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The flow in a valveless micropump is analyzed using both the CFD method and the lumped-system method.
In the multidimensional simulation of the CFD model, the Navier-Stokes equations are solved using a
finite volume method suitable for the use of unstructured grids. The moving membrane is modeled by
imposing areciprocating velocity boundary condition. It is seen that a good agreement with measurements
can be obtained for various back pressures by adopting an appropriate membrane shape blending the
parabolic and the trapezoidal profiles. The multidimensional predictions serve as benchmark solutions to
the lumped-system analysis. In the latter analysis two correlations for the loss coefficients of the nozzle
and the diffuser are employed. The results show that with a more accurate one of the two correlations,
a better agreement with the multidimensional calculations is yielded. The performance of the pump
can be evaluated by considering the pumping efficiency. The pumping efficiency can be approximately
formulated in two different ways, depending on the average ratios of the outlet flow rate to the inlet
flow rate in the pumping and supply stages. In the averaging process to determine the mean ratios, the
transient region between the pumping stage and the supply stage is excluded. This leads to even closer
agreement to the multidimensional calculations in the pumping efficiency.
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1. Introduction

Microfluidic systems are of interest in medical testing, drug
delivery, chemical analysis, chip cooling and many others.
Microsystems have the advantages of small volume, cheap cost,
high precision and fast reaction time. Micropumps are essential
devices in the microfluidic systems, which provide momentum to
cause fluid flow. The development of micropumps has been based
onvarious principles [1-3]. They can be divided into two categories:
mechanical and non-mechanical [1]. Most mechanical pumps use
oscillatory movement of mechanical parts to drive the flow. Some
examples include check valve micropumps, peristaltic micropumps
and rotary micropumps. In the non-mechanical category, the cause
of fluid flow is mainly via electric-fluid interactions, such us elec-
trokinetic micropumps, electrohydrodynamic micropumps, etc.

In general, mechanical micropumps have higher flow rates than
the non-mechanical micropumps. Among the various mechani-
cal micropumps the valveless membrane micropumps have drawn
much attention in recent years. The actuation of the reciprocating
membrane can be achieved by different ways, such as piezoelectric
discs, pneumatic actuators, thermomechanic actuators, to name
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a few. Most of the membrane micropumps are constructed with
intake and exhaust valves to direct the fluid flow. During minia-
turization of these pumps, the presence of the moving valves
leads to manufacturing difficulties and suffers the risk of wear and
fatigue. Furthermore, if particles are present in the pumps, there is
a concern about valve clogging. To avoid these drawbacks, a novel
idea is to replace the moving valves with fluidic diodes, such as
nozzle/diffuser elements or the valvular conduits. Fluidic diodes
have different flow resistances when the direction of the flow
through the devices is reversed. In the positive direction through
a diffuser the velocity is reduced and static pressure is gradually
recovered. As the fluid flows in the reversed direction, the device
functions as a nozzle and larger loss is caused. Thus, for a recip-
rocating flow through such a device, it performs the function of
directing a net flow in the positive direction. Incorporation of the
nozzle/diffuser elements into micropumps was realized first by
Stemme and Stemme [4] and then by Gerlach and Wurmus [5]. Ols-
son et al. [6] described a flat, planar design with the nozzle/diffuser
arranged in the same plane as the pump chamber. This kind of pla-
nar micropumps can be fabricated using a commercially available
injection-molding machine for compact disc manufacture [7]. This
means that it can be produced in high volumes at low costs.

A simple way to analyze the flow in valveless micropumps is
the use of the lumped-system method. This approach ignores spa-
tial variation and focuses mainly on the time variation. Ullmann
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Nomenclature

AL, At areas of the two ends of the nozzle/diffuser

f oscillating frequency

Fe, Fd convective and diffusive fluxes

h deflection of the membrane

K loss coefficient

Kqa, Kn  loss coefficients of the diffuser and the nozzle

m mass flux

P pressure

Pc pressure in the chamber

Pin, Pout  pressures at the inlet and the outlet

Q volumetric flow rate

Q1,Q2  volumetric flow rates at the inlet and the outlet

r radial distance

To radius of the pump chamber

n radius of the piezo disc

S¢ surface vector of considered face

t time

T one oscillating period

Vi half the maximum volume swept by the membrane

w weighting factor

w oscillating velocity of the membrane

V4 time-dependent variation of the deflection of the
membrane

Greek symbols

B ratio of Q; to Qq

Spc distance vector connecting the principal node p and
the neighboring node ¢

n pumping efficiency

1R real efficiency

11, N2, N3 approximate efficiencies

" fluid viscosity

0 fluid density

Subscripts

c chamber

d diffuser

en entrance

ex exit

in inlet

max maximum value

n nozzle

out outlet

p pumping stage or parabolic profile

s supply stage

t trapezoidal profile

Superscripts

t total value

[8] proposed a simple model based on the principle of mass con-
servation over the pump chamber. With this method a variety of
single-chamber and double-chamber micropumps were analyzed
to find the flow output rate. In the lump model of Olsson et al. [9],
the conservation of both the mass and energy was considered. A
sub-model, based on momentum balance over the membrane, was
included to account for the interaction between the membrane and
the fluid flow. In the study of Pan et al. [10], the movement of the
membrane was modeled by a partial differential equation taken
from the clamped-thin-plate theory. The equations were approx-
imately solved by the small parameter perturbation method and

the Galerkin method. However, the flow unsteadiness within the
micropump was not taken into account. Pan et al. [11] showed that
this inertial force is not negligible, compared with the viscous loss,
in the dynamic coupling analysis.

The recent development of Navier-Stokes equations solvers
has made three-dimensional calculations possible in complicated
geometry. This multidimensional analysis approach can provide
accurate solutions as well as detailed flow field. Nguyen and Huang
[12] reported a numerical simulation of pulse-width-modulated
micropumps with nozzle/diffuser elements. The vibration of the
membrane was modeled by either a moving wall or moving veloc-
ities as the boundary condition. In both models, the interaction
between the structure analysis and flow analysis is neglected. Yang
et al. [13] evaluated the performance of micropumps with two
chambers arranged in parallel or series combination. In the series
arrangement with 90° phase angle difference between the two
membranes, an eightfold increase of flow rate was yielded, relative
to the single-chamber pump. A study of complete coupling between
the electrical, mechanical and fluid systems in a piezoelectric-
actuated micropumps was conducted by Fan et al. [14] using finite
element method and computational fluid dynamics. The behavior
of the membrane at different frequencies, which may affect the
pumping rate, was investigated. It was found that the pumping rate
as well as the deflection amplitude of the membrane increases with
the increasing frequency of the vibrating membrane for frequencies
less than 7.5 kHz. Further increase of frequency leads to degradation
of pumping rate due to the undesirable deflection way of the mem-
brane. The fluid-structure interaction and the electro-mechanical
coupling were also employed in the studies by Yao et al. [15] and
Jeong and Kim [16].

It could be found from the above numerical studies that most
CFD simulations were performed using commercial codes, espe-
cially the CFD-ACE. Recently, a computational procedure based
on the use of the fully conservative finite volume method and
the unstructured mesh was developed for both compressible and
incompressible flows by the group of the present authors [17,18].In
order to analyze the periodic flow encountered in micropumps, this
method is modified to cope with the unsteady state. In addition, a
way to implement the pressure boundary condition, easily applica-
ble to unstructured grids, is addressed. A lumped-system analysis
is also conducted. The lump model is assessed by comparing with
the results obtained from multidimensional calculations.

2. Multidimensional method

A drawing of the micropump under consideration is shown in
Fig. 1. Only half of the pump is considered in calculations due to
its symmetric geometry. The membrane is placed on the top of the
main chamber with a diameter of 6 mm. A piezo disc of diameter
4mm is attached to cause vibration of the membrane. The open-
ing on the left chamber is the inlet and that on the right chamber
the outlet. Both openings have a diameter 1 mm. Nozzle/diffuser
elements are used to connect the inlet and the outlet chambers on
both sides of the main chamber. The length of this element is 1 mm
with a diffusion angle of 7° and the width at the throat is 0.1 mm.
The height of the micropump is 0.2 mm.

The dynamics of the flow in the micropump is modeled by the
incompressible Navier-Stokes equations which can be cast into the
following form:

09 5 (pV8)=uVp +5 (1)
where ¢ represents Cartesian velocity components and the source
S includes the pressure gradients. Integrating the equation over a
control volume, which can be of arbitrary geometry, and using the
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Fig. 1. Configuration of the valveless micropump.

divergence theorem lead to:

%w—wn/m\?-d?=M/V¢-d§+5AV @

where AV is the volume of the considered cell, ¢° denotes the
velocity component at old time step. Here the fully implicit scheme
is used for the time discretization. The convection and diffusion
terms have been transformed into a surface integral form by the
divergence theorem. The convective flux through the surface of the
control volume can be approximated by

FE =" p(V-S)r 3)

where the subscripts f stand for face values, .§f is the surface vec-
tor, and the summation is taken over all the faces of the control
volume surface. The face value ¢y is approximated using a scheme
blending the upwind and the central differences with a weighting
factor of 0.9 biased toward the central difference. The diffusive flux
is approximated by

Fd—Z{MSfZ (be — dp) + 11V (E— St 8)} (@)
N Spc-5p ¥ B

The subscripts p and c denote the centroids of the principal cell and
the neighboring cell on the two sides adjacent to the face f, §pc is
the distance vector directed from node p to node c (see Fig. 2) Vo,
represents the gradient at the face obtained by linear interpolation
from the two nodes p and c.

Fig. 2. Illustration of a typical control volume with neighboring cells.

The coupling between the momentum and the continuity equa-
tions is treated in a manner similar to the SIMPLE algorithm.
The velocities and pressure are collocated on the centroid of
each control volume. To avoid checkerboard oscillations result-
ing from the decoupling between the velocity and the pressure,
the momentum interpolation method is adopted. Details about
the discretization and the method can be found in the studies
[17,18]. However, for unsteady flow the use of SIMPLE algorithm
requires iteration in each time step, which is time consuming.
Therefore, the non-iterative, predictor-corrector procedure of PISO
algorithm [19] is employed. In the predictor step, the momen-
tum equation is solved using the prevailing pressure field. It is
followed by a corrector step in which the velocity and pressure
are adjusted such that the mass is conserved. Although the new
velocity field after the first corrector step satisfies the continu-
ity constraint, the momentum equation is not adequately solved.
The PISO algorithm relies on a second corrector to make the pres-
sure field get rid of the mass imbalance left by the predictor step
and give letter approximation to the momentum conservation. It is
this step to make the PISO different from the SIMPLE and result
in higher computational efficiency even in steady flow calcula-
tions.

For the micropump under investigation, appropriate boundary
conditions must be imposed on both the membrane and the inlet
and outlet. It is usual to specify a pressure difference across the
inlet and the outlet and the flow rate through these boundaries
are sought. To determine the mass flux, or the velocity, at an open
boundary with a specified pressure, one approach is to make an
approximation to the momentum equation in a manner similar
to that used at an internal face. Although this method has been
successfully implemented in steady flow calculations [20,21], it
may not be appropriate in the non-iterative procedure of the PISO
algorithm because the mass is not conserved. In the following, a
method, ensuring conservation of mass, is described. Fig. 3 illus-
trates a control volume P next to an open boundary. The boundary
pressure Py is prescribed at the centroid of this cell. As usually
done for non-staggered grid calculations, an extrapolation prac-
tice is undertaken to find the pressure on the boundary node B.
With this boundary face pressure, the velocity at the node P can
be solved for in the momentum predictor step in the same way
as the other internal nodes. After the mass fluxes through all the
internal faces are calculated using the momentum interpolation
method mentioned above, the mass flux through the open bound-
ary my, is then obtained via conservation of mass in this boundary
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Fig. 3. Illustration of implementation of the pressure condition at a boundary cell.

cell.
iy + > iy =0 (5)

where m1; denotes the mass flux through an internal face and the
summation is taken over all the internal faces.

Since the main concern of this study is the fluid flow in the
pump, the interaction between the fluid and the structure is
neglected. The deflection of the membrane can be modeled by
prescribed shapes. The plate-and-shell theory of Timoshenko and
Woinowsky-Krieger [22] leads to a fourth-order polynomial for the
deflection of a clamped circular plate with uniformly distributed
load. The fluid-structure interaction calculations by Jeong and Kim
[16] showed that the displacement of the piezoelectric membrane
varies in a trapezoidal-like profile. In the present study, the deflec-
tion of the membrane is modeled by a combination of two profiles.
One is of parabolic profile:

2
hp(r) = hmax | 1 - - (6)
rO
The other is of trapezoidal profile:
(1) = s - Max (1, 2= ) %)
o —T1

Here hmax is the maximum deflection of the membrane at the cen-
ter, o the radius of the pump chamber, r; the radius of the piezo disc,
and ris the coordinate in the radial direction. These two profiles are
combined in a linear manner:

h(r) = (1 = w)hp(r) + wh(r) (8)

where w is a weighting factor. The determination of the weighting
factor depends on the pressure difference between the inlet and the
outlet, which will be given later in Section 5. Because of the small
membrane deflection (hmax =1 pwm) compared with the chamber
height (0.2 mm), the influence of the variation of the pump chamber
can be ignored. Instead of the moving wall boundary condition, a
velocity in harmonic motion is imposed on the membrane which
is assumed to be fixed at its neutral position. The time-dependent
variation of the deflection is given by

Z(r,t) = —h(r) cos(2xf - t) 9)
The oscillating velocity is then obtained as
W(r, t)=2xf - h(r)-sin(2xf - t) (10)

Here fis the frequency of the harmonic motion.
The flow in the pump is assumed to be stagnant initially. Cal-
culations proceed until the variation of the flow becomes periodic.

(A)
P, " Pt
in
D Pc ——1
-Q T —— . O
(B)
Pi —— =" Pyt
— > Pc -—
Qp T, e =2
<)
Py =" =" Pout
- - Pc -—
Qi —— . -2

Fig. 4. lllustration of the three modes for the valveless pump. (A) Pump mode:
Pin <Pout < Pc; (B) supply mode: Pc < Pi, < Poyt; (C) transition: Py, < Pc < Poyt.

It will be seen that at least three periods are required to reach the
fully periodic state.

3. Lumped-system method

As shown in Fig. 4, the pumping process is divided into three
modes: pump mode (P, < Pout <P¢), supply mode (Pc <Pj, < Pout),
and transition mode (P, <P¢ < Poyt). Here P¢ is the chamber pres-
sure, P, the inlet pressure, and Py is the outlet pressure. The inlet
pressure Py, is always smaller than the outlet pressure Poyu. The
volumetric flux through a nozzle/diffuser element is related to the
pressure difference across this element by

AP = L kQ? (11)
2A¢

where K is the loss coefficient and A¢ is the cross-sectional area

at the throat. With the mass conservation over the chamber, the

equations governing the three modes can be given in the following:

(1) Pump mode (P;, < Poyt < Pc): The fluid emerges from the cham-
ber due to the high chamber pressure P. The intake element
functions as a nozzle and the outflow element behaves like a
diffuser.

—Q1 + Qy =27f - Vi sin(27f - t) (12a)

Pe = Pout + ﬁk,;(z% (12b)

Pc = Py + —25 K1Q2 (12¢)
2A;

(2) Supply mode (P¢ < Pj, < Poyt): The fluid is forced to flow into the
chamber. Comparing with the pump mode, the functions of the

intake and outflow elements are reversed.
Q1 — Qy =2xf - Vi sin(2xf - t) (13a)

Pe = Pyyt — ﬁKIEQZZ (13b)
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Pe =Py, — ﬁl(éQf (13¢)

(3) Transition mode (P;, < Pc < Pout): In this case, the fluid outside
the outlet flows into the chamber and the outflow element
works as a nozzle. In the mean time, the fluid inside the cham-
ber flows out though the intake element, which also works as
a nozzle.

—Qq1 — Qy =27f - Vi sin(27f - t) (14a)

Pe = Pout — ﬁKﬁQZZ (14b)

P = Py + 2 K1Q2 (14c)
c in 2At2 n'q

In the above, K{ and Kct1 denote the total loss coefficients of the noz-
zle and the diffuser, respectively, and Vi, is one half of the maximum
volume swept by the membrane. It is noted that the flow rates Qq
and Q, are regarded as positive when they are in the direction of
X-axis, i.e., in the direction from the left (inlet) to the right (outlet).
The above equations can be solved to find Qq, Q> and P, if the total
loss coefficients K§ and K are known.

The pressure loss across a nozzle or a diffuser consists of
three parts. The major part is that due to the flow in the noz-
zle/diffuser itself. Other losses result from the sudden contraction
at the entrance as well as the sudden expansion at the exit. The
total loss coefficients can be expressed as [23]

Kct1 =Kgen +Kq + ﬁKd ex (15a)
! AL !
t A 2
K, = /‘TL Kn,en + Kn + Kn,ex (15b)

where A¢/Ay is the area ratio of the two ends of the nozzle/diffuser
with A; being the smaller one and A; the larger one. For sharp-
edge entrances, as in the present study, K en =Knen=0.4 and for
exits, Kq ex =Kn,ex = 1 regardless of the shape of the exit region [24].
The major loss coefficients, in general, depend upon the Reynolds
number, or the flow rate. To simplify the problem, both K and K,
are assumed to be a function of one half of the instantaneous flow
rate displaced by the membrane:

Kq(t) = Ka(Q(t) = 7fVin|sin(27ft)|)
Kn(t) = Kn(Q(t) = 7fVim|sin(27ft)])

Three-dimensional simulations have been conducted to find the
correlation between the loss coefficients and the flow rate. The
geometry of the nozzle/diffuser element is the same as that used in
the present micropump. The results (model A) are shown in Fig. 5.
It is not surprised that the total loss coefficient for the nozzle K¢
is greater than the total loss coefficient for the diffuser Kfj. The
relationships can be expressed as

K§ =1.315x 107'Q %92 4 0.5981

(16a)
(16b)

(17a)

Kf =1.173 x 10°°Q 08112 1 1.204 (17b)

In determination of the above correlations, three levels of grid
with 15,000, 33,600, and 53,760 cells were tested. It was revealed
that only minor differences were detected among the results for
different grids.

A model was proposed by Yang et al. [25] to correlate the
pressure loss and the Reynolds number for the flow through a
micronozzle/diffuser. Employing this model leads to the following
correlations:

K =1.5838 x 1078Q 0999 1 0.602 (18a)

6
5 Knt
—————— Kd'
4
=
X
L 3
©
¥ model B model A
2
i .
r |
0 [ I BT P L1
0 1E-07 2E-07 3E-07

Flow Rate(mafsec)

Fig. 5. Variation of the loss coefficients against the flow rate for the nozzle and
diffuser for the two models.

Kt =1.5838 x 1078Q 0998 1 1.081 (18b)

They are also shown in Fig. 5 as model B. The correlations for
the two models are valid for Reynolds numbers less than 400. The
flows in the present micropump fall in this range.

4. Pumping efficiency

The real efficiency of the membrane pump is defined by

_AQ
= 2Vm

Here AQ is the net volume of the flow through the pump in one
period T and 2V}, is the volume swept by the membrane from the
top dead center (TDC) to the bottom dead center (BDC). The change
rate of volume of this harmonic motion can be written as

C‘;—‘t/ = 27fVin sin(27ft) (20)

The net flow volume through the pump in one period T is
obtained from

T
AQ=1 / (Q0) - Qi(0)) de (21)
0

R (19)

where Q; is the flow rate into the chamber at the inlet and Q, that
out of the chamber at the outlet. We assume that Q; varies in a
harmonic manner similar to the membrane:

Q(t) = Qm sin(27ft) (22)
Then
O T
AQ = 7/ (B(t) — 1) sin(2xft)dt (23)
0
where B is the ratio of the outlet flux to the inlet flux.
_ Q1)
BO= 50 (24)

The change rate of the chamber volume dV/dt is equal to 2Q;
approximately. Thus,

Qm

Vmn=—
m f

(25)
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Substituting Egs. (23) and (25) into Eq. (19) yields an approximate
pumping efficiency denoted by nq:

T
nm= %f/ (B(t) — 1) sin(2xft)dt (26)
0

The formulation can be further simplified if the flow rate can
be represented by some constants. It was seen that the variation
of the ratio is considerably flat in either the pumping stage or the
supply stage except near the transition region. Two average flow
ratios corresponding to the pumping stage and the supply stage
are defined as

5 97/20
B =—/ B(t) dt (27a)
PoaT T/20
5 19T/20
Bs = —/ B(t)dt (27b)
2T 117/20

The reason for the integration over 2T/5 only is to avoid the tran-
sition region, which will become clearer in the case tests shown
later. Eq. (26) can then be integrated to yield:

T

f /2
=4 [/ (Bp — 1) sin(2xft)dt +
0

(Bs — 1)sir1(27rft)dt]

T/2

1
3(Bp—Fo) (28)

This pumping efficiency only depends on the constant ratios Bp
and Ss. It is noted that in general, 8, >1 and s <1.

Another simplified form of pumping efficiency can be derived
from the following assumptions for Q; and Q, in the first half
period:

Qi(t) = Q1 sin(27ft) (29a)
Qo(t) = Qm2 sin(27ft) (29b)
Thus,
/2 1
AQ = / (Qa(t) — Qi(¢)) dt = ;f(an —Qm1) (30)
0
Since
1
Vm = ﬁ(le + sz)a (31)
The pumping efficiency can be given by
Qm2 — Qm1
_ 32
n3 Qo T Ot (32)
Let
_ Qm
Bp= Ot (33)
It is obtained
_Bp-1
N3 = Bo i1 (34)

In the multidimensional and lumped-system analyses, B}, is esti-
mated using Eq. (27a). It is interesting to notice that the same
expression for the pumping efficiency 13 can be found in the study
of Olsson et al. [4] by replacing B, by the square root of efficiency

of the nozzle/diffuser nrlléz where

K,
Mnd = ﬁ (35)

1.1
1 = g2

3 =t S G
£ o0 Y —— 5 C NN D A
E | [T
8 08
(]
14
g o7 —5— Mesh=65288
i - -©- - Mesh=117232
g 0.6 ——-A—-— Mesh=210258

PR TS S T  TRN TRN SN T T S T TN [N TN SN T N |

1
1 2 3 4 5 6
Period Number

Fig. 6. The net flow rates in each period for different levels of grid for the case P, = 0.

Kn and Ky are loss coefficients of the nozzle and the diffuser, respec-
tively. It can be noticed from Eq. (11) that for a constant pressure
loss across a nozzle/diffuser, K12~ 1/Q.

5. Results

The settings of the geometry of the micropump are given in
Fig. 1. It is assumed that the membrane reciprocates in a harmonic
motion with a frequency of 2200 Hz. The maximum amplitude of
the vibration is 1.0 wm. The large ratio of the chamber height to the
vibration amplitude justifies the use of moving velocity instead of
moving surface as the boundary condition. Zero pressure is spec-
ified at the inlet and various back pressures Py, ranging from 0 to
5900 Pa, are set at the outlet. Calculations were undertaken for a

(a) 1.5E-07
1E-07
5E-08

0

-5E-08

Flow Rate (m?3/s)

-1E-07

-1.5E-07

1E-07 |-

—
(=2
~

5E-08

Flow Rate (m?3s)

-5E-08

-1E-07

2
t/T

Fig. 7. Variation of the flow rates at the inlet (Q;) and outlet (Q,) for (a) P, =0 and
(b) P, =5310Pa.
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Nozzle/Diffuser 1

Nozzle/Diffuser 1

Nozzle/Diffuser 2

Nozzle/Diffuser 2

Fig. 8. The plots of streamlines and pressure contours in the two nozzle/diffuser regions at t=T/4.

number of periods. The net flow rates averaged over each period
for different levels of grid are given in Fig. 6 for the case with P, =0.
It can be observed that it takes at least three periods for the flow to
become fully periodic.

The pumping effect caused by the valveless micropump
becomes clear by viewing the variation of the flow rates —Q; (neg-
ative value of Q) and Qy, as shown in Fig. 7. For the case P, =0 the
flow rate at the outlet Q, is higher than the flow rate at the inlet —Q;
in the first half of a period (the pumping stage) due to the diffuser
function of the element connecting the outlet chamber and the noz-
zle function of the element connecting the inlet chamber. In the
second half of the period, the absolute value of Q; becomes lower
than that of Q; because the flow direction is reversed (the supply
stage). The flow rate Q, can be approximately expressed by a sinu-
soidal functiona + b sin wt and the flow rate —Q; by—a + b sin wt. The
constant a represents the net flow rate. For the case P,=5310Pa
the variations of the flow rates —Q; and Q, are very close to
each other and the net flow rate, or the constant a, approaches
zero.

To illustrate the flow field, the plots of streamlines and pressure
contours in the two nozzle/diffuser regions at t=T/4 and 3T/4 are
shown in Figs. 8 and 9, respectively. At t =T/4 in the pumping stage,
the flow is directed from the main chamber toward the inlet and
the outlet chambers. The discharge element on the left functions as
anozzle and that on the right as a diffuser. The pressure decreases

gradually is the nozzle whereas the pressure drops sharply at the
entrance of the diffuser and then recovers gradually. It can be seen
that there exists a recirculation zone near the entrance corner in
the nozzle and another recirculation zone before the fluid enters
the nozzle. The former is caused by the sharp entrance while the
latter is due to the fact that as seen in Fig. 9 for t = 3T/4, the recircula-
tion formed by the flow emerging from the nozzle/diffuse element
in the supply stage persists and moves down toward the central
region during the pump stage. The recirculating flow leads to a low
pressure region at the entrance of the nozzle and, thus, causes addi-
tional losses. The flow type is reversed in the supply stage at t =3T/4.
It can be detected that both the velocity and pressure fields in Fig. 9
are very similar to those in Fig. 8 except that the roles of the two
nozzle/diffuser elements are interchanged.

The multidimensional solution procedure is validated by com-
paring the predicted net flow rates with the measurements of
Olsson et al. [7], as shown in Fig. 10. The calculations were per-
formed using the parabolic, trapezoidal, and blending profiles, as
given by Eq. (7). As expected, the net flow rates decrease when the
back pressure increases. In general, the flow rates are overpredicted
by using the trapezoidal profile, especially for sufficiently large P,
and underpredicted when the parabolic profile is employed. The
higher flow rate obtained by using the trapezoidal profile is due to
its larger volume displacement. The strategy in the blending pro-
file is to use the trapezoidal profile at P, =0, the parabolic profile

Nozzle/Diffuser 2

Nozzle/Diffuser 1

- 10000
- 15000
- 20000
- 25000 i
-30000 Nozzle/Diffuser 2
-35000
-40000
-45000
-80000
- 55000
-B0000
-65000

Fig. 9. The plots of streamlines and pressure contours in the two nozzle/diffuser regions at t=3T/4.
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Fig. 10. Comparison of predicted net flow rates using different membrane profiles
with measurements at various back pressures.

at P, =5900 Pa, and a linear combination of the two in between. As
seen from the figure, the resulting flow rates become much closer
to the experiment data.

Calculations were conducted using grids with 65,288, 117,232
and 210,258 cells. The computational time step is T/400 for the
two coarse meshes and is reduced to T/800 for the finest mesh to
suppress instabilities which may lead to divergence of the solu-
tion procedure. As shown in Fig. 6, moderate differences in the
results for different meshes could be detected. No further efforts
were taken to find fully grid-independent solutions due to too
much computer resources required. However, it can be concluded
from the above tests that with a suitable membrane profile accu-
rate results can be obtained. The multidimensional results serve
as benchmark solutions for the lumped-system analysis to com-
pare. Two different expressions have been described to correlate
the loss coefficients and the flow rates for the nozzle/diffuser ele-
ment. Egs. (17a) and (17b), termed model A, were obtained from
the multidimensional simulation for the nozzle/diffuser configura-
tion considered in the present study. Egs. (18a) and (18b), termed
as model B, were adopted from the study of Yang et al. [25]. The
resulting flow rates at the outlet (Q,) in one period are presented
in Fig. 11 for back pressures P, =0 and 5310 Pa. The first half of the
period corresponds to the pumping stage and the second half the
supply stage. The positive Q, indicates the flow out of the outlet.
It is seen that the curves by the models follow the multidimen-
sional results closely for the case with P, =0. It can be detected
that the values of Q, at t/T=0 and 1 are not zero in the multi-
dimensional calculations due to the inertial effect of the flow at
the end of the supply mode. This effect is not accounted for in the
lump models. The differences between the multidimensional simu-
lation and the model results increase with increasing back pressure.
There appears non-smoothness in the variation of Q, obtained by
the lumped-system analyses in the transition region between the
pumping stage and the supply stage. This is also ascribable to the
inertial effect not taken into account. It is noted that the driving
momentum of the membrane is low in the transition stage and,
thus, the inertial effect becomes more prominent. When a pressure
difference exists between the inlet and the outlet, the variation of
the pressure in the chamber becomes not so regular, resulting in
the kinks seen in Fig. 11b. Comparing with the multidimensional
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Fig. 11. Variation of the flow rates at the outlet in one period predicted by the 3D
simulation and the two lump models for (a) P, =0 and (b) P, =5310 Pa.

simulation, closer agreement is obtained by the model A. This is
evident in Fig. 12 by examining the real efficiency 7.

The variation of the flow rate ratio 8(=Q,/Q ) is shown in Fig. 13.
Generally, the value of 8 is greater than 1 in the first half of the
period (the pumping stage) and less than 1 in the second half (the
supply stage) in the case P, =0, implying a net flow from the inlet to
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Fig. 12. Comparison of the real efficiencies predicted by the 3D simulation and the
two lump models.
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Fig. 13. Comparison of the flow rate ratios § in one period obtained by the 3D simulation and the two lump models for (a) P, =0 and (b) P, =5310 Pa.

the outlet. In the pumping stage, the curve obtained by the multidi-
mensional simulation is of concave type and those by the two lump
models are of convex type. The curve types for the multidimen-
sional simulation and the models are interchanged in the supply
stage. The different types of curves are believed to be caused by the
inertial effect being absent in the lump models. With P, =5310 Pa,
there is almost no net flow. This is reflected in the fact that the val-
ues of 8 become close to one, as seen in Fig. 13b. In contrast to the
case Py, =0, the curves for the multidimensional simulation and the
two models are of the same type.

It can be seen from the above figure that the value of 8 may
approach positive or negative infinity and completely different
characteristics in 8 appear in the multidimensional calculations
and the model predictions in the transition region. This is the rea-
son why the two mean flow ratios Bp and fBs, appearing in the
simplified formulations for pumping efficiency (1, and n3), are esti-
mated by averaging over 4T/5 only in the corresponding first and
second halves of a period to avoid the transition region as done in
Egs. (27a) and (27b). The variations of B, and f; for different back
pressures are displayed in Fig. 14. Obviously, by using the model A
the agreement with the multidimensional simulation is closer. As
shown in Fig. 15, the approximate efficiencies 1, and 73 obtained
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- e Lump Model A

= == = LumpModelB ¥
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0.8
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0 2000 4000
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Fig. 14. Comparison of the flow rate ratios 8, and Bs obtained by the 3D simulation
and the two lump models.
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Fig. 15. Comparison of the predicted efficiencies 1, and ns; by the 3D simulation
and the two lump models.

from the multidimensional simulation are only marginally lower
than the real efficiencies nr. The under-estimate of the approxi-
mate efficiencies by the lumped-system analysis is considerable,
with the model A being the better. The comparison between the
two approximate efficiencies indicates that ns is slightly better at
high back pressures. It is of interest to notice that comparing with
the real efficiencies ng obtained from the lumped models shown in
Fig. 12, the approximate efficiencies 7, and 73 of the lump models
are even closer to the nr obtained by the multidimensional cal-
culations. This is ascribed to the smart ignorance of the transition
regions in calculating Bp and fs.

6. Conclusions

A CFD solution method has been developed to examine the
unsteady flow field prevailing in the valveless micropump. The con-
servative equations are solved using the finite volume approach
within the frame of unstructured grid. The pressure bound-

ary conditions specified at the inlet and outlet openings are
tackled using a mass conservation treatment, which is more
appropriate for unsteady flow calculations. The vibration of the
membrane is modeled by a reciprocating velocity boundary con-
dition derived from a harmonic motion. The deflection of the
membrane during vibration is assumed to be of a shape blend-
ing the parabolic and trapezoidal curve profiles. The different
characteristics of the nozzle and the diffuser results in a net
pumping flow from the inlet to the outlet. The agreement in the
net flow rate between predictions and measurements is satisfac-
tory.

The performance of the micropump has also been analyzed
using the lumped-system method. In the lump model the relations
between the loss coefficients and the flow rates for the nozzle and
the diffuser are expressed in two descriptions. One of the two cor-
relations is obtained by the multidimensional simulation for the
considered nozzle/diffuser element. With this specially tailored
correlation, a better agreement with the CFD calculations has been
achieved.

The pumping performance depends upon the ratio of the outlet
flow rate to the inlet flow rate. Comparing with the multidimen-
sional calculations, the variation of the flow rate ratio is quite
different in the lumped-system analysis, especially in the transi-
tion region between the pumping stage and the supply stage, due
to the inertial effect not taken into account in this simple method.
The pumping efficiency of the pump has been formulated in two
simplified expressions which are functions of the mean ratios of
the two flow rates. In the averaging process to determine the mean
ratios in the pumping and supply stages, the transition regions are
ignored to reduce the influence of the inertial effect not accounted
for in the lumped-system analysis. This simply results in better
agreement with the CFD calculations in terms of the pumping
efficiency.
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