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依據製程能力指標
pk

S 應用複式抽樣方法於
供應商選擇

研究生：褚耀聰 指導教授：彭文理 博士
吳建瑋 博士

國立交通大學工業工程與管理學系碩士班

摘要

現今的製造業裡，許多公司藉由增加外購的比重以維持自己的核心競爭力，

於是，供應商的選擇成為生產管理上重要的議題。在製造業裡，產品的良率一直

是判斷製程好壞的重要因素，Boyles 提出了一個和良率有一對一對應關係的製程

能力指標 pkS ，過去有許多關於 pkS 指標的近似分配、估計和檢定，這些結果已被

應用在選擇單一供應商的研究，然而利用 pkS 指標來同時檢定兩家不同供應商的議

題至今尚無人研究。這篇研究的主要目的就是在兩家相互競爭的供應商中，挑選

出一家具有較好製程能力的供應商，並建立一個依據 pkS 指標選擇供應商的決策程

序。在本篇論文中，我們將利用複式抽樣法來建構兩個供應商間製程能力差異的

信賴下界，針對四個不同複式抽樣法來比較彼此之間犯錯機率及檢定力的表現，

為了實務應用上方便，我們建立一個在犯錯機率為 0.05 下，針對給定不同選擇能

力所需要的樣本數表格，最後我們也將研究的結果，應用在選擇兩家不同的彩色

濾光片廠商。

關鍵字：複式抽樣法、信賴下界、製程良率、供應商選擇。
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Abstract

In today’s manufacturing environment, many companies increase their
out-sourcing level to keep their core competition. Supplier selection problems have
become an important component of production management. Process yield is a
standard criterion in the manufacturing industry as a common measure on process
performance. Boyles proposed a index pkS which provides an exact measure on
the process yield for normal processes. Many studies considered the assessment of
index pkS for a single supplier. However, the testing procedure for two different
suppliers selection based on pkS has not been done today. The principal purpose of
this research is to determine the more capable process between two competing
suppliers and provide a supplier selection procedure based on pkS . In this thesis,
we implemented the bootstrap method to construct the lower confidence bound for
the capability difference and the capability ratio between two given suppliers. The
performance comparisons are made among the four bootstrap methods (the
standard bootstrap (SB), the percentile bootstrap (PB), the biased corrected
percentile bootstrap (BCPB), and the bootstrap-t (BT)) in terms of error probability
and selection power. For convenience of applications, we tabulated the sample sizes
required for various designated selection power. A real world case on the color filter
manufacturing process is investigated to demonstrate the applicability of the
proposed method in the end.

Key words: Bootstrap method, Lower confidence bound, Process yield, Supplier
selection.
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Notations
T ：target value

USL ：the upper specification limits presented by the process engineers

LSL ：the lower specification limits presented by the process engineers

m ：the midpoint between the upper and lower specification limits

d ：the half specification width

 ：the population mean

 ：the population standard deviation

2 ：the population variation

n ：the number of the sample size drawn from supplier

B ：the number of bootstrap resamples

N ：simulation replicated times
*

1pkS


：the 1pkS


of bootstrap resamples from supplier I
*

2pkS


：the 2pkS


of bootstrap resamples from supplier II

 ：the difference or the ratio of two suppliers’ pkS index




：the estimator of 
*




：the associated ordered bootstrap estimate of 
*




：the sample average of the B bootstrap estimates
*S ：the standard deviation of the B bootstrap estimates
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1. Introduction

Currently, many manufacturing industries have increased their out-sourcing
level to keep their core competition. That is, they purchase various portions of
components or subassemblies for their final products. In order to know if the
supplier is qualified, some indices are needed. Process yield has long been one of
the most standard criterion used in the manufacturing industry as a common
measure on process performance. Process yield is defined as the percentage of
processed product passing inspection. That is, the product characteristic must fall
within the manufacturing tolerance. When product units rejected
(non-conformities), additional costs would be incurred to the factory for scrapping
or repairing the product. All passed product units are equally accepted by the
producer, which incurs the factory no additional cost. On the other hand,
consumer can save a lot of money from accepting producer, which has high level
quality yield. In today’s high-tech industry, traditional sampling method is not
enough because of the high level quality yield. Process capability indices (PCIs)
have been widely used in the manufacturing industry and provided numerical
measures on process performance. We can determine whether a production
process is capable and infer the process yield based on PCIs. This fact brings the
issue of supplier selection based on PCIs into the main focus.

Many individuals have indicated various approaches for supplier selection or
process comparison problems based on PCIs. Most of these researches focus on
single supplier selection before. They consider the assessment of capability for a
single process. However, there are fewer studies investigate the testing procedure
for two different suppliers selection. Discussion relative to the subject based on
the index pkS has not been concentrated. The principal purpose of this research
is to determine the more capable process between two competing suppliers and
provide a supplier selection procedure based on pkS .

In this thesis, we introduced process capability indices in common used, and
reviewed some references about supplier selection problems based on PCIs first.
Section 3 proposed to select a better supplier by comparing two pkS . We
formulated the hypothesis testing and introduced the bootstrap methodology. In
section 4, we analyzed the error probability and selection power by comparing
four different bootstrap methods. For convenience of applications, we tabulated
the sample sizes required for various designated selection power in section 5. At
last, we demonstrated a real world case on color filter manufacturing process, and
made a conclusion in section 6 and 7.
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2. Literature Review

2.1 Process Capability Indices

There are many capability indices proposed to use for evaluating a supplier’s
process capability. The first process capability index in the literature was pC . It
was introduced by Juran et al. (1974), but did not gain considerable acceptance
until the early 1980s. It is defined as:

6
LSLUSL

C p


 ,

where USL is the upper specification limit, LSL is the lower specification limit,
and  is the process standard deviation. The index measures capability in terms
of process variation only and did not take process location into consideration.
Pearn et al. (1998) introduced an accuracy index aC to measure the magnitude
of process centering. It is defined as:

| |
1a

m
C

d


 ,

where  is the process mean,  2m USL LSL  , and  2d USL LSL  .
The index aC measures the centering tendency. User can get alerts from it if the
process mean is deviate form the midpoint. Kane (1986) proposed the capability
index pkC , considered process location of mean and process variation. The index

pkC determines process ability of reproducing items within the specified
manufacturing tolerance. It is defined as:

    | |
min , =min ,

3 3 3pk pu pl
USL LSL d m

C C C
  

  
   

  .

Based on the expression of process yield, Boyles (1994) considered the yield index

pkS for normal process, as defined in the following:

11 1 1
{ ( ) ( )}

3 2 2pk

USL LSL
S

 
 

  
     ,

where  is the cumulative density function (c.d.f) of the standard normal
distribution (0,1)N . Hsiang and Taguchi (1985) introduced the index pmC ,
independently proposed by Chan et al. (1988). The index pmC focuses on the
product loss when one of its characteristics departs from the target value T. It is
defined as:

2 26 ( )
pm

USL LSL
C

T 




 
.
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2.2 Process Yield Based on pkS

2.2.1 Process Yield
In the past, we have to count the number of nonconforming items from a

sample to calculate the yield. However, the fraction of non-conformities now is
less than 0.01%, and we usually use parts per million (ppm) to express.
Traditional methods for calculating the fraction nonconforming are no longer
work since all reasonable sample sizes will probably have no defective items.
These methods are substituted for capability indices.

Process yield has long been a standard criterion used in the manufacturing
industry as a common measure on process performance. Process yield is defined
as the percentage of processed product passing inspection. That is, the product
characteristic must fall within the manufacturing tolerance. It can be calculated
as:

Yield ( ) ( ) F USL F LSL ,

where USL and LSL are the upper and lower specification limits, and ( )F x is
the cumulative distribution function of the process characteristic. If the process
characteristic is normal distributed, then the process yield can be expressed as:

Yield ( ) ( )
USL LSL 

 
 

  ,

where  is the process mean,  is the process standard deviation, and ( )x
is the cumulative distribution function of the standard normal distribution

(0,1)N .

2.2.2 Yield Assurance Based on pkS

For normal distributed process, the relationship between the process yield
and the index pkC is Yield 2 (3 ) 1pkC   . Thus, the index pkC provides us
with an approximate, rather than exact, measure of the actual process yield.
Based on the expression of process yield, Boyles (1994) considered the yield index

pkS for normal process. This index pkS provides an exact measure on the
process yield. If pkS c , then the process yield can be expresses as
Yield 2 (3 ) 1  c . There is a one-to-one correspondence between pkS and the
process yield. Table 1 summarizes the process yield, nonconformity (in ppm) as a
function of the index pkS =1.00, 1.33, 1.50, 1.67, and 2.00. For example, if a
particular process the yield measure pkS =1.67, then the corresponding value of
nonconformities is 0.544 ppm.
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Table 1. Some pkS values and the corresponding values of
fraction yield and nonconformities (ppm).

pkS Yield Nonconformities

1.00 0.99730020 2699.80
1.33 0.99993393 66.07
1.50 0.99999320 6.80
1.67 0.99999946 0.54
2.00 0.99999999 0.01

2.3 Supplier Selection Problems based on PCIs

Because of the process mean  and the process variance 2 are not
known in real world. In order to calculate the estimator, however, data must be
collected to calculate the index value, and a great degree of uncertainty may be
introduced into capability assessments due to sampling errors.

The most common methods to assess the process capability are to utilize the
interval estimation and hypotheses testing. Consequently, these estimating
methods must be performed by using their sampling distributions. Kotz and
Johnson (2002) presented a thorough review for the PCI developments during the
years 1992 to 2000. Spiring et al. (2003) consolidated the research findings of
process capability analysis for the period 1990–2002. Lee et al. (2002) considered
an asymptotic distribution for an estimate pkS



of the process yield index pkS . A
useful approximate distribution of pkS



was furnished. Pearn and Chuang (2004)
investigated the accuracy of the natural estimator of pkS computationally, using
a simulation technique to find the relative bias and the relative mean square error
for some commonly used quality requirements. Chen (2005) considered to use the
bootstrap simulation technique to find four approximate lower confidence limits
for index pkS . The simulation results show that the SB method significantly
outperforms than other three methods. But, these studies considered the
assessment of capability for a single process or supplier.

In a review of the problems for supplier selection based on PCIs, Tseng and
Wu (1991) considered the problem for K available manufacturing processes based
on the precision index pC under a modified likelihood ratio (MLR) selection
rule. Chou (1994) designed testing procedures for comparing two processes or
suppliers in terms of pC , plC , and puC when sample size are equal. Huang and
Lee (1995) considered the supplier selection problem based on the index pmC
and developed a mathematically approximation method for selecting a subset
containing the process associated with the smallest 2 2( )Ts m  from K given
independent processes. Pearn et al. (2004) provided useful information regarding
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the sample size required for a designated selection power. A two-phase selection
procedure was developed to select a better supplier and to calculate the magnitude
of the difference between two suppliers. Chen and Chen (2004) used four
approximate confidence interval methods to present and compare for index pmC .
One based on the statistical theory given in Boyles (1991), and three based on the
bootstrap (referred to as standard bootstrap, percentile bootstrap, and
biased-corrected percentile bootstrap) for selecting a better supplier. However, the
testing procedure for supplier selection based on pkS has not been done today. In
this thesis, because the exact sampling distribution of pkS is analytical
intractable, we will use bootstrap method to compare two processes based on

pkS .
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3. Selection Method

3.1 Selecting a Better Supplier by Comparing Two pkS

One of the purposes of the process capability indices can be put to use is to
select between competing processes that which is more capable. Since we do not
have direct observation of the entire processes, we have no idea that which
process is more capable. When we have samples of product provided by two
suppliers, we may use the sample data to select the supplier whose product is
better. We may switch to a new supplier if we can be sure that the process
capability index of the new supplier is higher than that of the present supplier.

In this thesis, we investigate the selection problem with two candidate
processes based on the index pkS . Let 11 12 1, ,..., nx x x and 21 22 2, ,..., nx x x be the
measurements of two samples independently drawn from the normal distribution

2
1 1( , )N  and 2

2 2( , )N   , respectively. In general, if a new supplier #2 (S2)
wants to compete for the orders by claiming that its capability is better than the
existing supplier #1 (S1), the new S2 has to convince purchaser with a prescribed
confidence level information to justify the claim. Thus, the supplier selection
decision would be based on the hypothesis testing comparing the two pkS values.
It is

0 1 2: pk pkH S S

1 1 2: pk pkH S S .

If the test rejects the null hypothesis 0 1 2: pk pkH S S , then one has sufficient
information to conclude that the new S2 is better than the original S1, and the
decision of the replacement would be suggested. This hypothesis testing problem
can also be written as:

0 2 1: 0pk pkH S S  versus 1 2 1: 0pk pkH S S  (difference testing)

0 2 1: / 1pk pkH S S  versus 1 2 1: / 1pk pkH S S  (ratio testing).

Therefore, if the lower confidence bound of 2 1pk pkS S is positive in difference
testing, we can conclude that S2 has a better process capability than S1. Otherwise,
we have no sufficient information to conclude that the S2 has a better process
capability than S1. Similarly, if the lower confidence bound for the ratio between
two process capability indices 2 1/pk pkS S is larger than 1, then S2 has a better
process capability than S1. Otherwise, we have no sufficient information to
conclude that the S2 has a better process capability than S1.

In order to estimate the yield measure pkS , we consider the following
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natural estimator pkS


, involving the statistics
1

/
n

ii
x x n


 , and

2 1/ 2
1

[ ( ) /( 1)]
n

ii
s x x n


   are the sample mean and the sample standard

deviation being the conventional estimators of  and , respectively, obtained
from a well-controlled process. The estimator is evidently

11 1 1
{ ( ) ( )}

3 2 2
pk

USL x x LSL
S

s s


  

     .

Even under the normal distribution, the exact distribution of pkS


is
mathematically intractable. Consequently, testing the process performance can
not be accomplished. Lee et al. (2002) obtained an approximate distribution of

pkS


using the Taylor expansion technique. The estimator pkS


can be expressed
approximately as:

1 11
[ (3 )] ( )

6
pk pk pk pS S S W O n

n



    ,

where

3

1 1 1 1
(1 ) (1 )

2
d Z

W Y
   

   
     

                              
           

,

and above ( ) /m d   , / d  , (.) is the probability density function
(p.d.f) of the standard normal variable (0,1)N . 1( )pO n represents the error of
the expansion having a leading term of order 1n in probability. It is noted that
the asymptotic expansion of pkS



is normally distributed with mean pkS and
variance 2 2 2( ) / 36 ( (3 ))pka b n S ,

where
1 1

(1 ) (1 )
2
d

a
 

 
 

     
       

    
,

1 1
b

 
 

 
     

     
    

.

Moreover, using rather complicated algebraic manipulations, Pearn et al.
(2004) showed that, the estimator pkS



can be expressed in the form of:

2 2
1 2 3 4 5

1
( )



      pk pk pS S D Z D Y D Z D ZY D Y O
n n

,

here Z and Y are distributed according to the joint bivariate normal distribution,
and iD , 1, 2,...,5i  , are functions of ( ) /m d   and / d  . Therefore,
the distribution of pkS



may alternatively be approximated by the following
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polynomial combination of the distributions of Z and Y:

 2 2

1 0
( , ) (0,0), ,

0 1/ 2
dZ Y N where

 
  

 
 

with the bias approximated as: 2 2
1 2 3 4 5D Z D Y D Z D ZY D Y    .

Both of these approximations to the distribution of p̂kS are rather
complicated and tedious. Undoubtedly, the distributions of 2 1

ˆ ˆ
pk pkS S or

2 1
ˆ ˆ/pk pkS S and the constructions of exact confidence intervals for 2 1

ˆ ˆ
pk pkS S and

2 1
ˆ ˆ/pk pkS S are much more difficult.

3.2 Bootstrap Methodology

Traditionally, statistical research work has relied on the central limit theorem
and normal approximations to obtain standard errors and confidence intervals.
These techniques are valid only when the statistic, or some known transformation
of statistic, is asymptotically normal distribution. Unfortunately, most process
data in real world are not normal distributed. More than that, the distribution of
data is usually unknown. A major motivation for the traditional reliance on
normal-theory methods has been computational tractability. Access to powerful
computation enables the use of statistics in new and varied way. Idealized models
and assumptions can now be replaced with more realistic modeling or by virtually
model-free analyses. Efron (1979, 1982) introduced a nonparametric,
computational intensive but effective estimation method, called the “Bootstrap”,
which is a data based simulation technique for statistical inference. One can use
the nonparametric bootstrap method to estimate the sampling distribution of a
statistic, while assuming only that the observations are independent and
identically distributed. The merit of the nonparametric bootstrap approach is that
it does not rely on any assumptions regarding the underlying distribution. Rather
than using distribution frequency tables to compute approximate p probability
vales, the bootstrap method generates a unique sampling distribution based on the
actual sample rather than the analytic method.

Most of PCIs literature concluded that the performance of bootstrap limits
for PCIs are quite satisfactory in the majority of the cases. After Efron (1979,
1982) introduced the bootstrap, Efron and Tibshirani (1986) further developed
three bootstrap confidence intervals: the standard bootstrap (SB) confidence
interval, the percentile bootstrap (PB) confidence interval, and the
biased-corrected percentile bootstrap (BCPB) confidence interval. Franklin and
Wasserman (1991) proposed an initial study of these three methods for obtaining
confidence intervals for pkC when the process was normal distributed. Franklin
and Wasserman (1992) also offered three bootstrap lower confidence limits for
index pC , pkC , and pmC . They compared the confidence interval from bootstrap
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and from parametric estimates. The simulation results show that, the bootstrap
confidence limits perform as good as the lower confidence limits derived by the
parametric method in the normal process environment. (see Chou et al (1990) for

pC , Bissell (1990) for pkC , and Boyles (1991) for pmC ). These studies indicate
that the bootstrap limits for PCIs are satisfactory in the cases.

In this thesis, the following four bootstrap confidence limits are employed to
determine the lower confidence bounds of difference and ratio statistics and the
results are used to select the better supplier of the two candidates. For 1n = 2n =n,
let two bootstrap samples of size n drawn with replacement from the two original
sample be denoted by  * * *

11 21 1, , ..., nx x x and  * * *
21 22 2, , ..., nx x x . The bootstrap

sample statistics *
1x , *

1s , *
2x , and *

2s are computed, as well as *
1p̂kS , and *

2p̂kS .
A random sample of nn possible resamples are drawn, the statistic is calculated
by each of these, and the resulting empirical distribution is referred to as the
bootstrap distribution of statistic. Due to the overwhelming computation time, it
is not of practical interest to chose nn such samples. Empirical work (Eforn and
Tibshirani (1986)) indicated that a roughly minimum of 1,000 bootstrap
resamples is usually sufficient to compute reasonable accurate confidence interval
estimates for population parameters. For accuracy purpose, we consider B=3,000
bootstrap resamples (rather than 1,000). Thus, we take B=3,000 bootstrap
estimates *̂q = * *

2 1
ˆ ˆ( )pk pkS S or * *

2 1
ˆ ˆ( / )pk pkS S of θ = 2 1pk pkS S or 2 1/pk pkS S ,

respectively, then order them from the smallest to the largest * * *
( ) 2 1 ( )
ˆ ˆ ˆ( )l pk pk lS S  

or * * *
( ) 2 1 ( )
ˆ ˆ ˆ( / )l pk pk lS S  where 1,2, ,l B  .

Four types of bootstrap confidence intervals, including the standard
bootstrap confidence interval (SB), the percentile bootstrap confidence interval
(PB), the biased corrected percentile bootstrap confidence interval (BCPB), and
the bootstrap-t (BT) methods introduced by Efron (1981), and Efron and
Tibshirani (1986) are conducted in this paper. The generic notation ̂ and *̂are
the estimator of θ and the associated ordered bootstrap estimate. Construction
of a two-sided 100(1 2 )% confidence limit will be described. We note that a
lower 100(1 )% confidence limit can be obtained by using only a lower limit.
The formulation details for the four types of confidence intervals are displayed as
follows.

[A] Standard Bootstrap (SB) Method
Form the B bootstrap estimates *

( )̂lq , 1,2, ,l B  , the sample average and
the sample standard deviation can be obtained as

*̂q *
( )

1

1 ˆ
B

l
lB q


  ,
1 2

* * * 2
( )

1

1 ˆ ˆ[ ]
1

B

l
l

S
Bq q q



        .

The quantity *Sq is an estimator of the standard deviation of q̂ if the
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distribution of q̂ is approximately normal. Thus, the 100(1 2 )%a SB
confidence interval for θ can be constructed as

a qq * *ˆ[ ,z S a qq * *ˆ ]z S ,

where q̂ is the estimator of θ for the original sample, and z is the upper 
quantile of the standard normal distribution.

[B] Percentile Bootstrap (PB) Method
From the ordered collection of *

( )̂l , 1,2, ,l B  , the  percentage and
1- percentage points are used to obtain the 100(1 2 )% PB confidence
interval forθ,

*
( )
ˆ[ ,B *

((1 ) )
ˆ ]B  .

[C] Biased-Corrected Percentile Bootstrap (BCPB) Method

While the percentile confidence interval is intuitively appealing, it is possible
that cause sampling errors, the bootstrap distribution may be biased. In other
words, it is possible that bootstrap distributions using only a sample of the
complete bootstrap distribution may be shifted higher or lower than would be
expected. A three steps procedure is suggested to correct for the possible bias
(Efron, 1982). First, using the ordered distribution of *̂ , calculate the
probability *

0 ˆ[p P q 0̂ ]q . Second, we compute the inverse of the cumulative
distribution function of a standard normal based upon 0p as 1

0 0( )z p ,

0(2 )Lp z za  0(2 )Up z za  . Finally, executing these steps to obtain the
100(1 2 )% BCPB confidence interval

*
( )
ˆ[ ,

Lp B *
( )
ˆ ]

Up B .

[D] Bootstrap-t (BT) method

By using bootstrap method to approximate the distribution of a statistic of
the form qq q ˆˆ( )/S , the bootstrap approximation in this case is obtained by
taking bootstrap samples from the original data values, calculating the
corresponding estimates *̂ and their estimated standard error, hence finding the
bootstrapped T -values *̂(T q *)̂/Sqq . The hope is that the generated
distribution will mimic the distribution of T . The 100(1 2 )% BT confidence
interval for  may constitute as

* * *
ˆ

ˆ[ ,t S 
 * * *

ˆ1
ˆ ]t S 
  ,
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where *ta and *
1t a are the upper  and 1  quantiles of the bootstrap

t -distribution respectively, i.e. by finding the values that satisfy the two equations
*̂[(P q * *)̂/ ]S tq aq a   and *̂[(P q * *

1)̂/ ] 1S tq aq a    , for the generated
bootstrap estimates.
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4. Performance Comparisons of Four Bootstrap Methods

4.1 Simulation Layout Setting

There are mainly two important characteristics, the process location relative
to its specification limits, and the process spread in process capability. The closer
the process location is to the mid-point of the specification limits and the smaller
the process spread, the more capable the process is. A mathematical relationship
among the indices pC , aC , and pkS can be established as:

11 1 1
{ ( ) ( )}

3 2 2pk

USL LSL
S

 
 

  
    

11 1 | | 1 | |
{ ( ) ( )}

3 2 2
d m d m 

 
    

    

11 1 1 | | / 1 1 | | /
{ ( ) ( )}

3 2 / 2 /
m d m d
d d

 
 

    
    

11 1 1
{ [3 ] [3 (2 )]}

3 2 2p a p aC C C C      .

Based on this relationship, it is note that we can combine several different
combinations of pC and aC for the same pkS value by setting between the
process centering and the magnitude of process variation. Table 2 displays many
different aC values and the corresponding process spread of the magnitude of
.

Table 2. aC values and ranges of .

aC value Range of m
1.00aC  mm 

0.75 1.00aC  0 | | / 4m dm  
0.50 0.75aC  / 4 | | /2d m dm  
0.25 0.50aC  /2 | | 3 / 4d m dm  
0.00 0.25aC  3 / 4 | |d m dm  

0.00aC  orLSL USLm m 
0.00aC  orLSL USLm m 
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Figure 1. Four processes with pkS =1.00.

Figure 1 plots four process with difference combination of ( , )p aC C
with 1.00pkS  , LSL=10, USL=20, and m=15. i.e. ( , ) (1.00,1.00)p aC C  for process
A, ( , ) (1.23661662,0.75)p aC C  for process B, ( , ) (1.85478349,0.5)p aC C  for
process C, ( , ) (3.70956682,0.25)p aC C  for process D. These four processes have
equivalent 1.00pkS  , and all have yields equal to 99.73%, but constructed with
different  and . Hence, in order to make a comparative study among four
bootstrap confidence limits, we take series of simulations to investigate the error
probability and the selection power of difference and ratio testing statistics for the
performance comparisons of four bootstrap methods. The setting values of
parameters for two manufacturing suppliers used in the simulation study are given
in Table 3. We investigate the performance of the methods with selected
parameters for a wide range of index values and in on-target and off-target
processes. For each combination, we generate 3,000 random samples, and the
corresponding bootstrap confidence intervals for each of these samples are
assessed in section 4.2.
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Table 3. The parameter setting values for two manufacturing suppliers used in the
simulation study under 1 2 1.00pk pkS S  .

Case 1pkS 1pC 1aC 2pkS 2pC 2aC

1 1 1 1 1 1 1

2 1 1 1 1 1.23661662 3/4

3 1 1 1 1 1.85478349 1/2

4 1 1 1 1 3.70956682 1/4

5 1 1.23661662 3/4 1 1 1

6 1 1.23661662 3/4 1 1.23661662 3/4

7 1 1.23661662 3/4 1 1.85478349 1/2

8 1 1.23661662 3/4 1 3.70956682 1/4

9 1 1.85478349 1/2 1 1 1

10 1 1.85478349 1/2 1 1.23661662 3/4

11 1 1.85478349 1/2 1 1.85478349 1/2

12 1 1.85478349 1/2 1 3.70956682 1/4

13 1 3.70956682 1/4 1 1 1

14 1 3.70956682 1/4 1 1.23661662 3/4

15 1 3.70956682 1/4 1 1.85478349 1/2

16 1 3.70956682 1/4 1 3.70956682 1/4

4.2 Error Probability Analysis

The error probability is the first step which we want to investigate. It is the
proportion of times that reject the null hypothesis 0 1 2: pk pkH S S , while

0 1 2: pk pkH S S is true. Thus, we will calculate the proportion of times that the
lower confidence bound of 2 1pk pkS S is positive and the lower confidence bound
of 2 1/pk pkS S is larger than 1 for each case given in Table 2. We set sample size
n=100 drawn with replacement , the bootstrap resamples B=3,000, and the single
simulation is replicated N=3,000 times. We usually set that the probability of the
error selection less than a maximum value , referred to the  condition. The
frequency of the error is a binomial random variable with N=3,000 and =0.05.
Thus, the 99% confidence interval for the error probability is

* * *
0.005 (1 )/Z Na a a   0.05 2.576 (0.05 0.95)/ 3000    0.05 0.0103  .

That is, one can have a 99% confidence that a“true 0.05 error probability”would
have a range from 0.0397 to 0.061. Figure 2 and 3 show that the error probability
of the four bootstrap methods for the difference and the ratio statistics with 16
different combination cases tabulated in Table 3.
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Figure 2. Error probability of four bootstraps under 1 2 1.00pk pkS S  .

Figure 3. Error probability of four bootstraps under 2 1/ 1.00pk pkS S  .

We have some results from Figure 2 and 3. In Figure 2, it shows that there
are three cases out of the control limit (0.0397, 0.061) for the PB method for the
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difference statistic. There is only one occurrence out of the interval for SB method.
We can note that with BCPB and BT methods, there is no case out of the control
limit. That is, for different combinations of pC and aC for equal pkS value
have no significant effect in error probability with BCPB and BT methods.

As for the ratio statistic in Figure 3, there are three cases out of the control
limit (0.0397, 0.061) for the PB method. For the BT method, all of these cases are
behind the lower control limit. That is, BT is a conservative bootstrap method for
ratio statistic. With the SB and BCPB methods, there is no occurrence out of the
interval. Table 4 and 5 show the results of error probability analysis for difference
and ratio test. It means that, for different combinations of pC and aC for equal

pkS value have no significant effect in error probability with SB and BCPB
methods.

Table 4. The results of error probability analysis for difference test.

Bootstrap
method of
difference test

Mean of these 16
cases error

Standard
deviation of
these 16 cases
error

Number
of out of
limits

Out of limits case

SB 0.053895 0.003684 1 3
PB 0.056896 0.004436 3 2,3,4

BCPB 0.054166 0.001966 0 None
BT 0.049917 0.001934 0 None

Table 5. The results of error probability analysis for ratio test.

Bootstrap
method of
ratio test

Mean of these 16
cases error

Standard
deviation of
these 16 cases
error

Number
of out of
limits

Out of limits case

SB 0.045708 0.003297 0 None
PB 0.056896 0.004436 3 2,3,4

BCPB 0.055314 0.001595 0 None
BT 0.034917 0.001189 16 All

Besides that, an average lower confidence bound and the standard deviation
of the lower confidence bound were calculated based on the N=3,000 different
trials. Table 6 takes four of sixteen cases to show that the average lower
confidence bound and the standard deviation of the lower confidence bound for
each of the four different bootstrap methods. The results of all cases are
summarized in Table 12.
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Table 6. Simulation results of the four bootstrap methods for the
difference and ratio statistics.

Difference Ratio
1pkS 1pC 1aC 2pkS 2pC 2aC

Bootstrap

Method Error

probability

Average

LCB

Std. of

LCB

Error

probability

Average

LCB

Std. of

LCB

1 1 1 1 1 1 SB 0.05333 -0.16505 0.10305 0.04900 0.84596 0.08617

PB 0.05667 -0.16490 0.10415 0.05667 0.85486 0.08679

BCPB 0.05467 -0.16495 0.10370 0.05567 0.85475 0.08658

BT 0.05067 -0.16466 0.10118 0.03867 0.83317 0.08529

1 1.236617 3/4 1 1 1 SB 0.05033 -0.17027 0.10184 0.04233 0.84187 0.08462

PB 0.05333 -0.17004 0.10302 0.05333 0.85058 0.08527

BCPB 0.05633 -0.16281 0.10183 0.05700 0.85639 0.08556

BT 0.04967 -0.16656 0.09955 0.03367 0.83273 0.08385

1 1.854783 1/2 1 3.709567 1/4 SB 0.05400 -0.16182 0.10107 0.04500 0.84966 0.08423

PB 0.05500 -0.16168 0.10243 0.05500 0.85829 0.08501

BCPB 0.05400 -0.16179 0.10104 0.05467 0.85812 0.08467

BT 0.04967 -0.16148 0.09846 0.03467 0.83720 0.08297

1 3.709567 1/4 1 3.709567 1/4 SB 0.05233 -0.16188 0.10116 0.04467 0.84960 0.08431

PB 0.05467 -0.16167 0.10244 0.05467 0.85823 0.08507

BCPB 0.05167 -0.16167 0.10100 0.05467 0.85817 0.08466

BT 0.04833 -0.16150 0.09863 0.03467 0.83721 0.08316

4.3 Selection Power Analysis

After the error probability analysis, we can roughly ensure that, there is less
effect for different combinations of pC and aC for equal pkS value with
difference and ratio statistic. In order to compare the performance of these four
bootstrap methods, we conduct further simulations of selection power with
different sample sizes n=30(10)200 for 1 1.00pkS  , and 2 1.05(0.05)1.50pkS  . The
selection power calculates the probability of rejecting the null hypothesis

0 1 2: pk pkH S S while actually 1 1 2: pk pkH S S is true. For the difference statistic,
the selection power computes the proportion of times that the lower confidence
bound of 2 1pk pkS S is positive in the simulation. Similarly, for the ratio statistic,
the selection power computes the proportion of times that the lower confidence
bound of 2 1/pk pkS S is larger than 1. Figures 4-5 show the power of the four
bootstrap methods for the difference and ratio statistic with sample size
n=30(10)200 , 1 1.00pkS  , 2 1.50pkS  , respectively. The power curves for

1 1.00pkS  , 2 1.05(0.05)1.50pkS  , and n=30(10)200 are showed in Figures 13-32.
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Figure 4. The selection power of the four
bootstrap methods for the difference statistic
with sample size n=30(10)200.

Figure 5. The selection power of the four
bootstrap methods for the ratio statistic
with sample size n= 30(10)200.

In Figure 4 and Figure 5, we find that PB and BCPB methods are much
powerful under the same sample size. On the contrary, SB and BT methods have
larger required sample size with fixed selection power. Under the two
considerations of error probability above and selection power analysis, the BCPB
method has more correct error probability and better selection power with fixed
sample size. Consequently, we recommend the best of these four bootstrap
methods is the BCPB method.
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5. Supplier Selection Based on BCPB Method

5.1 Sample Size Determination with Designated Selection Power

In general, if a new supplier #2 (S2) wants to compete for the orders by
claiming that its capability is better than the existing supplier #1 (S1), the new S2
has to convince purchaser with a prescribed confidence level information to justify
the claim. Therefore, the sample size required for designated selection power must
be determined to collect actual data from the factories. We investigate the BCPB
method with B=3,000 bootstrap resamples, and the each simulation was then
replicated with N=3,000 times. For convenience of applications, we tabulate the
sample sizes required for various designated selection power = 0.90, 0.95, 0.975,
and 0.99 under error probability 0.05 . The selection power calculates the
probability of rejecting the null hypothesis 0 1 2: pk pkH S S while actually

1 1 2: pk pkH S S is true. Tables 7-8 show the sample size required of the BCPB
method for the difference with 1 1.00pkS  and 2 1.10(0.05)1.50pkS  and ratio
statistics with 2 1.10(0.05)1.50pkS  . We also calculate the sample size required
for 1 1.30pkS  and 2 1.40(0.05)1.80pkS  for difference and ratio statistics in
Table 9 and 10.

Table 7. Sample size required of BCPB method for the difference statistics under
0.05 , with power = 0.90, 0.95, 0.975, 0.99, 1 1.00pkS  , 2 1.10(0.05)1.50pkS  .

Spk1

Spk2

1
1.1

1
1.15

1
1.2

1
1.25

1
1.3

1
1.35

1
1.4

1
1.45

1
1.5

90% 941 444 257 171 125 95 77 63 53

95% 1188 541 332 217 155 121 97 80 67

97.5% 1400 666 397 265 184 143 113 100 81

99% 1777 807 463 333 228 184 133 115 93
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Table 8. Sample size required of BCPB method for the ratio statistics under
0.05 , with power = 0.90, 0.95, 0.975, 0.99, 1 1.00pkS  , 2 1.10(0.05)1.50pkS  .

Spk1

Spk2

1
1.1

1
1.15

1
1.2

1
1.25

1
1.3

1
1.35

1
1.4

1
1.45

1
1.5

90% 938 443 263 169 126 95 76 63 51

95% 1191 563 326 219 151 118 96 81 66

97.5% 1416 666 401 257 189 139 116 94 81

99% 1716 822 469 304 233 184 150 116 96

Table 9. Sample size required of BCPB method for the difference statistics under
0.05 , with power = 0.90, 0.95, 0.975, 0.99, 1 1.30pkS  , 2 1.40(0.05)1.80pkS  .

Spk1

Spk2

1.3
1.4

1.3
1.45

1.3
1.5

1.3
1.55

1.3
1.6

1.3
1.65

1.3
1.7

1.3
1.75

1.3
1.8

90% 1596 713 415 271 195 146 117 92 78

95% 1916 891 521 354 251 190 155 125 102

97.5% 2350 1088 643 413 338 230 176 147 119

99% 2925 1350 763 525 382 279 227 178 150

Table 10. Sample size required of BCPB method for the ratio statistics under
0.05 , with power = 0.90, 0.95, 0.975, 0.99, 1 1.30pkS  , 2 1.40(0.05)1.80pkS  .

Spk1

Spk2

1.3
1.4

1.3
1.45

1.3
1.5

1.3
1.55

1.3
1.6

1.3
1.65

1.3
1.7

1.3
1.75

1.3
1.8

90% 1596 721 421 275 198 148 121 96 77

95% 1965 917 514 350 250 189 152 126 102

97.5% 2397 1124 652 424 313 239 185 144 124

99% 2829 1297 749 512 376 278 226 189 152

For the convenience of observation, Figures 6-9 depict sample size curves
based on the four sample size tables, respectively.
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Figure 6. The sample size curve for the difference statistic under 0.05 , with
power = 0.90, 0.95, 0.975, 0.99, 1 1.00pkS , 2 1.10(0.05)1.50pkS .
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Figure 7. The sample size curve for the ratio statistic under 0.05 , with
power = 0.90, 0.95, 0.975, 0.99, 1 1.00pkS , 2 1.10(0.05)1.50pkS .
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Difference Sample Size for S pk1=1.3
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Figure 8. The sample size curve for the difference statistic under 0.05 , with
power = 0.90, 0.95, 0.975, 0.99, 1 1.3pkS , 2 1.40(0.05)1.80pkS .
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Figure 9. The sample size curve for the ratio statistic under 0.05 , with
power = 0.90, 0.95, 0.975, 0.99, 1 1.3pkS , 2 1.40(0.05)1.80pkS .

From these figures, we can note that the larger the value of the difference

2 1pk pkS S  or the ratio 2 1/pk pkS S between two suppliers, the smaller the
sample size required for fixed selection power. For fixed  or  and 1pkS , the
sample size required increases as designated selection power increases. Besides,



23

the sample size required is very similar either for the difference or the ratio
statistics. This phenomenon can be explained easily, since the smaller of the
difference and the larger designated selection power, the more collected sample is
required to account for the smaller uncertainty in the estimation.

5.2 Selecting the Better Supplier

In this supplier selection problem, the practitioner should set the present
minimum requirement of pkS values, and the minimal difference  or the
minimal ratio  must be differentiated between suppliers with designated
selection power. The practitioner alternatively might check Tables 7-10 for the
sample size required under error probability 0.05 , with designated selection
power = 0.90, 0.95, 0.975, 0.99. After that, based on the BCPB method, if the
LCB of 2 1

ˆ ˆ
pk pkS S is positive or the LCB of 2 1

ˆ ˆ/pk pkS S is greater than 1, then we
can conclude that the supplier #2 is better than the supplier #1. Otherwise, we do
not have sufficient information to reject the null hypothesis 0 pk1 pk2H :S S . That is,
we would believe that the existing supplier #1 is better than the new supplier #2.
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6. Application Example：Color Filter Supplier Selection

Thin-film transistor liquid-crystal display (TFT-LCD) is one of the potential
module of the high-tech products in the communication, information and
consumer electronics industries. The TFT-LCD consumes less energy and weighs
less compared to a cathode-ray tube (CRT). Besides that, it has emerged as the
most widely used display solution, due to its high reliability, viewing quality and
performance, compact size and environment-friendly features.

The basic structure of a TFT-LCD panel may be thought of as two glass
substrates sandwiching a layer of liquid crystal. The front glass substrate is fitted
with a color filter, while the back glass substrate has transistors fabricated on it.
When voltage is applied to a transistor, the liquid crystal is bent, allowing light to
pass through to form a pixel. A light source is located at the back of the panel and
is called a backlight unit. The front glass substrate is fitted with a color filter,
which gives each pixel its own color. Figure 10 shows the combination of the
structure.

Figure 10. The combination of TFT-LCD structure.

The color filter is the most key component for a TFT-LCD. Many companies
invest in producing a larger color filter to reduce the production cost. Competition
in this market is very fierce. The thickness of the color filter is one of the most
important quality characteristics. If the thickness of color filter is not in control,
the TFT-LCD product may result in a certain degree of aberration.

The example is taken from a TFT-LCD manufacturing company, located in a
science-based industrial park in Taiwan. The company would like to determine
which of the two color filter suppliers has better process capability. For a
particular model of the color filter investigated, the USL of a color filter
thickness is set to 0.7mm, the LSL of a color filter thickness is set to 0.56mm,
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and the target value of a color filter thickness is set to 0.63mm.

6.1 Data Analysis and Supplier Selection

For the supplier selection problem, the practitioner should input the minimal
requirement of pkS value first. Second, the minimal difference of pkS between
these two suppliers with a designated selection power has to be set. Then we could
decide the sample size based on Tables 7-10. In this case, the upper specification
limit is 0.7mm, the lower specification limit is 0.56mm, and the target value is
0.63mm. The minimal requirement for the color filter product is 1.00, and the
minimal difference between these two suppliers is 0.3, with selection power 0.95.
By checking Tables 7-10, the sample size required for the difference statistics is
155, and for the ratio statistics is 151. We take 155 samples for S1 and S2,
respectively. All sample data for two suppliers are showed in tables 15-16.

Figure 11. Histogram of data S1. Figure 12. Histogram of data S2.

Figures 11-12 show the histogram of the 155 samples for S1 and S2. We use
Kolmogorov–Smirnov test to check if these two suppliers’data are normal
distributed. The statistic d for S1 is 0.038, and the statistic d for S2 is 0.065.
Because both of these two p-values are greater than 0.05, we can not reject the
null hypothesis. Thus, we conclude that the sample data for the two suppliers can
be regarded as normal processes. We calculate the sample means, sample standard
deviations, and the sample estimators p̂kS for S1 and S2, summarized in Table
11.

Table 11. The calculated sample statistics for two suppliers.

x s p̂kS
S1 0.630129 0.022558 1.0344

S2 0.633369 0.017689 1.2973
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We execute the Matlab program to obtain the LCB for the difference between
these two processes 2 1

ˆ ˆ
pk pkS S is 0.09357, and the LCB for the ratio 2 1

ˆ ˆ/pk pkS S is
1.0865. Therefore, we can conclude that S2 is better than the present supplier S1.
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7. Conclusions

Supplier selection problem is an important issue in the manufacturing
industry. The decision maker usually faces the problem of selecting the better
supplier between two candidates. For most manufacturing factories, process yield
is the fundamental criterion for supplier selection. The index pkS provides an
exact measure on the process yield. However, the supplier selection problem
based on index pkS has not been done.

In this thesis, we compared the performance of 2 1-pk pkS S and 2 1/pk pkS S
with four different bootstrap methods including the standard bootstrap (SB), the
percentile bootstrap (PB), the biased-corrected percentile bootstrap (BCPB), and
the bootstrap-t (BT) methods. In error probability analysis, we found that SB and
BCPB methods have stable error probabilities for both difference and ratio test.
PB and BCPB methods are much powerful under the same sample size in
selection power analysis. Thus, the performance of BCPB method is better than
the other three methods. For practitioner’s convenience, the useful information
about the sample size required with designated selection power based on the
BCPB method was tabulated. After that, we investigated a real world case on the
color filter manufacturing process, and demonstrated the applicability of the
proposed method step by step in the end.



28

References

1. Bissell, A. F. (1990). How reliable is your capability index? Applied Statistics,
39(3), 331-340.

2. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality
Technology, 23, 17-26.

3. Boyles R. A. (1994). Process capability with asymmetric tolerances.
Communication in statistics: Simulation and Computation, 23(3), 615-643.

4. Chan, L. K., Cheng S. W. and Spiring F. A. (1988). A new measure of process
capability: pmC . Journal of Quality Technology, 20, 162-173.

5. Chen, J. P. and Chen K. S. (2004). Comparing the capability of two processes
using pmC . Journal of Quality Technology, 36(3), 329-335.

6. Chen J. P. (2005). Comparing four lower confidence limits for process yield
index pkS . The International Journal of Advanced Manufacturing Technology, 26,
609-614.

7. Choi, K. C., Nam K. H. and Park D. H. (1996). Estimation of capability index
based on bootstrap method. Microelectronics Reliability, 36(9), 1141-1153.

8. Chou, Y. M., Owen, D. B. and Borrego, A. S. (1990). Lower confidence limits
on process capability indices. Journal of Quality Technology, 22, 223-229.

9. Chou. Y. M. (1994). Selecting a better supplier by testing process capability
indices. Quality Engineering, 6(3), 427-438.

10. Efron, B. (1979). Bootstrap methods: another look at the Jackknife. The Annals
of Statistics, 7, 1-26.

11. Efron, B. (1982). The Jackknife, the bootstrap and other resampling plans.
Philadelphia, PA.

12. Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors,
confidence interval, and other measures of statistical accuracy. Statistical
Science, 1, 54-77.

13. Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap.
Chapman and Hall, New York.

14. Franklin L. A. and Wasserman G.S. (1991). Bootstrap confidence interval
estimates of pkC : An introduction. Communications in Statistics: Simulation and
Computation, 20, 231-242.

15. Franklin, L. A. and Wasserman, G. S. (1992). Bootstrap lower confidence
limits for capability indices. Journal of Quality Technology, 24(4), 196-210.

16. Hsiang, T. C. and Taguchi, G. (1985). A tutorial on quality control and assurance -
the Taguchi methods. ASA Annual Meeting, Las Vegas, Nevada.

17. Huang, D. Y. and Lee, R. F. (1995). Selecting the largest capability index from
several quality control processes. Journal of Statistical Planning and Inference, 46,
335-346.

18. Juran, J.M. (1974). Quality Control Handbook (3rd Edition). McGraw-Hill, New
York.



29

19. Kane,V. E. (1986). Process capability indices. Journal of Quality Technology, 18,
41-52.

20. Kotz, S. and Johnson, N. L. (2002). Process capability indices –a review,
1992-2000. Journal of Quality Technology, 34(1), 1-19.

21. Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices.
Journal of Quality Technology, 24, 188-195.

22. Lee J. C., Hung H. N., Pearn W. L., Kueng T. L. (2002). On the distribution of
the estimated process yield index pkS . Quality & Reliability Engineering
International, 18(2), 111-116.

23. Pearn, W. L., Lin, G. H. and Chen, K. S. (1998). Distributional and inferential
properties of process accuracy and process precision indices. Communications
in Statistics: Theory & Method, 27(4), 985-1000.

24. Pearn, W. L. and Chuang, C. C. (2004). Accuracy analysis of the estimated
process yield based on pkS . Quality & Reliability Engineering International,
20,305-316.

25. Pearn, W. L., Wu, C. W. and Lin, H. C. (2004). Procedure for supplier
selection based on pmC applied to super twisted nematic liquid crystal display
processes. International Journal of Production Research, 42(13), 2719-2734.

26. Spiring, F., Leung, B., Cheng, S. and Yeung, A. (2003). A bibliography of
process capability papers. Quality & Reliability Engineering International. 19(5),
445-460.

27. Tseng, S. T. and Wu, T. Y. (1991). Selecting the best manufacturing process.
Journal of Quality Technology, 23, 53-62.



30

1 1 1 1 S
pk1

1 1 1 1

C
p1

1 1 1 1 C
a1

1 1 1 1 S
pk2

3.70956682

1.85478349

1.23661662

1

C
p2

1/4

1/2

3/4

1 C
a2

B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB

B
ootstrap

U
SL

=
20,LSL

=
10,d

=
5,m

=
15

0.05367

0.05467

0.06500

0.06067

0.05333

0.05667

0.06567

0.06133

0.05300

0.05200

0.06500

0.05967

0.05067

0.05467

0.05667

0.05333

P

-0.15951

-0.16381

-0.15649

-0.15659

-0.15956

-0.16385

-0.15656

-0.15665

-0.15967

-0.16387

-0.15681

-0.15686

-0.16466

-0.16495

-0.16490

-0.16505

L
B

ound

0.10068

0.10343

0.10416

0.10298

0.10065

0.10348

0.10426

0.10299

0.10076

0.10345

0.10429

0.10305

0.10118

0.10370

0.10415

0.10305

Std

n
=

100
(D

ifference
Test)

0.03533

0.05567

0.06500

0.05167

0.03467

0.05667

0.06567

0.05133

0.03467

0.05267

0.06500

0.05133

0.03867

0.05567

0.05667

0.04900

P

0.83780

0.85663

0.86265

0.85384

0.83773

0.85653

0.86256

0.85378

0.83762

0.85649

0.86235

0.85359

0.83317

0.85475

0.85486

0.84596

L
B

ound

0.08505

0.08628

0.08715

0.08647

0.08498

0.08634

0.08719

0.08644

0.08509

0.08630

0.08725

0.08650

0.08592

0.08658

0.08679

0.08617

Std

n
=

100
(R

atio
Test)

Table
12.T

he
errorprobability

offourbootstrap
m

ethods
forthe

difference
and

ratio
statistic

w
ith

16
com

binations
of(C

p1 ,C
a1 )

and
(C

p2 ,C
a2 )underS

pk1 =S
pk2 =1.00.



31

1 1 1 1 S
pk1

1.23661662

1.23661662

1.23661662

1.23661662

C
p1

3/4

3/4

3/4

3/4 C
a1

1 1 1 1 S
pk2

3.70956682

1.85478349

1.23661662

1

C
p2

1/4

1/2

3/4

1 C
a2

B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB

B
ootstrap

U
SL

=
20,LSL

=
10,d

=
5,m

=
15

0.04800

0.05400

0.05633

0.05333

0.04933

0.05300

0.05567

0.05333

0.04833

0.05300

0.05400

0.05267

0.04967

0.05633

0.05333

0.05033

P

-0.16145

-0.16182

-0.16157

-0.16173

-0.16146

-0.16172

-0.16169

-0.16183

-0.16155

-0.16191

-0.16179

-0.16194

-0.16656

-0.16281

-0.17004

-0.17027

L
B

ound

0.09865

0.10091

0.10227

0.10112

0.09867

0.10114

0.10240

0.10112

0.09869

0.10098

0.10240

0.10119

0.09955

0.10183

0.10302

0.10184

Std

n
=

100
(D

ifference
Test)

0.03300

0.05533

0.05633

0.04333

0.03533

0.05500

0.05567

0.04400

0.03533

0.05433

0.05400

0.04533

0.03367

0.05700

0.05333

0.04233

P

0.83722

0.85812

0.85835

0.84971

0.83718

0.85813

0.85823

0.84964

0.83710

0.85794

0.85813

0.84953

0.83273

0.85639

0.85058

0.84187

L
B

ound

0.08315

0.08451

0.08493

0.08426

0.08309

0.08476

0.08499

0.08422

0.08319

0.08470

0.08505

0.08434

0.08385

0.08556

0.08527

0.08462

Std

n
=

100
(R

atio
Test)



32

1 1 1 1 S
pk1

1.85478349

1.85478349

1.85478349

1.85478349

C
p1

1/2

1/2

1/2

1/2 C
a1

1 1 1 1 S
pk2

3.70956682

1.85478349

1.23661662

1

C
p2

1/4

1/2

3/4

1 C
a2

B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB

B
ootstrap

U
SL

=
20,LSL

=
10,d

=
5,m

=
15

0.04967

0.05400

0.05500

0.05400

0.05000

0.05500

0.05633

0.05433

0.04833

0.05333

0.05733

0.05233

0.04867

0.05733

0.05233

0.04900

P

-0.16148

-0.16179

-0.16168

-0.16182

-0.16139

-0.16161

-0.16166

-0.16185

-0.16159

-0.16172

-0.16190

-0.16204

-0.16653

-0.16284

-0.17010

-0.17033

L
B

ound

0.09846

0.10104

0.10243

0.10107

0.09861

0.10090

0.10238

0.10114

0.09867

0.10104

0.10247

0.10118

0.09944

0.10197

0.10305

0.10172

Std

n
=

100
(D

ifference
Test)

0.03467

0.05467

0.05500

0.04500

0.03433

0.05567

0.05633

0.04500

0.03533

0.05400

0.05733

0.04500

0.03467

0.05867

0.05233

0.04233

P

0.83720

0.85812

0.85829

0.84966

0.83734

0.85826

0.85828

0.84963

0.83709

0.85813

0.85809

0.84945

0.83273

0.85637

0.85053

0.84180

L
B

ound

0.08297

0.08467

0.08501

0.08423

0.08311

0.08466

0.08502

0.08428

0.08318

0.08462

0.08507

0.08431

0.08380

0.08567

0.08526

0.08448

Std

n
=

100
(R

atio
Test)



33

1 1 1 1 S
pk1

3.70956682

3.70956682

3.70956682

3.70956682

C
p1

1/4

1/4

1/4

1/4 C
a1

1 1 1 1 S
pk2

3.70956682

1.85478349

1.23661662

1

C
p2

1/4

1/2

3/4

1 C
a2

B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB B
T

B
C

PB

PB SB

B
ootstrap

U
SL

=
20,LSL

=
10,d

=
5,m

=
15

0.04833

0.05167

0.05467

0.05233

0.05100

0.05133

0.05700

0.05300

0.04900

0.05233

0.05433

0.05367

0.04767

0.05733

0.05167

0.04900

P

-0.16150

-0.16167

-0.16167

-0.16188

-0.16147

-0.16174

-0.16167

-0.16188

-0.16162

-0.16158

-0.16170

-0.16196

-0.16656

-0.16279

-0.17002

-0.17023

L
B

ound

0.09863

0.10100

0.10244

0.10116

0.09849

0.10085

0.10242

0.10113

0.09862

0.10089

0.10241

0.10118

0.09947

0.10195

0.10293

0.10168

Std

n
=

100
(D

ifference
Test)

0.03467

0.05467

0.05467

0.04467

0.03433

0.05400

0.05700

0.04533

0.03533

0.05333

0.05433

0.04400

0.03467

0.05767

0.05167

0.04167

P

0.83721

0.85817

0.85823

0.84960

0.83723

0.85814

0.85826

0.84959

0.83714

0.85827

0.85824

0.84952

0.83276

0.85643

0.85062

0.84190

L
B

ound

0.08316

0.08466.

0.08507

0.08431

0.08304

0.08453

0.08505

0.08431

0.08316

0.08458

0.08504

0.08432

0.08386

0.08570

0.08525

0.08449

Std

n
=

100
(R

atio
Test)



34

Table 13. Selection power of the four bootstrap methods for difference statistic
with sample size n = 30(10)200.

Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.07467 0.11967 0.16467 0.21033 0.26133 0.30167 0.32867 0.35700 0.36100 0.36167

PB 0.10067 0.15900 0.22267 0.29000 0.36367 0.43733 0.51933 0.60000 0.66667 0.72967

BCPB 0.09433 0.14833 0.21000 0.27867 0.35200 0.42633 0.50700 0.58633 0.65900 0.71800

30

BT 0.06567 0.09767 0.14000 0.18433 0.23633 0.27500 0.30100 0.33000 0.33467 0.34300

SB 0.09067 0.14833 0.22067 0.30367 0.38867 0.46300 0.53133 0.58800 0.62167 0.63500

PB 0.10333 0.16367 0.24233 0.33033 0.42700 0.51800 0.61033 0.68600 0.76167 0.82267

BCPB 0.09800 0.15900 0.23700 0.32667 0.41367 0.51033 0.60333 0.67600 0.75300 0.81733

40

BT 0.08100 0.13300 0.19867 0.27700 0.35867 0.43700 0.50567 0.55833 0.59400 0.61533

SB 0.09200 0.16700 0.25133 0.34500 0.45600 0.55767 0.64500 0.72233 0.78400 0.80867

PB 0.10600 0.17833 0.26500 0.36733 0.47700 0.58233 0.67400 0.76033 0.83200 0.88000

BCPB 0.09833 0.17333 0.26033 0.35867 0.46500 0.57533 0.66767 0.75600 0.82667 0.87600

50

BT 0.08267 0.15200 0.23400 0.31933 0.42867 0.52867 0.61600 0.69267 0.76700 0.79367

SB 0.10333 0.19033 0.29300 0.39533 0.51700 0.62033 0.73133 0.80800 0.86400 0.90367

PB 0.11400 0.19933 0.30067 0.41367 0.52900 0.63567 0.74700 0.82500 0.88567 0.93167

BCPB 0.11100 0.20067 0.29767 0.40500 0.52267 0.63233 0.73867 0.82000 0.88000 0.92967

60

BT 0.09600 0.17667 0.27267 0.37767 0.49667 0.60200 0.70833 0.79067 0.85233 0.89400

SB 0.10833 0.19967 0.30167 0.43267 0.56367 0.70133 0.79933 0.87167 0.92200 0.95100

PB 0.11400 0.20800 0.31100 0.44367 0.57600 0.71233 0.81000 0.88233 0.93067 0.95667

BCPB 0.11133 0.20400 0.30867 0.43733 0.57100 0.70867 0.80367 0.87900 0.92933 0.95700

70

BT 0.10167 0.18567 0.29133 0.40767 0.54733 0.68933 0.78433 0.86267 0.91367 0.94900

SB 0.11000 0.21000 0.34500 0.49133 0.63300 0.75533 0.84067 0.90200 0.94300 0.97033

PB 0.11600 0.21900 0.35700 0.50233 0.64400 0.76167 0.84800 0.90700 0.94867 0.97567

BCPB 0.11367 0.21967 0.35200 0.49800 0.6420 0.76200 0.84767 0.90600 0.94833 0.97533

80

BT 0.10600 0.20100 0.32767 0.47833 0.61767 0.74267 0.83233 0.89500 0.93800 0.96800

SB 0.11700 0.23267 0.36000 0.51600 0.66567 0.78567 0.87267 0.92833 0.96367 0.98233

PB 0.12233 0.23867 0.37000 0.52433 0.67167 0.79367 0.88000 0.93233 0.96433 0.98367

BCPB 0.12067 0.23467 0.36967 0.52233 0.66967 0.78733 0.87633 0.92733 0.96333 0.98267

90

BT 0.11333 0.21933 0.34833 0.50400 0.65800 0.77600 0.86567 0.92500 0.96100 0.98100

SB 0.12567 0.24400 0.39567 0.57167 0.72767 0.84167 0.91400 0.95633 0.98067 0.99067

PB 0.13000 0.24967 0.40300 0.57967 0.73367 0.84433 0.91967 0.95800 0.98133 0.99167

BCPB 0.12800 0.24633 0.40167 0.57100 0.73167 0.84167 0.91933 0.95667 0.98000 0.99200

100

BT 0.11900 0.23500 0.38733 0.56300 0.71867 0.83300 0.91000 0.95233 0.97933 0.99000
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Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.13000 0.27033 0.44200 0.62133 0.76167 0.87000 0.93567 0.97333 0.98933 0.99667

PB 0.13200 0.27700 0.44667 0.62833 0.76633 0.87433 0.93900 0.97333 0.99100 0.99667

BCPB 0.13200 0.27133 0.44700 0.62100 0.76633 0.87200 0.93867 0.97333 0.98933 0.99700

110

BT 0.12567 0.26000 0.42667 0.61633 0.75300 0.86500 0.93200 0.97167 0.98833 0.99700

SB 0.13033 0.26633 0.44900 0.63033 0.77800 0.87800 0.94700 0.97700 0.98900 0.99733

PB 0.13367 0.26967 0.45300 0.63500 0.78233 0.88433 0.94900 0.97767 0.98867 0.99700

BCPB 0.13200 0.26867 0.45000 0.63300 0.78033 0.88500 0.94767 0.97700 0.98867 0.99767

120

BT 0.12700 0.26133 0.43667 0.62267 0.76700 0.87633 0.94500 0.97467 0.98733 0.99733

SB 0.14067 0.29600 0.47900 0.65967 0.81467 0.90700 0.96033 0.98600 0.99400 0.99867

PB 0.14367 0.30300 0.48600 0.66667 0.81633 0.91133 0.96200 0.98667 0.99533 0.99867

BCPB 0.14300 0.30000 0.47733 0.66100 0.81633 0.90800 0.96067 0.98633 0.99533 0.99867

130

BT 0.13800 0.28767 0.47200 0.65300 0.80800 0.90133 0.95867 0.98533 0.99467 0.99867

SB 0.14233 0.31300 0.51133 0.70433 0.84600 0.92967 0.97000 0.98867 0.99700 0.99933

PB 0.14667 0.31633 0.51800 0.71100 0.85267 0.93167 0.97267 0.98933 0.99767 0.99933

BCPB 0.14833 0.31567 0.51600 0.70733 0.85167 0.92967 0.97233 0.98933 0.99767 0.99933

140

BT 0.13667 0.30700 0.50367 0.69567 0.83867 0.92500 0.96900 0.98800 0.99733 0.99933

SB 0.15133 0.31600 0.53033 0.72433 0.86900 0.94267 0.97700 0.99233 0.99833 0.99933

PB 0.15467 0.32033 0.53267 0.73067 0.87000 0.94533 0.97900 0.99300 0.99833 0.99933

BCPB 0.15400 0.31800 0.53200 0.72933 0.86833 0.94533 0.97800 0.99267 0.99833 0.99933

150

BT 0.15100 0.31000 0.52333 0.72067 0.86567 0.94167 0.97567 0.99233 0.99833 0.99933

SB 0.15167 0.32600 0.52800 0.73167 0.86867 0.94933 0.98100 0.99500 0.99900 1.00000

PB 0.15700 0.33167 0.53467 0.73633 0.87100 0.95267 0.98133 0.99467 0.99900 1.00000

BCPB 0.15600 0.33167 0.53200 0.73733 0.87100 0.95233 0.98233 0.99467 0.99900 1.00000

160

BT 0.14800 0.32233 0.52067 0.72733 0.86667 0.94833 0.98033 0.99467 0.99900 1.00000

SB 0.16500 0.34467 0.56933 0.77000 0.89200 0.96067 0.99000 0.99800 0.99967 1.00000

PB 0.16700 0.34733 0.57167 0.77267 0.89400 0.96233 0.99067 0.99800 0.99967 1.00000

BCPB 0.16567 0.34567 0.56967 0.77033 0.89467 0.96200 0.98900 0.99833 0.99967 1.00000

170

BT 0.16133 0.34000 0.55933 0.76200 0.89300 0.96167 0.98933 0.99767 0.99967 1.00000

SB 0.17500 0.37333 0.60000 0.78233 0.90867 0.96733 0.99067 0.99833 0.99933 0.99967

PB 0.17700 0.37700 0.60567 0.78867 0.91000 0.96833 0.99067 0.99833 0.99933 1.00000

BCPB 0.17467 0.37467 0.60467 0.78633 0.91067 0.97133 0.99167 0.99833 0.99933 1.00000

180

BT 0.17067 0.36900 0.59333 0.77567 0.90700 0.96667 0.99067 0.99800 0.99933 0.99967
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Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.17300 0.36667 0.62100 0.80633 0.92400 0.97267 0.99367 0.99900 0.99967 0.99967

PB 0.17633 0.37100 0.62600 0.80933 0.92633 0.97400 0.99367 0.99900 0.99967 0.99967

BCPB 0.17367 0.36800 0.61967 0.80900 0.92600 0.97133 0.99433 0.99900 0.99967 0.99967

190

BT 0.16667 0.36100 0.61033 0.80667 0.92433 0.97133 0.99233 0.99867 0.99967 0.99967

SB 0.18500 0.39133 0.63233 0.82867 0.92967 0.98267 0.99467 0.99833 1.00000 1.00000

PB 0.18800 0.39667 0.63300 0.83167 0.93233 0.98233 0.99467 0.99833 1.00000 1.00000

BCPB 0.18900 0.39567 0.63267 0.83333 0.93267 0.98233 0.99467 0.99833 1.00000 1.00000

200

BT 0.18067 0.38400 0.62667 0.82400 0.93033 0.98233 0.99467 0.99833 1.00000 1.00000
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Table 14. Selection power of the four bootstrap methods for ratio statistic
with sample size n = 30(10)200.

Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.06033 0.08933 0.12967 0.17767 0.22200 0.25667 0.28700 0.31000 0.32333 0.32600

PB 0.10067 0.15900 0.22267 0.29000 0.36367 0.43733 0.51933 0.60000 0.66667 0.72967

BCPB 0.09600 0.15067 0.21367 0.28133 0.35533 0.43233 0.51067 0.59167 0.66233 0.72333

30

BT 0.03367 0.05400 0.07933 0.10900 0.14967 0.18267 0.20333 0.22767 0.24467 0.26100

SB 0.06967 0.12333 0.18700 0.26300 0.34300 0.41367 0.48700 0.54567 0.57967 0.60133

PB 0.10333 0.16367 0.24233 0.33033 0.42700 0.51800 0.61033 0.68600 0.76167 0.82267

BCPB 0.09967 0.16167 0.23933 0.33067 0.41833 0.51567 0.60700 0.68100 0.75900 0.81967

40

BT 0.04500 0.07733 0.12900 0.18733 0.25400 0.32600 0.38800 0.45600 0.49400 0.52167

SB 0.07467 0.13900 0.21900 0.30400 0.41100 0.51300 0.60567 0.67733 0.75000 0.78300

PB 0.10600 0.17833 0.26500 0.36733 0.47700 0.58233 0.67400 0.76033 0.83200 0.88000

BCPB 0.10033 0.17467 0.26267 0.36333 0.47033 0.57767 0.67067 0.75967 0.82900 0.87700

50

BT 0.05100 0.09400 0.16200 0.24000 0.31633 0.42300 0.51867 0.59300 0.66367 0.72367

SB 0.08700 0.16067 0.25500 0.36367 0.47600 0.58133 0.69167 0.77433 0.83733 0.88433

PB 0.11400 0.19933 0.30067 0.41367 0.52900 0.63567 0.74700 0.82500 0.88567 0.93167

BCPB 0.11200 0.20000 0.30000 0.40867 0.52500 0.63500 0.74033 0.82133 0.88333 0.93033

60

BT 0.05733 0.11633 0.20300 0.29800 0.39833 0.50933 0.61400 0.70900 0.78467 0.83633

SB 0.09300 0.17300 0.27667 0.39667 0.52767 0.66200 0.76800 0.85067 0.90467 0.94133

PB 0.11400 0.20800 0.31100 0.44367 0.57600 0.71233 0.81000 0.88233 0.93067 0.95667

BCPB 0.11267 0.20567 0.30967 0.43933 0.57567 0.71033 0.80467 0.87933 0.92933 0.95700

70

BT 0.06633 0.13000 0.22333 0.32900 0.44800 0.58367 0.70400 0.79933 0.86667 0.91467

SB 0.09800 0.18933 0.31100 0.45167 0.59733 0.72167 0.81933 0.88533 0.93367 0.96400

PB 0.11600 0.21900 0.35700 0.50233 0.64400 0.76167 0.84800 0.90700 0.94867 0.97567

BCPB 0.11467 0.21933 0.35267 0.50300 0.64500 0.76400 0.84967 0.90733 0.94967 0.97533

80

BT 0.07200 0.14433 0.25067 0.39000 0.53233 0.66000 0.77067 0.84900 0.90600 0.94467

SB 0.10233 0.20233 0.33300 0.48033 0.63200 0.75733 0.85433 0.91667 0.95400 0.97833

PB 0.12233 0.23867 0.37000 0.52433 0.67167 0.79367 0.88000 0.93233 0.96433 0.98367

BCPB 0.12000 0.23500 0.37133 0.52400 0.67300 0.78900 0.87733 0.92733 0.96433 0.98300

90

BT 0.07633 0.16033 0.28467 0.41667 0.56733 0.71067 0.81100 0.88833 0.93767 0.96767

SB 0.11167 0.22100 0.36333 0.53600 0.70100 0.81933 0.90000 0.94667 0.97633 0.98967

PB 0.13000 0.24967 0.40300 0.57967 0.73367 0.84433 0.91967 0.95800 0.98133 0.99167

BCPB 0.13067 0.24733 0.40233 0.57133 0.73433 0.84133 0.91933 0.95633 0.98067 0.99233

100

BT 0.08533 0.18133 0.31133 0.47067 0.64133 0.77067 0.87100 0.93000 0.96500 0.98567
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Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.11500 0.24067 0.40933 0.58933 0.73600 0.85033 0.92233 0.96767 0.98667 0.99500

PB 0.13200 0.27700 0.44667 0.62833 0.76633 0.87433 0.93900 0.97333 0.99100 0.99667

BCPB 0.13300 0.27500 0.45000 0.62400 0.76733 0.87333 0.93867 0.97400 0.99000 0.99700

110

BT 0.09233 0.19833 0.35533 0.52867 0.68567 0.80800 0.90300 0.95567 0.98000 0.99267

SB 0.11500 0.24067 0.41833 0.59867 0.75367 0.86400 0.94000 0.97167 0.98567 0.99567

PB 0.13367 0.26967 0.45300 0.63500 0.78233 0.88433 0.94900 0.97767 0.98867 0.99700

BCPB 0.13300 0.26800 0.45167 0.63400 0.78000 0.88600 0.94833 0.97733 0.98833 0.99767

120

BT 0.09033 0.19967 0.36433 0.54367 0.71100 0.82467 0.91933 0.96133 0.98133 0.99167

SB 0.12733 0.27133 0.45167 0.63467 0.79167 0.89233 0.95333 0.98333 0.99367 0.99833

PB 0.14367 0.30300 0.48600 0.66667 0.81633 0.91133 0.96200 0.98667 0.99533 0.99867

BCPB 0.14333 0.30200 0.47767 0.66300 0.81667 0.91000 0.96100 0.98700 0.99567 0.99867

130

BT 0.10167 0.22900 0.40033 0.57700 0.75467 0.86867 0.93767 0.97567 0.99067 0.99733

SB 0.12700 0.29100 0.47967 0.67967 0.82733 0.92100 0.96567 0.98600 0.99633 0.99900

PB 0.14667 0.31633 0.51800 0.71100 0.85267 0.93167 0.97267 0.98933 0.99767 0.99933

BCPB 0.14967 0.31867 0.51800 0.70933 0.85300 0.93000 0.97267 0.98900 0.99767 0.99933

140

BT 0.10267 0.24567 0.42800 0.63600 0.79367 0.90433 0.95533 0.98133 0.99300 0.99867

SB 0.13700 0.29500 0.50533 0.70533 0.84933 0.93633 0.97267 0.99200 0.99700 0.99933

PB 0.15467 0.32033 0.53267 0.73067 0.87000 0.94533 0.97900 0.99300 0.99833 0.99933

BCPB 0.15367 0.31933 0.53233 0.72833 0.86967 0.94467 0.97867 0.99233 0.99833 0.99933

150

BT 0.11333 0.25233 0.45467 0.66567 0.82200 0.91867 0.96467 0.98833 0.99433 0.99933

SB 0.14000 0.30400 0.50533 0.71100 0.85633 0.94333 0.97800 0.99367 0.99833 0.99967

PB 0.15700 0.33167 0.53467 0.73633 0.87100 0.95267 0.98133 0.99467 0.99900 1.00000

BCPB 0.15700 0.33200 0.53267 0.73633 0.87100 0.95200 0.98300 0.99500 0.99933 1.00000

160

BT 0.11600 0.26100 0.46367 0.66500 0.83000 0.92600 0.97400 0.99167 0.99800 0.99967

SB 0.15033 0.32300 0.54433 0.74500 0.88067 0.95333 0.98667 0.99733 0.99967 1.00000

PB 0.16700 0.34733 0.57167 0.77267 0.89400 0.96233 0.99067 0.99800 0.99967 1.00000

BCPB 0.16667 0.34600 0.56967 0.77200 0.89567 0.96233 0.98900 0.99833 0.99967 1.00000

170

BT 0.12667 0.28933 0.49500 0.71167 0.85500 0.94033 0.98067 0.99667 0.99933 1.00000

SB 0.15833 0.35167 0.57767 0.76367 0.89800 0.96133 0.98967 0.99767 0.99933 0.99967

PB 0.17700 0.37700 0.60567 0.78867 0.91000 0.96833 0.99067 0.99833 0.99933 1.00000

BCPB 0.17533 0.37533 0.60433 0.78800 0.91033 0.97133 0.99167 0.99833 0.99933 1.00000

180

BT 0.13367 0.31100 0.53800 0.73300 0.87667 0.95100 0.98567 0.99700 0.99900 0.99967
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Spk1 1 1 1 1 1 1 1 1 1 1n
Spk2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SB 0.15900 0.34333 0.59067 0.79300 0.91600 0.96900 0.99167 0.99833 0.99967 0.99967

PB 0.17633 0.37100 0.62600 0.80933 0.92633 0.97400 0.99367 0.99900 0.99967 0.99967

BCPB 0.17200 0.36833 0.62100 0.81000 0.92667 0.97233 0.99433 0.99900 0.99967 0.99967

190

BT 0.13433 0.30900 0.55467 0.76400 0.89467 0.96267 0.99033 0.99767 0.99967 0.99967

SB 0.16733 0.37000 0.60800 0.81467 0.92267 0.97900 0.99367 0.99800 0.99967 1.00000

PB 0.18800 0.39667 0.63300 0.83167 0.93233 0.98233 0.99467 0.99833 1.00000 1.00000

BCPB 0.18867 0.39533 0.63367 0.83233 0.93333 0.98300 0.99467 0.99833 1.00000 1.00000

200

BT 0.14333 0.33433 0.57067 0.78433 0.90933 0.96967 0.99367 0.99733 0.99900 1.00000
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Figure 13. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.05pkS  .

Figure 14. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.05pkS  .

Figure 15. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.10pkS .

Figure 16. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.10pkS .
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Figure 17. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.15pkS  .

Figure 18. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.15pkS  .

Figure 19. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.20pkS  .

Figure 20. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.20pkS  .
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Figure 21. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.25pkS  .

Figure 22. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.25pkS  .

Figure 23. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.30pkS  .

Figure 24. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.30pkS  .
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Figure 25. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.35pkS  .

Figure 26. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.35pkS  .

Figure 27. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.40pkS  .

Figure 28. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.40pkS  .
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Figure 29. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.45pkS  .

Figure 30. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.45pkS  .

Figure 31. The difference statistic with sample
size n = 30(10)200, 1 1.00pkS  , 2 1.50pkS  .

Figure 32. The ratio statistic with sample size
n = 30(10)200, 1 1.00pkS  , 2 1.50pkS  .
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Table 15. Sample data for supplier I.

0.61353 0.61552 0.61328 0.59529 0.62445 0.63116 0.65012 0.62375 0.65633 0.64408

0.59435 0.59097 0.62614 0.60378 0.67782 0.61163 0.64556 0.63773 0.62692 0.60146

0.63778 0.62606 0.60157 0.64230 0.60499 0.64875 0.62426 0.62012 0.58552 0.61908

0.65880 0.62996 0.64063 0.60310 0.65685 0.66685 0.66855 0.64960 0.59610 0.63888

0.63341 0.61983 0.66149 0.61941 0.61144 0.64516 0.61356 0.65074 0.66107 0.61672

0.62376 0.61054 0.62855 0.64133 0.64026 0.63572 0.65403 0.64628 0.64720 0.62483

0.63104 0.62912 0.60898 0.63509 0.64023 0.65852 0.65104 0.59553 0.66196 0.68931

0.60724 0.68533 0.62786 0.61883 0.63945 0.64187 0.61097 0.59440 0.62939 0.61212

0.62433 0.63652 0.62281 0.63842 0.64935 0.58631 0.63108 0.62256 0.63475 0.64225

0.63025 0.61676 0.62397 0.61954 0.64509 0.60708 0.64991 0.56073 0.62406 0.62531

0.64096 0.62553 0.65768 0.62151 0.65017 0.61804 0.62479 0.60577 0.63215 0.67966

0.63620 0.59486 0.61919 0.62155 0.69332 0.66096 0.62870 0.61128 0.64926 0.60463

0.65656 0.59263 0.58933 0.64777 0.59966 0.63912 0.61977 0.65170 0.62790 0.64034

0.62508 0.63078 0.59323 0.62059 0.60731 0.59209 0.63595 0.62983 0.65414 0.63975

0.59757 0.64739 0.63923 0.60957 0.64516 0.65291 0.64188 0.65894 0.65173 0.65041

0.65713 0.64089 0.61251 0.64204 0.60451

Table 16. Sample data for supplier II.

0.63319 0.59254 0.62833 0.62404 0.62587 0.63986 0.62282 0.63197 0.65559 0.62487

0.63279 0.62496 0.64915 0.66193 0.67187 0.61781 0.67295 0.62161 0.63615 0.62000

0.59515 0.66258 0.61672 0.61852 0.63554 0.63414 0.63669 0.65318 0.61482 0.60397

0.63083 0.62965 0.63395 0.63709 0.65171 0.64944 0.62016 0.62190 0.60291 0.61077

0.62443 0.63228 0.63950 0.61063 0.60707 0.63941 0.63165 0.63531 0.61413 0.64547

0.60578 0.60800 0.62913 0.64539 0.62872 0.64082 0.63443 0.67411 0.64527 0.65435

0.63899 0.62116 0.59434 0.63356 0.69966 0.62779 0.62603 0.65974 0.63938 0.60937

0.63111 0.64093 0.62817 0.63136 0.61867 0.65489 0.65627 0.63971 0.67058 0.63195

0.64312 0.64829 0.66236 0.62152 0.63707 0.62309 0.62204 0.61500 0.62732 0.64333

0.63400 0.61434 0.62025 0.62176 0.63370 0.63883 0.66446 0.61982 0.65033 0.62862

0.59215 0.63196 0.62114 0.63214 0.59213 0.64364 0.63453 0.64603 0.63416 0.62022

0.66804 0.61699 0.63538 0.65878 0.63233 0.64984 0.63401 0.64590 0.65861 0.63060

0.62151 0.64389 0.62741 0.62732 0.63666 0.64178 0.66165 0.64287 0.66001 0.61175

0.63604 0.63689 0.62332 0.63232 0.62386 0.65078 0.61185 0.64486 0.60997 0.62715

0.66274 0.64410 0.61564 0.62236 0.64297 0.62569 0.64367 0.63724 0.61243 0.62582

0.62871 0.64923 0.62483 0.63170 0.63772
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