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Abstract

Many traffic accidents have resulted from loss of alertness, lack of attention, or poor
decision-making of truck and auto drivers. Catastrophic errors can be caused by momentary
lapses in alertness and attention during, periods .of relative inactivity. Therefore, accurate and
non-intrusive real-time monitoring of operator alertness would thus be highly desirable in a
variety of operational environments. The aim of this;study is to investigate the continuous
electroencephalogram (EEG) fluctuations from. alertness to drowsiness in a realistic
virtual-reality-based (VR) driving environment that comprises a 360° virtual reality scene and
a driving simulator. Sixteen healthy subjects (aged between 18 and 28) performed 1-hour
lane-keeping driving task while their 32-channel EEG signals and driving behavior data were
simultaneously recorded at 256 Hz. EEG data, after artifact removal, were processed by
independent component analysis (ICA), component cluster analysis and time-frequency
analysis to assess EEG correlates of cognitive-state changes. The bi-lateral occipital (BLO),
occipital midline (OM), frontal central midline (FCM), central midline (CM), central parietal
midline (CPM), left-central parietal (LCP) and right-central parietal (RCP) component
clusters exhibited monotonic alpha-band (8-12 Hz) power increase during the transition from
alertness to very-slight and slight drowsiness, but remain constant or slight decrease during

the extreme drowsiness period. On the other hand, the theta-band (4-7 Hz) power for BLO,



OM, FCM, CM, CPM, LCP and RCP component clusters increased monotonically during the
transition from slight to extreme drowsiness. Additionally, we compared the EEG between
different component clusters diversity of EEG power changes with respect to the transition
from alertness to drowsiness and found that alpha power of BLO and OM component were
most stable and desirable EEG feature for very-slight and slight drowsiness detection. The
theta power of BLO and OM component were the most stable and desirable EEG feature for

slight and extreme drowsiness detection.

Keyword: Drowsiness, Electroencephalogram, Independent Component Analysis,

Component Cluster Analysis, Cognitive State, Alpha Wave, Theta Wave.
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Chapter 1. Introduction

In the working environment, a human in drowsiness often exhibits relative inattention to
environments, eye closure, less mobility, failure to motor control and decision making [1].
Therefore, many disasters and near-disasters can be caused by falling drowsiness especially
for machine operators who pose a danger not only to themselves but often also to the public at
large. Recently, safety driving has received increasing attention of the public due to the
growing number of traffic accidents. Drivers’ fatigue has been implicated as a causal factor in
many traffic accidents. The National Sleep Foundation (NSF) reported that 60% of adult
drivers (about 168 million people) felt drowsy while driving vehicles and 37% or 103 million
people actually fell asleep during driving in 2005. Additionally, the sleep related crashes are
most common in young people, especially, for adult males and shift workers [2]. NSF also
reported that adults aged between.18-29 years old are. much more likely to drive while drowsy
compared to other age groups.:Males are more likely than females to drive while drowsy
(56% vs. 45%) and males are almost-twice-as-likely as females to fall asleep while driving
(22% vs. 12%) investigated in 2002 [2]."Hence, drowsiness detection and prevention is very

important to avoid disasters such as vehicle crashes in working environments.

1.1 Neuroimaging Modalities for Drowsiness Investigation

Drowsiness is a cognitive state of near-sleep, a strong desire for sleep, or sleeping for
unusually long periods [3]. The drowsiness is an active brain phenomenon controlled by some
brain areas such as brainstem, hypothalamus, and basal forebrain. Among these regions, the
ascending arousal system circuitry regulates our sleep and wakefulness [4-5].

A lot of methods have been proposed to investigate the brain activities that include single
unit recording, local field potential, functional magnetic resonance imaging (fMRI), positron

emission tomography (PET), single-photon emission computed tomography (SPECT),



magnetoencephalography (MEG) and electroencephalography (EEG), etc. These methods can
be classified into two main categories: the invasive and non-invasive approaches.

The first approach, invasive recordings, can be further divided into two methods. The first
method is the single-unit recording. It uses an electrode to record the electrophysiological
activity (action potentials) from a single neuron. Recordings of single neurons in living
animals have provided important insights into how the brain processes information, following
the hypothesis put forth by Edgar Adrian that unitary action potential events are the
fundamental means of communication in the brain [6]. The second method records local field
potentials. The local field potential is a particular class of electrophysiological signals, which
is related to the sum of all dendritic synaptic activities within a volume of tissue. The local
field potential is believed to represent the synchronised inputs into the observed area. The
invasive approach has excellent spatial and temporal resolutions, but it needs a surgery to
introduce the electrodes into the.brain. Therefore, this approach is inconvenient and
undesirable for normal subjects.

The second approach is non-invasive-imagines that include fMRI, PET, SPECT, MEG and
EEG [7-8]. The fMRI, PET, MEG and SPECT have higher spatial resolution than EEG (MRI:
1~1.5 mm, PET: 4 mm, MEG: 5 mm, SPECT: 6-8 mm, EEG: 10-15 mm). However, the EEG
and MEG have higher temporal resolution than MRI, PET and SPECT (EEG: 1 msec, MEG:
1 msec, MRI: 3-5 sec, PET: 45 sec, SPECT: >60 sec) [7]. In order to investigate the
continuous brain activity changes during the transition from alertness, to very-slight, slight
and extreme drowsiness, the temporal resolution is the major concern. Due to high temporal
resolution, convenience of recording and feasibility of real world applications, EEG signals

were recorded and analyzed in this study.

1.2 EEG Studies related to Drowsiness

In the previous EEG studies related to drowsiness, the reported EEG features related to

.



drowsiness are not consistent. Parikh and Tzanakou showed that power of the EEG alpha
band increased when subjects were drowsy [9]. Schier reported that alpha activity increased
during long-term driving task [10]. These studies suggested that alpha power changes are
related to drowsiness. On the other hand, Makeig and Jung showed that theta power during
drowsy state was higher than that during alert state [11-14]. Lal and Craig found that delta and
theta activities were increasing during long-term driving task [15]. Campagne et al. showed
that degradation of driving performance is correlated with increased EEG theta power [16-17].
These studies suggested that power increase in theta band accompanied with drowsiness. In
our previous study, it showed that alpha and theta power are correlated with drowsiness
[18-20]. It is important and meaningful to explain why the EEG features related to drowsiness
observed by different studies are not consistent. These studies might observe brain activity
changes related to different spots (drowsiness levels) during alertness to extreme drowsiness
spread. In addition, lap by lap analysis for simulated driving experiments will also eliminate
the EEG fluctuations during within laps [95-15-16].

Hence, this study attempts to investigate the-.¢continuous EEG fluctuations from alertness to
drowsiness. Long-term driving in a virtual reality driving simulator will induce various
cognitive states of subjects including alertness, very-slight, slight and extreme drowsiness.
EEG dynamic changes will be analyzed according to the sorted driving errors that indirectly
indicate the continuous transition from alertness to drowsiness. Component cluster analysis
and time-frequency analysis are utilized to assess EEG correlates of the cognitive-state
changes across subjects. The observations of this study form the base of accurate and
non-intrusive real-time monitoring of operator alertness that will be highly desirable in a

variety of operational environments.

1.3 Organization of This Thesis
This thesis is organized as follows. Section II describes the EEG-based drowsiness
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experiment, VR-based driving environment, EEG data collection, instructions, and subjects in
the experiments. Section III introduces the EEG analysis procedure including independent
component analysis (ICA), clustering analysis, and time-frequency analysis to assess EEG
fluctuations in different brain areas that involve in driving or alertness level changes. Section
IV shows the experimental results and the discussion is given in Section V. Finally, we

conclude our findings in Section VI.



Chapter 2. System Architecture and Experimental Design

In this study, a VR-based driving system was applied for interactive driving experiments
[18]. It included two major parts as shown in Fig 2-1: (1) the 3D highway driving scene based
on the virtual reality technology and (2) the EEG physiological signal measurement system
with 32-channel EEG sensors. The full details of experimental system architecture will

describe as flowers.

2.1 3D Virtual Reality Driving Simulation Environment

A VR-based 3D high-fidelity interactive highway scene, generated by seven PCs,
synchronized by LAN, running the same VR program, was developed to simulate the
long-term driving task. The synchronized,scenes were projected from seven projectors to
constitute a 360° surrounding vision, Additionally, a real vehicle (without the unnecessary
weight of an engine and other components) was set in-the middle of the VR scene to simulate
real driving environments. The 'VR-based -3D-high-fidelity interactive highway scene was

showed in Fig 2-2.

2.2 EEG Data Acquisition

Thirty-two channel EEG signals (using sintered Ag/AgCl electrodes and the reference
was the mean of the left and right mastoid electrodes), and one 8-bit digital signal
representing the driving performance produced from VR scene were simultaneously recorded
by the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia). Fig 2-3 shows the
32 channel EEG electrode cap. All EEG channels were located based on a modified
International 10-20 system as shown in Fig 2-4 [21]. The 10-20 system is based on the
relationship between the locations of an electrode and the underlying area of cerebral cortex.

Before acquiring EEG data, the contact impedance between EEG electrodes and the skin was



calibrated to be less than 5kQ by injecting NaCl based conductive gel. The EEG data were
recorded with 16-bit quantization levels at a sampling rate of 500 Hz and were down sampled
to 250 Hz for the simplicity of data processing. All EEG data were preprocessed using simple
low-pass filter (50Hz) and high-pass filter (0.5Hz) in order to remove the 60Hz line noise,

high-frequency artifacts and the electrogalvanic signals for further analysis.

2.3 Subjects

The purpose of this study is to investigate human EEG Changes from alertness to
drowsiness in a dynamic driving environment. It is known that the drowsiness often occurs
during late nights, early morning, mid-afternoon and especially after meal times [23]. During
these periods, alertness may easily diminish within one-hour monotonous working [24-25]. In
our experiment, the volunteers participated in the simulated long-term highway lane-keeping
driving after lunch in the early afternoon.

Sixteen healthy volunteers (three females.and thirteen males, aged from 18 to 28 years)
participated in the experiment that includes two©rmore sessions for each subject. All subjects
were instructed to keep the car at the center of the cruising lane by controlling the steering
wheel. In all sessions, subjects drove the car continuously for 60 minutes and were asked to

try their best to keep alert.

2.4 The Lane Keeping Driving Task

In the long-term driving, the car cruised with a fixed velocity of 100 km/hr on the
VR-based highway scene and it was randomly drifted either to the left or to the right away
from the cruising position with a constant velocity. The subjects were instructed to steer the
vehicle back to the center of the cruising lane as quickly as possible. Fig 2-5 shows the time
course of a typical deviation event that embedded in the long-term lane-keeping driving task.

Firstly, we need to quantify the volunteer’s drowsiness level in this experiment. When
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subjects fall drowsy, they often exhibit relative inattention to environments, eye closure, less
mobility, failure to motor control and making decision [1]. Hence, the vehicle deviations were
defined as the subject’s drowsiness index. The VR-based four-lane straight highway scene
was applied in the experiment. In this scene, the four lanes from left to right are separated by
a median stripe and the distance from the left side to the right side of the road was equally
divided into 256 points indicating the position of the vehicle as the digital output signal of the
VR scene at each time instant as shown in Fig 2-6. The width of each lane and the car is 60
units and 32 units, respectively. Fig 2-7 shows an example of the driving performance

represented by the vehicle deviation trajectories.



Chapter 3. Data Analysis

The flowchart of the utilized EEG data analysis procedure is showing in Fig 3-1. The
EEG data were preprocessed using a simple low-pass filter and a high-pass filter with cut-off
frequency above 50 Hz and below 0.5 Hz, respectively, to remove 60Hz line noise,
high-frequency artifacts and electrogalvanic signals before further analysis. Firstly,
independent component analysis (ICA) was applied to decompose EEG signals into various
temporally statistical independent activations (ICA components) and calculated the
moving-averaged log power spectra of the resultant ICA components. Then we clustered the
components of all volunteers to find the stable and inter-subject consistency components.
Finally, we used the sorted spectral analysis to investigate the EEG dynamic changes from
alertness to drowsiness. Details of the utilized analysis methods mentioned in above are

introduced as flowers.

3.1 Independent Component Analysis

ICA is a signal processing technique' that' separates multi-channel observation data into
temporally independent stationary sources by the obtained un-mixing matrix after training
[26]. By using ICA, we attempt to remove EEG artifacts and extract EEG sources in different
brain areas that involve in driving or alertness level changes.

ICA methods have been extensively applied to the blind source separation problem since
the 1990s [27-30]. Subsequent technical reports [31-37] demonstrated that ICA was a suitable
solution to the problem of EEG source segregation, identification, and localization. In this
study, we used an extended version of the infomax algorithm of Bell and Sejnowski [38] that
can separate sources with either super- or sub-Gaussian distributions, to decompose distinct
brain activities.

The ICA is a statistical “latent variables” model with generative form:



x(t)=As(t) (1)
where A is a linear transform called a mixing matrix and the S; are statistically mutually

independent. The ICA model describes how the observed data are generated by a process of
mixing the components S, . The independent components S; (often abbreviated as 1Cs) are
latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is
assumed to be unknown. All we observed are the random variables X;, and we must estimate

both the mixing matrix and the IC’s s, using the X;.
Therefore, given time series of the observed data X(t)=[xl(t) X(t) A xN(t)]T in

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are
statically independent.
u(t)=W x(t). 2)
After ICA training, we can obtain 30 ICA components U(t) decomposed from the measured
30-channel EEG data X(t) (2 of the 32 .channecls recorded by the left and right mastoid

electrodes were the reference).

Xl (t) Wl,l Wl,2 W1,33
X, (t W. W. W.

X(t) = 21£/1) =Wu(t) = 12\/} u, (t)+ f\; u, () +A + ZM” Uy, (). (3)
X33 (t) W33,1 W33,2 W33,33

Fig 3-2 shows an example of the scalp topographies of ICA weighting matrix W
corresponding to each ICA component by projecting each w;; onto the surface of the scalp,
which provides spatial information about the contribution of each ICA component (brain
source) to the EEG channels.

Fig 3-3 shows the time course signals, scalp maps and power spectra of some typical
independent components representing different types of artifacts and EEG sources. Fig 3-3 (A)

shows the eye blink component which had some large peaks and its physiological origin is



from far frontal site. Fig 3-3 (B) shows the horizontal eye movement component which had
large fluctuations and the physiological origin is also from far frontal site. Figs 3-3 (C) and
(D) show the temporal muscle component and the channel noise component that also had
peaky activations and without spread scalp maps. In addition, there were spectral peaks above
20 Hz for temporal muscle component shown in Fig 3-3 (C). Fig 3-3 (E) shows the EEG
source whose scalp map spreads smoothly. Hence we removed the artifact components
including eye blink components, eye movement components, temporal muscle components,
and channel noise components in our experiment through independent component analysis

[39-41]

3.2 Smoothed Power Spectral Analysis

Moving-averaged spectral analysis of the EEG data of the extracted ICA components was
first accomplished using a 750-point Hanning window with 250-point overlap. Windowed
750-point epochs were further -subdivided-into several 125-point subwindows using the
Hanning window again with 25-point step. Each 125-point frame was extended to 256 points
by zero-padding to calculate its power spectrum by using a 256-point fast Fourier transform
(FFT), resulting in power-spectrum density estimation with a frequency resolution near 1 Hz.
A moving median filter was then used to average and minimize the presence of artifacts in the
EEG records of all sub-windows. Previous studies [42,43] show that the transient amplitudes
of EEG power spectrum involved in wake-sleep regulation are very different. The cortex
produces low amplitude and fast oscillations during waking, and generates high-amplitude,
slow cortical oscillations during the onset of sleep. Their reports also showed that the EEG
spectral amplitudes correlated with the wake-sleep transition more linearly in the logarithmic
scale than in the linear scale. Thus, the ICA power spectra were further converted into a
logarithmic scale. The resultant time series of ICA log power spectra for each session

consisted of the power spectra of 30 ICA components across 40 frequencies (from 1 to 40 Hz)
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stepping at 2-second (500-point, an epoch) time intervals [18]. Fig. 3-4 shows the smoothed
spectral analysis procedure.

Since alertness level fluctuates with cycle lengths longer than 4 minutes [11, 44], we
smoothed the ICA power spectra and the driving performance time series by using a causal
90-second square moving-averaged filter to eliminate variances at cycle lengths shorter than
1-2 minutes. The smoothed driving performance was called “local driving error (LDE)” as
shown in Fig 3-5. The LDE is an indirect index of the alertness level and we will assess the
relationships between subject’s local driving error and his/her smoothed ICA log power

spectra to investigate human’s EEG spectral changes from alertness to drowsiness in driving.

3.3 Independent Component Clustering
In order to find the stable and inter-subject consistency sources related to alertness changes,
we clustered the EEG sources=of.all volunteers. The components of all volunteer were

clustered semi-automatically based on:the gradients values:

ex.cyl @
of the component scalp maps [41]. K-mean algorithm [45] was utilized for clustering. The
K-mean clustering is to classify or to group objects based on attributes/features into K number

of groups. K is a positive integer number. The grouping is done by minimizing the sum of

squares of distances between the data and the corresponding cluster centroid as:

2 )

€= Zi‘xi -Y.
where e, represent the square error, X;and Y, represent the data point and cluster centers,
respectively. Fig. 3-6 shows the diagram of component clustering analysis.

For each ICA activation map, we perform an EEG source localization procedure to locate
its single dipole. By localizing multiple dipoles independently, we substantially reduce our

search complexity and increase the likelihood of efficiently converging on the correct solution.
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The independent EEG processes and their equivalent dipole source locations were obtained by

using the EEGLAB toolbox (Makeig, et al., 2004).

3.4 Sorted Spectral Analysis

Since the LDE is an indirect index of the alertness level, we propose the sorted spectral
analysis method that sorts the smoothed ICA log power spectra according to the LDE index to
assess the brain dynamics corresponding to the transition from alertness (lower LDE values)
to drowsiness (larger LDE values) in driving. Fig. 3-7 shows an example of the sorted spectral
analysis. The left subplot of Fig. 3-7 is a subject’s original LDE trajectory (the blue line) and
the corresponding alpha power changes (the red line). The right subplot sorts the LDE values
in ascending order and shows the transient alpha powers corresponding to the sorted LDE
values. It can be found that the alpha power is inereasing at the beginning and will decrease at
the latter when LDE values are ascending. According to our experimental results presented in
Chapter 4, the power changes of-some ICA-component clusters accompanying with the LDE
increasing can be obviously observed. lt.is noted ‘that we assumed the alertness levels of all
subjects in the lowest LDE states were the same and the difference of the lowest LDE values

corresponding to different subjects are caused by the individual reaction speed.
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Chapter 4. Results

Analysis results of the EEG data and driving trajectories acquired from the sixteen
volunteer drivers are presented in this chapter. As shown in Chapter 3, we performed ICA to
separate the EEG contributions of distinct brain processes and clustered the resultant ICA
components from all volunteers to find the stable and inter-subject consistency components.
Finally, we explored the spectral changes of the clustered components through time-frequency
analysis and the sorted spectral analysis to investigate the EEG dynamic changes from
alertness to drowsiness in long-term driving. The detailed EEG phenomena of components in
different component clusters are show in Appendix 1. The results of component clustering

and the grand results of the sorted spectral analysis are presented in the following sections.

4.1 Independent Component Clusters

The EEG components were clustered based on their scalp map gradients across subjects.
Figs. 4-1 and 4-2 show the equivalent dipole source locations and scalp maps for seven
component clusters. In each column; ‘the “upper panel is the source locations of the
corresponding component cluster in the below panel. Dipole spheres of different volunteers
are represented by different colors in the upper panels and the lower panels show the scalp
maps of the clustered components. The label above each scalp map represents the index of the
volunteer and the component index of the volunteer. In Fig. 4-1, the left, the middle, and the
right component clusters represent the Bi-Lateral-Occipital (BLO), the Occipital-Midline
(OM), and the Frontal-Central-Midline (FCM) EEG sources, respectively. In Fig. 4-2, the left,
the middle-left, the middle-right, and the right component clusters represent the
Central-Midline (CM), the Central-Parietal-Midline (CPM), the Left-Central-Parietal (LCP),
and the Right-Central-Parietal (RCP) EEG sources, respectively. The number of volunteers

for each cluster is shown in Table I and the residual variances and the Talairach coordinates
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of the equivalent dipole source of each component cluster are summarized in Appendix 2.

The results of clustering analysis are displayed that clusters without involve the
components from each subject. Hence, only the subjects that include in clusters were for
further analysis. Table II shows the summary of the component index of subjects in each

cluster.

4.2 Activations of Component Clusters
4.2.1 Bi-Lateral Occipital Cluster

Fig. 4-3 shows activations of the Bi-Lateral Occipital (BLO) cluster. Fig. 4-3 (A)
presents the grand mean of the scalp map and the baseline power spectral. Fig. 4-3 (B) shows
the grand mean log power spectral density changes accompanying with the sorted LDE in
ascending order. Figs. 4-3 (C) .and (D) show. the transient alpha and theta powers
corresponding to the ascending LDE values, respectively. In Figs. 4-3 (A), (C) and (D), the
solid lines represent the grand mean powei-spectra and the dotted lines represent the variance
of the power spectra. These notifications will be utilized in the illustrations of the other
component clusters. In Fig. 4-3 (A), we can find that the peak frequency is near 10 Hz for
BLO component cluster. Despite variations in EEG recordings across volunteers, the grand
mean power spectral density changes accompanying with the sorted LDE values. According
to Figs. 4-3 (B), (C) and (D), we can find that the alpha power (8~12 Hz) increases
monotonically when the volunteers’ LDE values are less than 20 and the alpha power at LDE
= 20 increases about 3 dB compared with the baseline (LDE = 0). Then the alpha power
sustains when LDE values are less than 40. Different with the alpha band, the theta power

(4~7 Hz) increases monotonically from low LDE to high LDE.

4.2.2 Frontal Central Midline Cluster

Fig. 4-4 shows activations of the Frontal Central Midline (FCM) cluster. According to
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Fig. 4-4, the peak frequency of the baseline power spectral is near 5 Hz for FCM component
cluster. According to Figs. 4-4 (B)-(D), it can be found that the powers of the alpha band and

the theta band increase monotonically from low LDE to high LDE.

4.2.3 Central Midline Cluster

Fig. 4-5 shows activations of the Central Midline (CM) cluster. Fig. 4-5 (A) shows that
the peak frequency of the baseline power spectral is near 7 Hz for CM component cluster.
Similar to the BLO component, we can find that the alpha power increases monotonically
when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases
about 0.7 dB compared with the baseline (LDE = 0). Then the alpha power sustains when
LDE values are less than 40. The theta power also increases monotonically from low LDE to

high LDE.

4.2.4 Central Parietal Midline Cluster

Fig. 4-6 shows activations of the Central Parietal Midline (CPM) cluster. Fig. 4-6 (A) shows
that the peak frequency of the baseline power spectral is near 10 Hz for CPM component
cluster. Similar to the BLO component, we can find that the alpha power increases
monotonically when the volunteers’ LDE values are less than 20 and the alpha power at LDE
= 20 increases about 0.5 dB compared with the baseline (LDE = 0). Then the alpha power
sustains when LDE values are less than 40. The theta power also increases monotonically

from low LDE to high LDE.

4.2.5 Left Central Parietal Cluster
Fig. 4-7 shows activations of the Left Central Parietal (LCP) cluster. Fig 4-7 (A) shows the
peak frequency of the baseline power spectral is near 10 Hz for LCP component cluster.

Similar to the BLO component, we can find that the alpha power increases monotonically
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when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases
about 0.5 dB compared with the baseline (LDE = 0). Then the alpha power sustains when
LDE values are less than 40. The theta power also increases monotonically from low LDE to

high LDE.

4.2.6 Right Central Parietal Cluster

Fig. 4-8 shows activations of the Left Central Parietal (RCP) cluster. Fig. 4-8 (A) shows that
the peak frequency of the baseline power spectral is near 10 Hz for RCP component cluster.
Similar to the BLO component, we can find that the alpha power increases monotonically
when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases
about 1 dB compared with the baseline (LDE = 0). Then the alpha power sustains when LDE
values are less than 40. The theta power also increéases monotonically from low LDE to high

LDE.

4.2.7 Occipital Midline Cluster

Fig. 4-9 shows activations of the Occipital Midline (OM) cluster. Fig 4-9 (A) shows that the
peak frequency of the baseline power spectral is near 10 Hz for OM component cluster.
Similar to the BLO component, we can find that the alpha power increases monotonically
when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases
about 3 dB compared with the baseline (LDE = 0). Then the alpha power sustains when LDE
values are less than 40. The theta power also increases monotonically from low LDE to high

LDE.

4.3 Summary of Different Component Clusters
In this session, we summarize the grand results of power spectral baseline as well as the

alpha and theta power spectral density changes accompanying with the sorted LDE for
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different component clusters. Table II shows the peak frequency of the grand mean baseline
power spectra corresponding to each cluster. We can see that component clusters located in
the occipital and parietal lobes have a peak frequency near 10 Hz. In addition, the peak
frequency shifts to 7Hz and SHz for CM and FCM component clusters, respectively. Fig. 4-10
shows the grand results of alpha and theta band power spectral density changes accompanying
with the sorted LDE for different component clusters. Based on the EEG fluctuations, the
cognitive states were classified into very-slight drowsiness as portion (1) of Fig. 4-10, slight
drowsiness as portion (2) of Fig. 4-10 and extreme drowsiness as portion (3) of Fig 4-10. The
results show that alpha band power increased during the transition from alertness to
very-slight and slight drowsiness, but remain constant or slight decrease during extreme
drowsiness period for each cluster. On the other hand, the theta band power for each
component cluster increased mondtonically during the transition from slight to extreme
drowsiness. Additionally, the EEG fluctuations were greatly in occipital lobe compared with

the other lobes.

4.4 Correlations between Powers of Different Components

In Fig. 4-10, the grand results show that the trends of alpha and theta power changes from
alertness to drowsiness were similar between different brain regions. Hence, we compared the
EEG fluctuations in time series between different components of intra-subject. Table III
shows the percentage of subjects with high correlations between powers (correlation
coefficient > 0.6) of different components. In these results, the alpha powers of BLO, OM,
CPM, LCP and RCP components had high cross correlations and the theta powers of BLO,
OM, CM, CPM, LCP and RCP components had high cross correlations for most subjects.
These results show that drowsiness related alpha and theta rhythm in these different
components may be modulated by the same nucleus. It needs and is worth the further study to

investigate this co-modulation effect.
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4.5 Comparisons of Different Component Clusters

In this session, we compared the diversity of EEG power changes related to the transition
from alertness to drowsiness corresponding to different component clusters. Table I shows the
number of volunteers for each cluster. When the value is high, the component is more stable
between subjects. In Table IV, we calculated the R-square values between grand mean of
EEG power fluctuations and the estimated linear regression line. When the R-square value is
high, the EEG power fluctuation is more linear. In Table V, we compared the slop of
estimated linear regression line. When the slop value is high, the fluctuations of EEG power
are larger when the cognitive state changes from alertness to drowsiness. Finally, we
compared the mean value of standard deviation during very-slight, slight and extreme
drowsiness for each component cluster and the results were shown in Table VI. When the
mean value is high, the variations of EEG power were larger across subjects. Based on these
EEG properties, alpha power of BLO and OM.components were the most stable and desirable
EEG feature for very-slight drowsiness-detection. Additionally, the alpha and theta power of
BLO and OM component were the most stable and desirable EEG feature for slight
drowsiness detection. Lastly, the theta power of BLO and OM component were the most

stable and desirable EEG feature for extreme drowsiness detection.
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Chapter 5. Discussion

The purpose of this study is to investigate continuous EEG fluctuations from alertness to
drowsiness in a realistic VR based driving environment. Firstly, we applied ICA to the EEG
collected from each individual separately. Then we clustered the EEG sources from all the
volunteer participants based on their scalp map gradients. Seven component clusters were
identified: BLO, OM, FCM, CM, CPM, LCP and RCP clusters. Secondly, time-frequency
analysis is used to assess consistent EEG correlates of the cognitive-state changes across
subjects. The results show that alpha band power increase during the transition from alertness
to very-slight and slight drowsiness, but remain constant or slightly decrease during extreme
drowsiness period for all the clusters. On the other hand, the theta band power of each
component cluster increased monotonically, during the transition from slight to extreme
drowsiness. The experimental restlts. show 'that.previous studies might just investigate parts

of transition from alertness to drowsiness.

5.1 The EEG Fluctuations from Alertness to Drowsiness

The EEG fluctuations from alertness to drowsiness during this experiment were comparable
to the results that reported in previous studies [46]. In traditional sleep EEG studies, the
alpha-power decrease and theta-power increase were the EEG characteristics of sleep stage 1
(also called “Drowsiness”) and microsleep [42-43, 47-48]. It is similar to the results in our
extreme drowsiness periods. This study focuses on the cognitive-state transition during
wakefulness and finds the theta power not only increases from wakefulness to sleep stage 1
but also from alertness to drowsiness.

The alpha rhythm is the first defined EEG rhythm (Berge, 1929). EEG synchronization
within the alpha band is an electrophysiological correlate of cortical idling [49-50]. The areas

that are not processing sensory information or motor output can be considered to be in an
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idling state. Therefore, drowsiness could an idling state of the brain.

The trends of alpha- and theta-power changes from alertness to drowsiness were similar
between different brain regions. Additionally, Table III also shows that high percentage of
subjects with high correlation between powers of the different components. Hence, the
drowsy related alpha and theta rhythm in these components maybe modulated by the same

nucleus [51-55]

5.2 Lane-Keeping Driving Task related Cerebral Cortex

According the Brodmann’s map, the BLO and OM clusters were located in visual cortices
(Area 17, 18, a.k.a. V1, V2). The V1 cortex is the simplest, earliest cortical visual area. It is
highly specialized for processing information about static and moving objects and was
excellent in pattern recognition [56-57]. It seems physiologically feasible that V1 which
includes very large attentional modulation [58-59]. involves in this task. V2 was the second
major area in the visual cortexs It rec€ived-strong feedforward connections from V1 and
sended strong connections to V3, V4;.and V5. Functionally, V2 had many properties in
common with V1 and recent research had shown that V2 cells exhibit a small amount of
attentional modulation [59]. Therefore, the inclusion of V2 in this lane-keeping driving task
seems also plausible.

The CPM component cluster was located near areas 7 and 19 (V3). V3 was a term used to
refer to the regions of cortex located immediately in front of V2. V3 can be divided into two
subareas, dorsal V3 and ventral V3. Dorsal V3 was normally considered to be a part of the
dorsal stream. Recent work with fMRI had suggested that area V3 may play a role in the
processing the information of global motion [60]. The area 7 was a somatosensory association
cortex that involves in locating objects in space. It served as a point of convergence between
vision and proprioception to determine where objects are in relation to parts of the body

[61-62]. In this study, the experimental setup was based on 360° VR technology. When the car
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drifted in this VR environment, the subject received the motion and spatial information during
the epxeriments, which might explain the involvement of Aera 7.

The LCP, RCP and CM clusters located near Brodmann areas 1, 2, 3, 4 and 6. The areas 1,2
and 3 are also called primary somatosensory cortex which consists of the various sensory
receptors that trigger the experiences labelled as touch or pressure, temperature (warm or
cold), pain (including itch and tickle), and the sensations of muscle movement and joint
position including posture, movement, and facial expression (collectively also called
proprioception) [42]. Areas 4 and 6 are primary motor cortex and pre-motor cortex which plan
and execute movements [63-64]. In this study, the subject needs to respond to lane deviation
by steering the wheel. Therefore, the muscle movement and joint position including posture
were sensed by somatosensory cortex. Whereas the action of steering wheel were planned and
executed by pre-motor cortex and primary motor cortex.

The FCM cluster located near Brodmann areas 9-and 46 that play a role in sustaining
attention and working memory [65]. In‘out-study, the subject needs to keep attention on the
lane-keeping driving task. Therefore, the attentional network unavoidably involved in the

task.

5.3 The Fluctuations of EEG Alpha and Theta Power for Detecting Driver’s
Drowsiness

In previous studies that suggested the use of EEG signals is potentially the best for
detecting vigilance while driving. [66-68] In the present study, we compared the EEG
between different component clusters diversity of EEG power changes with respect to the
transition from alertness to drowsiness and found that alpha power of BLO and OM
component were most stable and desirable EEG feature for very-slight drowsiness detection.
Additionally, the alpha and theta power of BLO and OM component were most stable and

desirable EEG feature for slight drowsiness detection. Lastly, the theta power of BLO and
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OM component were most stable and desirable EEG feature for extreme drowsiness detection.

As the characteristic of drowsiness related EEG activity described above, if a person is
very-slight drowsiness, the alpha wave will tend to be superior in EEG activity, and its power
will increase time after time in occipital lobe, remarkably. After that, if the person tends to fall
slight drowsiness, the power of alpha and theta will increase time after time in occipital lobe,
remarkably. After that, if the person tends to fall extreme drowsiness, the power of alpha will
decrease while the theta will still increase time after time in occipital lobe. With these results,
we can quantify the driver’s consciousness level based on their EEG activity in the frequency
domain of occipital lobe. Additionally, we also can develop an alarm system for motor

vehicle crash prevention.
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Chapter 6. Conclusions

In this study, we investigated the continuous EEG fluctuations from alertness to drowsiness in
a realistic VR driving environment. Several component clusters exhibited monotonic
alpha-band (8-12 Hz) power increase during the transition from alertness to very-slight and
slight drowsiness, but remain constant or slight decrease during the extreme drowsiness
period. On the other hand, the theta-band (4-7 Hz) power for each component cluster
increased monotonically during the transition from slight to extreme drowsiness. Hence, these
controversial results may be in part caused by the different drowsiness levels of volunteers.
Additionally, drowsy related alpha and theta rhythm in these component clusters maybe
modulated by the same nucleus. Lastly, we compared the EEG between different component
clusters diversity of EEG power changes,with respect to the transition from alertness to
drowsiness and found that alpha.power of BEO and OM component were most stable and
desirable EEG feature for very-slight and slight drowsiness detection. The theta power of
BLO and OM component were the most-stable and desirable EEG feature for slight and

extreme drowsiness detection.
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Table I. The number of subjects for each cluster

BLO oM FCM cM CPM LCP RCP

n/N 13/16 8/16 9/16 8/16 9/16 7/16 7/16

N represented the number of total subjects and n represented the number of subjects for each cluster.
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Table Il. Summary of the component index of subjects in each cluster

. uh].gf:tm BLO) Ol FCM Ch PN LCF RCP
51 6 4 3
52 11 7 9 g 15 14
53 11,17 7 14
54 6 10
55 13, 14 1 3 6 5 10 9
56 g 7
57 15 4
53 12 g
59 5 12 3 2 4 10 1
510 2 1 6, 14 13 15 7
511 7,16
512 15,12 17 4 13 10
513 6 4 3 5 10
514 5 4 10 3
515 3 10
516 16 15 5,22 14
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Table I11. The peak frequency of grand mean baseliné power spéetra

IC cluster

FCM

CM

CPM

LCP

RCP

BLO

OoM

Peak
frequency

10

10

10

10

10

33




Table IV. The percentage of subjects with high correlation between powers in time series (correlation coefficient > 0.6)
of the different components

Alpha Theta

BLO oM FCM CM CPM LCP RCP BLO OM FCM CM CPM LCP RCP
BLO 80 % 28 % 28 % 85 % 66 % 83 % BLO 80 % 42 % 100% | 71 % 100 % | 100 %
oM 20 % 40% | 100% | 100% | 80 % oM 100 % | 80 % 75% | 100 % | 100 %
FCM 28 % 50 % 50 % 40 % FCM 42 % 33 % 83 % 60 %
CM 60 % 50 % 83 % CM 80 % 83 % 83 %
CPM 100 % | 100 % CPM 100% | 75 %
LCP 100 % LCP 100 %
RCP RCP

The alpha power had high correlation between BLO, OM, CPM, LCP and RCP component and the theta power had high correlation between
BLO, OM, CM, CPM, LCP and RCP components for the great part of subjects.
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Table V. The R-square values between grand mean of EEG power fluctuations and first-order linear regression line

Very slight drowsiness Slight drowsiness Extreme drowsiness

Frequency Frequencyf Frequency
Alpha Theta Alpha Theta Alpha Theta

Clusters~R?2 T Clusters~R2 T Clusters~R? T
BLO 0.94 0.90 BLO 0.87 0.98 BLO 0.78 0.94
OM 0.94 0.83 oM 0.93 0.99 OM 0.66 0.97
FCM 0.03 0.25 FCM 0.97 0.93 FCM 0.80 0.89
CM 0.07 0.02 CM 0.97 0.95 CM 0.79 0.99
CPM 0.50 0.14 CPM 0.91 0.93 CPM 0.79 0.97
LCP 0.35 0.30 LCP 0.51 0.80 LCP 0.64 0.33
RCP 0.45 0.69 RCP 0.70 0.94 RCP 0.88 0.88
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Table V1. The slop of first-order linear regression line

Very slight drowsiness Slight drowsiness Extreme drowsiness
Clustr—Siop Alpha Theta Clusts—Siop—t Alpha Theta Clusers—Siop Alpha Theta
BLO 0.19 0.08 BLO 0.11 0.10 BLO -0.04 0.06
OM 0.17 0.05 OM 0.14 0.15 OoM -0.01 0.09
FCM -0.01 0.02 FCM 0:07 0.06 FCM 0.03 0.06
CM -0.01 0.01 CM 0.07 0.08 CM 0.01 0.05
CPM 0.08 0.02 CPM 0.12 0.08 CPM -0.04 0.06
LCP 0.06 0.04 LCP 0.03 0.04 LCP -0.03 0.01
RCP 0.06 0.06 RCP 0.06 0.08 RCP -0.02 0.03
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Table VII. The mean value of standard deviation

Very slight drowsiness

Slight drowsiness

Extreme drowsiness

Frequency Frequencyf Frequency

Alpha Theta Alpha Theta Alpha Theta

Clusters SDT Clusters~_SD 1. Clusters™~_SD

BLO 0.74 0.44 BLO 1.24 0.82 BLO 1.54 1.04
oM 0.47 0.47 oM 0.93 0.92 oM 1.22 1.68
FCM 0.30 0.47 FCM 054 0.99 FCM 0.98 1.69
CM 0.39 0.37 CM 0.68 0.71 CM 0.93 1.14
CPM 1.16 0.56 CPM 151 0.94 CPM 2.25 1.47
LCP 0.54 0.37 LCP 0.75 0.64 LCP 1.25 1.48
RCP 0.46 0.24 RCP 0.53 0.50 RCP 0.60 0.74
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Fig. 2-1: The block diagram of the VR-based driving simulation environment with the

EEG-based physiological measurement system.
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Fig. 2-2: The VR-based four-lane highway scenes are projected into 360° surround

screen with seven projectors.
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Fig. 2-3: The 32 channel EEG cap.

Fig. 2-4: The International 10-20 system of electrode placement. (A) The lateral view,
(B) The top view [22].
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Fig. 2-5: An example of the deviation event. The car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it was

randomly drifted either to the left or to the right away from the cruising position with a constant velocity. The subjects were instructed to steer

the vehicle back to the center of the cruising lane as quickly as possible.
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Fig. 2-6: The digitized highway scene. The width of highway is equally divided into 256
units and the width of the car is 32 units.
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Fig. 2-7: An example of the driving performance that represented by the digitized vehicle

deviation trajectories.
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Fig. 3-1: The utilized EEG signals processing procedure.
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Fig. 3-2: An example of the scalp topographies of ICA weighting matrix W by spreading
each w; into the plane of the scalp corresponding to the j, ICA components based on

International 10-20 system.
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Fig. 3-3: Time course signals, scalp maps and power spectra of some typical independent
components representing different types of artifacts and EEG sources. (A) The eye blink
component. (B) The horizontal eye movement component. (C) The temporal muscle
component. (D) The channel noise component. (E) The parietal EEG source
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Fig. 3-4: The smoothed EEG power spectral analysis procedure. The EEG data of the
extracted ICA components was first accomplished using a 750-point Hanning window with
250-point overlap. Windowed 750-point epochs were further subdivided into several
125-point subwindows using the Hanning 'window again with 25-point step. Each 125-point
frame was extended to 256 points.by zere-padding'to calculate its power spectrum by using a
256-point fast Fourier transform (FET),,resulting.in power-spectrum density estimation with

a frequency resolution near 1 Hz.
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Fig. 3-5: Local driving error.
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Fig. 3-6: Component clustering analysis. The components of all volunteer were clustered semi-automatically based on the gradients values,

[Gxi Gyi], of the component scalp maps. K-mean algorithm was utilized for clustering.
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Fig. 3-7: An example of the sorted spectral analysis. The left subplot of Fig 3-6 is a subject’s original LDE trajectory (the blue line) and the
corresponding alpha power changes (the red line). The right subplot sorts the LDE values in ascending order and shows the transient alpha
powers corresponding to the sorted LDE values. It can be found that the alpha power is increasing at the beginning and will decrease at the

latter when LDE values are ascending.
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Fig. 4-1: Equivalent dipole source locations and scalp maps for Bi-Lateral Occipital (BLO,
the left column), Occipital-Midline (OM, the middle column), and Frontal-Central-Midline
(FCM, the right column) independent component clusters. (Upper panels) 3-D dipole source
locations (colored spheres) and their projections onto an average brain image. Dipole spheres
of different volunteers are represented by different colors. (Lower panels) Scalp maps of the
clustered components. The label above each scalp map represents the index of the volunteer

and the component index of the volunteer.
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Fig. 4-2: Equivalent dipole source locations and scalp maps for Central-Midline (CM, the left column), Central-Parietal-Midline (CPM, the
middle left column), Left-Central-Parietal (LCP, the (middle right column) and Right-Central-Parietal (RCP, the right column) independent
component clusters. (Upper panels) 3-D dipole source locations (colored spheres) and their projections onto an average brain image. Dipole
spheres of different volunteers are represented by different colors. (Lower panels) Scalp maps of the clustered components. The label above

each scalp map represents the index of the volunteer and the component index of the volunteer.
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Fig. 4-3: Activations of the Bi-Lateral Occipital (BLO) cluster. (A) The grand mean of the
scalp map and the baseline power spectral. (B) The grand mean log power spectral density
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D)
show the transient alpha and theta powers corresponding to the ascending LDE values,
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted
lines represent the variance of the power spectra. These notifications will be utilized in the
illustrations of the other component clusters. The peak frequency of the baseline power
spectral is near 10 Hz for BLO component cluster. When the LDE values increase from 0 to
40, the alpha power (8~12Hz) has increasing the sustaining activations. The theta power
(4~7Hz) increases monotonically from low LDE to high LDE.
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Fig. 4-4: Activations of the Frontal Central Midline (FCM) cluster. (A) The grand mean of the
scalp map and the baseline power spectral. (B) The grand mean log power spectral density
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D)
show the transient alpha and theta powers corresponding to the ascending LDE values,
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted
lines represent the variance of the power spectra. The peak frequency of the baseline power
spectral baseline is near 5 Hz for FCM component cluster. The powers of the alpha band and
the theta band increase monotonically from low LDE to high LDE.

52



(B)

o
Iﬁg
—_ @D
o -
) '
5 Q
05
3
a
]
% 10 20 30 40
(C) Frequency (Hz)
1.5 T
—~~ _.."‘.
m
T 1) r
~ §
j -
(]
=
2 0.
a
©
e
o
< %
05 % A s .
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Local Driving Error Local Driving Error

Fig. 4-5: Activations of the Central Midline (CM) cluster. (A) The grand mean of the scalp
map and the baseline power spectral. (B) The grand mean log power spectral density changes
accompanying with the sorted local driving error (LDE) in ascending order. (C, D) show the
transient alpha and theta powers corresponding to the ascending LDE values, respectively. (A,
C, D) the solid lines represent the grand mean power spectra and the dotted lines represent the
variance of the power spectra. The peak frequency of the baseline power spectral is near 7 Hz
for CM component cluster. Similar to the BLO cluster, the LDE values increase from 0 to 40,
the alpha power (8~12Hz) has increasing the sustaining activations. The theta power (4~7Hz)
increases monotonically from low LDE to high LDE.
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Fig. 4-6: Activations of the Central Parietal Midline (CPM) cluster. (A) The grand mean of
the scalp map and the baseline power spectral. (B) The grand mean log power spectral density
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D)
show the transient alpha and theta powers corresponding to the ascending LDE values,
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted
lines represent the variance of the power spectra. The peak frequency of the baseline power
spectral is near 10 Hz for CPM component cluster. Similar to the BLO cluster, the LDE
values increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining

activations. The theta power (4~7Hz) increases monotonically from low LDE to high LDE.
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Fig. 4-7: Activations of the Left Central Parietal (LCP) cluster. (A) The grand mean of the
scalp map and the baseline power spectral. (B) The grand mean log power spectral density
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D)
show the transient alpha and theta powers corresponding to the ascending LDE values,
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted
lines represent the variance of the power spectra. The peak frequency of the baseline power
spectral is near 10 Hz for LCP component cluster. Similar to the BLO cluster, the LDE values
increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining activations.
The theta power (4~7Hz) increases monotonically from low LDE to high LDE.
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Fig. 4-8: Activations of the Right Central Parietal (RCP) cluster. (A) The grand mean of the
scalp map and the baseline power spectral. (B) The grand mean log power spectral density
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D)
show the transient alpha and theta powers corresponding to the ascending LDE values,
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted
lines represent the variance of the power spectra. The peak frequency of the baseline power
spectral is near 10 Hz for RCP component cluster. Similar to the BLO cluster, the LDE values
increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining activations.
The theta power (4~7Hz) increases monotonically from low LDE to high LDE.
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Fig. 4-9: Activations of the Occipital Midline (OM) cluster. (A) The grand mean of the scalp
map and the baseline power spectral. (B) The grand mean log power spectral density changes
accompanying with the sorted local driving error (LDE) in ascending order. (C, D) show the
transient alpha and theta powers corresponding to the ascending LDE values, respectively. (A,
C, D) the solid lines represent the grand mean power spectra and the dotted lines represent the
variance of the power spectra. The peak frequency of the baseline power spectral is near 10
Hz for OM component cluster. Similar to the BLO cluster, the LDE values increase from 0 to

40, the alpha power (8~12Hz) has increasing the sustaining activations. The theta power
(4~7Hz) increases monotonically from low LDE to high LDE.
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Fig. 4-10: The grand results of“alpha and theta band power spectral density changes
accompanying with the sorted LDE for "different component clusters. The alpha band
power increase during the transition from alertness to very-slight (1) and slight drowsiness
(2), but remain constant or slight decrease during extreme drowsiness period (3) for each
cluster. The theta band power for each component cluster increased monotonically during
the transition from slight to extreme drowsiness. The EEG power fluctuations of different

clusters are represented by different color line.
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Appendix 1

Appendix 1 shows the EEG power changes from alertness to drowsiness in BLO, OM, FCM,
CM, CPM, LCP and RCP component clusters. The different subjects represent by different

color line.
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subject that include in OM cluster.
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The grand mean of the scalp map and log power spectral density changes
accompanying with the sorted local driving error (LDE) in ascending order for each

subject that include in CM cluster.
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The grand mean of the scalp map and log power spectral density changes
accompanying with the sorted local driving error (LDE) in ascending order for each
subject that include in LCP cluster.
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Appendix 2

The residual variances and Talairach coordinates of the equivalent dipole sources of each

component cluster.

Bi-Lateral Occipital (BLO)

Number of Residual Talairach coordinates
Volunteers electrodes variance

Sl 30 1.88% 23 -59 29
S2
S3 30 5.04% (5.03%) 16(0)  -96(-76)  6(5)
S4 30 0:84% 20 47 39
S5 30 4.45% (11.24%).  48(-47) -55(-33)  22(40)
S6
S7
S8 30 3.61% -32 =72 41
S9 30 1.34% 160 -3 15
S10 30 1.31% 154 -86 8
S11 30 5.09%(6.10%)  £55(32) -83(-73) -10(41)
S12 30 0.72%(3.27%) -16(32)  -56(-75)  5(23)
S13 30 4.65% 17 -82 50
S14 30 2.29% 16 -16 20
S15 30 1.42% -15 -37 4
S16 30 9.41% 48 -55 22

Mean: 6.3 -62.4 22.5
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Occipital-Midline (OM)

Number of Residual Talairach coordinates
Volunteers electrodes variance

X Y Z
S1
S2 30 1.03% 0 76 5
S3
S4
S5 30 1.89% -16 -55 22
S6 30 1.74% 0 -76 5
S7 30 2.81% 0 -94 24
S8 30 1.80% 0 -76 5
S9 30 0.97% 0 -96 6
S10 30 1.04% 0 -96 6
S11
S12
S13
S14
S15
S16 30 3.85% 0 -76 5

Mean: -2 -80.6 10.5
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Frontal-Central-Midline (FCM)

Number of Residual Talairach coordinates
Volunteers electrodes variance
X Y Z

St 30 12.66% 1 7 54
S2 30 3.40% 1 7 54
S3
sS4
S5 30 5.50% 1 7 54
S6 30 4.56% 1 7 54
S7
S8
S9 30 3.51% 1 45 35
S10 30 3.34%(4.60%) (1) -12(7)  55(54)
S11
S12 30 21.49% 1 63 16
S13 30 6.16% 1 45 35
S14 30 4.46% 1 27 53
S15
S16

Mean: 1 22.6 45.5
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Central-Midline (CM)

Number of Residual Talairach coordinates
Volunteers electrodes variance
X Y Z
S1
S2 30 3.97% 1 -12 55
S3
S4
S5 30 6.59% 1 -12 55
S6
S7
S8
S9 30 4.62% 1 7 54
S10 30 6.64% 1 -12 55
S11
S12 30 6.78% 0 -35 21
S13 30 15.26% 48 5 37
S14 30 2.97% 1 -12 55
S15
S16 30 4.27%(2.48%) 0(1) -32(6)  56(37)
Mean: 6.8 -12.1 48.3
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Central-Parietal-Midline (CPM)

Volunt Number of Residual Talairach coordinates
olunteers :
lectrod
electrodes variance % v Z

S1 30 4.66% 0 -53 40
S2 30 0.84% 0 -73 41
S3 30 7.66% 16 -96 6
S4 30 3.54% 0 -51 57
S5 30 2.47% 0 -51 57
S6
S7 30 2:91% 0 -96 6
S&
S9 30 2.94% 0 -53 40
S10
S11
S12
S13 30 6.08% 0 =51 57
S14 30 2.51% 0 -96 6
S15
S16

Mean: 1.8 -68.9 34.5
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Left-Central-Parietal (LCP)

Number of Residual Talairach coordinates
Volunteers electrodes variance
X Y 4

S1
S2 30 3.20% -16 -53 40
S3
S4
S5 30 1.26% -15 -32 56
S6
S7
S8
S9 30 3.75% -31 -31 56
S10 30 2.73% -31 -31 56
S11
S12 30 3.19% -15 -32 56
S13 30 6.72% -31 -51 57
S14
S15 30 2.28% -15 -10 73
S16

Mean: =22 -34.3 56.3

68



Right-Central-Parietal (RCP)

Number of Residual Talairach coordinates
Volunteers electrodes variance
X Y 4

S1
S2 30 5.40% 16 -51 57
S3 30 6.85% 16 -32 56
S4
S5 30 4.08% 32 -32 56
S6
S7
S8
S9 30 2.61% 32 -32 56
S10 30 4.82% 16 -34 39
S11
S12 30 3.03% 16 -53 40
S13
S14
S15
S16 30 1.35% 16 -53 40

Mean: 20.6 41 49.1
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