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中文摘要 

隨著半導體製程的進步, 半導體線路中的金屬導線越來越細, 導線與導線之間的距離

也越來越近, 這樣的現象使得散熱問題不得不為線路設計者所重視。更有甚者, 積體電

路的工作頻率也不斷的向上升高, 同樣也使得線路中因功率消耗所轉換的熱能難以宣

洩。線路溫度的提高最直接的結果就是晶片冒煙燒毀。但是在燒毀之前它也可能因為導

線在高溫下長期使用而斷裂, 或者是電阻值在高溫下增大到電路功能失常。這些現象都

顯示了線路設計者在生產前做好功率估測的重要性。 

然而功率估測的方式有很多種, 比如, 估計電池耐久時間時要計算能量消耗, 分析溫

度變化要測量功率消耗, 評估導線寬度要測量平均電流, 而導線可靠度分析則需要電

流密度的平均值及方均根值等等。雖然這些測量值都有明確的定義及適用場合, 但是卻

都會遇到一個相同的問題就是: 功率估測值是和輸入訊號有關的, 但是線路設計者卻

通常無法想像出一個具有代表性的輸入訊號來進行功率估測。 

針對這個問題, 本篇論文提出了一個結合了最準確的線路模擬-SPICE的全自動解決方

法。首先本論文先分析了輸入訊號的統計值的特性以及這些特性和功率消耗之間的關

係。我們證實了每個不同的輸入訊號應該用不同的功率靈敏度。而且我們發現這種功率

靈敏度應該根據不同的輸入訊號統計值組合來測量才會有較好的精準度。經由這樣的發

現, 運用在已知輸入訊號序列的情況下, 我們可以利用功率靈敏度來當做功率消耗的

指標, 進而對輸入訊號序列進行分組的動作。因為在已分組的輸入訊號序列做取樣模擬, 

不但可以大幅縮短模擬全部輸入訊號序列可能需要的冗長時間, 還可以避免因為取樣

時的樣本失真而造成的誤差。除了已知輸入訊號序列的功率估測外, 本論文還將它延伸

到未知輸入訊號序列的功率估測。由於未知輸入訊號序列的功率分佈範圍廣泛, 將功率

分佈的情況以長條統計圖的方式顯示出來是最不失真的方式。但是因為未知輸入訊號序

列的輸入組合幾乎有無限多種, 所以如何有效的對輸入訊號組合分類及取樣就更形重

要。 

本論文所提出的自動化功率分佈圖化器可以針對無限長的輸入訊號來進行輸入訊號組

合的分類及取樣。並且和線路模擬器SPICE完整結合, 只要給定一個電路及其輸入端的

定義, 本論文提出的圖化器就可以利用線路模擬器的部份模擬結果進行全自動的功率

靈敏度分析來做為輸入訊號組合的分類及取樣的參考, 以期能以最短的時間模擬最少

的輸入訊號組合, 求得該線路的功率消耗分佈並以數據及圖像方式表現。 
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Abstract 

As the semiconductor technology getting advances, the density of the devices and the metal 

lines are growing too large to keep the heat conduction problem unnoticed. Furthermore, the 

heat generated by the circuits is boosted with the ramping of the operating speed. Improper 

heat conduction can lead to the smoking of the chip, torturing or breaking of the metal lines, 

or shifting of the performance. All these problems can be prevented by the power 

consumption estimation and optimization before taping out the chip. 

There are many ways of estimating power corresponding to different purposes. For example, 

energy consumption must be evaluated for battery endurance, the power consumption is 

needed for temperature analysis, and the average current must be estimated for wire width 

design, and the current density for reliability analysis. Although these measurements are all 

clearly defined, but they have a common problem that they are input signal dependent. 

To do the power analysis without lost of generality, an automatic power profiler integrated 

with the most accurate circuit simulator – SPICE is proposed. With the power profiler, users 

can get a visual figure of the power consumption distribution instead of numbers with 

uncertainties. 

In this dissertation, the relation between input statistics and the power consumption of the 

integrated circuits is first analyzed. The power sensitivities of inputs are proven to be effective 

provided the nominal points are selected properly. With this knowledge, the power sensitivity 

sum of each input can be used to indicate the power consumption tendency of the input 

vectors, and to stratify the input vectors with. After the stratification, the sample variance can 

be reduced when simulating the input vectors selectively. In addition, stratification with 

power sensitivity is found to be able to prevent the pre-matured samples when estimating the 

average power consumption with Monte Carlo method. Besides, a new way of stratification 

that is suitable for stratifying infinitely long input sequences based on POST is also proposed. 

By putting these findings together, the SPICE circuit simulator is modified to be a tool that 

can visualize the distribution of the power consumption according to the user specified input 

statistics or input sequences. 
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1  Introduction 

As the semiconductor technology getting advances, the density of the devices and the metal 

lines are growing too large to keep the heat conduction problem unnoticed. Furthermore, the 

heat generated by the circuit is boosted with the ramping of the operating speed. Improper 

heat conduction can lead to the smoking of the chip, torturing or breaking of the metal lines, 

or shifting of the performance. All these problems can be prevented by the power 

consumption estimation and optimization before taping out the chip. Before discussing how 

the power estimation can be done, the physics of electromigration will be introduced to see 

what measurements are demanded when doing power estimations. 

 

1.1  Electromigration 
Electromigration failure is caused by the mass transport of a metal. The force on an atom of 

the metal is the combination of the Fscatter by the momentum transferred from the free 

electrons speeding in the metal, and the force from electric field Ffield: 

 

Figure 1: Forces on an atom of metal 

 

 EFFF *qZfieldscattertotal ≅+= . (1) 

The qZ* is called the effective charge of the atom and is usually negative due to the 

dominance of the Fscatter. By the Einstein’s relation (Appendix A), the mobility of the atom is: 

 Tk
DqZ

⋅
=

*

µ . (2) 

The drift velocity of the metal atom is: 

 J
Tk
DqZ

vd ⋅⋅
⋅

=⋅= ρµ
*

E , (3) 

Fscatter Metal Atom 

Ffield  

E 
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where the resistivity of the metal ρ, the density of the current flowing in the metal J, and the 

diffusion coefficient D is generally given by the Arrhenius relation[16]:  

 kT
Ea

eDD
−

⋅= 0 , (4) 

where D0 is the diffusion coefficient and Ea is the activation energy depending on the 

structure and the material of the metal. It is about 0.6eV for aluminum, and 0.9eV for 

aluminum alloyed with 0.2% copper. The time required by the lattice atoms to migrate a 

certain length to cause a failure on the metal line is thus proportional to the reciprocal of vd: 

 kT
Ea

eJ
DqZ

Tk
Time ⋅⋅

⋅
⋅

∝ −1

0
* ρ . (5) 

Equation (5) is generalized by Jim Black experimentally into equation (6) as the Black’s 

equation defining the Mean Time to Failure (MTF) [13]: 

 kT
E

n
a

eAJMTF −= , (6) 

where A is a constant depending on the process and the metal material, and n can be obtained 

by filtering the experimental results, normally around 1 to 2. With a given process, equation 

(6) gives a direct estimation of the endurance of a metal wire as a function of the current 

density flowing through and the working temperature of it. Experiments conducted by other 

researchers found that the MTF is better estimated with the average current density, Javg, then 

RMS current density [17]. 

 

1.2  Heat Conductance 
There are three ways of heat transfer - conduction, convection and radiation. Since an 

integrated circuit is usually sealed in a hermetic package, the heat of the chip is mainly 

transferred through the conduction. The variables for thermal conduction are defined similarly 

to the electrical conduction variable s: 

Table 1: Electrical variables vs. thermal variables 

 Electrical Conduction Thermal Conduction 

Name Symbol (Unit) Symbol Symbol(Unit) 

Voltage/Temperature V (Volt) T (oK) 



 3 

Charge/Heat Q (Coulomb) H (Joule) 

Current/Power I Q/t=(Ampere) P H/t=(Watts) 

Resistance R V/I=(Ohms) RT T/P=(oK/Watt) 

Conductivity σ (1/Ohms m) κ (Watt o/K m) 

 

The electrical conductivity is defined in equation (7). We rewrite it with the variables in Table  

1 as the coefficient between current per unit area and the gradient of voltage: 

 dxdV
AI

/
/−

=σ  (7) 

The thermal conductivity is defined as the coefficient between the heat loss rate per unit area 

and the gradient of temperature: 

 dxdT
AP

/
/−

=κ  (8) 

There is a relation between the thermal conductivity and electrical conductivity called 

Wiedemann-Franz Law [14], that defines the Lorenz number L as: 

 2

22

3e
k

T
π

σ
κ

==L , (9) 

where k is the Boltzmann’s constant, and e is the charge of an electron. Wiedemann-Franz 

Law shows a constant relation between the thermal conductivity and the product of electrical 

conductivity and the temperature. 

The working temperature of a metal interconnect depends on how much heat being generated 

and the heat conductivity of the ambiance that are thermally connected to it. There are two 

different packaging schemes that induce different heat conduction paths. They are wire-bond 

packaging and flip-chip packaging: 
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Figure 2: Flip-chip package and wire-bond packaging 

For Wire-Bond packaging, the heat in the metal layers can only be conducted through the 

substrate which has much larger thermal conductivity than the air. Therefore, the temperature 

of the metal layers is usually several tens of degrees higher than the substrate. On the other 

hand, for the flip-chip packaging, the heat in the metal layers can be conducted through the 

encapsulant, and the heat of the substrate can also be conducted efficiently by external heat 

sink since both sides of the chip are attachable. Either way, the temperature is usually higher 

in the metal layer than in the substrate. The wire temperature is analyzed based on this 

assumption that the substrate temperature is constant in a confined local area [5][6][7][8][9], 

from which the analysis of wire temperature is digested and discussed in the following 

section. 

1.3  Wire Temperature 
Currents flowing through the metal will generate heat due to the collision of free carriers. The 

average power dissipated of the wire resistance Rwire is defined as: 

 wirerms

T

wirewire RIdtRtI
T

P 2

0

2 )(
1

== ∫  (10) 

The dissipated power will heat the wire itself and put the wire under the risk of 

electromigration, or resistitivity increase. 

Ceramic 

Flip-Chip Packaging 

Wire-Bond Packaging 

Fillet 
Metal Layer 

Encapsulant 

Soldier ball 

Golden Wire 
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Figure 3: Cross-section of the metal line along the wire length 

Figure 3 depicts a metal line with thickness tm, width W and length L, lying on the oxide with 

thickness tox and connecting to the substrate with vias at both end of the line. The temperature 

of the wire at position x can be derived by the first law of the thermal dynamics based on 

energy conservation: 

 ( ) ( ) subwire PdxxPPxP ++=+ , (11) 

where P(x) and P(x+dx) are the heat conduction rates along the metal at position x and x+dx 

respectively. Psub is the heat conduction rate from the wire to the substrate through the oxide. 

By applying equation (8) and equation (11): 

 ( ) ( ) ( ) ( ) ( ) ( )
Wdx

t
xTxT

TdxxP
A

dxx
IxP

ox

ref
oxrms

−
−+=+ κ

ρ2
, (12) 

where Tref(x) is the temperature of the substrate at position x. By moving P(x) and P(x+dx) to 

one side and the rest to the other side, and applying equation (8): 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

dx
dx

xdT
TAd

dx
xdP

W
t

xTxT
T

A
xI m

ox

ref
ox

rms






−

==
−

+
κ

κ
ρ2

 (13) 

To simplify the analysis, the thermal conductivities κox and κm are assumed to be independent 

of T, because it is proportional T/ρ, where ρ increases approximately linearly with the 

temperature growth. 

 
( ) ( ) ( ) ( )

2

22

dx
xTd

AW
t

xTxT
A

xI
m

ox

ref
ox

rms κκ
ρ

−=
−

+  (14) 

Dividing both side with A and move all terms to the left hand side, we get: 

Metal 

Oxide 

Substrate 

L 
x 

x  x+dx 0 
P(x+dx) P(x) 

Psub 

Pwire 
W 

tm 

tox 
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( ) ( ) ( ) ( )

02
2

2
=

−
++

oxm

ref
oxrmsm tt

xTxT
xJ

dx
xTd

κρκ . (15) 

By expanding ρ(x) with the resistivity equation in Appendix A around Tref(x): 

 
( ) ( ) ( )( )[ ] ( ) ( )

012
2

2
=

−
+−++

oxm

ref
oxrefrefrefrmsm tt

xTxT
xTxTJ

dx
xTd

καρκ  (16) 

After some arrangements, we have: 

 
( ) ( ) ( ) θλλ −−= xTxT

dx

xTd
ref

22
2

2

, (17) 

where 







−= refrefrms

oxm

ox

m
J

tt
αρ

κ
κ

λ 22 1
 (18) 

and 
m

refrmsJ
κ

ρ
θ

2

= . (19) 

For short local wires, the substrate temperature Tref(x) can be assumed to be a constant Tref. 

With this assumption, the ordinary differential equation can be solved by Laplace transform 

with the boundary conditions that T(0) = T(L) = T REF to get the working temperature of the 

wire at position x as: 

 
( )







 +−

−+=
L

xxL
TxT ref λ

λλ
λ
θ

sinh
sinhsinh

1)( 2 . (20) 

The plot of equation (20) is depicted in Figure 4 with the bold line: 

 

Figure 4: Temperature profile of the metal line 

From Figure 4, the working temperature of the metal line can be found to have the maximum 

value at the position of L/2, and it equals: 














−

+=









−

+=+=

ref
refrmsoxm

ox
ref

refrefrms
oxm

ox

refrms
refref

Jtt

T
J

tt

J
TTLT

α
ρ

καρκ

ρ

λ
θ

2

2

2

2
1

)2/( .(21) 
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Tref 
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Surprisingly, the maximum working temperature of the metal is independent of the thermal 

conductivity κm of the metal. It also clearly stated that the maximum wire temperature is built 

upon the temperature of the substrate. 

 

1.4  Current Density Limit 
The reasonable working temperature should be undoubtedly smaller than the melting points of 

the metals that are listed in the following table [15], in which, the resistivities ρ REF and the 

associated temperature coefficients α  REF are measured with T REF equals 20oC. 

Table 2: Properties of selected metals 

Material Tmelt (oC) Tmelt (oF) ρref(Ω-m) αref(oC-1) 

Lead (Pb) 328 622 20.65×10-8 4.2×10-3 

Zinc (Zn) 420 788 5.68×10-8 4.2×10-3 

Aluminum (Al) 660 1221 2.65×10-8 4.2×10-3 

Sliver (Ag) 962 1763 1.59×10-8 4.1×10-3 

Gold (Au) 1064 1947 2.44×10-8 4.0×10-3 

Copper (Cu) 1083 1981 1.673×10-8 4.3×10-3 

Platinum (Pt) 1768 3215 10.62×10-8 3.0×10-3 

Tungsten (W) 3422 6192 5.6×10-8 4.8×10-3 

By limiting the maximum temperature with the melting point Tmelt, equation (21) can be 

translated into: 

 melt

ref
refrmsoxm

ox
ref T

Jtt

T ≤














−

+

α
ρ

κ
2

1
. (22) 

After some deduction, we can get the limit of the Jrms from equation (22) can be expressed as: 

 
( )

meltoxm

refmeltox

ref
refmelt

refoxm

ox
rms tt

TT

TT
tt

J
ρ

κ

αρ

κ −
=











+

−

≤
1

2
. (23) 

Consider an aluminum segment routed above the field oxide on a substrate with 20oC 

temperature. The field oxide thickness tox is normally about 500nm and decreases with the 

process advancing. The thickness of metal not only varies with the technology but also varies 
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with the layer number. For example, tm ranges from 0.3um to 0.9um for metal 1 to metal 7 for 

TSMC 0.13um process [11]. The thermal conductivity κox and the substrate temperature T REF 

can be generalized to the thermal conductivity from the wire segment to its closest neighbor 

layer, and the temperature of the  neighbor layer. Since the above equations are derived on the 

basis of metal 1, the thermal conductivity κox is typically 1.3 (W/moK) for the silicon dioxide. 

For aluminum, the temperature should be smaller than its melting point 660oC. Therefore, the 

maximum root-mean-square current density is: 

 
20

3866

2 1067.5
102.4

20660
11065.2105.0103.0

3.1
×=







 ×+

−
×××××

≤
−−−−

rmsJ (A/m2). (24) 

1.5  Substrate Temperature 
The substrate temperature depends on the temperatures and the thermal conductivities of the 

materials that are thermally connected with the substrate. The substrate temperature Tsub can 

be expressed as: 

 ChipArea
essChipThickn

PowerDissipatedTT
package

roomsub ×
×+=

κ , (25) 

where the κpackage is the equivalent thermal conductivity from the chip through the package to 

the outer world. For a cubic in the substrate, the heat transfer diagram is shown in Figure 5: 

 

Figure 5: Heat flows of a cubic in the substrate 

Pgen is the power dissipation of the cubic, and 

 ( ) ( )
dzdy

dx
zyxdT

zyxP sub
x ××−=

,,
,, κ , (26) 

dx  

dy  

Py(x,y+dy,z)

Px(x+dx,y,z) 

Pgen 

dz 

Pz(x,y,z) 

Px(x,y,z) 

Py(x,y,z) 

Pz(x,y,z+dz) 
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 ( ) ( )
dzdx

dy
zyxdT

zyxP sub
y ××−=

,,
,, κ , (27) 

 ( ) ( )
dydx

dz
zyxdT

zyxP sub
z ××−=

,,
,, κ . (28) 

With the first law of thermal dynamic, the net rate of energy flowing into the cubic plus the 

generation rate of the heat sources: 

 
0),,(),,(

),,(),,(
),,(),,(

=++−+

+−+
+−

genzz

yy

xx

PdzzyxPzyxP

zdyyxPzyxP
zydxxPzyxP

. (29) 

Dividing both side with dx, dy and dz, we get: 

 0),,(
),,(),,(),,(
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
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
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



∂
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∂

∂
+

∂
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zyxPD
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zyxT
y

zyxT
x

zyxT
genκ . (30) 

where PDgen is the power density of the heat source. Equation (30) can be more elegant after 

introducing the Laplace operator ∇: 

 0),,(),,(2 =+∇ zyxPDzyxT genκ . (31) 

Equation (31) shows that, given the power density function PDgen and the boundary 

conditions of the chip, the temperature function can be derived. The boundary conditions for 

equation (31) are modeled as the Dirichlet condition for the bottom surface, and the  Neumann 

condition for the other five faces [3], where the Dirichlet condition defines a constant 

temperature, and the Neumann condition defines a constant heat flux. 

However, due to the enormous number of heat sources, the numerical method to solve the 

exact temperature solution is too expensive to take. Not to mention that the hardness of 

specifying the boundary conditions. Therefore, the substrate temperature needs to be solved in 

a different abstract of circuit level: 

Table 3: Levels of abstract 

Level of Abstract Number of Heat Sources  PDgen × tbulk 

Chip Level 1 Chip Power / Chip Area 

Sub-Circuit Level Number of sub-circuits Sub-circuit Power / Sub-circuit Area 

Gate Level Number of gate  Gate Power / Gate Area 
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Device Level Number of devices Device Power / Device Area 

Sub-device Level Number of heat sources Heat source / Heat source Area 

Equation (25) is the simplest way to solve the substrate temperature of chip level that treats 

the chip as with single uniform heat source and is based on the assumption of zero heat flux 

for the Neumann conditions. However, equation (25) is too simple to model the temperature 

gradient due to different transition activity of the sub-circuits. Gate level thermal analysis is 

performed in [4], and has an error within several degrees comparing to the device level. In 

addition to the zero heat flux Neumann conditions, equation (31) is solved under the  

assumption that the bulk is infinitely large comparing with the area of a gate or a sub-circuit. 

For a sub-circuit with dimensions of a×b×c centered at the origin, the steady state temperature 

rise ∆T at the observation point (x,y,z) can be defined as: 

 ( ) ( ) ( ) ( ) ττττ
τ

dczGbyGaxG
cd

PD
tzyxT

t

p

gen ,,,,,,,,,
0∫ =×

=∆ . (32) 
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
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−
−

+




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
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

−
+

=
)(2

2/
)(2
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2
1

,,
τγτγ

τ
t

mn
erf

t
mn

erfnmG , (33) 

The γ is the thermal diffusivity defined as 

 
pcd ×

=
κ

γ , (34) 

where d is the density of the material, and cp is the specific heat of the material. 

The temperature profile for the z=0 plan induced by a 6×10 sub-circuit heat source is depicted 

in the following figure: 
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Figure 6: Temperature distribution 

 

For a chip with n heat sources, the temperature rise of an observation point at position (x,y,z) 

can be obtained by summing up the temperature rises due to the n heat sources: 

 ( ) ( )tzyxTtzyxT i

n

i

,,,,,,
1

∆=∆ ∑
=

. (35) 

From equation (35) and equation (32), to derive the substrate temperature, the only unknown 

parameter is the PDgen of each heat sources. Therefore, this chapter can be concluded with the 

following remarks. 

Remark 1: 

The mean time to failure MTF of a wire is a function of the average current density Javg 

and the wire temperature Twire. 

Remark 2: 

The wire temperate Twire is a function of the mean-square current density Jrms and the 

substrate temperature Tsub. 

Remark 3: 

The substrate temperature Tsub is a function of the heat generation rate (or the power 

dissipation density) PDgen and the room temperature. 
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To sum up, reliability analysis of an integrated circuit needs three elements: Average wire 

current density Javg, root-mean-square wire current density Jrms, and average sub-circuit power 

dissipation density PDgen. A common property for these three parameters is that they are all 

the average values of something. Therefore, in this dissertation, the focus will be placed on 

the estimation and derivation of the average power consumption. The methods for measuring 

the power dissipation densities and current densities with simulators are detailed in the 

appendix. 

In the following sections, the power estimation techniques proposed by other researchers will 

be re-examined. Power estimation techniques can be categorized as the probability based, and 

the simulation based, according to the utilization of simulator or not. These two categories are 

briefed in separated sections for the easiness of references. 

 

1.6  Probability Based Method [25]~[77]  
Probability based techniques can be categorized into some different levels. Some of them that 

utilize the entropy [25]~[30] are good for high- level power estimation and modeling because 

they are operated in the information level which is independent of the wire loading, transistor 

sizes, gate types or even structure independent. Going down to the gate level, most of them 

are estimating the signal transition probabilities because it is well known that CMOS circuit 

power consumption are dominated by the charging and discharging of load capacitances and 

the short circuit currents[1][12][10]. Early state gate level power estimation assumes that the 

primary inputs are spatially and temporally independent and the gates are with zero delay 

[31][32][33][48][54][58] and is focused on the combinational circuits. Some works extend the 

coverage to sequential circuits [34][35][36][65]. These techniques utilize the BDD (Binary 

Decision Diagram) for the switching activity estimation. The complexity grows exponentially 

with the increasing of number of primary inputs. 

To reduce the complexity of BDD operation for switching activity estimation, the FDD (Free 

Decision Diagram) is proposed in [37] that constructs the BDD with additional AND and 

XOR nodes to reduce the complexity to polynomial time. In [38], the Boolean expressions of 

the switching activities are approximated by dropping some higher order terms. In [66] and 

[67], the authors proposed topological ways of building the BDD locally so that the number of 

levels in the BDD can be limited as well.  



 13 

The spatial correlations are included for switching activity estimation in [39][50][55][59]. 

However, the complexity cost for including spatial correlation is too high to be adopted, so 

researchers turn to the temporal correlation for increasing the accuracy. The idea of transition 

density is proposed in [44]. It models the lag-1 temporal correlation with the density of an 

input that is making a 0 to 1 or 1 to 0 transition. It is suitable for modeling most combination 

circuits that are memoryless. Basing on the input probability and input transition density, a 

series of researches are conducted to study the sensitivity of the power consumption to the 

input probabilities and input transition densities [71]~[77]. Power sensitivities are defined as 

the sensitivity of the power consumption to the changes of the input probabilities and 

transition densities in [72][73][75]. It can be measured by selecting a nominal combination of 

the input probabilities and transition densities, and then altering one of the input probabilities 

or transition densities to see how power consumption will change accordingly. Power 

sensitivities are used not only for power estimation [74], but also for estimating maximum 

power [76] and building power model [77]. Based on the effectiveness of power sensitivity 

can be improved by carefully selecting the nominal points and proposed a new method of 

selecting the nominal point for measuring the power sensitivities is proposed. 

In addition to the power sensitivities, more researches are developed after the definition of 

transition density. Many works have used it for the derivation of the switching activities 

[45][46]. Some others generalized the definition by giving the probability of 0 to 1 and 1 to 0 

transitions different variable names called the transition probability and evaluate the transition 

probabilities through probability waveform simulation [40][42][52][57][60][69][70]. 

Although separating the transition densities into transition probabilities can model the signal 

characteristics more accurately, the complexity grows even higher, and researchers have been 

working harder finding a way out. However, using real gate delays, dealing with complex 

gates and the availability of input correlations are all other tough challenges for probability 

base approaches to solve. But these are no problems with the simulation techniques because 

the ability of solving the temporal and spatial correlations between the nodes in a circuit is 

what the simulators born with. 
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1.7  Simulation Based Methods[78]~[108] 
Simulation based techniques utilize simulators for power estimation. Since the estimated 

values are obtained by simulating the circuit, the shortage of probability based techniques are 

overcome naturally provided the models used for simulation are accurate. The objective of 

simulation based techniques is to reduce the simulation time required to get the estimation 

done.  

A direct way of reducing the time needed for simulation is to raise the level of simulation 

since the complexity of higher level abstract is lower. In [91], Gate level simulation is 

modified to incorporate the loading information so that the amount of switched capacitance 

can be simulated to mimic the power consumption. The authors of [94] further simplify the 

method by observing some primitive nodes instead of watching all of them. The approach that 

estimates the power between RTL level and gate level is proposed in [93]. These approaches 

that are built with the high level simulation are limited to the cases that high level netlist and 

the power simulation models are available. 

Another approach is to regenerate a new input sequence that has the similar average power as 

that of the original input sequence. Some characteristics of the original sequence are chosen to 

be preserved while regenerating the shorter one including preserving the pattern transition 

probabilities [78][79], preserving the significant correlations between the clustered inputs [80], 

preserving the toggling behavior of the internal nodes [85], and preserving the 

spatial- temporal correlations for all inputs [104][105][106][108]. Regenerating a compact 

input sequence is good when the CPU time for estimating power is limited because it can 

regenerate the new input sequence with any length. Nevertheless, there is no error control 

scheme available for the regenerating process. In other words, there is no guarantee for the 

accuracy of the regenerated sequence. 

The Monte Carlo approach for power estimation is proposed in [96]~[100]. The method 

estimates the average power by sampling the input vectors with certain length l from the 

original sequence and fed them into the simulator to derive a sample value of the average 

power. The average power consumption can be estimated with the average of several sample 

values. From Central Limit Theorem (CLT), the sample values can be presumed as a Normal 

distribut ion when l approaches infinity. The probability that the estimated mean is within a 

certain error range of the real mean can also be derived under the assumption. The problem of 
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how to derive the required l for preserving the normality of x is left open, and the Bootstrap 

Monte Carlo to is introduced in this dissertation for solving this issue. 

Sampling techniques can be further optimized through stratification of the population. Proper 

stratification of the population can reduce the sample variance and thus the number of 

sampled input vectors. To stratify the input vectors, various indicator functions are used for 

indicating the possible value of the power consumption corresponding to each input vector. In 

[92], the transition of primary inputs, primary outputs, latches and selective internal nodes are 

used as the indicator function. In [102][103][107], the zero delay gate level simulation 

switching condition is  shown to be highly correlated with the transistor level simulated power, 

and thus is a good indicator. 

 

1.8  Dissertation Outline 
In this dissertation, the relation between input statistics and the power consumption of the 

integrated circuits is analyzed. The power sensitivities of inputs are proven to be effective 

provided the nominal points are selected properly in chapter 2 . 

In chapter 3 , the power sensitivities sum of each input is used to indicate the power 

consumption tendency of the input vectors, and to stratify the input vectors with. After the 

stratification, the sample variance can be reduced when simulating the input vectors 

selectively. In addition, stratification with power sensitivity is found to be able to prevent the 

pre-matured estimation when estimating the average power consumption with Monte Carlo 

method. By introducing the Bootstrap resampling method to prevent the possible normality 

defect of Monte Carlo method, a sampling technique designated as Bootstrap Monte Carlo 

method with adaptive stratification is also proposed to provide a fast and accurate way for 

power estimation. 

In chapter 4, a new way of stratification that is suitable for stratifying infinite length input 

sequences is proposed based on POST. Putting these findings together, the SPICE circuit 

simulator is modified to be a tool that can visualize the distribution of the power consumption 

according to the user specified input statistics or input sequences. 

In chapter 5, this dissertation will be concluded by discussing the applications and limitations, 

and some possible extensions of this dissertation will be pointed out. 
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2  Study of Power Sensitivity 

As discussed in the previous chapter, the substrate power is dissipated in the resistive devices 

when there are currents flowing. In digital CMOS circuits, the major current flows occur 

when the logic values are changing. When the output of a logic gate is changing from 0 to 1, 

the loading capacitor at the output will be charged and the power is dissipated in the charging 

network and some energy will be stored in the capacitor. The stored energy will be dissipated 

when the logic value is changing from 1 to 0 and the capacitor gets discharged. Analyzing the 

switching activities of the nodes in a circuit is appropriate for calculating steady state power 

consumption instead of simulating the circuit for an infinite length of time. However, the 

complexity of calculating the transition probability for each node grows exponentially with 

the size of a circuit. 

Regression method had been used to construct a high level power model as a function of 

weighted input and output transitions in [83] and [101]. It is a good and fast estimation for 

randomly generated input signals, i.e., both the signal probabilities and the transition densities 

are around 0.5. However, cases with highly biased input probabilities could make the 

estimation of power far from accuracy. 

  In [63], the power consumption of a circuit is modeled as a function of the mean values of 

input signal probabilities, input transition densities and output transition densities. A power 

lookup table is built and indexed with those three values. Good accuracy can be obtained 

when the three values of the circuit under estimation are close to the pre-selected indices and 

the variances of the signal probability and the transition density are small. However, the 

output transition densities can not be calculated easily from the input statistics. Therefore, to 

explore the output density space requires simulating a tremendous amount of combinations of 

the input probabilities and the transition densities. It is very time consuming. 

  The concept of power sensitivity first proposed in [72], in which power is modeled as the 

sum of weighted uncertainties of the input signal probabilities and the transition densities plus 

the power at a nominal point. The weights of those uncertainties are called the power 

sensitivities. A Statistical Technique to Estimate Power Sensitivity abbreviated to STEPS [72] 

was proposed to determine power sensitivities. Another Symbolic Technique to Obtain Power 
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Sensitivities named STOPS [77] expresses the signal probability and the transition density of 

each node symbolically to determine the power sensitivities. The estimated power based on 

this kind of methods strongly depends on the selected nominal points. However, it is difficult 

to select the nominal points. The authors in [72][77] randomly selected some points but did 

not evaluate the accuracy of their models. 

In this chapter, the correlation between power consumption and power sensitivities will be 

examined, and a new method of nominal point selection for measuring power sensitivities will 

be proposed. In addition, the importance of a good nominal point to the accuracy of the power 

sensitivities will also be demonstrated. 

 

2.1  Terminologies 
Signal Probability p 

  A digital signal at node x, x(t), is either 1 or 0 if the rise/fall time and over/under shoots are 

neglected [13]. The expected value of a signal to be 1 in a clock cycle with a period T can be 

defined as 

 ∫−→∞
=

2/

2/
)(

1
lim

T

TTx dttx
T

p  (36) 

where px is the equilibrium probability of x(t) or the signal probability of node x. 

Transition Density d 

Four types of transition that a signal can make between two consecutive periods are 00, 01, 10 

and 11. The transition density of x(t) is defined as 
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d x
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→∞

=  (37) 

where nx(T) is the number of 01 and 10 transitions of x(t) in the time interval (-T/2, +T/2) 

[13].  

2.2  Relation Between p and d 
Intuitively, the 01 and 10 transition probabilities are defined as  
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where nx01(T) and nx10(T) are the number of 01 and 10 transitions of x(t) in the time interval 

(-T/2, +T/2), respectively. Note that a digital circuit always makes a 10/01 transition at some 

time after a 01/10 transition. When T approaches infinity, the transition probabilities of 01 and 

10 will converge to the same value. With the above definitions, four transition probabilities 

are derived and expressed as, 
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, (39) 

where { }1 ,0,   ,10 ∈∀≤≤ jipij
x . A relationship between px and dx is derived [63] as, 

 2
1

2
x

x
x d

p
d

−≤≤ . (40) 

The transition probabilities are a general form of px and dx , therefore transition probabilities 

look better in equations. But equilibrium probability and transition density are more suitable 

for analyzing than transition probabilities, since the transition probabilities are not mutually 

independent. The valid combinations of (px, dx) form a triangle as shown in Figure 7. The 

three boundary lines dx≥0, px-dx/2≥0 and 1-px-dx/2≥0 are induced by the fact that a probability 

should be no less than zero. The three corners of the triangle are (0,0), (1,0) and (0.5,1). 
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Figure 7: Relationship between px and dx 

2.3  Power Sensitivity 
  For an n-input CMOS circuit, the logic value of the ith input node at time T is denoted as bi

T. 

The input pattern at time T can be expressed as the transpose of [b0
T b1

T …  bn-1
T]. The input 

pattern transition of two consecutive clock periods is denoted as V0VT,  
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The average power consumption Poweravg of a CMOS circuit can be expressed as 

 ∑
∀
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 (42) 

where Pr(V0VT) is the probability of the input pattern transits from V0 to VT, and Power(V0VT) 

is the corresponding power consumption. To build a power consumption model with equation 

(42) needs to build a table of all the Power(V0VT) which is absolutely infeasible for an IP 

block with a number of inputs larger than 32 at present.  

Assume that the transitions of different inputs are independent, the Pr(V0VT) will be equal to 

the product of the independent input transition probabilities. 
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where 
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is the probability that the logic value of the ith node being bi
0 in the beginning and 

bi
T at time T. Let S be a matrix of input transition probabilities or a matrix of input 

probabilities and transition densities, 
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Replace the transition probabilities in Equation (43) with input statistic matrix S, and apply 

Taylor's expansion to equation (43) around a nominal input statistic matrix Snom , the average 

power consumption of S equals, 
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_−=∆ , and Snom  is a set of nominal input statistics. 
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Consider the first order approximation of equation (45), which can be expressed as 
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The partial derivative is the changing rate of the power consumption due to the change of one 

input transition probability, it is called power sensitivity in [72][77]. 

  The values of the partial derivatives can be estimated with a statistical method STEPS [72]. 

STEPS is  a Monte Carlo  based approach that simulates a circuit with randomly generated 

patterns to get samples of input power sensitivities until the mean value of those samples 

converges. Another method STOPS [77] for estimating power sensitivities requires 

topological partitioning to reduce its enormous complexity. 

  Since the efficiency of measuring power sensitivities is not a point here, a straightforward 

method is adopted for measuring them. The circuit is first simulated with the nominal input 

statistics Snom .  A small variation is then assigned to one of the transition probabilities of an 

input, and the simulation is proceeded again to compute the changing rate of power 

corresponding to the variation. The steps are repeated for other input nodes until all partial 

derivatives are derived. 
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2.4  Nominal Point Selection 
 

2.4.1  Nominal 0 
  To construct a power model based on power sensitivities, one must choose some nominal 

points first and calculate the power sensitivities according to the chosen nominal points. 

Without doubt, the more nominal points are chosen the more accurate the model will become. 

However, adding a nominal point requires 2×n+1 more simulations to be carried out in a 

circuit with n inputs [72]. Fur thermore, choosing nominal points arbitrarily makes the error 

range of the constructed power model unpredictable. It is thus important to choose the right 

nominal points to minimize the error of the power model with as few nominal points as 

possible. 

  This section focuses on finding a nominal input statistic matrix that estimates the average 

power of all kinds of S well. The average power is estimated by using equation (47), and the 

estimation error is defined as 
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Equation (48) can be approximated with the second order term, while neglecting the higher 

order terms. The average error will be 
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The second order partial derivatives in equation (49) can be expressed as 
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Let pmax be the maximum value of 
T
kk bb
nomkp

0

_  , Powermax be the maximum value of Power(V0VT). 

The right hand term (R.H.T.) in equation (50) can be expressed as 

 max
2

max
24 PowerpR.H.T. nn ××≤ −−

 (51) 
After substituting equation (51) into equation (49), the average error is bounded by 
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In equation (52), the indices of summation and expectation are independent. Therefore, the 

summation operator can be moved to the outside of the expectation operator, 
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Since the transition probabilities of input i and j are assumed to be mutually independent, the 

expected value of the product of the transition probability differences in equation (53) is equal 

to the product of the expectations, 
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From equation (54), the expected estimation error can be minimized if the nominal input 

transition probabilities are suitably selected to minimize the two expected values of the 

differences between real input transition probability and nominal input transition probability. 

Generally, for an unknown distribution of input transition probability, it is reasonable to 

assume the distribution to be a normal or a uniform distribution, both of which are symmetric 

to the mean. For a distribution of input transition probability that is symmetric to the mean, 

the 
T
ii bb

nomip
0

_  can be chosen to be equal to the mean value of the distribution of input transition 

probability E[
T
ii bb

ip
0

] for all i, to achieve the minimum expected error. 

  The following experiments are conducted to verify the above analysis. The input signals of 

all input nodes of a circuit are assumed mutually independent, and the transition probabilities 

are assumed to be uniformly distributed as a random input usually is. Both of them have the 

same mean value of 0.5. A nominal input statistics Snom  is thus built with each element equals 

0.25. This nominal point will be designated as nominal 0 (N0) here. That means, di is 

uniformly distributed in [0,1], and consequently, pi is uniformly distributed in [di/2, 1-di/2]. 
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Please note that the proposed power model can deal with any distribution since we did not 

make any assumption about the input statistics distribution is made in the analysis. 

Five other nominal points are randomly constructed for comparison. Five hundred S's are 

randomly generated following the distributions, di ~U[0,1] and pi ~U[di/2, 1-di/2], where 

U[a,b] is a uniform distribution between a and b. Two thousands input vectors corresponding 

to each S are randomly generated and fed into PowrMill to be simulated for the exact power 

consumption. The power consumption corresponding to each S is also evaluated by the first 

order approximation with nominal point N0 and five other randomly selected nominal points. 

The error of the power estimated with each nominal point is defined as:  
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The estimation errors are shown in Table 4: 

Table 4: The accuracy of nominal 0 

Circuit N0 Rand0 Rand1 Rand2 Rand3 Rand4 

Cm138a 5.78% 12.63% 15.38% 11.07% 6.62% 8.08% 

Cm150a 2.29% 4.47% 4.82% 4.07% 8.03% 3.12% 

Cm151a 3.66% 7.83% 11.65% 5.38% 6.87% 10.57% 

Cm152a 3.68% 41.35% 5.88% 8.46% 4.68% 6.82% 

Cm162a 4.31% 28.5% 5.89% 5.74% 7.36% 6.50% 

Cm163a 3.73% 29.92% 7.65% 7.22% 6.58% 10.63% 

Cm42a 4.62% 22.08% 12.55% 5.97% 7.82% 5.50% 

Cm82a 5.69% 24.39% 12.68% 9.70% 12.83% 12.76% 

Cm85a 2.53% 16.72% 4.70% 4.11% 5.39% 3.87% 

Cmb 1.82% 3.99% 3.22% 3.06% 2.75% 3.05% 

Comp 2.90% 12.05% 4.57% 4.53% 5.15% 5.60% 

Cu 2.62% 4.01% 5.74% 5.48% 4.65% 5.47% 

Decod 4.89% 15.84% 14.07% 8.49% 9.69% 11.06% 

F51m 2.45% 10.42% 4.56% 3.45% 4.32% 3.21% 
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Average 3.64% 16.73% 8.10% 6.20% 6.62% 6.87% 

 

There are seven columns in Table 4, the first column are the names of the circuits of MCNC 

benchmark circuits. The second column contains the results of the N0. The other columns are 

the results of five other randomly selected nominal points for comparison. The elements in 

this table are the average percentage of error of the estimation result with corresponding 

nominal point for the 500 random samples. The nominal point constructed with the mean 

values of input transition probabilities always gives the best estimation for all circuits under 

test. From the above analyses, selecting the mean values of the input transition probabilities as 

the elements of the nominal input statistics can achieve the minimum average error. 

 

2.4.2  Analysis of Estimation Error 
 

Although the average error of nominal 0 is minimized, the maximum error is still 

unacceptably large in some cases. For a power model, the worst-case estimation error is as 

important as the average error. In order to improve the accuracy, the estimation error of 

nominal zero should be analyzed to locate the cases that the largest estimation error occurs 

and to select some more nominal points to improve the power model.  

The estimation error in equation (48) is a function of Snom  and S. As the first Snom  (N0) is 

already decided, the estimation error of N0 is a function of S. Before the analysis, there are 

some properties of equation (43) and equation (48) should be noted. 

 

Property 1: Average power equation (43) is a linear equation corresponding to the four 

transition probabilities of each input. In other words, for each input within each term of the 

average power equation, the sum of the powers of the four transition probabilities is at most 1. 

Proof: Every term in average  power equation (43) is a product of the Pr(V0VT) and the 

Power(V0VT), where the Pr(V0VT) is a product of exactly one of the four transition 

probabilities from every input. The property is proved. 

 

Property 2: The estimation error equation is a linear equation corresponding to every input 

transition probabilities. 
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Proof: Since the average power equation is a linear function corresponding to each input, and 

the estimation error equation is the high order derivatives part of the Taylor’s expansion of 

average power equation, this property is proved. 

The S that maximizes the estimation error will be denoted as Serr, and the elements of Serr will 

be denoted as pi_err and di_err. 

 

Theorem 1: The (pi_err,di_err) is on one of the three points: (0,0), (0,1) and (0.5,1), that are the 

three extreme points of the p-d triangle. 

 

Proof: Since the estimation error is a linear function corresponding to each input, it is a linear 

optimization problem finding the maximum value of estimation error corresponding to each 

input [81]. The solution to the linear optimization problem is at least one of the extreme points 

of the feasible domain. The feasible domain here is the valid p-d triangle of an input and the 

extreme points of the feasible domain are (0,0), (0,1) and (0.5,1). 

 

From Theorem 1, we conclude that the number of possible solutions of Serr is 3n_in, where 

n_in is the number of inputs. Although the number of possible solution of Serr is greatly 

reduced from a 2*n_in dimension space of real number to 3n_in, the complexity of trying all 

the possible combination of (pi_err, di_err) is still exponentially growing with the number of 

inputs. A heuristic approach of finding the Serr is required. The second order terms in the 

estimation error equation are the partial derivatives of the first order derivatives. Therefore, 

for an S that maximizes the sum of the first order terms, it is more likely to maximize the sum 

of the second order terms. The physical meaning of the sum of the first order terms is the 

difference between the estimated power and the nominal power. In other words, an input 

statistic S with an estimated power greatly larger or smaller than nominal power is most likely 

to have a larger estimation error. 

Take circuit cm138a as an example to observe the relationship between the estimated power 

and the estimation error are depicted in Figure 8. 
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Figure 8: Simulated power vs. estimated power with N0 

The solid line in Figure 8 is the zero error line. It illustrates the ideal estimation of the 

simulated power. As shown in Figure 8, the estimated power deviates from the zero error line 

when it is away from the nominal power. That is, when the difference between the estimated 

power and the nominal power becomes larger, so is the estimation error. This observation 

supports the derived heuristic. With the heuristic, two possible Serr can be located. One is for 

the resulted largest estimated power and is denoted as Smax and the other, denoted as Smin, 

results in the smallest estimated power. However, Smax and Smin are not suitable for being our 

second and third nominal points since there are seldom S that can reach the Smax and Smin . 

Therefore, it is the better way to choose the second and the third nominal points as the 

average of N0 and Smax and the average of N0 and Smin. The second nominal point placed on the 

average of N0 and Smax is designated as Nq3 , and the third nominal point placed on the average 

of N0 and Smin is designated as Nq1. The elements of the third quartile nominal point, Nq3 are 
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In the same manner, the first quartile nominal point, Nq1, can be obtained.  
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Illustrated in Figure 9 are the experimental results of using only the nominal point Nq1. The 

estimation errors of the points in the region with relatively smaller power are obviously 

reduced, while others are increased.  
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Figure 9: Simulated power vs. estimated power with Nq1 

On the other hand, Figure 10 shows that less error is induced in the high power region when 

the power is estimated with only Nq3. 
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Figure 10: Simulated power vs. estimated power with Nq3 

Since the estimation error depends on the selected nominal point, a guideline for selecting the 

optimal nominal point is required for minimizing the estimation error. It is possible to build a 
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power model constructed of these three nominal points and dynamically select the most 

suitable nominal point(s) to give power estimation. The details of constructing the 3-point 

power model will be discussed in the following section. 

 

2.5  Experimental Results 
With the three nominal points obtained in the previous section, we can construct a 3-point 

power model for a circuit. Considering an input statistic S, let Poweravg(S)|Nq1, Poweravg(S)|N0 

and Poweravg(S)|Nq3 be the estimated power done with the nominal points N0, Nq1 and Nq3, 

respectively. Let Poweravg(Nq1), Poweravg(N0) and Poweravg(Nq3) be the nominal power of Nq1, 

N0 and Nq3, respectively. From previous analysis, the estimation error is likely to grow with 

the difference between the estimated power and the nominal power. Therefore, we take the 

distance between the estimated power and the nominal power as parameters of interpolation 

while using the proposed 3-point model. The reported estimation power from our 3-point 

model is evaluated with the following equations: 
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The following is an experiment of comparing our 3-point model with some other power 

model. Estimation error is calculated with equation (55). The standard deviation of estimation 

error is defined as: 

 22 Avg_ErrorErrorESTD_Error −= ][ 2  (60) 

The model used for comparison is constructed with five randomly selected nominal points 

whose nominal transition probabilities are randomly generated with di~U[0,1], 
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pi~U[di/2,1-di/2]. The nominal 0 model, the 3-point model and the random 5-point model are 

all tested with the same 500 randomly generated Ss. The average errors and maximum errors 

are listed in Table 5. 

 

Table 5: Selected 3-point model VS. random 5-point model 

 Nominal 0 3-Point Model Random 5-Point 

Circuit Avg Max STD Avg Max STD Avg Max STD 

Cm138a 5.78 83.49 7.55 4.27 37.25 4.70 5.66 94.74 7.22 

Cm150a 2.29 12.60 2.45 2.35 21.50 2.20 4.43 26.21 3.98 

Cm151a 3.66 27.09 3.66 3.47 25.70 3.63 7.51 59.32 7.58 

Cm152a 3.68 76.23 5.60 3.55 57.61 5.27 6.42 110.0% 8.33 

Cm162a 4.31 45.18 4.34 4.07 30.81 3.93 6.95 70.68 8.45 

Cm163a 3.73 27.52 4.11 4.26 32.44 3.67 11.20 50.45 10.45 

Cm42a 4.62 51.84 5.63 3.81 31.37 4.28 8.39 44.16 7.53 

Cm82a 5.69 62.68 5.83 5.10 43.73 5.40 10.62 42.55 8.40 

Cm85a 2.53 22.07 2.36 2.50 14.26 2.23 5.19 34.90 6.18 

Cmb 1.82 8.29 1.57 1.78 8.83 1.47 3.01 13.64 2.55 

Comp 2.90 14.53 2.39 3.05 14.92 2.27 5.35 33.35 4.90 

Cu 2.62 17.44 2.67 2.30 14.48 2.10 4.36 39.94 4.68 

Decod 4.89 40.69 4.84 3.80 29.80 3.49 5.52 39.00 5.49 

F51m 2.45 20.13 2.32 1.93 12.38 1.76 3.60 16.96 3.41 

Avg 3.64 36.41 3.95 3.30 26.79 3.31 6.30 48.28 6.37 

 

  In Table 5, there are 3 columns for each power model. The Avg column is the average 

percentage of error as in Table 4. The Max column is the maximum percentage of estimation 

error. The STD column is the standard deviation of the 500 estimation errors. From Table 5, 

we can observe that 3-point model does have smaller maximum error than nominal 0 in most 

cases. However, in cm150a and comp the maximum error gets worse. This is because that 

there are 2n variables for an n- inputs circuit, and therefore 2n dimensions in the space of the 

input statistics. The 500 input statistic combinations do not cover the worst corner of nominal 
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0. In other words, we may need more than 500 input statistics combinations to trigger the real 

maximum error of nominal 0 when the number of inputs is large. However, we can still 

observe that every value in the STD column of 3-point model is smaller than the 

corresponding one of nominal 0. It means that estimation errors of 3-point model are 

distributed in a smaller range than nominal 0. Besides, even with five nominal points, the 

accuracy of the random method is still far behind the proposed 3-point model.  

The scatter graph of simulated power and estimated power with 3-point model is show in 

Figure 11. 
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Figure 11: Simulated power vs. estimated power with 3-point model 

Comparing Figure 11 with Figure 8, we can see that with our 3-point model, the small 

average estimation error of N0 is kept while the maximum estimation error is minimized for 

cm138a. 

 

2.6  Summary  
In this chapter, a nominal point selection method for power models based on power 

sensitivities is proposed. By analyzing the relationship between the dynamic power 

consumption of CMOS circuits and their input signal statistics, a guideline of selecting the 

nominal point is proposed. From our analysis, the first nominal point is selected to minimize 

the average estimation error and two other nominal points are selected to minimize the 

maximum estimation error. Both the theoretical evaluations and the experimental results show 
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that putting the nominal point on the mean of the input transition probabilities is a very good 

choice. Furthermore, we propose a 3-point model to achieve even better performance. The 

proposed 3-point model not only keeps the small average estimation error nominal 0, but also 

reduces the standard deviation of the estimation error.  

Since power sensitivities are derived from Taylor’s expansion, the accuracy of the power 

sensitivities and the accuracy of the power estimation equation based on power sensitivities 

highly depend on the position of the nominal point where the Taylor’s expansion is performed. 

Provided that the position of the nominal point is not too far away from the point under 

estimation, the power sensitivities can be a good indicator of the power consumption trend. 

We will utilize the power sensitivities for indicating the power consumption of each input 

vector when estimating the average power consumption of a given input sequence in the 

following chapter. 
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3  Bootstrap Monte Carlo with Adaptive 

Stratification 

In the previous chapter we proposed a method of nominal point selection for power estimation 

when input statis tics are given. But there are more cases that users have only an input 

sequence of finite length, and still need a quick way of finding the power consumption or port 

current for reliability analysis or specification check. In such circumstances, simulation based 

approach is more suitable since there is no need of pre-calibrated power model. In this chapter, 

we will discuss how to obtain the average power without simulating the whole input sequence 

to speed up the estimation process. 

 

3.1  Related Works 
With the increasing size of design blocks, the number of input vectors required for estimating 

the power consumption of a circuit is growing exponentially. In the meantime, the time 

needed for simulating each input vector increases rapidly with the growing complexity of 

circuits. In previous literatures, methods for shortening the time required for power estimation 

can be classified into two categories. One is to generate a shorter input sequence, and the 

other is to sample a small portion of the input vectors from the original sequence. To 

regenerate an input sequence that has the similar average power as that of the original input 

sequence, some features of the original sequence need to be preserved while regenerating the 

shorter one. These features include preserving the pattern transition probabilities [79], 

preserving the spatial-temporal correlations for all inputs [108], and preserving the significant 

correlations between the clustered inputs [80]. Regenerating a compact input sequence sounds 

easy. However, the compact input sequence can only be generated according to a 

user-specified compaction ratio, which users usually do not know the proper value. 

The Monte Carlo approach for power estimation is proposed by F. Najm [97]. The method 

estimates the average power by sampling the input vectors with certain length l from the 

original sequence and fed them into the simulator to derive a sample value of the average 

power. The average power consumption can be estimated with the average of several sample 
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values. From Central Limit Theorem (CLT), the sample values can be presumed as a Normal 

distribut ion when l approaches infinity. The probability that the estimated mean is within a 

certain error range of the real mean can also be derived under the assumption. However, the 

required l to preserve the normality of x is not discussed. If x is far from a Normal distribution, 

the basis of the Monte Carlo method fails and the estimated power may have a larger error 

level than expected. 

Bootstrap theory is a re-sampling technique that will generate Bootstrap samples by picking 

the sample data with replacement and report a Bootstrap confidence interval without 

assuming any parameter of the distribution [87]. This is also known as non-parametric 

Bootstrap re-sampling. By adopting the Bootstrap technique, we developed a way to calculate 

a more accurate confidence level to assure that the user specified confidence level would not 

be violated in Monte Carlo simulation. 

Although the Monte Carlo method can achieve acceptable input sequence compaction ratio 

generally, it suffers severe degradation as dealing with power histograms like bi-modal or 

multi-modal [97]. For Monte Carlo approach, large sample variance means large number of 

samples required for the estimation to converge to the real value. The stratification method on 

the original input sequence is proposed to minimize the sample variance and the probability of 

generating the pre-matured samples [103]. According to the method, a gate level power model 

is required for roughly estimating the power consumption of the original input sequence on a 

zero-delay logic simulator. The zero-delay gate- level power consumption is used as an 

indicator of the circuit- level power consumption. With this indicator, the original input 

sequence can be partitioned into strata, within which the input vectors are with similar power 

consumptions such that the samples sampled from these strata can have a smaller sample 

variance. However, the gate level net- list sometimes needs to be concealed especially when 

they are the intellectual property (IP). A novel input sequence stratification technique is 

proposed in this dissertation. It utilizes the multiple regression method on the sampled input 

vectors to find the weighting of each input transition, which can be used in the power 

indicator function for stratification. The proposed technique can re-stratify the original input 

sequence according to the updated samples, and keep the sample variance the smallest.  

The following parts of this chapter are organized as follows. In section 3.2, some essential 

definitions and bases are introduced. Section 3.3 details the concepts of the Bootstrap Monte 
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Carlo method and demonstrates its efficiency. In section 3.4, the proposed adaptive 

stratification technique with multiple regression method is presented. The flow of the 

Bootstrap Monte Carlo method combined with the adaptive stratification technique is shown 

and evaluated in section 3.4. 

 

3.2  Preliminary 
3.2.1  Normal Distribution and Gaussian Distribution 
Definition 1: Normal random variable 

A random variable (RV) x is normally distributed with mean µx, and standard deviation σx if 

its probability density function (denoted as p.d.f.) equals: 
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Definition 2: Gaussian (Standard Normal) random variable : 

A RV y is Gaussian if its p.d.f. is defined as: 
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Definition 3: Cumulative distribution function (c.d.f.) of Gaussian 

The probability of a Gaussian RV y smaller than an arbitrary value y is defined as: 
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Definition 4: α-percentile of Gaussian 

The α-percentile of Gaussian is denoted as zα and expressed as: 

 ( ) 10   ,1 ≤≤= − ααα Gz . (64) 

Note that the p.d.f. of the Gaussian RV is an even function, therefore zα = - z1-α, and z0.5 = 0. 

Sample mean and sample variance: 

Let {xi, i = 1,2,...,n} be n randomly sampled elements out of a population with an arbitrary 

distribution, the sample mean is defined as the arithmetic average of these n samples 
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The sample variance s2 is defined as: 
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3.2.2  Monte Carlo Method 
The power consumption of a CMOS circuit is dominated by charging and discharging of the 

load capacitances at each gate output. The average power consumption can thus be defined as 

a function in terms of successive input patterns : 
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where µx is the average power consumption, V j is the input vector from the jth pattern to the 

(j+1)th pattern, Power(V j) is the power measurement, and N is the number of input vectors. 

Let pwr be the RV defined on a sample space containing all Power(V j). The average of l 

values of pwr is called a random sample x, whose sample mean approaches the desired 

average power, µx, and can be expressed as: 
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where pwri is a value of the RV pwr. According to the Central Limit Theorem (CLT), the RV 

x has a distribution close to normal distribution for large l8. 

To estimate the µx in (67) without simulating all input vectors, the Monte Carlo approach for 

power estimation can help. Let x  and s2 be the sample mean and sample variance of x, 

respectively. From equation (64) to (66), the following results can be derived: 
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The rel_err stands for the related error level, α is the confidence level, and n is the number of 

samples of x. Equation (69) means that the user can have a confidence level of 1-2α about the 

claim that the error between the real mean µx and the sample mean x  is smaller than the 

related error level. If the related error level rel_err is larger than the user specified error level 

ε, one or more samples of x should be picked and the sample mean and rel_err are evaluated 

again. The procedure is iterated until the user-specified error level ε is satisfied. 
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3.2.3  Bootstrap 
Definition 5: Bootstrap replication 

Let x be the RV defined as the samples from an arbitrary distribution: 

 { }nixi ≤≤= 1x . (70) 

Let x* be the RV defined as the random samples of x with replacement for each xi with equal 

probability, 1/n: 

 { }xx ∈≤≤= **  ,1* ii xnix . (71) 

The Bootstrap replication b of x  is defined as the mean of x*: 
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where nb is the number of Bootstrap replications. 

Definition 6: Sorted Bootstrap replications 

Let the RV B stands for the sorted Bootstrap replications and defined as: 

 { }nbkjijiBBBB jikk ≤≤<≤∈= ,,1 ; if  ;bB . (73) 

Definition 7: Cumulative distribution function (c.d.f.) of B 

The probability that the RV B is smaller than an arbitrary value b is defined as: 
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Definition 8: α-percentile of Bootstrap 

The α-Bootstrap percentile is defined as: 

 ( ) 10   ,1 ≤≤= − ααθα GB . (75) 

Definition 9: Percentile confidence interval of Bootstrap 

There are several ways of calculating confidence intervals of the Bootstrap replications. The 

most straightforward one for the 1-2α Bootstrap confidence interval is the percentile 

Bootstrap confidence interval, and is defined as the interval that can cover (1-2α)*nb 

Bootstrap replications : 

 [ ] ( )[ ( )] 5.001,, 11
%,%, ≤≤−= −− αααθθ    ,GBGBuplo . (76) 

Definition 10: Bias-Corrected and accelerated (BCa) confidence interval 
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The BCa confidence intervals are complicated to describe but are as easy to use as the 

percentile confidence interval [87]: 
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The 0̂z  is designated as the Bias-Correction coefficient. It is simply derived from the portion 

of Bootstrap replications that are smaller than x  (the sample mean of x): 
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where the { }xb <#  is the number of Bootstrap Replications that are smaller than x . The â  

is designated as the acceleration coefficient. Before defining â , the definition of the Jacknife 

value, J(i), of x  is defined as: 
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The mean of J(i) designate as J(.) is defined as: 
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The acceleration coefficient is then defined as: 
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The BCa Bootstrap estimation of µx is defined as the 0.5-percentile of the distribution of BCa 

Bootstrap replications : 
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The Bias-Correction coefficient 0̂z  is designed to compensate the difference between x  

and the BCa mean BCax . If the difference between them equals zero, 0̂z  equals zero also. As 
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for the acceleration coefficient, it refers to the rate of change of the standard error of x  with 

respect to x , measured on a normalized scale [88]. The larger it is, the wider the confidence 

interval. Detail discussion about how this acceleration coefficient works is referred to the 

references5. For a normally distributed x , the 0̂z  and â  are both zero, and α1 = α2 = α. 

The BCa confidence interval is exactly the same as standard confidence interval. 

 

3.3  Bootstrap Monte Carlo Simulation 
3.3.1  Bootstrap Confidence Level 
For conventional Monte Carlo, the confidence interval and the rel_err are calculated with 

equation (69), in which the rel_err totally relies on the assumption that the distribution of x  

is normal. The possibility that the distribution of x  might be skewed or platykurtic is 

ignored. Bootstrap technique, can be used to adjust the confidence level when the normality 

of the population is poor. 

For a given error level, ε, the acceptable range for the real mean µx is defined as: 

 [ ] ( ) ( ) ( ) ( )[ ]BCaBCauplo xxMINxxMAXAA ,1,,1, εε +−= . (83) 

The acceptable range covers the safe range into which the real mean µx can land without 

violating the user specified error level ε, with respect to either x  or BCax . And then, the 

Bootstrap confidence level is defined with: 

 ( ) ( )uploBCa AGBAGB −+= 1α . (84) 

3.3.2  Bootstrap Monte Carlo Method 
With the αBCa from equation (84), whether the user specified confidence level is guaranteed or 

not can be easily determined. The Bootstrap Monte Carlo (BMC) method is demonstrated 

with the pseudo-codes in Figure 12: 
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Figure 12: Pseudo code of BMC 

3.3.3  Bootstrap Monte Carlo vs. Conventional Monte Carlo 
The proposed BMC method is tested with estimating the average powers of the ISCAS-85 

benchmark circuits. There are 10,000 input vectors in the input sequence for each circuit. The 

input sequence is a compound of 3 segments: a counter sequence, a LFSR sequence and a 

sequence of pseudo random numbers. Note that half of the input vectors in the counter 

sequence have only single input change, and therefore consumes less power. The LFSR 

sequence represents the input vectors with temporal correlations. The pseudo random input 

vectors, on the other hand, are spatially and temporally independent. The arrangement of the 

input sequence is to give the estimator a tough situation because the power histogram of such 

an input sequence is most likely to be skewed, long tailed and platykurtic at the same time. 

Besides the ISCAS-85 benchmarks, an additional circuit, add_mpr, is included. It is a circuit 

with a mode controlling input that controls the function of the circuit to be an adder or a 

multiplier. The power histogram of it is a typical bimodal distribution. The experimental 

results are listed in Table 6 to 8. 

Table 6: Conventional Monte Carlo vs. Bootstrap Monte Carlo with α=0.05 

Circuit MC BMC 

Bootstrap Monte Carlo () 
Pwr, ε, α; /* Conventional Monte Carlo parameters */ 
nb; /* Bootstrap parameter */ 
{ 
 nSamples=1; rel_err  = 1; #Boot =0; 
 zα = G-1(α); 
 while ( rel_err ≥ ε ) { 
  nSamples++; 
  get new sample xn from Pwr; 
  update sample mean x and sample variance s2; 
  update rel_err; 
  if (rel_err ≤ ε) { 
   Generate nb Bootstrap Replications b from x; 
   Calculate αBCa from b; 
   #Boot ++; 
   if (αBCa >2 * α ) { 
    rel_err = 1; 
   } 
  } 
 } 
 return nSamples, nBoot, and x ; 
} 
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 viol_r nVecs viol_r nVecs #Boot 

C432 0.1235 1538.51 0.0949 1786.97 14.4926 

C499 0.1164 585.86 0.1050 629.34 2.9860 

C880 0.1218 616.24 0.1010 663.19 3.1880 

C1355 0.1145 633.05 0.1005 682.92 3.2847 

C1908 0.1194 908.35 0.1004 996.04 5.4834 

C3540 0.1586 154.90 0.1563 156.16 1.0405 

C6288 0.1259 1344.78 0.1014 1532.66 11.0338 

add_mpr 0.1384 281.35 0.1288 288.27 1.2202 

Max 0.1586 1538.51 0.1563 1786.97 14.4926 

Avg 0.1273 757.88 0.1110 841.94 5.3412 

 

Table 7: Conventional Monte Carlo vs. Bootstrap Monte Carlo with α=0.025 

MC BMC 
Circuit 

viol_r nVecs viol_r nVecs #Boot 

C432 0.0748 2055.63 0.0487 2504.36 25.7884 

C499 0.0591 820.55 0.0497 886.94 4.4027 

C880 0.0611 862.70 0.0497 935.03 4.7865 

C1355 0.0594 884.39 0.0499 961.19 4.9675 

C1908 0.0653 1248.65 0.0525 1397.90 9.0968 

C3540 0.0832 230.54 0.0810 232.59 1.0764 

C6288 0.0710 1812.33 0.0485 2150.83 19.6258 

add_mpr 0.0688 408.67 0.0627 421.19 1.5073 

Max 0.0832 2055.63 0.0810 2504.36 25.7884 

Avg 0.0678 1040.43 0.0553 1186.25 8.9064 

 

Table 8: Conventional Monte Carlo vs. Bootstrap Monte Carlo with α=0.005 

MC BMC 
Circuit 

viol_r nVecs viol_r nVecs #Boot 

C432 0.0266 3089.78 0.0092 4145.60 59.5692
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C499 0.0163 1345.06 0.0115 1480.03 8.3435

C880 0.0179 1408.56 0.0111 1558.86 9.2150

C1355 0.0180 1442.10 0.0138 1600.27 9.6379

C1908 0.0198 1980.65 0.0121 2322.61 19.8780

C3540 0.0160 409.03 0.0146 416.39 1.3426

C6288 0.0238 2768.35 0.0105 3561.91 44.9796

add_mpr 0.0130 700.62 0.0111 728.20 2.9168

Max 0.0266 3089.78 0.0146 4145.6 59.5692

Avg 0.0189 1643.02 0.0117 1976.73 19.4853

 

Tables 6 to 8 are the results for α equals 0.05, 0.025 and 0.005 respectively. The 

corresponding confidence levels are 90%, 95% and 99%. For each α, there are results for 

every circuit with both conventional Monte Carlo method (MC) and the proposed Bootstrap 

Monte Carlo  method (BMC). Each method is performed 10,000 times for each circuit to 

estimate their average power consumption. The error level ε is set to 0.05. If the error 

percentage of the estimated power exceeds ε, the number of violations is increased by one. 

The viol_r columns are the violation ratio defined as the number of violations divided by the 

number of Monte Carlo simulations: 
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The nVecs columns contain the numbers of input vectors sampled by the corresponding 

estimation methods. For a good estimation method, the viol_r should be close to and always 

smaller than 2*α. For two estimation methods with the same viol_r, the one with smaller 

nVecs is the better one. There is one additional #Boot column for BMC. It is the average 

number of times that Bootstrap process being invoked for a BMC estimation. It is roughly in 

proportion to the number of additional samples required for BMC. With a larger #Boot, the 

overhead of using Bootstrap is greater. For the circuits that the viol_r of MC exceed 2*α more, 

the #Boot for BMC is supposed to be larger to keep the viol_r of BMC within 2*α safe range. 

As demonstrated in the tables, the viol_r for conventional Monte Carlo method exceeds 2*α 

in all 24 cases. On the other hand, with the Bootstrap method monitoring confidence level in 
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BMC, the viol_r are either under or close to the 2*α, except for 2 cases: C3540 and add_mpr. 

One thing needs to be noticed is that the nVecs for C3540 and add_mpr are the two smallest 

ones among all circuits. If the number of samples is too small to represent the original 

population, e.g. pre-matured samples, BMC might fail to keep the voil_r within 2*α 

sometimes. That is because the Bootstrap method produces its Bootstrap replications from the 

samples of Monte Carlo. This drawback will be discussed and eliminated with the proposed 

Bootstrap Monte Carlo with adaptive stratification method (BMCAS) in the following section. 

Regardless of this deficiency, the proposed Bootstrap Monte Carlo  method is more trustable 

than conventional Monte Carlo method with about 10% increasing in nVecs. 

 

3.4  Adaptive Stratified Random Sampling 
Stratification is a technique to divide the sample space into subspaces to reduce the sample 

variance so that the Monte Carlo can converge sooner with smaller number of samples, n, and 

achieve better compaction ratio. An indicator function for stratification is a function that 

returns a value closely related to or even equals the power consumption of input vectors. To 

build an indicator function, the multiple regression method is adopted. 

3.4.1  Single Variable Linear Regression 
Given a collection of n data points of two variables x and y: 

 ( ){ } 1, ),( niyx ii ≤≤=yx  (86) 

The best line describing the relation between x and y is defined as: 
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where E[] is the function of expected value, and ŷ  is the predictor of y. This predictor is the 

one with zero bias and minimum RMS error. 

3.4.2  Multiple Regression 
Multiple regression is simply an extension of the single variable linear regression. Given n 

data points of m+1 variables: 
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Note that X is a row matrix stands for the x variables. The best function describing the 

relation between X and y is defined as: 
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where A is a column matrix that contains the coefficients for each x1,...,xm. Note that the order 

of X and A are switched to make the product of them a scalar. 

3.4.3  Variable Selection 
As we can see in equation (89), deriving the coefficient matrix A includes a matrix inverse 

operation on matrix D. If matrix D were singular, the equation of measuring the coefficient 

matrix A would fail to be solved. To prevent this, the basic assumptions of multiple regression 

need to be taken into consideration while selecting the x variables. 

 

Assumption 1: The relation between y and xi is linear. 

The y variable in power estimation is the power consumption of each input vector. The power 

consumption of CMOS circuits is dominated by the dynamic power. The dynamic power is 

consumed when the inputs of the circuits are switching. In other words, more input switching 

implies that more dynamic power is consumed. This makes the switching conditions of the 

primary inputs good candidates for the x variables. 

 

Assumption 2: The xi variables are mutually independent. 

For a primary input, there are 4 possible transitions between 2 consecutive clock cycles: 0 to 0, 

0 to 1, 1 to 0, and 1 to 1. 

Let the Boolean value for the ith input in the jth clock cycle be denoted as j
ib , the input pattern 

in the jth clock cycle is defined as: 

 { }{ } 0,_1 ,1,0 NjinnibbPat j
i

j
i

j ≤≤≤≤∈=  (90) 

where n_in stands for the number of primary inputs, and N stands for the total number of 

input vectors. The jth input vector is defined as two consecutive input patterns: 
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 ( ){ } Nj PatPat V jjj 10, 1 −≤≤= +
 (91) 

There are four transition variables designated for the transition behavior of the each input: 
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For an input i and input vector V j, one and only one of the four transitions can take place. 

This makes the four transition variables mutually dependent: 

 ( ) ( ) ( ) ( ) 1,,,, 3210 =+++ jjjj ViTViTViTViT  (93) 

Therefore, at most three out of the four transition variables need to be chosen as the x 

variables for multiple regressions. We select the T0, T1 and T2 because they are smaller and 

continuous by the index. Note that, any combination of three transition variables chosen is not 

losing generality because the removed one can always be derived from the others selected. 

After choosing the x variables for equation (88), it can be rewritten in the form of constructing 

the predictor for the power consumption of each input vector. Let the power consumption of 

each input vector indicated by the indicator function be: 
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where V is the set of all input vectors. In the same manner, the coefficient matrix A can be 

derived from the multiple regression equations: 
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where W is the set of sampled input vectors and Pwr(W) are their corresponding power 

consumption measured with simulator. 

3.4.4  BMC with Adaptive Stratification (BMCAS) 
With the coefficient matrix A and equation (94), the population can be stratified into a certain 

number of strata. Initially, the population is not stratified, and the first few samples xi’s are 

randomly sampled. After the number of sampled input vectors is larger than a predefined 
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threshold, the multiple regression function is invoked to derive A. The ( )VowerP̂  is 

calculated with equation (94) and the stratification process starts. Hence, the stratified random 

sampling process takes over the place of random sampling. After some other new input 

vectors are sampled, the multiple regression process is executed again to recalculate a better A  

for re-stratification. The pseudo code for the proposed Bootstrap Monte Carlo with Adaptive 

Stratification (BMCAS) is depicted in Figure 13. 
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Figure 13: Pseudo code of BMCAS 

The reason of starting multiple regression after the number of W is larger than 9*n_in is to 

prevent too many empty elements in matrix D which might lead to a singular matrix for the 

matrix inverse operation. The keep_sampling variable is an insurance to prevent the Bootstrap 

Monte Carlo failure caused by the premature samples as discussed in previous section. The 

rel_err and the keep_sampling are given one and two, respectively when BMCAS exits before 

Bootstrap Monte Carlo with Adaptive Stratification () 
Pwr, ε, α; /* Conventional Monte Carlo parameters */ 
nb; /* Bootstrap parameter */ 
{ 
 nSamples=0; rel_err  = 1; nRestrat =0; keep_sampling = 0; 
 W = {∅}; S = {∅}; V = {V i | 1≤i≤N} 
 zα = G-1(α); 
 while ( rel_err ≥ ε ) { 
  nSamples++; 
  if (stratified) 
   Sample input vectors v from V with stratified sampling; 
  else 
   Sampled input vectors v from V with random sampling; 
  S = S ∪v; W = W ∪v; 
  Get y = Power(v); from simulator; 
  y = y ∪y; 
  if (keep_sampling) { 
   keep_sampling--; rel_err = 1; continue; 
  } else { 
   update x , s2,  and rel_err; 
  } 
  if (rel_err ≥ ε) { 
   if (#(W) > 9 * n_in) { 
MR:    X = T(S); 
    if (A = Multiple_Regression(X,y) is success) { 
     ( ) ( ) bowerP += AVTVˆ ; 
     Restratification(V); 
     stratifed = TRUE; W = {∅}; nRestrat++; 
    } 
   } 
  } else { 
   Generate nb Bootstrap Replications b from x; 
   Calculate αBCa from b; 
   #Boot ++; 
   if (αBCa >2 * α ) { 
    rel_err = 1; 
   } else if (!stratified) { 
    rel_err = 1; keep_sampling = 2; goto MR; 
   } esle { 
    return nSamples, nRestrat, and x ; 
   } 
  } 
 } 
} 
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any stratification is performed. With these setting, the BMCAS will stratify the population at 

least once and samples three new samples after the forced stratification to get at least three 

samples that are sampled from the population more uniformly. 

 

3.5  Experimental Results 
To demonstrate the performance of proposed BMCAS, one more stratification method called 

Hamming distance method (HDM) is implemented for comparison. It is a stratification 

method based on the assumptions that power consumption increases with the number of 

inputs transitions becoming larger. HDM method stratifies the input vectors into strata 

according to the Hamming distance of each input vector. For both methods, the input vectors 

are stratified into six equal sized strata. The reason is that one can get little sample variance 

reduction by setting the number of strata larger than six [19]. 

The results are in Table 9 to 11. The results from BMC method in section 3.3 are listed in the 

tables, too. It is designated as NO_STRAT because there is no stratification procedure in BMC. 

Similar to Table 6 to 8, Table 9 to 11 show the results for confidence level 90%, 95% and 

99%, respectively. The first columns of them are the names of the circuits. The numbers in the 

brackets next to the circuit names are the number of inputs of the corresponding circuit. They 

are listed as a reference because BMCAS re-stratifies the population after 9*n_in new input 

vectors sampled. There are three columns of data for each stratification method. The nSample 

column shows the average number of samples required for the corresponding stratification 

method to converge to a value of estimated power. The nVecs columns are the average 

numbers of the sampled input vectors. The smaller is the nVecs, the better the stratification 

method is. The error level ε is set to 0.05. The viol_r column shows the violation ratios with 

the same definition as equation (85), and the #Boot columns are of the same definition as in 

tables 6 to 8. The extra #ReStrat column for BMCAS is the average number of stratification 

being performed. 

Comparing the proposed BMCAS and the BMC, the viol_r of BMCAS are closer to 2*α than 

BMC in almost all circuits and all confidence level. Besides, with the proposed adaptive 

stratification technique, the numbers of sampled input vectors are about 27% smaller than 

those of BMC in average. For some circuits, BMCAS even needs only half of the number of 

input vectors that BMC needs. The #ReStrat for some circuits, like C3540, are equal to 1.0 
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exactly because all of the BMC estimations exit with a number of sampled input vectors 

smaller than the threshold for starting stratification, and BMCAS will perform at least one 

stratification process before exiting. As shown in tables 9 to 11, the viol_r for C3540 are 

safely kept within 2*α. As for the results from HDM method, although its nVecs is the 

smallest, the violation ratio exceeds 2*α for all cases. This makes the results from HDM 

un-trustable and the nVecs meaningless. With the safely kept viol_r and the smaller number of 

nVecs, we can summarize that the proposed BMCAS is the most reliable one and can efficient 

reduce the required number approach. 

 

Table 9: Comparison of stratification method, confidence level = 90% 

 NO_STRAT HDM BMCAS 

Circuit nSample nVecs viol_r nSample nVecs viol_r nSample nVecs viol_r #ReStrat #Boot 

C432 297.74 1786.47 0.0949 48.56 291.36 0.1596 193.99 1163.97 0.0918 3.6702 7.8359 

C499 104.89 629.34 0.1050 4.96 29.79 0.1421 90.72 544.30 0.0739 1.9919 3.8312 

C880 110.53 663.19 0.1010 13.02 78.12 0.2141 107.92 647.56 0.0870 1.8311 3.7967 

C1355 113.82 682.92 0.1005 4.85 29.10 0.1388 94.46 566.80 0.0770 1.9974 3.9666 

C1908 166.00 996.04 0.1004 10.60 63.59 0.2060 105.05 630.31 0.0795 2.2278 2.2278 

C3540 26.03 156.16 0.1563 7.10 42.61 0.1923 30.81 184.89 0.0982 1.0000 2.0777 

C6288 255.44 1532.66 0.1014 10.36 62.16 0.1969 138.80 832.80 0.0831 3.0274 5.2061 

add_mpr 48.04 288.27 0.1288 43.35 260.07 0.1628 53.22 319.32 0.0911 1.3348 2.4049 

Max 297.74 1786.47 0.1563 48.56 291.36 0.2141 193.99 1163.97 0.0982 3.6702 7.8359 

Avg 140.31 841.88 0.1110 17.85 107.1 0.1766 101.87 611.24 0.0852 2.1351 3.9184 

 

Table 10: Comparison of stratification method, confidence level = 95% 

 NO_STRAT HDM BMCAS 

Circuit nSample nVecs viol_r nSample nVecs viol_r nSample nVecs viol_r #ReStrat #Boot 

C432 417.39 2504.36 0.0487 72.63 435.80 0.0703 261.99 1571.98 0.0393 4.6465 12.3182 

C499 147.82 886.94 0.0497 6.96 41.74 0.0852 108.05 648.32 0.0392 2.0039 3.8246 

C880 155.84 935.03 0.0497 20.14 120.83 0.1193 132.88 797.26 0.0458 1.9994 4.2675 

C1355 160.20 961.19 0.0499 6.77 40.66 0.0847 111.59 669.55 0.0400 2.0152 3.8161 
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C1908 232.98 1397.90 0.0525 16.29 97.75 0.1148 131.98 791.87 0.0430 2.9044 4.7751 

C3540 38.77 232.59 0.0810 10.42 62.51 0.1158 43.19 259.15 0.0457 1.0000 2.1437 

C6288 358.47 2150.83 0.0485 15.91 95.45 0.1146 188.89 1133.32 0.0395 3.9200 7.7984 

add_mpr 70.20 421.19 0.0627 64.84 389.06 0.0768 68.21 409.27 0.0443 1.9117 2.7532 

Max 417.39 2504.36 0.0810 72.63 435.80 0.1193 261.99 1571.98 0.0458 4.6465 12.3182 

Avg 197.71 1186.25 0.0553 26.75 160.48 0.0977 130.85 785.09 0.0421 2.5501 5.2121 

 

Table 11: Comparison of stratification method, confidence level = 99% 

 NO_STRAT HDM BMCAS 

Circuit nSample nVecs viol_r nSample nVecs viol_r nSample nVecs viol_r #ReStrat #Boot 

C432 690.93 4145.60 0.0092 125.95 755.71 0.0135 425.68 2554.10 0.0073 6.8489 26.3906 

C499 246.67 1480.03 0.0115 11.88 71.27 0.0269 148.93 893.58 0.0097 2.7605 4.8357 

C880 259.80 1558.86 0.0111 37.33 223.95 0.0316 186.26 1117.56 0.0120 2.1826 5.9437 

C1355 266.71 1600.27 0.0138 11.53 69.20 0.0275 155.74 934.48 0.0093 2.8516 5.1525 

C1908 387.10 2322.61 0.0121 30.19 181.13 0.0330 209.86 1259.15 0.0078 4.2333 8.1702 

C3540 69.34 416.39 0.0146 18.92 113.53 0.0367 73.16 438.95 0.0094 1.2434 2.5202 

C6288 593.65 3561.91 0.0105 29.90 179.37 0.0325 315.67 1894.00 0.0093 6.0004 16.0834 

add_mpr 123.03 728.20 0.0111 112.04 672.25 0.0137 93.23 559.35 0.0074 2.0002 3.9304 

Max 690.93 4145.60 0.0146 125.95 755.71 0.0367 425.68 2554.10 0.0120 6.8489 26.3906 

Avg 329.65 1976.73 0.0117 47.22 283.30 0.0269 201.07 1206.40 0.0090 3.5151 9.1283 

 

 

3.6  Summary 
The Bootstrap technique is adopted in this chapter to assure the confidence level when doing 

Monte Carlo estimation. With this technique, the Monte Carlo method can be improved since 

confidence level is monitored during the Monte Carlo simulation. Besides, we proposed a 

novel adaptive stratification technique, with which the population can be dynamically and 

well stratified to keep the sample variance minimized. The experimental results on the 

ISCAS-85 benchmarks show that the proposed Bootstrap Monte Carlo with adaptive 
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stratification (BMCAS) successfully preserves the confidence level while efficiently reducing 

the required number of input vectors. 
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4  Automatic Power Profiler 

Estimating average power is a passive approach for simulator to demonstrate the power 

consumption of a circuit. It relies on what input sequence users gave to the simulator to 

estimate power with. Most of the time, even the designers of the circuit under test are not 

aware of how the power consumption varies with different input sequences. Power profiler is 

such a product that provides users an easy way to visually examine the distribution of the 

power consumption. 

The easiest way to get the profile of the power consumption is to simulate all possible input 

vectors and plot the histogram of the simulated power. However, this is not practical for large 

circuits or circuits with a large number of inputs. Besides, more information about how the 

power consumption varies with the input logic values or input transitions is necessary for 

optimizing the power consumption. In the following sections, the proposed measurement for 

stratifying unlimited length input vectors will be defined. The implemented tool named 

PowerPro that integrates the stratification scheme and the SPICE simulator will also be 

detailed. With PowerPro, users can not only easily get the plot of power consumption 

distribution for examining the average power consumption, but also get the worst case input 

combination that tends to induce worst case power consumption. 

 

4.1  Problem Definition 
Given a circuit and the input statistics, the objective of power profiling is to efficiently and 

accurately plot the distribution of power consumption of a circuit. With efficiently, that means 

the task should be done with the minimum number of input vectors fed into the simulator. 

With accurately, that means the input vectors are stratified into strata and the mean of each 

stratum should be correctly estimated before plotting the distribution. For example, if the 

histogram of the power consumption of a circuit is as shown in Figure 14 (a): 
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Figure 14: Example of power distribution 

It is strongly demanded to easily stratify the population into two or more sub-populations, as 

shown in Figure 14 (b), if they have smaller number of input vectors needed to be profiled. 

Stratification for unlimited length input  sequence requires a clear and logical way of deciding 

which stratum should an input vector belongs  to. The BMCAS method proposed in Chapter 3 

that stratifies the input vectors according to the order of the input vectors sorted with the sum 

of power sensitivities is not practical because the number of input vectors can be too long for 

any sorting algorithm. Hamming distance method is a primitive and feasible way of 

stratifying the input sequence because it only needs the number of inputs that are toggling for 

stratification. However, there are two inherent problems with the Hamming distance method. 

The first problem of Hamming distance method is that it treats the toggling of all inputs with 

the same importance. In fact, the power consumptions induced by the toggling of different 

inputs are usually different due to the difference of the sizes of their fan out cone. Regarding 

this problem, the power sensitivities are utilized for analyzing the number of samples needed 

so that a better way of stratification tha t requires less number of samples can be achieved. 

Another shortcoming of Hamming distance method is that there are four possible transitions 

for an input to make between two consecutive clock cycles and each of them may induce high 

power consumption. For example, a D flip-flop that is triggered by the positive edge of the 

clock input, consumes the largest power when the clock input is making a positive edge 

transition. When the clock input is making a 1 to 0 transition, the power consumption will be 

much smaller. For memory circuits, the enable signal is responsible for enabling or disabling 

the memory with logic level 0 or 1. In this case, neither the 0 to 1 nor the 1 to 0 transition 

induces the power consumption. Instead, the power consumption highly depends on the logic 

value of the enable signal. To solve this problem, a new method of finding the transitions for 

each input that may induce high power consumption that are called power sensitive transition 

(b) Power 

nVecs 

(a) Power 

nVecs µ 

µ1 µ2 
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(POST) is proposed. The definition and the derivation of the POST will be detailed in the 

following sections. 

 

4.2  Number of Samples 
For the sub-populations in Figure 14 (b), let the variances be 2

1σ  and 2
2σ , the means be µ1 

and µ2 and the numbers of input vectors be n1 and n2, the mean and the variance for the 

population in Figure 14 (a) can be derived as 
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The expected number of samples to get a convergence in the Monte Carlo  criterion for Figure 

14 (a) is: 
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On the other hand, the required numbers of samples to get the criterion met for the two 

separated sub-populations are: 
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To be benefited by dividing the population, the following criterion must be satisfied: 
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By dividing both side with z1-α and err, 
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Substituting (96) into (101), 
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This is the criterion to be benefited from separating the populations. However, there is no 

information about the mean and the variance of the two populations before simulating all 

input vectors contained in them. Fortunately, equation (94) provides us an estimator for the 

power consumption of input vectors with the power sensitivity sum. With equation (94), the 

estimated means and variances with the power sensitivities measured from the sampled input 

vectors can be derived as 

 [ ])(ˆˆ 11 VowerPE=µ , (103) 

 [ ] 2
1

2
2

2
1 ˆ)(ˆˆ µσ −= VowerPE , (104) 

 [ ])(ˆˆ 22 VowerPE=µ , (105) 

and [ ] 2
2

2
2

2
2 ˆ)(ˆˆ µσ −= VowerPE . (106) 

The V1 and V2 are the input vectors set for sub-population 1 and sub-population 2, 

respectively. 

 

4.3  POST - Power Sensitive Transition 
Power sensitive transition is originated from the knowledge of previous subsections that the 

power consumption induced by different inputs should have different weighting. 

Summarizing the above observations, a new method of categorizing an input vector with its 

power sensitive transition (POST) is defined. The transitions of an input that makes the circuit 

consume more energy in average are called the POST of the input. The other transitions that 

are not POST are designated as Non-POST. 

Table 12: POST and non-POST combinations 

Case POST Non-POST POST Description 

0/123 00 01,10,11 Static-0 

1/023 01 00,10,11 Positive Edge 

2/013 10 00,01,11 Negative Edge 

3/012 11 00,01,10 Static-1 

012/3 00,01,10 11 Non-Static-1 

013/2 00,01,11 10 Non-Negative Edge 

023/1 00,10,11 01 Non-Positive Edge 

123/0 01,10,11 00 Non-Static-0 
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01/23 00,01 10,11 Previous Logic-0 

02/13 00,10 01,11 Current Logic-0 

03/12 00,11 10,01 Non-Transition 

12/03 01,10 00,11 Transition 

13/02 01,11 00,10 Current Logic-1 

23/01 10,11 00,01 Previous Logic-1 

 

The possible POST/Non-POST combinations are listed in Table 12. The 0,1,2,3 in the “Case” 

column stands for the 0 to 0, 0 to 1, 1 to 0 and 1 to 1 transitions, respectively. The first 0/123 

case is the one that the POST is 0 to 0 transition and the non-POST are 0 to 1, 1 to 0 and 1 to 

1 transitions. It is suitable for the kind of input that induces the most power consumption 

when it is making a 0 to 0 transition. For a low-enabled signal, the most possible 

POST/non-POST combination for it is the 02/13 because the logic-0 of current clock cycle 

will enable the circuit and consume power. For a clock input that triggers the circuit to work 

with rising edge, the most possible POST/non-POST combination for it is 1/023. 

Since the purpose of choosing the POST is to reduce the number of sampled vectors required 

for getting a convergent population mean estimation of each subset, the best 

POST/Non-POST combination for an input is the one that has the smallest sample variance. 

Given an input vector, the sum of the power sensitivities corresponding to the transitions of 

each input in the input vector is a good indicator for the power consumption, provided that the 

power sensitivities are properly measured. Let the power sensitivities of the ith input be {Ai0, 

Ai1, Ai2, Ai3} and the transition probabilities be {P0,  P1,  P2, P3} corresponding to the four 

transitions {00, 01, 10, 11}. Categorizing the input vectors into four subsets according to the 

transition condition of the ith input forms four subsets of input vectors {Vi0, Vi1, Vi2, Vi3}. 

From equation (94), the power consumption indicator function of the Vik is defined as: 

 ( ) ( )ikiikik owerPAowerP VV ˆˆ += , (107) 

where 
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By assuming the ith input being independent of the other inputs, the sample mean and sample 

variance of subset Vik are defined as: 
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Sampling from the four subsets separately results in the smallest sampling variance, which 

equals: 

 ∑
=

=
3

0

22

k
iikki P σσ . (111) 

However, by dividing the input vectors into four subsets according to the transition of each 

input each subset contain only 1 input vector. In other words, to get a sample of each subset is 

equivalent to simulating all input vectors and this violates the goal of reducing the number of 

simulated vectors. Therefore, we abandon this option of dividing the input vectors into four 

subsets was abandoned. In stead, according to the POST and non-POST, the input vectors can 

be divided into two subsets only. Take case 0/123 in Table 12 as an example. Dividing the 

input vectors with 0/123 POST/non-POST combination is to put the Vi0 alone and group the 

Vi1, Vi2,Vi3 together. The sampling variance from the POST and the non-POST subset is: 
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Subtracting equation (112) with equation (111), the difference of the sample variance between 

dividing the input vectors with the 0/123 POST combination and dividing them into four 

subsets is expressed as 
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To get a clearer look at equation (113), equation (107) is substituted into it, and the µii0, µii1, 

µii2, µii3 are assumed to be equal to c to further simplify the result, and then: 

 
( )

( )321

2
3322112

33
2
22

2
11

2
123/0 PPP

APAPAP
APAPAP iii

iiii ++
++

−++=∆σ . (115) 



 57 

It is very clear that the assumptions, 2
123/0iσ∆  becomes a function of the power sensitivities 

of the ith input and the transition probabilities of it. The sample variance difference for another 

POST/non-POST combination 01/23 can be derived similarly: 
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For all POST/Non-POST combinations, the one with the smallest sample variance difference 

is the one that has the smallest sample variance if the input vectors are divided according to it. 

Here is an example of POST identification for a circuit with four inputs whose power 

sensitivities and the transition probabilities are listed in Table 13. 

Table 13: POST identification example  

 00 01 10 11 

 A0 P0 A1 P1 A2 P2 A3 P3 

In1 30 0.25 100 0.2 100 0.2 100 0.35 

In2 10 0.15 20 0.4 20 0.4 10 0.05 

In3 20 0.2 30 0.3 30 0.3 10 0.2 

In4 10 0.25 150 0.25 60 0.25 40 0.25 

Checking the sampling difference of each case in Table 12, the sample variance differences 

are listed in the following table: 

Table 14: Sample variance differences derived from Table 13 

Case POST non-POST In1 In2 In3 In4 

0/123 00 01,10,11 0 117.6 60 1716.7 

1/023 01 00,10,11 842.2 244.6 48.57 316.7 

2/013 10 00,01,11 842.2 244.6 48.57 2716.7 

3/012 11 00,01,10 753.9 202.1 15 2516.7 

012/3 00,01,10 11 753.9 202.1 15 2516.7 

013/2 00,01,11 10 842.2 244.6 48.57 2716.7 

023/1 00,10,11 01 842.2 244.6 48.57 316.7 

123/0 01,10,11 00 0 117.6 60 1716.7 

01/23 00,01 10,11 544.4 285.65 60 2500.0 

02/13 00,10 01,11 544.4 285.65 60 1825.0 
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03/12 00,11 10,01 714.6 3.75 10 1125.0 

12/03 01,10 00,11 714.6 3.75 10 1125.0 

13/02 01,11 00,10 544.4 285.65 60 1825.0 

23/01 10,11 00,01 544.4 285.65 60 2500.0 

For In1, although the 0/123 and 123/0 combinations both have the smallest sample variance 

difference, the 123/0 is chosen because the average power consumption is higher when In1 is 

making a 0 to 1, 1 to 0 or 1 to 1 transition. Same rule is used for picking the POST/non-POST 

combination 12/03 for In2 and 1/023 for In4. 

 

4.4  Stratification with POST 
With the POST of an input, say In1, the original population can be stratified into two 

sub-populations according to the condition that the input is making a POST or not: 

 
Figure 15: Stratification with POST 

By assuming that the transition behavior and the power sensitivities of the other inputs are 

independent of In1, )( 1VPower and )( 2VPower  are redefined as: 
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Under the assumption that the transition behavior and the power sensitivities of the other 

input are independent of In1, the k(V1) and k(V2) are equal and will be designated as k for 

short. Substituting equation (117) and (118) into (103), (104), (105) and (106) we get: 

 [ ]kAE POSTnonIn += −,11̂µ , (121) 
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2
1 ˆˆ µσ −+= − kAE POSTnonIn , (122) 

 [ ]kAE POSTIn += ,12̂µ , (123) 

and ( )[ ] 2
2

2
,1

2
2 ˆˆ µσ −+= kAE POSTIn . (124) 

Since the power sensitivities of In1 and In2 are measured constants, the above equations can 

be simplified with some deductions and become: 

 [ ]kEA POSTnonIn += −,11̂µ , (125) 

 [ ] [ ]222
1̂ kEkE −=σ , (126) 

 [ ]kEA POSTIn += ,12̂µ , (127) 

and [ ] [ ]222
2̂ kEkE −=σ . (128) 

From equation (126) and (128), 2
1̂σ  can be found the same as 2

2̂σ . Therefore, they are 

designated as 2
kσ  because they are equal to the variance of k as well. Replacing the 2

1̂σ  and 
2
2̂σ  in equation (102) with 2

kσ , 
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Since µ2 > µ1, equation (129) can be tightened by substituting the µ1 of denominator of the 

first term at right hand side with µ2, then 
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After some deductions and taking the square root of both sides, the following relationship is 

obtained, 
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By moving the σk to the right, the gain of separating the population according to the POST of 

an input is defined as, 
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This is the one and only equation for checking two populations should be separated or not. 

The rule of thumb observed from equation (132) is that, the more distant that µ2 away from µ1 
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the larger the gain is, and vice versa. With this rule, a heuristic method of stratifying the input 

vectors with POST is proposed. 

Given the power sensitivities and the input statistics of a circuit, the input with the largest 

positive gain is first selected for dividing the population into two sub-populations. In each 

sub-population, the next input that has the largest positive gain is then selected for dividing 

the sub-population. The procedure is repeated until no input with positive gain is available. 

 

4.5  Integration with SPICE3 
SPICE is a Simulation Program with Integrate Circuit Emphasis. It solves the combination of 

KVL and KCL equations for the voltages of all nodes and the currents for some certain 

branches. The loading functions that translate each device into the KVL and KCL equations 

are listed in appendix B. In this section, the flow for the proposed power profiler will be 

detailed. Before that, the flow of the transient analysis that the proposed power profiler 

mainly based on will be demonstrated as following. 

 

4.5.1  Transient Analysis Flow 
To perform transient analysis, the circuit is analyzed at some time points selected between the 

starting point and the stopping point. The basic flowchart of the transient analysis is shown in 

Figure 17: 
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Figure 16: Flowchart of transient analysis in SPICE 

Operating Point Analysis 

For the first time point, the initial conditions as well as the elements of the devices are loaded 

into the matrix. After that, the KCL and KVL equations are solved to get the nodal voltages 

and the branch currents of voltage sources and inductors. The ways of solving the matrix 

include Gaussian Elimination and LU decompositions. Both methods are with the same order 

of complexity. After matrix solving, the solutions are saved and another set of matrix loading 

and matrix solving are performed for checking the convergence of the solutions. If the 

solutions are within the tolerable range of the solutions of previous iteration, the new 

solutions are considered as converged. Otherwise, another iteration of matrix loading and 
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matrix solving is needed. This is called the Newton’s Iteration Method. It has a limitation that 

the non-linear equations are monotonic functions around the initial guess. If the solutions do 

not converge to some values with a limited number of iterations, the Newton Iteration Method 

for operating point analysis is failed. In this circumstance, users have to check the initial 

conditions or to tune the simulation options for improving the DC convergence. 

 

Transient Analysis 

After the DC operating point is obtained, the transient analysis begins with a heuristic time 

step ∆T. The Newton Iteration Method is invoked to solve the new solutions of a new time 

point in the transient analysis at Tnew. Every time the Newton Iteration Method fails, the time 

step is reduced to try to make the monotonic assumption stand. However, device models, 

especially the MOS models, are sometimes discontinuous if the model parameters are not 

properly designed and extracted. Under that circumstance, there may be no convergence no 

matter how small the time step is, and the ∆T check fails. An “internal time step too small” 

error message will pop up from the simulator, and the simulation halts. For most cases, a 

convergent result by shrinking the ∆T and the transient analysis continues until the stop time 

of the analysis is reached. 

 

4.5.2  Automatic Power Profiler 
The flow chart of the power profiling system is depicted in the following figure: 
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Figure 17: Flowchart of power profiler 

 

4.6  Screen Shots 
Here are some snapshots of running the tools and the graph that the tool will report. The 

power profiler takes normal SPICE netlist with some additional information including  

1. A flag on the input voltage source that indicates it is a primary input. 

2. The signal probability and the transition density of each primary input. 

3. Option VDD for the definition of logic-1, (logic-0 is default grounded). 

4. Option CLK for the definition of the period of a clock cycle. 

Input Statistics 

Population 

Stratification 

Stratum 1 Stratum n Stratum 2 … …  

Profile 1 Profile 2 Profile n 
… …  

 

SPICE simulation for power consumption 

Measure Power Sensitivities 
No 

Get the POST for all inputs 

BMC convergence check passed? 
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5. Option SLEW for the definition of the slew rate of the signal transitions. 

6. Option MONTE for turning on and off the Monte Carlo convergence criterion. 

7. Option BOOTSTRAP for turning on and off the Bootstrap convergence criterion. 

8. Option STRAT for turning on and off the stratification flow. 

After setting up the netlist with the additional information, a simple command that evokes the 

power profiler as: 

 PowerPro  SPICE_NETLIST_FILE 

And the messages on the screen are depicted in Figure 18: 

 

 
Figure 18: Screen log of power profiler 

There is also a pop up window that plot the profile of the power consumption distribution 

shown in Figure 19. 
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(a) 

 
(b) 

Figure 19: Power profile from power profiler 

In Figure 19 (a), the stratification flow is not turned on. Therefore, the profile obtained from 

the profiler contains only one stratum. However, the power consumption distribution looks 

more like a bimodal distribution as in Figure 19 (b). In Figure 19 (b), the proposed automatic 

stratification flow has successfully stratified the population into two strata, and captured the 

bimodal nature of the distribution by showing the distribution with two normal distributions 

separately. 
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4.7  Summary 
In this chapter, a novel definition POST was proposed for defining the input transitions that 

tend to induce higher power consumption. Furthermore, the POST is utilized for stratifying 

the input sequence with unlimited length so that the average power within each stratum can be 

accurately and efficiently estimated. This new stratification method with POST was also 

implemented in the most accurate simulator SPICE. A fully automated flow for calculating 

the profile of the power consumption distribution was also implemented.  

Although we have put a lot of effort in implementation, there are still some improvements that 

can be done to make it more complete and solid. The power profiler at current stage targets 

combinational circuit only because sequential circuits are not suitable for vector sampling due 

to the high temporal correlation between the input vectors. Besides, PowerPro is implemented 

for synchronous circuits because there is no clear definition of the power corresponding to 

one input vector for asynchronous circuits. 
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5  Conclusion and Future Work 

In this dissertation, the definition of power sensitivities was examined and proposed a method 

of selecting the nominal points for measuring the power sensitivities to increase the accuracy 

was prposed. With the knowledge of the meaning of power sensitivities, it is was utilized for 

the stratification of input vector sampling for simulation based power estimation. The 

Bootstrap Monte Carlo approached was proposed to improve the reliability of Monte Carlo 

simulation by calculating the confidence interval more accurately with the Bootstrap 

resampling technique. Since the power sensitivities measurement can be updated dynamically 

when simulating the sampled input vectors, the stratification process can be performed 

repeatedly whenever the power sensitivities are updated. Stratification with power 

sensitivities sum of each input vector is good for reducing the sample variances, although the 

calculating and sorting of the power sensitivities sums of the input vectors may be too 

complex when the input sequence is very long or even infinite. Therefore, a novel definition 

POST was proposed to define the transitions of inputs that tend to induce higher power 

consumption of the circuit. A heuristic stratification method based on POST was also 

proposed to reduce the number of sampled vectors required so that the power consumption 

distribution can be accurately and efficiently plotted. Both stratification and power estimation 

flow in this dissertation were implemented in the most accurate SPICE3 simulation engine 

from Berkeley. Users can get a visual image of the distribution of the power consumptions by 

specifying the primary input pins and their signal probabilities and transition densities. The 

theories and algorithms that are used or proposed in this dissertation are all demonstrated in 

the most practical and useful way through the implementation. 

 

To sum up, power estimation is rather a measurement for further analysis than a number for 

meeting the specification. Here are some extensions that can be done on the platform of this 

dissertation. 

 

Worst Case Sequence Generation 
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The worst case power consumption can be determined by finding one and only one input 

vector which induces the largest power consumption. However, defining the worst case power 

consumption with only one input vector could be too pessimistic and lost the generality. After 

stratifying the population with POST, the sub-population that expected to have the largest 

power consumption can be easily identified. It can also be used for the identification of the 

worst case operating mode of the circuit. A worst case input sequence will be able to be 

generated from the sub-population as well. 

 

Reliability Analysis 

Electromigration rules limit the average current densities that are allowed to flow in the metal 

segments in different layers. With the estimated power consumption, designers can check the 

electromigration rules for each metal segment. By changing the measurement scheme from 

power dissipation to sub-circuit port currents, the full chip IR drop analysis can also be 

implemented on the platform proposed in this dissertation. 

 

Full Chip Temperature Profiling 

With the estimated power dissipation of the sub-circuits, the temperature profile can be 

obtained by analyzing the positions of the heat sources and the efficiencies of the heat 

conduction paths. The spot that has potential heat problem can be identified for designer to 

rearrange the placement around hot spot. 
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