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摘要 

欲發展良好的交通控制解決交通問題需要有充足的資訊，在相關資訊中最重

要且不易估算的就是車流量的預測，車流模式的發展就是朝此方向之研究，關於

介觀車流的相關研究國內相關研究仍未完整，尚有許多介觀車流議題需要被討論

與研究，所以本研究欲藉由回顧較具重要性的介觀的車流動力學模式，將其重要

貢獻與特性整理，並且建構一可較真確描述道路車流情形之介觀車流模式。 

本研究引入具有物理意義之減速度考慮項目，放鬆交互影響項中瞬時速度變

化與未考慮有限空間因素影響，藉由將這些特性納入並建構一新的介觀車流之動

力學方程之中；並且利用動差函數方式將本研究所建構的介觀模式積分，可以獲

得以巨觀參數─密度 ),( txc 、平均速度 ),( txv 與變異數 ),( txθ 為主的巨觀方程式；

而後再以特徵速度、均衡解與數值模擬加以分析該模式的特性，並獲得因本研究

引入等減速度可比以往研究的模式可多加解釋的特性，比較不同超車機率下不同

的加速度值，在低的超車機率下，等減速度會比較有差別，在高的超車機率下，

等減速度看不出差別，因為可很自由的超車情況下，使用到等減速度的車輛相形

較少，所以對整體較看不出差別。由此可知本研究所建構的介觀車流動力學模式

可較真確描地述更多車流情形。另外在撰寫論文時，將本研究的想法與行為意義

清楚傳達，並將過程中的數學推導詳細記錄，希冀能對於介觀車流有興趣者有所

幫助，以期許將來能有利於實際應用的發展。 

關鍵詞：介觀車流；車流動力學；瞬時速度變化 
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Abstract 

In order to develop traffic control to solve traffic problem, we need sufficient 
information. The related and the most important information is to estimate quantity of 
traffic flow. Developing traffic flow model is one of ways to research. However, the 
research about mesoscopic traffic flow, gas-kinetic traffic flow, is not yet complete so 
we want to review some important researches and arrange the focus. And we construct 
a gas-kinetic traffic flow model in order to describe real traffic more. 

In this research, we introduce uniform deceleration with physical meaning to 
relax instant velocity-changing and not consider finite space in interaction term and 
construct a new model. Then we use momentum function to obtain three macroscopic 
models with density ),( txc , average velocity ),( txv  and variance ),( txθ . We use 
characteristic velocity, equilibrium and numerical simulation to analysis the accent of 
our model, and we know our model could describe more phenomenon than others.  

Compared with different uniform decelerations in different passing probability 
conditions, we could observe that different uniform decelerations make difference in 
smaller passing probability. Different uniform decelerations make no difference in 
bigger passing probability, because cars use few uniform decelerations in dilute traffic. 
Therefore, our research could describe more traffic phenomenon. Besides, we explain 
our thought and the meaning of our model clear, and record mathematic processes 
explicitly. We hope this research could help those who are interested in mesoscopic 
traffic flow and help the development of real application.  

Keyword: Mesoscopic Traffic Flow, Gas-Kinetic Traffic Flow, Instant 
velocity-changing. 
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Chapter 1 Introduction 

1.1 Research Motivation 

In recent decades, the auto industry grows vigorously and the proportion of 

possession of the car rises year by year because of the factors, such as the demand of 

economic development. Accounting the materials of The Directorate General of 

Budget, Accounting and Statistics (DGBAS) of Executive Yuan [1], it shows that the 

registered car has already been up to 6,380,000 till 2004, there are 0.73 cars in 

average each family, and the traffic accident piece is up to 137221. There are 72.83 

accidents in every ten thousand cars by accounting the vehicle, and average death rate 

is 1.4 people in every ten thousand cars by accounting the vehicle. Both are higher 

than in Japan and Britain, etc. Therefore, to develop effective method to control traffic 

is the important topic in order to solve the traffic problem in our country.  

However, it needs sufficient information to develop good traffic control. The 

most important and difficult to estimate one is the prediction of the flow of car in 

relevant information, and the development of traffic is the research in this direction. 

The models of mathematics could be used in the description of various kinds of the 

systematic physical phenomenon, and the traffic systems include drivers, vehicle and 

road states, etc. We could built and construct the studies of mathematical models to 

describe complicated driver's behaviors. Therefore, this research wants to build the 

way to construct a road traffic flow situation.  

The general traffic theory could be divided into three kinds: microscopic, 

macroscopic and mesoscopic. According to the descriptions of scholars, such as 

Hoogendoorn and Bovy (2001) [2], etc., Microscopic traffic flow model is describing 

the relationship between driving behavior, and uses parameters to describe the 

individual's behavior in detail, for instance: car-following model. Macroscopic traffic 
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flow model based on the relation of flow, velocity and density treats every car in 

traffic flow which is unable to identify alone with the view of the continuous fluid. 

The basic theories have average concepts. Mesoscopic traffic flow model is correlated 

with macroscopic traffic flow model and microscopic traffic flow model. Based on the 

relation of distance and density, mesoscopic traffic flow model builds on the distances 

between two cars in microscopic traffic flow model and density in macroscopic traffic 

flow model. Mesoscopic traffic flow model describes the individual behavior in the 

form of probability distribution, which basic theories are set out by the dynamics 

theory.  

Among three model of traffic flow, it is difficult to be used in dynamic 

simulation for carrying the simulation out wastes time. That's because macroscopic 

behavior is unable to catch and microscopic model has a lot of parameters. Therefore, 

in order to describe the micro behavior, and offer information of macroscopic 

behavior, we need to use mesoscopic traffic flow model. Mesoscopic traffic flow 

model could be said that it is a bridge connecting microscopic traffic flow model and 

macroscopic traffic flow model.  

According to the scholars, such as Hoogendoorn and Bovy (2001) [2], etc., they 

divide mesoscopic traffic flow model into three kinds: headway distribution model, 

cluster model and gas-kinetic continuum model. This research wants to use the 

gas-kinetic equation of mesoscopic traffic flow to develop the foundation of the traffic 

flow. 
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1.2 Research Purpose  

The traffic flow theory could be divided into three big classes: macroscopic, 

mesoscopic and microscopic traffic. Our nation has a lot of relevant research about 

macroscopic and microscopic traffic flow model at present, but the relevant research 

about mesoscopic traffic is not complete so far. There are still a lot of topics about 

mesoscopic traffic that need to be discussed and studied. For this reason, by reviewing 

the more important mesoscopic gas-kinetic traffic flow model, this research puts its 

important contribution and characteristic in order to make it easier to understand for 

those who interest mesoscopic gas-kinetic traffic flow model. By showing this 

research, it may offer some materials to the follow-up topic persons.  

The research will focus on the gas-kinetic traffic flow model of mesoscopic 

traffic flow with the introduction of the physical significance of considerable items. 

Its properties will be included in and build a new mesoscopic traffic Kinetic equation. 

It could be more accurate to describe the traffic flow cases, and ease the conditions of 

mesoscopic traffic equations which have not been relaxed or unreasonable originally. 

Through mesoscopic model integration, using the GMM function, this research could 

get Macro-parameters － density ),( txc 、 average velocity ),( txv and variance 

),( txθ combining the formula. Then we use the deterministic and numerical 

simulation to analysis the characteristics of the model. We hope that the establishment 

of mesoscopic gas-kinetic traffic flow model could be more realistic, and help those 

whom interested in mesoscopic traffic flow. We even hope that it could be good to 

real application. 
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1.3 Research Scope  

This research focuses on the gas-kinetic equation of mesoscopic traffic flow, 

which has a relation between microscopic traffic flow and macroscopic traffic. Its 

relation could be put in order as the following picture 1-3-1 by Hoogendorn and Bovy 

(2001) [2].  

 

Fig. 1-3-1 The relation of microscopic, mesoscopic, and macroscopic traffic 
flow model  

Data Source: Hoogendorn and Bovy (2001) [2]  

This research range is fixed on the behavior factors needed considering in 

Microscopic. Considering these microcosmic factors, we establish mesoscopic traffic 

flow model to be macroscopic model via integration. It could be convenient to study 

its characteristics and be used in on-line dynamic simulation in Macroscopic traffic 

flow model in future.  

Subdividing the research scope, the research scope of this research is as the 

following picture 1-3-2, and the research scope is fixed on the description of the 

non-interrupt traffic flow, for example: on freeway.  
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Non-interruption Traffic 
Flow Model

Interruption Traffic Flow 
Model

Research Scope

Dynamic 
Traffic Model

Dynamic Path Flow and Travel Time 
Prediction

 

Fig. 1-3-2 Research Scope 

Data Source: Cho and Lin (2004) [3] 

1.4 Research Procedure  

This research procedure is like Fig 1-4-1. Every step is illustrated in detail as 

following.  

1. Describe and define the question  

According to the development of mesoscopic traffic flow understands the 

development condition of gas-kinetic equation in mesoscopic traffic flow at present, 

submit the topic of the traffic gas-kinetic equation wanted to study, and do an intact 

description of the topic and define motivation and objection of this research.  
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2. Collect and review literature 

Collect relevant literature probing into traffic gas-kinetic equation of the both in 

our country and abroad, and review the limiting conditions and contribution of these 

documents. From the velocity of vehicle assigned function to describe the traffic flow 

by Prigogine and Andrews (1960 ) [4] earliest, which set up the young type of 

gas-kinetic equation, to the follow-up research based on the Prigogine' s and Herman' 

s (1971) [5] models which are more expanded and improved, this research is by 

reviewing the literature pluses and minuses to discuss the restriction and suitability of 

these literature in order to help the traffic gas-kinetic equation of this research to be 

set up.  

3. Construct the model  

Build a conceptive mesoscopic gas-kinetic traffic flow model, and describe its 

every parameter and each physics meaning represented by consulting and collecting 

the literature and materials according to the question that we describe and define.  

4. The deriving in Macroscopic traffic mode 

Use the zeroth-order approximation of local equilibrium, and utilize moment 

function to integrate mesoscopic traffic flow model into Macroscopic traffic mode.  

5. Analyze 

Analyze the characteristic of the model, for example: characteristic velocity, 

equilibrium, and etc. Analyze the obtained result, and then analyze the rationality of 

its result. Last, observe the characteristics of the model by way of numerical 

simulation.  

6. Conclusion and suggestion  

Propose conclusion and suggestion to the course and result of this research.  
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Fig. 1-4-1 The flowchart of This Research 
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Chapter 2 Literature Review 
In this chapter, we go through the literature on the subject of kinetic traffic flow 

theory to understand the development of mesoscopic traffic flow at present. Then we 

set the topic to research. There are four sections. In the first section, we review 

one-lane and one-class traffic flow model. In the second section, we review multilane 

and multiclass traffic flow model. And we rearrange papers into figures in the third 

section. Finally, we conclude the results of the research topic. 

2.1 One-Lane and One-Class 

Gas-kinetic continuum model is proposed by Prigogine and Andrews (1960) [4] 

who describe traffic flow with velocity distribution function. Then Prigogine and 

Herman (1971) [5] arrange those papers about gas-kinetic continuum models into a 

book. Their model is assumed to be in an infinite freeway with low density, it does not 

considered interaction between drivers. There is a velocity distribution function 

),,( tvxf  given certain time t  and space x . Their kinetic traffic flow model could be 

representing as the following. 

 
int)()(

t
f

t
f

x
fv

t
f

dt
df

rel ∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
 (2.1) 

Where, the first term of the right-hand-side of the equation of (2.1) is 

“Relaxation Term”. It results from the different between real and desired velocity, so it 

could be shown as the equation (2.2) with exponential law. 

 T
ff

t
f

rel
0)(

−
−=

∂
∂

 (2.2) 

Where, 0( , , )f x v t  means desired velocity distribution function (Prigogine, 1961) 

[6], and it means the distribution of velocities that drivers want to drive. And the 

second term of right-hand-side is “Interaction Term”.  
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 )1](),()[,(),,()( int pvtxvtxctvxf
t
f

−−=
∂
∂

 (2.3) 

Where, p  means passing probability, ),( txc  means density, ),( txv  means 

average velocity. The interaction term shows that the faster (the latter) one car meets 

the other slower (the former) one without passing, the faster one needs to decelerate in 

order to avoid collision. Hence, the model of Prigogine and Herman (1971) [5] is the 

following. 

 fvvcp
T

ff
x
fv

t
f )()1(0 −−+

−
−=

∂
∂

+
∂
∂  (2.4) 

They use velocity distribution function ),,( tvxf  to show main functions of 

macroscopic traffic flow, local density and flow. 

Local density function 

 ∫
∞

=
0

),,(),( tvxdvftxc  (2.5) 

Local flow function 

 ∫
∞

==
0

),,(),(),(),( tvxdvvftxvtxctxq  (2.6) 

Dispersion of velocity 

 ∫
∞

−=−
0

22 ),,()()( tvxfvvdvvvc  (2.7) 

Where, ),,( tvxf , ),( txc , and ),( txq  are continue functions. We could know 

that velocity distribution function ),,( tvxf  is a main role in mesoscopic traffic flow 

and it also relates microscopic and macroscopic traffic flow.  

After Prigogine and Herman (1971) [5], there are many scholars improve their 

model. Paveri-Fontana (1975) [7] is one of them, and he considers Phase-Space 

Density (PSD) ),,,( twvxg . Where, w  means desired velocity. He replaces velocity 
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distribution ),,( tvxf  and desired velocity distribution function ),,(0 twxf  with 

PSD, showing as the followings.  

 ∫
∞

=
0

),,,(),,( twvxdwgtvxf  (2.8) 

 ∫
∞

=
00 ),,,(),,( twvxdvgtwxf  (2.9) 

In Pavery-Fontana’s (1975) [7], he proposes a lot of shortcomings of the model 

of Prigogine and Herman (1971) [5] as the followings. 

1. The constant relaxation time of relaxation term is unreasonable. 

2. In interaction term 

I When the faster car passes the slower one, the velocity of the faster car 
does not change. 

II When the faster car passes the slower one, the velocity of the slower 
one does not change. 

III Ignore the effect of car length. 

IV The faster one car meets the other slower one without passing, the 
instant velocity-changing is unreasonable. 

V They only consider the interaction of two car, not many cars. 

VI The passing process, one car passes one car or one platoon, is 
unreasonable.  

VII Assume two cars are vehicular chaos. 

There are many scholars try to relax those above unreasonable assumptions.
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2.2 Multilane and Multiclass  

According to the section 2.1, we review the models of Prigogine and Herman 

(1971) [5] and Papery-Fontana (1975) [7]. Many researches depend on those above. 

Gas-kinetic traffic flow model advances to multilane and multiclass one. In this 

section, we first review the multilane model of Helbing (1997) [8-9]. He defines j  as 

lane index, ),,,( twvxg j  as ML-PSD of j lane. 

    −+ −+∂+∂+∂+∂=∂+∂ jjlcjtvcjtjtreljtjxjt nngggggvg )()()()( int  (2.10) 

Where, the first term of the right-hand-side reljt g )(∂  is “Relaxation Term” and 

the second term int)( jt g∂  is “Interaction Term”, and those meanings are the same as 

the previous section. The third term of the right-hand-side vcjt g )(∂  is “Velocity 

Diffusion Term”, it describes the difference of velocities results to a perturbation of 

individual velocity. The fourth term of the right-hand-side lcjt g )(∂  is 

“Lane-Changing Term”, it means the change of ML-PSD results from changing lane. 

The most right term −+ − jj nn  means the rate of car flow-in and flow-out. 

Then, Hoogendoorn and Bovy (2000,001) [10-11] introduce attributes into 

models, they separate attribute ),( kbr =  into continue attribute b  and discrete 

attribute k . 

Continue attribute b : 

1. The absolute value of desired velocity 0v (not contain direction) 

2. The angle of desired moving 0ω  
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3. The acceleration time T  (it is also called relaxation time): It means that 
the time that a driver accelerate from their resent velocity or angle to their 
desired velocity or angle. 

Discrete attribute k : 

1. Lane j : Because of traffic law, control, and geometric design of road and so 
on, those reasons would affect the different behavior of driver on different 
lanes. 

2. Driveru : Traffic status of drivers could be car, bus, van, bicycle, pedestrian 
and so forth. In the other hand, it could be described travel factors, 
entertainment trip, commercial trip, commutation trip and so on. 

3. Driving Status s : There are two kinds of status in this research, free 
driver 1=s  and driver in platoon 2=s . This index could improve the 
interaction term of Pavery-Fontana (1975) [19], one car passes one car or 
one platoon. 

4. Direction of Traffic Flow h : Many directions of traffic flows use the same 
space. For example, intersection. 

5. Destination d : The different destination often affects driving behaviors. For 
example: In freeway, drivers would choose different gateways because of 
different destinations. It could leads to lane-changing. 

Hoogendoorn and Bovy(2000,001) [10-11] introduce PSD ),,,( rvxtg  which 

mix continue and discrete attributes and they obtain gas-kinetic traffic flow models as 

the following.   

     
)()()()()(

)()()()()( 0

V

condrt

IV

eventrt

III

rrv

II

rrv

I

rxrt ggBgAgvgg ∂+∂=⋅∇+⋅∇+⋅∇+∂  (2.11) 

Where, )( 1 xnxx ∂∂=∇ , )( 1 vnvv ∂∂=∇  and )( 000 1 nvvv ∂∂=∇ , rA  means 

acceleration function, rB  means acceleration behavior. 

I Convection: It is fundamental to balance flow-in and flow-out cars. 

II Relaxation: It is also called ” Acceleration Term”, and it means the effect 
result from that current velocity accelerates to desired velocity.  
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III Adaptation of Continuous Attributes: This term describes effect results from 
continue attributes changing. 

IV Event-based Non-continuum Processes: It means that effect results from 
continue and discrete attributes changing discretely by events. For instance, 
deceleration and lane-changing and so on. 

V Condition-based Non-continuum Processes: It means that effect results from 
continue and discrete attributes changing discretely with certain conditions. 
For instance, spontaneous or postponed lane-changing, status changing (free 
or in platoon) and so forth. 

2.3 Rearrange Papers 

Since Prigogine and Herman (1971) [5] propose gas-kinetic traffic flow model, 

many scholars try to improve the limitations of their models step by step. Especially, 

Paveri-Fontana (1975) [7] introduce desired velocity as an independent variable into 

gas-kinetic traffic flow model and he points out the shortcomings of Prigogine and 

Herman (1971) [5]. The latter scholars’ research base is on his paper. The following 

figure 2-3-1 shows that the more important contains of recent ten-year gas-kinetic 

traffic flow models.  

Fig. 2-3-1 The More Important Contains of Recent Ten-Year Gas-Kinetic 
Traffic Flow Models 

Scholars Main Contributions 

Takashi Nagatani  

(1997)[12] 

He improves the gas-kinetic traffic flow model of 
Paveri-Fontana(1975)[7] according to the density of the 
former space, not the space where the car is to assume 
desired velocity. He represents velocity distribution function 
as discrete form. This research shows that there is a great 
difference between flow-in and flow-out the heavy traffic. 

Helbing (1997) [9] 
He constructs multilane gas-kinetic traffic and considers the 
behavior of lane-changing, the velocity diffusion owing to 
improper driving, and finite space related to car length. 

C. Wanger (1997)[13] 
He relaxes the instant velocity-changing with the average 
velocity between the former car and the latter one, and 
obtains macroscopic model to analysis numerical simulation.
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Klar and Wegener 

(1999)[14] 

He considers lane-changing, braking and acceleration, and 
sets the reaction micro threshold to construct gas-kinetic 
traffic flow model. Its velocity distribution function is 
considered the relation between the former and the latter car. 
He derives macroscopic models from the gas-kinetic traffic 
flow model. 

Hoogendoorn and Bovy 

(2000, 2001) [10-11,15] 

They consider continue and discrete attributes into 
constructing gas-kinetic traffic flow model which contains 
many factors as multilane, multiclass and so on. They also 
consider the situation of platoon and assume the car in 
platoon accelerates to the leader of platoon. They solve the 
interaction times which overestimate or underestimate, no 
relation with near cars, and the situation of dilute traffic, with 
considering platoon. Besides the traditional convection, 
relaxation and interaction terms, they also introduce the 
effects of adaptation of continuous attributes, event-based 
non-continuum and condition-based processes. 

Cho and Lo (2002) [16] 

They construct a self-consistent multiclass and multilane 
traffic flow model from traffic Boltzmann equation and 
traffic diffusion model ,and introduce two-dimension space 
and field. They propose that if the model that is only 
considered individual velocity to derive second-order 
momentum function has no physical meanings. It is also 
needed to consider equilibrium velocity. 

The following figure 2-3-2 shows that several important researches rearrange on 

dimensions, scales, processes and operations. Where, dimensions (except time and 

space) contain velocityv , desired velocity w , horizontal position (lane) y  and the 

otherso . Scales contain continue c  and discrete d . Processes contain deterministic d  

and stochastic s . Helbing (1997) [9], Hoogendoorn and Bovy (2001) [11] represent 

lanes with low index of velocity distribution function. Cho and Lo (2002) [16] 

consider two-dimensions ),( yx  to vecor space x . The other dimensions of 

Hoogendoorn and Bovy (2001) [11] are class and driving status (free traffic or in 

platoon) ,and the other dimension of Cho and Lo (2002) [16] is class.
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Fig. 2-3-2 Rearrange the Characteristics of Important Papers 

Gas-Kinetic Traffic Flow Models Dimensions

 v w y o
Scales Processes

Prigogine and Herman (1971) [5] +    c d 

Paveri-Fontana (1975) [7] + +   c d 

Helbing (1997) [9] + + +  c d 

C. Wanger (1997) [13] + +   c d 

Hoogendoorn and Bovy (2001) [11] + + + + c d d 

Cho and Lo (2002) [16] +  + + c d 

Dimensions (Except time and space): velocity v , desired velocity 0v , horizontal 
position (lane) y , and the others o . 
Scales: continue c  and discrete d . 
Processes: deterministic d  and stochastic s . 

2.4 Summary 

In this chapter, we summarize researches about mesoscopic traffic flow models 

and we could find that recent researches have improved to multilane and multiclass 

traffic flow models. However, there are many shortcomings that exist in the first 

model of Prigogine and Herman (1971)[5] do not improve, so the application is 

limited. These are needed to be improved.  

Therefore, we want to try to relax the shortcomings of Prigogine and Herman 

(1971) [5]. Because the shortcoming that the faster one car meets the other slower one 

without passing, the instant velocity-changing is unreasonable is not completely 

relaxed, we try to relax in this researches. C. Wanger (1997) [13] has been tried to 

research on this topic, but he does not completely relax. The moving behavior of his 

model does not match the space changing. In order to relax the instant 

velocity-changing and to consider reasonable behavior, we also consider finite space 

in our model. This means that velocities change with the positions of cars. Hence, we 
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would construct a gas-kinetic traffic flow model to describe more completely in next 

chapter.  
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Chapter 3 Construct Mesoscopic Traffic Flow 

Model 
We could find that the model of Prigogine and Herman (1971) [5] still has some 

shortcoming needed to be improved with literature review. In this chapter, we want to 

relax assumptions of the interaction term of Prigogine and Herman (1971) [5], instant 

slowing-down and no consider finite space, to obtain more realistic traffic flow 

model. 

3.1 The Question Description 

Gas-kinetic traffic flow model has already been developed in decades, and a lot 

of them are based on Prigogine and Herman (1971) [5], and Paveri-Fontana (1975) [7]. 

Some research focuses on topic, multi-lane or multi-class, and the other focuses on 

relaxing the unreasonable assumptions of Prigogine and Herman(1971) [5], which are 

proposed by Paveri-Fontana (1975) [7] (As what we show in Chapter 2). This 

research does the latter. According to Chapter 2, literature review, we found few 

literatures about relaxing the instant slowing-down of interaction term. There has no 

more complete one. Therefore, we want to construct a model which could describe 

successive velocity-changing and finite space effect. We hope it could be more 

meaningful than previous ones.  

We assume the same conditions as Prigogine and Herman (1971) [5]. Assume 

that there is an infinite long freeway, allowing passing. If the driver could not pass the 

former car, its interaction term (slowing-down behavior) could be described as the 

following equation (3.1) 

 
)]()([)1(

0 jij
v

jiijv jji
j

vvfdvfvvfdvfp i

i
−−−− ∫∫∑

∞

 (3.1) 

In the above equation (3.1), car i  means the car which we care, car j  means 
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other car which interact with car i  (only consider two-cars interaction), and p  

means passing probability. So )1( p−  means the probability without passing. The 

equation (3.1) shows that the faster (the latter) one car meets the other slower (the 

former) one without passing, the faster one needs to decelerate in order to avoid 

collision. Hence, they assume that it decelerates its velocity to the velocity of the 

slower one. The first term of the equation (3.1) shows the condition the latter car (the 

faster), its velocity is jv , meets the former car (the slower), its velocity is iv . The 

second term shows the opposite condition, the latter car (the faster), its velocity is iv , 

meets the former car (the slower), its velocity is jv . 

According to the section 2.1, we could know it has some shortcoming in the 

equation (3.1). Our research is main to relax instant slowing-down assumption of the 

interaction term and to relax no consideration of finite space. If the equation does not 

consider instant velocity-changing in slowing-down process, the headway between 

two cars should change with the velocity-changing of the later car. Therefore, we need 

to consider finite space in constructing model of continuous velocity-changing. We 

would construct a model that could describe the traffic situation of non-instant 

slowing-down and finite space consideration in next section. 

3.2 Model Construction 

In this section, the assumptions we used is the same as what Prigogine and 

Herman (1971) [5] did. Assume that there has an infinite long freeway, allowing 

passing, one car type, and each driver drives its different velocity and has the same 

desired velocity (cars of the same type have the same desired velocity ). After passing, 

the car contains its origin velocity (the velocity before passing). If the faster (the latter) 

one car meets the other slower (the former) one without passing, the faster one needs 

to decelerate in order to avoid collision. We introduce the model of C. Wanger (1997) 
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[13] to improve the shortcoming, instant velocity-changing and no finite space 

consideration, of Prigogine and Herman (1971) [5] and to construct our model. 

We use velocity distribution ),,,( twvxg  defined by Paveri-Fontana (1975) [7]. 

Among it, w  means desired velocity, and the relation between ),,,( twvxg , ),,( tvxf  

and ),,(0 twxf  could be appeared like the following equation 

 ∫
∞

=
0

),,,(),,( twvxdwgtvxf
 (3.2) 

 ∫
∞

=
00 ),,,(),,( twvxdvgtwxf

 (3.3) 

According to the models of Paveri-Fontana (1975) [7] and C. Wanger (1997) 

[13], we modify the model of Prigogine and Herman (1971) [5]. Then our model is 

shown as below the equation (3.4). 
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 λ∗−=Φ avvv 313 ),(  (3.7) 

 λ∗−=Φ avvv ),( 1       (3.8) 

Where the uniform deceleration 0≥a , τ  means reaction time, T  means 

relaxation time, maxc  means the heaviest density, λ  means the time interval that the 
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same each time interval of the latter car in deceleration process passes through. And 

),( 31 vvd  and ),( 1 vvd  means the headway between the later and the former cars, p  

means passing probability, )1( p−  means probability without passing, ),( 31 vvΦ  

and ),( 1 vvΦ  means the next velocity of the later car when it starts to decelerate.  

Our mesoscopic traffic flow model constructs as the equation (3.4), where the 

left-hand side first and second terms, described the velocity-changing is caused by 

flow-in and flow-out, are called “convection term”. The left-hand-side third term is 

called “relaxation term”, it is also called “acceleration term”. Because velocities of 

drivers are often different with their desired velocities, they would want to accelerate 

to their desired velocities. The relaxation term we follow the exponential law 

assuming by Prigogine and Herman (1971) [5] to show its effect in velocity 

distribution. The right-hand-side term of equation (3.4) is called “interaction term”, 

and it means that the faster (the latter) one car meets the other slower (the former) one 

without passing, the faster one needs to decelerate in order to avoid collision. The first 

term of interaction term means the latter car 3v  meets the former one 1v , 31 vv < . 

According to the assumption, the latter car 3v  should decelerate to the former car 

without passing. ),( 31 vvd  means the headway, so the headway should match the 

equation (3.5), the very two cars start to interact. By the way, the equation (3.7) shows 

the velocity through changing in the interaction process. It depends on the difference 

of velocities between two cars, the uniform deceleration and time interval. 

In the same way, the second term of interaction term means the latter car v  

meets the former one 1v , vv <1 , without passing, the faster one needs to decelerate 

in order to avoid collision. ),( 1 vvd  means the headway, so the headway should 

match the equation (3.6), the very two cars start to interact. By the way, the equation 

(3.8) shows the velocity through changing in the interaction process. It depends on the 

difference of velocities between two cars, the uniform deceleration and time interval. 
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The second term of interaction term could also describe that successive deceleration 

affects 
t
g
∂
∂  to decrease. 

The main characteristics of our model are shown as the following: 

1. Headway: In this research, we express the headway between the very two car we 

care as the equations (3.5) and (3.6). In other researches likes [13, 17-19], they 

only consider the safety distance 
max

1
c

v +τ  or +vτ , if they introduce the 

factor ” finite space” into their model. There  means car length. However, if 

velocity changes step by step, not instant changing, the above safety distance is 

not safe. The distance through decelerating process should be considered. If we 

take uniform deceleration formula to show the decelerating process, the headway 

should be shown as (reaction time*the velocity of the former car + the minimum 

headway + the distance required by deceleration). There “reaction time*the 

velocity of the former car + the minimum headway” is left to be safety distance 

for decelerating process. Hence, the headway should be represented the equation 

(3.5) and (3.6), and correspond to the safety distance in non-instant 

velocity-changing condition.  

2. Velocity changing: We show the process of deceleration when the later (the faster) 

car meets the former (the slower) one as the equations of (3.7) and (3.8). We 

assume cars decelerate by uniform deceleration, so the velocity changing is 

related to the uniform deceleration. The velocity of the later car and the headway 

match the assumption of uniform deceleration. Therefore, the model could more 

reasonably describe drivers’ behavior. 

3. No adjust factor: In the past, scholars take adjust factor with considering finite 

space in their researches. Because of instant velocity-changing, they need to take 
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adjust factor to increase the frequency of interaction in considering finite space. 

However, our model is both considered finite space and successive 

velocity-changing, so it does not need to multiply an adjust factor.  

3.3 Summary 

We construct a standard and simple mesoscopic traffic flow model under the 

same assumptions as Prigogine and Herman (1971) [5], and Paveri-Fontana (1975) [7]. 

And we consider more, containing finite space and successive deceleration, in 

interaction term. If the headway satisfies the equations (3.5) or (3.6), the later (the 

faster) car would start to decelerate with constant uniform deceleration a . Hence, the 

velocity through deceleration process could be shown as the equations (3.7) and (3.8). 

The condition to occur interaction has been set in our model, and the deceleration 

process has also been regular. The situation of interaction would not happen at casual. 
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Chapter 4 Macroscopic model 
The advantage of mesoscopic traffic flow model is that it could describe 

behaviors of microscopic traffic flow, and it could get macroscopic model by means 

of integration. The previous chapter constructs the mesoscopic traffic flow model by 

describing microscopic cars so this chapter uses microscopic traffic flow which 

chapter3 constructs to obtain macroscopic traffic flow model, flow conservation, 

equation of average velocity, variance, by the methods like integrations. It could be 

good to analyze the characteristic in the later chapter. 

4.1 Assumption  

This research is assumed for the single car which is a simple situation. According 

to the assumption of Helbing (1995) [19, 20], non-equilibrium state could approach 

equilibrium quickly with the zeroth-order approximation of local equilibrium. 

According to the research [19, 21], we could know the velocity distribution of 

equilibrium approaching normal distribution. The velocity distribution could be 

expressed by the following  
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In the above equation (4.1), )),(),,(( txtxvfe θ shows the velocity distribution in 

equilibrium, ),( txv  shows velocity of equilibrium, and ),( txθ shows variance. Using 

equation (4.1) to get macroscopic model, the following are common skills 
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Besides, we use Tayler expansion to expand space so we would use
x
f
∂
∂ , and we 

set ),(2 txvwvz −+= , wvy −= , and then
x
f
∂
∂ could be expressed as following 

 

]
8

)(exp[
2
1

4
)(

8
)(

2
1

]
8

)(exp[
8

)(2
2

]
8

)(exp[
8

)(
2

]
8

)(exp[)
2
1(

2
]

8
)(exp[

2
1

]}
24

)(exp[
2

{

2
12

2
1

2
1

2
2

2

2
2/3

2

2

θπθ
θθθθθ

θ
θ

πθ

θ
θθ

πθ

θ
θθ

πθπθ

θπθ

yzc
x
zyz

x
cyz

x
c

x
c

yz
x
zyzc

yz
x

yzc

yz
x

cyz
x
c

yzc
xx

f

−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂−

−
∂
∂−

+
∂
∂

−
∂
∂

=

−−
∂
∂−−

+

−−
∂
∂−

+

−−
∂
∂−

+
−−

∂
∂

=

⋅
−−

∂
∂

=
∂
∂

−−−

−

−

−

   (4.3) 

In order to use symbols conveniently, this chapter would use some numbers of 

variables to define as following 

Average Velocity 

 ∫= ),(
),,(),(

txc
tvxfdvvtxv  (4.4) 

Velocity Variance 
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),,()),((),( 2
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Traffic Pressure 
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Average Desired Velocity 
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Flux of Velocity Variance 
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Covariance 
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where 
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The zeroth-order approximation of local equilibrium is close to flux of velocity 

variance 0),(),( =≈ txJtxJ e . Using the zeroth-order approximation of local 

equilibrium to get velocity variance ),( txJ , we could adapt ),( txJ for the following. 
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  (4.11) 

We assume vtxvv δ+= ),( and wtxvw δ+= ),(0 to change the first column of 

RHS to the second column of RHS in equation (4.11). We 

assume wvz δδ += and wvy δδ −= , where Jacobin=1/2, from the second column to 
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the third column, and use the zeroth-order approximation of local equilibrium.  We 

could get flux of velocity variance ),( txJ  by the skills of equation (4.2). 

Because of 0),(),( =≈ txJtxJ e and the equation (4.11), the high order could be 

ignored if nθ , 2/3≥n . In the following section, we could expect that macroscopic 

model we got is the Euler-like traffic equations. 

4.2 Density Equation  

The mesoscopic traffic flow model could get macroscopic model by the method 

of moment. We deal mesoscopic model with zeroth-order momentum in this section. 

That means we would deal mesoscopic model with integration and get macroscopic 

equation based on the macroscopic parameter, density ),( txc . 

Our mesoscopic mode would integrate velocity v and desired velocity w . 

1. Convection term integrates velocity v and desired velocity w . 
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2. Relaxation term integrates velocity v  and desired velocity w . 
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3. Interaction term integrates velocity v  and desired velocity w . 
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Change the first equal sign to the second sign by integrating the whole 

interaction item to separately integrating the passive and negative result of the 

interaction. Change the section equal sign to the third sign by changing 

variable v to 2v of the passive result of the interaction, and changing variable v to 3v of 

the negative result of the interaction. Because the passive and negative results of the 

interaction are the same, they could cancel and the answer is zero.  

Use the result of integrations to velocity v and desired velocity w by convection term, 

relaxation term and interaction term to add, we could get macroscopic equation based 

on macroscopic parameter, density ),( txc , as following equation (4.12) 
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4.3 Average velocity equation 

This section will do the first-order momentum to mesoscopic model. That means 

that mesoscopic model times velocity and then integrates velocity. We could get 

macroscopic equation based on macroscopic parameter, average velocity ),( txv . 

Our mesoscopic model times velocity v and integrates velocity v and desired 

velocity w . 

1. Convection term times velocity v and then integrates velocity v and desired 
velocity w . 
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The second column is expanded to the form of the third column in order to make 

it become the integration of the forth column. We could get the above result by means 

of the definitions of equation (2.2), equation (2.3), equation (4.5), and equation (4.6). 
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2. Relaxation term times velocity v and then integrates velocity v and desired 
velocity w . 
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3. Interaction term times velocity v and then integrates velocity v and desired 
velocity w  
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Where 11 ),( vtxvv δ+= , 33 ),( vtxvv δ+= , and Jacobin=1 
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Set 13 vvz δδ += and 13 vvy δδ −= , the
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yzv +
=δ , 

21
yzv −

=δ , and Jacobin=1/2 

use the zeroth-order approximation of local equilibrium, equation (4.1) and 

equation(4.3) 
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We take A , B , D , and E  to the original equation and change its form as 

following. 
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The calculation as following 

 

2 2 3 2 2

0

3
3 3 2 2 4 2 2 3

2 2
2 3 4 5 3 4

Bdz dy[ABy AD(z y 2y z y ) AE(zy y ) (zy y )
2

D E By(z y 3zy 3y z y ) (z y 2y z y )
2 2 2a
D E 1 z 1 y(z y 2y z y ) (y z y )] exp( ) exp( )
2a 2a 4 44 4

∞ ∞

−∞
∆ = + − + − − + τ −

+ τ + − − − τ − + +

− −
+ − + − −

θ θπθ πθ

∫ ∫

 

We could cancel the above because of the first column of equation (4.2) 
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could decrease the numbers of symbols and join∆ as following 
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 Because of equation (4.11), we could ignore the high terms when nθ , 2/3≥n . 

The interaction term could be expressed as following. 

Interaction term 
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Use the result of doing multiplication to v  and integrations to velocity v and desired 

velocity w by convection term, relaxation term and interaction term to add, we could 

get as following. 
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For the above divides by density ),( txc , we could get the macroscopic equation based 

on macroscopic parameter, average number ),( txv . 
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  (4.13)  

In the derivation process, we assume ),(21313 txvvvvvz −+=+= δδ so
x
v

x
z

∂
∂

−=
∂
∂ 2 . 

Take it to equation (4.13), and we could get macroscopic equation (4.14) based on 

average number ),( txv .  
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Where v
c

A τ+=
max

1  

4.4 Variance  

This section will do the second-order momentum to mesoscopic model. That 

means that mesoscopic model times the square of velocity and then integrates velocity. 

We could get macroscopic equation based on macroscopic parameter, variance ),( txθ . 

Our mesoscopic model (3.4) times the square of velocity 2v and then integrates 

velocity v  and desired velocity w . 

1. Convection term times the square of the velocity 2v  and then integrates 

velocity v  and desired velocity w . 
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 The second column is expanded to the form of the third column in order to 

make it become the integration of the forth column. We could get the integration of 

the forth column by means of the definitions of equation (2.2), equation (2.3), 

equation (4.4), equation (4.5), and equation (4.8). We could change it to the result of 

the sixth column by equation (4.12), and the result of the seventh column by equation 

(4.13). 

2. Relaxation term times the square of the velocity 2v and then integrates 

velocity v and desired 
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3. Interaction term times the square of the velocity 2v and then integrates 

velocity v and desired 
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Set 11 ),( vtxvv δ+= , 33 ),( vtxvv δ+= , and Jacobin=1 
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Set 13 vvz δδ += and 13 vvy δδ −= , then
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yzv +
=δ ,

21
yzv −

=δ , and Jacobin=1/2 use 

the zeroth-order approximation of local equilibrium, equation(4.1)and equation (4.3) 
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and λavF −= 2 . We take A , B , D , and E  to the original equation and change its 

form as following. 
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Because of equation (4.11), we could ignore the high terms 

when nθ and 2/3≥n .The interaction term could be expressed as following. 
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Use the result of doing multiplication to 2v  and integrations to velocity v and 

desired velocity w by convection term, relaxation term and interaction term to add, we 
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could get as following. 
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Divide the above by density ),( txc , and take λavF −= 2  to the original equation. 

Layout time intervalλ  is a small value so 02 ≈λ  and we could get macroscopic 

equation based on macroscopic parameter, variance ),( txθ  
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∂ 2  , we could take it into 

equation (4.15), and get the macroscopic equation(4.16) based on macroscopic 

parameter, variance ),( txθ as following. 
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4.5 Summary  

The traffic flow model that the chapter 3 constricted in this research which could 

describes non- instant velocity-changing and considers finite space could get three 

important macroscopic models. They are macroscopic equation (4.12) based on 

density function ),( txc , macroscopic equation (4.14) based on average velocity ),( txv , 

and macroscopic equation (4.16) based on variance ),( txθ . 

According to equation (4.12), the constructed model still has the characteristic of 

flow conservation. Comparing equation (4.14) and equation (4.16) with the preview 

studies, the result of the Interaction term is obvious different. The macroscopic model 

that the traditional mesoscopic model gets is usually the result of the multiplication of 

density, average velocity, and constant because of the result of the Interaction term. 

The result of the Interaction terms would change with gradient of density, average 

velocity or variance owing to considering the factors such as non- instant 

velocity-changing and space cooperated in this research which causes the result like 

equation (4.14), and equation (4.16). The others about model would make a deeper 

analysis in chapter 5. 
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Chapter 5 Characteristics Analysis of 

Macroscopic Models 
We construct a mesoscopic traffic flow model that could describe non-instant 

velocity-changing and consider finite space in chapter 3. Then we get three 

macroscopic traffic flow models based on density ),( txc , average velocity ),( txv , 

variance ),( txθ  in chapter 4, and they show as the equations (4.12), (4.14) and 

(4.16). Where, the equation (4.12) is flow conservation as result of other scholars, but 

the equations (4.14) and (4.16) are different from others. We would analysis these 

three macroscopic equations further in this chapter. 

5.1 Characteristic Velocity Analysis  

This section aims to calculate the characteristic velocity [17, 22-23] of the 

macroscopic model. First of all, rewrite the three macroscopic models from chapter 4 

with symbols. 

1. Density equation 

 0)(
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It is the same as equation (4.12). 

2. Average velocity equation 
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3. Variance equation 
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In order to get Characteristic Velocity, we need to rewrite the equation (5.1), 

equation(5.2) ,and equation (5.3) to Characteristic Form as equation (5.4). 
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The Eigenvalueζ could be got from 0]det[ =−GIζ , where I  is vector. Then we 

could get what ζ is. 
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  (5.5) 

Because the other roots of 0]det[ =−GIζ  are imaginary roots, the 

Characteristic Velocity that this model gets is as the equation (5.6). (As appendix A) 

 ]
4
3

2
[)1(

3
1 2/1θ

π
τλ +−−+≈

Acapv
dt
dx  (5.6) 

C. Wagner (1996) [17] shows that Paveri-Fontana (1975) [7] could get characteristic 

velocities as following on the condition of considering infinite space and instant 

velocity of deceleration. 

 θ3, ±== v
dt
dxv

dt
dx  (5.7) 

Because characteristic velocities also called local wave velocity that means 

characteristic velocity is density function, the following is the illustration of 

characteristic velocity that this research gets. 

(1). According to the equation (5.6), we could know that the characteristic velocity 

which this research gets has relations to density. According to figure 5-1-1, that is 

a reasonable result. 

(2). According to the equation (5.6), the characteristic velocity that this model 

constructs is positive. That means density wave passes down downward. 

According to basic macroscopic assumption, vcq = [24], as following figure 

5-1-1, density velocity is positive when flow is smaller than the capacity, and 

density is negative on the other hand. Because we assume model on dilute traffic, 

the velocity of density wave should be positive value. This result is the same as 

result of the equation (5.6), and it is reasonable. 



 

 44

(3). If passing probability 1=p that means which drivers can overtake cars at will, 

the characteristic velocity would be equal to the average velocity according 

equation (5.6). It means v
dt
dx

≈  and it is a reasonable result. Because drivers 

can overtake cars at will, cars are independent, and on dilute traffic, velocities 

would not interact. So velocity could achieve desired velocity, and that results 

that characteristic velocity and average velocity are the same. 

(4). Because our model considers deceleration, when uniform deceleration 0=a that 

shows drivers have no deceleration when the faster (the latter) car could not pass 

according to the equation (5.6). Hence, the two cars have the same velocities, and 

it is a reasonable result. This result is a special result that the researches of other 

scholars do not have.  

 

Fig. 5-1-1 Dilute and Heavy Traffic 

Data Resource: Haberman, Richard (1977)[24]

cmax 

Flow q 

Heavy Dilute 

Road 

Capacity 

Density c 
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5.2 Equilibrium Analysis 

Macroscopic parameters density ),( txc , average velocity ),( txv  and variance 

),( txθ  would not change with time and space in equilibrium. It means that 0=
∂
∂

t
c , 

0=
∂
∂
x
c , 0=

∂
∂

t
v , 0=

∂
∂

x
v , 0=

∂
∂

t
θ , and 0=

∂
∂

x
θ , so we could get the following 

equations.  

1. The Relation Between Average Desired Velocity and Average Velocity 

If it is in equilibrium, we could rewrite the equation (4.14) to the equation (5.8) 

 2/10 1)1()( θ
π

λcap
T

vv
−−=

−
−  (5.8) 

Then we could get the relation between average desired velocity and average velocity 

as the equation (5.9). 

 2/1
0

1)1( θ
π

λcapTvv −=−  (5.9) 

That result of Paveri-Fontana (1975)[7] is the equation (5.10). 
 θcpTvv )1(0 −=−  (5.10) 

The relation between average desired velocity and average velocity in 

equilibrium results from relaxation and interaction term. If it is not in equilibrium, the 

relation would depend on density gradient, average gradient and variance gradient. It 

is different from the equation (5.9). The relationship is explained as the following. 

(1). From the equation (5.9), mean average desired velocity is faster than average 

velocity. It is a reasonable result. 

(2). If the passing probability 1=p  in equilibrium, the average velocity is equal to 

the average desired velocity vv =0 . It is reasonable result because cars could 

attain their desired velocities when they could pass at will. They do not affect 

each other in dilute density and independent conditions. Hence, the average 

velocity is equal to the average desired velocity vv =0 . If the passing probability 
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0=p  in equilibrium, it means cars could not pass each other. Therefore, their 

relaxation time T  approximate infinity, this cause the result that the average 

desired velocity is different with the average velocity as we obtain.  

(3). If the relaxation time 0=T  in equilibrium, the average velocity is equal to the 

average desired velocity vv =0 . Because 0=T  means the time that current 

velocity accelerates to the desired velocity is zero, it also means the current 

velocity is equal to the desired velocity. So this result is the same as the equation 

(5.9). The same as the above, if ∞→T , it also means 0=p . Hence, the 

average desired velocity is different with the average velocity. 

(4). If the uniform deceleration 0=a , it means there have no deceleration to avoid 

collision without passing. It also means that the velocity of the former is the 

same as the latter one, so it has no deceleration. Because every driver has his 

desired velocity, they would accelerate until he attains his desired velocity. It 

means that drivers have attained their desired velocity, so they have no 

acceleration. So the average velocity is equal to the average desired 

velocity vv =0  in equilibrium. Besides, this is the special result that 

Paveri-Fontana (1975) [7] could not explain in equilibrium.  

2. The Relation Between Covariance and Variance 

If it is in equilibrium, we could rewrite the equation (4.16) to the equation (5.11) 

 θλθ capC
T

)1(][2
−−=−−  (5.11) 

Then we could get the relation between covariance and variance as the equation 

(5.12). 

 θλθ capTC )1(
2

−=−  (5.12) 
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The following equation is result of Paveri-Fontana (1975)[7]. 

 2/3)1(
2

θθ cpTC −=−  (5.13) 

The relation between covariance and variance in equilibrium results from 

relaxation and interaction term. If it is not in equilibrium, the relation would depend 

on density gradient, average gradient and variance gradient. It is different from the 

equation (5.12). The relationship is explained as the following. 

(1). We could know covariance is larger than variance in equilibrium from equation 

(5.12). Covariance results from the difference between average velocity and 

velocity, average velocity and average desired velocity. Variance results from the 

difference between average velocity and velocity. So this is a reasonable result. 

(2). When the passing probability 1=p , it means that cars could pass in will. From 

the equation (5.12), we could know that covariance is equal to variance θ=C  in 

equilibrium. It is reasonable result because cars could attain their desired 

velocities when they could pass at will. They do not affect each other in dilute 

density and independent conditions. Hence, the average velocity is equal to the 

average desired velocity vv =0 . According to the definitions of covariance and 

variance, so covariance is equal to variance in equilibrium. If the passing 

probability 0=p  in equilibrium, it means cars could not pass each other. 

Therefore, their relaxation time T  approximate infinity, this cause the result 

that covariance different with variance as we obtain.  

(3). If the relaxation time 0=T  in equilibrium, the average velocity is equal to the 

average desired velocity vv =0 . Because 0=T  means the time that current 

velocity accelerates to the desired velocity is zero, it also means the current 

velocity is equal to the desired velocity. According to the definitions of 
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covariance and variance, so covariance is equal to variance in equilibrium. The 

result is the same as the equation (5.12). The same as the above, if ∞→T , it 

also means 0=p . Hence, covariance is different with variance. 

(4). If the uniform deceleration 0=a , it means there have no deceleration to avoid 

collision without passing. It also means that the velocity of the former is the 

same as the latter one, so it has no deceleration. Because every driver has his 

desired velocity, they would accelerate until he attains his desired velocity. It 

means that drivers have attained their desired velocity, so they have no 

acceleration. So the average velocity is equal to the average desired 

velocity vv =0  in equilibrium. According to the definitions of covariance and 

variance, so covariance is equal to variance in equilibrium. Besides, this is the 

special result that the model of Paveri-Fontana (1975) [7] could not have. 

5.3 Numerical Simulation Analysis 

 In this section, we would analysis the three macroscopic equations with 

numerical simulation. We would use “Upwind method to analysis”. It is a simple 

first-order partial differential equation and it belongs to an explicit finite-difference 

method. According to Helbing (1999) [25], we set flow vcQ =  and traffic 

pressure θcP = . Then the three macroscopic equations (4.12), (4.14) and (4.16) could 

be rewrite to be related to density c  function as the following. 
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If we rewrite the equations (5.1), (5.2), and (5.3) as vector form as the following. 
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Where 
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We use Dirichlet boundary condition, a period boundary condition, and it means 

that the simulation result would happen periodically. So we would simulate one cycle 

as present as the following. 

 ),(),0( tLt uu =  (5.21) 

Where, L  means the end of the simulation road, and ],[ δ+∈ LLx , δ  means a 

small quantity of space. We assume the equation (5.9). 

 )()( Lx uu =  (5.22) 

We separate time to 4000 equal grids and every time grid is 0.0001 hour. We 

separate space to 250 equal grids and every space grid is 0.004 km. Assume average 

car length is 0.005 km, desired velocity is 100km per hour ( 1000 =v  km/hr), 

relaxation time is 30 seconds ( 30=T s), reaction time is 0.75 seconds ( 75.0=τ s), 
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heavy density is 180 cars per km ( 180max_ =c  cars/km), equilibrium density is 30 

cars per hour ( 30_ =equic  cars/km), 0001.0=λ  hour is the same as the time grid, 

covariance 144=C  square km/ square hour, uniform deceleration 60000=a  

km/square hour, passing probability 99.0=p . According to Helbing (1995) [26], he 

assumes the relation between equilibrium velocity and desired velocity as the 

equation (5.10) ,and the relation between covariance and variance as the equation 

(5.11). 

 )10*3.72-),-1.0)0.25)/0.06-i/c_maxexp((c_equ+pow(1(_ -6
0vequiv =  

  (5.23) 
 

)10*3.72-),-1.0)0.25)/0.06-i/c_maxexp((c_equ+pow(1(var_var -6ianceequiiance =
  (5.24) 
<1>. Perturbation Simulation: 

We add sine wave to the initial value of density, and see the result that 

perturbation causes. The following is the result of our research.  

 

Fig. 5-3-1 Density Changing 1 
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Fig. 5-3-2 Density Changing 2 

 

 

Fig. 5-3-3 Density Changing 3 
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Fig. 5-3-4 Average Velocity Changing 1 

 

 

Fig. 5-3-5 Average Velocity Changing 2 
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Fig. 5-3-6 Average Velocity Changing 3 

 

 

Fig. 5-3-7 Traffic Pressure Changing 1 
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Fig. 5-3-8 Traffic Pressure Changing 2 

 

 

Fig. 5-3-9 Traffic Pressure Changing 3 
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Fig. 5-3-10 Variance Changing 1 

 

 

Fig. 5-3-11 Variance Changing 2 
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Fig. 5-3-12 Variance Changing 3 

 

From the result of simulation, we could observe some result that match the real 

traffic, and we describe as the following.  

(1). We could know the characteristic velocity is positive and it is the same result as 

the section 5.1. In dilute traffic, density wave could propagate downstream with 

time. 

(2). When the traffic pressure becomes larger, the average velocity becomes slower. 

It is the same as general traffic theory. When drivers anticipate the density of 

downstream becomes heavier, traffic pressure becomes larger, drivers would 

decelerate and this causes the average velocity slower.  

(3). When the density becomes heavier and average velocity becomes slower, 

variance would become smaller. Because cars could not pass, density would 

become heavier. The latter car decelerates to the velocity of the former car, so the 

average velocity becomes slower and variance becomes smaller.  
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<2>. Simulation of Different Passing Probability Effect: 

In the same condition as the above, we could adjust different passing probability 

p  to observe density, average velocity, traffic pressure and variance changing. 

 

 

Fig. 5-3-13 Passing Probability =0.7 
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Fig. 5-3-14 Passing Probability =0.8 

 

 

Fig. 5-3-15 Passing Probability =0.9 
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Fig. 5-3-16 Passing Probability =0.99 

 

From figure 5-3-14 to figure 5-3-16, we could observe two characteristics.  

1. When passing probability p  becomes smaller, variance becomes larger. Because 

smaller passing probability p  means cars could not pass each other easily, they 

could not attain their desired velocity easily. Therefore, variance becomes larger. 

2. The whole changing trend does not change with passing probability p . Because 

we construct the model by assuming in dilute traffic, macroscopic model could 

approach local equilibrium quickly. Hence, the whole changing trend does not 

change with passing probability p .  
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<3>. Simulation of Different Uniform Deceleration Effect: 

In the same conditions as the above, we compare density, average velocity, traffic 

pressure and variance with different uniform deceleration a  and the same passing 

probability p . We use two kinds of passing probability p , 99.0=p  and 7.0=p , and 

three kinds of uniform deceleration a , 60000=a , 600=a  and 6=a . We show 

60000=a  with blue, 600=a  with green and 6=a  with red. 

 

Fig. 5-3-17 Density in p=0.99 and Different a  
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Fig. 5-3-18 Density in p=0.7 and Different a 

 

 

Fig. 5-3-19 Average Velocity in p=0.99 and Different a 
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Fig. 5-3-20 Average Velocity in p=0.7 and Different a 

 

 

Fig. 5-3-21 Variance in p=0.99 and Different a 
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Fig. 5-3-22 Variance in p=0.7 and Different a 

 

From figure 5-3-17 to figure 5-3-22, we could find that when passing probability 

becomes smaller, uniform deceleration 60000=a  affects density and average 

velocity more. By the way, we also could observe that when passing probability 

becomes smaller, different uniform deceleration a  causes density and average 

velocity more different. In the view of mathematic, the value of uniform deceleration 

60000=a  is larger, so it substitutes to affect interaction term more. Hence, the 

average velocity becomes slower and variance becomes smaller. In the view of traffic 

flow, the uniform deceleration becomes larger in dilute traffic, and it means that the 

letter car could approach to the velocity of the former car quickly. Compare to the 

traffic flow of smaller uniform deceleration, average velocity of the traffic flow of 

bigger uniform deceleration is slower and variance is smaller. 

Besides, when passing probability is smaller, 60000=a  causes less effect to 

density than other two smaller uniform decelerations a . Because we assume approach 
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local equilibrium quickly in dilute traffic, there have no heavy situation. However, 

different uniform decelerations would result in different velocities and variances, and 

they also affect the propagation of density wave. When the effect of interaction term 

becomes larger, it would vibrate the propagation of density wave more seriously.  

Therefore, we could compare the effect of different uniform decelerations with 

different passing probability from figure 5-3-17 to figure 5-3-22, and we could 

observe that there has more difference in smaller passing probability. Because the 

number of cars use uniform deceleration is fewer with free passing, the whole has 

little difference. We could see the difference that cause by introducing uniform 

deceleration. This is the special point that other researches do not contain. Besides, it 

also shows that introducing uniform deceleration could describe traffic phenomenon 

more in heavy traffic. 

5.4 Summary 

From the first and second sections, we could know that our model could describe 

traffic flow more reasonable. The equations (5.6), (5.9), (5.12) and figure 5-1-1 show 

this research could describe more phenomenon than the model of C. Wagner and our 

model could explain the extreme condition. For example, because our model 

considers deceleration, when uniform deceleration 0=a that shows drivers have no 

deceleration when the faster (the latter) car could not pass according to the equation 

(5.6). If the uniform deceleration 0=a , it means there have no deceleration to avoid 

collision without passing. It also means that the velocity of the former is the same as 

the latter one, so it has no deceleration. Because every driver has his desired velocity, 

they would accelerate until he attains his desired velocity. It means that drivers have 

attained their desired velocity, so they have no acceleration. So the average velocity is 

equal to the average desired velocity vv =0  in equilibrium. According to the 
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definitions of covariance and variance, so covariance is equal to variance in 

equilibrium. These results are special results that the researches of other scholars do 

not have. Besides, we also discuss the extreme values of passing probability p and 

relaxation timeT . 

We analysis the three macroscopic equations that obtain from chapter 4 with 

numerical simulation “Upwind method” From figure 5-3-14 to figure 5-3-16, we 

could observe that when passing probability p  becomes smaller, variance become 

larger. But the whole changing trend does not change with passing probability p . 

Besides, we could observe that there has more difference in smaller passing 

probability and see the difference that cause by introducing uniform deceleration from 

figure 5-3-17 to figure 5-3-22. This is the special point that other researches do not 

contain. Besides, it also shows that introducing uniform deceleration could describe 

traffic phenomenon more in heavy traffic. 

Therefore, we could know that our model could describe more traffic 

phenomenon that other model could not explain. This means that it is meaningful to 

introduce uniform deceleration to relax instant velocity and consider finite space in 

gas-kinetic traffic flow model. 
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Chapter 6 Contribution and Future Works 
This chapter aims to conclude the results of the preview chapters, put the result 

of this research in order, and summit suggestions in order to give reference to those 

interested in this topic. We hope this would be good to the development of 

mesoscopic traffic flow model in our nation.  

6.1 Contribution  

By means of the preview chapters, this section would conclude the emphasis of 

the preview chapters and sections, and illustrate the contribution of this research as 

following.  

1. Construct a mesoscopic traffic flow model with more physical meanings. 

We introduce the uniform deceleration to relax instant velocity-changing and 

consider finite space, and construct a new mesoscopic traffic kinetic equation which 

could more close to the real traffic flow. 

2. Relax the original unreasonable assumptions of mesoscopic traffic flow 
model of Prigogine and Herman. 

This research would relax infinite space and the assumption of instant 

velocity-change in interaction term of Prigogine and Herman’s model. 

3. Describe more traffic phenomenon reasonably. 

With integrating our mesoscopic model, we get macroscopic function based on 

macroscopic parameters, density ),( txc , average velocity ),( txv  and variance 

),( txθ .Then we analysis the model to obtain some characteristics about considering 

finite space and non-instant velocity-changing. For example, the results of different 

uniform decelerations are more different in lower passing probability. We know that 

our model could describe more traffic phenomenon that other model could not explain 

in chapter 5. This means that it is meaningful to introduce uniform deceleration to 
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relax instant velocity and consider finite space in gas-kinetic traffic flow model. 

4. Describe the model and the meaning of characteristic in detail in this 
research. 

In this research, we want to explain the thoughts and meaning of behaviors and 

record the mathematical operation in detail. We hope would help those interested in 

mesoscopic traffic flow model and be good to the development of application.  

6.2 Future Works 

We simplify some complicated place in order to be convenient to express them in 

this research. Although that would not affect the correction of this research, that still 

limit us to illustrate traffic conditions. The followings are what we suggest to re-relax 

and research. 

1. Multi-lane and multi-class. 

Because this research emphasizes relaxing instant velocity-changing and infinite 

space, we simplify assumption of the lanes and class. The following researches could 

be improved toward the multi-lanes or multi-class. Nowadays, there several scholars 

discuss the complicated drivers’ behaviors in mesoscopic traffic flow aspect.  

2. Consider the velocity distribution function of cars. 

We use normal function that assumes cars are independent in order to simplify in 

this research. In order to be close to the realistic traffic, we need to break down the 

assumption that every car is independent and we could adapt a velocity distribution 

function that could describe the interactions of cars. There are several famous scholars 

who try to research about velocity distribution function to describe more real traffic 

phenomenon at present. 
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Appendix A 

From section 5.1, we could know that eigenvalue ζ  could be obtained by 

0]det[ =−GIζ , where I  is unit vector. Then we use Mathematica 5.1 to solveζ , 

the real root is the following. 

ζ →

−I21ê3 I−B2 − 3 A c− 3 E − 3 C E + B F − F2 − 9 θ − 6 C θMMë
I3

I2 B3 + 9 A B c+ 27 c D + 27 c C D + 9 B E+ 9 B C E − 3 B2 F − 18 A c F + 9 E F+ 9 C E F − 3 B F2 + 2 F3 + 27 B θ +

18 B C q+ 18 C F q +
,I4I− B2 − 3 A c −3 E − 3 C E + B F− F2 − 9 θ − 6 C θM3

+

I2 B3 + 9 A B c+ 27 c D + 27 c C D + 9 B E+ 9 B C E − 3 B2 F − 18 A c F + 9 E F+ 9 C E F − 3 B F2 + 2 F3 + 27 B θ +

18 B C θ + 18 C F θM2MM1ê3M +

1
3 21ê3

 

II2 B3 + 9 A B c+ 27 c D + 27 c C D + 9 B E+ 9 B C E − 3 B2 F − 18 A c F + 9 E F+ 9 C E F − 3 B F2 + 2 F3 + 27 B θ + 18 B C θ +

18 C F θ +
,I4I−B2 − 3 A c −3 E − 3 C E + B F− F2 −9 q − 6 C qM3

+

I2 B3 + 9 A B c+ 27 c D + 27 c C D + 9 B E+ 9 B C E − 3 B2 F − 18 A c F + 9 Æ F+ 9 CE F − 3 B F2 + 2 F3 + 27 B

θ + 18 B C θ + 18 C FθM2MM1ê3M +
1
3
HB+ F + 3 vL  

Because the definition of symbols A , B , C , D , E , and F  of the 

equations (5.2) and (5.3), and time grid λ  is a small value, we set 02 ≈λ . Then, we 

could simplify the above equation to the following. 
ζ → −I21ê3 H−3 E − 9 θLMë I3 I27 B θ + ,I4H−3 E − 9 θ − 6 C θL3 +H27 B θL2MM1ê3M +

1
3 21ê3

 II27 B θ + ,I4I−3 E − 3 C E+ B F − F2 − 9 q − 6 C qM3 + H27 B θL2MM1ê3M +
1
3
HB+ F + 3 vL

 

We divide the above equation into three parts, the first row is the first term, the 

left-hand-side of the second row is the second term and the right-hand-side of the 

second row is the third term. Because the first and second term is more complex, we 

show the equation (5.5) with only the third term. But it does not mean that the first 

and the second terms have no meaning. It is a simple representation and its accent of 

characteristic velocity does not change owing to ignore the first and the second terms. 

Because these three terms all have cap λ)1( − , we focus this point to discuss. 
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Appendix B - Symbols 

1. Variables 

x  one dimension position 

y  parallel position (the second dimension) 

t  time 

v  one vehicle velocity 

1v  velocity 

2v  velocity 

3v  velocity 

w  one vehicle desired velocity 

r  total attribute 

k  discrete attribute 

b  continue attribute 

o  other attribute 

0v  the absolute value of desired velocity (not contain direction) 

0ω  the angle of desired velocity  

j  lane 

u  driver (car class) 
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s  driving status 

h  direction of traffic flow 

d  destination 

2. Constants 

 car length 

T  relaxation time  

p  passing probability 

a  uniform deceleration  

τ  reaction time 

max_c  the heaviest density 

3. Functions 

),( txc  density 

),( txv  average velocity 

),(0 txv  average desired velocity 

),( txθ  variance 

),( txC  covariance 

),( txq  flow 
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),( txP  traffic pressure 

),( txJ  flux of velocity variance  

),( txJe  flux of velocity variance in equilibrium 

),( 31 vvΦ  the velocity of the latter car during deceleration 

),,( tvxf   velocity distribution function of one vehicle 

),,(0 twxf  desired velocity distribution function of one vehicle 

)),(),,(( txtxvfe θ velocity distribution function of one vehicle in 

equilibrium 

),,,( twvxg  velocity distribution function of one vehicle (contain desired 

velocity) 

4. Vectors 

ζ  eigenvalue 

I  unit vector 

 


