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Abstract

As the semiconductor technology getting advances, the density of the devices and the metal
lines are growing too large to keep the heat conduction problem unnoticed. Furthermore, the
heat generated by the circuits is boosted with the ramping of the operating speed. Improper
heat conduction can lead to the smoking of the chip, torturing or breaking of the metal lines,
or shifting of the performance. All these problems can be prevented by the power
consumption estimation and optimization before taping out the chip.

There are many ways of estimating power corresponding to different purposes. For example,
energy consumption must be evaluated for battery endurance, the power consumption is
needed for temperature anaysis, and the average current must be estimated for wire width
design, and the current density or reliability analysis. Although these measurements are all
clearly defined, but they have a common problem that they are input signal dependent.

To do the power analysis without lost of :generality,.an automatic power profiler integrated
with the most accurate circuit simulator — SPICE is proposed. With the power profiler, users
can get a visua figure of the power consumption’ distribution instead of numbers with
uncertainties.

In this dissertation, the relation between input statistics and the power consumption of the
integrated circuits is first analyzed. The power sensitivities of inputs are proven to be effective
provided the nominal points are selected properly. With this knowledge, the power sensitivity
sum of each input can be used to indicate the power consumption tendency of the input
vectors, and to stratify the input vectors with. After the stratification, the sample variance can
be reduced when simulating the input vectors selectively. In addition, stratification with
power senditivity is found to be able to prevent the pre-matured samples when estimating the
average power consumption with Monte Carlo method. Besides, anew way of stratification
that is suitable for stratifying infinitely long input sequences based on POST is also proposed.
By putting these findings together, the SPICE circuit simulator is modified to be a tool that
can visualize the distribution of the power consumption according to the user specified input

statistics or input sequences.
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1 Introduction

As the semiconductor technology getting advances, the density of the devices and the metal
lines are growing too large to keep the heat conduction problem unnoticed. Furthermore, the
heat generated by the circuit is boosted with the ramping of the operating speed. Improper
heat conduction can lead to the smoking of the chip, torturing or breaking of the metal lines,
or shifting of the performance. All these problems can be prevented by the power
consumption estimation and optimization before taping out the chip. Before discussing how
the power estimation can be done, the physics of dectromigration will be introduced to see

what measurements are demanded when doing power estimations.

1.1 Electromigration
Electromigration failure is caused by the mass transport of a metal. The force on an atom of

the metal is the combination of the Fsater Dy the. momentum transferred from the free

electrons speeding in the metal, and the force from electric field Figq:

A

F scatter S Metal Atom

e—»> —

—\ Ffigd

Figure 1: Forces on an atom of metal

Ftotal = Fscatter + I:field @Z*E . (1)
The gZ* is caled the effective charge of the atom and is usually negative due to the

dominance of the Fsarer. By the Einstein’s relation (Appendix A), the mobility of the atom is:

_gZ'D
kST @)
The drift velocity of the metal atom is:
Z'D
vd:me:quT xr xJ (3)



where the resistivity of the meta r, the density of the current flowing in the metal J, and the
diffusion coefficiert D is generaly given by the Arrhenius relation[16]:

Ea
D=Dge T (4)

where Dy is the diffusion coefficient and E; is the activation energy depending on the
structure and the material of the metal. It is about 0.6eV for aluminum, and 0.9eV for
aluminum alloyed with 0.2% copper. The time required by the lattice atoms to migrate a

certain length to cause afailure on the metal line is thus proportional to the reciprocal of vg:

Ea
Timep —t(xT x] "1 xgkT 5)
gZ Dy, x '
Equation 6) is generalized by Jim Black experimentally into equation @) as the Black’s

equation defining the Mean Time to Failure (MTF) [13]:

Ea
MTF = AJ."ek ’ (6)

where A is a constant depending en the process and the metal material, and n can be obtained
by filtering the experimental results, normally around-1 to 2. With a given process, equation
(6) gives a direct estimation of the endurance of a metal wire as a function of the current
density flowing through and the working.temperature of it. Experiments conducted by other
researchers found that the MTF is better estimated with the average current density, Javg, then
RMS current density [17].

1.2 Heat Conductance

There are three ways of heat transfer - conduction, convection and radiation. Since an
integrated circuit is usualy sealed in a hermetic package, the heat of the chip is mainly
transferred through the conduction. The variables for thermal conduction are defined similarly
to the electrical conduction variables:

Table 1: Electrical variables vs. thermal variables

Electrica Conduction Therma Conduction
Name Symbol (Unit) Symbol Symbol (Unit)
Voltage/Temperature Vv (Volt) T (°K)




Charge/Heat Q (Coulomby) H (Joule)
Current/Power I Q/t=(Ampere) P H/t=(Watts)
Resistance R V/I=(Ohms) Ry T/P=("K/Weatt)
Conductivity s (/Ohms m) k (Watt °/K m)

The electrical conductivity is defined in equation (7). We rewrite it with the variables in Table

1 as the coefficient between current per unit area and the gradient of voltage:

c oA
av /dx ()

The thermal conductivity is defined as the coefficient between the heat loss rate per unit area
and the gradient of temperature:

_ - PIA
dT /dx (8

There is a relation between the therma conductivity and electrica conductivity called

Wiedemann-Franz Law [14], that defines the Lorenz number L as:

1 k _p2k2

SR 4 ©)

where Kk is the Boltzmann's constant, and-e-is the charge of an electron. Wiedemann-Franz
Law shows a constant relation between the thermal conductivity and the product of electrical
conductivity and the temperature.

The working temperature of a metal interconnect depends on how much heat being generated
and the heat conductivity of the ambiance that are thermally connected to it. There are two
different packaging schemes that induce different heat conduction paths. They are wire-bond
packaging and flip-chip packaging:
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Figure 2: Flip-chip p
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For Wire-Bond packaging, the hég { ﬂﬁﬁﬁg& Iayers can only be conducted through the

substrate which has much Iarger‘tlﬁérmac cgndﬂctwlt)ffhan the air. Therefore, the temperature
of the metal layers is usualy sevgnal 4mmren§hlgher than the substrate. On the other
hand, for the flip-chip packaging, th@heat.m Ij'ra fhetal layers can be conducted through the
encapsulant, and the heat of the substrate can also be conducted efficiently by externa heat
sink since both sides of the chip are attachable. Either way, the temperature is usualy higher
in the metal layer than in the substrate. The wire temperature is analyzed based on this
assumption that the substrate temperature is constant in a confined local area [5][6][7][8][9],
from which the analysis of wire temperature is digested and discussed in the following
section.

1.3 Wire Temperature

Currents flowing through the metal will generate heat due to the collision of free carriers. The

average power dissipated of the wire resistance Ryire iS defined as:

Puire = Ql (t)vare rms ire (10)

The dissipated power will heat the wire itsef and put the wire under the risk of

electromigration, or resistitivity increase.
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Figure 3: Cross section of the metal line along the wire length

Figure 3 depicts a metal line with thicknesst,, width W and length L, lying on the oxide with
thickness tox and connecting to the substrate with vias at both end of the line. The temperature
of the wire a position x can be derived by the first law of the thermal dynamics based on
energy conservation: A T
P(x )+ Pw,re +-|P(x+ dx)+ Pa, (12)
where P(x) and P(x+dx) are the heat conductlon rates along the metal at position x and x+dx
respectively. Py is the heat conductl on @W the WI re to the substrate through the oxide.
By applying equation (8) and equatl on. (11)

Pl 12,  - o)k r) T O T W

Lox ’

where T«(X) is the temperature of the substrate at position x. By noving P(x) and P(x+dx) to

one side and the rest to the other side, and applying equation (8):
dT(x) 6

12" (%) T (- T() |, - dP(x) _ o
s 2 vk (T) Wt - 2 (13)

A A

To simplify the analysis, the thermal conductivities kox and k, are assumed to be independent
of T, because it is proportional T/r, where r increases approximately linearly with the
temperature growth.
|r2ms (X) +Ky Tret (X)' T(X) W=- Ak, dZT(X)
A toy dx?

Dividing both side with A and move al terms to the left hand side, we get:

(14)



1) | 12 T (- 700
T0 4 et () g

Km 5
dx mtox

=0, (15)

By expanding r (x) with the resistivity equation in Appendix A around T(X):
Tres (%)~ T(x)

d?T(x
km—g ) +J2 T e [1+aref (T(x)- Tg (x))]+kOX =0 (16)
tix trtox
After some arrangements, we have:
d?T(x
dxg ) =1 27(x)- 1T ()- @, (17)
1 &k o]
[2=_—_ ox_ _ 12 0
where K tmtox ‘]rms ref Qref EJ (18)
- Jrzms ref
and R : (19)
m

For short local wires, the substrate temperature T,«(X) can be assumed to be a constant T
With this assumption, the ordinary differential eguation can be solved by Laplace transform
with the boundary conditiors that T(0) = T(L) =-T rer to get the working temperature of the

wire at position X as.

¢’i snhl L x+snh|xo

T(X) =T + :
() ref Ssrmhl L o

(20)

The plot of equation (20) is depicted in Figure 4 with the bold line:

—

Tref

v

Figure 4: Temperature profile of the metal line
From Figure 4, the working temperature of the metal line can be found to have the maximum

value at the position of L/2, and it equals:

g Jrzmsr ref 1
T(L/Z) =Tref +—2 = lrg + — = ref " (21)
| ZKe g2 . o0 ke e
t 1 rms' refAref = 5 - A T
m-ox 9 gtmtox‘]rmsr ref o



Surprisingly, the maximum working temperature of the metal is independent of the thermal
conductivity kmn of the metal. It also clearly stated that the maximum wire temperature is built

upon the temperature of the substrate.

1.4 Current Density Limit

The reasonable working temperature should be undoubtedly smaller than the melting points of
the metals that are listed in the following table [15], in which, the resistivities r rer and the
associated temperature coefficients a rer are measured with T rer equals 20°C.

Table 2: Properties of selected metals

Material Toet CC) | Tt CF) | ra(WmM) | a,CCH)
Lead (Pb) 328 622 | 2065 10°| 4.2 10°
Zinc (Zn) 420 788| 568 10°| 4.2 10°

Aluminum (Al) 660 1221| 265 10%| 4.2 10°
Siver (Ag) 962 1763| 159 10%| 4.1 10°
Gold (Au) 1064 1947 | 244 10%| 4.0 10°

Copper (Cu) 1083 1981| 1673 10°| 4.3 10°
Platinum (Pt) 1768 3215| 1062 10%| 3.0 10°
Tungsten (W) 3422 6192| 56 10%| 48 10°

By limiting the maximum temperature with the melting point Tnet, equation (21) can be

trandated into:
1
Tres + — £ Tt . (22)
& K 0
(o 0oX AT
2 ref .
8 tmtox‘ersr ref g

After some deduction, we can get the limit of the J, s from equation (22) can be expressed as:

Jrzms £ k ox — k OX (Tmelt Tt ) 23)
& 1 9 talox I meit .
talox ! ref é Tt~ Tt +a g -
t r [}

Consider an aluminum segment routed above the field oxide on a substrate with 20°C
temperature. The field oxide thickness tox is normally about 500nm and decreases with the

process advancing. The thickness of metal not only varies with the technology but also varies



with the layer number. For example, ty, ranges from 0.3um to 0.9um for metal 1to metal 7 for
TSMC 0.13um process [11]. The thermal conductivity kox and the substrate temperature T rer
can be generalized to the therma conductivity from the wire segment to its closest neighbor
layer, and the temperature of the neighbor layer. Since the above equations are derived on the
basis of metal 1, the thermal conductivity koxis typicaly 1.3 (W/nPK) for the silicon dioxide.
For aluminum, the temperature should be smaller than its melting point 660°C. Therefore, the

maximum root-meartsquare current density is:

13

03 106 05 106 265 1088 L1 442 10739
& 660- 20 p

2
‘]rms£

=5.67" 10% (A/nf). (24)

1.5 Substrate Temperature

The substrate temperature depends on the temperatures and the thermal conductivities of the
materials that are thermally connected with the substrate. The substrate temperature Ty, can
be expressed as:

ChipThickness
K package  ChipArea ’

Tsub = Troom + Dissipated Power (25)

where the Kpackage 1S the equivalent thermal conductivity from the chip through the package to

the outer world. For a cubic in the stbstrate, the-heet transfer diagram is shown in Figure 5:

_dy
Pog | Pdxy.z+d2)
Px(X,Y,2)
|
G Pxv)] +——Pyxy+dy2)
Zdx
PX(X+ dX ,ya Z) PZ(X 1yaz)

Figure 5: Heat flows of a cubic in the substrate

Pgen iS the power dissipation of the cubic, and

kM’ dy” dz,

P(x Y, 2)=- ™

(26)



_ dTyp\X v, 2) . .
Py(x,y,z)—-k% dx” dz 27)

_ dT. (x,y,z), ,
Py(x,y,2) = -k =SR2 X dy. (28)

With the first law of thermal dynamic, the net rate of energy flowing into the cubic plus the
generation rate of the heat sources:
R(Xxy.2)- P(x+dx,y,2)
+R (% Y,2)- B(x y+dy,2) . (29)
+P,(X Y,2)- P(X Yy, z+dz)+ Pgen =0

Dividing both side with dx, dy and dz, we get:

eNT2(x,y,2) . TT2(x,v,2) . TT2(x,y,2) U
k a + + 0+ PDgen (X, y,2) =0 30
g .sz ‘ﬂy2 ‘ﬂzz E gen (30)

where PDgen is the power density of the heat source. Equation (30) can be more elegant after

introducing the Laplace operator N:
kNZT(X,¥,2) +PDgen(x, ¥:2) = 0, (31)

Equation (31) shows thet, given. the ‘power density function PDgen and the boundary
conditions of the chip, the temperature function can be derived. The boundary conditions for
equation (31) are modeled as the Dirichlet condition for the bottom surface, and the Neumann
condition for the other five faces [3], where the Dirichlet condition defines a constant
temperature, and the Neumann condition defines a constant heat flux.

However, due to the enormous number of heat sources, the numerical method to solve the
exact temperature solution is too expensive to take. Not to mention that the hardness of
specifying the boundary conditions. Therefore, the substrate temperature needs to be solved in
adifferent abstract of circuit level:

Table 3: Levels of abstract

Level of Abstract | Number of Heat Sources PDgen” touik

Chip Level 1 Chip Power / Chip Area

Sub-Circuit Level | Number of sub-circuits | Sub-circuit Power / Sub-circuit Area

Gate Level Number of gate Gate Power / Gate Area




Device Level Number of devices Device Power / Device Area

Sub-device Level | Number of heat sources Heat source / Heat source Area

Equation (25) is the simplest way to solve the substrate temperature of chip level that treats
the chip as with single uniform heat sourceand is based on the assumption of zero heat flux
for the Neumann conditions. However, equation (25) is too simple to model the temperature
gradient due to different transition activity of the sub-circuits. Gate level thermal analysis is
performed in [4], and has an error within several degrees comparing to the device level. In
addition to the zero heat flux Neumann conditions, equation (31) is solved under the
assumption that the bulk is infinitely large comparing with the area of a gate or a sub-circuit.
For asub-circuit with dimensions of a" b” ¢ centered at the origin, the steady state temperature

rise DT at the observation point (x,y,2) can be defined as.

Dgen N

DT (x,y,2.t) = Qexat (v.bt)G(z et )t . (32)

1€ aen/2+m0 aen/2mou

where G(m,nt )= —eerf b U, 33
€ 2/ t) 5 ngg(t 0 @ (33)
The g is the thermal diffusivity defined as
h 187
g= d oy (34)

where d isthe density of the material, and ¢, is the specific heat of the material.
The temperature profile for the z=0 plan induced by a 6" 10 sub-circuit heat source is depicted

in the following figure:

10



Figure 6: Temperature distribution

For a chip with n heat sources, the“t‘embé‘ratufé rise of an observation point at position (x,y,2)
can be obtained by summing up the tempeqyaitu‘reris&s due to the n heat sources:

2 P ‘ oh i
DT (%Y, Zt) =@ BT (% v, 2.t), (35)

"l i=1 ol
From equation (35) and equation (32), to derive the substrate temperature, the only unknown
parameter is the PDgen Of each heat sources. Therefore, this chapter can be concluded with the
following remarks.

Remark 1.
The mean time to failure MTF of awire is a function of the average current density Jayg

and the wire temperature Tyre.
Remark 2:
The wire temperate Tyire IS a function of the mean-square current density Jys and the
substrate temperature Tgp.
Remark 3:
The substrate temperature Tgyp IS a function of the heat generation rate (or the power

dissipation density) PDgen and the room temperature.

11



To sum up, reliability analysis of an integrated circuit needs three elements. Average wire
current density Javg, root-mean-square wire current density Jrms, and average sub-circuit power
dissipation density PDgen. A common property for these three parameters is that they are all
the average values of something. Therefore, in this dissertation, the focus will be placed on
the estimation and derivation of the average power consumption. The methods for measuring
the power dissipation densities and current densities with simulators are detailed in the
appendix.

In the following sections, the power estimation techniques proposed by other researchers will
be re-examined. Power estimation techniques can be categorized as the probability based, and
the ssimulation based, according to the utilization of smulator or not. These two categories are

briefed in separated sections for the easiness of references.

1.6 Probability Based Method [25]~77]

Probability based techniques can be eategorized into some different levels. Some of them that
utilize the entropy [25]~[30] are good for high-level power estimation and modeling because
they are operated in the information-level which ts independent of the wire loading, transistor
Sizes, gate types or even structure independent. Going down to the gate level, most of them
are estimating the signal transition probabilities because it is well known that CMOS circuit
power consumption are dominated by the charging and discharging of load capacitances and
the short circuit currentg1][12][10]. Early state gate level power estimation assumes that the
primary inputs are spatialy and temporally independent and the gates are with zero delay
[31][32][33][48][54][58] and is focused on the combinational circuits. Some works extend the
coverage to sequential circuits [34][35][36][65]. These techniques utilize the BDD (Binary
Decision Diagram) for the switching activity estimation. The complexity grows exponentially
with the increasing of number of primary inputs.

To reduce the complexity of BDD operation for switching activity estimation, the FDD (Free
Decision Diagram) is proposed in [37] that constructs the BDD with additional AND and
XOR nodes to reduce the complexity to polynomial time. In [38], the Boolean expressions of
the switching activities are approximated by dropping some higher order terms. In [66] and
[67], the authors proposed topological ways of building the BDD locally so that the number of
levelsin the BDD can be limited as well.



The spatial correlations are included for switching activity estimation in [39][50][55][59].
However, the complexity cost for including spatial correlation is too high to be adopted, so
researchers turn to the temporal correlation for increasing the accuracy. The idea of transition
density is proposed in [44]. It models the lag-1 temporal correlation with the density of an
input that is making a0 to 1 or 1 to O trangition. It is suitable for modeling most combination
circuits that are memoryless. Basing on the input probability and input transition density, a
series of researches are conducted to study the sensitivity of the power consumption to the
input probabilities and input transition densities [71]~[77]. Power sensitivities are defined as
the sengitivity of the power consumption to the changes of the input probabilities and
transition densities in [72][73][75]. It can be measured by selecting a nominal combination of
the input probabilities and transition densities, and then altering one of the input probabilities
or transition densities to see how power consumption will change accordingly. Power
sensitivities are used not only for power estimation [74], but also for estimating maximum
power [76] and building power model [77]. Based on the effectiveness of power sensitivity
can be improved by carefully selecting the nominal-points and proposed a new method of
selecting the nominal point for measuring the power sensitivities is proposed.

In addition to the power sensitivities, more researches are developed after the definition of
transition density. Many works have used. it for the derivation of the switching activities
[45][46]. Some others generalized the definition by giving the probability of 0to 1 and 1to O
trangitions different variable names called the transition probability and evaluate the transition
probabilities through probability waveform simulation [40][42][52][57][60][69][7Q].
Although separating the transition densities into transition probabilities can model the signal
characteristics more accurately, the complexity grows even higher, and researchers have been
working harder finding a way out. However, using rea gate delays, dealing with complex
gates and the availability of input correlations are al other tough challenges for probability
base approaches to solve. But these are no problems with the simulation techniques because
the ability of solving the temporal and spatial correlations between the nodes in a circuit is

what the simulators born with.
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1.7 Simulation Based M ethods[ 78] ~[108]

Simulation based techniques utilize simulators for power estimation. Since the estimated
values are obtained by simulating the circuit, the shortage of probability based techniques are
overcome naturally provided the models used for ssimulation are accurate. The objective of
simulation based techniques is to reduce the simulation time required to get the estimation
done.

A direct way of reducing the time needed for simulation is to raise the level of simulation
since the complexity of higher level abstract is lower. In [91], Gate level simulation is
modified to incorporate the loading information so that the amount of switched capacitance
can be smulated to mimic the power consumption. The authors of [94] further simplify the
method by observing some primitive nodes instead of watching all of them. The approach that
estimates the power between RTL level and gate level is proposed in [93]. These approaches
that are built with the high level smulation are limited to the cases that high level netlist and
the power simulation models are available.

Another approach is to regeneratea new input sequence that has the similar average power as
that of the original input sequence. Some characteristics of the original sequence are chosen to
be preserved while regenerating-the shorter one including preserving the pattern transition
probabilities [ 78][79], preserving the significant correlations between the clustered inputs [80],
preserving the toggling behavior of the internal nodes [85], and preserving the
gpatial-tempora correlations for al inputs [104][105][106][108]. Regenerating a compact
input sequence is good when the CPU time for estimating power is limited because it can
regenerate the new input sequence with any length. Nevertheless, there is no error control
scheme available for the regenerating process. In other words, there is no guarantee for the
accuracy of the regenerated sequence.

The Monte Carlo approach for power estimation is proposed in [96]~[100]. The method
estimates the average power by sampling the input vectors with certain length | from the
original sequence and fed them into the simulator to derive a sample value of the average
power. The average power consumption can be estimated with the average of several sample
values. From Central Limit Theorem (CLT), the sample values can be presumed as a Normal
distribution when | approaches infinity. The probability that the estimated mean is within a

certain error range of the real mean can also be derived under the assumption The problem of
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how to derive the required | for preserving the normality of x is left open, and the Bootstrap
Monte Carlo to isintroduced in this dissertation for solving this issue.

Sampling techniques can be further optimized through stratification of the population. Proper
stratification of the population can reduce the sample variance and thus the number of
sampled input vectors. To stratify the input vectors, various indicator functions are used for
indicating the possible value of the power consumption corresponding to each input vector. In
[92], the transition of primary inputs, primary outputs, latches and selective internal nodes are
used as the indicator function. In [102][103][107], the zero delay gate level simulation
switching condition is shown to be highly correlated with the transistor level simulated power,

and thus is a good indicator.

1.8 Dissertation Outline

In this dissertation, the relation between input statistics and the power consumption of the
integrated circuits is analyzed. The power sensitivities of inputs are proven to be effective
provided the nominal points are selected properly:in chapter 2 .

In chapter 3 , the power sensitivities sum-of each- input is used to indicate the power
consumption tendency of the input: vectors,-and to. stratify the input vectors with. After the
stratification, the sample variance:can. be. reduced when simulating the input vectors
selectively. In addition, stratification with power sensitivity is found to be able to prevent the
pre-matured estimation when estimating the average power consumption with Monte Carlo
method. By introducing the Bootstrap resampling method to prevent the possible normality
defect of Monte Carlo method, a sampling technigue designated as Bootstrap Monte Carlo
method with adaptive stratification is also proposed to provide a fast and accurate way for
power estimation.

In chapter 4, a new way of stratification that is suitable for stratifying infinite length input
sequences is proposed based on POST. Putting these findings together, the SPICE circuit
simulator is modified to be atool that can visualize the distribution of the power consumption
according to the user specified input statistics or input sequences.

In chapter 5, thisdissertation will be concluded by discussing the applications and limitations,

and some possible extensions of this dissertationwill be pointed out.
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2 Study of Power Sensitivity

As discussed in the previous chapter, the substrate power is dissipated in the resistive devices
when there are currents flowing. In digital CMOS circuits, the mgor current flows occur
when the logic values are changing. When the output of a logic gate is changing from O to 1,
the loading capacitor at the output will be charged and the power is dissipated in the charging
network and some energy will be stored in the capacitor. The stored energy will be dissipated
when the logic value is changing from 1 to 0 and the capacitor gets discharged. Analyzing the
switching activities of the nodes in a circuit is appropriate for calculating steady state power
consumption instead of ssimulating the circuit for an infinite length of time. However, the
complexity of calculating the transition probability for each node grows exponentially with
the size of acircuit.

Regression method had been used to construct a-high level power model as a function of
weighted input and output transitions in [83] and. [101]. It is a good and fast estimation for
randomly generated input signals, i.e., both the signal probabilities and the transition densities
are around 0.5. However, cases with: highly: biased input probabilities could make the
estimation of power far from accuracy.

In [63], the power consumption of a circuit is modeled as a function of the mean values of
input signal probabilities, input transition densities and output transition densities. A power
lookup table is built and indexed with those three values. Good accuracy can be obtained
when the three values of the circuit under estimation are close to the pre-selected indices and
the variances of the signal probability and the transition density are small. However, the
output transition densities can not be calculated easily from the input statistics. Therefore, to
explore the output density space requires simulating a tremendous amount of combinations of
the input probabilities and the transition dengities. It is very time consuming.

The concept of power sensitivity first proposed in [72], in which power is modeled as the
sum of weighted uncertainties of the input signal probabilities and the transition densities plus
the power at a nominal point. The weights of those uncertainties ae called the power
sengitivities. A Statistical Technique to Estimate Power Sensitivity abbreviated to STEPS [72]

was proposed to determine power sensitivities. Another Symbolic Technigque to Obtain Power
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Sengitivities named STOPS [77] expresses the signal probability and the transition density of
each node symbolically to determine the power sengitivities. The estimated power based on
this kind of methods strongly depends on the selected nominal points. However, it is difficult
to select the nominal points. The authors in [72][77] randomly selected some points but did
not evaluate the accuracy of their models.

In this chapter, the correlation between power consumption and power sensitivities will be
examined, and a new method of nominal point selection for measuring power sensitivities will
be proposed. In addition, the importance of a good nominal point to the accuracy of the power

sensitivities will aso be demonstrated.

2.1 Terminologies
Signal Probability p

A digital signal at node x, x(t), is either 1 or O if the rise/fall time and over/under shoots are
neglected [13]. The expected value of ‘asignal to’be 1 in a clock cycle with a period T can be
defined as

p, = Ilggé = Or/zx(t)dt (36)

where px is the equilibrium probability: of x(t).orthe signal probability of node x.
Transition Density d
Four types of transition that a signal can make between two consecutive periods are 00, 01, 10

and 11. The transition density of x(t) is defined as

X Ty T (37)
where ny(T) is the number of 01 and 10 transitions of x(t) in the time interval (-T/2, +T/2)
[13].

2.2 Relation Between p and d
Intuitively, the 01 and 10 transition probabilities are defined as

pOl - |Im nxOl(T)
* tex T
38
p10 — |Im xlO(T) ( )
X Te¥ T
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where nyo1(T) and ny10(T) are the number of 01 and 10 transitions of x(t) in the time interval
(-T/2, +T/2), respectively. Note that a digital circuit always makes a 10/01 transition at some
time after a01/10 transition When T approaches infinity, the transition probabilities of 01 and
10 will converge to the same value. With the above definitions, four transition probabilities
are derived and expressed as,

pX=1- p,- d /2,

P =p’=d /2, (39)
P, =p,- d./2.

where O£ p! £1, " i, jT {0,1}. A relationship between py and dy is derived [63] as,
Sepe1- (@)
The transition probabilities are a general form of pyx and dy , therefore transition probabilities
look better in equations. But equilibrium probability and transition density are more suitable
for analyzing than transition probahilities, since'the transition probabilities are not mutually
independent. The valid combinations of (px, dy):form a triangle as shown in Figure 7. The
three boundary lines d O, px-dx/2% 0-and 1-py-dy/2% 0 are induced by the fact that a probability

should be no less than zero. The three corners of the triangle are (0,0), (1,0) and (0.5,1).

©.5,1)

(1,0)

0.0 T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

P

Figure 7: Relationship between py and dy
2.3 Power Sensitivity

For an n-input CMOS circuit, the logic value of the i input node at time T is denoted as b;".
The input pattern at time T can be expressed as the transpose of [by' by' ... bn.1']. The input

pattern transition of two consecutive clock periods is denoted as VOV,
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blu

332 b; (41)
éon bT
The average power consumption Power 5,g of @ CMOS circuit can be expressed as
Power,,, = a PrvOVT)” Power (VO T) (42)
"V OoyT

where Pr(VPV") is the probability of the input pattern transits from V° to VT, and Power (V°VT)
is the corresponding power consumption. To build a power consumption model with equation
(42) needs to build a table of al the Power(VVT) which is absolutely infeasible for an IP
block with a number of inputs larger than 32 at present.

Assume that the transitions of different inputs are independent, the Pr(V°V") will be equal to

the product of the independent input transition probabilities.

bO
Power,,q = a O o Power(\/O\/T) (43)
RVAYARE !
where pFOhT is the probability that the logic valteof the i node being bi° in the beginning and
b a time T. Let S be a matrix ‘of .input.transition probabilities or a matrix of input

probabilities and transition densities,

ép100 pfl p%o IO%lL\,‘ ép d10

So epgo pgl p]éo p epzdzu (44)

u
G0 pQ p pitg 8P
Replace the transition probabilities in Equation (43) with input statistic matrix S, and apply
Taylor's expansion to equation (43) around a nominal input statistic matrix S,om, the average

power consumption of Sequals,
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Power aq(S)

o) iPower 5yq . T
= Power 54 (Shom) + a —— (Shom) Dpih b
b'b
s ﬂp|
P (45)
2
o 1 “Power avg . b7 . — b7
+ a I (Snom) q)il d Dij j
o 2] 2T g
+...
b bl bbT . . . .
where Dp ™ =p" ™ - P ome @d Siom isaset of nomina input statistics.

A ,00 01 10 1 ] < N
gpl_ nom PL nom PL_ nom p%_ nom Y €M1 nom dl_ nom U
~~00 01 10 1 . € u

o€eP2 nom P2 nom P2 nom p% nomUo aP2_nom d2_ nom

Shom © &' - - = mome € -y (46)

X : : : - :
e .00 01 10 1 uUu a4 d 4
épn_nom pn_ nom pn_nom p%l_nomﬂ @pn_nom n_nomp

Consider the first order approximation of equation (45), which can be expressed as

A o  Powery,q
Poweravg(S) » Poweravg(snom) o= | ~
i |

L P_biobiT o

(Snom)” DRP™ @7)

The partial derivative is the changing rate of the power consumption due to the change of one
input transition probability, it is called power sensitivity in [72][77].

The values of the partial derivatives can be estimated with a statistical method STEPS [72].
STEPS is a Monte Carlo based approach that simulates a circuit with randomly generated
patterns to get samples of input power sensitivities until the mean value of those samples
converges. Another method STOPS [77] for estimating power sensitivities requires
topological partitioning to reduce its enormous complexity.

Since the efficiency of measuring power sensitivities is not a point here, a straightforward
method is adopted for measuring them. The circuit is first smulated with the nominal input
statistics S,om. A smal variation is then assigned to one of the transition probabilities of an
input, and the simulation is proceeded again to compute the changing rate of power
corresponding to the variation. The steps are repeated for other input nodes until all partial

derivatives are derived.

20



2.4 Nominal Point Selection

2.4.1 Nominal O

To construct a power model based on power sensitivities, one must choose some nominal
points first and calculate the power sensitivities according to the chosen nominal points.
Without doubt, the more nominal points are chosen the more accurate the model will become.
However, adding a nominal point requires Z n+1 more simulations to be carried out in a
circuit with n inputs [72]. Furthermore, choosing nominal points arbitrarily makes the error
range of the constructed power model unpredictable. It is thus important to choose the right
nominal points to minimize the error of the power model with as few nomina points as
possible.

This section focuses on finding a nomina input statistic matrix that estimates the average
power of all kinds of Swell. The average power is estimated by using equation (47), and the

estimation error is defined as

é l]
o - fPow Clavg
Error = Powerayg(S) - ePoweran(Sqom) +a ﬂT(Snom) Dp, (48)
b0y B L’J
& "p; u

Equation (48) can be approximated  with.the second order term, while neglecting the higher

order terms. The average error will be

qu
(; ﬂ O €er. bObT 1]
ElError||» E o7 o (Snom)” Dpf'® Do (49)
o §2ﬂp. N 1
The second order partial derivatives in equation (49) can be expressed as
1° Power o 9 u
Tt?’g(shom)— & O pk o= Power(\/OVT)u (50)
o ™ Ty vovT! (bObT b°bT)§ b TVOVT kil g g

Let pmax be the maximum value of pfitgm , Power nax be the maximum value of Power (VOV).

Theright hand term (R.H.T.) in equation (50) can be expressed as
RHT.£4™ 2" poa 2 Power, (51)
After substituting equation (51) into equation (49), the average error is bounded by
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E[| Error |]

0T U
E%’ 42 p_"? Power Eg a (Dplhoq Dp;” U (52)
I ()it o
_ 1. 42 pmaxn.z, Power,_ EA a ?pw- p|ho?1Tom, p!:"bT p:)"b;omdf
2 & ()it Ebu

In equation 62), the indices of summation and expectation are independent. Therefore, the

summation operator can be moved to the outside of the expectation operator,

E[| Error|J
£i, 42 pmaxn_z, Powermax . é %g pihohr i hohrrom , prObJT ) pbOb;om uO (53)
2 " (i,J),iljg - l "l

Since the transition probabilities of input i and | are assumed to be mutually independent, the
expected value of the product of the transition probability differencesin equation (53) is equal

to the product of the expectations,

E[|Elrror|J
el gre 2 poudd 'plhn | = S D
2' ", ]) = Qg

From equation (4), the expected estimation-error can be minimized if the nominal input
trangition probabilities are suitably “selected to ‘'minimize the two expected values of the
differences between real input transition probability and nominal input transition probability.
Generally, for an unknown distribution of input transition probability, it is reasonable to
assume the distribution to be a normal or a uniform distribution, both of which are symmetric
to the mean. For a distribution of input transition probability that is symmetric to the mean,
the pih_o?;m can be chosen to be equal to the mean value of the distribution of input transition
probability E[ pibiobiT ] for dl i, to achieve the minimum expected error.

The following experiments are conducted to verify the above analysis. The input signals of
al input nodes of a circuit are assumed mutually independent, and the transition probabilities
are assumed to be uniformly distributed as a random input usualy is. Both of them have the
same mean value of 0.5. A nominal input statistics S,om is thus built with each element equals
0.25. This nominal point will be designated as nominal 0 (No) here. That means, d; is
uniformly distributed in [0,1], and consequently, p;i is uniformly distributed in [di/2, 1-di/2].



Please note that the proposed power model can deal with any distribution since we did not
make any assumption about the input statistics distribution is made in the analysis.

Five other nominal points are randomly constructed for comparison. Five hundred Ss are
randomly generated following the distributions, d; ~U[0,1] and p; ~U[di/2, 1-di/2], where
U[a,b] is a uniform distribution between a and b. Two thousands input vectors corresponding
to each S are randomly generated and fed into PowrMill to be simulated for the exact power
consumption. The power consumption corresponding to each Sis also evaluated by the first
order approximation with nominal point No and five other randomly selected nominal points.

The error of the power estimated with each nominal point is defined as:

Estimated Power - Smulated _Power
Smulated _ Power

Avg_Err = E[| Error|] (55)

Error = ~100%

Max_Error = Max[]Error |]

The estimation errors are shown in Table 4:

Table 4: The aceuracy of-nomind 0

Circuit NO Rand0 Randl Rand2 Rand3 Rand4
Cm138a 5.78% 12.63% 15.38% 11.07% 6.62% 8.08%
Cm150a 2.29% 4.47% 4.82% 4.07% 8.03% 3.12%
Cmi5la 3.66% 7.83% 11.65% 5.38% 6.87% 1057%
Cmi52a 3.68% 41.35% 5.88% 8.46% 4.68% 6.82%
Cml62a 4.31% 28.5% 5.89% 5.74% 7.36% 6.50%
Cml63a 3.73% 29.92% 7.65% 7.22% 6.58% 10.63%

Cmdza 4.62% 22.08% 12.55% 5.97% 7.82% 5.50%

Cm82a 5.69% 24.3%% 12.68% 9.70% 12.83% 12.76%

Cm85a 2.53% 16.72% 4.70% 4.11% 5.39% 3.87%

Cmb 1.82% 3.99% 3.22% 3.06% 2.75% 3.05%
Comp 2.90% 12.05% 4.57% 4.53% 5.15% 5.60%
Cu 2.62% 4.01% 5.74% 5.48% 4.65% 5.47%
Decod 4.89% 15.84% 14.07% 8.49% 9.69% 11.06%
F51m 2.45% 10.42% 4.56% 3.45% 4.32% 3.21%
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Average 3.64% 16.73% 8.10% 6.20% 6.62% 6.87%

There are seven columnsin Table 4, the first column are the names of the circuits of MCNC
benchmark circuits. The second column contains the results of the No. The other columns are
the results of five other randomly selected nomina points for comparison. The elements in
this table are the average percentage of error of the estimation result with corresponding
nomina point for the 500 random samples. The nomina point constructed with the mean
values of input transition probabilities always gives the best estimation for all circuits under
test. From the above analyses, selecting the mean values of the input transition probabilities as

the elements of the nominal input statistics can achieve the minimum average error.

2.4.2 Analysisof Estimation Error

Although the average error of nomina O ‘ist.minimized, the maximum error is still
unacceptably large in some cases. For a power maodel, the worst-case estimation error is as
important as the average error.-In order to improve;the accuracy, the estimation error of
nominal zero should be analyzed 1o locate the cases that the largest estimation error occurs
and to select some more nomina pointsto.improve the power model.

The estimation error in equation @8) is a function of S,om and S As the first Soom (No) is
already decided, the estimation aror of Np is afunction of S. Before the anaysis, there are
some properties of equation (43) and equation (48) should be noted.

Property 1. Average power equation @3) is a linear equation corresponding to the four
transition probabilities of each input. In other words, for each input within each term of the
average power eguation, the sum of the powers of the four transition probabilitiesis at most 1.
Proof: Every term in average power equation @3) is a product of the Pr(V°V") and the
Power(V°V'), where the Pr(V°V") is a product of exactly one of the four transition

probabilities from every input. The property is proved.

Property 2. The estimation error eguation is a linear equation corresponding to every input

transition probabilities.
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Proof: Since the average power equation is alinear function corresponding to each input, and
the estimation error equation is the high order derivatives part of the Taylor’ s expansion of
average power equation, this property is proved.

The S that maximizes the estimation error will be denoted as Syr, and the elements of Sy will

be denoted as pi_err aNd di_err-

Theorem 1. The (pi_er,di_err) 1S 0N ONe of the three points: (0,0), (0,1) and (0.5,1), that are the

three extreme points of the p-d triangle.

Proof: Since the estimation error is a linear function corresponding to each input, it is alinear
optimization problem finding the maximum value of estimation error corresponding to each
input [81]. The solution to the linear optimization problem is at least one of the extreme points
of the feasible domain. The feasible domain here is the valid p-d triangle of an input and the

extreme points of the feasible domain.are (0,0), (0;1) and (0.5,1).

From Theorem 1, we conclude-that the number of possible solutions of Sy is 3-", where
n_in is the number of inputs. Although the number of possible solution of Sy is greatly
reduced from a 2*n_in dimension space.of real"number to 3", the complexity of trying all
the possible combination of @i er, di_er) is still exponentialy growing with the number of
inputs. A heuristic approach of finding the Sy is required. The second order terms in the
estimation error equation are the partial derivatives of the first order derivatives. Therefore,
for an S that maximizes the sum of the first order terms, it is more likely to maximize the sum
of the second order terms. The physica meaning of the sum of the first order terms is the
difference between the estimated power and the nominal power. In other words, an input
statistic Swith anestimated power greatly larger or smaller than nominal power is most likely
to have alarger estimation error.

Take circuit cm138a as an example to observe the relationship between the estimated power

and the estimation error are depicted in Figure 8.
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Figure 8: Simulated power vs. estimated power with N

The solid line in Figure 8 is the zero error line. It illustrates the ideal estimation of the
simulated power. As shown in Figure 8, the estimated power deviates from the zero error line
when it is away from the nominal power. That is, when the difference between the estimated
power and the nominal power becomes larger, so is-the estimation error. This observation
supports the derived heuristic. With the heuristic, two possible Sy can be located. One is for
the resulted largest estimated power: and.is denoted as Syax and the other, denoted as Syin,
results in the smallest estimated power. However, Syax and Syin are not suitable for being our
second and third nominal points since there are seldom S that can reach the Spax and Syin.
Therefore, it is the better way to choose the second and the third nominal points as the
average of No and Syax and the average of No and Syin. The second nominal point placed on the
average of No and Sy IS designated as Ngz , and the third nominal point placed on the average
of No and Sqin is designated as Ng1. The elements of the third quartile nominal point, Ng3 are

pi _03 :(pi_rrw + pi_no)lza

di_q3 = (di_ma< + di_no)/z' (56)
In the same manner, the first quartile nominal point, Nq1, can be obtained.
pi_ql = ( p_min + pi_nO)/Zl
(57)

di_ql = (d + di_no)/z'

i_min
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Illustrated in Figure 9 are the experimental results of using only the nominal point Ng1. The
estimation errors of the points in the region with relatively smaller power are obviously

reduced, while others are increased.
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Figure 9: Simulated power vs. estimated power with Ngy
On the other hand, Figure 10 shows that less error is induced in the high power region when
the power is estimated with only Nga.
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Figure 10: Simulated power vs. estimated power with Ng3
Since the estimation error depends on the selected nominal point, a guideline for selecting the

optimal nomina point is required for minimizing the estimation error. It is possible to build a
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power model constructed of these three nominal points and dynamicaly select the most
suitable nominal point(s) to give power estimation. The details of constructing the 3-point

power model will be discussed in the following section.

2.5 Experimental Results
With the three nominal points obtained in the previous section, we can construct a 3-point

power mode! for a circuit. Considering an input stetistic S, let Power avg(S)|ngL, Power avg(S)Ino
and Power ayg(S)Ingz be the estimated power done with the nominal points No, Ng1 ad Ngg,
respectively. Let Power ayg(Ng1), Power ag(No) and Power ayg(Ngz) be the nominal power of Nqt,
No and Ng3, respectively. From previous analysis, the estimation error is likely to grow with
the difference between the estimated power and the nomina power. Therefore, we take the
distance between the estimated power and the nominal power as parameters of interpolation
while using the proposed 3point model. The reported estimation power from our 3point
model is evaluated with the followingequations:

dlisy = POWIEr (S} gt - POWer, o (Ng),

disy = POWerayg(S) Inig = Power,,g(Ngo), (58)

disz = PoWer,yq(S) g =1 POWer,yq (Ng3)-

1 1. Powery,q(S) |qu ,for dis; <0

I Poweray4(S) In,, * |disy|+ Powerayg(S) I, “|dis

:
i [iso| +[dis]
i for disy <0< dis;

Estimated Power = | (59)

B Power,g(S) In,, * |disg| + Power 4 (S) In, |disy|
: |diso| +|disg|

-, for dis; <0< dig

i .

T4. Power,,g(S) |Nq3, for dis; >0

The following is an experiment of comparing our 3point model with some other power
model. Estimation error is calculated with equation (55). The standard deviation of estimation
error is defined as:

STD_Error =E[Error?]- Avg_Error (60)
The model used for comparison is constructed with five randomly selected nominal points

whose nominal trangition probabilities are randomly generated with di~U[0,1],
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pi~U[di/2,1-di/2]. The nominal 0 model, the 3-point model and the random 5-point model are

all tested with the same 500 randomly generated Ss. The average errors and maximum errors
arelisted in Table 5.

Table 5: Selected 3-point model V'S. random 5-point model

Nominal 0 3-Point Model Random 5-Point

Circuit Avg Max STD Avg Max STD Avg Max STD
Cm138a 574 8349 7.55 427  37.25 4.70 566 94.74 122
Cm150a 229 1260 2.45 235 2150 2.20 443 26.21 3.98
Cmi5la 366 27.09 3.66 347 2570 3.63 751 59.32 7.58
Cmil52a 368 76.23 5.60 355 57.6]1 5.27 6.42| 110.0% 8.33
Cmil62a 431 45.18 4.34 407 3081 3.93 6.95 70.68 8.45
Cml63a 373 2752 411 426 3244 367 1120 5045 1045
Cmd2a 462 5184 5.63 3.81 = 31.37 4.28 839 44186 7.53
Cm82a 569 6268 583 5.10 . 143.73 540 1062 4255 8.40
Cm85a 253 2207 2.36 250 - 14.26 223 519 3490 6.18
Cmb 1.82 8.29 1.57 178 8.83 147 301 1364 2.55
Comp 290 1453 2.39 305 1492 227 535 3335 4.90
Cu 262 1744 2.67 230, 1448 2.10 436 39.94 4.68
Decod 489 40.69 4.84 380 29.80 349 552  39.00 549
F51m 2458 2013 2.32 193 1238 1.76 360 1696 341
Avg 364 3641 3.95 330 2679 331 6.30) 48.28 6.37

In Table 5, there are 3 columns for each power model. The Avg column is the average

percentage of error asin Table 4. The Max column is the maximum percentage of estimation

error. The STD column is the standard deviation of the 500 estimation errors. From Table 5,

we can observe that 3-point model does have smaller maximum error than nomina 0 in most

cases. However, in cm150a and comp the maximum error gets worse. This is because that

there are 2n variables for an n-inputs circuit, and therefore 2n dimensions in the space of the

input statistics. The 500 input statistic combinations do not cover the worst corner of nominal
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0. In other words, we may need more than 500 input statistics combinations to trigger the real
maximum error of nominal 0 when the number of inputs is large. However, we can still
observe that every value in the STD column of 3-point model is smaller than the
corresponding one of nomina 0. It means that estimation errors of 3-point model are
distributed in a smaller range than nominal 0. Besides, even with five nominal points, the
accuracy of the random method is still far behind the proposed 3-point model.

The scatter graph of simulated power and estimated power with 3-point model is show in
Figure 11.

h316—-
514‘: -

4l ST

4 6 810 12014 16 18 20 22
Estimated Power (3-point model)
Figure 11: Simulated power vs. estimated power with 3-point model
Comparing Figure 11 with Figure 8, we can see that with our 3-point model, the small
average estimation error of Np is kept while the maximum estimation error is minimized for
cml138a

2.6 Summary

In this chapter, a nomina point selection method for power models based on power
sensitivities is proposed. By analyzing the relationship between the dynamic power
consumption of CMOS circuits and their input signal statistics, a guideline of selecting the
nominal point is proposed. From our analysis, the first nomina point is selected to minimize
the average estimation error and two other nominal points are selected to minimize the

maximum estimation error. Both the theoretical evaluations and the experimental results show



that putting the nominal point on the mean of the input transition probabilities is a very good
choice. Furthermore, we propose a 3-point model to achieve even better performance. The
proposed 3-point model not only keeps the small average estimation error nominal 0, but also
reduces the standard deviation of the estimation error.

Since power sengitivities are derived from Taylor’'s expansion, the accuracy of the power
sengitivities and the accuracy of the power estimation equation based on power sensitivities
highly depend on the position of the nominal point where the Taylor’ s expansion is performed.
Provided that the position of the nominal point is not too far away from the point under
estimation, the power sensitivities can be a good indicator of the power consumption trend.
We will utilize the power sensitivities for indicating the power consumption of each input
vector when estimating the average power consumption of a given input sequence in the

following chapter.
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3 Bootstrap Monte Carlo with Adaptive

Stratification

In the previous chapter we proposed a method of nominal point selection for power estimation
when input satistics are given. But there are more cases that users have only an input

sequence of finite length, and still need a quick way of finding the power consumption or port
current for reliability analysis or specification check. In such circumstances, simulation based
approach is more suitable since there is no need of pre-calibrated power model. In this chapter,
we will discuss how to obtain the average power without simulating the whole input sequence

to speed up the estimation process.

3.1 Related Works

With the increasing size of design blocks, the number:of input vectors required for estimating
the power consumption of a circuit is growing exponentially. In the meantime, the time
needed for smulating each input-vector  inereases rapidly with the growing complexity of
circuits. In previous literatures, methods forshortening the time required for power estimation
can be classified into two categories. One is to generate a shorter input sequence, and the
other is to sample a small portion of the input vectors from the origina sequence. To
regenerate an input sequence that has the similar average power as that of the origina input
sequence, some features of the original sequence need to be preserved while regenerating the
shorter one. These features include preserving the pattern transition probabilities [79],
preserving the spatial-temporal correlations for al inputs [108], and preserving the significant
correlations between the clustered inputs [80]. Regenerating a compact input sequence sounds
easy. However, the compact input sequence can only be generated according to a
user-specified compaction ratio, which users usualy do not know the proper value.

The Monte Carlo approach for power estimation is proposed by F. Nggm [97]. The method
estimates the average power by sampling the input vectors with certain length | from the
original sequence and fed them into the ssimulator to derive a sample value of the average

power. The average power consumption can be estimated with the average of several sample
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values. From Central Limit Theorem (CLT), the sample values can be presumed as a Normal
distribution when | approaches infinity. The probability that the estimated mean is within a
certain error range of the real mean can also be derived under the assumption However, the
required | to preserve the normality of x is not discussed. If x is far from a Normal distribution,
the basis of the Monte Carlo method fails and the estimated power may have a larger error
level than expected.

Bootstrap theory is a re-sampling technique that will generate Bootstrap samples by picking
the sample data with replacement and report a Bootstrap confidence interval without
assuming any parameter of the distribution [87]. This is also known as nonparametric
Bootstrap re-sampling. By adopting the Bootstrap technique, we developed a way to calculate
a more accurate confidence level to assure that the user specified confidence level would not
be violated in Monte Carlo simulation.

Although the Monte Carlo method can achieve acceptable input sequence compaction ratio
generally, it suffers severe degradation as dealing with power histograms ke bi-moda or
multi-modal [97]. For Monte Carlo gpproach, ‘large sample variance means large number of
samples required for the estimation to converge to the real value. The stratification method on
the original input sequence is proposed to minimize the sample variance and the probability of
generating the pre-matured samples [103]..According to the method, a gate level power model
is required for roughly estimating the power consumption of the original input sequence on a
zero-delay logic smulator. The zero-delay gate-level power consumption is used as an
indicator of the circuit-level power consumption. With this indicator, the origina input
sequence can be partitioned into strata, within which the input vectors are with similar power
consumptions such that the samples sampled from these strata can have a smaller sample
variance. However, the gate level net-list sometimes needs to be concealed especially when
they are the intellectual property (IP). A novel input sequence stratification technique is
proposed in this dissertation It utilizes the multiple regression method on the sampled input
vectors to find the weighting of each input transition, which can be used in the power
indicator function for stratification. The proposed technique can re-stratify the original input
sequence according to the updated samples, and keep the sample variance the smallest.

The following parts of this chapter are organized as follows. In section 3.2, some essential

definitions and bases are introduced. Section 3.3 details the concepts of the Bootstrap Monte



Calo method and demonstrates its efficiency. In section 3.4, the proposed adaptive
stratification technique with multiple regresson method is presented. The flow of the
Bootstrap Monte Carlo method combined with the adaptive stratification technique is shown

and evaluated in section3.4.

3.2 Preliminary
3.2.1 Normal Distribution and Gaussian Distribution
Definition 1: Normal random variable

A random variable (RV) x is normally distributed with mean ny, and standard deviation sy if
its probability density function (denoted as p.d.f.) equals:

- 1 (e mf 2,2
f(x) s ° .

Definition 2: Gaussian (Standard Normal) random variable:

(61)

A RV yisGaussan if its p.d.f. is defined as:

g(y) = «/;T e (62)

Definition 3: Cumulative distribution function(c.d.f.)-of Gaussian

The probability of a Gaussian RV y smaller than an arbitrary valuey is defined as:

Gly)=Ply £y} =, J21|T e dx (63)

Definition 4: a-percentile of Gaussian
The a-percentile of Gaussian is denoted as z, and expressed as.

z =G'(a), 0Ofa £1 (64)
Note that the p.d.f. of the Gaussian RV is an even function, therefore z, = - 1.4, and zp5= 0.
Sample mean and sample variance:
Let {x, i = 1,2,...,n} be n randomly sampled elements out of a population with an arbitrary
distribution, the sample mean is defined as the arithmetic average of these n samples

n

o_ 12
X=—a % (65)

The sample variance s is defined as:



o 1
n-1

3.2.2 MonteCarlo Method
The power consumption of a CMOS circuit is dominated by charging and discharging of the

a’ (x-xP. (66)

i=1

S

load capacitances at each gate output. The average power consumption can thus be defined as
afunction in terms of successive input patterns:
o N-1 -

m =& | Powerlv )N, (67)
where ny is the average power consumption, V! is the input vector from the j pattern to the
(j+1)" pattern, Power (V') is the power measuremert, and N is the number of input vectors
Let pwr be the RV defined on a sample space containing all Power(V }). The average of |
values of pwr is caled a random sample x, whose sample mean approaches the desired

average power, y, and can be expressed as.
_ 1 o |
K= " A PV (68)

where pwr; isa value of the RV pwr. According to the Central Limit Theorem (CLT), the RV
x has a distribution close to normal distribution for large 12,

To estimate the nx in (67) without Simulating.all input vectors, the Monte Carlo approach for
power estimation can help. Let X and s° be the sample mean and sample variance of x,

respectively. From equation (64) to (66), the following results can be derived:

pi|- X g el _errgzl- 22, 0£a £05,
| zs (69)
whererd er = —22—.
- X~/Nn

Therel _err stands for the related error level, a is the confidence level, and n is the number of
samples of x. Equation (69) means that the user can have a confidence level of 1-2a about the
clam that the error between the real mean ny and the sample mean X is smaler than the
related error level. If the related error level rel_err is larger than the user specified error level
e, one or more samples of x should be picked and the sample mean and rel_err are evaluated

again. The procedure is iterated until the user-specified error level e is satisfied.



3.2.3 Bootstrap

Definition 5: Bootstrap replication

Let x be the RV defined as the samples from an arbitrary distribution:
X ={xi|1£i £n}_

(70)

Let X be the RV defined as the random samples of x with replacement for each x; with equal

probability, 1/n:
X* :{>§|1£i £nx1 x}_
The Bootstrap replicationb of X is defined as the mean of x*:

1o,

b:ih(bk:Tall)(:,lEKEI’lbg’
|

where nb is the number of Bootstrap replications.
Definition 6: Sorted Bootstrap replications
Let the RV B stands for the sorted Bootstrap replications and defined as:

B={B|B, 1 biB £B,if i<[1£i,],kE nb}

Definition 7: Cumulative distribution function(c.d.f.) of B

The probability that the RV B is smaller than an arbitrary value b is defined as:

. ke P
GB(b)—P{BEb}—% it B £b,1£|£kb%_

Definition 8: a-percentile of Bootstrap
The a-Bootstrap percentile is defined as:
g, =GB''(a), 0fa £1

Definition 9: Percentile confidence interval of Bootstrap

(71)

(72)

(73)

(74)

(75)

There are several ways of calculating confidence intervals of the Bootstrap replications. The

most straightforward one for the 1-2a Bootstrap confidence interval is the percentile

Bootstrap confidence interval, and is defined as the interval that can cover (1-2a)*nb

Bootstrap replications:
h%,lo’q%.up]z[GB_l(a )GB(1- a)] , 0£a £05,

Definition 10: Bias-Corrected and accelerated (BCa) confidence interval

(76)



The BCa confidence intervals are complicated to describe but are as easy to use as the

percentile confidence interval [87]:

hBCa,Io q BCa,up] = [GB- 1(a1)' GB’ 1(a 2)]

Ltz

a _Gae + 0

LR T A7+ ) 5 @7
_ o8 Zy+z. , 9

72 ngo+1' a20+2.4) 5

The Z, is designated as the Bias-Correction coefficient. It is simply derived from the portion
of Bootstrap replications that are smaller than x (the sample mean of x):

1&#{b < )_(} 0

20=G ¢ b (78)

wherethe #{b< X} is the number of Bootstrap Replicationsthat are smaller than X.The &
is designated as the accel eration coefficient. Before defining &, the definition of the Jacknife

value, Jiy, of X isdefined as:

3 |J J LHes N -9->q@1£i£nl"J 79
O = oOPoTq & ey % (79)
The mean of J;y designate as J ) is defined as:
} 1.0 n
J=Tra Jo. (80)
The acceleration coefficient is then defined as:
O n 3
. aizl(J(.)' I0)
a= 3/2 - (81)

6'1a inzl(J(.) - J(i))z\g

|
The BCa Bootstrap estimation of ny is defined as the 0.5-percentile of the distribution of BCa

Bootstrap replications:

- 138 20+ 2y 0
Recy = GB 183, +— 20 %5 O
oea g 1- a(2 + 295) 7 o
20 5 : (82)
0 9

The Bias-Correction coefficient z, is designed to compensate the difference between x

and the BCamean X, . If the difference between them equals zero, Z, equas zero also. As
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for the acceleration coefficient, it refers to the rate of change of the standard error of X with
respect to X, measured on a normalized scale [88]. The larger it is, the wider the confidence
interval. Detail discussion about how this acceleration coefficient works is referred to the

references’. For a normally distributed X, the z, and & are both zero, and a; = a, = a.

The BCa confidence interval is exactly the same as standard confidence interval.

3.3 Bootstrap Monte Carlo Simulation
3.3.1 Bootstrap Confidence L evel
For conventional Monte Carlo, the confidence interval and the rel_err are calculated with
equation (69), in which the rel_err totally relies on the assumption that the distribution of X
is normal. The possibility that the distribution of X might be skewed or platykurtic is
ignored. Bootstrap technique, can be used to adjust the confidence level when the normality
of the population is poor.
For agiven error level, e, the acceptable range for the real mean ny is defined as:

Ao Ap]=[(1- £IMAX(R Rpcy), (L+ €)MIN (R, Rac, )] (83)
The acceptable range covers the safe range into which the real mean nmx can land without
violating the user specified errof.level: ey withrrespect to either X or X, . And then, the
Bootstrap confidence level is defined'with:

apca = GB(Ao) +1- GB(Aup). (84)

3.3.2 Bootstrap Monte Carlo Method
With the a gca from equation (84), whether the user specified confidence level is guaranteed or
not can be easily determined. The Bootstrap Monte Carlo (BMC) method is demonstrated

with the pseudo-codes in Figure 12:



Bootstrap Monte Carlo ()
Pwr, e, a; /* Conventional Monte Carlo parameters */
nb; /* Bootstrap parameter */

nSamples=1; rel_err = 1;#Boot =0;

z =G'(a);
while(rel_err3 e){
nSamplest+;

get new sample x,, fromPwr;
update sample mean x and sample variance *;
updaterel_err;
if (rel_err £¢e) {
Generate nb Bootstrap Replications b fromx;
Cdculate apgc, fromb;
#Boot ++;
if (aBCa >2*a ) {
re_err=1,
}

} }
return nSamples, nBoot, and x;

Figure 12: Pseudocode of BMC
3.3.3 Bootstrap Monte Carlovs. Conventional Monte Carlo
The proposed BMC method is tested with estimating the average powers of the ISCAS-85
benchmark circuits. There are 10,000 input vectorsin the input sequence for each circuit. The
input sequence is a compound of 3 segments. a counter sequence, a LFSR sequence and a
sequence of pseudo random numbers. Note that half of the input vectors in the counter
sequence have only single input change, and therefore consumes less power. The LFSR
sequence represents the input vectors with temporal correlations. The pseudo random input
vectors, on the other hand, are gatially and temporally independent. The arrangement of the
input sequence is to give the estimator a tough situation because the power histogram of such
an input sequence is most likely to be skewed, long tailed and platykurtic at the same time.
Besides the ISCAS-85 benchmarks, an additional circuit, add_mpr, is included. It is a circuit
with a mode controlling input that controls the function of the circuit to be an adder or a
multiplier. The power histogram of it is a typica bimodal distribution. The experimental
results are listed in Table6to 8.

Table 6: Conventional Monte Carlo vs. Bootstrap Monte Carlo with a=0.05

Circuit MC BMC
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viol_ r | nVecs | viol_ r | nVecs | #Boot
C432 0.1235 1538.51 0.0949 1786.97] 14.4926
C499 0.1164{ 585.86 01050 629.34 2.9860
C880 0.1218 616.24f 01010, 663.19 3.1880
C1355 0.1145 633.05 01005 68292 3.2847
C1908 0.1194{ 908.35( 0.1004] 996.04] 5.4834
C3540 0.1586 154.90f 0.1563 156.16) 1.0405
C6288 0.1259 1344.78§ 0.1014| 1532.66 11.0338
add_mpr 0.1384) 28135 01283 28827 12202
Max 0.1586| 1538.51f 0.15631 1786.97] 14.4926
Avg 0.1273] 757.88 0.1110] 84194 5.3412

Table 7: Conventional Monte Carlo vs. Bootstrap Monte Calo with a=0.025

MC BMC

Circuit

viol_r ‘| nVecs | viol.r | nVecs | #Boot
C432 0.0748 2055.63 0.0487| 2504.36 25.7884
C499 0.0591.'820.55)  0.0497| 886.94] 4.4027
C880 0.0611| 86270 “ 0.0497| 935.03 4.7865
C1355 0.0594f 884.39] 0.0499 96119 4.9675
C1908 0.0653] 1248.65 0.0525 1397.90 9.0968
C3540 0.0832 23054 0.0810 23259 10764
C6288 0.0710, 1812.33 0.0485 2150.83 19.6258
add_mpr 0.0688| 408.67f 0.0627] 421.19] 15073
Max 0.0832] 2055.63 0.0810] 2504.36 25.7884
Avg 0.0678 1040.43 0.0553| 1186.25 8.9064

Table 8: Conventional Monte Carlo vs. Bootstrap Monte Calo with a=0.005

MC BMC
Circuit
viol r | nVecs | viol_ r | nVecs | #Boot
C432 0.0266 3089.78 0.0092 4145.60 59.5692




C499 0.0163 1345.06 0.011§ 1480.03 8.3433

C880 0.0179 1408.56 0.0111 1558.8¢ 9.2150

C1355 0.0180 1442.10 0.0138 1600.27 9.6379

C1908 0.0198 1980.65 0.0121 2322.61 19.878(

C3540 0.0160 400.03 00149 41639 1.3424

C6288 0.023§ 2768.35 0.010§ 3561.91 44.9794

add_mpr 0.0130 700.62 00111 72820 2.9168

Max 0.0266 3089.78 0.014q 4145.6 59.5692

Avg 0.0189 1643.02 0.0117 1976.73 19.4853

Tables 6 to 8 are the results for a equals 0.05, 0.025 and 0.005 respectively. The
corresponding confidence levels are 90%, 95% and 99%. For each a, there are results for
every circuit with both conventional Monte Carlo method (MC) and the proposed Bootstrap
Monte Carlo method (BMC). Eachimethod is performed 10,000 times for each circuit to
estimate their average power consumption.. The error level e is set to 0.05. If the error
percentage of the estimated power exceeds e, the number of violations is increased by one.
The viol_r columns are the violation ratio defined as.the number of violations divided by the

number of Monte Carlo simulations;

(85)

The nVecs columns contain the numbers of input vectors sampled by the corresponding
estimation methods. For a good estimation method, the viol_r should be close to and always
smaller than 2*a. For two estimation methods with the same viol_r, the one with smaller
nVecs is the better one. There is one additional #Boot column for BMC. It is the average
number of times that Bootstrap process being invoked for a BMC estimation. It is roughly in
proportion to the number of additional samples required for BMC. With a larger #Boot, the
overhead of using Bootstrap is greater. For the circuits that the viol_r of MC exceed 2*a more,
the #Boot for BMC is supposed to be larger to keep the viol_r of BMC within 2*a safe range.

As demonstrated in the tables, the viol_r for conventional Monte Carlo method exceeds 2*a

in al 24 cases. On the other hand, with the Bootstrap method monitoring confidence level in
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BMC, the viol_r are either under or close to the 2*a, except for 2 cases. C3540 and add_mpr .
One thing needs to be noticed is that the nVecs for C3540 and add_mpr are the two smallest
ones among all circuits. If the number of samples is too small to represent the origina
population, e.g. pre-matured samples, BMC might fail to keep the voil_r within 2*a
sometimes. That is because the Bootstrap method produces its Bootstrap replications from the
samples of Monte Carlo. This drawback will be discussed and eliminated with the proposed
Bootstrap Monte Carlo with adaptive stratification method (BMCAS) in the following section.
Regardless of this deficiency, the proposed Bootstrap Monte Carlo method is more trustable

than conventional Monte Carlo method with about 10% increasing in nVecs.

3.4 Adaptive Stratified Random Sampling

Stratification is a technique to divide the sample space into subspaces to reduce the sample
variance so that the Monte Carlo can converge sooner with smaller number of samples, n, and
achieve better compaction ratio. An’indicator function for stratification is a function that
returns a value closely related to-or even equalsthe power consumption of input vectors. To
build an indicator function, the multiple regression method is adopted.
3.4.1 SingleVariable Linear’Regression
Given acollection of n data points of twe.variables x and y:
(x,y):{(xi,yi)|1£i£n} (86)
The best line describing the relation between x and y is defined as:
y =ax+b
__Elxy]- ElxJEly]
E[xx] - E[x]E[x]
b= Ely]- aE[x]

(87)

where E[] is the function of expected value, and § isthe predictor of y. This predictor is the
one with zero bias and minimum RMS error.
3.4.2 Multiple Regression
Multiple regression is smply an extension of the single variable linear regression. Given n
data points of m+1 variables:

(X.y) ={ [0, Xz X ¥ }

={{ba e xmi b v} £ 1 £}, 89
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Note that X is a row matrix stands for the x variables. The best function describing the

relation between X and y is defined as:

y=XA+b

C=E[xy]- E[X]E[]y]

D= E[xTx] - E[X]TE[X] (89)
A=DCT

b=Ely]- E[x]A
where A is a column matrix that contains the coefficients for each Xi,...,Xm. Note that the order
of X and A are switched to make the product of them a scaar.
3.4.3 Variable Selection
As we can see in equation 89), deriving the coefficient matrix A includes a matrix inverse
operation on matrix D. If matrix D were singular, the equation of measuring the coefficient
matrix A would fail to be solved. To prevent this, the basic assumptions of multiple regression

need to be taken into consideration while selecting the x variables.

Assumption 1: The relation between y and X;'is linear.

They variable in power estimation is the power:consumption of each input vector. The power
consumption of CMOS circuits is dominated. by the dynamic power. The dynamic power is
consumed when the inputs of the circuits are switching. In other words, more input switching
implies that more dynamic power is consumed. This makes the switching conditions of the

primary inputs good candidates for the x variables.

Assumption 2: The x; variables are mutually independent.

For aprimary input, there are 4 possible transitions between 2 consecutive clock cycles: 0to 0,
Otol,1t00,and 1to 1.

Let the Boolean value for the i input in the j™ clock cycle be denoted as b’, the input pattern

inthej™ clock cycle is defined as:
Pat’ ={b/|n'T {0,1£i £n_in 0 jEN | (90)

where n_in stands for the number of primary inputs, and N stands for the total number of

input vectors. The j™ input vector is defined as two consecutive input patterns:



Vi :{(Patj,Patj+1)‘O£j£N-1} 1)

There are four transition variables designated for the transition behavior of the each input:

T(ivi)
:{Tk(i,vj)‘0£k£3,l£i En_inOE £ N-l}, (92)
WhereTk(i’Vj):‘}l, it k=2 b +hi*

10, otherwise
For an input i and input vector V !, one and only one of the four transitions can take place.
This makes the four transition variables mutually dependent:
Toli Vi )+l v+ T, (v i e vi)=1 (©3)
Therefore, a most three out of the four transition variables need to be chosen as the x
variables for multiple regressiors. We select the To, T1 and T because they are smaller and
continuous by the index. Note that, any combination of three transition variables chosen is not
losing generality because the removed one can alays be derived from the others selected.
After choosing the x variables for-equation{(88), it.can be rewritten in the form of constructing
the predictor for the power consumption of .€ach input vector. Let the power consumption of
each input vector indicated by the indicator function be:
Power (V) = X(V)A b

X(V)={[To(,V) T, V). T, V)]|L€i £n_in} " 49
where V is the set of all input vectors. In the same manner, the coefficient matrix A can be
derived from the multiple regression equations:

C = E[X(W)Pwr(W)]- E[X(W)]E[Pwr(W)]

D = ex(w)"x(w)]- Elx(w)]" elx(w)

A=DcT ’

b = E[Pwr(W)]- E[X(W)]A

(95)

where W is the set of sampled input vectors and Pwr(W) are their corresponding power
consumption measured with simulator.

3.4.4 BMC with Adaptive Stratification (BMCAS)

With the coefficient matrix A and equation (94), the population can be stratified into a certain
number of strata. Initialy, the population is not stratified, and the first few samples x;'s are

randomly sampled. After the number of sampled input vectors is larger than a predefined



threshold, the multiple regression function is invoked to derive A. The Power(V) is
calculated with equation (94) and the stratification process starts. Hence, the stratified random
sampling process takes over the place of random sampling. After some other new input
vectors are sampled, the multiple regression process is executed again to recalcul ate a better A
for re-stratification. The pseudo code for the proposed Bootstrap Monte Carlo with Adaptive
Stratification (BMCAS) is depicted in Figure 13.



Bootstrap Monte Carlo with Adaptive Stratification ()
Pwr, e, a; /* Conventional Monte Carlo parameters */
nb; /* Bootstrap parameter */

{

nSamples=0; rel_err = 1; nRestrat =0; keep_sampling = 0;
W={A},S={A;V={V'|1£EN}

z=G'(a);
while(rel_er3 e){
nSamples++;
if (stratified)

Sample input vectors v from V with stratified sampling;
ese

Sampled input vectors v from V with random sampling;
S=SEvW=WEy,
Get y = Power (v); from simulator;
y=YEYy; _
if (keep_sampling) {

keep sampling--; rel_err = 1; continue;

update x,s’, andre_err;

}
if (rel_err3 e){
if #(W)>9*n_in) {
MR: X=T(S);
if (A =Multiple Regression(X,y) is success) {

Power (v ) =T(V)A +D;
Redtratification(V);
stratifed = TRUE; W = { A} ; nRestrat++,

}

}else{
Generate nb Bootstrap Replications b fromx;
Calculate agc, fromb;

#Boot ++;
if(@pca>2*a ) {
re er=1;

} eseif (Istratified) {

rel_err =1; keep _sampling = 2; goto MR;
} ede{

return nSamples, nRestrat, and x;
}

Figure 13: Pseudo code of BMCAS
The reason of starting multiple regression after the number of W is larger than 9*n_in isto
prevent too many empty elements in matrix D which might lead to a singular matrix for the
matrix inverse operation. The keep_sampling variable is an insurance to prevent the Bootstrap
Monte Carlo failure caused by the premature samples as discussed in previous section. The

rel_err and the keep_sampling are given one and two, respectively when BMCAS exits before



any stratification is performed. With these setting, the BMCAS will stratify the population at
least once and samples three new samples after the forced stratification to get at least three

samples that are sampled from the population more uniformly.

3.5 Experimental Results
To demonstrate the performance of proposed BMCAS, one more stratification method called

Hamming distance method (HDM) is implemented for comparison. It is a dstratification
method based on the assumptions that power consumption increases with the number of
inputs transitions becoming larger. HDM method dtratifies the input vectors into strata
according to the Hamming distance of each input vector. For both methods, the input vectors
are stratified into six equal sized strata. The reason is that one can get little sample variance
reduction by setting the number of strata larger than six [19].

The results are in Table 9 to 11. The results from BMC method in section 3.3 are listed in the
tables, too. It is designated as NO_STRAT because there is no stratification procedure in BMC.
Similar to Table 6 to 8, Table 9:t0 11 show: the.results for confidence level 90%, 95% and
99%, respectively. The first columns of them are the names of the circuits. The numbersin the
brackets next to the circuit names are the number of inputs of the corresponding circuit. They
are listed as a reference because BMCAS re-stratifies the population after 9*n_in new input
vectors sampled. There are three columns of data for each stratification method. The nSample
column shows the average number of samples required for the corresponding stratification
method to converge to a value of estimated power. The nVecs columns are the average
numbers of the sampled input vectors. The smaller is the nVecs, the better the stratification
method is. The error level e is set to 0.05. The viol_r column shows the violation ratios with
the same definition as equation (85), and the #Boot columns are of the same definition asin
tables 6 to 8. The extra #ReStrat column for BMCAS is the average number of stratification
being performed.

Comparing the proposed BMCAS and the BMC, the viol_r of BMCAS are closer to 2*a than
BMC in amost al circuits and all confidence level. Besides, with the proposed adaptive
stratification technique, the numbers of sampled input vectors are about 27% smaller than
those of BMC in average. For some circuits, BMCAS even needs only half of the number of
input vectors that BMC needs. The #ReSrat for some circuits, like C3540, are equal to 1.0
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exactly because all of the BMC estimations exit with a number of sampled input vectors

smaller than the threshold for starting stratification, and BMCAS will perform at least one

stratification process before exiting. As shown in tables 9 to 11, the viol_r for C3540 are

safely kept within 2*a. As for the results from HDM method, although its nVecs is the

smallest, the violation ratio exceeds 2*a for all cases. This makes the results from HDM

un-trustable and the nVecs meaningless. With the safely kept viol _r and the smaller number of

nVecs, we can summarize that the proposed BMCAS is the most reliable one and can efficient

reduce the required number approach.

Table 9: Comparison of stratification method, confidence level = 90%

NO_STRAT HDM BMCAS
Circuit [nSample| nVecs | viol_r | nSample| nVecs | viol_r [ nSample| nVecs | viol_r | #ReStrat | #Boot
C432 297.74| 1786.47| 0.0949 48.56| 291.3q 0.159q 193.99 116397 0.0918 3.6702 7.8359
C499 104.89| 629.34| 0.1050 4,96 29.79 0.1421 90.72f 544.300 0.0739 1.9919 3.8312
€880 110.53| 663.19| 0.1010 13.02/ :78:120.2141 107.92 647.56 0.0870 1.8311f 3.7967
C1355 113.82| 682.92| 0.1005 485 29:1¢ 0.1388 94.46 566.800 0.0770¢ 1.9974 3.9666
C1908 166.00[ 996.04| 0.1004 10:60/ 6359 0.2060 105.05 630.31 0.0795 2.2278 2.2278§
C3540 26.03| 156.16| 0.1563 7.10)-42:61 0.1923 30.81 184.89 0.0982 1.0000 2.0777|
C6288 255.44| 1532.66| 0.1014 10.36 62.14 0.1969 138.800 832.80) 0.0831 3.0274f 5.2061]
add_mpr 48.04] 288.27| 0.1288 43.35 260.07 0.1629 53.220 319.32 0.0911] 1.3348 2.4049
Max 297.74| 1786.47| 0.1563 48.56| 291.3q 0.2141 193.99 1163.97| 0.0982 3.6702 7.8359
Avg 140.31] 841.88| 0.1110 17.85 107.1 0.17669 101.87] 611.24 0.0852 2.1351| 3.9184
Table 10: Comparison of stratification method, confidence level = 95%
NO_STRAT HDM BMCAS
Circuit [nSample| nVecs | viol_r | nSample| nVecs | viol_r [ nSample| nVecs |viol_r |#ReStrat | #Boot
C432 417.39 2504.36 0.0487 72.63 435.800 0.0703 261.99 1571.98| 0.0393 4.6465( 12.3182
C499 147.82] 886.94 0.0497 6.99 41.74 0.0852 108.0§ 648.32 0.0392] 2.0039| 3.8246
€880 155.84 935.03 0.0497 20.14 120.83 0.1193 132.89d 797.26 0.0458 1.9994 4.2675
C1355 160.20 961.19 0.0499 6.77] 40.66 0.0847| 111.59 669.55 0.0400 2.0152| 3.8161




C1908 232.98 1397.90 0.0525 16.29 97.75 0.1148 131.9§ 791.87] 0.04300 2.9044| 4.7751
C3540 38.77] 232.59 0.0810 1042 6251 0.1158| 43.19 259.15 0.0457] 1.0000| 2.1437|
C6288 358.47] 2150.83 0.0485 1591 9545 0.1146 188.89 1133.32] 0.0395 3.9200 7.7984
add_rmpr 70.200 421.19 0.0627 64.84 389.06 0.0768 68.21 409.27| 0.0443 19117 2.7532
Max 417.39 2504.36 0.0810 72.63 435.80 0.1193 261.99 1571.98| 0.0458 4.6465| 12.3182
Avg 197.71 1186.25 0.0553 26.79 160.48 0.0977] 130.85 785.09 0.0421 2.5501| 5.2121
Table 11: Comparison of stratification method, confidence level = 99%
NO_STRAT HDM BMCAS
Circuit [nSample| nVecs | viol_r | nSample| nVecs | viol_r | nSample| nVecs |viol_r |#ReStrat | #Boot
C432 690.93 4145.60 0.0092 125.9§ 755.71 0.0135] 425.64 2554.10| 0.0073  6.8489| 26.3906
C499 246.67| 1480.03 0.0115 11.8§ 71.27| 0.0269] 148.93 893.58 0.0097] 2.7605| 4.8357
C880 259.80 1558.89 0.0111 37.33 223.95 0.0316 186.2q 1117.56| 0.01200 2.1826| 5.9437
C1355 266.71] 1600.27] 0.0138 11.53 69.200.0275 155.74 934.48 0.0093 2.8516| 5.1525
C1908 387.10 2322.61f 0.0121] 30:19- 181.13/:0.0330, 209.8q 1259.15( 0.0078  4.2333| 8.1702
C3540 69.34 416.39 0.0146 1894 113.53 0.0367| 73.14 438.95 0.0094f 1.2434 2.5202
C6288 593.65 3561.91 0.0105 29.90,179:37--0.0325 315.67] 1894.00( 0.0093 6.0004( 16.0834
add_mpr 123.03 728.20 0.0111 112.04 672:25 0.0137| 93.23 559.35 0.0074f 2.0002( 3.9304
Max 690.93 414560 0.0146 125.9§ 755.71 0.0367] 425.64 2554.10| 0.0120 6.8489| 26.3906
Avg 329.65 1976.73 0.0117| 47.22 283.30 0.0269 201.07 1206.40| 0.0090@ 3.5151| 9.1283
3.6 Summary

The Bootstrap technique is adopted in this chapter to assure the confidence level when doing

Monte Carlo estimation. With this technique, the Monte Carlo method can be improved since

confidence level is monitored during the Monte Carlo simulation. Besides, we proposed a

novel adaptive stratification technique, with which the population can be dynamically and

well dtratified to keep the sample variance minimized. The experimental results on the

ISCAS-85 benchmarks show thet the proposed Bootstrap Monte Carlo with adaptive
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sratification (BMCAS) successfully preserves the confidence level while efficiently reducing

the required number of input vectors.



4 Automatic Power Profiler

Estimating average power is a passive approach for simulator to demonstrate the power
consumption of a circuit. It relies on what input sequence users gave to the simulator to
estimate power with. Most of the time, even the designers of the circuit under test are not
aware of how the power consumption varies with different input sequences. Power profiler is
such a product that provides users an easy way to visually examine the distribution of the
power consumption.

The easiest way to get the profile of the power consumption is to simulate al possible input
vectors and plot the histogram of the simulated power. However, thisis not practical for large
circuits or circuits with a large number of inputs. Besides, more information about how the
power consumption varies with the input logic values or input transitions is necessary for
optimizing the power consumption, 4nthe following sections, the proposed measurement for
stratifying unlimited length input vectors will ‘be defined. The implemented tool named
PowerPro that integrates the stratification-scheme and the SPICE simulator will also be
detailed. With PowerPro, users'can:not only easily get the plot of power consumption
distribution for examining the average power-consumption, but also get the worst case input

combination that tends to induce worst case power consumption.

4.1 Problem Definition

Given a circuit and the input statistics, the objective of power profiling is to efficiently and
accurately plot the distributionof power consumption of a circuit. With efficiently, that means
the task should be done with the minimum number of input vectors fed into the smulator.
With accurately, that means the input vectors are stratified into strata and the mean of each
stratum should be correctly estimated before plotting the distribution. For example, if the

histogram of the power consumption of acircuit is as shown in Figure 14 (a):
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Figure 14: Example of power distribution

It is strongly demanded to easily stratify the population into two or more sub-populations, as
shown in Figure 14 (b), if they have smaller number of input vectors needed to be profiled.
Stratification for unlimited length input sequence requires a clear and logical way of deciding
which stratum should an input vector belongs to. The BMCAS method proposed in Chapter 3
that stratifies the input vectors according to the order of the input vectors sorted with the sum
of power sensitivities is not practical because the number of input vectors can be too long for
any sorting agorithm. Hamming .distance method is a primitive and feasible way of
stratifying the input sequence because it only needs the number of inputs that are toggling for
stratification. However, there are two inherent problems with the Hamming distance method.
The first problem of Hamming distance method is that it treats the toggling of all inputs with
the same importance. In fact, the power..consumptions induced by the toggling of different
inputs are usually different due to the difference of the sizes of their fan out cone. Regarding
this problem, the power sensitivities are utilized for analyzing the number of samples needed
so that a better way of stratification that requires less number of samples can be achieved.
Another shortcoming of Hamming distance method is that there are four possible transitions
for an input to make between two consecutive clock cycles and each of them may induce high
power consumption For example, a D flip-flop that is triggered by the positive edge of the
clock input, consumes the largest power when the clock input is making a positive edge
transition. When the clock input is making a 1 to O transition, the power consumption will be
much smaller. For memory circuits, the enable signal is responsible for enabling or disabling
the memory with logic level 0 or 1. In this case, neither the O to 1 nor the 1 to O trangition
induces the power consumption. Instead, the power consumption highly depends on the logic
value of the enable signal. To solve this problem, a new method of finding the transitions for

each input that may induce high power consumption that are called power senditive transition
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(POST) is proposed. The definition and the derivation of the POST will be detailed in the

following sections.

4.2 Number of Samples
For the sub-populations in Figure 14 (b), let the variances be sZ and s 2, the mears be m
and mp and the numbers of input vectors be n; and n,, the mean and the variance for the

population in Figure 14 (&) can be derived as

m= M+ Ny
m+n,
2 2 .2 (96)
g2=_MS1*NS? L&mm - mp g
(nl+n2) g m+n; g

The expected number of samples to get a convergence in the Monte Carlo criterion for Figure
14 (a) is:

2
&7 ,5 0

ar mp (97)

On the other hand, the required numbers of samples to get the criterion met for the two

separated sub-populations are:

.2
& 2481 9
22z ,S 62
1-a®2 x
and arm 5 (99)
To be benefited by dividing the population the following criterion must be satisfied:
.2 .2 .2
22,51 0 22,5 0 27,5 0
Fartm Betm s Eer s 20
By dividing both side with z., and err,
s 62 s (')'2 &es 'c')2
e e S e 101
Emg Emp Emg: (10
Substituting (96) into (101),
2 2
ws, ¢ s, ¢ (urnls?ensd) | (ame- nom) (102
mp Em g (nam + npmy )? (nm +npmy)? -



This is the criterion to be benefited from separating the populatiors. However, there is no
information about the mean and the variance of the two populations before simulating all
input vectors contained in them. Fortunately, equation (94) provides us an estimator for the
power consumption of input vectors with the power sensitivity sum. With equation (94), the
estimated means and variances with the power sensitivities measured from the sampled input

vectors can be derived as

i = E|Power (Vy)). (103)

s 2 = E[Power (v,)?- g (104)

fiy = E[Power (V,)| (105)

and $3 = E[Power (v,)?- g (106)

The V1 and V, are the input vectors set for sub-population 1 and sub-population 2,
respectively.

4.3 POST - Power Sengitive Transition

Power sensitive transition is originated from the:knowledge of previous subsections that the
power consumption induced -by different” inputs should have different weighting.
Summarizing the above observatiors, a new: method of categorizing an input vector with its
power sensitive transition (POST) is defined.. The transitions of an input that makes the circuit
consume more energy in average are called the POST of the input. The other transitions that
are not POST are designated as Non-POST.

Table 12: POST and non-POST combinations

Case POST |Non-POST] POST Description
0/123 00 01,10,11 Static-0
1/023 01 00,10,11 Positive Edge
2/013 10 00,01,11 Negative Edge
3/012 11 00,01,10 Static-1
012/3 | 00,01,10 11 Non-Static-1
013/2 | 00,01,11 10 Non-Negative Edge
023/1 | 00,10,11 01 Non-Positive Edge
123/0 | 01,10,11 00 Non-Stetic-0




0123 | 00,01 10,11 Previous Logic-0
02/13 | 00,20 01,11 Current Logic-0
03/12 00,11 10,01 Non-Transtion
12/03 01,10 00,11 Trangition
13/02 | 0111 00,10 Current Logic-1
23/01 10,11 00,01 Previous Logic-1

The possible POST/Non-POST combinations are listed in Table 12. The 0,1,2,3 in the “Case”
column stands for the0to 0, 0 to 1, 1 to 0 and 1 to 1 transitions, respectively. The first 0/123
case is the one that the POST is 0 to O transition and the nonPOST are0to 1, 1to 0O and 1 to
1 transitions. It is suitable for the kind of input that induces the most power consumption
when it is making a 0 to O transition. For a lowenabled signal, the most possible
POST/nonPOST combination for it is the 02/13 because the logic-0 of current clock cycle
will enable the circuit and consume’power. For aclock input that triggers the circuit to work
with rising edge, the most possible POST/nor POST . combination for it is 1/023.
Since the purpose of choosing the POST isto reduce the number of sampled vectors required
for getting a convergent population “mean - estimation of each subset, the best
POST/Non-POST combination for an input isthe one that has the smallest sample variance.
Given an input vector, the sum of the power sensitivities corresponding to the transitions of
each input in the input vector is a good indicator for the power consumption, provided that the
power sensitivities are properly measured. Let the power sensitivities of the i input be {Aj,
Ai1, Az, Ag} and the transition probabilities be {Po, P, P, Ps} corresponding to the four
trangitions {00, 01, 10, 11}. Categorizing the input vectors into four subsets according to the
transition condition of the i input forms four subsets of input vectors {Vio, Vi1, Viz, Via}.
From equation (94), the power consumption indicator function of the Vi is defined as:

Power (Viy ) = Ay +Power, (V). (107)
Power; (Vi) = X (Vi JA +b
X(Vie) ={To(i, Vit ) i, Vi T (3 Vi )] |1Ei£n_in,j? i}

By assuming the i™ input being independent of the other inputs, the sample mean and sample

where (108)

variance of subset Vi, are defined as:



Mk = Ak * Mg (109
) 109
si:sﬁ

Mik = mean(ﬁoweri (Vik))
where 5 _ A . (110)
s& = varlance(Poweri (v, ))
Sampling from the four subsets separately results in the smallest sampling variance, which

equals:

si=a Psix. (111)
0

o
k=
However, by dividing the input vectors into four subsets according to the transition of each
input each subset contain only 1 input vector. In other words, to get a sample of each subset is
equivalent to simulating all input vectors and this violates the goal of reducing the number of
simulated vectors. Therefore, we abandon this option of dividing the input vectors into four
subsets was abandoned. In stead, according to thé:POST and nonPOST, the input vectors can
be divided into two subsets only: Take case:0/123 in Table 12 as an example. Dividing the
input vectors with 0/123 POST/non-POST combination is to put the Vo alone and group the
Vi1, Vi2,Vis together. The sampling variance from the POST and the non-POST subset is:

s{ =Rsigt(R+P+R) iz (112)

2 2 2
<2 _ A6 S hD) + (s 5 + ) + Py(s 5+ k)
Gy
where 2 . (113)
_&RMi + P, +Pmig O

(R+P,+Py) o

Subtracting equation (112) with equation (111), the difference of the sample variance between
dividing the input vectors with the 0/123 POST combination and dividing them into four
subsets is expressed as

Rmi; + Py, + Psmia
Ds fo1125 = R(TH) + () + Py(ri) - (1m'1(;1 f;‘,z'fpjm'?’) . (114)

To get a clearer look at equation (113), equation (107) is substituted into it, and the mio, M1,
Mmi2, Miz are assumed to be equal to ¢ to further simplify the result, and then:

(RAL+PA, +PAS)
(R+R+R)

2 _ a2 2 2
Ds o123 = RAL + PA2 + BA3- (115)



It is very clear that the assumptions, Ds i20,123 becomes a function of the power sensitivities
of thei™ input and the transition probabilities of it. The sample variance difference for another
POST/nonPOST combination 01/23 can be derived similarly:

(RAG+RAL
(Po+R)

(RA, + PAs)
(R+R)

For all POST/Non-POST combinations, the one with the smallest sample variance difference

2 _ a2 2 2 2
Ds ioy23 = Ao+ RA1- +BA +BA3- (116)

is the one that has the smallest sample variance if the input vectors are divided according to it.
Here is an example of POST identification for a circuit with four inputs whose power
sengitivities and the transition probabilities are listed in Table 13.

Table 13: POST identification example

00 01 10 11
Ao Po A P. A P, As Ps
Inl 30 0.25 100 0.2 100 0.2 100 0.35
In2 10 0.15 20 04 20 0.4 10 0.05
In3 20 0.2 30 0.3 30 0.3 10 0.2
Ind4 10 0.25 150 0.25 60 0.25 40 0.25

Checking the sampling difference of each 'case-in Table 12, the sample variance differences

are listed in the following table:
Table 14: Sample variance differences derived from Table 13

Case POST | non-POST In1 In2 In3 Ind4

0/123 00 01,10,11 0 117.6 60 1716.7
1/023 01 00,10,11 842.2 244.6 4857 316.7
2/013 10 00,01,11 842.2 244.6 48.57 2716.7
3/012 11 00,01,10 753.9 202.1 15 2516.7
012/3 00,01,10 11 753.9 202.1 15 2516.7
013/2 00,01,11 10 842.2 244.6 48.57 2716.7
023/1 00,10,11 01 842.2 244.6 48.57 316.7
123/0 01,10,11 00 0 117.6 60 1716.7
023 00,01 10,11 5444 285.65 60 2500.0
02/13 00,10 01,11 5444 285.65 60 1825.0
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03/12 00,11 10,01 714.6 3.75 10 1125.0

12/03 01,10 00,11 714.6 3.75 10 1125.0
13/02 01,11 00,10 544.4 285.65 60 1825.0
23/01 10,11 00,01 544.4 285.65 60 2500.0

For Inl, although the 0/123 and 123/0 combinations both have the smallest sample variance
difference, the 123/0 is chosen because the average power consumption is higher when Inl is
makingaOto 1, 1toOor 1to 1 transition. Same ruleis used for picking the POST/nonPOST
combination 12/03 for In2 and 1/023 for In4.

4.4 Stratification with POST
With the POST of an input, say Inl, the origina population can be stratified into two

sub-populations according to the condition that the input is making a POST or not:

nVecs nVecs
non-POST POST

Ah

@ Power (b) Power

Figure 15: Stratification with POST
By assuming that the transition behavior and the power sensitivities of the other inputs are

independent of In1, Power(V;) and Power(V,) areredefined as:

ISOWGI' Nnon- POST) = AinLnon- posr t kNl) ) (117)

Power (Vposr) = A.post +K(V2), (118)

where k(V)=X'(V)A+b (119)
- x(v)= i [Tol( ,v),&(,id’\éﬂﬁz(i,v)], LeiEn_in2 Inl\'g | 120

Under the assumption that the transition behavior and the power sensitivities of the other
input are independent of Inl, the k(V1) and k(V,) are equal and will be designated as k for
short. Substituting equation (117) and (118) into (103), (104), (105) and (106) we get:

M = E| A non- post K|, (121)



St = El(A\nJ,non- post * k)ZJ' ﬁlz (122)
m = E|_A|nl,POSI' + kJ, (123)
and $3= E|_(A|nLPOSI' + k)zl' i (124)

Since the power sensitivities of Inl and In2 are measured constants, the above equations can

be smplified with some deductions and become:

M = A, non- post + E[K], (125)

s7 =€) ElF, (126)

= Arypost + ELK], (127)

and % =E|?)- E[kP. (128)
From equation (126) and (128), S/ can be found the same as S>. Therefore, they are

designated as s because they are equal to the variance of k as well. Replacing the 2 and

$Z2 in equation (102) with s ?,
0 + &Sk 9 n1+"'2)25'k2 (nm - nymy)°
é 5 Em s S hmenmP (ym -nom)?
Since m > m, equation (129) can be tightened by substituting the m of denominator of the

(129)

first term at right hand side with n3, then

2 2 2
sk 9 &Sk 9 Esi 9 (nym - npmy)°

gnl @ gmz @ gmzz (m +npmp)?
After some deductions and taking the square root of both sides, the following relationship is

obtained,

(130)

s, </ mnm- nm) |
(nm +nomy) |

By moving the s to the right, the gain of separating the population according to the POST of

(131)

an input is defined as,

Gain = |.m(mm - nomy) | 5, >0
| (rym +n,my) |

This is the one and only equation for checking two populations should be separated or not.

(132)

The rule of thumb observed from equation (132) is that, the more distant that m» away from m
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the larger the gain is, and vice versa. With this rule, a heuristic method of stratifying the input
vectors with POST is proposed.

Given the power sensitivities and the input statistics of a circuit, the input with the largest
positive gain is first selected for dividing the population into two sub-populations. In each
sub-population, the next input that has the largest positive gain is then selected for dividing

the sub-population. The procedure is repeated until no input with positive gain is available.

4.5 Integration with SPICE3

SPICE is a Smulation Program with Integrate Circuit Emphasis. It solvesthe combination of
KVL and KCL equations for the voltages of all nodes and the currents for some certain
branches. The loading functiors that translate each device into the KVL and KCL equatiorns
are listed in appendix B. In this section, the flow for the proposed power profiler will be
detailed. Before that, the flow of the transient anaysis that the proposed power profiler

mainly based on will be demonstratedas following.

45.1 Transient AnalysisFlow
To perform transient analysis, the-circuitis analyzed at some time points selected between the

starting point and the stopping point.-The basic flowchart of the transient analysisis shown in

Figure 17:
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Figure 16: Flowchart of transient analysisin SPICE

Operating Point Analysis

For the first time point, the initial conditions as well as the elements of the devices are loaded
into the matrix. After that, the KCL and KVL equations are solved to get the nodal voltages
and the branch currents of voltage sources and inductors. The ways of solving the matrix
include Gaussian Elimination and LU decompositions. Both methods are with the same order
of complexity. After matrix solving, the solutions are saved and another set of matrix loading
and matrix solving are performed for checking the convergence of the solutions. If the
solutions are within the tolerable range of the solutions of previous iteration, the new

solutions are considered & converged. Otherwise, another iteration of matrix loading and
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matrix solving is needed. Thisis called the Newton’s Iteration Method. It has a limitation that
the non-linear equations are monotonic functions around the initial guess. If the solutions do
not converge to some values with a limited number of iterations, the Newton Iteration Method
for operating point analysis is failed. In this circumstance, users have to check the initial

conditions or to tune the simulation options for improving the DC convergence.

Transient Analysis

After the DC operating point is obtained, the transient analysis begins with a heuristic time
step DT. The Newton Iteration Method is invoked to solve the new solutions of a new time
point in the transient analysis at Thew. Every time the Newton Iteration Method fails, the time
step is reduced to try to make the monotonic assumption stand. However, device models,
especialy the MOS models, are sometimes discontinuous if the model parameters are not
properly designed and extracted. Under that circumstance, there may be no convergence no
matter how small the time step is, and the DT check fails. An “internal time step too small”
error message will pop up from-the simulator, and the smulation halts. For most cases, a
convergent result by shrinking the DT and the transient analysis continues until the stop time

of the analysis is reached.

4.5.2 Automatic Power Profiler
Theflow chart of the power profiling system is depicted in the following figure:
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Figure 17: Flowchart of power profiler

4.6 Screen Shots

Here are some snagpshots of running the tools and the graph that the tool will report. The
power profiler takes normal SPICE netlist with some additional information including

1. A flag on the input voltage source that indicates it is a primary input.

2. Thesignal probability and the transition density of each primary input.

3. Option VDD for the definition of logic-1, (logic-0 is default grounded).

4. Option CLK for the definition of the period of aclock cycle.
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Option SLEW for the definition of the slew rate of the signal transitions.

Option MONTE for turning on and off the Monte Carlo convergence criterion.
Option BOOTSTRAP for turning on and off the Bootstrap convergence criterion.
Option STRAT for turning on and off the stratification flow.

After setting up the netlist with the additional information, a ssimple command that evokes the

power profiler as:

PowerPro  SPICE_NETLIST FILE

And the messages on the screen are depicted in Figure 18:

[£]-+ Shell - Konsole [=1[o][x]
Session Edit View Seftings Help

leon[13:301% powerpro ckt

IC

i PowerPro - written by Heng-Liang Huang Has

i Build date - 0405.30 09:23 EH

*%% Hostname: leon ( Linux 2.4.18-3 )
*%% Memory: 128M. Load: 0.07. 0¢.02. 0.00

##% Input fTile: ckt.sp

Operating Point Analysis:
iter: 16

Transient Analysis:

# PowerPro #: fnalysing 298.94ns of 310.00 ns
Restratified!

* PowerPro #: Analysing 320.00ns of  320.00ns
* PowerPro *: job done.

leon[13:311% I

Dres[[F]

Figure 18: Screen log of power profiler

There is aso a pop up window that plot the profile of the power consumption distribution

shown in Figure 19.
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Figure 19: Power profile from power profiler

In Figure 19 (@), the stratification flow is not turned on. Therefore, the profile obtained from
the profiler contains only one stratum. However, the power consumption distribution looks
more like a bimodal distribution as in Figure 19 (b). In Figure 19 (b), the proposed automatic
stratification flow has successfully stratified the population into two strata, and captured the
bimodal nature of the distribution by showing the distribution with two normal distributions

Separately.



4.7 Summary

In this chapter, a novel definition POST was proposed for defining the input transitions that
tend to induce higher power consumption. Furthermore, the POST is utilized for stratifying
the input sequence with unlimited length so that the average power within each stratum can be
accurately and efficiently estimated. This new dtratification method with POST was aso
implemented in the most accurate simulator SPICE. A fully automated flow for calculating
the profile of the power consumption distribution was also implemented.

Although we have put alot of effort in implementation, there are still some improvements that
can be done to make it more complete and solid. The power profiler at current stage targets
combinational circuit only because sequential circuits are not suitable for vector sampling due
to the high temporal correlation between the input vectors. Besides, PowerPro is implemented
for synchronous circuits because there is no clear definition of the power corresponding to

one input vector for asynchronous circuits.



5 Conclusion and Future Work

In this dissertation, the definition of power sensitivities was examined and proposed a method
of selecting the nominal points for measuring the power sensitivities to increase the accuracy
was prposed. With the knowledge of the meaning of power sensitivities, it is was utilized for
the stratification of input vector sampling for simulation based power estimation. The
Bootstrap Monte Carlo approached was proposed to improve the reliability of Monte Carlo
simulation by calculating the confidence interval more accurately with the Bootstrap
resampling technique. Since the power sensitivities measurement can be updated dynamically
when simulating the sampled input vectors, the dstratification process can be performed
repeatedly whenever the power sendgitivities are updated. Stratification with power
sengitivities sum of each input vector is good for reducing the sample variances, athough the
caculating and sorting of the power sensitivities sums of the input vectors may be too
complex when the input sequence Is very fong or.even infinite. Therefore, a novel definition
POST was proposed to cefine the transitions of inputs that tend to induce higher power
consumption of the circuit. A “heuristic stratification method based on POST was also
proposed to reduce the number of sampled.vectors required so that the power consumption
distribution can be accurately and efficiently plotted. Both stratification and power estimation
flow in this dissertation were implemented in the most accurate SPICE3 simulation engine
from Berkeley. Users can get a visual image of the distribution of the power consumptions by
specifying the primary input pins and their signal probabilities and transition densities. The
theories and algorithms that are used or proposed in this dissertation are all demonstrated in
the most practical and useful way through the implementation.

To sum up, power estimation is rather a measurement for further analysis than a number for
meeting the specification. Here are some extensions that can be done on the platform of this

dissertation.

Worst Case Sequence Generation

67



The worst case power consumption can be determined by finding one and only one input
vector whichinduces the largest power consumption. However, defining the worst case power
consumption with only one input vector could be too pessimistic and lost the generality. After
stratifying the population with POST, the sub-population that expected to have the largest
power consumption can be easily identified. It can aso be used for the identification of the
worst case operating mode of the circuit. A worst case input sequence will be able to be

generated from the sub-population as well.

Reliability Analysis

Electromigration rules limit the average current densities that are allowed to flow in the metal
segments in different layers. With the estimated power consumption, designers can check the
electromigration rules for each metal segment. By changing the measurement scheme from
power dissipation to sub-circuit port currents, the full chip IR drop analysis can also be

implemented on the platform proposed inthis dissertation.

Full Chip Temperature Profiling

With the estimated power dissipation of the sub-circuits, the temperature profile can be
obtained by analyzing the positions. of.the heat sources and the efficiencies of the heat
conduction paths. The spot that has potential heat problem can be identified for designer to

rearrange the placement around hot spot.
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