

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

行動通信全 IP 網路的安全機制

Security for Mobile All-IP Network

研 究 生：許 世 芬

指導教授：林 一 平 博士

中 華 民 國 九 十 八 年 七 月

行動通信全 IP 網路的安全機制

Security for Mobile All-IP Network

研 究 生：許世芬 Student：Shih-Feng Hsu

指導教授：林一平 博士 Advisor：Dr. Yi-Bing Lin

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

i

行動通信全 IP 網路的安全機制

研究生：許世芬 指導教授：林一平 博士

國 立 交 通 大 學

資 訊 工 程 學 系

摘 要

在全球行動通信系統（UMTS）全 IP（All-IP）架構中，IP 多媒體子系統（IMS）提供

IP 多媒體服務供行動用戶使用。依照網路的功能，UMTS 全 IP 架構可以分成三個部份：

IP 多媒體子系統（IMS）、應用與服務網路、以及無線存取網路。透過無線存取網路，

行動用戶可以存取 IMS 提供的 IP 多媒體服務；而應用與服務網路則提供彈性且有效率

的開發平台，供 IP 多媒體服務的發展與建置。本論文探討 UMTS 全 IP 架構裡的安全機

制議題，包括：認證、授權、以及保密機制。在提供 IP 多媒體服務之前，應用與服務

網路需要跟 IMS 完成雙向認證；而為了能安全的存取 IP 多媒體服務，行動用戶亦需要

跟 UMTS 全 IP 網路執行認證與保密機制。

在這篇論文的第一部份，我們探討應用與服務網路跟 IMS 之間的認證授權機制。我

們透過開放式服務存取（OSA）來描述應用與服務網路的設計概念；並介紹 OSA 應用

伺服器提供 IP 多媒體服務之前，所執行的雙向認證流程。

在本論文的第二部份，我們著重在 UMTS 全 IP 網路的認證與保密機制。首先，我

們探討在無線存取網路裡的認證機制：當透過無線存取網路來接取 IP 多媒體服務之前，

行動用戶需與 UMTS 全 IP 網路達成雙向認證。然而，當行動用戶換手（Handoff）時，

雙向認證的步驟會產生長時間的延遲，可能會中斷使用中的服務。為了解決這一問題，

我們分別在無線區域網路（WLAN）與全球互通微波存取（WiMAX）系統中，研究如

何省略不必要的認證步驟。執行完認證機制後，行動用戶還需執行保密機制來確保存取

ii

的資料不會被竊取。本論文以點對點加密簡訊服務（SMS）來介紹 UMTS 全 IP 網路的

保密機制。SMS 加密服務提供行動用戶跟應用與服務網路間保密的訊息交換機制。我們

在標準的 UMTS 網路中，實作出二套 SMS 加密機制，並且評估加密的額外負擔。

以上的研究成果提供讀者在研究 UMTS 全 IP 網路裡認證與保密機制的議題上，可

供參考之基礎。

關鍵字：認證、授權、與計費，IP 多媒體子系統，開放式服務存取，保密，簡訊服務，

全球行動通信系統，無線區域網路，全球互通微波存取

iii

Security for Mobile All-IP Network

Student：Shih-Feng Hsu Advisor：Dr. Yi-Bing Lin

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

The IP Multimedia Core Network Subsystem (IMS) provides the IP multimedia services on

the Universal Mobile Telecommunications System (UMTS) all-IP network. According to the

network functionalities, the UMTS-all-IP architecture can be partitioned into three categories:

IMS network, application and service network, and wireless access networks. Through the

wireless access networks, the Mobile Station (MS) can access the IMS network for IP

multimedia services. The application and service network supports flexible and efficient

approaches for services development and deployment. This dissertation focuses on the

authentication and security mechanisms in this UMTS all-IP architecture. Before providing

IMS services, the application and service network should perform the authentication

mechanism with the IMS network. Moreover, for secure IMS service access, the MS should

perform the authentication and security mechanisms with the UMTS-all-IP network.

In the first part of this dissertation, we study on the authentication mechanism between

the IMS network and the application and service network. We utilize the Open Service Access

(OSA) to illustrate the concept of the application and service network, and study how the

OSA Application Server (AS) mutually authenticates with OSA Framework before providing

services.

In the second part of this dissertation, we demonstrate on the authentication and security

mechanisms performed in the UMTS all-IP network. First, we study the authentication

iv

mechanism in the wireless access network. Before accessing services through the wireless

access networks, the MS should authenticate with the UMTS all-IP network. However, the

execution of authentication on handoff may incur long delay and result in force-termination for

real-time applications. To address this issue, we investigate how to eliminate the

non-necessary authentication cost in Wireless Local Area Network (WLAN) and mobile

Worldwide Interoperability for Microwave Access (WiMAX). After authentication, the MS

should perform the security mechanism for secure service access. Thus we utilize the

end-to-end secure Short Message Service (SMS) to illustrate the security mechanism between

the MS and the application and service network. We implement two secure SMS mechanisms

over the standard SMS network and estimate the encryption overhead.

These research results presented in this dissertation can be viewed as a useful foundation

for further UMTS all-IP network study in authentication and security mechanisms.

Keywords: authentication, IP Multimedia Core Network Subsystem (IMS), Open Service

Access (OSA), security, Short Message Service (SMS), Universal Mobile

Telecommunications System (UMTS), Wireless Local Area Network (WLAN),

Worldwide Interoperability for Microwave Access (WiMAX)

v

Acknowledgements

I would like to express my sincere thanks to my advisor, Prof. Yi-Bing Lin. Without his

supervision and perspicacious advice, I can not complete this dissertation. Special thanks are

due to my committee members: Dr. Chung-Hwa Rao, Prof. Chu-Sing Yang, Prof. Han-Chieh

Chao, Prof. Jean-Lien Chen, Prof. Ming-Feng Chang, and Prof. Rong-Jaye Chen for their

valuable comments and helpful discussions.

I also express my appreciation to all the faculty, staff and colleagues in the Department

of Computer Science. In particular, I would like to thank Prof. Shun-Ren Yang, Prof.

Pei-Chun Lee, Dr. Lin-Yi Wu, Prof. Sok-Ian Sou, Mr. Yung-Chun Lin, Mr. Meng-Hsun Tsai,

Ms. Ya-Chin Sung, Mr. Chien-Chun Huang-Fu, and Ms. Hsin-Yi Lee in the Laboratory 117

for their friendship and support in various ways.

Finally, I am grateful to my dear parents, brother, sister, and girl friend Winnie Wang for

their encouragement and firm support during these years.

vi

Contents

摘 要 ... i

ABSTRACT ... iii

Acknowledgements ... v

Contents .. vi

List of Tables .. viii

List of Figures .. ix

Notations .. x

Chapter 1. Introduction .. 1
1.1 UMTS All-IP Network Architecture ... 2
1.2 Open Service Access .. 4
1.3 AAA and Security Mechanisms in Wireless Access Network .. 6
1.4 Dissertation Organization ... 7

Chapter 2. CCL OSA: a CORBA-based Open Service Access System 9
2.1 Introduction to Open Service Access ... 10
2.2 CORBA-based OSA API .. 12
2.3 OSA Mutual Authentication for Initial Access ... 17
2.4 Detailed CORBA Interactions for CCL OSA ... 19
2.5 Application Server Architecture ... 23
2.6 Authentication between AS and Framework .. 24
2.7 Summary ... 27

Chapter 3. Selecting Transition Process for WLAN Security .. 29
3.1 Introduction to IEEE 802.11r ... 29
3.2 Initial MD Association Process (Inter-MD Scenario) .. 32
3.3 Fast BSS Transition (Intra-MD Scenarios) ... 34
3.4 Transition Process Selection Mechanism ... 35
3.5 Summary ... 37

Chapter 4. A Key Caching Mechanism for Reducing WiMAX Authentication Cost in
Handoff 39

4.1 Introduction to WiMAX AAA Architecture ... 39
4.2 WiMAX Initial Network Entry Process.. 41

vii

4.3 The Key Caching Mechanism .. 44
4.3.1 Derivation for Exponentially Distributed tM and Fixed T 46
4.3.2 Derivation for Generally Distributed tM and Exponential T 47

4.4 Simulation Validation ... 49
4.5 Numerical Examples .. 51
4.6 Summary ... 55

Chapter 5. End-to-End Security Mechanisms for SMS ... 57
5.1 Introduction to Wireless Cryptography .. 57
5.2 Public Key Cryptography ... 59

5.2.1 Certificate-based Public Key Cryptography ... 60
5.2.2 ID-based Public Key Cryptography ... 61

5.3 End-to-End Security for SMS .. 62
5.3.1 SMS Architecture ... 62
5.3.2 RSA Mechanism ... 63
5.3.3 ID-based Mechanism .. 65

5.4 Performance Comparison ... 68
5.5 Summary ... 71

Chapter 6. Conclusions and Future Work ... 73
6.1 Conclusions .. 73
6.2 Future Work .. 75

Appendix A. OSA-based Push to Talk over Cellular Service .. 78
A.1 Introduction to Push to Talk over Cellular... 78
A.2 OSA AS Architecture for PoC Service .. 79
A.3 PoC Session Establishment ... 81

Bibliography .. 87

Publication List ... 91

viii

List of Tables

Table 2.1 POA policy modes for CCL OSA ... 16
Table 4.1 Comparison of analytic and simulation results ... 51
Table 5.1 Key length for equivalent security levels (in bits) .. 69

ix

List of Figures

Figure 1.1 UMTS all-IP network architecture .. 3
Figure 1.2 Open Service Access architecture ... 5
Figure 2.1 Open Service Access architecture ... 10
Figure 2.2 CORBA architecture ... 13
Figure 2.3 Message flow for OSA mutual authentication .. 18
Figure 2.4 CORBA interaction flows between the AS and the FW ... 20
Figure 2.5 Application server architecture ... 23
Figure 2.6 Message flow for OSA mutual authentication .. 25
Figure 3.1 IEEE 802.11r security hierarchy ... 30
Figure 3.2 IEEE 802.11r initial MD association process ... 32
Figure 3.3 Derivation of PMK-R0, PMK-R1, and PTK ... 33
Figure 3.4 IEEE 802.11r fast BSS transition process ... 35
Figure 3.5 The proposed selection mechanism for transition process 36
Figure 4.1 WiMAX AAA architecture and protocol stack ... 40
Figure 4.2 WiMAX initial network entry process .. 42
Figure 4.3 WiMAX key derivation tree .. 44
Figure 4.4 Relationship of the MSK key lifetime and the MS movement 45
Figure 4.5 The simulation flowchart .. 49
Figure 4.6 Effect of µ ... 53
Figure 4.7 Effect of VM ... 54
Figure 5.1 The man-in-the-middle attack ... 60
Figure 5.2 The certificate-based public-key distribution .. 61
Figure 5.3 The ID-based public-key distribution ... 62
Figure 5.4 GSM SMS network architecture ... 63
Figure 5.5 The RSA procedure for sending an encrypted short message 64
Figure 5.6 ID-based end-to-end encryption mechanism .. 67
Figure 5.7 Encrypted short message experimental environment .. 68
Figure 5.8 Delivery delays of SMS .. 70
Figure A.1 Application server architecture for PoC Service .. 79
Figure A.2 Message flow for PoC session establishment ... 82
Figure A.3 Message flow for PoC session termination .. 85

x

Notations

The notation used in this dissertation is listed below.

 α: the probability that the MS returns to the old ASN-GW before the MSK lifetime expires

 E [tK | tM ≥ tK] : the expected unused key period under the condition that the MS does not

return to the old ASN-GW before the MSK lifetime expires

 E [tK * | tM ≤ tK] : the expected reused key period under the condition that the MS returns to

the old ASN-GW before the MSK lifetime expires

 f (tM) : the distribution of tM

 f *(s) : the Laplace transform of the tM distribution

 kID : the ID-based cipher key length

 kRSA : the RSA cipher key length

 LID : the ID-based ciphered short message length

 LRSA : the RSA ciphered short message length

 = E [tM] : the mean MS residence time in new ASN-GWs

 = E [T] : the mean MSK lifetime

 T : the MSK lifetime

 tK : the residual MSK lifetime after the MS moves from the old ASN-GW to the new

ASN-GW

 tK* : the reused key period after the MS returns to the old ASN-GW

 tM : the MS residence time in new ASN-GWs

 VM : the variance of MS residence time in new ASN-GWs

1

Chapter 1.

Introduction

Universal Mobile Telecommunications System (UMTS) evolved from General Packet Radio

Service (GPRS) is a mobile telecommunication network providing high speed data services.

To integrate Internet Protocol (IP) with UMTS, the UMTS all-IP architecture is proposed

[21]. In UMTS release 5, the IP Multimedia Core Network Subsystem (IMS) is introduced on

top of the UMTS all-IP architecture to support the IP multimedia services, such as voice over

IP. Figure 1.1 illustrates the UMTS all-IP architecture. According to the network

functionalities, the UMTS all-IP architecture can be partitioned into three categories:

IMS Network (Figure 1.1 (1)) provides the IP multimedia services to the Mobile Station (MS;

Figure 1.1 (A)). The IMS is responsible for call routing and delivering voice data to the

MSs in various access networks, including Public Switch Telephony Network (PSTN),

wired access networks, and wireless access networks. In this dissertation, we focus on the

wireless access networks.

Wireless Access Networks (Figure 1.1 (2)) provide wireless connectivity for the MS to access

the IMS services. In this dissertation, we elaborate on three popular wireless access

networks: the UMTS network (Figure 1.1 (4)), the Wireless Local Area Network (WLAN;

Figure 1.1 (5)), and the mobile Worldwide Interoperability for Microwave Access

(WiMAX; Figure 1.1 (6)).

Application and Service Network (Figure 1.1 (3)) supports flexible and efficient approaches

for mobile service development and deployment through a service platform. With this

platform, the service control is implemented in dedicated application servers with

service-related databases, and is separated from the call and connection control. UMTS

2

defines several alternatives to construct the application and service network platform. In

this dissertation, we use the Open Service Access (OSA) platform to illustrate the

concept of the application and service network.

In the UMTS all-IP network, Authentication, Authorization, and Accounting (AAA) and

encryption are two important mechanisms. Before the MS associates to the wireless access

networks, the AAA mechanism is exercised to mutually authenticate the MS and the UMTS

all-IP networks. Following the AAA mechanism, the encryption mechanism is performed to

provide secure signaling and data delivery between MS and the wireless access networks and

between the MS and the application and service networks.

In the remainder of this chapter, we briefly introduce the UMTS all-IP network

architecture. Then we present the OSA platform implemented in the application and service

network. Finally, we describe the AAA and encryption mechanisms performed in the wireless

access networks and describe the organization of this dissertation.

1.1 UMTS All-IP Network Architecture

Figure 1.1 illustrates the UMTS all-IP network architecture. In the IMS network, the AAA

server (Figure 1.1 (B)) is responsible to mutually authenticate with the MS when the MS

associates to the WLAN and the mobile WiMAX networks. The Call Session Control Function

(CSCF) and Media Gateway (MGW; Figure 1.1 (C)) are in charge of delivering the call control

signaling and the voice data respectively, and interact with the application and service network

to provide IP multimedia services.

The MS can access the IMS network through the UMTS network, the WLAN, or the

mobile WiMAX network. In UMTS, the MS associates with the Base Station (BS) or Node B

(Figure 1.1 (F)) through the air interface. The Serving GPRS Support Node (SGSN) and the

Gateway GPRS Support Node (GGSN; Figure 1.1 (E)) provide mobility and session

managements to the MS. Through the GGSN, the UMTS network connects with the IMS

3

network to provide IP multimedia services. The Home Subscriber Server (HSS; Figure 1.1 (D))

is the master database containing all subscriber-related information. The Authentication Center

(AuC; Figure 1.1 (D)) maintains the secret key of the MS. When performing the AAA

mechanism, the SGSN, the GGSN, and the AAA server communicate with the HSS/AuC to

retrieve authentication information and subscriber data of an MS. The Short Message Service

Center (SM-SC; Figure 1.1 (G)) provides the Short Message Service (SMS) to the MS in

UMTS. The SMS can be utilized to deliver control signaling between the MS and the

application and service network.

Figure 1.1 UMTS all-IP network architecture

4

In WLAN, the MS connects to the IMS network through the Access Point (AP; Figure 1.1

(H)). In IEEE 802.11r WLAN, the authentication message is exchanged between the MS and

the AAA server through the AP, the Pairwise Master Key (PMK) R0 Key Holder (R0KH), and

PMK R1 Key Holder (R1KH; Figure 1.1 (I)). After authentication, R0KH, R1KH, and the MS

generate an encryption key to provide secure signaling and data delivery between the MS and

the AP.

The mobile WiMAX network consists of BS (Figure 1.1 (J)) and Access Service Network

(ASN) Gateway (ASN-GW; Figure 1.1 (K)). The BS provides WiMAX radio access for the

MS. Similar to the SGSN and the GGSN in UMTS, the ASN-GW provides mobility and

session managements to the MS, and is responsible to forward the authentication messages

between the MS and the AAA server. After authentication, the MS and the ASN-GW generate

an encryption key to provide secure signaling and data transmission between the MS and the

BS.

The IMS applications are implemented in the application and service network through

the OSA platform. The OSA platform provides the third parties controlled access to the

operator’s network (i.e., the IMS and the UMTS networks). The third patties run their own

applications in the OSA application server (Figure 1.1 (M)), and interworks with the OSA

Service Capability Server (SCS; Figure 1.1 (L)) through the OSA Application Programming

Interface (API; Figure 1.1 (N)). Details of OSA will be elaborated in Section 1.2.

1.2 Open Service Access

The OSA platform deployed in the application and service network is illustrated in Figure 1.2.

The OSA consists of three parts.

OSA Application Server (AS; Figure 1.2 (A)) provides service by invoking the OSA SCS.

OSA SCS (Figure 1.2 (B)) provides the network functionalities to the OSA AS through a set of

Service Capability Features (SCFs; Figure 1.2 (E)). These SCFs are offered by Service

5

Capability (SC; Figure 1.2 (F)), which interacts with the UMTS and IMS networks (Figure

1.2 (D)) to realize the network functionalities. To communicate with the UMTS and IMS

networks, the SCs are implemented all kinds of interfaces. For example, the SC

communicates with the CSCF through Session Initiation Protocol (SIP), and utilizes the

Message Transfer Part (MAP) to retrieve authentication information from the HSS/AuC.

Framework (FW; Figure 1.2 (C)) is considered as one of the OSA SCSs. Before accessing the

OSA SCS, the OSA AS should be authorized by the FW.

Figure 1.2 Open Service Access architecture

Through the standardized OSA APIs, an application needs not directly access the UMTS and

IMS networks for services. Three classes of OSA APIs are defined among the AS, the FW, and

the SCFs.

 Interfaces between the AS and the FW (Figure 1.2 (1)) provide authentication, network

functionality discovery, and service agreement establishment mechanisms that enable the

AS to access the SCSs. The FW-side interfaces to be invoked by the AS are prefixed with

“Ip”. The AS-side interfaces to be called back by the FW are prefixed with “IpApp” or

“IpClient”.

6

 Interfaces between the AS and the SCFs (Figure 1.2 (2)) allow the AS to invoke network

functionality for services. The SCF-side interfaces to be invoked by the AS are prefixed

with “Ip”. The AS-side interfaces to be called back by the SCFs are prefixed with

“IpApp”.

 Interfaces between the FW and the SCFs (Figure 1.2 (3)) provide the mechanisms for SCF

registration. The FW-side interfaces to be invoked by the SCFs are prefixed with “IpFw”.

The SCF-side interfaces to be called by the FW are prefixed with “IpSvc”.

With these OSA APIs, OSA provides a unified service creation and execution environments

which is independent from the underlying network technologies. The OSA platform can be built

via the object-oriented techniques, such as Common Object Request Broker Architecture

(CORBA) and Simple Object Access Protocol (SOAP).

1.3 AAA and Security Mechanisms in Wireless Access

Network

In UMTS, the MS secret key Ki is stored in the Subscriber Identity Module (SIM) card and the

HSS/AuC. Based on this Ki, the MS mutually authenticate with the HSS/AuC and generate the

cipher key Kc before accessing the UMTS network. The Kc is utilized to encrypt the signaling

and data delivery between the MS and the BS/Node B.

In WLAN and mobile WiMAX, the MS should mutually authenticate with the AAA server

and generate an encryption key before accessing the networks. The IEEE 802.1X Extensible

Authentication Protocol (EAP) standard specifies authentication and authorization for WLAN

and mobile WiMAX. When performing authentication, the R0KH (in IEEE 802.11r WLAN)

and the ASN-GW (in mobile WiMAX) serve as the authenticator. The authenticator is

responsible to forward authentication messages between the MS and the AAA server, and to

maintain the MS related information (e.g., encryption key) after authentication. To reuse the

7

UMTS authentication mechanism, the SIM-based EAP authentication is introduced on top of

the IEEE 802.1X EAP standard to authenticate the MS. Details of the SIM-based EAP

authentication will be elaborated in Chapter 5. Following the authentication, the security

mechanism is performed to provide secure signaling and data transmission between the MS and

wireless access network. When accessing the IP multimedia services, the MS should perform

the other security mechanism with the application and service network.

1.4 Dissertation Organization

Based on the above discussion, we study how UMTS all-IP applications can be implemented

and exercised in OSA platform, and study the AAA and security mechanisms. In Chapter 2, we

utilize the CORBA technique to develop the OSA platform in the application and service

network. We use the authentication process between the OSA AS and the FW to illustrate how

CORBA technique works in our OSA implementation. Then we propose an OSA AS

architecture, and show how the OSA AS provides services by integrating the services supported

by different SCFs. The mutual authentication procedure is used to demonstrate the interaction

between the OSA AS and the FW. In Appendix A, we use the Push to Talk over Cellular (PoC)

service to illustrate the interaction among the OSA AS and the SCFs for services. The PoC

service is a walkie-talkie like service defined by the Open Mobile Alliance (OMA) PoC

working group [25, 26].

Chapter 3 elaborates on the AAA and security mechanisms in WLAN. When switching

from one AP to another, the MS executes the IEEE 802.1X EAP authentication, which may

incur long delay and result in force-termination for real-time applications. The IEEE 802.11r is

proposed to reduce the switching delay. However, we find an ambiguous Mobility Domain

Identifier (MDID) issue in IEEE 802.11r WLAN. This chapter proposes a mechanism to

resolve this issue, and therefore eliminates the cost for MDID management.

Chapter 4 describes the AAA and security mechanisms in mobile WiMAX. We propose a

8

key caching mechanism to eliminate the non-necessary IEEE 802.1X EAP authentication cost

in mobile WiMAX handoff. This mechanism is investigated through analytic and simulation

modeling. Our study indicates that the key caching scheme can effectively speed up the handoff

process. In Chapter 5, we use two end-to-end security mechanisms for SMS to illustrate the

security mechanism between the MS and the application and service network. Finally, we

conclude this dissertation and give the future directions of this work.

9

Chapter 2.

CCL OSA: a CORBA-based Open Service Access

System

Existing telecommunications services are considered as a part of network operation’s domain

and the development of services are achieved by, for example, Intelligent Network (IN)

technology. By introducing internet and mobility into the telecommunications networks, more

flexible and efficient approaches are required for mobile service deployment. Such approaches

must allow network operators and enterprises to increase revenues via third party applications

and service providers. To achieve the above goals, standardization bodies such as 3GPP CN5,

ETSI SPAN12, ITU-T SG11 and the Parlay Group have been defining Open Service Access

(OSA) specifications [1]. OSA provides unified service creation and execution environments to

speed up service deployment that is independent from the underlying mobile network

technology. In a research collaboration between National Chiao Tung University and Computer

and Communications Laboratories (CCL)/Industrial Technology Research Institute (ITRI), we

have developed the CCL OSA system. This chapter describes how the CCL OSA system can be

implemented by the Common Object Request Broker Architecture (CORBA) technique. We use

the authentication procedure for initial access to illustrate how the CORBA works in the CCL

OSA system. Then we propose an OSA AS architecture. We show how the AS provides

services by integrating the services supported by the Service Capability Features (SCFs). Then

the OSA mutual authentication is utilized to illustrate the interaction among the AS modules

and how the AS interacts with the Framework (FW). In Appendix A, we use the Push to Talk

over Cellular (PoC) service to illustrate how the AS interacts with the SCFs for services.

10

2.1 Introduction to Open Service Access

This section describes the architecture and the features of the OSA system. As illustrated in

Figure 2.1, the OSA consists of three parts: applications are implemented in one or more

Application Servers (AS; Figure 2.1 (A)). Framework (FW; Figure 2.1 (C)) authorizes

applications to access the Service Capability (SC; Figure 2.1 (F)) in the network. That is, an

application can only access the OSA Application Programming Interface (API) via the FW for

services. Service Capability Servers (SCS; Figure 2.1 (B)) provide the applications access to

underlying network functionality through Service Capability Feature (SCF; Figure 2.1 (E)).

These SCFs, specified in terms of interface classes and their methods, are offered by SCs within

networks (and under network control; Figure 2.1 (D)). SCs are bearers needed to realize

services.

Figure 2.1 Open Service Access architecture

The FW is considered as one of the SCSs and is always present, one per network. The FW

provides access control functions to authorize the access to SCFs or service data for any API

method invoked by an application, with specified security level, context, domain, etc. Before

any application can interact with a network SCF, an offline service agreement must be

11

established. Once the service agreement exists, mutual authentication can be performed

between the application and the FW. Then the application can be authorized by the FW to

access a specific SCF (in OSA, authentication must precede authorization). Finally the

application can use the discovery function to obtain information on authorized network SCFs.

The discovery function can be used at any time after successful authentication. SCFs offered by

an SCS are typically registered at the FW. This information is retrieved when the application

invokes the discovery function. Framework allows OSA to go beyond traditional IN technology

through openness, discovery, and integration of new features. Based on TINA [28], the FW

provides controlled access to the API by supporting flexibility in application location and

business scenarios. Furthermore, the FW allows multi-vendorship and even the inclusion of

non-standardized APIs, which is crucial for innovation and service differentiation. An SCS can

be deployed as a standalone node in the network or directly on a node in the core network. In the

distributed approach, the OSA gateway node contains the FW and zero or more SCS

components. Other SCSs are implemented in different nodes. It is possible to add more SCSs

and distribute the load from different applications over multiple SCSs. At the service selection

phase, the FW may divert one application to one SCS and another to a different SCS. With

middleware such as CORBA, it is possible to distribute load on a session basis without the

application being aware that different sessions involve different SCSs. In some APIs, it is

possible to add multiple application callbacks to the SCS so that the SCS can distribute the load

of multiple sessions over different applications running on different servers. To allow

applications from visited networks to use the SCSs in the home network, all communications

between the application server and the SCSs must be secured through, for example, Secure

Socket Layer or IPSec.

Examples of OSA SCFs are given as follows: call and session control SCFs provide

capabilities for setting up basic calls or data sessions as well as manipulating multimedia

conference calls. User and terminal related SCFs allow obtaining information from the end-user

12

(including user location and status) and the terminal capabilities, playing announcements,

sending short text messages, accessing to mailboxes, etc. management related SCFs provision

connectivity Quality of Service (QoS), access to end-user account and application/data usage

charging. Interaction between an application and an SCS is always initiated by the application.

In some scenarios, it is required to initiate the interaction from the SCS. An example is the call

screening service. Suppose that the network routes a call to a user who has subscribed to this

OSA service. Before the call reaches the user, the call screening application needs to be invoked.

This issue is resolved by the OSA request of event notification mechanism. Initially, the

application issues an OSA interface class method (API call) to the SCS. This OSA method

allows the SCS to invoke the application (e.g. call screening) through a callback function when

it receives events (e.g. incoming calls) from the network related to the application.

Since functionality inside a telecommunications network can be accessible via the OSA

APIs, applications can access different network capabilities using a uniform programming

paradigm. Three OSA API classes are defined among the applications, the FW and the SCFs as

described in Section 1.2. To be accessible to a side developer community, the APIs should be

deployed based on open Information Technology (IT). The details will be elaborated in the

Section 2.2.

2.2 CORBA-based OSA API

CORBA is an emerging open distributed object computing infrastructure, which provides the

higher layers a uniform view of underlying heterogeneous network and OS layers. CORBA

automates many common network programming tasks such as object registration, location,

activation, request demultiplexing, framing and error-handling. Figure 2.2 illustrates the

CORBA architecture.

In this architecture an object is a CORBA programming entity that consists of an identity,

an interface and an implementation known as servant (Figure 2.2 (A)). An object reference

13

uniquely identifies the object across servers. This reference associates the object with one or

more servant implementations. In CCL OSA API, every CORBA object is associated with one

servant.

A servant is an implementation programming language entity that defines the operations to

support an Object Management Group (OMG) Interface Definition Language (IDL) interface.

Servants can be written in languages such as C, C++ or Java.

Figure 2.2 CORBA architecture

A client (Figure 2.2 (B)) is a program entity that invokes an operation on a servant. The

client performs application tasks by invoking operations on object references. An object can be

remote or local to the client. In CORBA, accessing a remote object should be as simple as

calling an operation on a local object. A client always interacts with a servant through the

corresponding object reference. Note that the CORBA concepts of client and servant are

different from that of applications and servers in OSA (to be elaborated in Sections 2.3 and 2.4).

Object Request Broker (ORB) is a logical entity that can be implemented through several

alternatives (such as one or more processes or a set of libraries). In CCL OSA, ORB is

implemented as libraries. An ORB consists of an ORB Core (Figure 2.2 (C)) and an ORB

interface (Figure 2.2 (D)). The ORB simplifies distributed programming by decoupling the

client from the details of the method invocation. This makes client requests appear to be local

14

procedure calls. The ORB Core provides a mechanism for transparent delivery requests from

clients to target servants. When a client invokes an operation, the ORB Core is responsible for

finding the servant, transparently activating it if necessary, delivering the request to the object

and returning any response to the client. An ORB Core is typically implemented as a run-time

library linked into both client and server applications.

To decouple applications from implementation details, the CORBA specification defines

an abstract ORB interface that provides various helper functions such as converting object

references to strings. Specifically, CORBA IDL stubs (Figure 2.2 (E)) and skeletons (Figure 2.2

(F)) glue the clients, servants and the ORB. The CORBAIDL definitions are transformed into

classes, structs, and functions in a particular language (e.g. C++, C, Java, etc.). Such

transformation is automated by a CORBA IDL compiler. In CCL OSA, the target language is

JAVA. We note that an object is an instance of an IDL interface. The corresponding servants

implement the operations defined by the IDL. Several interfaces have been defined by IDL

stubs to provide a strongly typed, Static Invocation Interface (SII) that marshals application

(client) parameters into a common data-level representation. On the other hand, skeletons

demarshal the data-level representation back into typed parameters that are meaningful to an

application (server).

Portable Object Adapter (POA; Figure 2.2 (G)) is a CORBA portability enhancement.

POA enables ORBs to support various types of servants that process similar requirements [37].

POA associates an IDL servant with objects, demultiplexes incoming requests to the servant

and dispatches the appropriate operation on that servant. The POA design results in a smaller

and simpler ORB that can still support a wide range of object granularities, lifetimes, policies,

implementation styles and so on.

Several POA policies are specified in CCL OSA. Threading policy specifies the POA

threading model. A POA can either be single-threaded or multithreaded concurrently controlled

by the ORB. CCL OSA implementation uses ORB controlled multithreading model.

15

Lifespan policy specifies whether the CORBA objects created within a POA are persistent

or transient. A transient object is destroyed when the process creating the object terminates. On

the other hand, a persistent object can live beyond the life time of the process that created it. All

POAs are transient. In any CORBA system, there is a root POA called rootpoa. In CCL OSA,

rootpoa creates several POAs with the persistent life span policy. An example is POA

ipinitialpoa created for the FW. In CCLOSA, rootpoa creates transient objects. For example, in

Initial Access service, an authentication object (with the reference ipAPIlevelauthentication

_ref) is transient because this object is session-oriented and is destroyed when the

authentication procedure is complete. On the other hand, the FWInitialContact object (with the

reference ipinitial_ref; see Step 1 in Figure 2.3) created by ipinitialpoa is persistent and should

not be destroyed after the authentication action (between an AS application and the FW) is

complete. The FWInitialContact object is the first contact point for any applications to start the

authentication procedure. Therefore it must be persistent and active at any time. When the CCL

OSA recovers from a failure, all persistent objects will be reactivated.

Object Id uniqueness policy specifies whether the servants activated in a POA must have

unique Object Ids. In CCL OSA, since every object is implemented with one servant, the

servant always has a unique Object Id. Object Id assignment policy specifies whether the Object

Ids in a POA are generated by the application or the ORB. In CCL OSA, object Ids are

generated by the ORB to avoid accidentally generating duplicated Object Ids by the

programmer.

Implicit activation policy specifies whether implicit activation of servants is supported in a

POA. With the implicit policy, the POA implicitly activates an object when the server

application attempts to obtain a reference to a servant that is not already active. In CCL OSA,

objects in rootpoa are implicitly activated. These implicitly created transient objects can be

destroyed at the end of the session of a client application or are automatically cleaned up when

the server process terminates. In CCL OSA POAs such as ipinitialpoa, objects are persistent

16

and should not be automatically clean up when the server process terminates. Therefore, these

persistent objects are explicitly activated and should be explicitly destroyed by the programmer

when he/she decides to stop providing the functionality.

Servant retention policy specifies whether the POA retains active servants in an active

object map. A POA either retains the associations between servants and CORBA objects or

establishes a new CORBA object/servant association for each incoming request. In CCL OSA,

the POA retains the associations between servants and CORBA objects in an active object map.

Request processing policy specifies how requests are processed by the POA. The

alternatives include:

1. to consult its active object map only

2. to use a default servant or

3. to invoke a servant manager

There are two types of servant managers: a manager of the ServantActivator type follows the

RETAIN policy. A manager of the ServantLocator type follows the NON_RETAIN policy.

Since CCL OSA uses active object map, it uses first alternative for the request processing policy;

that is, we consult POA’s active object map for request processing.

Table 2.1 POA policy modes for CCL OSA

Policy Mode of Policy
Thread Policy ORB_CTRL_MODEL
Lifespan Policy TRANSIENT (rootpoa)

PERSISTENT (e.g. ipinitialpoa)
Object ID Uniqueness Policy UNIQUE_ID
ID Assignment Policy SYSTEM_ID
Servant Retention Policy RETAIN
Request Processing Policy USE_ACTIVE_OBJECT_MAP_ONLY
Implicit Activation Policy IMPLICIT_ACTIVATION (for rootpoa)

NO_IMPLICIT_ACTIVATION (e.g. ipinitialpoa)

17

The servant retention and request processing policies determine how the POA dispatches

the request. The RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY policies used in our

approach allow simple and quick request processing at the cost of larger memory usage as

compared with other servant retention and request processing policies. Table 2.1 lists the POA

policy modes used in CCL OSA.

2.3 OSA Mutual Authentication for Initial Access

As mentioned in Section 2.1, an OSA application must authenticate with the FW before it can

access any SCFs. Figure 2.3 illustrates the message flow of the mutual authentication procedure

for initial access in CCL OSA. As shown in Figure 2.4, each of the AS and the FW implements

both CORBA clients and CORBA servants. In the OSA mutual authentication procedure, the

AS CORBA client uses the FW reference ipinitial_ref of initial contact interface IpInitial. In

CCL OSA, this reference is obtained through a URL (e.g. corbaname::

pcs.csie.nctu.edu.tw:3500#IpInitial) and the naming service of the FW. This naming service

is a standard CORBA service that allows the CORBA client application to locate the object

through a URL. IpInitial is implemented by the FW servant ipinitialimpl (Figure 2.3 (3)) to

support the authentication function initiateAuthenticationWithVersion.

To authenticate the FW, the AS CORBA Client (Figure 2.3 (2)) invokes the challenge

function in the FW interface IpAPILevelAuthentication (implemented by the servant

ipAPIlevelauthenticationimpl; Figure 2.3 (4)). To authenticate the AS application, the FW

CORBA client (Figure 2.3 (5)) invokes the challenge (callback) function in the AS interface

IpClientAPILevelAuthentication (implemented by the servant ipclientAPIlevelauthen-

ticationimpl; Figure 2.3 (1)). The detailed steps are described as follows.

Step 1. The AS CORBA client first generates the reference ipclientAPIlevelauthen-

tication_ref of the AS interface IpClientAPILevelAuthentication. This reference will be

called back by the FW to authenticate the AS application in Steps 5 and 6. The AS CORBA

18

client uses ipinitial_ref to invoke the FW function initiateAuthenticationWithVersion

where the callback object reference ipclientAPIlevelauthentication_ref is included as a

parameter. The FW servant ipinitialimpl returns a reference ipAPIlevelauthen-

tication_ref of the FW interface IpAPILeveIAuthentication. This FW interface is

responsible for answering the authentication challenge from the OSA application.

Step 2. The AS CORBA client selects the authentication algorithm by invoking the FW

function selectAuthenticationMechanism of the reference ipAPIlevel authentication-

_ref. In CCL OSA, authentication algorithm SHA-1 is utilized.

Step 3. The AS CORBA client authenticates the FW by invoking the function challenge of the

FW reference ipAPIlevelauthenticationi_ref. The challenge function takes a random

number as the parameter (in the byte-stream format). The FW servant

ipAPIlevelauthenticationimpl executes the SHA-1 algorithm using the received random

number and returns the result fw_digest to the AS CORBA Client.

Figure 2.3 Message flow for OSA mutual authentication

19

Step 4. The AS CORBA client validates the result fw_digest. Suppose that the authentication

is successful, the AS CORBA client invokes the function authenticationSucceeded of

ipAPIlevelauthentication_ref to inform the FW servant ipAPIlevelauthenticationimpl

of the result. Then the servant ipAPIlevelauthenticationimpl activates the FW CORBA

client to authenticate the AS application.

Step 5. The FW CORBA client invokes the function challenge in the AS (callback) reference

ipclientAPIlevelauthentication_ref (obtained in Step 1). Similar to Step 3, this function

takes a random number as the parameter. The AS servant ipclientAPIlevelauthen-

ticationimpl executes the SHA-1 algorithm and returns the result app_digest to the FW

CORBA client.

Step 6. The FW CORBA client validates the result app_digest. Suppose that the

authentication is successful, the FWCORBAclient invokes the function authentication-

Succeeded of ipclientAPIlevelauthentication_ref to inform the AS servant ipclient-

APIlevelauthenticationimpl of the result. This result is passed to the AS CORBA Client.

At this point, the mutual authentication procedure is complete, and the OSA CORBA Client can

access SCFs through the FW.

2.4 Detailed CORBA Interactions for CCL OSA

We use the initiateAuthenticationWithVersion function invoked from the AS to the FW (see

Step 1 in Figure 2.3) and the callback challenge function invoked from the FW to the AS (see

Step 5 in Figure 2.3) as examples to illustrate the CORBA interaction between the AS and the

FW.

As we mentioned in the previous section, before the AS CORBA client requests mutual

authentication, it first retrieves the FW reference ipinitial_ref of the IpInitial interface. The

CORBA behavior for invoking initiateAuthenticationWithVersion is described as follows

(which implement Step 1 in Figure 2.3).

20

Figure 2.4 CORBA interaction flows between the AS and the FW

21

Step 1. The AS CORBA client uses ipinitial_ref to invoke the FW function

initiateAuthenticationWithVersion where the callback object reference

ipclientAPIlevelauthentication_ref is included as a parameter. This request is sent to the

AS stub _IpInitialStub.

Step 2. The stub _IpInitialStub marshals the parameters clientDomain, authType and

frameworkVersion into the Common Data Representation (CDR) format and forwards the

CDR data and the operation name initiateAuthenticationWith- Version to the AS ORB

Core. The AS ORB Core uses the CDR data, the operation name

initiateAuthenticationWithVersion, an object key and other information to construct a

request message. Then the AS ORB Core sends this request message to the FW ORB Core.

Step 3. The FW ORB Core uses the object key in the request message to locate the target POA

ipinitialpoa and delivers the request message to ipinitialpoa.

Steps 4 and 5. The FW POA ipinitialpoa uses the received object key to locate the servant

ipinitialimpl in the ipinitialpoa’s active object map, and then activates the skeleton

IpInitialSkeleton.

Step 6. The skeleton demarshals the parameters in the request message into arguments. Three

arguments clientDomain (containing the callback reference ipclientAPIlevelauthen-

tication_ref to be used in Step 10), authType (P_OSA_AUTHENTICATION) and

frameworkVersion (FWv1.0) are passed as parameters to the function

initiateAuthenticationWithVersion of the servant ipinitialimpl.

Step 7. The servant ipinitialimpl performs the function initiateAuthenticationWith- Version

and returns the result or exceptions to the skeleton IpInitialSkeleton.

Step 8. IpInitialSkeleton marshals the related results returned by the servant into the CDR

format and forwards the CDR data to the FW ORB Core. The FW ORB Core uses the CDR

data and other information to construct a reply message and sends the reply message back

to the AS ORB Core.

22

Step 9. The stub _IpInitialStub demarshals the results in the reply message and returns the

result (i.e, ipAPIlevelauthentication_ref; see Step 1 in Figure 2.3) to the AS CORBA

client.

The CORBA behavior for invoking the callback challenge from the FW to the AS is described

in Steps 10–18 (which implement Step 5 in Figure 2.3).

Step 10. The FW CORBA client uses ipclientAPIlevelauthentication_ref (obtained from the

argument clientDomain in Step 6) to invoke the callback function challenge. This request

is sent to the FW stub _IpClientAPILevelAuthen- ticationStub.

Step 11. The stub _IpClientAPILevelAuthenticationStub marshals the parameter challenge

into the CDR format and forwards the CDR data and the operation name challenge to the

FW ORB Core. The FW ORB Core uses the CDR data, the operation name challenge, an

object key and other information to construct a request message. Then the FW ORB Core

sends this request message to the AS ORB Core.

Step 12. The AS ORB Core uses the object key in the request message to locate and delivers the

request message to the target POA rootpoa.

Steps 13 and 14. POA rootpoa uses the received object key to locate the servant

ipclientAPIlevelauthenticationimpl in its active object map, and activates the skeleton

IpClientAPILevelAuthenticationSkeleton.

Step 15. Upon receipt of the request message, the AS skeleton IpClientAPILevel-

AuthenticationSkeleton retrieves the argument challenge and instructs the servant

ipclientAPIlevelauthenticationimpl to execute the function challenge.

Step 16. After the function challenge is executed, the AS servant

ipclientAPIlevelauthenticationimpl returns the result to the skeleton

IpClientAPILevelAuthenticationSkeleton.

Step 17. IpClientAPILevelAuthenticationSkeleton marshals the related results returned by

the servant into the CDR format and forwards the CDR data to the AS ORB Core. The AS

23

ORB Core uses the CDR data to construct a reply message and sends the reply message

back to the FW ORB Core.

Step 18. The FW stub _IpClientAPILevelAuthenticationStub demarshals the result

(app_digest) in the reply message and returns the result to the FW CORBA Client.

The above two examples illustrate how CCL OSA interaction can be implemented using

CORBA technology.

2.5 Application Server Architecture

This section describes the proposed AS architecture with six modules (see Figure 2.5).

 An appService module (Figure 2.5 (a)) implements services by accessing SCF through the

“Ip” interfaces. Furthermore, it generates the interface objects in the corresponding

appService callback module (to be elaborated at Step 3 in Figure 2.6, Section 2.6) and

passes the references of these objects as the callback references to the SCFs.

Figure 2.5 Application server architecture

24

 The appService callback module (Figure 2.5 (b)) provides the “IpApp” and “IpClient”

callback interfaces to the SCFs/FW. Through these interfaces, the AS can receive specific

events from the SCFs/FW. Upon receipt of the events, the appService callback module

stores them in the AS database and may inform the appService module to handle the

events. For each SCF, there exists one appService module and one appService callback

module in our AS design.

 The AS database (Figure 2.5 (c)) stores the event information to be accessed by other

modules. The information includes the list of the authorized SCFs, the events received

from the SCFs, the log file of the AS, etc. The AS database module can be implemented by

SQL database.

 The CORBA module (Figure 2.5 (d)) is an emerging open distributed object computing

infrastructure. It provides the higher layers (i.e., other AS modules) a uniform view of

underlying heterogeneous network, which is described in Section 2.2.

 The appLogic module (Figure 2.5 (e)) implements the logic of an AS application. It

integrates services supported by different SCFs and the FW through appService modules

without directly accessing the CORBA module and OSA interfaces.

 The user interface module (Figure 2.5 (f)) provides interfaces to monitor the AS operations,

obtain the records stored in the AS database, and invoke the services offered by the SCFs.

2.6 Authentication between AS and Framework

An OSA AS must authenticate with the FW before it can access any SCFs. Before executing the

OSA mutual authentication, the AS must obtain the FW reference ipinitial_ref of the initial

contact interface object IpInitial from the CORBA module. This reference is obtained through a

URL (e.g., corbaname::pcs.csie.nctu.edu. tw:3500#IpInitial in our implementation) and the

naming service of the FW. This naming service provided by the CORBA module allows the

CORBA client to locate the object through a URL.

25

Figure 2.6 illustrates the message flow of mutual authentication for initial access in our

implementation. The FW mutually authenticates with the AS through the fwLogic module and

the Access Session API module.

On the FW side, the fwLogic module (Figure 2.6 (a)) is the control logic of the FW that

authenticates the AS at Steps 10 and 11 in Figure 2.6. The Access Session API module (Figure

2.6 (b)) provides the initial contact interface IpInitial and the FW authentication interface

IpAPILevelAuthentication to communicate with the AS (see Steps 4, and 6~8 in Figure 2.6).

Details of the OSA mutual authentication are described as follows:

Steps 1 and 2. The AS control logic appLogic first generates the appFw object to access the

FW. appLogic invokes the appFw function authenticationReq to start mutual

authentication procedure with the FW.

Figure 2.6 Message flow for OSA mutual authentication

26

Step 3. appFw creates the IpClientAPILevelAuthentication object that provides

authentication-related functions to be invoked by the FW (e.g., function challenge

invoked at Step 10 and function authenticationSucceeded invoked at Step 11).

Step 4. appFw generates the reference ipclientAPIlevelauthentication_ref of the

IpClientAPILevelAuthentication object. This reference will be used by the FW to invoke

the callback functions to authenticate the AS at Steps 10 and 11. appFw uses ipinitial_ref

to invoke the FW function initiateAuthentication- WithVersion that includes the

callback object reference ipclientAPIlevel- authentication_ref as a parameter.

Step 5. The FW creates the IpAPILevelAuthentication object that provides the

authentication-related functions to be invoked by the AS (e.g., function

selectAuthenticationMechanism invoked at Step 6, function challenge invoked at Step

7, and function authenticationSucceeded invoked at Step 8). Then IpInitial generates

the reference ipAPIlevelauthentication_ref of IpAPILevelAuthentication. This

reference is returned to the AS as the return value of function

initiateAuthenticationWithVersion invoked at Step 4.

Step 6. Through the ipAPIlevelauthentication_ref reference, appFw selects the

authentication algorithm by invoking the FW function selectAuthentication-

Mechanism. In our implementation, the default algorithm is SHA-1 [10, 23].

Step 7. appFw authenticates the FW by invoking function challenge through the FW

reference ipAPIlevelauthentication_ref. This function takes a random number as the

parameter (in the byte-stream format). Then the FW IpAPILevelAuthentication object

executes the authentication algorithm SHA-1 using the received random number and

returns the result to the AS.

Step 8. appFw checks the returned result from the FW. If the FW is successfully authenticated,

appFw invokes function authenticationSucceeded through ipAPIlevelauthen-

tication_ref to inform the FW of the authentication result.

27

Step 9. The FW IpAPILevelAuthentication object invokes the function fwAuthenticated to

inform fwLogic of the result.

Step 10. fwLogic authenticates the AS by invoking the callback function challenge through

the AS reference ipclientAPIlevelauthentication_ref. Similar to Step 7, this function

takes a random number as the parameter. The AS IpClientAPILevelAuthentication

object executes the authentication algorithm SHA-1 using the received random number

and returns the result to the FW.

Steps 11 and 12. fwLogic checks the returned result from the AS. If the AS is successfully

authenticated, fwLogic invokes the callback function authenticationSucceeded through

IpClientAPILevelAuthentication to inform appFw of the result.

Step 13. At this point, the mutual authentication procedure is complete, and appFw invokes

function authenticationRes to inform appLogic of the successful mutual authentication.

After mutual authentication with the FW, the AS can identify the authorized SCFs through the

FW discovery mechanism. To select the SCFs for service (e.g., the PoC SCF and the GLMS

SCF), the AS first establishes the service agreement with the FW. Then the AS can obtain the

object references of the PoC SCF and the GLMS SCF for PoC service. The details are omitted.

2.7 Summary

This chapter described a CORBA-based OSA system we designed and developed in CCL/ITRI,

and proposed an OSA AS architecture. In the CORBA-based OSA system, we showed how

OSA API interfaces and functions can be implemented by CORBA clients, stubs, servants and

skeletons. We described how CORBA POA and ORB are set up for CCL OSA. Then we used

the authentication procedure for initial access to illustrate how CORBA mechanism works for

CCL OSA. One of the challenges for future OSA extension is to deploy open API-based

services that support both legacy circuit-switched networks and all-IP based networks.

In our proposed OSA AS architecture, a new application is created by implementing the

28

appLogic module that invokes the SCFs through the appService modules and appService

callback modules. To interact with an SCF, the AS implements one appService module and one

appService callback module for that SCF. When the existing SCFs are reused for new services,

the corresponding appService and appService callback modules for accessing these SCFs can

also be reused. Through this modulized AS design, the service deployment can be sped up. We

used the OSA mutual authentication to illustrate the interaction within the AS modules and how

the AS interacts with the FW. Details of the interaction among the OSA AS and the SCFs for

PoC services will be elaborated in Appendix A.

29

Chapter 3.

Selecting Transition Process for WLAN Security

Wireless local area network (WLAN) was originally designed for cable replacement. In the

UMTS All-IP network, WLAN functionality has been extended for users with mobility and has

even been integrated with cellular system to serve as an access technology to the cellular system,

and therefore scales up the coverage of mobile services. In WLAN, an Mobile Station (MS)

accesses the IMS network through an access point (AP). When switching from one AP to

another, the MS executes the transition process, which may incur long delay and result in

force-termination for real-time applications. The IEEE 802.11r proposes the fast basic service

set (BSS) transition to speed up the transition process for a MS moving within the same

mobility domain (MD). This scheme requires unique MD assignment so that the MS knows

whether it should conduct fast BSS transition process (for intra-MD scenario) or the expensive

initial MD association process (for inter-MD scenario). However, how to guarantee unique MD

identifier (MDID) assignment is not mentioned in the specification. This chapter proposes a

mechanism for IEEE 802.11r fast transition without using MDID, and therefore eliminates the

cost for MDID management.

3.1 Introduction to IEEE 802.11r

In IEEE 802.11 WLAN, a Mobile Station (MS; Figure 3.1 (1)) accesses the IMS network

through an Access Point (AP; Figure 3.1 (2)) over the air [9, 15]. Because WLAN is much

easier to be intercepted than a wired network, it is important to exercise authentication and

encryption between the MS and the AP with a security key. If the MS and the AP are not

assigned the same security key through an offline process, the key must be generated in the

30

transition process. When an MS connects to an AP for the first time or switches from one AP to

another, the transition process consisting of the following four procedures is exercised.

 IEEE 802.11 open system authentication is performed between the MS and the AP. The AP

will grant any authentication request from the MS unless the open system authentication is

disabled in the AP.

 Association enables the MS and the AP to negotiate the security policy and the encryption

algorithm.

 IEEE 802.1X authentication is executed between the MS and an authentication,

authorization, and accounting server (AAA server; Figure 3.1 (3)) [21]. A Master Session

Key (MSK; or AAA-Key) is generated independently in both the MS and the AAA server.

 IEEE 802.11i 4-way handshake generates the Pairwise Transient Key (PTK) from the

MSK. This PTK provides data integrity and confidentiality by encrypting data transmitted

between the MS and the AP.

Figure 3.1 IEEE 802.11r security hierarchy

31

This transition process may incur long delay and result in force-termination for real-time

applications such as voice over IP. To reduce the latency for security key generation in the

transition process, IEEE 802.11r proposed fast Basic Service Set (BSS) transition implemented

in a three-level key hierarchy [15]. In this hierarchy, the first-level key is Pairwise Master Key

first level (PMK-R0) derived from the MSK and is shared between the MS and the PMK-R0

Key Holder (R0KH; Figure 3.1 (a)). The R0KH is the authenticator that maintains the MSK

received from the AAA server. The second-level key is PMK second level (PMK-R1) shared

between the MS and the PMK-R1 Key Holder (R1KH; Figure 3.1 (b)). PMK-R1 is derived from

PMK-R0 and is used to derive PTK at the third-level (i.e., the AP; Figure 3.1 (c)).

Mobility domain (MD) is defined in this three-level key hierarchy. An MD consists of

several R0KHs. Figure 3.1 illustrates two mobility domains MD1 and MD2. MD1 consists of

two R0KHs (i.e., R0KH1 and R0KH2) and MD2 consists of one R0KH (i.e., R0KH3). Each

R0KH directly associates with several nearby R1KHs that can acquire PMK-R1 from this

R0KH. In Figure 3.1, R0KH1 directly associates with two R1KHs (i.e., R1KH1 and R1KH2; the

connectivity is represented by solid links) and R0KH2 directly associates with one R1KH (i.e.,

R1KH3). An R1KH can obtain PMK-R1 from an R0KH which does not directly associate with

this R1KH, if both key holders are in the same MD. In Figure 3.1, R1KH1 and R1KH2 can

acquire PMK-R1 from R0KH2, and this indirect association is represented through the dashed

links. Based on the MD structure, there are three MS transition scenarios: intra-R1KH

transition (e.g., from AP0 to AP1 in Figure 3.1), inter-R1KH transition in an MD (e.g., from AP1

to AP2 or AP3), and initial MD association (or inter-MD transition; e.g., from AP3 to AP4)

scenarios. In this chapter, the third scenario is described in Section 3.2. The first two scenarios

are intra-MD scenarios described in Section 3.3. Section 3.4 proposes a selection mechanism

that automatically selects the appropriate transition process for intra- and inter-MD scenarios.

32

3.2 Initial MD Association Process (Inter-MD Scenario)

When an MS first associates to the WLAN or moves from one MD to another (inter-MD

transition), PMK-R0 and PMK-R1 for this MS are generated and stored in the R0KH and the

R1KH, respectively [15]. Assume that an MS first connects to AP1 in Figure 3.1. The steps in

Figure 3.2 are executed as follows.

Figure 3.2 IEEE 802.11r initial MD association process

Step 0. The MS scans multiple channels for an AP with good signal, and checks the information

elements (IEs) advertised in the signal (i.e., Beacon and Probe Response frames). If the

mobility domain IE (MDIE) is included in the frames, it means that the AP supports the

IEEE 802.11r fast BSS transition. The MDIE contains the mobility domain identifier

(MDID) of MD1 and the transition policy.

Steps 1 and 2. Suppose that AP1 is selected. The MS sends an authentication request message

to AP1 and performs the open system authentication.

33

Steps 3 and 4. The MS sends an association request message to AP1. In this message, the

MDIE field is set to 0 to indicate that the initial MD association process is exercised. AP1

replies an association response message to indicate the MDID of MD1, and fast BSS

transition IE (FTIE) which includes the identifiers of R0KH1 and R1KH1.

Step 5. The IEEE 802.1X authentication is executed between the MS and the AAA server. A

new MSK is independently generated in the MS and the AAA server. This key is also

passed from the AAA server to R0KH1. Details of the IEEE 802.1X authentication will be

illustrated at Steps 2~6 in Figure 4.2 and will be described in Section 4.2.

Steps 6 and 7. The MS and R0KH1 independently generate the PMK-R0 key by executing the

key derivation function (KDF; Figure 3.3 (1)) with the R0KH1 identifier, the MSK

(generated at Step 5), the MD1 identifier, and the supplicant address (SPA; the MS’s

Medium Access Control (MAC) address). Then PMK-R1 is derived from PMK-R0, SPA,

and the R1KH1 identifier (Figure 3.3 (2)).

Figure 3.3 Derivation of PMK-R0, PMK-R1, and PTK

Step 8. The MS and AP1 perform the IEEE 802.11i 4-way handshake procedure by exchanging

two random numbers (i.e., ANonce generated by AP1 and SNonce generated by the MS).

To derive PTK, AP1 sends the related parameters to R1KH1, including the R0KH1

34

identifier, SNonce, ANonce, and SPA. Then the MS and R1KH1 independently derive the

PTK key from inputs including the PMK-R1 generated at Steps 6 and 7 (Figure 3.3 (3)).

After PTK is generated, R1KH1 passes it to AP1 for encrypting and decrypting data

transmitted between the MS and AP1.

After this initial MD association process, PMK-R0 and PMK-R1 are kept in R0KH1 and

R1KH1, respectively. When the MS moves to another AP in MD1, these two keys are reused to

generate new PTK without executing the IEEE 802.1X authentication.

3.3 Fast BSS Transition (Intra-MD Scenarios)

The IEEE 802.11r fast BSS transition is exercised in intra-MD transition scenarios. When the

MS performs inter-R1KH transition from AP1 to AP3 in MD1, the following steps are executed

(see Figure 3.4).

Step 1. Since AP1 and AP3 are in the same MD, the MS sends an authentication request

message with fast BSS transition (FT) authentication to AP3. This message contains the

MDID of MD1 and FTIE (containing the R0KH1 identifier and a random number SNonce

for PTK derivation).

Step 2. From the MDIE and the FTIE provided by the MS, AP3 knows that the inter-R1KH

transition occurs. AP3 sends an authentication response message to the MS. This response

message contains the identifiers of R0KH2, R1KH3, MD1, and a random number ANonce

for deriving PTK.

Step 3. Upon receipt of ANonce and the identifiers from AP3, the MS generates a new PMK-R1

key from the R1KH3 identifier, SPA, and PMK-R0 (Figure 3.3 (2)). This PMK-R1 key is

shared between the MS and R1KH3, and is used together with SPA, ANonce, and SNonce

to derive the PTK key (Figure 3.3 (3)). If the MS moves from AP1 to AP0 connecting to the

same R1KH in Figure 3.1, the old PMK-R1 is reused to generate the new PTK key.

35

Figure 3.4 IEEE 802.11r fast BSS transition process

Step 4. AP3 sends SPA, ANonce, SNonce, and the R0KH1 identifier to R1KH3 for deriving new

PTK.

Step 5. According to the R0KH1 identifier, R1KH3 acquires the new PMK-R1 from R0KH1. If

the MS moves from AP1 to AP0 in Figure 3.1, this step is omitted.

Step 6. R1KH3 derives PTK by executing KDF (Figure 3.3 (3)) and sends the generated PTK to

AP3. After this step, PTK is kept in both the MS and AP3.

Step 7. The MS switches from AP1 to AP3 after resource reservation and re-association

between the MS and AP3.

In the fast BSS transition, the IEEE 802.1X authentication procedure is omitted. Instead,

PMK-R0 is reused to derive the new PTK key to speed up the transition process.

3.4 Transition Process Selection Mechanism

Since every AP advertises the MDID in the Beacon and Probe Response frames, the MS can

select the appropriate transition process for intra-MD or inter-MD scenarios. Specifically, the

36

MAC addresses are used as the identifiers for R0KH and R1KH to ensure global uniqueness.

The MDID is assumed to be managed by vendors [15]. However, it is not clear how to

guarantee unique MDID among vendors. If ambiguity of MDID does occur, this error will be

detected at Step 5 in Figure 3.4 because the new PMK-R1 cannot be acquired. Therefore the

MS is forced to stop the fast BSS transition process and is switched to perform the IEEE

802.11r initial MD association process.

Figure 3.5 The proposed selection mechanism for transition process

To resolve the ambiguous MDID issue, we propose a new method that does not require the

MDID for transition. In our approach, every AP maintains an R0KH table recording all R0KHs

that can be accessed by the AP. In Figure 3.1, the identifiers of R0KH1 and R0KH2 are recorded

in AP0, AP1, AP2, and AP3, and the R0KH3 identifier is recorded in AP4 and AP5. Upon receipt

37

of the authentication request message (i.e., Step 1 in Figure 3.4), an AP queries its R0KH table

to determine whether the MS comes from another MD, and selects the appropriate transition

process for execution. Suppose that the MS moves from APOld to APNew. The following steps

are executed (see Figure 3.5).

Step 1. The MS sends an authentication request message with FT authentication algorithm to

APNew. This message is similar to that in Step 1 of Figure 3.4, but does not include the

MDID in MDIE.

Step 2. Upon receipt of the authentication request, APNew checks the R0KH identifier in FTIE.

There are two possibilities. If the R0KH identifier is not found in the R0KH table of APNew,

Steps 3 and 4 are executed (for inter-MD scenario). Otherwise, Steps 5 and 6 are executed

(for intra-MD scenarios).

Steps 3 and 4. APNew exercises open system authentication and replies the authentication

response message with parameter “open system authentication”. Then the MS proceeds to

execute the IEEE 802.11r initial MD association process (Steps 2~8 in Figure 3.2).

Steps 5 and 6. APNew exercises FT authentication and replies the IEEE 802.11 authentication

response message with parameter “FT authentication”. The IEEE 802.11r fast BSS

transition process is executed (Steps 2~7 in Figure 3.4).

Through the R0KH table in an AP, the above mechanism correctly distinguishes the inter-MD

scenario from the intra-MD scenarios without using the MDID.

A few other studies have been reported in the literature which has also carried out research

similar to that reported in this chapter [5, 17, 27].

3.5 Summary

This chapter describes the IEEE 802.11r transition process for WLAN, where a three-level key

hierarchy was proposed to speed up the transition process without executing the expensive

IEEE 802.1X authentication for some scenarios. This hierarchy requires assignment of unique

38

MDIDs worldwide. However, how to guarantee the uniqueness of MDID is not clear. This

chapter proposed a mechanism that does not need MDID, and therefore MDID management is

eliminated. This mechanism also saves four message exchanges incurred in the original fast

BSS transition when MDID ambiguity occurs.

39

Chapter 4.

A Key Caching Mechanism for Reducing WiMAX

Authentication Cost in Handoff

IEEE 802.16e mobile Worldwide Interoperability for Microwave Access (WiMAX) provides

broadband wireless services with wide service coverage, high data throughput, and high

mobility. To access the IMS network with mobile WiMAX, several mobile telecommunications

network issues, e.g., mobility management, voice quality, and power saving, must be addressed

in the mobile WiMAX environment. Among them, security is probably one of the most

important and essential issue that must be carefully addressed, which includes authentication

and encryption aspects. This chapter will focus on the authentication aspect for mobile

WiMAX.

The IEEE 802.1X is utilized in mobile WiMAX authentication. This procedure incurs long

delay in WiMAX handoff. To resolve this issue, this chapter proposes a key caching mechanism

to eliminate the non-necessary IEEE 802.1X authentication cost in WiMAX handoff. This

mechanism is investigated through analytic and simulation modeling. Our study indicates that

the key caching scheme can effectively speed up the handoff process.

4.1 Introduction to WiMAX AAA Architecture

To support security network access, the authentication, authorization, and accounting (AAA)

mechanism is exercised in WiMAX [38]. Figure 4.1 shows the AAA architecture and protocol

stack for WiMAX. In this architecture, the Access Service Network (ASN; Figure 4.1 (2))

consists of Base Stations (BSs; Figure 4.1 (4)) and ASN Gateways (ASN-GWs; Figure 4.1 (5)).

40

Figure 4.1 WiMAX AAA architecture and protocol stack

An ASN-GW controls several BSs. A BS provides WiMAX radio access for Mobile Stations

(MSs; Figure 4.1 (1)) after the MSs are authenticated by the AAA server (Figure 4.1 (6)) in the

Connectivity Service Network (CSN; Figure 4.1 (3)). In the WiMAX AAA architecture, the

ASN-GW serves as the authenticator for the MS. The authenticator is responsible for

forwarding authentication messages between the MS and the AAA server, and for maintaining

the MS related information (e.g., encryption keys) after authentication. We assume that the

Subscriber Identity Module (SIM)-based Extensible Authentication Protocol (EAP) is utilized

for AAA [12]. Note that this approach reuses the authentication mechanism in mobile

telecommunications [8]. In the authentication procedure, an EAP-SIM message (Figure 4.1 (a))

is encapsulated in an EAP message (Figure 4.1 (b)). The MS then encapsulates the EAP

message in Privacy Key Management protocol version 2 (PKMv2; Figure 4.1 (c)) before it is

transmitted to the BS. The BS exercises the Authentication Relay protocol (AuthRelay; Figure

4.1 (d)) to forward the received EAP message to the authenticator (i.e., the ASN-GW). Upon

receipt of an EAP message, the authenticator translates it into a Remote Authentication Dial-In

User Service (RADIUS; Figure 4.1 (e)) message. Then the RADIUS message is sent to the

41

AAA server. Upon receipt of the RADIUS message, the AAA server utilizes the Mobile

Application Part (MAP; Figure 4.1 (f)) of the Signaling System Number 7 protocol (SS7; Figure

4.1 (g)) to communicate with the Home Subscriber Server (HSS)/Authentication Center (AuC;

Figure 4.1 (7)). The HSS is the mobility database of the GSM/UMTS mobile

telecommunication networks [8, 21]. The AuC maintains the secret keys of the MSs, and

provides the authentication information to the AAA server.

4.2 WiMAX Initial Network Entry Process

By using the protocols described in Figure 4.1, the WiMAX authentication works as follows.

Suppose that an MS first connects to the WiMAX network, the following steps are executed for

the initial network entry process (see Figure 4.2):

Step 1. The MS, the BS, and the ASN-GW (authenticator) negotiate the security policy (i.e., to

select the encryption and decryption algorithms) and the authorization policy; specifically,

to select the message authentication code (MAC) type.

Step 2. The authenticator sends an EAP Request message to the MS. This message initiates

the IEEE 802.1X authentication procedure by requesting the user identity.

Steps 3 and 4. The MS replies an EAP Response message with the user identity to the

authenticator. The user identity consists of two elements: the AAA server address

AAA-addr and the user account User-acct. In the SIM-based EAP authentication, the

user account is set to the International Mobile Subscriber Identity (IMSI) of the MS [21].

According to AAA-addr, the authenticator forwards the EAP Response message to the

AAA server.

Step 5. Upon receipt of the user identity, the AAA server performs the SIM-based EAP

authentication with the MS as follows:

Step 5.1. The AAA server issues an EAP Request message with type “Start” to the MS.

42

Figure 4.2 WiMAX initial network entry process

Step 5.2. The MS replies the EAP Response message containing a random number

MS-RAND. This random number is used to derive the encryption keys in Steps

5.3 and 5.5.

Step 5.3. Based on the IMSI received in Step 4, the AAA server communicates with the

HSS/AuC to obtain the authentication information, including a random number

RAND, a signed result SRES, and a cipher key Kc. Both the MS and the

HSS/AuC utilize the RAND and the secret key Ki (stored in the SIM card and

the HSS/AuC) to execute the A3 and the A8 algorithms for deriving the signed

result SRES and the cipher key Kc [20]. Then the AAA server utilizes Kc and

MS-RAND (received in Step 5.2) to derive the Master Session Key (MSK) and

43

the EAP integrity key KEAP.

Step 5.4. The AAA server sends a challenge EAP Request message with the RAND and

the MAC. This MAC is derived from KEAP and is used to ensure integrity of this

message.

Step 5.5. Upon receipt of the EAP Request message, the MS utilizes RAND, MS-RAND

(generated in Step 5.2), and Ki (stored in the SIM card) to generate SRES*, Kc,

MSK, and KEAP. With KEAP and the received RAND, the MS verifies the

received MAC. If the MAC is correct, the AAA server is successfully

authenticated by the MS. Then the MS replies a challenge EAP Response

message with a code MAC* derived from KEAP and SRES*.

Step 6. The AAA server verifies MAC* by using KEAP (generated in Step 5.3) and SRES

(received in Step 5.3). If MAC* is correct, the MS is successfully authenticated by the

AAA server. The AAA server sends the EAP Success message to the authenticator

containing MSK (generated in Step 5.3), the MSK lifetime, and the MS authorization

profile (e.g., service restrictions and supplementary services). The MSK lifetime is the

period that the MS is authorized to access the ASN-GW. When the MSK lifetime is

expired, the MS should execute the IEEE 802.1X authentication with the AAA server

again.

Step 7. The ASN-GW stores MSK, the MSK lifetime, and the authorization profile. Then it

derives the Authentication Key (AK) by using the MSK and the BS address. This AK is

shared between the MS and the BS.

Step 8. The ASN-GW forwards the EAP Success message to the BS with AK. The BS passes

the EAP Success message to inform the MS that the authentication is successful. Upon

receipt of this message, the MS generates its version of AK.

Step 9. The BS generates the final encryption key Traffic Encryption Key (TEK). This

encryption key is used to provide data integrity and confidentiality for a communication

44

session between the MS and the BS. The BS passes the generated TEK (encrypted by AK)

to the MS.

The relationship of WiMAX encryption keys and the locations maintaining these keys are

shown in Figure 4.3.

Figure 4.3 WiMAX key derivation tree

If the MS moves from the old BS to the new BS connecting to a different authenticator

(ASN-GW), a new MSK must be generated in this inter-ASN-GW handoff process, which is

the same as the initial network entry process described in Figure 4.2. In this case, the

authenticator (ASN-GW) of the old BS will remove the MS key record (i.e., MSK, the MSK

lifetime, and the MS authorization profile). When the MS moves back to the old ASN-GW

again, another inter-ASN-GW handoff process should be performed, which may incur long

delay.

4.3 The Key Caching Mechanism

To speed up the inter-ASN-GW handoff process, we propose a key caching mechanism. The

idea is simple: When the MS moves from the old ASN-GW to the new ASN-GW, the old

ASN-GW still keeps the MS key record. If the MS returns to the old ASN-GW before the MSK

lifetime expires, it can reuse the MSK without executing the IEEE 802.1X authentication. That

is, only Steps 1 and 9 in Figure 4.2 are executed to speed up the inter-ASN-GW handoff process.

In Figure 4.2, Step 1 contains 2 message exchanges and Step 9 contains 5 message exchanges

45

[38]. Therefore, the caching mechanism speeds up the process by saving 50% (= 7/14) message

exchanges between the MS and the BS.

Although the key caching mechanism may effectively avoid the execution of IEEE 802.1X

authentication, it consumes extra storage to keep the MS key records at the old ASN-GW,

where a stored key record includes 512 or 1024 bits for MSK, 32 bits for the MSK lifetime, and

512 or 1024 bits for the MS authorization profiles. Therefore, it is desirable to select an

appropriate MSK lifetime to eliminate the IEEE 802.1X authentication without consuming too

much extra storage in the ASN-GW. We investigate the effect of the MSK lifetime on the

caching performance by an analytic model described below.

Figure 4.4 Relationship of the MSK key lifetime and the MS movement

Figure 4.4 illustrates the relationship between the movement of an MS and its MSK

lifetime. In this figure, the IEEE 802.1X authentication is executed at time τ0 (Figure 4.4 (1)),

and the MSK lifetime expires at time τ3 (Figure 4.4 (4)). At time τ1 (Figure 4.4 (2)), the MS

moves from the old ASN-GW to the new ASN-GW. The residual MSK lifetime is tK = τ3 - τ1. If

the MS will not return to the old ASN-GW before the MSK lifetime expires, we call this tK

period the unused key period. At time τ2 (Figure 4.4 (3)), the MS returns to the old ASN-GW.

46

Let tM =τ2 - τ1 be the period between when the MS leaves the old ASN-GW and when it returns.

If the MS returns before the MSK lifetime expires, the MS can reuse the MSK for period tK* =

tK - tM without executing the IEEE 802.1X authentication. Period tK* is referred to as the reused

key period. We make the following assumptions:

 We consider two distributions for the MSK lifetime T. That is, T is either an Exponential

period with rate µ or a fixed period.

 The MS residence time tM in new ASN-GWs has the density function f (tM) with mean 1/λ

and variance VM.

Three output measures are evaluated in our study.

 α: the probability that the MS returns to the old ASN-GW before the MSK lifetime

expires.

 E [tK | tM ≥ tK]: the expected unused key period under the condition that the MS does not

return to the old ASN-GW before the MSK lifetime expires (therefore, the cached MSK

will not be reused).

 E [tK* | tM ≤ tK]: the expected reused key period under the condition that the MS returns to

the old ASN-GW before the MSK lifetime expires (the cached MSK is reused).

We derive the above output measures for Exponentially distributed tM with fixed T, and then

generalize the derivation for Generally distributed tM with Exponentially distributed T.

4.3.1 Derivation for Exponentially Distributed tM and Fixed T

Suppose that the departure of the MS from the old ASN-GW is a random observer to the MSK

lifetime. For fixed MSK lifetime T, from the residual life theorem [32], tK has the Uniform

distribution over 0 ≤ tK ≤ T. Then α is derived as

α
1 1

 (4.1)

E [tK | tM ≥ tK] is expressed as:

47

| Pr | d

 Pr
Pr d

1
T
1 α d

1

1
1 1

1
 (4.2)

Similarly, E [tK* | tM ≤ tK] is expressed as:

| Pr | d

Pr

Pr d

 1
T
α d

1

2
1 1

2 1
1
 (4.3)

4.3.2 Derivation for Generally Distributed tM and Exponential T

Since the departure of the MS from the old ASN-GW is a random observer to the MSK lifetime,

from the residual life theorem, tK is Exponentially distributed with mean E[T] = 1/µ. Let tM have

a General distribution with density function f (tM) and Laplace transform f *(s). Then α is

derived as

α (4.4)

E [tK | tM ≥ tK] is expressed as

| Pr | d

1 α d

 1
1

1
 (4.5)

48

E [tK* | tM ≤ tK] is derived as

| Pr | d

1 1

 (4.6)

Equation (4.6) says that E [tK* | tM ≤ tK] is not affected by the tM distribution.

To further investigate (4.4) and (4.5), we assume that tM has the Gamma distribution,

which has been used in telecommunication modeling [22, 39]. The Gamma distributed tM has

the mean 1/λ, variance VM and Laplace transform

1
1

Then from (4.4),

α
1

1 (4.7)

and E [tK | tM ≥ tK] is expressed as

|
1 1

1

______ __ (4.8)

When tM is Exponentially distributed (i.e., VM = 1/λ2), (4.7) is rewritten as

α
1

1 (4.9)

and (4.8) is expressed as

 |

______ __

49

1

 (4.10)

Equations (4.1), (4.2), (4.3), (4.6), (4.9) and (4.10) provide the mean value analysis to show the

“trends” of the output measures. These equations are also used to validate the simulation

experiments in the next section.

4.4 Simulation Validation

We utilize simulation experiments to validate the analytic model described in Section 4.3. The

MSK lifetimes T are either produced from a random number generator with mean 1/µ or set as a

fixed period 1/µ. According to the residual life theorem, the residual MSK lifetime tK can be

generated directly. The tM periods are first drawn from an Exponential random number

generator with mean 1/λ to validate against the analytic model. Then we use Gamma random

number to investigate the impact of General tM.

Figure 4.5 The simulation flowchart

50

To ensure that the results are stable, we simulate 107 departures from the old ASN-GW. In

the simulation process, the counter N records the number of simulation runs, n counts the

number of MSK reused times, unusedT calculates the sum of periods which the unused MSK

stored in the old ASN-GW, and reusedT calculates the sum of periods which the MSK reused in

the old ASN-GW. The simulation flowchart is shown in Figure 4.5, and the details are described

as follows.

Step 1. The variables N, n, unusedT, and reusedT are initialized to 0.

Step 2. The Nth departure from the old ASN-GW is performed. Periods tM and tK are generated,

and tK* is set to tK - tM.

Step 3. If tK* > 0, it means that the MS returns to the old ASN-GW before the MSK lifetime

expires, and the flow goes to Step 4. Otherwise, go to Step 5.

Step 4. The MSK is reused in the old ASN-GW, and the MSK reused counter n is incremented

by 1. The sum of the MSK reused periods reusedT is added by tK*.

Step 5. Since the MSK cannot be reused, the sum of the MSK unused periods unusedT is added

by tK.

Step 6. N is incremented by 1.

Step 7. Check if 107 MS departures from the old ASN-GW have been simulated. If so, go to

Step 8. Otherwise, go to Step 2.

Step 8. The simulation is complete, and the output measures are computed as follows.

|

|

Based on equations (4.1), (4.2), (4.3), (4.6), (4.9) and (4.10), Table 4.1 shows that the

simulation is consistent with the analytic analysis and all errors are within 1%. Therefore, the

analytic and the simulation results are consistent.

51

Table 4.1 Comparison of analytic and simulation results

(a) α (Exponential tM)

(b) E [tK | tM ≥ tK] (Gamma tM and Exponential T)

(c) E [tK* | tM ≤ tK] (Gamma tM and Exponential T)

4.5 Numerical Examples

According to the analytic and the simulation models, we use numerical examples to investigate

how the MSK lifetime T affects the performance of the key caching mechanism. Figure 4.6

plots the results for Exponential tM. Figure 4.6 (a) plots α against E[T]. The figure indicates that

α is an increasing function of E[T]. It is intuitive that if E[T] is large, then it is more likely that

52

the MS will return before the MSK lifetime expires. From (4.1)

1
1

Since E[T]=1/µ, from (4.9), we have

1⁄ 1

This figure also shows that the Exponential T outperforms the fixed T in terms of α.

Figure 4.6 (b) plots the unused key period E [tK | tM ≥ tK] as the function of E[T]. The figure

shows that the unused key period increases as E[T] increases. From (4.2), we have

|
1

1
1

and from (4.10)

|
1
1⁄

1

Therefore, the maximum unused key period is E[tM] = 1/λ. When E[T] is small (e.g., less than

1/λ), the fixed T outperforms the Exponential T. When E[T] is large, the Exponential T yields

better performance in terms of the unused key period.

Figure 4.6 (c) plots the reused key period E [tK* | tM ≤ tK] as the function of E[T]. The

figure indicates the intuitive result that the key reused period increases as E[T] increases. From

(4.3), we have

|
2 1

1
∞

and from (4.6)

|
1

1⁄ ∞

The figure also indicates that the Exponential T outperforms the fixed T in terms of the reused

key period.

53

(a) Effect of E[T] on α

(b) Effect of E[T] on E [tK | tM ≥ tK]

(c) Effect of E[T] on E [tK* | tM ≤ tK]

Figure 4.6 Effect of µ

54

(a) Effect of VM on E [tK | tM ≥ tK]

(b) Effect of VM on E [tK* | tM ≤ tK]

Figure 4.7 Effect of VM

Figure 4.7 (a) plots the unused key period E [tK | tM ≥ tK] against E[T] and VM. When E[T]

≥ 1/λ, the unused key period increases as VM increases. This phenomenon is explained as

follows. As VM increases, more long and short tM are observed. Since a random observer (an MS

movement) tends to observe long tM, short tM will not contribute to E [tK | tM ≥ tK]. Therefore,

more long tK are observed as VM increases. From (4.8),

 |

 1 1 1
1

1 1
1

1 1
1

1

When E[tK] < 1/λ, E [tK | tM ≥ tK]≒E [tK], which is not sensitive to VM.

Figure 4.7 (b) plots the reused key period E [tK* | tM ≤ tK] against E[T] and VM. For

Exponential T, according to (4.6), E [tK* | tM ≤ tK] = E[T]. This phenomenon is explained as

follows. Since the residual MSK lifetime tK is Exponentially distributed, the arrival of the MS to

the old ASN-GW is a random observer to tK. Thus, from the residual life theorem, tK* is also

55

Exponentially distributed with the mean E[T]. For fixed T, E [tK* | tM ≤ tK] increases as VM

increases. Since we only consider the case when tM ≤ tK, as VM increases, short tK periods are

observed and long tK will not contribute to E [tK* | tM ≤ tK]. Thus, for fixed T, the reused key

period increases as VM increases and eventually approaches to E [tK] = T/2.

Figure 4.7 shows that the Exponential T outperforms the fixed T in terms of the reused key

period. On the other hand, for the unused key period, the fixed T outperforms the Exponential T

in most cases. Another advantage of Exponential T over the fixed T is that the reused key period

E [tK* | tM ≤ tK] performance is not affected by the variance VM. This stability property is

important for telecom-grade system.

4.6 Summary

This chapter proposed a key caching mechanism to speed up the inter-ASN-GW handoff for

mobile WiMAX. With this mechanism, when an MS leaves the old ASN-GW, the MS key

record (e.g., the MSK) is cached in the old ASN-GW. If the MS returns to the old ASN-GW

before the MSK lifetime expires, it can reuse the MSK without executing the IEEE 802.1X

authentication. On the other hand, the old ASN-GW consumes extra storage to maintain the MS

key records when the MS leaves the old ASN-GW. This chapter investigated how the period T

of the MSK lifetime affects the key caching performance by an analytic model and simulation

experiments. Three output measures are evaluated: the key reused probability, the unused key

period, and the reused key period. We showed that the caching mechanism can effectively

speed up the inter-ASN-GW handoff. We also observed that the Exponential T outperforms the

fixed T in most cases. Moreover, for the reused key period, the Exponential T is not affected by

the variance of MS residence period in new ASN-GWs, and is more suitable for

telecommunications system. As a final remark, the operator uses our study and the number of

serving MSs to calculate the storage budget at an ASN-GW. Our study indicates that E[T] >

10/λ will not improve the performance. Therefore, if E[T] < 10/λ is selected, the extra storage

56

can be computed from Little’s Law N = xE[T] < 10x/λ, where N is the extra storage (the number

of MS key records) and x is the rate of the MSs leaving the ASN-GW [18].

57

Chapter 5.

End-to-End Security Mechanisms for SMS

In the UMTS all-IP network, the security mechanism (i.e., encryption) offered by the network

operator applies only on the wireless link in the wireless access networks. Data delivered

through the mobile core network may not be protected. Existing end-to-end security

mechanisms are provided at application level and typically based on public key cryptosystem.

This chapter introduces two encryption mechanisms for Short Message Service (SMS) to

illustrate the security mechanism between the MS and the application and service network.

These two mechanisms are based on the Rivest-Shamir-Adleman (RSA) scheme and the

Identity-based (ID-based) scheme. We implement these two mechanisms over the standard

SMS network and estimate the encryption overhead. Our study indicates that the ID-based

mechanism has advantages over the RSA mechanism in key distribution and scalability of

increasing security level for mobile service.

5.1 Introduction to Wireless Cryptography

In today’s mobile communication systems, the symmetric key technology is used to

authenticate the Mobile Station (MS). The authentication method is based on the pre-shared

secret key Ki (created at the service subscription) between the user and the mobile operator [20].

The symmetric session key Kc derived during the authentication phase (by using Ki) only

applies on the wireless link, that is, from the MS to the base station. End-to-end security or

confidentiality and integrity over the whole path between two parties (e.g. an MS to another

MS) is not provided by mobile systems (such as Global System for Mobile Communication

(GSM) and Universal Mobile Telecommunications System (UMTS)) and therefore has to be

58

provided at application level. Asymmetric cryptography is typically used in mobile systems to

provide end-to-end security.

Asymmetric cryptography or Public Key Cryptography (PKC) involves two distinct keys,

public key KU and private key KR. KU can be widely distributed without compromising its

corresponding private key KR. In some systems, KR remains known only to the user that

generated it, while in other systems, KR is given to a user by another trusted entity. To

generate the key pair, one first chooses a private key KR and applies some trapdoor one-way

function to KR to obtain a random and uncontrollable public key KU. The main concern in a

public key setting is the authenticity of the public key. If an attacker convinces a sender that

the receiver’s public key is some key of the attacker’s choice instead of the correct public key,

he/she can eavesdrop and decrypt messages intended for the receiver. This is the well known

man-in-the-middle attack [36]. This authentication problem is typically resolved by the use of

verifiable information called certificate, which is issued by a trusted third party and consists

of the user name and his/her public key.

In 1984, Shamir (1984) introduced the concept of Identity-based (ID-based)

cryptography where the public key of a user can be derived from public information that

uniquely identifies the user. For example, the public key of a user can be simply his/her e-mail

address or telephone number, and hence implicitly known to all other users. A major

advantage of ID-based cryptosystem is that no certificate is needed to bind user names with

their public keys.

ID-based cryptosystem transparently provides security enhancement to the mobile

applications without requiring the users to memorize extra public keys. For example, sending

an ID-based encrypted short message is exactly the same as sending a normal short message

[14] if the mobile phone number of the short message recipient is used as the public key.

Therefore, the mobile user (the sender) does not need to memorize an extra public key for the

receiver. This feature is especially desirable for transaction-type mobile applications such as

59

bank or stock transactions [21].

In this chapter, we implement two encryption systems for Short Message Service (SMS)

and estimate the encryption overheads compared with the original non-ciphered message

transmissions. We first introduce the certificate-based and the ID-based public key

cryptosystems, which provide authentic solutions for public key distribution. Then we

propose two applicable end-to-end encryption mechanisms for SMS based on the

certificate-based public key cryptosystem and the ID-based public key cryptosystem,

respectively. Finally, we also evaluate and compare the delivery overheads between these two

mechanisms.

5.2 Public Key Cryptography

Public key techniques utilize the asymmetric key pairs. In an asymmetric key pair, one key is

made publicly available, while the other is kept private. Because one of the keys is available

publicly, there is no need for a secure key exchange. However, it is required to distribute the

public key authentically. Because there is no need for pre-shared secrets prior to a

communication, public key techniques are ideal for supporting security between previously

unknown parties. Authentication is achieved by proving possession of the private key. One

mechanism for doing this is digital signature. A digital signature is generated with the private

key and verified using the corresponding public key. Since the public key of a key pair is

usually published in a directory, the overhead associated with distributing keys is reduced

significantly in comparison with secret key techniques.

A main concern in public key distribution is the authenticity of the public key. Figure 5.1

illustrates how an adversary between a sender B and a receiver A can impersonate the receiver

A in the public key encryption scheme. The adversary achieves this by replacing A’s public

key KUA with a false public key KUA' which is then received by B (see Figure 5.1 (1) and (2)).

User B uses the false public key KUA' to encrypt the message M (see Figure 5.1 (3)). The

60

adversary obtains the secret message M (see Figure 5.1 (4)) and delivers the re-encrypted

cipher to user A (see Figure 5.1 (5)). In this way, the secret message M is acquired by both

user A (see Figure 5.1 (6)) and the adversary. Similar impersonation settings exist between the

signer and verifier in the signature schemes. This is the well known man-in-the-middle attack.

The following issue arises from the need to prevent these kinds of attacks: how does B know

(or authenticate) which particular public key is A’s? To answer this question, authentication of

public key distribution is required. Authenticating public keys provides assurance to the entity

that the received public key corresponds to the sender’s identity.

Figure 5.1 The man-in-the-middle attack

5.2.1 Certificate-based Public Key Cryptography

A typical approach to guarantee the authentication of the public key holder relies on a trusted

agent named Certificate Authority (CA). The CA’s digital signature binds entity A’s identity

IDA to the corresponding public key KUA. The CA’s signature, when sent along with the

identity (e.g. name or telephone number) and public key, forms a digital certificate, which can

be verified by any entity in possession of the CA’s public key.

This certificate provides a binding between the identity and the public key. Digital

certificates can contain extra information, such as cryptographic algorithms to be used in

conjunction with the public key in the certificate. The most widely adopted certificate format

is based on the X.509 standard [16]. A basic certificate issued by a CA for entity A is of the

61

form:

Cert ID , KU , Sign _ ID , KU

where SignKR_CA() denotes the signing algorithm with the CA’s private key as the signing

key.

Figure 5.2 The certificate-based public-key distribution

The certificate-based public-key distribution works as follows. User A first chooses a

public key cryptosystem, and generates his/her own key pair (KUA, KRA), where KUA

denotes the public key and KRA is the private key. To attain the authenticity of public-key

distribution, user A has to subscribe to the trusted CA (see Figure 5.2 (1)), and requests a

certificate CertA for his/her public-key from CA (see Figure 5.2 (2)). The CA signs the

certificate with its private key. Then user A can send his/her certificate directly to another user

B (see Figure 5.2 (3)) or put it on the public key directory. Once user B is in possession of A’s

certificate, B verifies the certificate with the CA’s public key and has confidence that the

messages he/she encrypts with A’s public key will be secure from eavesdropping and that

messages signed with A’s private key are unforgeable.

5.2.2 ID-based Public Key Cryptography

Shamir (1984) proposed the ID-based public key approach to support PKC without the use of

certification. In ID-based PKC user A’s public key KUA is not delivered to user B, and

therefore eliminates the attack shown in Figure 5.1. User B encrypts a message for user A or

verifies a signature from user A using a public key which is derived from user A’s identifier

62

IDA (e.g. e-mail address or telephone number; see Figure 5.3 (3)). The trusted agent has a new

role in ID-based public key cryptosystem, and is renamed as the Private Key Generator

(PKG). The PKG issues the private key corresponding to the public key (derived from the

identifier IDA) to user A over a secure channel (see Figure 5.3 (2)). This issuing action takes

place after user A is authenticated by the PKG (see Figure 5.3 (1)). To generate private keys,

the PKG makes use of a master key which must be kept in secret. The requirement to have an

authentic CA’s public key for verifying certificates in certificate-based cryptosystem is

replaced by the requirement to have authentic PKG’s system parameters in ID-based

cryptosystem. Notice that both the PKG and the user A know the private key KRA.

Figure 5.3 The ID-based public-key distribution

5.3 End-to-End Security for SMS

This section first introduces the SMS for GSM [20, 21]. Then we describe the

Rivest-Shamir-Adleman (RSA) and the ID-based encryption mechanisms for SMS.

5.3.1 SMS Architecture

The network architecture of SMS in GSM is illustrated in Figure 5.4. In this architecture, the

short message is first delivered from the MS A (Figure 5.4 (A)) to a Short Message Service

Centre (SM-SC; Figure 5.4 (E)) through the Base Station System (BSS; Figure 5.4 (B)), the

Mobile Switching Centre (MSC; Figure 5.4 (C)) and then the Interworking MSC (IWMSC;

Figure 5.4 (D)). The SM-SC then forwards the message to the GSM network through a

63

specific GSM MSC called the SMS gateway MSC (SMS GMSC; Figure 5.4 (F)). The SM-SC

may connect to several GSM networks and to several SMS GMSCs in a GSM network.

Following the GSM roaming protocol, the SMS GMSC locates the current MSC of the

message receiver and forwards the message to that MSC. The MSC then broadcasts the

message through the BSS to the destination MS B (Figure 5.4 (G)). In Section 5.3.2, we will

describe two encryption mechanisms for end-to-end secure SMS based on certificate-based

and ID-based cryptosystems.

Figure 5.4 GSM SMS network architecture

5.3.2 RSA Mechanism

The most widely implemented approach to public key encryption is the RSA scheme [30].

The RSA scheme is a block cipher in which the original non-ciphered text and cipher text are

integers between 0 and n−1 for some n. That is, the block size kRSA is determined by the bit

length of the integer n and regarded as the key size of the RSA scheme. This scheme consists

of the following three functions:

 Key generation: a user first selects two prime numbers p and q, randomly chooses e with

gcd(e, (p−1)(q−1)) = 1 and calculates d ≣ e−1 mod (p−1)(q−1). Then the public key is

64

KU = (e, n) and the private key is KR = (d, n), where n = pq.

 Encryption: for a given message represented as an integer M < n, the cipher text is

computed by C = M e mod n.

 Decryption: for a given cipher text C, the original non-ciphered text is computed by

M = C d mod n.

Figure 5.5 The RSA procedure for sending an encrypted short message

A RSA mechanism for end-to-end secure SMS is introduced as follows. The End-to-end

Security Service Provider (ESSP) plays a role as the CA in the certificate-based public key

cryptosystem. To access the end-to-end security service, a user first chooses his/her own key

pair (KU, KR) and subscribes to the ESSP for requesting a certificate of his/her public key

KU. The ESSP signs the certificate with its private key and publishes the certificate in the

public key directory for public access. When a mobile user A (the sender) wants to encrypt a

short message to user B, he/she first sends a public key request (see Figure 5.5 (1)) to the

public key directory in short message format. The public key directory retrieves user B’s

certificate. If it succeeds, user B’s certificate is sent to user A as the public key response (see

Figure 5.5 (2)). Once user A is in possession of B’s certificate, he/she verifies the certificate

with the ESSP’s public key and uses the user B’s public key to encrypt short message for B

(see Figure 5.5 (3)). If the request fails (due to unavailability of user B’s certificate), the ESSP

will inform user B to subscribe to end-to-end security service if he/she wants to securely

communicate with user A.

65

5.3.3 ID-based Mechanism

In the above RSA approach, the sender needs to communicate with the public key directory

for requesting the public key. If the request fails (e.g. the directory server is down or there is

no certificate exist for the receiver), the sender cannot encrypt short message for the receiver.

On the other hand, in an ID-based encryption scheme, the sender simply uses the receiver’s

ID (i.e. the telephone number) as his public key without any request and verification. Thus,

the sender does not need to access any public key directory before sending an encrypted short

message.

The first complete and efficient ID-based encryption scheme was proposed by Boneh

and Franklin (2001) which uses a bilinear map called Weil pairing over elliptic curves. The

bilinear map transforms a pair of elements in group G1 and sends it to an element in group G2

in a way that satisfies some properties. The most important property is the bilinearity that it

should be linear in each entry of the pair. Assume that P and Q are two elements (e.g. points

on elliptic curves) of an additive group G1. Let e (P, Q) be the element of a multiplicative

group G2, which is the pairing applied to P and Q. Then the pairing must have the following

property:

e (rP, Q) = e (P, Q) r = e (P, rQ)

where r is an integer and rP denotes the element generated by r times of additions on P, for

example, 2P = P + P, 3P = P + P + P and so on. Weil pairing on elliptic curves is selected as

the bilinear map. That is, the elliptic curve group (the set of point collection on elliptic curves)

is used as G1 and the multiplicative group of a finite field is used as G2.

The ID-based scheme consists of four algorithms: Set-up, Extraction, Encryption and

Decryption. Set-up is run by the PKG to generate the master key and the system parameters.

This is done on input of a security parameter kID, which specifies the bit length of the group

order and is regarded as the key size of the ID-based scheme. The extraction algorithm is

66

carried out by the PKG to generate a private key corresponding to the identity of a user. As

with regular PKC, the encryption algorithm takes a message and a public key as inputs to

produce a cipher text. Similarly, the decryption algorithm is executed by the owner of the

corresponding private key to decrypt the cipher text. These four functions are described as

follows.

 Set-up: with the parameter kID, the algorithm works as follows:

− Generate a random kID-bit prime p, two groups (G1; +); (G2;) of order p, and the

Weil pairing e: G1 ×G2 → G2. Choose an arbitrary generator P G1

− Pick a random number s Zp and set Ppub = sP

− Choose cryptographic hash functions h1: {0, 1}*→G1 and h2: G2→{0, 1}n for

some n.

The public system parameters are {p, G1, G2, e, n, P, Ppub, h1, h2} and the master key s is kept

in secret by the PKG.

 Extraction: for a given string ID {0, 1} as the public key, the algorithm works as

follows:

− compute QID = h1 (ID) G1

− set the private key KR = sQID, where s is the master key held by PKG.

 Encryption: to encrypt a message M under the public key KU = ID, the algorithm works

as follows:

− compute QID = h1 (ID) G1

− choose a random r Zp

− set the cipher text to be C = (U, V) = (rP, M ♁ h2 (e (QID, sP) r)).

 Decryption: to decrypt a cipher C = (U, V) encrypted using the public key KU = ID, the

algorithm uses the private key KR = sQID to compute M = V ♁ h2 (e (sQID,U)). This

decryption procedure yields the correct message due to the bilinearity of the Weil pairing

(i.e. e (sQID,U) = e (sQID, rP) = e (QID, sP) r).

67

Details of Weil pairing for ID-based cryptosystem can be found in [14], and will not be

elaborated further in this chapter.

Figure 5.6 ID-based end-to-end encryption mechanism

Based on an improved algorithm we proposed in [14], an efficient ID-based end-to-end

encryption mechanism for mobile services as illustrated in Figure 5.6. The PKG (Figure 5.6

(1)) constructs the ID-based cryptosystem and uses, for example, the phone number as the ID

(see Figure 5.6 (2)). Every mobile user involved in the ID-based cryptosystem is given a

Subscriber Identity Module (SIM) card (Figure 5.6 (3)) at the subscription time. The ID

(phone number; e.g. 0912345678 in Figure 5.6) and its corresponding private key KR are

loaded in the SIM card by the ESSP. Note that for standard GSM/UMTS service, SIM card is

always given to a mobile user at the subscription time and the proposed ID-based encryption

scheme can be preloaded into the SIM card without incurring any extra overhead. The MS

contains two security modules: ID-based encryption module (Figure 5.6 (4)) and ID-based

68

decryption module (Figure 5.6 (5)). When a mobile user A (the sender; Figure 5.6 (6)) wants

to encrypt a short message to user B (the receiver), A uses B’s phone number 0912345678

(see Figure 5.6 (7)) as the public key and encrypts the message through the ID-based

encryption module. Once user B receives the cipher (the encrypted message), he/she uses the

private key KR (see Figure 5.6 (8)) stored in the SIM card to decrypt the cipher through the

ID-based decryption module and obtain the original non-ciphered message.

To estimate the encryption overheads between the RSA and the ID-based mechanisms,

we implement these two encryption schemes and give the evaluation in the next section.

5.4 Performance Comparison

This section compares the delivery (encryption, decryption and message delivery delay of

ciphered short messages based on the RSA and the ID-based approaches. The experimental

environment is illustrated in Figure 5.7. Both the sender and the receiver are notebooks

(Figure 5.7 (1) and (3)) configured with a Pentium-III 500 MHz CPU, 256MB main memory

and 20GB disk space and are running on the Windows XP Professional operating system. To

deliver short messages, every notebook is plugged in a NOKIA Card Phone version 2.0 and

the short message is sent via the ChungHwa GSM network (Figure 5.7 (2)) from the sender to

the receiver.

Figure 5.7 Encrypted short message experimental environment

We first note that to support the same security level, the key length for the ID-based and

the RSA approaches are different. The ID-based cryptosystem using Weil pairing is over

69

elliptic curves, thus its security level depends on the key length of Elliptic Curve

Cryptosystem (ECC). As listed in Table 5.1 [11], a 108-bit ECC key provides the same

security level as a 512-bit RSA key, a 160-bit ECC key provides the security level equivalent

to a 1024-bit RSA key and a 224-bit ECC key is equivalent to a 2048-bit RSA key. For a fair

comparison, we measure the delivery delays of ID-based system and RSA system over the

same security level, and the results are shown in Figure 5.8.

Table 5.1 Key length for equivalent security levels (in bits)

ECC (ID-based) RSA
108 512
160 1024
224 2048

Figure 5.8 plots delivery delays of the RSA and ID-based approaches for the same

non-ciphered length (in bytes), where the ● curves represent the RSA delivery delays, the

dashed curves represent the ID-based delivery delays and the solid curves represent the

non-ciphered message delays.

Based on the RSA encryption algorithm described in Section 5.3.2, for a non-ciphered

message of length i, the RSA ciphered message length is

where kRSA is the key length of RSA approach. For kRSA = 512,

512 512
1024 512 1024

Therefore, in Figure 5.8 (a), we observe a step curve for the RSA ciphered message delivery.

For kRSA = 1024 and kRSA = 2048, if i ≤ 1024, LRSA (i) is 1024 and 2048, respectively.

Therefore, in Figure 5.8 (b) and (c), we observe horizontal lines for the RSA ciphered

message delivery.

70

(a) 512-bit RSA key and120-bit ID-based key cipher

(b) 1024-bit RSA key and 160-bit ID-based key cipher

(c) 2048-bit RSA key and 224-bit ID-based key cipher

Figure 5.8 Delivery delays of SMS

71

Based on step 3 of ID-based encryption algorithm described in Section 5.3.3, the

ID-based ciphered message length is

4

where kID is the key length of ID-based approach. For a fixed kID, LID (i) increases as i

increases. Therefore, in Figure 5.8 (a)–(c), we observe linear lines for ID-based ciphered

message delivery.

Based on the above delivery delay analysis, Figure 5.8 (a) shows that the ID-based

approach outperforms the RSA approach when the non-ciphered message length is less than

30 bytes or is between 65 and 90 bytes. Figure 5.8 (b) shows that the ID-based approach

outperforms the RSA approach when the non-ciphered message length is less than 79 bytes.

Figure 5.8 (c) shows that the ID-based approach outperforms the RSA approach up to

140-byte message limit of SMS. These figures indicate that as the security level increases, it is

more likely that the ID-based approach outperforms the RSA approach for the SMS

applications.

5.5 Summary

In this chapter, two applicable end-to-end security mechanisms for SMS based on the RSA

scheme and the ID-based scheme are introduced and implemented. The ID-based scheme

provides a greater simplification of key distribution. That is, all public keys can be derived

from the identities of the users. Therefore obtaining someone’s public key, for encryption or

verification, becomes a simple and transparent procedure. This is in contrast to the RSA

scheme, where one has to look up the corresponding certificate and verify the CA’s signature.

Another advantage of the ID-based scheme is the linear scalability of increasing security level.

When the security level increases, the key size of the RSA scheme increases faster than that of

the ID-based scheme and may not be practical for the SMS applications. Our study concludes

72

that the ID-based scheme offers a convenient end-to-end security mechanism for mobile

service such as SMS.

73

Chapter 6.

Conclusions and Future Work

The IP Multimedia Core Network Subsystem (IMS) provides the IP multimedia services on

the Universal Mobile Telecommunications System (UMTS) all-IP network. To increase

revenues via third party applications and service providers with IMS, the Open Service Access

(OSA) platform is proposed. OSA provides unified service creation and execution

environments to speed up service deployment that is independent from the underlying UMTS

and IMS network technologies. In the UMTS all-IP network, Authentication, Authorization,

and Accounting (AAA) and security mechanisms are two important issues. Before providing

IMS services, the OSA applications should mutually authenticate with the OSA Framework.

For secure IMS service access, the Mobile Station (MS) should perform the AAA and security

mechanisms with the UMTS all-IP network. In this dissertation, we first described the OSA

platform development and the mutual authentication with Framework. Then we investigated

the AAA and security mechanisms performed between the MS and UMTS all-IP network.

This chapter concludes our work in Section 6.1, and briefly discusses directions of the future

work in Section 6.2.

6.1 Conclusions

In Chapter 2, we described a CORBA-based OSA system we designed and developed in

CCL/ITRI. We showed how OSA Application Programming Interface (API) interfaces and

functions can be implemented by CORBA mechanism. Then we used the authentication

procedure for initial access to illustrate how CORBA mechanism works for CCL OSA. Based

on this CORBA mechanism, an OSA Application Server (AS) architecture is proposed. In this

74

architecture, a new application is created by implementing the appLogic module that invokes

the SCFs through the appService modules and appService callback modules. When the existing

SCFs are reused for new services, the corresponding appService and appService callback

modules for accessing these SCFs can also be reused. Through this modulized AS design, the

service deployment can be sped up.

For secure IMS service access, Chapters 3 and 4 described the AAA and security

mechanisms between the Mobile Station (MS) and the wireless access networks. However, the

execution of AAA mechanism on handoff may incur long delay and result in force-termination

for real-time services. In Chapter 3, we illustrated the IEEE 802.11r transition process for

WLAN, where a three-level key hierarchy was proposed to speed up the transition process

without executing the expensive IEEE 802.1X authentication for some scenarios. The IEEE

802.11r transition process requires the assignment of unique Mobility Domain Identities

(MDIDs) worldwide. However, how to guarantee the uniqueness of MDID is not clear. We

proposed a mechanism that does not need MDID, and therefore MDID management is

eliminated. This mechanism also saves four message exchanges incurred in the original fast

BSS transition when MDID ambiguity occurs.

Chapter 4 proposed a key caching mechanism to speed up the inter-Access Service

Network Gateway (ASN-GW) handoff for mobile WiMAX. With this mechanism, when an MS

leaves the old ASN-GW, the MS key record (e.g., the Master Session Key (MSK)) is cached in

the old ASN-GW. If the MS returns to the old ASN-GW before the MSK lifetime expires, it can

reuse the MSK without executing the IEEE 802.1X authentication. On the other hand, the old

ASN-GW consumes extra storage to maintain the MS key records when the MS leaves the old

ASN-GW. Thus, we investigated how the period T of the MSK lifetime affects the key caching

performance by an analytic model and simulation experiments. We showed that the caching

mechanism can effectively speed up the inter-ASN-GW handoff. This chapter also observed

that the Exponential T outperforms the fixed T in most cases. Moreover, for the reused key

75

period, the Exponential T is not affected by the variance of MS residence period in new

ASN-GWs, and is more suitable for telecommunications system.

The end-to-end security mechanism between the MS and the OSA AS is also an

important security issue in the IMS network. To address this issue, Chapter 5 illustrated the

end-to-end secure Short Message Service (SMS) service. In this chapter, two applicable

end-to-end security mechanisms for SMS based on the RSA scheme and the ID-based scheme

are introduced and implemented. The ID-based scheme provides a greater simplification of

key distribution by reducing the procedure of obtaining someone’s public key. Another

advantage of the ID-based scheme is the linear scalability of increasing security level. Our

study concludes that the ID-based scheme offers a convenient end-to-end security mechanism

for mobile service such as SMS.

6.2 Future Work

Based on the research results of this dissertation, the following issues can be investigated

further:

OSA AS Level Authentication: In this dissertation, we demonstrated that the MS should

perform the mutual authentication procedure with the AAA server before associating to

the wireless access networks. However, before the MS accesses the OSA AS for service,

other authentication procedures may be performed between the MS and the IMS network

and between the MS and the OSA AS. In these procedures, the authentication

information is most likely retrieved from the HSS/AuC to authenticate the MS. To reduce

the redundant authentication, we should integrate these authentication procedures.

Moreover, the integrity solution should correctly authenticate the MS with the AAA

server and the OSA AS.

AAA Mechanism: In the real world, the MS movement may exhibit locality in user’s living

space, and many MSs are likely to move back to the old ASN-GW in a short period of

76

time. For example, a person works in an office for 8 hours, and during the work time, he

may leave his office 1 hour for lunch, afternoon tea, or meeting. For this kind of

occasionally irregular user’s behavior, our key caching mechanism will result in good

performance. However, if the ASN-GWs cover the BSs in the highways, the IEEE

802.1X authentication still should be performed when the MS handoff to a new

ASN-GW. For smooth real-time service access, a fast inter-authenticator handoff

mechanism is needed to reduce the handoff latency without cached MSK. Then we will

estimate the new mechanism and the caching mechanism against the MS moving

behavior, and show how to select appropriate mechanism.

Security Mechanism: After authentication with the AAA server, the MS should perform the

security mechanism with the wireless access networks. In both IEEE 802.11r WLAN and

mobile WiMAX, the MSK is stored in the authenticator and reused to generate the

encryption key (i.e., PTK and TEK) for intra-MD handoff and intra-ASN-GW handoff,

respectively. The security mechanism is implemented in a two-level key hierarchy in

mobile WiMAX network (i.e., ASN-GW and BS), and is implemented in a three-level

key hierarchy in IEEE 802.11r WLAN (i.e., R0HK, R1HK, and AP). In the three-level

key hierarchy, the key retrieval procedure form authenticator is omitted in some scenario

(see Step 5 in Figure 4.4). Thus the handoff procedure is further speed up. However,

extra equipments are required to maintain the security keys (i.e., R1KHs). To prevent the

force-termination of real-time service, how to efficiently reduce the handoff latency

without maintaining extra equipments is an important issue. We will propose analytic

and simulation models to investigate this issue, and show how to select appropriate key

hierarchy for various wireless access network environments.

Key Caching Mechanism: In this dissertation, we propose a key caching mechanism to speed

up the inter-ASN-GW handoff for mobile WiMAX. When an MS leaves the old ASN-GW,

the MS key record is cached in the old ASN-GW before the key lifetime expire. However,

77

when the MSK lifetime T ∞, the old ASN-GW will keep the unused MS key record

for a long time if the MS will not return. To solve this problem, after the departure of the

MS, the old ASN-GW should keep the MS key record for a time interval called the key

caching period instead of the residual MSK lifetime. This key caching period is assigned

by the ASN-GW to prevent from caching unused MS key record for a long time. We

should propose an analytic model to investigate the impact of the key caching period on

the performance.

78

Appendix A.

OSA-based Push to Talk over Cellular Service

This appendix uses the Push to Talk over Cellular (PoC) service to illustrate how the OSA

Application Server (AS) interacts with the Service Capability Features (SCFs). Details of the

OSA architecture and functionalities are described in Sections 1.2, 2.1, and 2.5. This appendix

is organized as follows. Section A.1 introduces the PoC service. Section A.2 shows the OSA

AS architecture for PoC service. Section A.3 describes PoC session establishment and

termination procedures.

A.1 Introduction to Push to Talk over Cellular

The PoC service is a walkie-talkie like service defined by the OMA PoC working group [25]. A

PoC session consists of connections among the participants defined in a PoC group. The session

is half duplex; that is, at any time, only one participant can speak and all other participants can

only listen. When two or more participants attempt to speak, they are arbitrated by a centralized

floor control mechanism to select a speaker. In current OMA PoC v2.0 release specification

[26], Session Initiation Protocol (SIP) is used for session management [33] and both Real-Time

Transport Protocol (RTP) and Real-Time Transport Control Protocol (RTCP) are used for

media streams transport and control [34].

A PoC group is a predefined set of participative members. The addresses of these members

are maintained in the group member list. The attributes of a PoC group include the display name

(the nickname for the group), PoC address (the identifier of the PoC group), etc. There are two

alternatives to specify a PoC address: a Telephone Uniform Resource Identifier (TEL URI; e.g.,

tel:+886-3-5131350) or a SIP URI (e.g., sip:poc_Lab117@pcs1.csie.nctu.edu.tw). The

79

group member list and the group attributes are maintained in the Group and List Management

Server (GLMS). Note that, in OMA PoC v2.0 release specification, the GLMS server has been

replaced by three components: shared list XML Document Management Server (XDMS),

Group XDMS, and aggregation proxy. The shared list XDMS manages user information; e.g.,

phone book. The group XDMS manages the group member list and the group attributes. The

aggregation proxy is the contact point for the PoC participants to access the XDMSs, and the

PoC participants should be authenticated by the aggregation proxy.

A.2 OSA AS Architecture for PoC Service

To offer the PoC service, the AS first accesses the FW, and then communicates with two SCFs:

PoC SCF and GLMS SCF. The PoC SCF provides methods to create and control PoC sessions.

The GLMS SCF supports methods to retrieve and manage user and group information stored in

the GLMS server. The relationship among the FW, SCFs and the AS modules is illustrated in

Figure A.1.

Figure A.1 Application server architecture for PoC Service

 The appLogic module (Figure A.1 (a)) implements the PoC service by integrating the

services supported by the FW, the PoC SCF, and the GLMS SCF.

 The appFW module (Figure A.1 (b)) accesses the FW to execute the authentication,

80

service discovery, and service agreement establishment procedures.

 The appFW callback module (Figure A.1 (c)) provides interfaces to be called back by the

FW. Details of these callback interfaces can be found in [3]. In the authentication example

described in Section 2.6, this module provides the IpClientAPILevel- Authentication

interface for the FW to authenticate the AS.

 The appGLMS module (Figure A.1 (d)) accesses the GLMS server through the GLMS

SCF.

 The appGLMS callback module (Figure A.1 (e)) provides callback interfaces to the

GLMS SCF. Through these interfaces, the GLMS SCF can pass the results to the AS after

accessing the GLMS server.

 The appPoC module (Figure A.1 (f)) manages and establishes the PoC sessions by

accessing the PoC SCF.

 The appPoC callback module (Figure A.1 (g)) provides callback interfaces. The PoC SCF

uses these interfaces to report specific events to the AS. In our implementation, three

callback interfaces are provided. The IpAppPoCCallControlManager interface provides

the management functions for PoC service (see Steps 6, 19, and 30 in Figure A.2). The

IpAppPoCCall interface provides the PoC SCF with the control management functions

for PoC sessions (see Step 4 in Figure A.3). The IpAppPoCCallLeg interface is used to

receive specific events of group members from the PoC SCF (see Step 26 in Figure A.2

and Step 1 in Figure A.3).

PoC session establishment consists of four stages:

Stage 1. The appLogic module accesses the FW to perform mutual authentication, service

discovery, and service agreement establishment through appFw and appFw callback

modules. After this stage, the AS obtains the object references for the PoC SCF and the

GLMS SCF. The details are described in Section 2.6.

Stage 2. The appLogic module requests the appPoC callback module to provide the callback

81

interface IpAppPoCCallControlManager through the appPoC module. With this

callback interface, the PoC SCF notifies the appLogic module when a PoC session request

occurs. The details are described in Section A.3.

Stage 3. When receiving a request, the appLogic module retrieves the group member list by

accessing the GLMS SCF through the appGLMS and the appGLMS callback modules or

by accessing the AS database.

Stage 4. After the group member list is obtained, the appLogic module establishes the PoC

session for members in the list through the appPoC and the appPoC callback modules. The

details are described in Section A.3.

A.3 PoC Session Establishment

In our OSA-based PoC design, the AS first sets up the callback interface

IpAppPoCCallControlManager (see Steps 1 ~ 3 in Figure A.2) and subscribes notifications

for specific PoC-related events from the PoC SCF (see Steps 4 and 5 in Figure A.2). With this

subscription, when a PoC event (e.g., PoC session establishment request) occurs at the SCS, a

notification will be sent to the AS. When receiving an event notification from the PoC SCF (see

Step 6 in Figure A.2), the AS starts to initiate a PoC session. In the following example, a PoC

session for PoC group with the display name “Lab117” is requested to be established. This

group is identified by the SIP URI “sip:poc_Lab117@pcs1.csie.nctu.edu.tw”, which

contains two members: party A and party B. The PoC session establishment procedure is

described in the following steps (see Figure A.2).

Step 1. The AS control logic appLogic invokes appPoC function setCallback-

ForIpAppPoCCallControlManager. This function instructs appPoC to generate the

IpAppPoCCallControlManager interface object and to pass the object reference to the

PoC SCF. The IpAppPoCCallControlManager interface provides management

functions for PoC service (e.g., function reportMediaNotificationWithGroupID invoked

82

Figure A.2 Message flow for PoC session establishment

83

at Step 6, function initiatePoCCallWithMediaRes invoked at Step 19, and function

addMemberRes invoked at Step 30).

Step 2. appPoC creates the IpAppPoCCallControlManager object to provide the callback

functions to be called by the PoC SCF.

Step 3. appPoC invokes function setCallback to pass the reference of IpAppPoCCall-

ControlManager to the PoC SCF. Through this reference, the PoC SCF invokes the

callback functions at Steps 6, 19, and 30.

Steps 4 and 5. appLogic invokes the PoC SCF function createMediaNotification through

appPoC to request notifications for specific PoC-related events (e.g., the PoC SCF

receives a session request for a PoC group).

Step 6. Suppose that PoC party A attempts to establish a PoC session with group Lab117 that

has the SIP URI “sip:poc_Lab117@pcs1.csie.nctu.edu.tw”. The PoC SCF invokes the

callback function reportMediaNotificationWithGroupID to notify the AS of this PoC

session request. This notification includes the media stream information for party A (e.g.,

codec, the algorithm for compressing and decompressing voice information, such as

G.711, G.723, etc) and the SIP URIs of both party A and group Lab117.

Step 7. IpAppPoCCallControlManager creates the PoCCall object to store information

associated with this new PoC session (e.g., SIP URIs of the PoC group and group members,

media stream information, the interface object references related to this session in both the

PoC SCF and the AS, etc).

Steps 8 and 9. PoCCall generates the IpAppPoCCall object and the IpAppPoCCallLeg

object for party A (i.e., IpAppPoCCallLeg (A) in Figures A.2 and A.3). IpAppPoCCall

provides the PoC SCF with the session control management functions (e.g., function

callEnded invoked at Step 4 in Figure A.3). IpAppPoCCallLeg (A) is used to receive

specific events of party A from the PoC SCF.

Steps 10 and 11. Both interface object references generated at Steps 8 and 9 are stored in

84

PoCCall and passed back to the PoC SCF as the return values of function

reportMediaNotificationWithGroupID invoked at Step 6.

Steps 12 and 13. IpAppPoCCallControlManager invokes function newPoCCall through

appPoC to notify appLogic of the PoC session request.

Step 14. appLogic retrieves the group member list of the requested group Lab117. The list can

be obtained from the GLMS server through the GLMS SCF or from the AS database.

Step 15. After the group member list (i.e., SIP URIs of party A and party B) is obtained,

appLogic stores it in PoCCall through function addCallParty.

Step 16. appLogic invokes the PoCCall function start to establish the PoC session.

Steps 17 and 18. PoCCall invokes the PoC SCF function initiatePoCCallWith- MediaReq

through appPoC. This function asks the PoC SCF to reserve resources for the PoC session

and party A; e.g., reserve a RTP port to transmit media streams to party A.

Steps 19 - 21. When the resources for the PoC session and party A are reserved, PoC SCF

invokes the callback function initiatePoCCallWithMediaRes through the IpAppPoC-

CallControlManager and appPoC to inform PoCCall that the resources are reserved

successfully.

Step 22. PoCCall generates the IpAppPoCCallLeg object for party B (i.e., IpAppPoC-

CallLeg (B) in Figures A.2 and A.3). This object is used to receive party B related events

from the PoC SCF (e.g., function callLegEnded invoked at Step 1 in Figure A.3).

Step 23. PoCCall invokes function createCallLeg and passes the callback reference of

IpAppPoCCallLeg (B) to the PoC SCF.

Step 24. PoCCall invokes the PoC SCF function mediaStreamMonitorReq. This function

requests the PoC SCF to report the media stream information of party B to the AS when

party B joins in the PoC session (see Steps 26 and 27).

Step 25. To invite party B to join in the session, PoCCall invokes the PoC SCF function

routeReqWithGroupID. This function requests the PoC SCF to deliver the invite

85

message to party B.

Steps 26 and 27. When party B joins in the session, the media stream information of party B is

passed to the PoC SCF. The PoC SCF invokes the callback function mediaStream-

MonitorRes through IpAppPoCCallLeg (B) to notify PoCCall about the media stream

information for party B.

Steps 28 and 29. PoCCall invokes the PoC SCF function addMemberReq through appPoC

to reserve resources for party B; e.g., a RTP port to transmit media streams to party B.

Steps 30 - 32. The PoC SCF invokes the callback function addMemberRes through

IpAppPoCCallControlManager and appPoC to inform PoCCall that the resources

have been reserved for party B.

At this moment, the PoC session is successfully established for parties A and B. To end a PoC

session, the PoC session termination procedure is executed (see Figure A.3). The details are

given below.

Figure A.3 Message flow for PoC session termination

86

Steps 1 and 2. When party B leaves the PoC session, the PoC SCF invokes callback function

callLegEnded through IpAppPoCCallLeg (B) to notify PoCCall that party B has left.

Step 3. PoCCall invokes the function destroy of IpAppPoCCallLeg (B) to destroy this

object.

Steps 4 and 5. When the last party leaves the session (i.e., party A in this example), the PoC

SCF invokes the callback function callEnded through IpAppPoCCall to notify PoCCall

of the leaving for the last party.

Steps 6 and 7. Since all call parties have left, PoCCall invokes functions destroy of both

IpAppPoCCallLeg (A) and IpAppPoCCall to destroy these objects.

Step 8. PoCCall invokes the appPoC function callEnded to notify the end of the PoC session.

Step 9. appPoC invokes the PoCCall function destroy to delete this PoCCall object.

Step 10. appPoC invokes the appLogic function callEnded to notify the end of the PoC

session.

87

Bibliography

[1] 3GPP. Third Generation Partnership Project; Technical Specification Group Services and

Systems Aspects; Virtual Home Environment/Open Service Access. 3G TS 23.127 v6.1.0,

2004.

[2] 3GPP. Third Generation Partnership Project; Technical Specification Group Core

Network; Open Service Access (OSA); Application Programming Interface (API); Part 1:

Overview; (Release 6). 3G TS 29.198-1 v6.3.1, 2004.

[3] 3GPP. Third Generation Partnership Project; Technical Specification Group Core

Network; Open Service Access (OSA); Application Programming Interface (API); Part 3:

Framework. 3G TS 29.198-03 v6.4.0, 2005.

[4] 3GPP. Third Generation Partnership Project; Technical Specification Group Services and

Systems Aspects; Service Requirement for the Open Service Access (OSA); Stage 1. 3G

TS 22.127 v7.0.0, 2005.

[5] Bargh, M.S., Hulsebosch, R.J., Eertink, E.H., Prasad, A., Wang, H., and Schoo, P. Fast

Authentication Methods for Handovers between IEEE 802.11 Wireless LANs. ACM

WMASH 2004, 51-60, 2004.

[6] Berndt, H., Hamada, T., and Graubmann, P. TINA: Its Achievements and Its Future

Directions. IEEE Communications Surveys and Tutorials, 3(1): 2-11, 2000.

[7] Boneh, D., and Franklin, M. Identity-based Encryption from the Weil Pairing. Advances

in Cryptology-CRYPTO’01, 2139: 213–239, 2001.

[8] Chang, M.-F., Wu, L.-Y., and Lin, Y.-B. Performance Evaluation of a Push Mechanism

for WLAN and Mobile Network Integration. IEEE Transactions on Vehicular

Technology, 55(1): 380-383, 2006.

[9] Chen, J.-H., Pang, A.-C., Sheu, S.-T., and Tseng, H.-W. High Performance Wireless

88

Switch Protocol for IEEE 802.11 Wireless Networks. ACM Mobile Networking and

Applications, 10(5): 741-751, 2005.

[10] Eastlake, D., and Jones, P. US Secure Hash Algorithm 1 (SHA1). IETF RFC 3174, 2001.

[11] Hankerson, D., Menezes, A., and Vanstone, S. Guide to Elliptic Curves Cryptography.

Springer-Verlag, 2004.

[12] Haverinen, H., and Salowey, J. Extensible Authentication Protocol Method for Global

System for Mobile Communications (GSM) Subscriber Identity Modules (EAP-SIM).

RFC 4186, 2006.

[13] Hung, H.-N., Lin, Y.-B., Lu, M.-K., and Peng, N.-F. A Statistic Approach for Deriving

the Short Message Transmission Delay Distributions. IEEE Transactions on Wireless

Communications, 3(6): 2345-2352, 2004.

[14] Hwu, J.-S., Chen, R.-J., and Lin, Y.-B. An Efficient Identity-based Cryptosystem for

End-to-end Mobile Security. IEEE Transactions on Wireless Communications, 5(9):

2586-2593, 2006.

[15] IEEE. IEEE Standard for Information Technology - Telecommunications and

Information Exchange between Systems - Local and Metropolitan Area Networks -

Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications Amendment 2: Fast Basic Service Set (BSS)

Transition. IEEE Standard 802.11r, 2008.

[16] ITU-T Recommendation X.509. Information Technology - Open Systems

Interconnection - the Directory: Public-key and Attribute Certificate Frameworks. ITU-T,

2000.

[17] Kassab, M., Belghith, A., Bonnin, J.-M., and Sassi, S. Fast Pre-Authentication based on

Proactive Key Distribution for 802.11 Infrastructure Networks. ACM Wireless

Multimedia Networking and Performance Modeling, October 2005.

[18] Kleinrock, L. Queueing System Volume 1: Theory. John Wiley & Sons, 1976.

89

[19] Lin, Y.-B. Performance Modeling for Mobile Telephone Networks. IEEE Network, 11(6):

63-68, 1997.

[20] Lin, Y.-B., and Chlamtac, I. Wireless and Mobile Network Architectures. John Wiley and

Sons, 2001.

[21] Lin, Y.-B., and Pang, A.-C. Wireless and Mobile All-IP Networks. Wiley, 2005.

[22] Ma, W., Fang, Y., and Lin, P. Mobility Management Strategy based on User Mobility

Patterns in Wireless Networks. IEEE Transactions on Vehicular Technology, 56(1):

322-330, 2007.

[23] Madson, C., and Glenn, R. The Use of HMAC-SHA-1-96 within ESP and AH. IETF

RFC 2404, 1998.

[24] Moerdijk, A.-J., and Klostermann, L. Opening the Networks with Parlay/OSA: Standards

and Aspects behind the APIs. IEEE Network, 17(3):58-64, 2003.

[25] Open Mobile Alliance. Push to Talk over Cellular (PoC) – Architecture. OMA-AD-PoC-

V2_0-20080507-C, 2008.

[26] Open Mobile Alliance. PoC User Plane. OMA-TS-PoC_UserPlane-V2_0-20080507-C,

2008.

[27] Pang, A.-C., and Chen, Y.-K. A Study on Availability of Mobility Databases.

International Conference on Information Networking (ICOIN), 195-200, 2004.

[28] Pyarali, I., and Schmidt, D.C. An Overview of the CORBA Portable Object Adapter.

ACM StandardView Magazine, 6(1):30-43, 1998.

[29] Qian, Y., Hu, R.-Q., and Chen, H.-H. A Call Admission Control Framework for Voice

over WLANs. IEEE Wireless Communications, 13(1): 44-50, 2006.

[30] Revest, R., Shamir, A., and Aldeman, L. A Method for Obtaining Digital Signature and

Public Key Cryptosystems. Communication of the ACM, 21(2): 120-126, 1978.

[31] Rong, B., Qian, Y., Lu, K., Chen, H.-H., and Guizani, M. Call Admission Control

Optimization in WiMAX Networks. IEEE Transactions on Vehicular Technology, 57(4):

90

2509-2522, 2008.

[32] Ross, S.M. Stochastic Processes. John Wiley & Sons, 1996.

[33] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., and Schooler, E. SIP: Session Initiation Protocol. IETF RFC 3261, 2002.

[34] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. RTP: A Transport Protocol

for Real-Time Applications. IETF RFC 3550, 2003.

[35] Shamir, A. Identity-based Cryptosystems and Signature Schemes. Advances in

Cryptology–CRYPTO’84, 196: 47-53, 1984.

[36] Stallings, W. Cryptography and Network Security. Prentice Hall, 1999.

[37] Walkden, M., Edwards, N., Foster, D., Jankovic, M., Odadzic, B., Nygreen, G., Moiso,

C., Tognon, S.M., de Bruijn, G. Open Service Access: Advantages and Opportunities in

Service Provisioning on 3G Mobile Networks Definition and Solution of Proposed

Parlay/OSA Specification Issues. Project P1110 Technical Information EDIN 0266-1110,

2002.

[38] WiMAX Forum. WiMAX Forum Network Architecture, Stage 3: Detailed Protocols and

Procedures. WiMAX Forum, Release 1.1.0, 2007.

[39] Yang, S-R. Dynamic Power Saving Mechanism for 3G UMTS System. ACM/Springer

Mobile Networks and Applications (MONET), 12(1): 5-14, 2007.

91

Publication List

 Journal Publications

1. Chou, C.-M., Hsu, S.-F., Lee, H.-Y., Lin, Y.-C., Lin, Y.-B., and R.S. Yang. CCL

OSA: A CORBA-based Open Service Access System. International Journal of

Wireless and Mobile Computing, 1(3/4): 289-295, 2006.

2. Hwu, J.-S., Hsu, S.-F., Lin, Y.-B., and Chen, R.-J. End-to-end Security Mechanisms

for SMS. International Journal of Security and Networks, 1(3/4): 177-183, 2006.

3. Hsu, S.-F., Lin, Y.-C., and Lin, Y.-B. An OSA Application Server for Mobile

Services. International Journal of Pervasive Computing and Communications,

3(1/2): 102-113, 2007.

4. Hsu, S.-F., and Lin, Y.-B. Selecting Transition Process for WLAN Security. Wireless

Communications and Mobile Computing, 8(7): 921-925, 2008.

5. Hsu, S.-F., and Lin, Y.-B. A Key Caching Mechanism for Reducing WiMAX

Authentication Cost in Handoff. Accepted and to appear in IEEE Transitions on

Vehicular Technology.

