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The Successive Deceleration Model of Kinetic

Traffic Flow

Student * Yu-Hsuan Fu Advisor : Hsun-Jung Cho

Department of Transportation Technology and Management

National Chiao Tung University

Abstract

In order to develop traffic control to solve traffic problem, we need sufficient
information. The related and the most:ithportant information is to estimate quantity of
traffic flow. Developing traffic flow model.is-one -of ways to research. However, the
research about mesoscopic traffic flow, gas-kinetic traffic flow, is not yet complete so
we want to review some important researches and arrange the focus. And we construct
a gas-kinetic traffic flow model mn orderto/describe real traffic more.

In this research, we introduce wuniform deceleration with physical meaning to
relax instant velocity-changing and not consider finite space in interaction term and
construct a new model. Then we use momentum function to obtain three macroscopic
models with density c(X,t), average velocity V(x,t) and variance @(x,t). We use
characteristic velocity, equilibrium and numerical simulation to analysis the accent of
our model, and we know our model could describe more phenomenon than others.

Compared with different uniform decelerations in different passing probability
conditions, we could observe that different uniform decelerations make difference in
smaller passing probability. Different uniform decelerations make no difference in
bigger passing probability, because cars use few uniform decelerations in dilute traffic.
Therefore, our research could describe more traffic phenomenon. Besides, we explain
our thought and the meaning of our model clear, and record mathematic processes
explicitly. We hope this research could help those who are interested in mesoscopic

traffic flow and help the development of real application.

Keyword: Mesoscopic Traffic Flow, Gas-Kinetic Traffic Flow, Instant

velocity-changing.



‘H‘J&"

[ER

wo
LRAEHP S - R TRED AE O FRER L A E SRR
P B R RENBRAE B2 Eehi g e FAK L FN A B T
TE & :p,:zfﬁl A St R R P A B EOpE R A RE T R E
NH AR v BE L v W E B B L PR - B AT cnARFTARAR
P 3 0 Boeniip AR » g R 0 G g BT B A P B g o W~ FT A
Fo BE A PR LEORGHHT L EH A ERE AR R
FcvpanEf - BRI AHEFFAFL Y fles > BF AT R
PTe% sbanana >~ v FES TR TRE YW S ZSGEE S LREL &
Mo B PSR R AR 0 LA Fo Az d b R
P RSV E Y g al P & AP T B > — A3 AR 4T
PR - ALFTHRFEAVESE O BEIP AAE 0 L 7
F AR iR g A
BELE M T o
AR ek AR IP - Lok N

1*
B &
B fo B R A

%
’j'\'zg ﬁé§$m’}§§g a;g
’)Z > ™)
;ud—\. b ‘t}i\:/&]—ﬁ'\ﬁﬁfrr?‘%’lhﬁ 8 lramﬁrf‘}\gmil
TR

o+
) -

%fr,/

kS

AtE
23
-

4k

%

WiEfed & > A NEE

F_*
s

Tk

|

3 =
il 4 B e B
—A\}i@ﬁjﬂ—;*\,\j] 2 2.

o

e
1=

)

_‘a
i
l-r'

*
AR e E A4S
N RT 0 HRRR P e

’5:]‘1 ”?»\,1;35?5»\/,}



Chapter 1
11
1.2
1.3
14
Chapter 2
2.1
2.2
2.3
24
Chapter 3
3.1
3.2
3.3
Chapter 4
41
4.2
4.3
4.4
4.5
Chapter 5
5.1
5.2

5.3

Contents

INEFOTUCTION ... e st 1
Research MOTIVATION .........ccooiiiiiiice e 1
RESEAICN PUIPOSE ...ttt 3
RESEAICN SCOPE ....vvvieieeie ettt e st 4
RESEAICN PrOCEAUIE.......coueeiiieiieee e 5
LItErature REVIEW.........ooi i 8
One-Lane and ONe-Class .........cccviieiiiieniee e 8
Multilane and MUIEICIASS............ooiiiiiiii s 11
REAITANGE PAPEIS ..ottt 13
SUMMATY .t i e 15
Construct Mesoscopic Traffic Flow:Model ............ccccooeviiiiiiiiiieienen, 17
The QUuestion DeSCHIPLION ...ttt it e eee e e ee e e ee e re e 17
Model CONSEIUCTION " i, i et e 18
SUMIMAIY ...t e s nbb e e s bneeen 22
MacCroSCOPIC MOTEN .........ooiiiieiee e 23
T U 1] 01 o] o USSR 23
DENSItY EQUALTON.......oitiiiiiieiie e 26
Average VeloCity eqUatioN...........ccccoeiieie i 28
WATTANCE.. .ttt sttt et be e st e e b e be e nreenbeenee e 33
SUMIMAIY ...t e b e e aneeen 40
Characteristics Analysis of Macroscopic Models...........ccoocevveiieicnnnne. 41
Characteristic Velocity ANalySiS .........cccevveveiieiieic e 41
EQUIIBIIUM ANAIYSIS ... 45
Numerical Simulation ANAIYSIS ........cccviiveiieiiie e 48



5.4 SUMIMATY ... bbb e s b e s rneeea 64

Chapter 6  Contribution and Future WOrKS..........cccooiiriiiii i 66
6.1 CONIIDULION ... 66
6.2 FULUIE WOTKS ... .ottt 67
RETEIENCE. .. o 68
APPENTIX A ettt b et b et et R b et e Rt be et re e beeneenreas 70
APPENTIX B = SYMDOIS......eieieiieciee et 71
Lo VariabIes. ..o 71
2. CONSLANTS.....uiiiiiie i 72
3e FUNCHIONS . .. 72
4. VBCIOIS..ii i 73



Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1-3-1

1-3-2

1-4-1

2-3-1

2-3-2

5-1-1

5-3-1

5-3-2

5-3-3

5-3-4

5-3-5

5-3-6

5-3-7

5-3-8

5-3-9

5-3-10

5-3-11

5-3-12

5-3-13

5-3-14

5-3-15

5-3-16

5-3-17

List of Figures

The relation of microscopic, mesoscopic, and macroscopic traffic flow

7010 (=] IR 4
RESEAICN SCOPE ....veveeieetiectee ettt nne e 5
The flowchart Of ThiS RESEAICK .....eveeeeeeeeeeeeeeee e 7

The More Important Contains of Recent Ten-Year Gas-Kinetic Traffic

FIOW MOGEIS ... 13
Rearrange the Characteristics of Important Papers..........ccccocvevveiirninnne 15
Dilute and Heavy TraffiC..........cccoeiviiiiiieecc e 44
Density Changing L.........cocoiieeiieiiee e 50
Density ChangiNg 2......c.occeiieieiiesieie e sre e enees 51
Density Changing 3.k il e 51
Average Velocity Changing Lol i e 52
Average Velocity Changing 2 ... .ot 52
Average Velocity ChanQing 3 ...ttt eieereeieiieene e e esie e e 53
Traffic Pressure Changing L........ccoccooieiiiiiiiniieie e 53
Traffic Pressure Changing 2.........ccccveveieeieiieieeie e 54
Traffic Pressure Changing 3........cccovvieiiiiiiiiiieee e 54
Variance Changing L.....c.cooveceiieiieie e 55
Variance ChangiNng 2 ......cocooeeiieiiiie e 55
Variance Changing 3 .......cooveoeiieiiee e 56
Passing Probability =0.7 ... 57
Passing Probability =0.8 ..........cccoooiiieie e 58
Passing Probability =0.9 ... 58
Passing Probability =0.99 ... 59
Density in p=0.99 and DIfferent a...........cccooeverieninniiie e 60



Fig. 5-3-18 Density in p=0.7 and Different a..........cccccocvevviie i 61

Fig. 5-3-19 Average Velocity in p=0.99 and Different a..........ccccccooeviiiviiniiienennne 61
Fig. 5-3-20 Average Velocity in p=0.7 and Different a..........ccccoeevvevviienieiecieenn, 62
Fig. 5-3-21 Variance in p=0.99 and Different a..........ccccooceeveniininiinie e 62
Fig. 5-3-22 Variance in p=0.7 and Different a.........ccccoccvvvveviniesiesiieie e 63



Chapter 1  Introduction

1.1 Research Motivation

In recent decades, the auto industry grows vigorously and the proportion of
possession of the car rises year by year because of the factors, such as the demand of
economic development. Accounting the materials of The Directorate General of
Budget, Accounting and Statistics (DGBAS) of Executive Yuan [1], it shows that the
registered car has already been up to 6,380,000 till 2004, there are 0.73 cars in
average each family, and the traffic accident piece is up to 137221. There are 72.83
accidents in every ten thousand cars by accounting the vehicle, and average death rate
is 1.4 people in every ten thousand cars by accounting the vehicle. Both are higher
than in Japan and Britain, etc. Therefore, to develop effective method to control traffic
is the important topic in order ta:solve the-traffic problem in our country.

However, it needs sufficient information to develop good traffic control. The
most important and difficult to estimate one is the prediction of the flow of car in
relevant information, and the development of traffic is the research in this direction.
The models of mathematics could be used in the description of various kinds of the
systematic physical phenomenon, and the traffic systems include drivers, vehicle and
road states, etc. We could built and construct the studies of mathematical models to
describe complicated driver's behaviors. Therefore, this research wants to build the
way to construct a road traffic flow situation.

The general traffic theory could be divided into three kinds: microscopic,
macroscopic and mesoscopic. According to the descriptions of scholars, such as
Hoogendoorn and Bovy (2001) [2], etc., Microscopic traffic flow model is describing
the relationship between driving behavior, and uses parameters to describe the
individual's behavior in detail, for instance: car-following model. Macroscopic traffic

1



flow model based on the relation of flow, velocity and density treats every car in
traffic flow which is unable to identify alone with the view of the continuous fluid.
The basic theories have average concepts. Mesoscopic traffic flow model is correlated
with macroscopic traffic flow model and microscopic traffic flow model. Based on the
relation of distance and density, mesoscopic traffic flow model builds on the distances
between two cars in microscopic traffic flow model and density in macroscopic traffic
flow model. Mesoscopic traffic flow model describes the individual behavior in the
form of probability distribution, which basic theories are set out by the dynamics
theory.

Among three model of traffic flow, it is difficult to be used in dynamic
simulation for carrying the simulation out wastes time. That's because macroscopic
behavior is unable to catch and micrescopic model has a lot of parameters. Therefore,
in order to describe the micro behavior, and .offer information of macroscopic
behavior, we need to use mesoscopic’traffic-flow -model. Mesoscopic traffic flow
model could be said that it is a bridge connecting microscopic traffic flow model and
macroscopic traffic flow model.

According to the scholars, such as Hoogendoorn and Bovy (2001) [2], etc., they
divide mesoscopic traffic flow model into three kinds: headway distribution model,
cluster model and gas-kinetic continuum model. This research wants to use the
gas-kinetic equation of mesoscopic traffic flow to develop the foundation of the traffic

flow.



1.2 Research Purpose

The traffic flow theory could be divided into three big classes: macroscopic,
mesoscopic and microscopic traffic. Our nation has a lot of relevant research about
macroscopic and microscopic traffic flow model at present, but the relevant research
about mesoscopic traffic is not complete so far. There are still a lot of topics about
mesoscopic traffic that need to be discussed and studied. For this reason, by reviewing
the more important mesoscopic gas-kinetic traffic flow model, this research puts its
important contribution and characteristic in order to make it easier to understand for
those who interest mesoscopic gas-kinetic traffic flow model. By showing this
research, it may offer some materials to the follow-up topic persons.

The research will focus on the gas:kinetic traffic flow model of mesoscopic
traffic flow with the introduction:of therphysical significance of considerable items.
Its properties will be included in and build-a new mesoscopic traffic Kinetic equation.
It could be more accurate to describe-the traffic flow cases, and ease the conditions of
mesoscopic traffic equations which have not'been relaxed or unreasonable originally.
Through mesoscopic model integration, using the GMM function, this research could
get Macro-parameters  density c(x,t) average velocity v(x,t) and variance
6(x,t) combining the formula. Then we use the deterministic and numerical
simulation to analysis the characteristics of the model. We hope that the establishment
of mesoscopic gas-kinetic traffic flow model could be more realistic, and help those
whom interested in mesoscopic traffic flow. We even hope that it could be good to

real application.



1.3 Research Scope

This research focuses on the gas-kinetic equation of mesoscopic traffic flow,
which has a relation between microscopic traffic flow and macroscopic traffic. Its
relation could be put in order as the following picture 1-3-1 by Hoogendorn and Bovy

(2001) [2].

MICROSCOPIC
traffic flow
models

microscopic basis of gas-kinetic car-following models (Payne (1979))

models (Klar and Wegener (1998)) particle methods (Ysertant (1997))
CA-models (Nagel (1998))
particle discretisation

(Van Aerde (1994),
Hoogendoorn and Bovy (2000))
continuum continuum
MESOSCOPIC o MACROSCOPIC
traffic flow
models

traffic flow
models

method of moments
(e.g. Leutzbach (1988))

Fig. 1-3-1 The relation of microseapic, mesoscopic, and macroscopic traffic
flow model

Data Source: Hoagendorn-ahd Bovy (2001) [2]

This research range is fixed on the behavior factors needed considering in
Microscopic. Considering these microcosmic factors, we establish mesoscopic traffic
flow model to be macroscopic model via integration. It could be convenient to study
its characteristics and be used in on-line dynamic simulation in Macroscopic traffic
flow model in future.

Subdividing the research scope, the research scope of this research is as the
following picture 1-3-2, and the research scope is fixed on the description of the

non-interrupt traffic flow, for example: on freeway.



Dynamic
Traffic Model
|

Resgdarch Scope Non-interruption Traffic
Flow Model

\ 4

Interruption Traffic Flow
Model

l

Dynamic Path Flow and Travel Time
Prediction

Fig. 1-3-2 Research Scope

Data Source: Cho and Lin (2004) [3]

1.4 Research Procedure

This research procedure is like Fig 1-4-1. Every step is illustrated in detail as

following.
1. Describe and define the question

According to the development of mesoscopic traffic flow understands the
development condition of gas-kinetic equation in mesoscopic traffic flow at present,
submit the topic of the traffic gas-kinetic equation wanted to study, and do an intact

description of the topic and define motivation and objection of this research.



2. Collect and review literature

Collect relevant literature probing into traffic gas-kinetic equation of the both in
our country and abroad, and review the limiting conditions and contribution of these
documents. From the velocity of vehicle assigned function to describe the traffic flow
by Prigogine and Andrews (1960 ) [4] earliest, which set up the young type of
gas-kinetic equation, to the follow-up research based on the Prigogine' s and Herman'
s (1971) [5] models which are more expanded and improved, this research is by
reviewing the literature pluses and minuses to discuss the restriction and suitability of
these literature in order to help the traffic gas-kinetic equation of this research to be

set up.
3. Construct the model

Build a conceptive mesoscopic gas:-Kinetic traffic flow model, and describe its
every parameter and each physics meaning represented by consulting and collecting

the literature and materials according to the question that we describe and define.
4.  The deriving in Macroscopic traffic-mode

Use the zeroth-order approximation _of-local equilibrium, and utilize moment

function to integrate mesoscopic traffic flow model into Macroscopic traffic mode.
5.  Analyze

Analyze the characteristic of the model, for example: characteristic velocity,
equilibrium, and etc. Analyze the obtained result, and then analyze the rationality of
its result. Last, observe the characteristics of the model by way of numerical

simulation.
6. Conclusion and suggestion

Propose conclusion and suggestion to the course and result of this research.



Describe and Define the Problem

A

Collect and Review Literature

A

Construct the Gas-kinetic
Traffic Flow Model

A

Acquire Macroscopic Traffic
Flow Models

_— T~
/ \\
_— T~
P A T

Characteristic Numeric Simulation

Velocity Analysis Lt pallysils Analysis

Contribution and Future Work

Fig. 1-4-1 The flowchart of This Research




Chapter 2 Literature Review

In this chapter, we go through the literature on the subject of kinetic traffic flow
theory to understand the development of mesoscopic traffic flow at present. Then we
set the topic to research. There are four sections. In the first section, we review
one-lane and one-class traffic flow model. In the second section, we review multilane
and multiclass traffic flow model. And we rearrange papers into figures in the third

section. Finally, we conclude the results of the research topic.

2.1 One-Lane and One-Class

Gas-kinetic continuum model is proposed by Prigogine and Andrews (1960) [4]
who describe traffic flow with velocity distribution function. Then Prigogine and
Herman (1971) [5] arrange those papers about-gas-kinetic continuum models into a
book. Their model is assumed ta:be in an infinite.freeway with low density, it does not

considered interaction between drivers.. There is'a velocity distribution function

F(%V.1) given certain time t and'space X. Their kinetic traffic flow model could be

representing as the following.

of of

_) rel T (_)int

ot ot (2.1)

Where, the first term of the right-hand-side of the equation of (2.1) is

df of of
d ot OX

“Relaxation Term”. It results from the different between real and desired velocity, so it

could be shown as the equation (2.2) with exponential law.
f—f,
T (2.2)

of
(E) rel —

Where, fo(x,V.1)

means desired velocity distribution function (Prigogine, 1961)
[6], and it means the distribution of velocities that drivers want to drive. And the

second term of right-hand-side is “Interaction Term”.



(%)int = (x,v,t)c(x, )[V(x,t)-v]lL- p) (2.3)

Where, p means passing probability, c(x,t) means density, V(x,t) means
average velocity. The interaction term shows that the faster (the latter) one car meets
the other slower (the former) one without passing, the faster one needs to decelerate in

order to avoid collision. Hence, the model of Prigogine and Herman (1971) [5] is the

following.

%+v%:—%+(l— p)c(V —v) f (2.4)

They use velocity distribution function f(x,v,t) to show main functions of
macroscopic traffic flow, local density and flow.

Local density function

clx;t) = j dvf (x,v,1) (2.5)
0
Local flow function
q(x,t) = (X, OV(x,t) = j dwvf (x,v,t) (2.6)
0
Dispersion of velocity
c(v-v)? = Ojodv(v—V)Z f(x,v,t) (2.7)

0
Where, f(x,v,t), c(x,t), and g(x,t) are continue functions. We could know
that velocity distribution function f(x,v,t) is a main role in mesoscopic traffic flow
and it also relates microscopic and macroscopic traffic flow.
After Prigogine and Herman (1971) [5], there are many scholars improve their
model. Paveri-Fontana (1975) [7] is one of them, and he considers Phase-Space

Density (PSD) g(x,v,w,t). Where, w means desired velocity. He replaces velocity



distribution f(x,v,t) and desired velocity distribution function fo(x,w,t) with

PSD, showing as the followings.

f(x,v,t) = j(;”dwg(x,v,w,t) (2.8)

fo (X, W, t) = j(;” dvg (x,v,w,t) (2.9)

In Pavery-Fontana’s (1975) [7], he proposes a lot of shortcomings of the model

of Prigogine and Herman (1971) [5] as the followings.

1. The constant relaxation time of relaxation term is unreasonable.
2. In interaction term

I When the faster car passes the slower one, the velocity of the faster car
does not change.

Il When the faster car passes the slower one, the velocity of the slower
one does not change,

I11  Ignore the effect of car fength!

IV The faster one car meets-the other slower one without passing, the
instant velocity-changing is unreasoenable.

V  They only consider the interaction of two car, not many cars.

VI The passing process, one car passes one car or one platoon, is
unreasonable.

VIl Assume two cars are vehicular chaos.

There are many scholars try to relax those above unreasonable assumptions.

10



2.2 Multilane and Multiclass

According to the section 2.1, we review the models of Prigogine and Herman
(1971) [5] and Papery-Fontana (1975) [7]. Many researches depend on those above.
Gas-kinetic traffic flow model advances to multilane and multiclass one. In this

section, we first review the multilane model of Helbing (1997) [8-9]. He defines j as

lane index, g;(x,v,w,t) as ML-PSD of j lane.

019 +VOx9j =(0t9)rel + (@19 )int + (@9 j)vc + (619 j)ic +nj —nj (2.10)

Where, the first term of the right-hand-side (0;gj)re is “Relaxation Term” and
the second term (99 j)int is “Interaction Term”, and those meanings are the same as

the previous section. The third term-of the right-hand-side (0tg )y is “Velocity

Diffusion Term”, it describes the difference of velogities results to a perturbation of

individual velocity. The fourth “.term—of- the: right-hand-side (Ot9j)ic s

“Lane-Changing Term”, it means the change of ML-PSD results from changing lane.

The most right term n]-’ —nj means the rate of car flow-in and flow-out.

Then, Hoogendoorn and Bovy (2000,001) [10-11] introduce attributes into

models, they separate attribute r=(b,k) into continue attribute b and discrete
attribute k.

Continue attribute b:

1. The absolute value of desired velocity V0 (not contain direction)

2. The angle of desired moving °

11



3. The acceleration time T (it is also called relaxation time): It means that
the time that a driver accelerate from their resent velocity or angle to their
desired velocity or angle.

Discrete attributek :

1. Lane j: Because of traffic law, control, and geometric design of road and so
on, those reasons would affect the different behavior of driver on different
lanes.

2. Driveru: Traffic status of drivers could be car, bus, van, bicycle, pedestrian
and so forth. In the other hand, it could be described travel factors,
entertainment trip, commercial trip, commutation trip and so on.

3. Driving Statuss: There are two kinds of status in this research, free
drivers =1 and driver in platoons=2. This index could improve the
interaction term of Pavery-Fontana (1975) [19], one car passes one car or
one platoon.

4. Direction of Traffic Flowh: Many directions of traffic flows use the same
space. For example, intersection.

5. Destinationd : The different destination often affects driving behaviors. For
example: In freeway, ‘drivers would-choose different gateways because of
different destinations. It could.leads to lane-changing.

Hoogendoorn and Bovy(2000,001) [10-11] introduce PSD g(t,x,v,r) which
mix continue and discrete attributes and they obtain gas-kinetic traffic flow models as

the following.

()] (m (nn (v) V)
atgr + Vx ’ (grv) + Vv ’ (grAr) + VVD ’ (grBr) = (atgr)event + (6tgr)cond (211)

Where, Vy =(0x1--0xn)» V,=(0y-0,) and V o =(J,0,-:00,), A means

acceleration function, B, means acceleration behavior.
| Convection: It is fundamental to balance flow-in and flow-out cars.

Il Relaxation: It is also called ” Acceleration Term”, and it means the effect
result from that current velocity accelerates to desired velocity.

12



11 Adaptation of Continuous Attributes: This term describes effect results from
continue attributes changing.

IV Event-based Non-continuum Processes: It means that effect results from
continue and discrete attributes changing discretely by events. For instance,
deceleration and lane-changing and so on.

V  Condition-based Non-continuum Processes: It means that effect results from
continue and discrete attributes changing discretely with certain conditions.
For instance, spontaneous or postponed lane-changing, status changing (free
or in platoon) and so forth.

2.3 Rearrange Papers

Since Prigogine and Herman (1971) [5] propose gas-kinetic traffic flow model,

many scholars try to improve the limitations of their models step by step. Especially,

Paveri-Fontana (1975) [7] introduce desired.velocity as an independent variable into

gas-kinetic traffic flow model and he points-out the shortcomings of Prigogine and

Herman (1971) [5]. The latter scholars’ research base is on his paper. The following

figure 2-3-1 shows that the more. important contains of recent ten-year gas-kinetic

traffic flow models.

Fig. 2-3-1 The More Important Contains of Recent Ten-Year Gas-Kinetic

Traffic Flow Models

Scholars

Main Contributions

Takashi Nagatani
(1997)[12]

He improves the gas-kinetic traffic flow model of
Paveri-Fontana(1975)[7] according to the density of the
former space, not the space where the car is to assume
desired velocity. He represents velocity distribution function
as discrete form. This research shows that there is a great
difference between flow-in and flow-out the heavy traffic.

Helbing (1997) [9]

He constructs multilane gas-kinetic traffic and considers the
behavior of lane-changing, the velocity diffusion owing to
improper driving, and finite space related to car length.

C. Wanger (1997)[13]

He relaxes the instant velocity-changing with the average
velocity between the former car and the latter one, and
obtains macroscopic model to analysis numerical simulation.
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Klar and Wegener

(1999)[14]

He considers lane-changing, braking and acceleration, and
sets the reaction micro threshold to construct gas-kinetic
traffic flow model. Its velocity distribution function is
considered the relation between the former and the latter car.
He derives macroscopic models from the gas-kinetic traffic
flow model.

Hoogendoorn and Bovy
(2000, 2001) [10-11,15]

They consider continue and discrete attributes into
constructing gas-kinetic traffic flow model which contains
many factors as multilane, multiclass and so on. They also
consider the situation of platoon and assume the car in
platoon accelerates to the leader of platoon. They solve the
interaction times which overestimate or underestimate, no
relation with near cars, and the situation of dilute traffic, with
considering platoon. Besides the traditional convection,
relaxation and interaction terms, they also introduce the
effects of adaptation of continuous attributes, event-based
non-continuum and condition-based processes.

Cho and Lo (2002) [16]

They construct a self-consistent multiclass and multilane
traffic flow model from traffic Boltzmann equation and
traffic diffusion model ,and introduce two-dimension space
and field. .They propose that if the model that is only
considered - individual ~wvelocity to derive second-order
momentum function has 'no physical meanings. It is also
needed-to'consider equilibrium velocity.

The following figure 2-3-2"shows:that-several important researches rearrange on

dimensions, scales, processes and operations. Where, dimensions (except time and

space) contain velocityv, desired velocityw, horizontal position (lane)y and the

otherso . Scales contain

continuec and discreted . Processes contain deterministicd

and stochastics . Helbing (1997) [9], Hoogendoorn and Bovy (2001) [11] represent

lanes with low index of velocity distribution function. Cho and Lo (2002) [16]

consider two-dimensions (x,y) to vecor space x . The other dimensions of

Hoogendoorn and Bovy (2001) [11] are class and driving status (free traffic or in

platoon) ,and the other dimension of Cho and Lo (2002) [16] is class.
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Fig. 2-3-2 Rearrange the Characteristics of Important Papers

Gas-Kinetic Traffic Flow Models Dimensions
Scales|Processes
v (wly |o

Prigogine and Herman (1971) [5] + c d
Paveri-Fontana (1975) [7] + [+ C d
Helbing (1997) [9] + |+ |+ C d
C. Wanger (1997) [13] + |+ c d
Hoogendoorn and Bovy (2001) [11] + [+ |+ |+ |cd |(d
Cho and Lo (2002) [16] + + [+ |c d

Dimensions (Except time and space): velocityv, desired velocityvg, horizontal
position (lane) y, and the otherso .

Scales: continuec and discreted .

Processes: deterministicd and stochastics .

2.4 Summary

In this chapter, we summarize researches about -mesoscopic traffic flow models
and we could find that recent researches have improved to multilane and multiclass
traffic flow models. However, there are ‘many shortcomings that exist in the first
model of Prigogine and Herman (1971)[5] do not improve, so the application is
limited. These are needed to be improved.

Therefore, we want to try to relax the shortcomings of Prigogine and Herman
(1971) [5]. Because the shortcoming that the faster one car meets the other slower one
without passing, the instant velocity-changing is unreasonable is not completely
relaxed, we try to relax in this researches. C. Wanger (1997) [13] has been tried to
research on this topic, but he does not completely relax. The moving behavior of his
model does not match the space changing. In order to relax the instant
velocity-changing and to consider reasonable behavior, we also consider finite space

in our model. This means that velocities change with the positions of cars. Hence, we
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would construct a gas-kinetic traffic flow model to describe more completely in next

chapter.
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Chapter 3  Construct Mesoscopic Traffic Flow

Model

We could find that the model of Prigogine and Herman (1971) [5] still has some
shortcoming needed to be improved with literature review. In this chapter, we want to
relax assumptions of the interaction term of Prigogine and Herman (1971) [5], instant
slowing-down and no consider finite space, to obtain more realistic traffic flow

model.

3.1 The Question Description

Gas-kinetic traffic flow model has already been developed in decades, and a lot
of them are based on Prigogine and Herman (1971) [5], and Paveri-Fontana (1975) [7].
Some research focuses on topic, multi-lane or multi-class, and the other focuses on
relaxing the unreasonable assumptions of Prigogihe and Herman(1971) [5], which are
proposed by Paveri-Fontana (1975). {7]-.(As-what- we show in Chapter 2). This
research does the latter. According. to.Chapter 2, literature review, we found few
literatures about relaxing the instant slowing-down of interaction term. There has no
more complete one. Therefore, we want to construct a model which could describe
successive velocity-changing and finite space effect. We hope it could be more
meaningful than previous ones.

We assume the same conditions as Prigogine and Herman (1971) [5]. Assume
that there is an infinite long freeway, allowing passing. If the driver could not pass the
former car, its interaction term (slowing-down behavior) could be described as the
following equation (3.1)

- p)[fijv"i"olvjfj(vj ~Vj) - fi‘[(\)’i dvj (% V)]
) (3.1)

In the above equation (3.1), cari means the car which we care, car j means
17



other car which interact with cari (only consider two-cars interaction), and p
means passing probability. So (1— p) means the probability without passing. The
equation (3.1) shows that the faster (the latter) one car meets the other slower (the
former) one without passing, the faster one needs to decelerate in order to avoid
collision. Hence, they assume that it decelerates its velocity to the velocity of the

slower one. The first term of the equation (3.1) shows the condition the latter car (the

faster), its velocity is vj, meets the former car (the slower), its velocity is v;j. The

second term shows the opposite condition, the latter car (the faster), its velocity is v;,

meets the former car (the slower), its velocity is vj.

According to the section 2.1, we could know it has some shortcoming in the
equation (3.1). Our research is mainsto relax-instant slowing-down assumption of the
interaction term and to relax no;consideration of.finite space. If the equation does not
consider instant velocity-changing in slowing-down: process, the headway between
two cars should change with the velocity-changing-of the later car. Therefore, we need
to consider finite space in constructing model of continuous velocity-changing. We
would construct a model that could describe the traffic situation of non-instant

slowing-down and finite space consideration in next section.

3.2 Model Construction

In this section, the assumptions we used is the same as what Prigogine and
Herman (1971) [5] did. Assume that there has an infinite long freeway, allowing
passing, one car type, and each driver drives its different velocity and has the same
desired velocity (cars of the same type have the same desired velocity ). After passing,
the car contains its origin velocity (the velocity before passing). If the faster (the latter)
one car meets the other slower (the former) one without passing, the faster one needs

to decelerate in order to avoid collision. We introduce the model of C. Wanger (1997)
18



[13] to improve the shortcoming, instant velocity-changing and no finite space
consideration, of Prigogine and Herman (1971) [5] and to construct our model.

We use velocity distribution g(x,v,w,t) defined by Paveri-Fontana (1975) [7].
Among it, w means desired velocity, and the relation between g(x,v,w,t), f (x,v,t)

and fo(x,w,t) could be appeared like the following equation

f(x,v,t) = Igo dwg(x,v,w,t) (32)

fo(x,w,t) = Igo dvg(x,v,w,t) (3.3)

According to the models of Paveri-Fontana (1975) [7] and C. Wanger (1997)
[13], we modify the model of Prigogine and Herman (1971) [5]. Then our model is

shown as below the equation (3.4).

8_g+V8_g+£(W—vg)
ot ox ov T

= jfdvlst(l— P)(vz — v) £ (X di(Vg, V3), va, 1) g (X, V3, W, 1) S (V — D(vy, V3))

OSVlSV3
—g(xv,wt)  [[advaE=PYv=vy) F(x +d (vy, V), v1, )5 (v — D(vy,V))
0<vy<v
(3.4)
Where
1 (v3—w)°
d(vq,v3) =2v + +=
Cmax 2 a (3.5)
1 1 (v—v1)2
d(v,v) = + +=
max 2 @ (3.6)
d(v3,v)=vg—a*i 3.7)
d(v,vy)=v—-axi (3.8)

Where the uniform decelerationa>0, r means reaction time, T means

relaxation time, ¢y, Means the heaviest density, 4 means the time interval that the
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same each time interval of the latter car in deceleration process passes through. And
d(vy,v3) and d(vq,v) means the headway between the later and the former cars, p
means passing probability, (L—p) means probability without passing, @©(vy,V3)
and ®(vy,v) means the next velocity of the later car when it starts to decelerate.

Our mesoscopic traffic flow model constructs as the equation (3.4), where the
left-hand side first and second terms, described the velocity-changing is caused by
flow-in and flow-out, are called “convection term”. The left-hand-side third term is
called “relaxation term”, it is also called “acceleration term”. Because velocities of
drivers are often different with their desired velocities, they would want to accelerate
to their desired velocities. The relaxation term we follow the exponential law
assuming by Prigogine and Herman (1971) [5] to show its effect in velocity
distribution. The right-hand-side term of equation (3.4) is called “interaction term”,
and it means that the faster (the-latter) one car-meets the other slower (the former) one
without passing, the faster one needsito decelerate in-order to avoid collision. The first

term of interaction term means the-latter car- vz ‘meets the former one v,, v <vj.
According to the assumption, the latter car vz should decelerate to the former car
without passing. d(vy,v3) means the headway, so the headway should match the
equation (3.5), the very two cars start to interact. By the way, the equation (3.7) shows
the velocity through changing in the interaction process. It depends on the difference
of velocities between two cars, the uniform deceleration and time interval.

In the same way, the second term of interaction term means the latter car v
meets the former one v,, v, <v, without passing, the faster one needs to decelerate
in order to avoid collision. d(vq,v) means the headway, so the headway should
match the equation (3.6), the very two cars start to interact. By the way, the equation
(3.8) shows the velocity through changing in the interaction process. It depends on the

difference of velocities between two cars, the uniform deceleration and time interval.
20



The second term of interaction term could also describe that successive deceleration

affects %g to decrease.

The main characteristics of our model are shown as the following:
1. Headway: In this research, we express the headway between the very two car we

care as the equations (3.5) and (3.6). In other researches likes [13, 17-19], they

only consider the safety distance v+ or wv+/, if they introduce the

Cmax

factor ” finite space” into their model. There ¢ means car length. However, if
velocity changes step by step, not instant changing, the above safety distance is
not safe. The distance through decelerating process should be considered. If we
take uniform deceleration formula to show the decelerating process, the headway
should be shown as (reaction time*the velocity of the former car + the minimum
headway + the distance required by deceleration). There “reaction time*the
velocity of the former car= the minimum headway” is left to be safety distance
for decelerating process. Hence, the headway should be represented the equation
(3.5 and (3.6), and correspond to the safety distance in non-instant

velocity-changing condition.

2. \Velocity changing: We show the process of deceleration when the later (the faster)
car meets the former (the slower) one as the equations of (3.7) and (3.8). We
assume cars decelerate by uniform deceleration, so the velocity changing is
related to the uniform deceleration. The velocity of the later car and the headway
match the assumption of uniform deceleration. Therefore, the model could more

reasonably describe drivers’ behavior.

3. No adjust factor: In the past, scholars take adjust factor with considering finite

space in their researches. Because of instant velocity-changing, they need to take
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adjust factor to increase the frequency of interaction in considering finite space.
However, our model is both considered finite space and successive

velocity-changing, so it does not need to multiply an adjust factor.

3.3 Summary

We construct a standard and simple mesoscopic traffic flow model under the
same assumptions as Prigogine and Herman (1971) [5], and Paveri-Fontana (1975) [7].
And we consider more, containing finite space and successive deceleration, in
interaction term. If the headway satisfies the equations (3.5) or (3.6), the later (the
faster) car would start to decelerate with constant uniform decelerationa. Hence, the
velocity through deceleration process could be shown as the equations (3.7) and (3.8).
The condition to occur interaction has-been set in our model, and the deceleration

process has also been regular. The situation of interaction would not happen at casual.
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Chapter4  Macroscopic model

The advantage of mesoscopic traffic flow model is that it could describe
behaviors of microscopic traffic flow, and it could get macroscopic model by means
of integration. The previous chapter constructs the mesoscopic traffic flow model by
describing microscopic cars so this chapter uses microscopic traffic flow which
chapter3 constructs to obtain macroscopic traffic flow model, flow conservation,
equation of average velocity, variance, by the methods like integrations. It could be

good to analyze the characteristic in the later chapter.

4.1 Assumption

This research is assumed for the single car which is a simple situation. According
to the assumption of Helbing (1995).[19, 20],.non-equilibrium state could approach
equilibrium quickly with the:zeroth-order  approximation of local equilibrium.
According to the research [19, 21], we could know the velocity distribution of
equilibrium approaching normal distribution. The velocity distribution could be

expressed by the following
f(x,v,t) = fo(V(x,t),80(x,1))
c(x,t) - 2
mexp{—[v —V(x,1)]°/[260(x, )]}

In the above equation (4.1), fo(V(X,t),8(x,t))shows the velocity distribution in

(4.1)

equilibrium, v(x,t) shows velocity of equilibrium, and &(x,t) shows variance. Using

equation (4.1) to get macroscopic model, the following are common skills
" 2
J._ d222k+1exp(—z) =0
[© daz® exp(—, - ) (-2)% + 4k]9"+1’ 2r( +K)

j dzz2"+1exp( ) 2.4-.-2k(20)%*1
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0 _ 2
_[0 dZsz exp(4_za):1.3...(2k_1)\/§(20)k+1/2 4.2)

: . of
Besides, we use Tayler expansion to expand space so we would usea—, and we
X

set z=v+w-2V(x,t), y=v—-w, and theng—f could be expressed as following
X

o _o0, ¢ -(2-y)’
ax_ax{Jzyze Pl 4-26 I¥
_éc 1 —(z-y)? g-3/209 ~(z-y)?
_axJ2ﬂ96Xp[ 80 ]J_ ( ) axeXp[ 80 ]
¢ (2-y)’ 200, ~(2-y)
J2r6 8 o axexp[ 80 ]
c -2z-y) a0 _—(z-y)
+\/2m9 A 0 P —exp[ 20 ]
{ac 1100, (2-yP 200 (2- y)azce_l} I i)
ox 2 OX 8 OX 4 & Ny 80
(4.3)

In order to use symbols cenveniently, this chapter would use some numbers of

variables to define as following

Average Velocity

f(x,v,t)
v(x,t) = Id o) (4.4)
Velocity Variance
B = 2 F(x,v,1)
O(x,t) = j dv(v —V(x,t)) oD (4.5)
Traffic Pressure
P(x,t) = ﬁ j dv(v—v)f (x,v,t) j dw(v —w) f (x,w,t)
=[ dv(v ~7)? f(x,v,1) (4.6)
=c(x,1)8(x,t)
Average Desired Velocity
W0 t) = [av] A IV WD) 4.7)

f (x,v,t)
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Flux of Velocity Variance

J(x,1) :ﬁjolv(v—v(x,t))2 f (x,v,t)jdw(v—u) f(x,u,t)

(4.8)
= [dv(v -7 (x )% (x,v.1)
Covariance
C(x.t) = [ dv/ dw(v —v(x,t))(w_vo(xlt))w
= [dv(v — V(6 ) To (x. 1) - T (1) f((x \,t)t) (4.9)
where
o) =] duy SV 1) (4.10)

f(x,v,1)
The zeroth-order approximation of local equilibrium is close to flux of velocity

variance J(x,t) = Jo(X,t)=0 . Using the zeroth-order approximation of local

equilibrium to get velocity variance J(x,t), we could-adapt J (x,t) for the following.

I =C(% [ V(v 700, ) (v —u) £ (x,u,)

(10 d()(PROGT+ 30,1) [~ d(8u)(@—u) f (x,u+ 1)
=c<x’t>*2ﬁ;d4;°dv<“m;, ) o )
= c(x, t)_——( 49)° f +0+= 29(4+4)¢93/2*/2—471r0
=c(x,t)%+%

=c(x,t)33;2

(4.11)

We assume v =V(x,t)+dvandw=Vy(x,t)+wto change the first column of

RHS to the second column of RHS in equation (4.11). We

assumez = ov+adwandy = v — dw, where Jacobin=1/2, from the second column to
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the third column, and use the zeroth-order approximation of local equilibrium. We
could get flux of velocity variance J(x,t) by the skills of equation (4.2).

Because of J(X,t) = Jo(x,t) =0and the equation (4.11), the high order could be

ignored if @", n>3/2. In the following section, we could expect that macroscopic

model we got is the Euler-like traffic equations.

4.2 Density Equation

The mesoscopic traffic flow model could get macroscopic model by the method
of moment. We deal mesoscopic model with zeroth-order momentum in this section.
That means we would deal mesoscopic model with integration and get macroscopic
equation based on the macroscopic parameter, density c(x,t) .

Our mesoscopic mode would integrate velocity v and desired velocity w.

1. Convection term integrates velocity v.and desired velocity w.

.[dvjdw%g+vg—)g(
of

of
={dv—+v—
ot ox

B @ N o(cv)
ot OX

2. Relaxation term integrates velocityv and desired velocity w.

jdvjdw%{‘”{"gj:o
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3. Interaction term integrates velocityv and desired velocity w.

[ovfowl [[dvidvs(i- p)(vg —vy) F (X +d (v, V3),v1, )G (X, V3, W, D) S(v — (v, V5))

i)ngi,v\a/, w,t) [ dvidvp(@—P)(v—vy) f (x+d (v3,v), v, )5 (v — D (v, V)]
0<vy<v
= | dvo [[dvidv@- p)(lvg —vp) f(x+d(vy,V3), vy, t) f (X, V3,8)5 (v — D (v, V3))
- '_[\3\; :‘/3(x,v,t) [[dvadvy (= P)Y(v —vy) F (x+d (vg, ), v1, 1) (v — D (3, v))
0<vy<v
= olv20 [ dvldv3(1—1p)(v3 —vp) F (X +d (v, V), vy, t) f (X, V3, 1) 5 (Vo — D(vy,V3))
-f :1\;_ fix,v,t)o [Jdvacva (L - P)(v3 = 1) f (x+ d (vg,v3), v1, )5 (vp — D (v, V3))
<v;<vg

=0
Change the first equal sign to the second sign by integrating the whole

interaction item to separately integrating the: passive and negative result of the
interaction. Change the section equal -sign. to. the third sign by changing
variablev tov, of the passive result of the interaction; and changing variable v to vz of
the negative result of the interaction. Because the passive and negative results of the
interaction are the same, they could cancel and the answer is zero.

Use the result of integrations to velocity v and desired velocity w by convection term,
relaxation term and interaction term to add, we could get macroscopic equation based
on macroscopic parameter, density c(x,t), as following equation (4.12)

@+ o(cv) _

0 4.12
ot OX ( )
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4.3 Average velocity equation

This section will do the first-order momentum to mesoscopic model. That means
that mesoscopic model times velocity and then integrates velocity. We could get
macroscopic equation based on macroscopic parameter, average velocity v(x,t).

Our mesoscopic model times velocity vand integrates velocity vand desired

velocity w.

1. Convection term times velocity vand then integrates velocityvand desired
velocityw.

'[ dvj dwv[a—? + vg—ﬂ

:J.dwﬂ_f_vzﬂ
OX
of
_Idw—+(v V+V)(V-V+V)—
OX
of %) . _ol|of
= pdw—+ (V= V 2(v—
I 6t+[( ) +2(V—V)V+V ]&

_dlcv), L o(ch) a(cv?)
St ox ox

ov oc a(c 0) ov 8(0\7)
=C—+V— + cv
ot é’t ax ax OX
8v a(c 0)
= cv —
8’[ OX OX

The second column is expanded to the form of the third column in order to make
it become the integration of the forth column. We could get the above result by means

of the definitions of equation (2.2), equation (2.3), equation (4.5), and equation (4.6).
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2. Relaxation term times velocity vand then integrates velocityvand desired
velocity w.

Idvj.de%(w_r_v g]

:—'[dvv0 —V
T
__M-Y)
T

3. Interaction term times velocity vand then integrates velocity vand desired

velocity w

j dv j dwv[ j j dvydvg(L— p)(v3 —vy) f (X +d (Vy,V3), Vg, )G (X, V3, W, )5 (v — D(Vg,V3))

0<vi<vy

—g(xv,wt)  [Jdvdvy (L= p)(v—vy) F (x+d (vg,v),v1, D)5 (v = (v, V)]

0<v v

= j dv j j dvydvav(@— p)(v3 —vp) f (X +d(v1,V3), vy, ) f (X, V3,0)S (v — D(vy,V3))

OSV]_SV:;

- j dwf (x,v,t) j j dvydva (L = pYV-=vg) (X £ d (v, V), vy, D)5 (Vo — D(vy,V))

0<vi v

= [dvy  [[vidvava (L- p)(va —vi) i+ V). v, 1) T (%, V3, 1) (v — (v, V3))

0<v <vy
—[dvafxvt)  [[dvidvava— p)(v —va) F (X +d (vg,V3), V1, D)5 (v — D (vy,V3))
0<vi<vy
= [dvo  [[dvidvg(1- p)(v —V3)(v3 —vy) f (X -+ (v1,V3), Vi, ) f (X,V3,1)8(vp — D (vy,V3))
0<vi<vy

= [Jovidvs- p)[(v3—aﬂ)—vsl(w—vl)f(x.V3,t)[f(x,vl,t)+d(vl,v3)%]

OSV]_SV:;

=—(1- p)ai J.J.dV]_dV3 (v3 —vp) f(x,v3,1)

0<v;<vs

L) o (o t)y

=L f (X, v, 1) +[ovg +
L S E

Where v =V(x,t)+ v, vz =V(X,t) + dvg, and Jacobin=1
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=~(-p)aa” d(@vs)  [d(du)(v—dn)f (%7 +3.0)
N <y

1 (O3 —3)°
a

+r(v+§\/)+2 6f(xv+§\/1,t)}

] OX

WL F (07 + S t) + [

Cmax

Z+

Set z =g+ dandy = dvg — o, thedug = =Y Sy = Z;Zy and Jacobin=1/2

use the zeroth-order approximation of local equilibrium, equation (4.1) and

equation(4.3)
2 z° y
=—(L-p)afc® [ de[ " dyy\/ e xp(49 J4 —exp(,)
2

exp(CL )
a \aro 40 " 40

2
@_1(:0—1%_‘_(2_)/) Cg—zae (Z y) azce—l}

2
-y
exp(—,5)

+7(V +—) y -—]

+ c'[jooo dz.[(;)O dyy[c L

max

* -
x 2 x84 x40 ox
Set A= W B:Q—lce‘lﬁ, T 9‘289 E-_ 10 g1
X 2 ox 8 ox 40 ox

Crmax

We take A, B, D, and E to. the original equation and change its form as

following.
(- p)ai{c(———20)
Jaro
vef” deffayya+ e E20 y Pl ety XD s )
2 J4n0 40 " \ar 9
[B+D(z-y)? ~E(z-y)]
Set

2

(z-y) y*y 1 -z*. 1 -y*
s "o, \/4neeXp(4e)\/4neeXp( )

+|B+D(z-y)*~E(z-y) [}

A= j dzj dyy[A+1—22
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The calculation as following

A :f dzfowdy[ABerAD(zzy—2yzz+y3)—AE(zy—y2)+%t(zy—y2)
3
+Br(z3y+ 3zy® -3y*z* —y*) —Er(zzy— 2y’z+y°?) +B_y
2 2 2a
D 5.3 4 sy E 3 4 1 -z°, 1 -y?
+— @2y -2y'z2+y’)—(y'2—- ex ex
261( y' —2y'z+y’) 28l(y y)]\/47c |0(49)\/47Te p(——)
We could cancel the above because of the first column of equation (4.2)

A= J-_w dZJ‘OOc dy[ABy+AD(22y+ y3) —AE(—y2)+%r(—y2) +%T(—3y222 B y4)
3
+§T(ZZV—2>’ZZ+y3)+82_y+3(22y3 2y 7y ) - (Y2 -yY)]
a 2a 2a
1 —7z2 1 2

. -y
J4n0 exp( 40 )J4 0 X 40 )

( \/_)+AD{863/2%26 +2(20) \/_} [—\/E(ze)“2 \/4%}
B

_\/7( 6)3/2 J+_ ( [(26)3/2893/2 \/_ 1 \/7( 6)5/2 j

2{2 93’2[——2( )\/—J [(9) \/ﬂj

D JE 1 1 E n 1
| —2(20)280%2 X" = _2.4(20)? 1-3(20)%2
2(() 40 ”mJZa[ 9 J

2 Tis
o2 B 3 2 20 3
=AB—+ —AD93’2 AEO - —10-61tD0? ——1E0%%? + ———BO¥? + ——D0%? + = DO?
NN 2 T T avr Y a
Because we had set B_@—1 9"1% Dzlce_zﬁ :—igce"l, we
ox 2 OX 8 OX 40 oxX

could decrease the numbers of symbols and join A as following

_ 3 06
A= o2 _ 79_ g2 _T . /2C
) (4\/_ 2 2ax/_

A 3t 12
+(—- 6" +—¢9 c—
(4 N 4a ) ox

S
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Because of equation (4.11), we could ignore the high terms when8", n>3/2.

The interaction term could be expressed as following.

Interaction term

1 1/2 A 1/2 7 ,.0C A 12
——(1-plaic?—0Y2 _(1— plaicf{(—a"2 Loy L (Lo
(- paic® =6~ (@-p) {(; SO+
3 1/2 A 3¢ /2 3 0z
—— o0 P AANNEL —Hd)c—
2+2a\/ ) (4 41T +4&1 )Cax}

Use the result of doing multiplication to v and integrations to velocity Vv and desired
velocity w by convection term, relaxation term and interaction term to add, we could

get as following.

ov oP (v (V-Vo)
c—+—+cv
ot ox 8x T
1 1/2 A 12 T “1/2
=—(1- plaic® —— o 220 paic{ (=02 -2 o) =+ (——0
(1-p) s (I-p) {(\/; 2) (\/—

T A 3r ol/2

3
2 2J_ )_ 4 4z +HQ)C&}

For the above divides by density.c(x,t), we could get the macroscopic equation based

on macroscopic parameter, average numberv(x,t) .

v 1P N (V%)
ot ¢ ox OX T
1 /2 A 112 “1/2
= —(1- plaic—6 2 —(1- p)ai{(——6 +(——0
(1-p) N (1-p) {(\/; )X (\/—
T / A 3t 1/2
—+ ) oy G o +—0 c—
2 2aJr ) ox 4 Ar 4a ) 6x}
(4.13)

In the derivation process, we assume z = &3 + vy = V3 +Vq — 2V(X,t) so? = —2%
X X

T

Take it to equation (4.13), and we could get macroscopic equation (4.14) based on

average number V(x,t).
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wv 1P v (p-V)
ot ¢ oXx OX T
A o112
T

- p)aﬂc%@llz —q- p)axl{(%é?llz —19)@+(4\/_
89 A 3¢ el’z—ie)cg}

22f ox 2zf 2a

(4.14)

+ v

Where A=
Cmax

4.4 VVariance
This section will do the second-order momentum to mesoscopic model. That

means that mesoscopic model times the square of velocity and then integrates velocity

We could get macroscopic equation based on macroscopic parameter, variance (x,t)
Our mesoscopic model (3.4) times the square of velocityv2 and then integrates

velocity v and desired velocityw .
1. Convection term times the square.ef-the,velocity v2 and then integrates
velocity v and desired veloCityw..
a .99
dv[dw? (= +vZE
I I (at ax)
2 3
:jdvam ), oK)

OX
- Jay {a[f(v V)2 1, 8(fvv)_a(f\72)+6[f(v—\7)3]_38(fV\72)
ot ot OX OX
2 =3
+38(fv v)+a(fv )}
OX ot
_2 — 3
_ o(co) N o(cve) N o(J) N 3a(cv 0) N o(cv)
ot ot OX OX OX
_c%+9@ ‘28 +2cvav a(cJ) +2C 98\/ + 2V a(Ce)+cv a(cv)
ot ot ot ot OX OX OX 8x OX
+v2 aAwv) A L oew?
OX x
89 —+2CV— ol a(“]) + 2096\/ +2V——= o(co) +cv + 2072 % ol
at OX OX OX OX OX
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= 89 82;]() 2c9%+cvg—9+2cv{(\/o V) -(1- p)aﬁc%@llz
_@- p)aﬂ[(\/_elm ge)% 4:?_(91/2 %_F%Hlm Cg_f
+(§ 31_91’2 %e)c%]}
= caat—eJr 2c9%+cv % , ZCV{@—O— p)aﬁc%@“z
_a- p)aﬂ[(ﬁﬁllz—gﬁ)— ($9 1/2_%+2a\/_91/2
A 43%91’2+4—3;9)c%]}

The second column is expanded to the form

of the third column in order to

make it become the integration of the forth column. We could get the integration of

the forth column by means of the definitions of

equation (2.2), equation (2.3),

equation (4.4), equation (4.5), andequation (4.8)..We could change it to the result of

the sixth column by equation (4:12), and the result of

(4.13).

2.

velocity v and desired

.[dvj-dezg( gj

—ZI dv_[ deg g

wW—v
T

_ [ o[ aw =DM =To) =V W

the seventh column by equation

Relaxation term times the square of the velocity vZand then integrates

+V] - [(v=V)% + 2w —v?] f

~0-v?]

—2C
“ZEIC + W,
= [ 0
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3. Interaction term times the square of the velocity vZand then integrates

velocityvand desired

j dv j dwv[ j j dvydvg(L— p)(v3 —vy) f (X +d (v1,V3), vy, )G (X, V3, W,t) S (v — D(vy,V3))
0<v <vy
—gOv,wit)  [[dvidvy (L= p)(v—vy) F (X +d (vg, ), Vg, D) (v = D (v, V)]
0<vi v
= [dw?[  [[dvidva(L- p)(vg —va) F (x+d (v1,3), V1, 1) (X, V3, 1) S (v = D (vy,V3))
0<v <vy

- j dvf (x,v,t) j j dvydvy (L— p)(v = vy) f (X +d (vy, V), vy, D)5 (Vo — D(vy,V))]

0<vy<v

=[dvy  [[dvidva@— p)V5(vg — 1) T (x+ (v, V). v, ) (X, V3, 1) (vp — (g, V3)
0<vi<vy

- J.dV3 f(x,v,1) jjdVlde (L— p)vE(vg—ny) f (X +d (v, V3),v3, D)5 (vp — D(vy, v3))

0<v; <vy
= [[dvidvs(- p)I(vs - ad)® =VE1Va VR F(Xova, B F (x4, 1) + (v, v3)
0<vi<v;

=—(L-p)ad  [[dvidva(v —vy)(Rva=aR)E (s, 1)

OSV]_ SV3

of (x,vl,t)]
OX

1 +i(v3 —v1)2]8f (x,vl,t)}

=Lf(x, v, 1) +[ovg +
{(1)[10maX2 2 x

Set vy =V(X,t) + v, vz =V(X,t) + dvz, and Jacobin=1

=—(-p)aa[” d(dg) [d(S)(dv3 — dn)(28v3 + 20 —ad) f (x,V + 3,1)
N <y

)2 o (x.¥
1 +r(\7+§\/1)+%(§‘/3 a&q) of (X.V + 4,0y

{f(X,V+ M, t) +[ ey

]

Cmax

Z+Yy Z—-Y

Set z=3dvg+dnandy =dvz -, thendiz = NS — and Jacobin=1/2 use

the zeroth-order approximation of local equilibrium, equation(4.1)and equation (4.3)
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! exp(_zz) ! .
NUVT 40 \/4m9

o0 o0 —_ 2
=—(-p)ai{c?[” dzf dyy(z+y+2v-a) xp(-, y )

2 2
0 3 _ y A 1 -y
+c| dz|. dyy(z+y+2v-ad +rv+ ex
[, dzf dyy@z+y g el ) 22 7790 T g
o OC_1 100 (2-y)" y)? cp-299 _(2-y)a %oty
x 2 ox 86 X 40 ox
Set A=—t g, B=_1cp190 p_lp200 g 1351
Crnax ox 2 OX 8 OX 40 ox

andF =2v-al.Wetake A, B, D,and E to the original equation and change its
form as following.

Z2

=—(1- p)aﬁ{csz dzjgo dy(yz + y? + Fy) \/41”9 exp(—-)

ex
40 " \4ro P 40 )
2 2

\/4 7" Xp )

1 2
vef” def"dyy(yz+y? + Fy)As 5@y + 5 1) T )

[B +D(z- y) —E(z— y)]}

= —(1- p)ai{c [\f (20)%%2 — J_ +F(20) J—]

+c[AB(yz+y +Fy)+AD(—y % +y -y z+y23+Fy22—2Fy22+Fy3)
—AE(—yzZ—y3+Fyz—Fy2)+%B(y22—y3+Fyz—Fy2)
+%D(—2y223+2y4z—y5+yz4—Fy4—3Fy222+3Fy3z+Fyz3)

—%E( y 72 +y —y Z+Yyz +Fyz2 2Fy z+Fy )}+ (y z+y +Fy)

+22(—y4z2 + y6 — Yo7+ y?’z3 + Fy3z2 —2Fy*z+ Fy®)
a
2

E .5 .3 3 4 1 ~Z
—— Yy +yz+Fy’z—-Fy7)]} ex e

2
-y
X
p( 49)
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91/ 2

]

3/2 3/26,3/2 1

~(1- p)a/lc{AB[,/ (20) \/_+F(29)\/_]+AD[ 1% (26)3/280 o
T 5512 3/2x/ 1

+31/2(29) \/mﬂr(ze)se +F2(20)?

=—(1- p)aﬂc2[¢9+

7]
— AE[(20)86°'2 ﬁi —2(26)? f_ F\E (20)%/2 \/_]

T

3/2\/_ 3/2
E|3[(2¢9)849 7—— 2(26)° \/_—F\f (26) J_]
+% D[—F3\/%(26?)5/2 ——3F -3ﬁ(29)3’28¢93’2£i

2 40
+20- 3295’2§£i— :
——E[ \/7(20)3/2 93/2\/_ 1 \/7(29)5/2
1
+F 2@893’2‘/_ +F-2(20
(20) pr, ( )M]

5/2
[3\/7 (20) + F2(20)? F]

+3[—3\ﬁ(29)5’2893’2£i+1-3-5\/2(29)7’2—
2a° \2 4 2 Jar0
6,3/2\/_ 1

470

+F-2-(20)%8 +F-2-4(20)°

J_]
CE o o2 3/2£L_, 3 ~ \/E 50 1
- [2-(20)%80°/2 7 —2.420) —M F a5 0" ]

=—(1- p)aic’[0 + L6’1/2]

NS

—(1- p)aic{AB[4 +

P gl/214 AD[-202 + 60 + 2312 1 F_p3/2]

Jz Vr Nz

—AE[—F9+i93’2—i93’2]+%B[—F9+ 2 p3i2_ 1 g3

N = TTx

+§D[—6F92 _6F0? + 12 512 _ 32 p512)

N Jr
2 Fo3/2 4 4 93/2]

Jr Jr

B [4F
5

r
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+2—[;[—12<93+606?3 8F g512, 32F g512

NS Jr
E 2 8 512 32 5/2
——[-6F0*+——0°'? -9
2al NS L
F 12
=—(1- p)aic’[f+——6
(1-p) [ N 1
_(1— p)aic{AB[O +——& 2]+ AD[462 + 0T 3/21_ pAE - 2032 _Eg)
Jr N Jr
T 2 3/24. T 2 20 ,5/2, T 2 6 3/2
+2BI-FO——=0>"*]+ - D[-12F0° - = 0°'*] -~ E[46° + =F0
[ N 1 [ N 1 [ N 1
B 4F _ 3/2 2 3 40F 5/2 2 24 5/2
20 + 66 +—486? —0 ——J[-6F0° ——4@
[\/— 1 [ Jr 1 [ I 1}
Because we setB_@—1 0_1% D=1C9_2% E_—igce 1 we make the
ox 2 OX 8 OX 40 ox

number of symbols simple and take them into above.

=—(@1- p)aic [¢9+\/_61/2]
_a- p)a/IC{[+T91/2+(A— FY0+ (- \/T_+ \/_)93’2 gez]z)f
AFT . 12 #F 3r 1/2
oW S 2 2a\/_)0 +2_‘9]("5_)(

61/2+4AF+( T+—)9 3321

" [‘m 4\/2 avr ox

Because of equation (4.11), we could ignore the high terms
when 6" and n > 3/2 .The interaction term could be expressed as following.
Interaction term
— (- p)asc?[6 + 6!
N
- p)a/’tc{[+%6’l/ 2, (A—EF)e] [Te—“ 2 P 43/’_ = \/_)91’ 2
’ 23a ok o [(2\/_ 4J— +411AF (_T —a)e]c&}

Use the result of doing multiplication to v2 and integrations to velocity v and

desired velocity w by convection term, relaxation term and interaction term to add, we
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could get as following.

ca&—9+ 2c0@+ cV— o0 + 20\7{M -(1- p)a/lciell2

OX OX T Jr
~ Q- P02 L) (2
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Hllz)c 00

4J_ 2 2avr ox

A 3¢ 12 3 0z _ )
82 Y2, 2 gy - C+ vy -0 -
(GO O S [+ Ty - 0-7]
F 12
— —_(1- p)adc? <9+—6’1
(1-p) [ ~ 1

~(1- p)a/lc{[A¢9+£6?l/2 —1F91@+ o712

AF
f 2 NS

Fr 1/2 06

o —9 c—

44/ 2a«/ ) 2a ] OX
A 3r 1/2 1 r 3F oz
— Fo'“+=AF + (——+—)0lc—
[2«/7r Ar ) 4 ( 2 4a) ] OX

Divide the above by densityc(x,t), and take F =2v —aA to the original equation.

Layout time interval 4 is a small value s0.4° %0 and we could get macroscopic
equation based on macroscopic:parameter, variance &(x,t)

%_{_Z_P@_Fvﬁ_ﬁ[c 9]
ot ¢ ox OX

3t 12 1/2 oz
=—(1-p)aicd—-(1- p)at{A0—+[- 0 +—0)]c —=Ad Lo
1-p) (p){ax NS 2)]X(\/— v
(4.15)

oz ov o
We set z=0v3+dv =v3+Vv —2V(X,t) so &:—2& , we could take it into

equation (4.15), and get the macroscopic equation(4.16) based on macroscopic

parameter, variance 8(x,t) as following.

%-FEQ-FV%—E[C 9]
ot ¢ oX OX

— _(1- p)aichd—(1— p)a/l{Aeac

—9)]0 0 - g2 w0)e }

N

@

(4.16)

Where A= 1 +
Cmax
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4.5 Summary

The traffic flow model that the chapter 3 constricted in this research which could
describes non- instant velocity-changing and considers finite space could get three
important macroscopic models. They are macroscopic equation (4.12) based on
density functionc(x,t), macroscopic equation (4.14) based on average velocity v(x,t) ,
and macroscopic equation (4.16) based on variance 8(x,t) .

According to equation (4.12), the constructed model still has the characteristic of
flow conservation. Comparing equation (4.14) and equation (4.16) with the preview
studies, the result of the Interaction term is obvious different. The macroscopic model
that the traditional mesoscopic model gets is usually the result of the multiplication of
density, average velocity, and constant because of the result of the Interaction term.
The result of the Interaction terms would change with gradient of density, average
velocity or variance owing -to “considering the “factors such as non- instant
velocity-changing and space cooperated in-this research which causes the result like
equation (4.14), and equation (4.16)." The others about model would make a deeper

analysis in chapter 5.
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Chapter 5  Characteristics Analysis of

Macroscopic Models

We construct a mesoscopic traffic flow model that could describe non-instant
velocity-changing and consider finite space in chapter 3. Then we get three
macroscopic traffic flow models based on densityc(x,t), average velocityv(x,t),
variance @(x,t) in chapter 4, and they show as the equations (4.12), (4.14) and
(4.16). Where, the equation (4.12) is flow conservation as result of other scholars, but
the equations (4.14) and (4.16) are different from others. We would analysis these

three macroscopic equations further in this chapter.

5.1 Characteristic Velocity Analysis

This section aims to calculate the characteristic velocity [17, 22-23] of the
macroscopic model. First of all:rewrite the three macroscopic models from chapter 4

with symbols.

1. Density equation

o aev) _

0 51
ot OX (5.1)

It is the same as equation (4.12).
2. Average velocity equation
@+(Q+ A)@+(\7+ B)@+(1+C)%
ot ¢ OX OX 0 (5.2)
_(%p-v) - p)aﬂcigl/z

T Jr

Where
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A= (- p)aigi2 Ly
T 2

N
Bo(_plairy 3 g2 34
(1-p)ai( 2+2\/; 2a )C
C-a_par Ptz T, 3 iz
d=p) (4\/; 2 2adr )

3. Variance equation

%+ D@+(2H+ E)@+(\7+ F)%
ot OX OX OX (53)
_ %[C _0]-(1- p)aicd

Where
D = (- p)aiag
E- - p)aﬂ(—% AGY?2 +70)C
T

3r

&Wrm

In order to get Characteristic \elocity,‘we need to rewrite the equation (5.1),

F 2@ paifs

213 oye
2a

equation(5.2) ,and equation (5.3) to Characteristic Form as equation (5.4).
v c 0
+ A+§ B+v 1+C| =0 (5.4)
t D E+20 F v X

Q< o

Set
v c 0
G= A+§ B+\7 1+C
c
D E+29 F+\7

The Eigenvalue ¢ could be got fromdet[¢1 —G] =0, where | is vector. Then we

could get what ¢ is.
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{z\T+%(B+ F)

1 A 3c 12 3 3t 1/2 3
=V+=(1- p)aic[(-—=+ 0" ——0)+(- ' “+—0
3( Pazel( 2 2x 2a )+ VNG 4 2a )
1 A 3t 12
=V+=-(1- p)atc[-—+ 0
S0 a2+ ==
(5.5)

Because the other roots of det[{1 -G]=0 are imaginary roots, the

Characteristic Velocity that this model gets is as the equation (5.6). (As appendix A)
3r

N

C. Wagner (1996) [17] shows that Paveri-Fontana (1975) [7] could get characteristic

dx 1 A
ZaV+=(1- p)aic[-=
dt +3( Padel=>+

o2 (5.6)

velocities as following on the condition of considering infinite space and instant

velocity of deceleration.

dx dx
pr~ 4 ; —-=ViJ30 5.7
dt dt V30 (5.7)

-+

Because characteristic velocities also called 'local wave velocity that means
characteristic velocity is density. function, “the -following is the illustration of
characteristic velocity that this research gets.

(1). According to the equation (5.6), we could know that the characteristic velocity
which this research gets has relations to density. According to figure 5-1-1, that is

a reasonable result.

(2). According to the equation (5.6), the characteristic velocity that this model
constructs is positive. That means density wave passes down downward.
According to basic macroscopic assumption, q=cV [24], as following figure
5-1-1, density velocity is positive when flow is smaller than the capacity, and
density is negative on the other hand. Because we assume model on dilute traffic,
the velocity of density wave should be positive value. This result is the same as

result of the equation (5.6), and it is reasonable.
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(3).

(4).

If passing probability p =21that means which drivers can overtake cars at will,

the characteristic velocity would be equal to the average velocity according

equation (5.6). It means %zv and it is a reasonable result. Because drivers

can overtake cars at will, cars are independent, and on dilute traffic, velocities
would not interact. So velocity could achieve desired velocity, and that results

that characteristic velocity and average velocity are the same.

Because our model considers deceleration, when uniform deceleration a = 0that
shows drivers have no deceleration when the faster (the latter) car could not pass
according to the equation (5.6). Hence, the two cars have the same velocities, and
it is a reasonable result. This result is a special result that the researches of other

scholars do not have.

Flow q
4

Road
Capacity

Y4

|
i
Dilute | avy,
| /
! / . Density c

Chax

Fig. 5-1-1 Dilute and Heavy Traffic

Data Resource: Haberman, Richard (1977)[24]
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5.2 Equilibrium Analysis

Macroscopic parameters densityc(x,t), average velocity v(x,t) and variance

6(x,t) would not change with time and space in equilibrium. It means that%:O,

@zo, ﬂ:O, ﬁzo, %:0, and %:0, so we could get the following
OX ot OX ot OX
equations.

1. The Relation Between Average Desired Velocity and Average Velocity

If it is in equilibrium, we could rewrite the equation (4.14) to the equation (5.8)

- (w-v) _ . 1 a2
T " (1- p)adc \/;9 (5.8)

Then we could get the relation between average desired velocity and average velocity

as the equation (5.9).

" = 1 /2
Vo=V=T(1l—~plaic—¢ 5.9
0 1=p) ~ (5.9)
That result of Paveri-Fontana (1975)[ 7] is the equation (5.10).
Vo=v=T(1- p)cd (5.10)

The relation between average - desired  velocity and average velocity in
equilibrium results from relaxation and interaction term. If it is not in equilibrium, the
relation would depend on density gradient, average gradient and variance gradient. It
is different from the equation (5.9). The relationship is explained as the following.

(1). From the equation (5.9), mean average desired velocity is faster than average

velocity. It is a reasonable result.

(2). If the passing probability p=1 in equilibrium, the average velocity is equal to
the average desired velocityvy =V. It is reasonable result because cars could
attain their desired velocities when they could pass at will. They do not affect
each other in dilute density and independent conditions. Hence, the average

velocity is equal to the average desired velocity vy =V . If the passing probability
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p =0 in equilibrium, it means cars could not pass each other. Therefore, their
relaxation time T approximate infinity, this cause the result that the average

desired velocity is different with the average velocity as we obtain.

(3). If the relaxation time T =0 in equilibrium, the average velocity is equal to the

average desired velocityVp =V . Because T =0 means the time that current
velocity accelerates to the desired velocity is zero, it also means the current
velocity is equal to the desired velocity. So this result is the same as the equation

(5.9). The same as the above, if T — o, it also means p=0. Hence, the

average desired velocity is different with the average velocity.

(4). If the uniform decelerationa =0, it means there have no deceleration to avoid
collision without passing. It alsomeans that the velocity of the former is the
same as the latter one, so it has no:deceleration. Because every driver has his
desired velocity, they would accelerate until he attains his desired velocity. It
means that drivers have attained their desired velocity, so they have no

acceleration. So the average velocity is equal to the average desired

velocity Vo =V in equilibrium. Besides, this is the special result that
Paveri-Fontana (1975) [7] could not explain in equilibrium.
2. The Relation Between Covariance and Variance
If it is in equilibrium, we could rewrite the equation (4.16) to the equation (5.11)
—é[c —0]=—-(1- p)aico (5.11)
Then we could get the relation between covariance and variance as the equation

(5.12).

C—H:TE(l— p)aicd (5.12)
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The following equation is result of Paveri-Fontana (1975)[7].

c-e:TE(l— p)co*? (5.13)

The relation between covariance and variance in equilibrium results from

relaxation and interaction term. If it is not in equilibrium, the relation would depend

on density gradient, average gradient and variance gradient. It is different from the

equation (5.12). The relationship is explained as the following.

D).

).

(3).

We could know covariance is larger than variance in equilibrium from equation
(5.12). Covariance results from the difference between average velocity and
velocity, average velocity and average desired velocity. Variance results from the

difference between average velocity and velocity. So this is a reasonable result.

When the passing probability p'=1, it means that cars could pass in will. From
the equation (5.12), we could know that covariance is equal to varianceC =6 in
equilibrium. It is reasonable result” because cars could attain their desired
velocities when they could pass.at will. They do not affect each other in dilute
density and independent conditions. Hence, the average velocity is equal to the
average desired velocity vy =V . According to the definitions of covariance and
variance, so covariance is equal to variance in equilibrium. If the passing
probability p=0 in equilibrium, it means cars could not pass each other.
Therefore, their relaxation time T approximate infinity, this cause the result

that covariance different with variance as we obtain.

If the relaxation time T =0 in equilibrium, the average velocity is equal to the

average desired velocityVp =V. Because T =0 means the time that current
velocity accelerates to the desired velocity is zero, it also means the current

velocity is equal to the desired velocity. According to the definitions of

47



covariance and variance, so covariance is equal to variance in equilibrium. The
result is the same as the equation (5.12). The same as the above, if T — o, it

also means p =0. Hence, covariance is different with variance.

(4). If the uniform decelerationa =0, it means there have no deceleration to avoid
collision without passing. It also means that the velocity of the former is the
same as the latter one, so it has no deceleration. Because every driver has his
desired velocity, they would accelerate until he attains his desired velocity. It
means that drivers have attained their desired velocity, so they have no
acceleration. So the average velocity is equal to the average desired
velocity Vg =V in equilibrium. According to the definitions of covariance and
variance, so covariance is equal to. variance in equilibrium. Besides, this is the

special result that the model.of PaverizFontana'(1975) [7] could not have.

5.3 Numerical Simulation Analysis

In this section, we would+analysis. the*three macroscopic equations with
numerical simulation. We would use “Upwind method to analysis”. It is a simple
first-order partial differential equation and it belongs to an explicit finite-difference
method. According to Helbing (1999) [25], we set flow Q=cv and traffic
pressure P = cé . Then the three macroscopic equations (4.12), (4.14) and (4.16) could

be rewrite to be related to density c function as the following.

x, R_, (5.14)
ot oX
oQ o Q2 5 1232 11z 12,172
Er Il P+ +(1- plaf———PY2c¥?2 4 P'%c
ot ax[ C 4-p) {4c_max\/; N ©
3 1 T 3
_ P+ p3/2cli2 _ cO-202-"p 5.15
2a/7 2¢C_max Q 2Q 2a i (5:19)

:CV°T—‘Q—(1— p)aic?
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oP 0 .3PQ

SR,
—+— +(1-p)at Pc+2:QP ———=P"“c
Tl ¢ T PR _max ©Q Wr
+ip2 _ 1 P2Qct/2 _r p1/2Q2C—1/2}] (5.16)
2a c_max\/; N

= M —(1- p)aiPc

If we rewrite the equations (5.1), (5.2), and (5.3) as vector form as the following.

a—l: 81(;(u) =s(u) (5.17)
Where
u=[c,Q,P] (5.18)
w=lep +QT2+ (- p)a}t{4c rr?ax\/_ PreT Aflj%mecm
_mp+ﬁp3/zcm 2c Q- Q- ~PQ}L= 3PQ -
+(1- p)a;t{c_1 -~ R+ 2:QP —4:%P3’2c“2 +2—?;P2 |
¢ mix\/; PHQe _% g% Bl
s(u)=[0, S =0 - —Q _ 1 pyaae? —Z[CCT Pliu- pape] (5.20)

We use Dirichlet boundary condition, a period boundary condition, and it means
that the simulation result would happen periodically. So we would simulate one cycle

as present as the following.
u(0,t) =u(L,t) (5.21)

Where, L means the end of the simulation road, and xe[L,L+¢J], 6 means a

small quantity of space. We assume the equation (5.9).
u(x) =u(L) (5.22)
We separate time to 4000 equal grids and every time grid is 0.0001 hour. We

separate space to 250 equal grids and every space grid is 0.004 km. Assume average

car length is 0.005 km, desired velocity is 100km per hour (v, =100 km/hr),

relaxation time is 30 seconds (T =30s), reaction time is 0.75 seconds (7 =0.755),
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heavy density is 180 cars per km (¢c_max =180 cars/km), equilibrium density is 30

cars per hour (c_equi =30 cars’/km), A4=0.0001 hour is the same as the time grid,

covariance C =144 square km/ square hour, uniform deceleration a=60000

km/square hour, passing probability p=0.99. According to Helbing (1995) [26], he

assumes the relation between equilibrium velocity and desired velocity as the

equation (5.10) ,and the relation between covariance and variance as the equation
(5.112).

V_equi = v, (pow(1+exp((c_equi/c_max - 0.25)/0.06),-1.0) - 3.72*10°)

(5.23)

variance _equi = variance(pow(1+ exp((c_equi/c_max - 0.25)/0.06),-1.0) - 3.72*10°)

(5.24)
<1>. Perturbation Simulation:

We add sine wave to the initial value of density, and see the result that

perturbation causes. The following isithe-result-of our research.

Fig. 5-3-1 Density Changing 1
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Fig. 5-3-2 Density Changing 2

0.4

Fig. 5-3-3 Density Changing 3
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Fig. 5-3-4 Average Velocity Changing 1

Fig. 5-3-5 Average Velocity Changing 2
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Fig. 5-3-6 Average Velocity Changing 3

/(B hr)

3500

Fig. 5-3-7 Traffic Pressure Changing 1
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Fig. 5-3-8 Traffic Pressure Changing 2

Fig. 5-3-9 Traffic Pressure Changing 3
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Fig.5-3-10  Variance Changing 1

Fig. 5-3-11  Variance Changing 2
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From the result of simulaﬁbn, we cquld "bbservé: some result that match the real

| ]

traffic, and we describe as the fdﬂlovying'.m" A
(1). We could know the characteriétib‘velocity is positive and it is the same result as
the section 5.1. In dilute traffic, density wave could propagate downstream with

time.

(2). When the traffic pressure becomes larger, the average velocity becomes slower.
It is the same as general traffic theory. When drivers anticipate the density of
downstream becomes heavier, traffic pressure becomes larger, drivers would

decelerate and this causes the average velocity slower.

(3). When the density becomes heavier and average velocity becomes slower,
variance would become smaller. Because cars could not pass, density would
become heavier. The latter car decelerates to the velocity of the former car, so the

average velocity becomes slower and variance becomes smaller.
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<2>. Simulation of Different Passing Probability Effect:

In the same condition as the above, we could adjust different passing probability

p to observe density, average velocity, traffic pressure and variance changing.

pressure
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pressure

Fig. 5-3-14  Passing Probability =0.8

Fig. 5-3-15  Passing Probability =0.9
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Fig. 5-3-16  Passing Probability =0.99

From figure 5-3-14 to figure 5-3: e two characteristics.

1. When passing probability ariance becomes larger. Because

smaller passing probability p means cars could not pass each other easily, they

could not attain their desired velocity easily. Therefore, variance becomes larger.

2. The whole changing trend does not change with passing probability p . Because
we construct the model by assuming in dilute traffic, macroscopic model could

approach local equilibrium quickly. Hence, the whole changing trend does not

change with passing probability p .
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<3>. Simulation of Different Uniform Deceleration Effect:

In the same conditions as the above, we compare density, average velocity, traffic
pressure and variance with different uniform deceleration a and the same passing

probability p . We use two kinds of passing probability p, p=0.99 and p=0.7, and
three kinds of uniform decelerationa, a=60000, a=600 and a=6. We show

a=60000 with blue, a=600 withgreenand a=6 with red.

car/lm

30.4 |
50,2 |

;//// 50 100 1 200 250

258 F

29.6|

Fig. 5-3-17  Density in p=0.99 and Different a
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Fig. 5-3-18  Density in p=0.7 and Different a

km
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Fig. 5-3-19  Average Velocity in p=0.99 and Different a
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Fig. 5-3-20
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Average Velocity in p=0.7 and Different a
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Fig. 5-3-21
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Fig. 5-3-22  Variance in p=0.7 and Different a

From figure 5-3-17 to figure 5-3-22, we could find that when passing probability
becomes smaller, uniform deceleration. a=60000 affects density and average
velocity more. By the way, we also ‘could observe that when passing probability
becomes smaller, different uniform deceleration a causes density and average
velocity more different. In the view of mathematic, the value of uniform deceleration
a=60000 is larger, so it substitutes to affect interaction term more. Hence, the
average velocity becomes slower and variance becomes smaller. In the view of traffic
flow, the uniform deceleration becomes larger in dilute traffic, and it means that the
letter car could approach to the velocity of the former car quickly. Compare to the
traffic flow of smaller uniform deceleration, average velocity of the traffic flow of
bigger uniform deceleration is slower and variance is smaller.

Besides, when passing probability is smaller, a =60000 causes less effect to

density than other two smaller uniform decelerationsa . Because we assume approach
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local equilibrium quickly in dilute traffic, there have no heavy situation. However,
different uniform decelerations would result in different velocities and variances, and
they also affect the propagation of density wave. When the effect of interaction term
becomes larger, it would vibrate the propagation of density wave more seriously.
Therefore, we could compare the effect of different uniform decelerations with
different passing probability from figure 5-3-17 to figure 5-3-22, and we could
observe that there has more difference in smaller passing probability. Because the
number of cars use uniform deceleration is fewer with free passing, the whole has
little difference. We could see the difference that cause by introducing uniform
deceleration. This is the special point that other researches do not contain. Besides, it
also shows that introducing uniform deceleration could describe traffic phenomenon

more in heavy traffic.

5.4 Summary

From the first and second sections; we-could know that our model could describe
traffic flow more reasonable. The equations (5.6), (5.9), (5.12) and figure 5-1-1 show
this research could describe more phenomenon than the model of C. Wagner and our
model could explain the extreme condition. For example, because our model
considers deceleration, when uniform deceleration a =0that shows drivers have no
deceleration when the faster (the latter) car could not pass according to the equation
(5.6). If the uniform decelerationa =0, it means there have no deceleration to avoid
collision without passing. It also means that the velocity of the former is the same as
the latter one, so it has no deceleration. Because every driver has his desired velocity,
they would accelerate until he attains his desired velocity. It means that drivers have
attained their desired velocity, so they have no acceleration. So the average velocity is

equal to the average desired velocity Vo =V in equilibrium. According to the
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definitions of covariance and variance, so covariance is equal to variance in
equilibrium. These results are special results that the researches of other scholars do
not have. Besides, we also discuss the extreme values of passing probability pand
relaxation timeT .

We analysis the three macroscopic equations that obtain from chapter 4 with
numerical simulation “Upwind method” From figure 5-3-14 to figure 5-3-16, we
could observe that when passing probability p becomes smaller, variance become
larger. But the whole changing trend does not change with passing probability p .
Besides, we could observe that there has more difference in smaller passing
probability and see the difference that cause by introducing uniform deceleration from
figure 5-3-17 to figure 5-3-22. This is the special point that other researches do not
contain. Besides, it also shows that introducing uniform deceleration could describe
traffic phenomenon more in heavy.traffic.

Therefore, we could know that--our—model could describe more traffic
phenomenon that other model could net.explain. This means that it is meaningful to
introduce uniform deceleration to relax instant velocity and consider finite space in

gas-kinetic traffic flow model.
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Chapter 6  Contribution and Future Works

This chapter aims to conclude the results of the preview chapters, put the result
of this research in order, and summit suggestions in order to give reference to those
interested in this topic. We hope this would be good to the development of

mesoscopic traffic flow model in our nation.

6.1 Contribution

By means of the preview chapters, this section would conclude the emphasis of
the preview chapters and sections, and illustrate the contribution of this research as
following.

1. Construct a mesoscopic traffic flow model with more physical meanings.

We introduce the uniform deceleration to relax instant velocity-changing and

consider finite space, and construct a new mesoscopic traffic kinetic equation which

could more close to the real traffic flow.

2. Relax the original unreasonable assumptions of mesoscopic traffic flow
model of Prigogine and Herman;

This research would relax infinite space and the assumption of instant
velocity-change in interaction term of Prigogine and Herman’s model.

3. Describe more traffic phenomenon reasonably.

With integrating our mesoscopic model, we get macroscopic function based on
macroscopic parameters, density c(x,t) , average velocity v(x,t) and variance
6(x,t) .Then we analysis the model to obtain some characteristics about considering
finite space and non-instant velocity-changing. For example, the results of different
uniform decelerations are more different in lower passing probability. We know that
our model could describe more traffic phenomenon that other model could not explain

in chapter 5. This means that it is meaningful to introduce uniform deceleration to
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relax instant velocity and consider finite space in gas-kinetic traffic flow model.

4. Describe the model and the meaning of characteristic in detail in this
research.

In this research, we want to explain the thoughts and meaning of behaviors and
record the mathematical operation in detail. We hope would help those interested in

mesoscopic traffic flow model and be good to the development of application.

6.2 Future Works

We simplify some complicated place in order to be convenient to express them in
this research. Although that would not affect the correction of this research, that still
limit us to illustrate traffic conditions. The followings are what we suggest to re-relax
and research.

1. Multi-lane and multi-class.

Because this research emphasizes relaxing instant velocity-changing and infinite
space, we simplify assumption of the lanes-and-class. The following researches could
be improved toward the multi-lanes or.multi-class. Nowadays, there several scholars
discuss the complicated drivers’ behaviors in mesoscopic traffic flow aspect.

2. Consider the velocity distribution function of cars.

We use normal function that assumes cars are independent in order to simplify in
this research. In order to be close to the realistic traffic, we need to break down the
assumption that every car is independent and we could adapt a velocity distribution
function that could describe the interactions of cars. There are several famous scholars
who try to research about velocity distribution function to describe more real traffic

phenomenon at present.
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Appendix A

From section 5.1, we could know that eigenvalue ¢ could be obtained by
det[{1 —G] =0, where 1 is unit vector. Then we use Mathematica 5.1 to solve(,

the real root is the following.

g~
- (23 (-B?-3Ac-3E-3CE+BF-F?-96-6Co))/
(3
(2B%+9ABC+27¢cD+27cCD+9BE+9BCE-3B*F-18ACF+9EF+9CEF-3BF+2F+27Bo+
18BCq+18CFQ+
v (4 (-B>-3ACc-3E-3CE+BF-F-96-6Ce)°%+
(2B%+9ABC+27¢cD+27cCD+9BE+9BCE-3B*F-18ACF+9EF+9CEF-3BF+2F.27Bo+

18BCe+18CFe)?))"?) «
1
321/3
((2B*+9ABCc+27¢cD+27¢cCD+9BE+9BCE-3B?F-18ACcF+9EF+9CEF-3BF+2F+27Bo+18BCo+
18CFeoe+
v (4 (-B?-3ACc-3E-3CE+BF-F?-9q-6Cq)°+
(2B%+9ABC+27¢cD+27cCD+9BE+9BCE-3B°F-18ACF+9e F+9CEF-3BF+2F+278B

6+18BCe+18CFe)?)) ") +% (B+F+3Vv)

Because the definition of symbols A B, C, D, E, and F of the

equations (5.2) and (5.3), and time grid A4 is a small value, we set A2 ~0. Then, we

could simplify the above equation to the following.
£ - (23 (-3E-96)) / (3(27Be++/ (4 (-3E-90-6Ce)3 + (27 Be)z))l/S) .

2 3 2\ 1/3 1
m((27Be+\/(4(-3E-3CE+BF-F-9q-6Cq) +(27Be))) )+§(B+F+3V)

We divide the above equation into three parts, the first row is the first term, the
left-hand-side of the second row is the second term and the right-hand-side of the
second row is the third term. Because the first and second term is more complex, we
show the equation (5.5) with only the third term. But it does not mean that the first
and the second terms have no meaning. It is a simple representation and its accent of

characteristic velocity does not change owing to ignore the first and the second terms.

Because these three terms all have (1— p)aAc, we focus this point to discuss.
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1. Variables

Appendix B - Symbols

one dimension position
parallel position (the second dimension)
time

one vehicle velocity

velocity
velocity

velocity

one vehicle desired velocity

total attribute

discrete attribute

continue attribute

other attribute

the absolute value of desired velocity (not contain direction)
the angle of desired velocity

lane

driver (car class)
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2.

3.

Constants

C_max

Functions

c(x,t)

V(x,t)

U ()

a(x,1t)

C(x,1)

q(x,t)

driving status

direction of traffic flow

destination

car length

relaxation time

passing probability

uniform deceleration

reaction time

the heaviest density

density

average velocity

average desired velocity

variance

covariance

flow
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P(x,1) traffic pressure

J(x,1) flux of velocity variance

J.(x,t) flux of velocity variance in equilibrium

®(vy,v;)  the velocity of the latter car during deceleration
f(x,v,t)  velocity distribution function of one vehicle
f,(x,w,t) desired velocity distribution function of one vehicle

f.(V(x,1),0(x,t)) velocity distribution function of one vehicle in

equilibrium

g(x,v,w,t) velocity distribution function of one vehicle (contain desired

velocity)
4.  \Vectors
4 eigenvalue
| unit vector
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