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Abstract 
Many traffic accidents have resulted from loss of alertness, lack of attention, or poor 

decision-making of truck and auto drivers. Catastrophic errors can be caused by momentary 

lapses in alertness and attention during periods of relative inactivity. Therefore, accurate and 

non-intrusive real-time monitoring of operator alertness would thus be highly desirable in a 

variety of operational environments. The aim of this study is to investigate the continuous 

electroencephalogram (EEG) fluctuations from alertness to drowsiness in a realistic 

virtual-reality-based (VR) driving environment that comprises a 360° virtual reality scene and 

a driving simulator. Sixteen healthy subjects (aged between 18 and 28) performed 1-hour 

lane-keeping driving task while their 32-channel EEG signals and driving behavior data were 

simultaneously recorded at 256 Hz. EEG data, after artifact removal, were processed by 

independent component analysis (ICA), component cluster analysis and time-frequency 

analysis to assess EEG correlates of cognitive-state changes. The bi-lateral occipital (BLO), 

occipital midline (OM), frontal central midline (FCM), central midline (CM), central parietal 

midline (CPM), left-central parietal (LCP) and right-central parietal (RCP) component 

clusters exhibited monotonic alpha-band (8-12 Hz) power increase during the transition from 

alertness to very-slight and slight drowsiness, but remain constant or slight decrease during 

the extreme drowsiness period. On the other hand, the theta-band (4-7 Hz) power for BLO, 



OM, FCM, CM, CPM, LCP and RCP component clusters increased monotonically during the 

transition from slight to extreme drowsiness. Additionally, we compared the EEG between 

different component clusters diversity of EEG power changes with respect to the transition 

from alertness to drowsiness and found that alpha power of BLO and OM component were 

most stable and desirable EEG feature for very-slight and slight drowsiness detection. The 

theta power of BLO and OM component were the most stable and desirable EEG feature for 

slight and extreme drowsiness detection.  
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中文摘要 

摘  要 

 

打瞌睡是造成意外事故的主因之一，因此於各種工作環境中，一套可靠、即時的非

侵入式打瞌睡警示系統的建立是有其必要性的。本論文的目標在於利用 360 度虛擬實境

(Virtual-Reality: VR)模擬駕駛系統，藉由一小時將維持車輛在車道中心位置的長時駕駛

工作，探討駕駛員由清醒到打瞌睡的連續腦波(Electroencephalogram: EEG)變化現象。十

六位年齡在 18 到 28 歲間的受測者參與此駕駛模擬實驗，並以 256Hz 取樣頻率同步量測

其 32 通道腦電波與駕駛行為資料。所量測的腦電波在排除雜訊後，利用獨立成分分析

法、時頻分析法，獨立成分分群分析來瞭解人類與清醒到打瞌睡認知狀態改變相關的腦

電波變化，並作為未來發展即時瞌睡警示系統的基礎。 

實驗結果顯示，人類在不同打瞌睡的程度之下其腦電波的變化情形也不相同。精神

狀態從清醒至極輕度和輕度瞌睡過程中，在bi-lateral occipital (BLO)、 occipital midline 

(OM)、 frontal central midline (FCM)、 central midline (CM)、 central parietal midline 

(CPM)、 left-central parietal (LCP) 與 right-central parietal (RCP)等所得到的獨立成分群

中，α波(8-12Hz)強度會持續性的增強，而進入重度瞌睡時， α波強度則會輕微的降低。

另外，精神狀態從輕度至重度瞌睡過程中，θ波(4-7Hz)強度則持續的增強。實驗結果亦

顯示BLO和OM 的α波是一個較適合用於極輕度打瞌睡的偵測指標，而進入輕度打瞌睡

時，BLO和OM的α和θ波是適合的偵測指標，而重度打瞌睡時，BLO和OM的θ波是一

個較適合的偵測指標。 

 

關鍵字: 打瞌睡、 腦電波、獨立成分分析、獨立成分分群分析、認知狀態、Alpha 波、

Theta 波。 
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Chapter 1. Introduction 
In the working environment, a human in drowsiness often exhibits relative inattention to 

environments, eye closure, less mobility, failure to motor control and decision making [1]. 

Therefore, many disasters and near-disasters can be caused by falling drowsiness especially 

for machine operators who pose a danger not only to themselves but often also to the public at 

large. Recently, safety driving has received increasing attention of the public due to the 

growing number of traffic accidents. Drivers’ fatigue has been implicated as a causal factor in 

many traffic accidents. The National Sleep Foundation (NSF) reported that 60% of adult 

drivers (about 168 million people) felt drowsy while driving vehicles and 37% or 103 million 

people actually fell asleep during driving in 2005. Additionally, the sleep related crashes are 

most common in young people, especially for adult males and shift workers [2]. NSF also 

reported that adults aged between 18-29 years old are much more likely to drive while drowsy 

compared to other age groups. Males are more likely than females to drive while drowsy 

(56% vs. 45%) and males are almost twice as likely as females to fall asleep while driving 

(22% vs. 12%) investigated in 2002 [2]. Hence, drowsiness detection and prevention is very 

important to avoid disasters such as vehicle crashes in working environments. 

 

1.1 Neuroimaging Modalities for Drowsiness Investigation 

Drowsiness is a cognitive state of near-sleep, a strong desire for sleep, or sleeping for 

unusually long periods [3]. The drowsiness is an active brain phenomenon controlled by some 

brain areas such as brainstem, hypothalamus, and basal forebrain. Among these regions, the 

ascending arousal system circuitry regulates our sleep and wakefulness [4-5]. 

A lot of methods have been proposed to investigate the brain activities that include single 

unit recording, local field potential, functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), single-photon emission computed tomography (SPECT), 
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magnetoencephalography (MEG) and electroencephalography (EEG), etc. These methods can 

be classified into two main categories: the invasive and non-invasive approaches. 

The first approach, invasive recordings, can be further divided into two methods. The first 

method is the single-unit recording. It uses an electrode to record the electrophysiological 

activity (action potentials) from a single neuron. Recordings of single neurons in living 

animals have provided important insights into how the brain processes information, following 

the hypothesis put forth by Edgar Adrian that unitary action potential events are the 

fundamental means of communication in the brain [6]. The second method records local field 

potentials. The local field potential is a particular class of electrophysiological signals, which 

is related to the sum of all dendritic synaptic activities within a volume of tissue. The local 

field potential is believed to represent the synchronised inputs into the observed area. The 

invasive approach has excellent spatial and temporal resolutions, but it needs a surgery to 

introduce the electrodes into the brain. Therefore, this approach is inconvenient and 

undesirable for normal subjects. 

The second approach is non-invasive imagines that include fMRI, PET, SPECT, MEG and 

EEG [7-8]. The fMRI, PET, MEG and SPECT have higher spatial resolution than EEG (MRI: 

1~1.5 mm, PET: 4 mm, MEG: 5 mm, SPECT: 6-8 mm, EEG: 10-15 mm). However, the EEG 

and MEG have higher temporal resolution than MRI, PET and SPECT (EEG: 1 msec, MEG: 

1 msec, MRI: 3-5 sec, PET: 45 sec, SPECT: >60 sec) [7]. In order to investigate the 

continuous brain activity changes during the transition from alertness, to very-slight, slight 

and extreme drowsiness, the temporal resolution is the major concern. Due to high temporal 

resolution, convenience of recording and feasibility of real world applications, EEG signals 

were recorded and analyzed in this study. 

 

1.2 EEG Studies related to Drowsiness 

In the previous EEG studies related to drowsiness, the reported EEG features related to 
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drowsiness are not consistent. Parikh and Tzanakou showed that power of the EEG alpha 

band increased when subjects were drowsy [9]. Schier reported that alpha activity increased 

during long-term driving task [10]. These studies suggested that alpha power changes are 

related to drowsiness. On the other hand, Makeig and Jung showed that theta power during 

drowsy state was higher than that during alert state [11-14]. Lal and Craig found that delta and 

theta activities were increasing during long-term driving task [15]. Campagne et al. showed 

that degradation of driving performance is correlated with increased EEG theta power [16-17]. 

These studies suggested that power increase in theta band accompanied with drowsiness. In 

our previous study, it showed that alpha and theta power are correlated with drowsiness 

[18-20]. It is important and meaningful to explain why the EEG features related to drowsiness 

observed by different studies are not consistent. These studies might observe brain activity 

changes related to different spots (drowsiness levels) during alertness to extreme drowsiness 

spread. In addition, lap by lap analysis for simulated driving experiments will also eliminate 

the EEG fluctuations during within laps [9, 15-16]. 

Hence, this study attempts to investigate the continuous EEG fluctuations from alertness to 

drowsiness. Long-term driving in a virtual reality driving simulator will induce various 

cognitive states of subjects including alertness, very-slight, slight and extreme drowsiness. 

EEG dynamic changes will be analyzed according to the sorted driving errors that indirectly 

indicate the continuous transition from alertness to drowsiness. Component cluster analysis 

and time-frequency analysis are utilized to assess EEG correlates of the cognitive-state 

changes across subjects. The observations of this study form the base of accurate and 

non-intrusive real-time monitoring of operator alertness that will be highly desirable in a 

variety of operational environments. 

 

1.3 Organization of This Thesis 

  This thesis is organized as follows. Section II describes the EEG-based drowsiness 
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experiment, VR-based driving environment, EEG data collection, instructions, and subjects in 

the experiments. Section III introduces the EEG analysis procedure including independent 

component analysis (ICA), clustering analysis, and time-frequency analysis to assess EEG 

fluctuations in different brain areas that involve in driving or alertness level changes. Section 

IV shows the experimental results and the discussion is given in Section V. Finally, we 

conclude our findings in Section VI. 
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Chapter 2. System Architecture and Experimental Design 
In this study, a VR-based driving system was applied for interactive driving experiments 

[18]. It included two major parts as shown in Fig 2-1: (1) the 3D highway driving scene based 

on the virtual reality technology and (2) the EEG physiological signal measurement system 

with 32-channel EEG sensors. The full details of experimental system architecture will 

describe as flowers. 

 

2.1 3D Virtual Reality Driving Simulation Environment 

A VR-based 3D high-fidelity interactive highway scene, generated by seven PCs, 

synchronized by LAN, running the same VR program, was developed to simulate the 

long-term driving task. The synchronized scenes were projected from seven projectors to 

constitute a 360o surrounding vision. Additionally, a real vehicle (without the unnecessary 

weight of an engine and other components) was set in the middle of the VR scene to simulate 

real driving environments. The VR-based 3D high-fidelity interactive highway scene was 

showed in Fig 2-2. 

 

2.2 EEG Data Acquisition 

Thirty-two channel EEG signals (using sintered Ag/AgCl electrodes and the reference 

was the mean of the left and right mastoid electrodes), and one 8-bit digital signal 

representing the driving performance produced from VR scene were simultaneously recorded 

by the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia). Fig 2-3 shows the 

32 channel EEG electrode cap. All EEG channels were located based on a modified 

International 10-20 system as shown in Fig 2-4 [21]. The 10-20 system is based on the 

relationship between the locations of an electrode and the underlying area of cerebral cortex. 

Before acquiring EEG data, the contact impedance between EEG electrodes and the skin was 
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calibrated to be less than 5kΩ by injecting NaCl based conductive gel. The EEG data were 

recorded with 16-bit quantization levels at a sampling rate of 500 Hz and were down sampled 

to 250 Hz for the simplicity of data processing. All EEG data were preprocessed using simple 

low-pass filter (50Hz) and high-pass filter (0.5Hz) in order to remove the 60Hz line noise, 

high-frequency artifacts and the electrogalvanic signals for further analysis. 

 

2.3 Subjects 

The purpose of this study is to investigate human EEG Changes from alertness to 

drowsiness in a dynamic driving environment. It is known that the drowsiness often occurs 

during late nights, early morning, mid-afternoon and especially after meal times [23]. During 

these periods, alertness may easily diminish within one-hour monotonous working [24-25]. In 

our experiment, the volunteers participated in the simulated long-term highway lane-keeping 

driving after lunch in the early afternoon. 

  Sixteen healthy volunteers (three females and thirteen males, aged from 18 to 28 years) 

participated in the experiment that includes two or more sessions for each subject. All subjects 

were instructed to keep the car at the center of the cruising lane by controlling the steering 

wheel. In all sessions, subjects drove the car continuously for 60 minutes and were asked to 

try their best to keep alert. 

 

2.4 The Lane Keeping Driving Task 

In the long-term driving, the car cruised with a fixed velocity of 100 km/hr on the 

VR-based highway scene and it was randomly drifted either to the left or to the right away 

from the cruising position with a constant velocity. The subjects were instructed to steer the 

vehicle back to the center of the cruising lane as quickly as possible. Fig 2-5 shows the time 

course of a typical deviation event that embedded in the long-term lane-keeping driving task. 

Firstly, we need to quantify the volunteer’s drowsiness level in this experiment. When 
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subjects fall drowsy, they often exhibit relative inattention to environments, eye closure, less 

mobility, failure to motor control and making decision [1]. Hence, the vehicle deviations were 

defined as the subject’s drowsiness index. The VR-based four-lane straight highway scene 

was applied in the experiment. In this scene, the four lanes from left to right are separated by 

a median stripe and the distance from the left side to the right side of the road was equally 

divided into 256 points indicating the position of the vehicle as the digital output signal of the 

VR scene at each time instant as shown in Fig 2-6. The width of each lane and the car is 60 

units and 32 units, respectively. Fig 2-7 shows an example of the driving performance 

represented by the vehicle deviation trajectories.  
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Chapter 3. Data Analysis 
The flowchart of the utilized EEG data analysis procedure is showing in Fig 3-1. The 

EEG data were preprocessed using a simple low-pass filter and a high-pass filter with cut-off 

frequency above 50 Hz and below 0.5 Hz, respectively, to remove 60Hz line noise, 

high-frequency artifacts and electrogalvanic signals before further analysis. Firstly, 

independent component analysis (ICA) was applied to decompose EEG signals into various 

temporally statistical independent activations (ICA components) and calculated the 

moving-averaged log power spectra of the resultant ICA components. Then we clustered the 

components of all volunteers to find the stable and inter-subject consistency components. 

Finally, we used the sorted spectral analysis to investigate the EEG dynamic changes from 

alertness to drowsiness. Details of the utilized analysis methods mentioned in above are 

introduced as flowers. 

 

3.1 Independent Component Analysis 

ICA is a signal processing technique that separates multi-channel observation data into 

temporally independent stationary sources by the obtained un-mixing matrix after training 

[26]. By using ICA, we attempt to remove EEG artifacts and extract EEG sources in different 

brain areas that involve in driving or alertness level changes. 

ICA methods have been extensively applied to the blind source separation problem since 

the 1990s [27-30]. Subsequent technical reports [31-37] demonstrated that ICA was a suitable 

solution to the problem of EEG source segregation, identification, and localization. In this 

study, we used an extended version of the infomax algorithm of Bell and Sejnowski [38] that 

can separate sources with either super- or sub-Gaussian distributions, to decompose distinct 

brain activities. 

The ICA is a statistical “latent variables” model with generative form: 
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 )t()t( sAx =  (1) 

where A is a linear transform called a mixing matrix and the is  are statistically mutually 

independent. The ICA model describes how the observed data are generated by a process of 

mixing the components is  . The independent components is  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is 

assumed to be unknown. All we observed are the random variables ix , and we must estimate 

both the mixing matrix and the IC’s is  using the ix . 

Therefore, given time series of the observed data [ ]TN )t(x)t(x)t(x)t( Λ21=x  in 

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

           )t()t( xWu = .                                           (2) 

After ICA training, we can obtain 30 ICA components u(t) decomposed from the measured 

30-channel EEG data x(t) (2 of the 32 channels recorded by the left and right mastoid 

electrodes were the reference). 
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Fig 3-2 shows an example of the scalp topographies of ICA weighting matrix W 

corresponding to each ICA component by projecting each wi,j onto the surface of the scalp, 

which provides spatial information about the contribution of each ICA component (brain 

source) to the EEG channels. 

 Fig 3-3 shows the time course signals, scalp maps and power spectra of some typical 

independent components representing different types of artifacts and EEG sources. Fig 3-3 (A) 

shows the eye blink component which had some large peaks and its physiological origin is 
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from far frontal site. Fig 3-3 (B) shows the horizontal eye movement component which had 

large fluctuations and the physiological origin is also from far frontal site. Figs 3-3 (C) and  

(D) show the temporal muscle component and the channel noise component that also had 

peaky activations and without spread scalp maps. In addition, there were spectral peaks above 

20 Hz for temporal muscle component shown in Fig 3-3 (C). Fig 3-3 (E) shows the EEG 

source whose scalp map spreads smoothly. Hence we removed the artifact components 

including eye blink components, eye movement components, temporal muscle components, 

and channel noise components in our experiment through independent component analysis 

[39-41] 

 

3.2 Smoothed Power Spectral Analysis 

Moving-averaged spectral analysis of the EEG data of the extracted ICA components was 

first accomplished using a 750-point Hanning window with 250-point overlap. Windowed 

750-point epochs were further subdivided into several 125-point subwindows using the 

Hanning window again with 25-point step. Each 125-point frame was extended to 256 points 

by zero-padding to calculate its power spectrum by using a 256-point fast Fourier transform 

(FFT), resulting in power-spectrum density estimation with a frequency resolution near 1 Hz. 

A moving median filter was then used to average and minimize the presence of artifacts in the 

EEG records of all sub-windows. Previous studies [42,43] show that the transient amplitudes 

of EEG power spectrum involved in wake-sleep regulation are very different. The cortex 

produces low amplitude and fast oscillations during waking, and generates high-amplitude, 

slow cortical oscillations during the onset of sleep. Their reports also showed that the EEG 

spectral amplitudes correlated with the wake-sleep transition more linearly in the logarithmic 

scale than in the linear scale. Thus, the ICA power spectra were further converted into a 

logarithmic scale. The resultant time series of ICA log power spectra for each session 

consisted of the power spectra of 30 ICA components across 40 frequencies (from 1 to 40 Hz) 
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stepping at 2-second (500-point, an epoch) time intervals [18]. Fig. 3-4 shows the smoothed 

spectral analysis procedure. 

Since alertness level fluctuates with cycle lengths longer than 4 minutes [11, 44], we 

smoothed the ICA power spectra and the driving performance time series by using a causal 

90-second square moving-averaged filter to eliminate variances at cycle lengths shorter than 

1–2 minutes. The smoothed driving performance was called “local driving error (LDE)” as 

shown in Fig 3-5. The LDE is an indirect index of the alertness level and we will assess the 

relationships between subject’s local driving error and his/her smoothed ICA log power 

spectra to investigate human’s EEG spectral changes from alertness to drowsiness in driving.  

 

3.3 Independent Component Clustering 

In order to find the stable and inter-subject consistency sources related to alertness changes, 

we clustered the EEG sources of all volunteers. The components of all volunteer were 

clustered semi-automatically based on the gradients values:  

[ ]yx ii GG ,                                        (4) 

of the component scalp maps [41]. K-mean algorithm [45] was utilized for clustering. The 

K-mean clustering is to classify or to group objects based on attributes/features into K number 

of groups. K is a positive integer number. The grouping is done by minimizing the sum of 

squares of distances between the data and the corresponding cluster centroid as: 

2∑ −=
i kik yxe                                   (5) 

where ke represent the square error, ix and ky represent the data point and cluster centers, 

respectively. Fig. 3-6 shows the diagram of component clustering analysis. 

For each ICA activation map, we perform an EEG source localization procedure to locate 

its single dipole. By localizing multiple dipoles independently, we substantially reduce our 

search complexity and increase the likelihood of efficiently converging on the correct solution. 
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The independent EEG processes and their equivalent dipole source locations were obtained by 

using the EEGLAB toolbox (Makeig, et al., 2004). 

 

3.4 Sorted Spectral Analysis 

Since the LDE is an indirect index of the alertness level, we propose the sorted spectral 

analysis method that sorts the smoothed ICA log power spectra according to the LDE index to 

assess the brain dynamics corresponding to the transition from alertness (lower LDE values) 

to drowsiness (larger LDE values) in driving. Fig. 3-7 shows an example of the sorted spectral 

analysis. The left subplot of Fig. 3-7 is a subject’s original LDE trajectory (the blue line) and 

the corresponding alpha power changes (the red line). The right subplot sorts the LDE values 

in ascending order and shows the transient alpha powers corresponding to the sorted LDE 

values. It can be found that the alpha power is increasing at the beginning and will decrease at 

the latter when LDE values are ascending. According to our experimental results presented in 

Chapter 4, the power changes of some ICA component clusters accompanying with the LDE 

increasing can be obviously observed. It is noted that we assumed the alertness levels of all 

subjects in the lowest LDE states were the same and the difference of the lowest LDE values 

corresponding to different subjects are caused by the individual reaction speed. 
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Chapter 4. Results 
Analysis results of the EEG data and driving trajectories acquired from the sixteen 

volunteer drivers are presented in this chapter. As shown in Chapter 3, we performed ICA to 

separate the EEG contributions of distinct brain processes and clustered the resultant ICA 

components from all volunteers to find the stable and inter-subject consistency components. 

Finally, we explored the spectral changes of the clustered components through time-frequency 

analysis and the sorted spectral analysis to investigate the EEG dynamic changes from 

alertness to drowsiness in long-term driving. The detailed EEG phenomena of components in 

different component clusters are show in Appendix 1. The results of component clustering 

and the grand results of the sorted spectral analysis are presented in the following sections. 

 

4.1 Independent Component Clusters 

The EEG components were clustered based on their scalp map gradients across subjects. 

Figs. 4-1 and 4-2 show the equivalent dipole source locations and scalp maps for seven 

component clusters. In each column, the upper panel is the source locations of the 

corresponding component cluster in the below panel. Dipole spheres of different volunteers 

are represented by different colors in the upper panels and the lower panels show the scalp 

maps of the clustered components. The label above each scalp map represents the index of the 

volunteer and the component index of the volunteer. In Fig. 4-1, the left, the middle, and the 

right component clusters represent the Bi-Lateral-Occipital (BLO), the Occipital-Midline 

(OM), and the Frontal-Central-Midline (FCM) EEG sources, respectively. In Fig. 4-2, the left, 

the middle-left, the middle-right, and the right component clusters represent the 

Central-Midline (CM), the Central-Parietal-Midline (CPM), the Left-Central-Parietal (LCP), 

and the Right-Central-Parietal (RCP) EEG sources, respectively. The number of volunteers 

for each cluster is shown in Table I and the residual variances and the Talairach coordinates 
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of the equivalent dipole source of each component cluster are summarized in Appendix 2. 

The results of clustering analysis are displayed that clusters without involve the 

components from each subject. Hence, only the subjects that include in clusters were for 

further analysis. Table II shows the summary of the component index of subjects in each 

cluster. 

 

4.2 Activations of Component Clusters 

4.2.1 Bi-Lateral Occipital Cluster 

Fig. 4-3 shows activations of the Bi-Lateral Occipital (BLO) cluster. Fig. 4-3 (A) 

presents the grand mean of the scalp map and the baseline power spectral. Fig. 4-3 (B) shows 

the grand mean log power spectral density changes accompanying with the sorted LDE in 

ascending order. Figs. 4-3 (C) and (D) show the transient alpha and theta powers 

corresponding to the ascending LDE values, respectively. In Figs. 4-3 (A), (C) and (D), the 

solid lines represent the grand mean power spectra and the dotted lines represent the variance 

of the power spectra. These notifications will be utilized in the illustrations of the other 

component clusters. In Fig. 4-3 (A), we can find that the peak frequency is near 10 Hz for 

BLO component cluster. Despite variations in EEG recordings across volunteers, the grand 

mean power spectral density changes accompanying with the sorted LDE values. According 

to Figs. 4-3 (B), (C) and (D), we can find that the alpha power (8~12 Hz) increases 

monotonically when the volunteers’ LDE values are less than 20 and the alpha power at LDE 

= 20 increases about 3 dB compared with the baseline (LDE = 0). Then the alpha power 

sustains when LDE values are less than 40. Different with the alpha band, the theta power 

(4~7 Hz) increases monotonically from low LDE to high LDE. 

 

4.2.2 Frontal Central Midline Cluster 

Fig. 4-4 shows activations of the Frontal Central Midline (FCM) cluster. According to 
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Fig. 4-4, the peak frequency of the baseline power spectral is near 5 Hz for FCM component 

cluster. According to Figs. 4-4 (B)-(D), it can be found that the powers of the alpha band and 

the theta band increase monotonically from low LDE to high LDE. 

 

4.2.3 Central Midline Cluster 

Fig. 4-5 shows activations of the Central Midline (CM) cluster. Fig. 4-5 (A) shows that 

the peak frequency of the baseline power spectral is near 7 Hz for CM component cluster. 

Similar to the BLO component, we can find that the alpha power increases monotonically 

when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases 

about 0.7 dB compared with the baseline (LDE = 0). Then the alpha power sustains when 

LDE values are less than 40. The theta power also increases monotonically from low LDE to 

high LDE. 

 

4.2.4 Central Parietal Midline Cluster 

Fig. 4-6 shows activations of the Central Parietal Midline (CPM) cluster. Fig. 4-6 (A) shows 

that the peak frequency of the baseline power spectral is near 10 Hz for CPM component 

cluster. Similar to the BLO component, we can find that the alpha power increases 

monotonically when the volunteers’ LDE values are less than 20 and the alpha power at LDE 

= 20 increases about 0.5 dB compared with the baseline (LDE = 0). Then the alpha power 

sustains when LDE values are less than 40. The theta power also increases monotonically 

from low LDE to high LDE. 

 

4.2.5 Left Central Parietal Cluster 

Fig. 4-7 shows activations of the Left Central Parietal (LCP) cluster. Fig 4-7 (A) shows the 

peak frequency of the baseline power spectral is near 10 Hz for LCP component cluster. 

Similar to the BLO component, we can find that the alpha power increases monotonically 
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when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases 

about 0.5 dB compared with the baseline (LDE = 0). Then the alpha power sustains when 

LDE values are less than 40. The theta power also increases monotonically from low LDE to 

high LDE. 

 

4.2.6 Right Central Parietal Cluster 

Fig. 4-8 shows activations of the Left Central Parietal (RCP) cluster. Fig. 4-8 (A) shows that 

the peak frequency of the baseline power spectral is near 10 Hz for RCP component cluster. 

Similar to the BLO component, we can find that the alpha power increases monotonically 

when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases 

about 1 dB compared with the baseline (LDE = 0). Then the alpha power sustains when LDE 

values are less than 40. The theta power also increases monotonically from low LDE to high 

LDE. 

 

4.2.7 Occipital Midline Cluster 

Fig. 4-9 shows activations of the Occipital Midline (OM) cluster. Fig 4-9 (A) shows that the 

peak frequency of the baseline power spectral is near 10 Hz for OM component cluster. 

Similar to the BLO component, we can find that the alpha power increases monotonically 

when the volunteers’ LDE values are less than 20 and the alpha power at LDE = 20 increases 

about 3 dB compared with the baseline (LDE = 0). Then the alpha power sustains when LDE 

values are less than 40. The theta power also increases monotonically from low LDE to high 

LDE. 

 

4.3 Summary of Different Component Clusters 

In this session, we summarize the grand results of power spectral baseline as well as the 

alpha and theta power spectral density changes accompanying with the sorted LDE for 



 - 17 -

different component clusters. Table II shows the peak frequency of the grand mean baseline 

power spectra corresponding to each cluster. We can see that component clusters located in 

the occipital and parietal lobes have a peak frequency near 10 Hz. In addition, the peak 

frequency shifts to 7Hz and 5Hz for CM and FCM component clusters, respectively. Fig. 4-10 

shows the grand results of alpha and theta band power spectral density changes accompanying 

with the sorted LDE for different component clusters. Based on the EEG fluctuations, the 

cognitive states were classified into very-slight drowsiness as portion (1) of Fig. 4-10, slight 

drowsiness as portion (2) of Fig. 4-10 and extreme drowsiness as portion (3) of Fig 4-10. The 

results show that alpha band power increased during the transition from alertness to 

very-slight and slight drowsiness, but remain constant or slight decrease during extreme 

drowsiness period for each cluster. On the other hand, the theta band power for each 

component cluster increased monotonically during the transition from slight to extreme 

drowsiness. Additionally, the EEG fluctuations were greatly in occipital lobe compared with 

the other lobes. 

 

4.4 Correlations between Powers of Different Components 

In Fig. 4-10, the grand results show that the trends of alpha and theta power changes from 

alertness to drowsiness were similar between different brain regions. Hence, we compared the 

EEG fluctuations in time series between different components of intra-subject. Table III 

shows the percentage of subjects with high correlations between powers (correlation 

coefficient > 0.6) of different components. In these results, the alpha powers of BLO, OM, 

CPM, LCP and RCP components had high cross correlations and the theta powers of BLO, 

OM, CM, CPM, LCP and RCP components had high cross correlations for most subjects. 

These results show that drowsiness related alpha and theta rhythm in these different 

components may be modulated by the same nucleus. It needs and is worth the further study to 

investigate this co-modulation effect.    
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4.5 Comparisons of Different Component Clusters 

In this session, we compared the diversity of EEG power changes related to the transition 

from alertness to drowsiness corresponding to different component clusters. Table I shows the 

number of volunteers for each cluster. When the value is high, the component is more stable 

between subjects. In Table IV, we calculated the R-square values between grand mean of 

EEG power fluctuations and the estimated linear regression line. When the R-square value is 

high, the EEG power fluctuation is more linear. In Table V, we compared the slop of 

estimated linear regression line. When the slop value is high, the fluctuations of EEG power 

are larger when the cognitive state changes from alertness to drowsiness. Finally, we 

compared the mean value of standard deviation during very-slight, slight and extreme 

drowsiness for each component cluster and the results were shown in Table VI. When the 

mean value is high, the variations of EEG power were larger across subjects. Based on these 

EEG properties, alpha power of BLO and OM components were the most stable and desirable 

EEG feature for very-slight drowsiness detection. Additionally, the alpha and theta power of 

BLO and OM component were the most stable and desirable EEG feature for slight 

drowsiness detection. Lastly, the theta power of BLO and OM component were the most 

stable and desirable EEG feature for extreme drowsiness detection. 
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Chapter 5. Discussion 
The purpose of this study is to investigate continuous EEG fluctuations from alertness to 

drowsiness in a realistic VR based driving environment. Firstly, we applied ICA to the EEG 

collected from each individual separately. Then we clustered the EEG sources from all the 

volunteer participants based on their scalp map gradients. Seven component clusters were 

identified: BLO, OM, FCM, CM, CPM, LCP and RCP clusters. Secondly, time-frequency 

analysis is used to assess consistent EEG correlates of the cognitive-state changes across 

subjects. The results show that alpha band power increase during the transition from alertness 

to very-slight and slight drowsiness, but remain constant or slightly decrease during extreme 

drowsiness period for all the clusters. On the other hand, the theta band power of each 

component cluster increased monotonically during the transition from slight to extreme 

drowsiness. The experimental results show that previous studies might just investigate parts 

of transition from alertness to drowsiness. 

 

5.1 The EEG Fluctuations from Alertness to Drowsiness 

The EEG fluctuations from alertness to drowsiness during this experiment were comparable 

to the results that reported in previous studies [46]. In traditional sleep EEG studies, the 

alpha-power decrease and theta-power increase were the EEG characteristics of sleep stage 1 

(also called “Drowsiness”) and microsleep [42-43, 47-48]. It is similar to the results in our 

extreme drowsiness periods. This study focuses on the cognitive-state transition during 

wakefulness and finds the theta power not only increases from wakefulness to sleep stage 1 

but also from alertness to drowsiness.  

The alpha rhythm is the first defined EEG rhythm (Berge, 1929). EEG synchronization 

within the alpha band is an electrophysiological correlate of cortical idling [49-50]. The areas 

that are not processing sensory information or motor output can be considered to be in an 
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idling state. Therefore, drowsiness could an idling state of the brain. 

The trends of alpha- and theta-power changes from alertness to drowsiness were similar 

between different brain regions. Additionally, Table III also shows that high percentage of 

subjects with high correlation between powers of the different components. Hence, the 

drowsy related alpha and theta rhythm in these components maybe modulated by the same 

nucleus [51-55] 

 

5.2 Lane-Keeping Driving Task related Cerebral Cortex 

According the Brodmann’s map, the BLO and OM clusters were located in visual cortices 

(Area 17, 18, a.k.a. V1, V2). The V1 cortex is the simplest, earliest cortical visual area. It is 

highly specialized for processing information about static and moving objects and was 

excellent in pattern recognition [56-57]. It seems physiologically feasible that V1 which 

includes very large attentional modulation [58-59] involves in this task. V2 was the second 

major area in the visual cortex. It received strong feedforward connections from V1 and 

sended strong connections to V3, V4, and V5. Functionally, V2 had many properties in 

common with V1 and recent research had shown that V2 cells exhibit a small amount of 

attentional modulation [59]. Therefore, the inclusion of V2 in this lane-keeping driving task 

seems also plausible. 

The CPM component cluster was located near areas 7 and 19 (V3). V3 was a term used to 

refer to the regions of cortex located immediately in front of V2. V3 can be divided into two 

subareas, dorsal V3 and ventral V3. Dorsal V3 was normally considered to be a part of the 

dorsal stream. Recent work with fMRI had suggested that area V3 may play a role in the 

processing the information of global motion [60]. The area 7 was a somatosensory association 

cortex that involves in locating objects in space. It served as a point of convergence between 

vision and proprioception to determine where objects are in relation to parts of the body 

[61-62]. In this study, the experimental setup was based on 360o VR technology. When the car 
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drifted in this VR environment, the subject received the motion and spatial information during 

the epxeriments, which might explain the involvement of Aera 7. 

  The LCP, RCP and CM clusters located near Brodmann areas 1, 2, 3, 4 and 6. The areas 1,2 

and 3 are also called primary somatosensory cortex which consists of the various sensory 

receptors that trigger the experiences labelled as touch or pressure, temperature (warm or 

cold), pain (including itch and tickle), and the sensations of muscle movement and joint 

position including posture, movement, and facial expression (collectively also called 

proprioception) [42]. Areas 4 and 6 are primary motor cortex and pre-motor cortex which plan 

and execute movements [63-64]. In this study, the subject needs to respond to lane deviation 

by steering the wheel. Therefore, the muscle movement and joint position including posture 

were sensed by somatosensory cortex. Whereas the action of steering wheel were planned and 

executed by pre-motor cortex and primary motor cortex. 

  The FCM cluster located near Brodmann areas 9 and 46 that play a role in sustaining 

attention and working memory [65]. In our study, the subject needs to keep attention on the 

lane-keeping driving task. Therefore, the attentional network unavoidably involved in the 

task. 

 

5.3 The Fluctuations of EEG Alpha and Theta Power for Detecting Driver’s 

Drowsiness 

In previous studies that suggested the use of EEG signals is potentially the best for 

detecting vigilance while driving. [66-68] In the present study, we compared the EEG 

between different component clusters diversity of EEG power changes with respect to the 

transition from alertness to drowsiness and found that alpha power of BLO and OM 

component were most stable and desirable EEG feature for very-slight drowsiness detection. 

Additionally, the alpha and theta power of BLO and OM component were most stable and 

desirable EEG feature for slight drowsiness detection. Lastly, the theta power of BLO and 
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OM component were most stable and desirable EEG feature for extreme drowsiness detection. 

As the characteristic of drowsiness related EEG activity described above, if a person is 

very-slight drowsiness, the alpha wave will tend to be superior in EEG activity, and its power 

will increase time after time in occipital lobe, remarkably. After that, if the person tends to fall 

slight drowsiness, the power of alpha and theta will increase time after time in occipital lobe, 

remarkably. After that, if the person tends to fall extreme drowsiness, the power of alpha will 

decrease while the theta will still increase time after time in occipital lobe. With these results, 

we can quantify the driver’s consciousness level based on their EEG activity in the frequency 

domain of occipital lobe. Additionally, we also can develop an alarm system for motor 

vehicle crash prevention. 
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Chapter 6. Conclusions 
In this study, we investigated the continuous EEG fluctuations from alertness to drowsiness in 

a realistic VR driving environment. Several component clusters exhibited monotonic 

alpha-band (8-12 Hz) power increase during the transition from alertness to very-slight and 

slight drowsiness, but remain constant or slight decrease during the extreme drowsiness 

period. On the other hand, the theta-band (4-7 Hz) power for each component cluster 

increased monotonically during the transition from slight to extreme drowsiness. Hence, these 

controversial results may be in part caused by the different drowsiness levels of volunteers. 

Additionally, drowsy related alpha and theta rhythm in these component clusters maybe 

modulated by the same nucleus. Lastly, we compared the EEG between different component 

clusters diversity of EEG power changes with respect to the transition from alertness to 

drowsiness and found that alpha power of BLO and OM component were most stable and 

desirable EEG feature for very-slight and slight drowsiness detection. The theta power of 

BLO and OM component were the most stable and desirable EEG feature for slight and 

extreme drowsiness detection. 
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Table I. The number of subjects for each cluster 

BLO          OM          FCM        CM        CPM         LCP  RCP 

n / N 13/16         8/16          9/16        8/16        9/16        7/16        7/16 

BLO          OM          FCM        CM        CPM         LCP  RCP 

n / N 13/16         8/16          9/16        8/16        9/16        7/16        7/16 

 

N represented the number of total subjects and n represented the number of subjects for each cluster. 
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Table II. Summary of the component index of subjects in each cluster 
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Table III. The peak frequency of grand mean baseline power spectra 

101010101075Peak
frequency

OMBLORCPLCPCPMCMFCMIC cluster

101010101075Peak
frequency

BLORCPLCPIC cluster

101010101075Peak
frequency

OMBLORCPLCPCPMCMFCMIC cluster

101010101075Peak
frequency

BLORCPLCPIC cluster
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Table IV. The percentage of subjects with high correlation between powers in time series (correlation coefficient > 0.6) 
of the different components 

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

ThetaAlpha

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

100 %100 %CPM

83 %50 %60 %CM

40 %50 %50 %28 %FCM

80 %100 %100 %40 %20 %OM

83 %66 %85 %28 %28 %80 %BLO

RCPLCPCPMCMFCM OMBLOAlpha

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

RCP

100 %LCP

75 %100 %CPM

83 %83 %80 %CM

60 %83 %33 %42 %FCM

100 %100 %75 %80 %100 %OM

100 %100 %71 %100 %42 %80 %BLO

RCPLCPCPMCMFCM OMBLOTheta

ThetaAlpha

 
The alpha power had high correlation between BLO, OM, CPM, LCP and RCP component and the theta power had high correlation between 
BLO, OM, CM, CPM, LCP and RCP components for the great part of subjects. 
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Table V. The R-square values between grand mean of EEG power fluctuations and first-order linear regression line 

0.690.45RCP

0.300.35LCP

0.140.50CPM

0.020.07CM

0.250.03FCM

0.830.94OM

0.900.94BLO

ThetaAlpha
Clusters R2

Frequency

0.940.70RCP

0.800.51LCP

0.930.91CPM

0.950.97CM

0.930.97FCM

0.990.93OM

0.980.87BLO

ThetaAlpha
Clusters R2

Frequency

0.880.88RCP

0.330.64LCP

0.970.79CPM

0.990.79CM

0.890.80FCM

0.970.66OM

0.940.78BLO

ThetaAlpha
Clusters R2

Frequency

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.690.45RCP

0.300.35LCP

0.140.50CPM

0.020.07CM

0.250.03FCM

0.830.94OM

0.900.94BLO

ThetaAlpha
Clusters R2

Frequency

0.940.70RCP

0.800.51LCP

0.930.91CPM

0.950.97CM

0.930.97FCM

0.990.93OM

0.980.87BLO

ThetaAlpha
Clusters R2

Frequency

0.880.88RCP

0.330.64LCP

0.970.79CPM

0.990.79CM

0.890.80FCM

0.970.66OM

0.940.78BLO

ThetaAlpha
Clusters R2

Frequency

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.690.45RCP

0.300.35LCP

0.140.50CPM

0.020.07CM

0.250.03FCM

0.830.94OM

0.900.94BLO

ThetaAlpha
Clusters R2

Frequency

0.940.70RCP

0.800.51LCP

0.930.91CPM

0.950.97CM

0.930.97FCM

0.990.93OM

0.980.87BLO

ThetaAlpha
Clusters R2

Frequency

0.880.88RCP

0.330.64LCP

0.970.79CPM

0.990.79CM

0.890.80FCM

0.970.66OM

0.940.78BLO

ThetaAlpha
Clusters R2

Frequency

0.690.45RCP

0.300.35LCP

0.140.50CPM

0.020.07CM

0.250.03FCM

0.830.94OM

0.900.94BLO

ThetaAlpha
Clusters R2

Frequency

0.940.70RCP

0.800.51LCP

0.930.91CPM

0.950.97CM

0.930.97FCM

0.990.93OM

0.980.87BLO

ThetaAlpha
Clusters R2

Frequency

0.880.88RCP

0.330.64LCP

0.970.79CPM

0.990.79CM

0.890.80FCM

0.970.66OM

0.940.78BLO

ThetaAlpha
Clusters R2

Frequency

Very slight drowsiness Slight drowsiness Extreme drowsiness
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Table VI. The slop of first-order linear regression line 

0.060.06RCP

0.040.06LCP

0.020.08CPM

0.01-0.01CM

0.02-0.01FCM

0.050.17OM

0.080.19BLO

ThetaAlpha
Clusters Slop

Frequency

0.080.06RCP

0.040.03LCP

0.080.12CPM

0.080.07CM

0.060.07FCM

0.150.14OM

0.100.11BLO

ThetaAlpha
Clusters

Frequency

0.03-0.02RCP

0.01-0.03LCP

0.06-0.04CPM

0.050.01CM

0.060.03FCM

0.09-0.01OM

0.06-0.04BLO

ThetaAlpha
Clusters

Frequency

Slop Slop

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.060.06RCP

0.040.06LCP

0.020.08CPM

0.01-0.01CM

0.02-0.01FCM

0.050.17OM

0.080.19BLO

ThetaAlpha
Clusters Slop

Frequency

0.080.06RCP

0.040.03LCP

0.080.12CPM

0.080.07CM

0.060.07FCM

0.150.14OM

0.100.11BLO

ThetaAlpha
Clusters

Frequency

0.03-0.02RCP

0.01-0.03LCP

0.06-0.04CPM

0.050.01CM

0.060.03FCM

0.09-0.01OM

0.06-0.04BLO

ThetaAlpha
Clusters

Frequency

Slop Slop

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.060.06RCP

0.040.06LCP

0.020.08CPM

0.01-0.01CM

0.02-0.01FCM

0.050.17OM

0.080.19BLO

ThetaAlpha
Clusters Slop

Frequency

0.080.06RCP

0.040.03LCP

0.080.12CPM

0.080.07CM

0.060.07FCM

0.150.14OM

0.100.11BLO

ThetaAlpha
Clusters

Frequency

0.03-0.02RCP

0.01-0.03LCP

0.06-0.04CPM

0.050.01CM

0.060.03FCM

0.09-0.01OM

0.06-0.04BLO

ThetaAlpha
Clusters

Frequency

Slop Slop

0.060.06RCP

0.040.06LCP

0.020.08CPM

0.01-0.01CM

0.02-0.01FCM

0.050.17OM

0.080.19BLO

ThetaAlpha
Clusters Slop

Frequency

0.080.06RCP

0.040.03LCP

0.080.12CPM

0.080.07CM

0.060.07FCM

0.150.14OM

0.100.11BLO

ThetaAlpha
Clusters

Frequency

0.03-0.02RCP

0.01-0.03LCP

0.06-0.04CPM

0.050.01CM

0.060.03FCM

0.09-0.01OM

0.06-0.04BLO

ThetaAlpha
Clusters

Frequency

Slop Slop

Very slight drowsiness Slight drowsiness Extreme drowsiness
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Table VII. The mean value of standard deviation 

0.240.46RCP

0.370.54LCP

0.561.16CPM

0.370.39CM

0.470.30FCM

0.470.47OM

0.440.74BLO

ThetaAlpha
Clusters SD

Frequency

0.500.53RCP

0.640.75LCP

0.941.51CPM

0.710.68CM

0.990.54FCM

0.920.93OM

0.821.24BLO

ThetaAlpha
Clusters

Frequency

0.740.60RCP

1.481.25LCP

1.472.25CPM

1.140.93CM

1.690.98FCM

1.681.22OM

1.041.54BLO

ThetaAlpha
Clusters

Frequency

SD SD

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.240.46RCP

0.370.54LCP

0.561.16CPM

0.370.39CM

0.470.30FCM

0.470.47OM

0.440.74BLO

ThetaAlpha
Clusters SD

Frequency

0.500.53RCP

0.640.75LCP

0.941.51CPM

0.710.68CM

0.990.54FCM

0.920.93OM

0.821.24BLO

ThetaAlpha
Clusters

Frequency

0.740.60RCP

1.481.25LCP

1.472.25CPM

1.140.93CM

1.690.98FCM

1.681.22OM

1.041.54BLO

ThetaAlpha
Clusters

Frequency

SD SD

Very slight drowsiness Slight drowsiness Extreme drowsiness

0.240.46RCP

0.370.54LCP

0.561.16CPM

0.370.39CM

0.470.30FCM

0.470.47OM

0.440.74BLO

ThetaAlpha
Clusters SD

Frequency

0.500.53RCP

0.640.75LCP

0.941.51CPM

0.710.68CM

0.990.54FCM

0.920.93OM

0.821.24BLO

ThetaAlpha
Clusters

Frequency

0.740.60RCP

1.481.25LCP

1.472.25CPM

1.140.93CM

1.690.98FCM

1.681.22OM

1.041.54BLO

ThetaAlpha
Clusters

Frequency

SD SD
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Fig. 2-1: The block diagram of the VR-based driving simulation environment with the 
EEG-based physiological measurement system. 
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Fig. 2-2: The VR-based four-lane highway scenes are projected into 360° surround 
screen with seven projectors. 
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Fig. 2-3: The 32 channel EEG cap. 

 

 

 

Fig. 2-4: The International 10-20 system of electrode placement. (A) The lateral view, 
(B) The top view [22]. 
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Fig. 2-5: An example of the deviation event. The car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it was 
randomly drifted either to the left or to the right away from the cruising position with a constant velocity. The subjects were instructed to steer 
the vehicle back to the center of the cruising lane as quickly as possible. 
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Fig. 2-6: The digitized highway scene. The width of highway is equally divided into 256 
units and the width of the car is 32 units. 

 

 

Fig. 2-7: An example of the driving performance that represented by the digitized vehicle 
deviation trajectories. 
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Fig. 3-1: The utilized EEG signals processing procedure.  
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Fig. 3-2: An example of the scalp topographies of ICA weighting matrix W by spreading 
each ijw  into the plane of the scalp corresponding to the thj  ICA components based on 
International 10-20 system. 
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Fig. 3-3: Time course signals, scalp maps and power spectra of some typical independent 
components representing different types of artifacts and EEG sources. (A) The eye blink 
component. (B) The horizontal eye movement component. (C) The temporal muscle 
component. (D) The channel noise component. (E) The parietal EEG source 
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Fig. 3-4: The smoothed EEG power spectral analysis procedure. The EEG data of the 
extracted ICA components was first accomplished using a 750-point Hanning window with 
250-point overlap. Windowed 750-point epochs were further subdivided into several 
125-point subwindows using the Hanning window again with 25-point step. Each 125-point 
frame was extended to 256 points by zero-padding to calculate its power spectrum by using a 
256-point fast Fourier transform (FFT),,resulting in power-spectrum density estimation with 
a frequency resolution near 1 Hz. 
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Fig. 3-5: Local driving error. 
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Fig. 3-6: Component clustering analysis. The components of all volunteer were clustered semi-automatically based on the gradients values, 
[Gxi Gyi], of the component scalp maps. K-mean algorithm was utilized for clustering. 
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Fig. 3-7: An example of the sorted spectral analysis. The left subplot of Fig 3-6 is a subject’s original LDE trajectory (the blue line) and the 
corresponding alpha power changes (the red line). The right subplot sorts the LDE values in ascending order and shows the transient alpha 
powers corresponding to the sorted LDE values. It can be found that the alpha power is increasing at the beginning and will decrease at the 
latter when LDE values are ascending. 
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Fig. 4-1: Equivalent dipole source locations and scalp maps for Bi-Lateral Occipital (BLO, 
the left column), Occipital-Midline (OM, the middle column), and Frontal-Central-Midline 
(FCM, the right column) independent component clusters. (Upper panels) 3-D dipole source 
locations (colored spheres) and their projections onto an average brain image. Dipole spheres 
of different volunteers are represented by different colors. (Lower panels) Scalp maps of the 
clustered components. The label above each scalp map represents the index of the volunteer 
and the component index of the volunteer. 

 

 

 

 



 50

 
Fig. 4-2: Equivalent dipole source locations and scalp maps for Central-Midline (CM, the left column), Central-Parietal-Midline (CPM, the 
middle left column), Left-Central-Parietal (LCP, the (middle right column) and Right-Central-Parietal (RCP, the right column) independent 
component clusters. (Upper panels) 3-D dipole source locations (colored spheres) and their projections onto an average brain image. Dipole 
spheres of different volunteers are represented by different colors. (Lower panels) Scalp maps of the clustered components. The label above 
each scalp map represents the index of the volunteer and the component index of the volunteer. 
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Fig. 4-3: Activations of the Bi-Lateral Occipital (BLO) cluster. (A) The grand mean of the 
scalp map and the baseline power spectral. (B) The grand mean log power spectral density 
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D) 
show the transient alpha and theta powers corresponding to the ascending LDE values, 
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted 
lines represent the variance of the power spectra. These notifications will be utilized in the 
illustrations of the other component clusters. The peak frequency of the baseline power 
spectral is near 10 Hz for BLO component cluster. When the LDE values increase from 0 to 
40, the alpha power (8~12Hz) has increasing the sustaining activations. The theta power 
(4~7Hz) increases monotonically from low LDE to high LDE. 
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Fig. 4-4: Activations of the Frontal Central Midline (FCM) cluster. (A) The grand mean of the 
scalp map and the baseline power spectral. (B) The grand mean log power spectral density 
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D) 
show the transient alpha and theta powers corresponding to the ascending LDE values, 
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted 
lines represent the variance of the power spectra. The peak frequency of the baseline power 
spectral baseline is near 5 Hz for FCM component cluster. The powers of the alpha band and 
the theta band increase monotonically from low LDE to high LDE. 
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Fig. 4-5: Activations of the Central Midline (CM) cluster. (A) The grand mean of the scalp 
map and the baseline power spectral. (B) The grand mean log power spectral density changes 
accompanying with the sorted local driving error (LDE) in ascending order. (C, D) show the 
transient alpha and theta powers corresponding to the ascending LDE values, respectively. (A, 
C, D) the solid lines represent the grand mean power spectra and the dotted lines represent the 
variance of the power spectra. The peak frequency of the baseline power spectral is near 7 Hz 
for CM component cluster. Similar to the BLO cluster, the LDE values increase from 0 to 40, 
the alpha power (8~12Hz) has increasing the sustaining activations. The theta power (4~7Hz) 
increases monotonically from low LDE to high LDE. 
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Fig. 4-6: Activations of the Central Parietal Midline (CPM) cluster. (A) The grand mean of 
the scalp map and the baseline power spectral. (B) The grand mean log power spectral density 
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D) 
show the transient alpha and theta powers corresponding to the ascending LDE values, 
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted 
lines represent the variance of the power spectra. The peak frequency of the baseline power 
spectral is near 10 Hz for CPM component cluster. Similar to the BLO cluster, the LDE 
values increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining 
activations. The theta power (4~7Hz) increases monotonically from low LDE to high LDE. 
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Fig. 4-7: Activations of the Left Central Parietal (LCP) cluster. (A) The grand mean of the 
scalp map and the baseline power spectral. (B) The grand mean log power spectral density 
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D) 
show the transient alpha and theta powers corresponding to the ascending LDE values, 
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted 
lines represent the variance of the power spectra. The peak frequency of the baseline power 
spectral is near 10 Hz for LCP component cluster. Similar to the BLO cluster, the LDE values 
increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining activations. 
The theta power (4~7Hz) increases monotonically from low LDE to high LDE. 
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Fig. 4-8: Activations of the Right Central Parietal (RCP) cluster. (A) The grand mean of the 
scalp map and the baseline power spectral. (B) The grand mean log power spectral density 
changes accompanying with the sorted local driving error (LDE) in ascending order. (C, D) 
show the transient alpha and theta powers corresponding to the ascending LDE values, 
respectively. (A, C, D) the solid lines represent the grand mean power spectra and the dotted 
lines represent the variance of the power spectra. The peak frequency of the baseline power 
spectral is near 10 Hz for RCP component cluster. Similar to the BLO cluster, the LDE values 
increase from 0 to 40, the alpha power (8~12Hz) has increasing the sustaining activations. 
The theta power (4~7Hz) increases monotonically from low LDE to high LDE. 
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Fig. 4-9: Activations of the Occipital Midline (OM) cluster. (A) The grand mean of the scalp 
map and the baseline power spectral. (B) The grand mean log power spectral density changes 
accompanying with the sorted local driving error (LDE) in ascending order. (C, D) show the 
transient alpha and theta powers corresponding to the ascending LDE values, respectively. (A, 
C, D) the solid lines represent the grand mean power spectra and the dotted lines represent the 
variance of the power spectra. The peak frequency of the baseline power spectral is near 10 
Hz for OM component cluster. Similar to the BLO cluster, the LDE values increase from 0 to 
40, the alpha power (8~12Hz) has increasing the sustaining activations. The theta power 
(4~7Hz) increases monotonically from low LDE to high LDE. 
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Fig. 4-10: The grand results of alpha and theta band power spectral density changes 
accompanying with the sorted LDE for different component clusters. The alpha band 
power increase during the transition from alertness to very-slight (1) and slight drowsiness 
(2), but remain constant or slight decrease during extreme drowsiness period (3) for each 
cluster. The theta band power for each component cluster increased monotonically during 
the transition from slight to extreme drowsiness. The EEG power fluctuations of different 
clusters are represented by different color line. 
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Appendix 1 
Appendix 1 shows the EEG power changes from alertness to drowsiness in BLO, OM, FCM, 

CM, CPM, LCP and RCP component clusters. The different subjects represent by different 

color line. 
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Appendix 2 
The residual variances and Talairach coordinates of the equivalent dipole sources of each 

component cluster. 

 

Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

 

S1            30           1.88%         ±23      -59       29 

S2 

S3            30        5.04% (5.03%)     16(0)   -96(-76)    6(5) 

S4            30           0.84%         ±20      -47       39 

S5            30        4.45% (11.24%)   48(-47)  -55(-53)   22(40) 

S6 

S7 

S8           30            3.61%        -32       -72       41 

S9           30            1.34%        ±60       -73       15 

S10          30            1.31%        ±54       -86        8 

S11          30         5.09%(6.10%)   ±55(32)    -83(-73)  -10(41) 

S12          30         0.72%(3.27%)   -16(32)    -56(-75)   5(23) 

S13          30            4.65%         ±7       -82        50 

S14          30            2.29%         16       -16        20 

S15          30            1.42%        -15       -37         4 

S16          30            9.41%         48       -55        22 

Mean:                                     6.3      -62.4      22.5 

Bi-Lateral Occipital (BLO) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1             

S2            30           1.03%          0       -76       5 

S3 

S4 

S5            30           1.89%         -16      -55      22 

S6            30           1.74%          0       -76       5 

S7            30           2.81%          0       -94      24 

S8            30           1.80%          0       -76       5 

S9            30           0.97%          0       -96       6 

S10           30           1.04%          0       -96       6 

S11 

S12 

S13 

S14 

S15 

S16           30           3.85%          0       -76       5 

Mean:                                      -2      -80.6     10.5 

Occipital-Midline (OM) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1            30          12.66%          1        7       54 

S2            30           3.40%          1        7       54 

S3 

S4 

S5            30           5.50%          1        7       54 

S6            30           4.56%          1        7       54 

S7 

S8 

S9            30           3.51%          1       45       35 

S10           30        3.34%(4.60%)      1(1)    -12(7)    55(54)

S11 

S12           30           21.49%         1       63       16 

S13           30           6.16%          1       45       35 

S14           30           4.46%          1       27       53 

S15 

S16 

Mean:                                      1      22.6      45.5 

Frontal-Central-Midline (FCM) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1             

S2            30           3.97%          1       -12      55 

S3 

S4 

S5            30           6.59%          1        -12      55 

S6 

S7 

S8 

S9            30          4.62%          1          7      54 

S10           30          6.64%           1         -12     55 

S11 

S12           30          6.78%           0         -35     21 

S13           30         15.26%          48         5      37 

S14           30          2.97%           1         -12     55 

S15 

S16           30      4.27%(2.48%)       0(1)      -32(6)   56(37)

Mean:                                     6.8       -12.1    48.3 

Central-Midline (CM) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1            30           4.66%          0       -53      40 

S2            30           0.84%          0       -73      41 

S3            30           7.66%         16       -96       6 

S4            30           3.54%          0       -51      57 

S5            30           2.47%          0       -51      57 

S6 

S7            30           2.91%          0        -96      6 

S8 

S9            30           2.94%          0        -53     40 

S10 

S11 

S12 

S13           30           6.08%          0       -51      57 

S14           30           2.51%          0       -96       6 

S15 

S16 

Mean:                                     1.8      -68.9    34.5 

Central-Parietal-Midline (CPM) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1             

S2           30            3.20%         -16      -53      40 

S3 

S4 

S5           30            1.26%         -15      -32      56 

S6 

S7 

S8 

S9          30            3.75%          -31      -31      56 

S10         30            2.73%          -31      -31      56 

S11 

S12         30            3.19%          -15      -32      56 

S13         30            6.72%          -31      -51      57 

S14          

S15         30            2.28%          -15      -10      73 

S16 

Mean:                                     -22      -34.3    56.3 

Left-Central-Parietal (LCP) 
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Volunteers 
Number of 
electrodes 

Residual 
variance 

Talairach coordinates 

X      Y      Z 

S1             

S2            30           5.40%         16       -51      57 

S3            30           6.85%         16       -32      56 

S4 

S5            30           4.08%         32       -32      56 

S6 

S7 

S8 

S9            30           2.61%         32       -32      56 

S10           30           4.82%         16       -34      39 

S11 

S12           30           3.03%         16       -53      40 

S13 

S14 

S15 

S16           30           1.35%          16      -53      40 

Mean:                                     20.6      -41     49.1 

Right-Central-Parietal (RCP) 
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