39b)

) ) o

<Z (aagM) (aég) e ‘”“)> ’ (3.39d)

- 25 () () oo}
30

<

oL ) (8HI )
12 = 0w —wy) ). 3.39f
Z (aqa rot aqa trans ( ) ( )

—~

3.39%¢)

3.6 Voronoi polyhedral analyses of local structure ef-
fects on Raman spectrum

We apply Voronoi polyhedral "analysis‘on depolarized Raman spectrum in
order to investigate the local geometry-and structure effect in liquid water.
This is similar as the Voronoi analyses applied to the INM DOS of liquid
water[2][6].

There are two ways of Voronoi polyhedra analyses applied to Raman spec-
trum in this research. One is to classify the collective polarizability into four
groups and examine the variation of each sub-collective polarizability II; with
normal coordinates; the other is to classify coordinates into four groups and
to investigate the variation of collective polarizability with each group of co-
ordinates. The former method is a classification before differential, while the
later is a classification after differential. The details of the derived procedure
are given in Appendix C.

To analysis the geometric effect of local structure of each molecules, the

fraction of each group should be considered. Thus, the average contribution

21



per molecule in every group to the spectrum is given as

55 (s, a
ppo,<w>—72§<m (5..) o a>>, (3.400)

L

1025 (b (), (), ). o

where eq.(3.40a) is the pure term due to group L and eq.(3.40b) is the cross
term due to the group L and H. L and H can be LILIIL,or IV, but L# H

for eq.(3.40b) There are four pure terms and six cross terms. The detailed

derivation is given in Appendix D.
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Chapter 4

Results and Discussions

4.1 Polarizability anisotropy INM spectrum

The polarizability anisotropy INM spectra of liquid water are shown in
Fig. 4.1. Tt is surprised to find that the results of decomposition by different
ways (eq.(3.37) and eq.(3.38)) are extremely similar. The six components in
eq.(3.39) are plotted in Fig. 4.2. Igsghows that D/'/"(w), D}!/"(w) and D[7/*(w)
are small. This implies that the rotatienalspart-of DID interaction contributes
insignificantly. If we neglect.those extreinely small terms, the dominant terms
of the two ways of decomposition; eq.(3.37) and: eq.(3.38), are the same. As
only intrinsic molecular polarizahility and-aT'e terms are considered, the ro-
tational, translational, and rotafienal-translational cross contributions corre-

D), the interaction-induced(D}!)), and the

MI
D pol

spond to the intrinsic molecular(
rotational-translational cross ( ) components, respectively.

4.2 Depolarized Raman spectrum

The polarizability anisotropy INM spectrum p,,(w) is related to depolar-
ized Raman spectrum R(w) that the experiment can directly measured. The
factor <%> in eq.(3.18) for our system (T=300K) amplifies the inten-
sities at low frequencies. The interaction-induced component R (w) and the
low-frequency molecular component RMM(w) are enhanced due to the quan-
tum correction from the classical dynamics. Thus, around 230 em™!, R(w) is
changed from a shoulder to a peak and around 800 cm™!, R(w) from a peak
to a smooth shoulder.

Shown in Fig. 4.4, R(w) is compared with the result of the time correlation
function obtained by MD method[17]. Although the INM method is applied
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for the short time dynamic, the shape of molecular part RM*(w) looks very
similar for the two methods. However, there are differences in R(w) between
the results we obtain and that given in Ref.[17], in which not only aT« term,
but also BT and one step further in the level of approximation for induced
collective polarizability are considered. The DID component, R (w)(or trans-
lational part R*"*(w)), in Fig. 4.3(a) contributes only in the region of low
frequencies and almost vanishes beyond 500 cm™!. This is the same with the
translational part of DOS (Fig. 4.3(c)). However, as considering the higher-
order approximation of TI' Fig. 4.3(b), there is still contribution to R(w)
beyond 500 cm~!. This means that the translational modes at high frequen-
cies contribute more to Raman spectrum as the high-order terms of I/ are
considered.

The MlI-cross term we calculated (Fig. 4.3(a)) is obviously much smaller
than the other two components, but MI-cross component in Fig. 4.3(c) does

I and

not. The Ml-cross term in Fig. 4.3(a) has a smaller hump at 150 cm™
becomes negative in high-frequenéy regiony The differences mentioned above

are attributed to approximation in IIfme used.and that of the INM method.

4.3 Voronoi polyhedral (VP) analyses of depolarized
Raman spectrum

The results are shown in Fig. 4.5,"4.6; 4.7, and 4.8.

The pure terms due to the rotational part of depolarized Raman spectrum
R7%(w) are the same, no matter which method of the Voronoi analysis is used,
because the formalism eq.(C.3) and (C.5) of them are the same. (Because the
contribution from R (w) is small, R™(w) is dominated by RMM(w).) The
main difference comes from RY%"(w). Each pure term RY#"*(w) according
to the coordinate classification has a peak at 60 cm~! about, but the result
according to the polarizaility classification does not. RY#"(w) of the two
classifications have different formulism. Feynman diagrams are introduced to
find out the difference of them.

The diagrams are given in Fiig. 4.9. The derivation of translational interaction-
induced part of (%) in group L, (%)é’tmns, are shown in Fig. 4.10 with the
polarizaility classification and Fig.4.11 with the coordinate classification. We
easily find that the different terms and the same ones between the two meth-

ods by Feynman diagrams. In Fig. 4.12, two terms are the same in each
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(gTH)é’tm"s; while three terms are different. The weight of a mode in group L

is a square of (gTH)é’tmns, so that there are 10 terms for RY{"*(w), and 3 of
them are the same; while there are 25 terms for RY#"(w), and 4 of them are
the same.

The physical significances for liquid water are discussed in the following:

e Rotational part of R(w)

For molecules with strongly aspherical VP, their local structures are basi-
cally tetrahedral[5] and the molecule is more ordered and hard to rotate.
Therefore, as asphericity increase, the intensities at the high-frequency
modes increase (Fig. 4.5(b) and 4.6(b)). This agrees with Ref.[6]. The
results of classifying according to volume of VP are inverse to those of
the asphericity , the larger the volume, the lower the frequency of modes
(Fig. 4.7(b) and Fig. 4.8(b)). This means that the molecules with larger

volume are easier to rotate.

e Translational part of R(w)

There is no peak in RY#"¥ (&) by-polarizability classification; while there
are by coordinate classification. It is'worth t6 note that the total RS (w)
does not have peak around 60-¢m—(Fig. 4:3), thus, this peak appearing
in pure term RY{#"(w) by eoordinate classification may be attributed to
the negative contribution of crogs terms RY4"(w) to R™*™$(w). In Fig.
4.6(c), if we only consider pure terms, the larger the asphericity, the
higher the intensity of spectrum. Thus, we recognize that the molecule
with larger asphericity is tetrahedral. This imply that the peak is cage
effect form by H-bond according to Santis et al.[4], who regard the higher
intensity in DOS of liquid water than that of the nonhydragen liquid at the
same frequency as the cage effect form by H-bonds. While in Fig. 4.8(c),
R (w) are ordered when neglecting R}, (w), the larger the volume,
the higher the intensity of spectrum. This agrees with the interpretation

of O...0...0 bending[2].

Since Raman spectrum of VP group has cross terms, we can not obtain the
direct information about the effect of the local structures like DOS as the VP
analyses on Raman spectrum. Maybe we should try another classification
methods beyond the two we adopted. For example, to obtain the weight
of every mode for each group <3711>i, classify first (%) by the method of
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classifying coordinate and then perform multiplying total (g%) to these four
groups instead of squaring. This method is derive from the method of the VP
applying to velocity autocorrelation function, as one classifies VP of the initial

configuration. The detail derivation is in Appendix E.
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Figure 4.1: Normalized polarizability anisotropy INM spectrum D, (w). (a) is the contri-
butions of the molecule(MM), interaction-induced(II) and cross(MI) components; (b) is the
rotational, translational and rotational-translational cross components.
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Figure 4.2: The six components of the normalized INM spectrum D (w): Dgoolml (w)( solid

line), DM (dashed line), DI!'*(dotted line), and the D)!/*(dot-dashed line). Inset shows
terms whose contribution are small. The dot-dot-dashed line is DI"/"(w), the dash-dash-

pol
dotted line is D}!/"(w), and the solid line is DI7/*(w).
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Figure 4.3: In (a), Depolarized Raman spectrum R(w) calculated by the INM approach with
only the intrinsic molecular polarizability and the aT'« term being considered. (b) is the
result R(w) obtained by time correlation function[17]. In (c), the INM DOS of liquid water
for SPC/E model [8].
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Figure 4.4: Depolarized Raman spectrum of MM component: (a)the INM approach, and
(b)the MM line in Fig. 4.3(b).
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Figure 4.5: Voronoi analysis according’ o asphericity with polarizability classification.

(a),(b),(c),(d) are Rpm(w), Rpg(@)(or Rig(w), Rif™ (w)(or Rily(w)), Rig™(w)(or
RYI(w)), respectively, where L, H=I, I, HIL, or IV, group. Thick lines are the pure terms:
black(11), red(22), green(33), blue(44). Thin lines are=the cross terms: violet(23), ma-
genta(34), etc. the symbol (LL) and (LH) is defined in eq. 3.40.
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Figure 4.6: Voronoi analysis according to asphericity with the method of classifying
coordinate. The order and the colors of lines are the same with Fig.4.5
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Figure 4.8: Voronoi analysis according to volume with the method of classifying coordinate.
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Figure 4.9: The diagrams representing collective polarizability and partial derivation with
respect to the coordinate. Circles represent polarizability; thin solid lines represent dipole
tensor T';;; disks represent differential polarizability; thick dotted lines represent %1;: , and
thick circles label k=i or k=j.
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The method with polarizability classification
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Chapter 5

Conclusions

First, in this thesis, the method, different from MD method, based on INM
theory is used to calculate Raman spectrum of liquid water. We identify the
contributions of rotation, translation, and their cross correlations to polar-
izability anisotropy INM spectrum pp,(w), and another contributions: the
molecular, DID interaction and their cross components. We find that the two
ways of composition are the same'as only éensidering aTa for II'. We also
find the 60 cm™! peak in DQS vanish in the Raman spectrum.

Second, We compare R(w) wecalculatewith that obtained from MD method
and considered more accuraey for TI'. The molecular, DID interaction and
their cross components are also compared. “Although there is an approximation
in INM method, but the MM compoenent is‘similar to each other.

The last, the results with the classifications we used have cross terms and
are not clear to identify the effect of local structures in Raman spectrum of
liquid water. New application(VP analyses on Raman spectrum) is put into
practice. Although there is no new discovery in the origin of the low frequency
of liquid water, the VP analyses does succeed to separate Raman spectrum

according to the parameters of VP.
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Appendix A

List of notations

kp: Bolzman constant

q: charge

m: mass of molecule

T: temperature

i, j, k: index of molecules

«, 3: index of modes

N: the total number of molecules inithe system
go-normal mode

n:asphericity of Voronoi cell

V:scaled volume of Voronoi cell

ppol(w): polarizability anisotropy INM:spectrum
X(w): OKE spectrum

R(w): depolarized Raman spectrum

Riuciei(t): nuclear response function

U(t): time correlation function of the off-diagonal component of the collective
polarizability tensor

~: polarizability anisotropy

a: principle polarizability component

G (t): polarizability anisotropy velocity time correlation
E“': external field

o™ intrinsic molecular polarizability tensor

IT: Collective polarizability tensor

T;;: dipole tensor between molecule i and j
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Appendix B

Computational details o .
«

The derivatives of the polarizability anisotropy with respect to mass-weighted

%1;1:27 include three terms:
W

coordinate,
e Jsolated molecule contribution

o\ daM  da)
TN B.1
(3214#) 021y 0z, (B.1)

7

e Rotational part of the dipole-induced-dipole contribution

oI \ ™" daM oaM
T Zk,u
3(#

(?z;w

Dot Dot
(ﬂTkpap + aMTpkﬂ) (B.2)
k
k)
e Translational part of the dipole-induced-dipole contribution

81_11 trans aTZ
( > =2 (e > e

0
“hi i JD)

ANY JT;
M ki M M ik M
= E a, az]waj + E o pp a;,

J=1(k) i=1(£k) i

N
= Z (aMaTkpaM + aMankay> (B.3)
)

k P P
pe1(2k 8zku (9Zku

Because the system of liquid water is isotropic, off-diagonal elements of col-
lective polarizability are the same. We average all off-diagonal elements of 88213

I
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as gl;[_:z' Then, partial derivatives of I, with respect to normal coordinates,
i

(5=)" =5 5 () v o

E p=4,56 Oz
6sz > Irot Z Z (anmz > Irot
- Ukpr,a (B.4b)
( 4o e 02k
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( 0qa Pl e
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Appendix C

Computational details of
Voronoi polyhedral analyses for
Raman spectrum

2
The weight of mode « is (%}Y) . gn can be classified to four groups,

o1l ((91__[)

= — | . C1

ay—dean ke (C1)
In this thesis, there are two-ways that we classify gTHa

e (Classification according™to.collective polarizabilities of subgroups

gz @ [H gji(ﬁ] -y (%) _ ;@, ©2)

L
(O 9[e(L)] 0z
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e (Classification according to the coordinates of the subgroups

g? BTN Z@ Z (gf) 0,(L) = XL: <g—2)L, (C.4)

h aQa 66]& aQa azku kel 8Qa 82’{5
02y, 0 8 Ja
Z azk” a—ak@k ak Z Tk]aj + Z @k a TZka +
Ga m 7 m
%,_/ o J(#k) i(#£k) ,
oM 7 rot
(#0), (),
0T, JT;
; Zkp ; aZku
J(F#k) i(#k)

- J
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Appendix D

The derivation of the average
contribution of spectrum per
molecule in every group

Polarizability anisotropy INM spectrum

) = o <<aqa) SN “"“>>

:EZ<WZ<8%)L2 o “’a)>

eq.C.1

72 « L
=D M2 D Pews (D.1)
L L H(#L)
where
15 1 oII\ >
| — | (w —waq D.2
PrL = ’VQXLNLZ<(3%)L (w—w )> (D.2)
= XLX 0w — wq D.3
T Hmz<(aqa)L ( >> P
X1 is average fraction of L over configurations, y; = % Ny, is average

number of molecules in L group. Thus, the average contribution of spectrum
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per molecule in every group
151 oIl
L= TN 2 < (5,

>

15 1
PLH = E—I—NL N,
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Appendix E

The derivation of another kind
of method beyond we used for
example

From eq.(3.10), polarizability anisotropy velocity time correlation

Golt) = 35 (G O S (G s,

«

According to the method of:the VP analysis applying to velocity autocorrela-

tion function, only initial configurations are performed classifying. Thus,

;igz (i 0336, Z OMozy o)

8% tO 9qs t=0

I

Ga:z (t)

- 3 (T < () ;@xL)](aar;j) > < @0l >

~
kpT coswqat

15 oIl OlL,.
TN <§ < [(8—%) ;@z(L>]( a4 ) > kT coswyt

= kBT/ppol(w) cos wtdw (E.1)

Thus,
asz

15 aHm
Prol = 32 Z Z Ok (L — Wa)), (E.2)
L

where {‘gzz Z@k(L)] is classification according to coordinates of the sub-
L

groups in Appendix C.
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Table 1: The parameters of SPC/E model: charges, angle between OH bond, OH bond
length, LJ potential parameters in eq. 2.1 [9]

qu(e) q0 (¢) 0(°) I(4) a(A) e(kJ mol ™)
+0.4238 -0.8476 109.47 1 3.166 0.650

Table 2: elements of polarizability tenser in'bedy frame, and the coordinate is Fig. 2.3 [20]

gy gy Oz

1.17 1.04 1.00

Table 3: Definition of Voronoi polyhedral groups according to asphericity and Voronoi vol-
ume V scaled by the averaged molecular volume, V., (V=) [2][6]

Vavg
Group I Group II Group IIT Group IV
n < 1.46 1.46 < n < 1.72 1.72 < < 1.98 1.98 < n
V <084 0.84 <V < 1.0 1L0<V <1.24 124 <V
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