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Abstract

Chaos synchronization by driving parameter for two uncoupled identical chaotic double Duffing systems is presented.
Replacing two corresponding parameters of the identical systems by the same function of chaotic state variables of a third
chaotic system, the synchronization or anti-synchronization of two uncoupled systems can be obtained. Numerical
simulations are illustrated for either synchronization or anti-synchronization of which the occurrence depends significantly
on initial conditions and on driving strength. Alternative complete synchronization and anti-synchronization is also
discovered.
© 2008 Published by Elsevier Ltd.

1. Introduction

Various synchronization phenomena are being reported for chaotic systems, such as complete
synchronization (CS), anti-synchronization (AS), phase synchronization (PS), lag synchronization, and
generalized synchronization [1-20,29-38]. However, most of synchronizations can only realize under the
condition that there exists coupling between two chaotic systems. In practice, such as in physical and electrical
systems, sometimes, it is difficult even impossible to couple two chaotic systems. In comparison with coupled
chaotic systems, synchronization between the uncoupled chaotic systems has many advantages [20-29].

In this paper, synchronization of two double Duffing systems whose corresponding parameter is driven by a
chaotic signal of a third system is analyzed. The chaos synchronizations of two uncoupled double Duffing
systems are obtained by replacing their corresponding parameters by the same function of chaotic state
variables of a third chaotic system. It is noted that whether CS or AS appear depends on the initial conditions.
Besides, CS and AS are also characterized by great sensitivity to initial conditions and on the strengths of the
substituted variable. It is found that CS or AS alternatively occurs under certain conditions [38—42].

This paper is organized as follows. In Section 2, a brief description of synchronization scheme based on the
substitution of the strengths of the mutual coupling term of two identical chaotic double Duffing systems by

*Corresponding author. Fax: + 886 35720634.
E-mail address: zmg@cc.nctu.edu.tw (Z.-M. Ge).

0022-460X/$ - see front matter © 2008 Published by Elsevier Ltd.
doi:10.1016/j.jsv.2008.05.019


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.05.019
mailto:zmg@cc.nctu.edu.tw

450 Z.-M. Ge et al. | Journal of Sound and Vibration 317 (2008) 449-455

the variable of a third double Duffing system is presented. In Section 3, numerical simulations are given for
illustration. It is found that one can obtain CS or AS by adjusting the driving strength and initial conditions.
Finally, in Section 4 conclusions are drawn.

2. Synchronization of two double Duffing systems
The famous Duffing system is
X+ ax+bx+ cex® =d cos wt (1)

where a, b are constant parameters, dcoswt is an external excitation. It can be written as two first-order
differential equations:

dx _
dr
%:-ay—bx—cx3+dcoswt

Y
2

Consider the following double Duffing system:

dx
o=
y:—ay—bx—cx3+du

dt

du (€)
P

dv 3
a_—ev—gu—hu + kx

y

It consists of two Duffing systems in which two external excitations are replaced by two coupling terms. It is
an autonomous system with four states where a, b, ¢, d, e, g, h, and k are constant parameters of the systems.
Two identical double Duffing systems to be synchronized are

dX1

dr =0

% = —ay, — bx; — cx% +dyu
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where a, b, ¢, d, e, g, h, and k are positive scalars, and d; = d» are the control inputs to be designed. The third
system is also a double Duffing system:

dX3_
d: =3

—2 = —ay; — bxy — cx3 + du
dus (6)

In order to obtain the chaos synchronization of systems (4) and (5), the corresponding parameters d; = d, of
two systems are replaced by a chaotic signal px3 + gy; of the third system (6), where p, ¢ are constant driving
strengths. The error state variables are defined:

€ = X1 — X2

=)=
ey =uy —up

()
€4 =01 — Uy

Giving suitable values for p, ¢ and initial conditions, the synchronization or anti-synchronization of systems
(4) and (5) can be obtained.

3. Numerical simulations

Matlab method is used to all of our simulations with time step 0.01. The parameters of two systems (4) and
(S aregivenasa=0.5,b=1,c=3,d=-2,¢e=5,9g=1, h=2, k =2 to ensure the chaotic behavior. To
verify CS and AS, it is convenient to introduce the following coordinate transformation: E; = (x; +x,) and
e; = (x;—x») and the same transformation for y, u, and v variables. Therefore, the new coordinate systems (E|,
E,, E5, E4) and (e, e;, €3, e4) represent the sum and difference motions of the original coordinate system,
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Fig. 1. CS and AS for initial condition (x,, y», U, v2) = (=8, =9, 0, 5), and p = 10, ¢ = 8. (a) e, ey, €3, ¢4 and (b) E,, E,, E;, Ej.
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Fig. 2. CS and AS for initial condition (x,, y,, s, v2) = (=8, =9, 0, 5), and p = 10, ¢ = 10. () e, e;, €3, ¢4 and (b) E|, E,, Es, E4.
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Fig. 3. CS and AS for initial condition (x,, y», s, v2) = (9, 5, =7, 9), and p = 10, ¢ = 10. () e, ey, €3, ¢4 and (b) E|, E,, Es, Ej.

respectively. We can easily see that (eq, e,, €3, €4) subspace represents the CS case, and (£}, E», E3, E,;) subspace
the AS one.

How the synchronization phenomena depend on the initial conditions will be studied. At the beginning, we
choose (xy, y1, uy, v1) = (2, 5, 1, 0.3) and (x», ¥, us, v2) = (=8, =9, 0, 5) as the initial conditions of systems (4)
and (5). Let the driving strengths be p = 10, ¢ = 8 and p = 10, ¢ = 10. Figs. 1 and 2 show the time-series of AS
and CS phenomena for different driving strengths, respectively. The simulation results are shown in Fig. 1 for
case (a) and in Fig. 2 for case (b). These simulation results indicate that the final state develops to CS or AS
depending sensitively on driving strength in spite of the identical initial conditions in both cases. For AS case
(Figs. 1(a) and (b)), the sums of the variables converge to zero, while the differences remain chaotic. For CS
case (Figs. 2(a) and (b)), on the other hand, ey, e,, e3, and e4 converge to zero, while E;, E,, E3, and E4 remain
chaotic.



Z.-M. Ge et al. | Journal of Sound and Vibration 317 (2008) 449455 453

(@) (b)

20

0

-20

100

0

-100
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

20

0

-20
1] 500 1000 1500 2000 2500 1] 500 1000 1500 2000 2500

200 T T T 200 T T

0 0

200 1 L L 200 L .
1] 500 1000 1500 2000 2500 1] 500 1000 1500 2000 2500

Fig. 4. CS and AS for initial condition (x5, y,, Uy, v2) = (=8, =9, 0, 5), and p = 10, ¢ = 13. () e}, e;, €3, ¢4 and (b) E|, E,, Es, E4.
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Fig. 5. Alternative CS and AS for initial condition (xy, yy, uy, v1) = (2, 5, 1, 0.3), (x2, y2, Uz, v2) = (=3, 5,2,9),and p = 12, ¢ = 12. (a) ¢,
€, €3, €4 and (b) E|, E2, E}, E4.

In order to know how this phenomenon depends upon the initial conditions, different initial conditions are
given for fixed driving strength. The results are shown in Figs. 3 and 4. Fig. 3(b) shows that E;, E,, E3, and E4
tend to zero. As shown in Fig. 3(a), while the e, e,, 3, and e4 do not go to zero. Comparing Fig. 1 with Fig. 3,
it is found that they have contrary behavior. The only reason lies in the different initial conditions. Similar
result also exists by comparing Fig. 2 with Fig. 4.

Besides, we also discover the alternative CS and AS. In Fig. 5, the system shows alternative switching
between these two states where the initial condition (xy, yy, u, v1) = (2, 5, 1, 0.3), (X2, y2, U, 12) = (=8, =9, 0,
5),and p =12, g = 12.
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4. Conclusions

In this paper, parameter excited chaos synchronizations of two identical double Duffing systems are studied
by adjusting the strength of the substituting variable. Numerical simulations are illustrated for CS or AS of
which the occurrence depends on initial conditions and driving strength. Besides, alternative CS and AS is also
discovered with the same initial conditions and the same driving strength.
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