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摘要 

 
    製程能力指標是藉由一個指標值來衡量製程的能力與產品的品質，過去學者

對於以製程能力指標來衡量兩家供應商製程的問題已經提出了一些方法。然而，

依據製程能力指標 pmkC  於供應商選取的問題目前尚未被研究。這個指標的建構

結合了 pkC  與 pmC  兩個指標的優點，同時考量到製程良率以及製程損失的特

性。本篇論文的研究目的就是在兩家相互競爭的供應商之間選出一家具有較好製

程能力的供應商，並建立了一個依據 pmkC  指標的決策程序供使用者於決策時使

用。本研究是應用複式抽樣的方法針對兩供應商之製程間的檢定統計量來估計信

賴下界，藉由比較四種複式抽樣信賴區間的錯誤機率和篩選檢定力後，結果發現

以偏誤校正的比例複式抽樣法 (BCPB) 在相同的樣本數下有較穩定的錯誤機率以

及比較顯著的篩選檢定力。所以在這四種複式抽樣方法中，BCPB 之複式抽樣法為

表現比較好的方法。 最後，為了實務應用上的便利，我們提供一個供應商選取程

序作為選取決策之參考。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
關鍵字：製程能力分析、供應商選擇、複式抽樣法、錯誤機率、篩選檢定力。 
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Abstract 

Process capability indices (PCIs) intended to provide single-number 

assessments of ability to meet specification limits on quality characteristics. Many 

individuals have indicated various approaches for supplier selection or process 

comparison problem based on PCIs. However, the method of supplier selection 

based on process capability index pmkC  is not yet investigated. The index is 

constructed by combining the yield-based index pkC  and the loss-based index pmC , 

taking into account the process yield as well as the process loss. The principal 

purpose of this thesis is to determine the more capable process between two 

competing suppliers and provide the supplier selection procedure based on pmkC  

index for practical applications. In this study, we apply the bootstrap method, a 

data-based simulation technique, to construct lower confidence bound for the 

statistics between two suppliers. A comparison among four bootstrap methods is 

also analyzed by evaluating the error probability and the selection power. The result 

indicates that the BCPB method is the better approach among four bootstrap 

methods for process comparison due to its stable error probability and larger 

selection power with a fixed sample size. Finally, for convenience of applications, a 

practical step-by-step testing procedure for engineers is implemented to refer to 

supplier selection decisions.  

 

 

Key words: bootstrap method, error probability, process capability indices,  

selection power, supplier selection.     
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Notations 
 
 

T  : target 
 

LSL    : the lower specification limits preset by the process engineers 
 

USL  : the upper specification limits preset by the process engineers 
 

d  : the half specification width 
 

m  : the midpoint between the upper and the lower specifications limits  
 

μ  : the population mean 
 

2σ  : the population variation 
 

σ  : the population standard deviation 
 

%NC  : the fraction of Non-Conformities 
 

n  : the number of the sample size drawn from suppliers 
 

B  : the number of bootstrap resamples 
 

N  : simulation replicated times 
 

1
ˆ

pmkC  : the 1
ˆ

pmkC  of bootstrap resamples from supplier I 

 

2
ˆ

pmkC  : the 2
ˆ

pmkC  of bootstrap resamples from supplier II 

 
θ  : the difference or the ratio of two suppliers’ pmkC  index 

 

θ̂  : the estimator of θ  
 

*θ̂  : the associated ordered bootstrap estimate of θ  
 

*θ̂  : the sample average of the  bootstrap estimates B
 

*Sθ  : the standard deviation of the  bootstrap  estimates B
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1. Introduction 

 

1.1 Motivation 

  Over past decades, there are remarkable developments in the field of process 

capability indices (PCIs). PCIs are intended to provide single-number assessments 

of ability to meet specification limits on quality characteristics (Kotz and Johnson 

(2002)). On the other hand, the trend of vertical integration between suppliers and 

manufacturers has been developed. Supplier selection problem plays a critical role 

in modern manufacturing environment. It has been proposed that process 

capability index is the most precise and effective assessment for the determination 

of the better supplier.  

  Many individuals have indicated various approaches for supplier selection or 

process comparison problem based on PCIs. For the index pC , Tseng and Wu     

(1991) and Chou (1994) used modified likelihood ratio and likelihood ratio test 

respectively to compare processes. For the index pkC , Chen ant Tong (2003) 

constructed the biased corrected percentile bootstrap (BCPB) confidence interval 

of ( 1 2pk pkC C− ) to select the better of two suppliers and Daniels et al. (2005) 

accessed the Bonferroni method to select suppliers. For the index pmC , Huang 

and Lee (1995), Pearn et al. (2004) and Chen and Chen (2004a) suggested looking 

for the smallest 2 2 2( ) ( 2)E X T Tγ σ= − = + −μ , two-phase selection procedure 

and ratio test method respectively for supplier selection. Although a lot of 

investigation on supplier selection based on PCIs has been done so far, discussion 

relative to the subject based on the index pmkC  has not been concentrated on. 

With the merit of combining process yield and process loss, more studies need to 

be conducted for the method of supplier selection based on pmkC  index.      

 

1.2 Research Objectives  

  The purpose of this thesis is to determine the more capable process between 

two competing suppliers based on pmkC  index. Owing to the complexity of 

sampling distribution, we apply the bootstrap method, a data-based simulation 

technique, to construct lower confidence bound for the statistics between two 

suppliers. A comparison among four bootstrap methods is also analyzed by 

evaluating the error probability and the selection power. After the analysis of the 

 1



simulation outcome, this study provides sample size tables for conducting 

hypothesis test and the supplier selection procedure based on pmkC  index for 

current manufacturing industries. 

 

1.3 Research Structure 

In this section, it has been shown a brief review of our research about 

bootstrap approach for supplier selection based on process capability index pmkC . 

A summary of the substance for each chapter is presented below; and further, the 

research structure is illustrated in Figure 1.   

Ch1. Introduction: Serve as an orientation for readers to understand summary 

knowledge about PCIs and bootstrap. 

Ch2. Literature review: A review of the characteristics and formulations of PCIs 

in the first part. For the second part, review papers about supplier selection based 

on PCIs has been summarized.    

Ch3. Selection Method: Introduce the approach of formulating hypothesis tests 

and bootstrap sampling methodology. 

Ch4. Performance Comparison of Four Bootstrap Methods: Apply simulation 

technique to compare four bootstrap methods based on error probability and 

selection power analysis. 

Ch5. Supplier Selection Based on BCPB Method: According to the results of 

performance comparison in Chapter 4, sample size tables and selection procedure 

are provided. 

Ch6. Application Example: Take an example from FPC industry to illustrate 

supplier selection method in this thesis. 

Ch7. Conclusion: Take a broad look at our findings for the specific supplier 

selection problem.  
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Figure 1. Illustration of  research structure. 
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2. Literature Review 

2.1 Process Capability Indices 

Process Capability Indices are intended to provide single-number 

assessments of ability to meet specification limits on quality characteristics (Kotz 

and Johnson (2002)). It has been proposed in the manufacturing industry to 

measure on whether a process is capable of reproducing items or not. A review in 

this section is going to describe some and current development in PCIs. The use 

of process capability indices began in United States during early 1980s. Many 

authors have promoted the use of various PCIs for evaluating a supplier’s process 

capability. Examples include Boyles (1991), Pearn et al. (1992), Kushler and 

Hurley (1992), Kotz and Johnson (1993), Vännman and Kotz (1995), Vännman 

(1997), Kotz and Lovelace (1998), Pearn et al. (1998), Kotz and Johnson (2002), 

Pearn and Shu (2003) and references therein.  A general acceptance of the idea 

that PCIs can be used only after it have been established that a process is in 

statistical control and an assumption that the measured characteristics should 

have a normal distribution (at least, approximately). Four well-known capability 

indices have been defined respectively as (Juran (1974), Pearn et al. (1998), Kane 

(1986), and Hsiang and Taguchi (1985)): 

6p

USL LSL
C

σ
−

= ,                                        

| |
1a

m
C

d
μ −

= −  ,                                       

   
| |

=min ,
3 3 3pk

USL LSL d m
C

μ μ μ
σ σ σ

⎧ ⎫− − − −
=⎨ ⎬

⎩ ⎭
, 

2 26 (
pm

USL LSL
C

Tσ μ )

−
=

+ −
,                                    

where μ  is the process mean,  is the upper specification limit,  is the 

lower specification limit, 

USL LSL

σ  is the process standard deviation,  is target value, T

( ) 2d USL LSL= − , and ( ) 2m USL LSL= + . The pC  index reflects product 

consistency by evaluating the overall process variability relative to the 

manufacturing tolerance. The  index measures the degree of process centering, 

which can be regarded as a process accuracy index. The 
aC

pkC  index evaluates 

process variation and the location of the process mean to offset some of the 

weakness in pC  and , which is a yield-based index (see Boyles (1991)) 

providing lower bounds on process yield. The 
aC

pmC  index incorporate with the 

variation of production items with respect to the target value and specification 

limits preset in the factory. Since the design is based on the average process loss, 
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which has been called the Taguchi index. 

Many process capability indices, such as pC , , aC pkC  and pmC , have been 

proposed to provide numerical measures. Combining the advantages of these 

indices, Pearn et al. (1992) introduced a new capability index called pmkC . It is 

2 2 2 2
min ,

3 ( ) 3 ( )
pmkC

T Tσ μ σ μ
= ⎨ ⎬

+ − + −⎪ ⎪⎩ ⎭

USL LSLμ μ⎧ ⎫− −⎪ ⎪
. 

It is constructed by combining the yield-based index pkC  and the loss-based 

index pmC , taking into account the process yield as well as the process loss. 

When the process mean μ  depart from the target value T, the reduced value of 

pmkC  is more significant than those of pC , pkC  and pmC . And it remains 

sensitive to the shift of process variation. Clearly p pk pmkC C C≥ ≥  and 

p pm pmkC C C≥ ≥ . The relation between  pkC  and pmC  is less clearcut. If the 

process meets the capability requirement ‘ ’, then the process must meet 

both capability requirements ‘ ’ and ‘ ’ since 
pmkC ≥C

C CpkC ≥ pmC ≥ pm pmC C≥ k  and 

pk pmC C≥ k  (Pearn and Lin (2002)). While pkC  remains the more widely used 

index, pmkC  is considered to be an advanced and useful index for processes with 

two-sided specification limits.   

2.2 The Method of Selecting the Better Supplier Based on PCIs 

With the improvement of technology, it is more important to enhance 

quality and satisfy the customer’s requirements. Judging the better of suppliers is 

the critical issue. A review of the literature indicates that many approaches have 

been applied for supplier selection. Tseng and Wu (1991) considered the problem 

for  available manufacturing processes based on the precision index k pC  under 

a modified likelihood ratio (MLR) selection rule. Chou (1994) used the likelihood 

ratio test (LRT) to compare two processes for the unilateral cases that two sample 

sizes are equal and developed F test to compare two suppliers based on pC . 

Huang and Lee (1995) selected the supplier by searching the largest pmC  which 

are used to looking for the smallest 2 2 2( ) ( 2)E X T Tγ σ= − = + −μ

2

. The purpose 

was to select a subset containing the processes from given independent process. 

Chen and Tong (2003) proposed a bootstrap re-sampling simulation method to 

construct the biased corrected percentile bootstrap (BCPB) confidence interval of 

( 1pk pC C− k ) to select the better of two suppliers. Furthermore, Pearn et al. (2004) 

implemented this method which developed a two-phase selection procedure to 

select a better supplier and examine the magnitude of the difference between the 

two suppliers. Chen and Chen (2004a) judged the better of two processes based 

 5



on a confidence interval for the ratio 1 / 2pm pmC C . Four methods are presented and 

compared. One based on the statistical theory given in Boyles (1991) and three 

based on the bootstrap, (referred to as SB, PB and BCPB). Chen and Chen (2004b) 

developed approximately F test to determine whether or not two processes are 

equally capable based on pmC . Daniels et al. (2005) considered the Bonferroni, 

Modified Bonferroni, Difference, Ratio and General Confidence Interval methods 

to construct confidence intervals for performing these comparisons on  pkC  and 

pmC . Chen and Chen (2006) applied the process incapability index ppC  to 

develop an evaluation model that assesses the quality performance of suppliers. 

However, difference and ratio test for supplier selection based on pmkC  have not 

been developed due to the complexity of its sampling distribution. This study 

applies the bootstrap re-sampling simulation to compare two processes based on 

pmkC . 

2.3 Process Yield Based on  Index pmkC

For most supplier selection problem in manufacturing factories, increasing 

the product yield or reducing the percentages of non-conforming items is the 

primary concern for quality improvement. Motorola’s “Six Sigma” program 

essentially requires the process capability at least 2.0 to accommodate the possible 

1.5σ  process shift (see Harry (1988)), and no more than 3.4 ppm are defectives. 

The most natural measure is the proportion itself called the yield, which we refer 

to  defined as: Yield

( ) ( ) ( )
USL

LSL
Yield dF x F USL F LSL= = −∫ , 

where ( )F x  is the cumulative distribution function of the measured 

characteristic . If the process characteristic  follows X X 2( , )N μ σ , then the 

fraction of nonconformities NC  is: 

% 1
USL LSL

NC
μ μ

σ σ
− −⎛ ⎞ ⎛ ⎞= −Φ +Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

The index pkC  provides bounds on process yield for a normally distributed 

process. Given fixed value of pkC , the bounds are 2 (3 ) 1 (3 )pk pC yield C kΦ − ≤ ≤ Φ  

(Boyles(1991)) or ( 3 ) % 2 ( 3 )pk pkC NC CΦ − ≤ ≤ Φ − 0 1aC for ≤ ≤ , where  is 

the cumulative distribution function (CDF) of the standard normal distribution 

. For 

( )Φ ⋅

( 0,1)N 1.00pkC = , one would expect that the fractions of defectives is no 

more than 2700 ppm. It is presently not clear whether or not the index pmkC  is 

related to the process yield, since the relationship between pmkC  and process 
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yield has not been developed. Pearn and Lin (2005) have provided a 

mathematically derivation of an upper bound formula on process yield in terms of 

the percentage of nonconformities. The bounds are:  

0 % 2 ( 3 )pmkNC C≤ ≤ Φ −  for 2 /3pmkC ≥ . 

These results conform that the two indices, pkC  and pmkC  provide the 

same upper bounds on the percentage of nonconformities. For instance, given 

, the information of the process yield is 1pk pmkC C= = % 2699.796NC ≤ ppm  for 

various process centering measure 0 1aC≤ ≤  and . The 

calculation illustrates the advantage of using the index 

0.750 1aC≤ ≤

pmkC  compared to the 

index pkC  when measuring the process yield. The first one provides a better 

customer protection in terms of process yield and process centering. Table 1 

displays the bounds on %NC  and bounds on  for , 

respectively. It could be shown that the lower bound on  for 
aC pk pmkC C C= =

aC pmkC  is higher 

than it on pkC  with the increasing value of pmkC . The table conforms that the 

index pmkC  provides a better customer protection again. 

Table 1. Bounds on %NC  and  for aC pk pmkC C C= = . 

pkC  pmkC  
 

C 

Bounds on %NC  Bounds on aC  Bounds on %NC  Bounds on aC  

1 2699.796 0 1aC≤ ≤  2699.796 0.750 1aC≤ ≤  

1.33 66.334 0 1aC≤ ≤  66.334 0.812 1aC≤ ≤  

1.5 6.795 0 1aC≤ ≤  6.795 0.833 1aC≤ ≤  

1.67 0.554 0 1aC≤ ≤  0.554 0.850 1aC≤ ≤  

2.00 0.002 0 1aC≤ ≤  0.002 0.875 1aC≤ ≤  
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3. Selection Method 

3.1 Difference Test on Comparing Two  Indices pmkC

The process capability indices can be used to determine the more capable of 

competing processes. Since we have no direct observation of the entire processes, 

we do not know which process is more capable (Chou (1994)). In practice, real 

process measurements  μ  and 2σ  are unknown. We could gather sample data 

to determine index values. The indices calculated from the sample data cannot be 

immediately used to determine which supplier is better because sampling errors 

may lead to an uncorrected result. The difference hypothesis testing approach is 

used here to enhance reliability. 

We investigate the selection problem for cases with two candidate processes 

based on the pmkC  index. Let iπ  be the population assumed to be normally 

distributed with mean iμ  and variance 2
iσ , 1, 2i = , and  are the 

independent random samples from 
1 2, ,...,

ii i inx x x

iπ , 1, 2i = . In most applications, if a new 

supplier II wants to compete for the orders by claiming that its capability is better 

than the existing supplier I, then the new S2 must furnish convincing information 

justifying the claim with a prescribed level of confidence. Thus, the supplier 

selection decisions would be based on the hypothesis testing comparing the two 

pmkC  values. It is 

0 1: 2pmk pmkH C C≥  

 1 1: 2pmk pmkH C C< . 

If the test rejects the null hypothesis 0 1: 2pmk pmkH C C≥ , then one has sufficient 

information to conclude that the new S2 is superior to the original S1, and the 

decision of the replacement would be suggested. In the difference hypothesis 

testing, this hypothesis test problem can be rewritten as 

0 2 1: 0pmk pmkH C C− ≤  

 1 2 1: 0pmk pmkH C C− > . 

The test statistic is given by 

 ˆ=θ 2
ˆ( pmkC − 1

ˆ )pmkC .   

Then, we apply bootstrap methodology to obtain the confidence interval for 
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θ = 2 1pmk pmkC C− . The decision rule: if the lower confidence bound for the difference 

between two process capability indices 2 1pmk pmkC C−  is positive, then S2 has a 

better process capability than S1. Otherwise, we do not have sufficient 

information to conclude that the S2 has a better process capability than S1. 

For a normally distributed process that is demonstrably stable (under 

statistical control), Pearn et al. (1992) considered the natural estimator of pmkC   

2 2 2

ˆ min ,
3 ( ) 3 ( )

pmk

n n

C
S X T S X T

= ⎨ ⎬
+ − + −⎪ ⎪⎩ ⎭

2

USL X X LSL⎧ ⎫− −⎪ ⎪
, 

where  

1
/

n

ii
X X

=
=∑ n  and 2 2

1
( )

n

n ii
S X X

=
= − /n∑   

are the MLEs of μ  and 2σ , respectively. We note that 

2 2

1
( ) ( ) /

n

n ii
S X T X T

=
+ − = − 2 n∑  

which is the major part of the denominator of ˆ
pmkC , is the uniformly minimum 

variance unbiased estimator (UMVUE) of 2 2( ) ( )T E X Tσ μ 2⎡ ⎤+ − = −⎣ ⎦  is the 

denominator of pmkC .Under the assumption of normality, Pearn et al. (1992) 

obtained the r-th moment and the first two moments, as well as the mean and the 

variance of ˆ
pmkC  for  the common cases with T=m. Evidently, ˆ

pmkC  is a biased 

estimator of pmkC . Chen and Hsu (1995) showed that the estimator ˆ
pmkC  is 

consistent, and asymptotically unbiased. Furthermore, Vännman (1997) provided 

a simplified C.D.F. form of the estimator ˆ
pmkC . It may be expressed in terms of a 

mixture of the chi-square and the normal distribution. The explicit form of the 

C.D.F. for ˆ
pmkC  can, therefore, be expressed (using our notation) as 

2/(1 3 ) ( )b n x b n t 2
ˆ 20

( ) 1 ( ) ( )
9pmkC

F x G t t n t
x

φ ξ φ ξ n dt
+ ⎛ ⎞− ⎡ ⎤= − − × + + −⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∫ , 

for x>0, where /b d σ= , ( )/Tξ μ σ= − , ( )G ⋅ is the cumulative distribution 

function of the chi-squared distribution 2
1nχ − , and ( )φ ⋅  is the probability density 

function of the standard normal distribution . Based on the estimation of (0,1)N

pmkC , Pearn and Lin (2002) implemented a testing hypothesis using the natural 

estimator of pmkC ,  

                  0 : pmkH C C≤   (Process is not capable.) 

1 : pmkH C >C   (Process is capable.) 

 9



and provided an efficient Maple computer program to calculate the p-values and 

critical values. Besides, Pearn and Shu (2004) developed an efficient algorithm to 

compute the lower confidence bounds on pmkC  based on the estimation. 

However, their investigations are all developed for evaluating whether a single 

supplier’s process conforms to a customer’s requirement. For the comparison 

between two suppliers, it’s difficult to construct the exact confidence interval for       

θ = 2 1pmk pmkC C−  because of the complexity of the sampling distribution of 

2
ˆ

pmkC − 1
ˆ

pmkC . Thus, we apply a nonparametric, data-based simulation technique 

for statistical inference.  

3.2 Ratio Test on Comparing Two  Indices pmkC

Similarly, we apply a nonparametric, data-based simulation technique for 

hypothesis testing, due to the complexity of the sampling distribution of 

2
ˆ /pmkC 1

ˆ
pmkC . Besides the difference test, we construct the ratio test on comparing 

two pmkC  indices to make the decisions of supplier selection more reliable. 

Equivalently, in the ratio testing approach, the test hypothesis problem can 

be rewritten as: 

0 2 1: /pmk pmkH C C 1≤  

1 2 1: /pmk pmkH C C >1 . 

The test statistic is given by 

ˆ=θ 2
ˆ( /pmkC 1

ˆ )pmkC . 

We also apply bootstrap methodology to obtain the confidence interval for 

θ = 2 / 1pmk pmkC C . Similarly, the decision rule is that if the lower confidence bound 

for the ratio between two process capability indices 2 / 1pmk pmkC C  is greater than 1, 

S2 has a better process capability than S1. Otherwise, if the lower confidence 

bound of the ratio statistic is less than 1, we would conclude that S1 has a better 

process capability than S2. 

3.3 Bootstrap Methodology 

Generally speaking, the bootstrap is a data-based simulation technique for 

statistical inference. The method introduced by Efron (1979, 1982) is a 

nonparametric, computational intensive but effective estimation method. The 

essence of the nonparametric bootstrap is that it does not rely on any 
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distributional assumptions about the underlying population. For the most 

common application of the method, it is usually used to estimate a population 

standard error and confidence interval. In our study, the method is appropriate to 

apply to construct estimated confidence interval due to the complexity of the 

sampling distributions of 2
ˆ

pmkC − 1
ˆ

pmkC  and 2
ˆ /pmkC 1

ˆ
pmkC . In order to select a 

better supplier accurately, our purpose for applying the bootstrap is to determine 

the lower confidence bounds of difference and ratio statistics precisely. In this 

method, B new samples, each of the same size, are drawn with replacement from 

the available sample. The statistic of interest in our case is to calculate *
( )
ˆ

lθ , 

, 1,2, ,l B= … *θ̂ = *
2

ˆ( pmkC − *
1

ˆ )pmkC  or *
2

ˆ( /pmkC *
1

ˆ )pmkC . Then, we generate a 

bootstrap distribution for the statistic 2
ˆ

pmkC − 1
ˆ

pmkC  or 2
ˆ /pmkC 1

ˆ
pmkC .  

The process of re-sampling bootstrap method is as follows. For , 

let two bootstrap samples of size  drawn with replacement from the two 

original samples be denoted by 

1 2n n n= =
n

{ }* * *
11 21 1, , ... , nx x x  { }* * *

21 22 2, , ... , nx x x . The bootstrap 

sample statistics *
1x , , *

1s
*
2x , , *

2s *
1

ˆ
pmkC  and *

2
ˆ

pmkC  are computed. In theory, 

there are  possible re-samples drawn. Due to the overwhelming computation 

time, it is not of practical interest to choose  such samples. Eforn and 

Tibshirani (1986) indicated that a roughly minimum of 1,000 bootstrap 

re-samples is usually sufficient to compute reasonably accurate confidence 

interval estimates for population parameters. In our investigation, we take B = 

3,000 bootstrap re-samples for accuracy purpose. Thus, we take a sample of size 

= 100 and B = 3,000 to estimate 

nn
nn

n *θ̂ = *
2

ˆ( pmkC − *
1

ˆ )pmkC  or *
2

ˆ( /pmkC *
1

ˆ )pmkC  of 

θ = 2 1pmk pmkC C−  or  2 / 1pmk pmkC C , respectively, then order them from the 

smallest to the largest *
( )
ˆ

lθ = *
2

ˆ( pmkC − *
1 ( )

ˆ )pmk lC  or *
2

ˆ( /pmkC *
1 ( )

ˆ )pmk lC  where 

. 1,2, ,l B= …

Four types of bootstrap confidence intervals, including the standard 

bootstrap confidence interval (SB), the percentile bootstrap confidence interval 

(PB), the biased corrected percentile bootstrap confidence interval (BCPB), and 

the bootstrap-t (BT) method introduced by Efron (1981) and Efron and 

Tibshiraniwill (1986) are conducted in this paper. The generic notations θ̂  and 
*θ̂  will be used to denote the estimator of θ  and the associated ordered 

bootstrap estimate. Construction of a two-sided 100(1 2 )%α−  confidence limit 

will be described. We note that a lower 100(1 )%α−  confidence limit can be 

obtained by using only the lower limit. The formulation details for the four types 

of confidence intervals are displayed as follows. 
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[A] Standard Bootstrap (SB) Method  

From the B bootstrap estimates *
( )
ˆ

lθ , 1,2, ,l B= … , the sample average and 

the sample standard deviation can be obtained as: 

*θ̂ *
( )

1

1 ˆ
B

l
lB

θ
=

= ∑ , 
1 2

* *
( )

1

1 ˆ ˆ[ ]
1

B

l
l

S
Bθ θ θ

=

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟−⎝ ⎠∑ * 2 . 

The quantity *Sθ  is an estimator of the standard deviation of θ̂  if the 

distribution of θ̂  is approximately normal. Thus, the 100(1 2 )%α−  SB 

confidence interval for θ  can be constructed as:  

* *ˆ[ ,z Sα θθ −  * *ˆ ]z Sα θθ + , 

where θ̂  is the estimated θ  for the original sample, and zα  is the upper α  

quantile of the standard normal distribution. 

[B] Percentile Bootstrap (PB) Method  

From the ordered collection of *
( )
ˆ

lθ , 1,2, ,l B= … , the α  percentage and 

1 α−  percentage points are used to obtained the 100(1 2 )%α−  PB confidence 

interval for θ ,  

*
( )

ˆ[ ,Bαθ *
((1 ) )

ˆ ]Bαθ − . 

[C] Biased-Corrected Percentile Bootstrap (BCPB) Method  

While the percentile confidence interval is intuitively appealing it is possible 

that due to sampling errors, the bootstrap distribution may be biased. In other 

words, it is possible that bootstrap distributions obtained using only a sample of 

the complete bootstrap distribution may be shifted higher or lower than would be 

expected. A three steps procedure is suggested to correct for the possible bias 

(Efron (1982)). First, using the ordered distribution of *θ̂ , calculate the 

probability *
0

ˆ[p P θ= 0̂ ]θ≤ . Second, we compute the inverse of the cumulative 

distribution function of a standard normal based upon  as 0p 1
0 0( )z p−= Φ , 

0(2 )Lp z zα= Φ − 0(2 )Up z z α= Φ + . Finally, executing these steps to obtain the 

100(1 2 )%α−  BCPB confidence interval,  

*
( )

ˆ[ ,
Lp Bθ *

( )
ˆ ]

Up Bθ . 
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[D] Bootstrap-t (BT) Method  

By using bootstrapping to approximate the distribution of a statistic of the 

form ˆ
ˆ( )/S

θ
θ θ− , the bootstrap approximation in this case is obtained by taking 

bootstrap samples from the original data values, calculating the corresponding 

estimates *θ̂  and their estimated standard error, and hence finding the 

bootstrapped -values T *ˆ(T θ= *ˆ)/Sθθ− . The hope is then that the generated 

distribution will mimic the distribution of . The T 100(1 2 )%α−  BT confidence 

interval for θ  may constitute as  

* * *
ˆ

ˆ[ ,t Sα θ
θ − * * *

ˆ1
ˆ ]t Sα θ
θ −− , 

where *tα  and *
1t α−  are the upper α  and 1 α−  quantiles of the bootstrap 

t-distribution respectively, i.e. by finding the values that satisfy the two equations 
*ˆ[(P θ * *ˆ)/ ]S tθ αθ α− > =  and *ˆ[(P θ * *

1
ˆ)/ ] 1S tθ αθ α−− > = − , for the generated 

bootstrap estimates. 
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4. Performance Comparisons of Four Bootstrap Methods  

4.1 Simulation Layout Setting 

When establishing the formula of the process capability index pmkC , there 

are two basic process characteristics. One is the process location in relation to its 

target value, the other is the process spread (overall process variation). By 

observing the formula, we know that the closer the process output is to the target 

value and the smaller the process spread the process is more capable. Comparing 

the pair of indices ( pmkC , pmC ), similarly to ( pkC , pC ), there is the relation 

pmk pm aC C C= × . Based on the relationship, there are several combinations of 

pmC and  for the same aC pmkC . On the assumption that T m=  (which is quite 

common in many practical situations) where m is the midpoint between LSL and 

USL, there are still several combinations of σ  and  for the same aC pmkC  

similarly. We can trade off between the magnitude of process variation and the 

degree of process centering. Table 2 displays various  values and the 

corresponding ranges of the departure magnitude of 
aC

μ .  

    

Table 2.  values and ranges of  aC μ . 

aC  value Range of  μ  

       1.00aC =         mμ =  

0.75 1.00aC< <     0 | | /4m dμ< − <  
0.50 0.75aC< <  /4 | | /2d m dμ< − <  

0.25 0.50aC< <  /2 | | 3 /4d m dμ< − <  
0.00 0.25aC< <  3 /4 | |d m dμ< − <  
       0.00aC = orLSL USLμ μ= =  

       0.00aC < orLSL USLμ μ< >  
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Figure 2. Four processes with 1.00pmkC = . 

 

Table 3. Parameter values for two manufacturing suppliers used in the 
simulation study under 1 2 1.00pmk pmkC C= = .   

Case# 1pmkC  1μ  1aC  1σ  2pmkC  2μ  2aC  2σ  

1 1 0.6 0.8000 0.5292 1 0.6 0.8000 0.5292 

2 1 0.6 0.8000 0.5292 1 0.4 0.8667 0.7688 

3 1 0.6 0.8000 0.5292 1 0.2 0.9333 0.9117 

4 1 0.6 0.8000 0.5292 1 0 1.0000 1.0000 

5 1 0.4 0.8667 0.7688 1 0.6 0.8000 0.5292 

6 1 0.4 0.8667 0.7688 1 0.4 0.8667 0.7688 

7 1 0.4 0.8667 0.7688 1 0.2 0.9333 0.9117 

8 1 0.4 0.8667 0.7688 1 0 1.0000 1.0000 

9 1 0.2 0.9333 0.9117 1 0.6 0.8000 0.5292 

10 1 0.2 0.9333 0.9117 1 0.4 0.8667 0.7688 

11 1 0.2 0.9333 0.9117 1 0.2 0.9333 0.9117 

12 1 0.2 0.9333 0.9117 1 0 1.0000 1.0000 

13 1 0 1.0000 1.0000 1 0.6 0.8000 0.5292 

14 1 0 1.0000 1.0000 1 0.4 0.8667 0.7688 

15 1 0 1.0000 1.0000 1 0.2 0.9333 0.9117 

16 1 0 1.0000 1.0000 1 0 1.0000 1.0000 

Figure 2 plots four processes with varied combinations of σ( , )aC  with 

, LSL=-3, USL=3 and m=0, i.e. 1.00pmkC = σ =( , ) (0.8,0.5292)aC  for process A, 

σ =( , ) (0.8667,0.7688)aC  for process B, σ =( , ) (0.9333,0.9117)aC  for process C  
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and σ =( , ) (1,1)aC  for process D (from right to left in plot). These four processes 

are equivalent according to pmkC  (i.e. 1.00pmkC =  for all four processes), and all 

have yields exceeding 99.73% but differ substantially with the magnitude of 

process variation and the degree of process centering. After setting the simulation 

environment, we make two investigations among the four bootstrap confidence 

limits to select a method which make our difference and ration testing more 

reliable. One is error probability analysis. We inspect the error probability from 

simulation results to know the magnitude of stability among four bootstrap 

methods. The other is selection power analysis. We choose a method with larger 

testing power by constructing the power curves. The sets of parameter values for 

two manufacturing suppliers used in the simulation study are given in Table 3. 

The selected parameters are chosen so as to investigate the performance of the 

methods for a wide range of index values and for both on-target and off-target 

processes. For each combination, a sample of size =100 was drawn with 

B=3000 bootstrap replications, and the single simulation was then replicated 

 times. Further analysis will be shown in Sections 4.2 and 4.3.       

n

3,000N =

4.2 Error Probability Analysis 

When deciding whether rejects the null hypothesis 0H  or not, we might 

make a mistake. Generally speaking, hypothesis tests are usually evaluated and 

compared through their probabilities of making mistakes. In this section, we 

measure these error probabilities from four bootstrap methods to determine which 

methods of testing have smaller and stable error probabilities.  

In our analysis of simulation, the error probability is the proportion of times 

that rejecting the null hypothesis 0 1: 2pmk pmkH C C≥ , while actually 

0 1: 2pmk pmkH C C≥  is true. That is, we will calculate the proportion of times that 

the LCB of 2 1pmk pmkC C−  is positive and the LCB of 2 / 1pmk pmkC C  is larger than 1 

when  . While generating the simulation, a sample size 

n=100 drawn with B=3000 bootstrap replications, the single simulation was 

replicated N=3000 times and type I error 

1 2 1.00pmk pmkC C= =

0.05α =  for each case given in Table 2. 

Usually, it is required that the probability of the error selection be less than a 

maximum value *α , generally referred to as the *α –condition. The frequency of 

error selection is a binomial random variable with 3000N =  and . 

Thus, a 99% confidence interval for the error probability is  

* 0.05α =

* * *
0.005 (1 )/ 0.05 2.576 (0.05 0.95)/3000 0.05 0.0103Z Nα α α± × − = ± × × = ± . 
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That is, one could be 99% confident that a “true 0.05% error probability” would 

have a proportion of range from 0.0397 to 0.0603. Thus, from the results of 

simulation for each case, we could depict confidence interval (0.0397, 0.0603). 

Figure 3 and Figure 4 show the error probability of four bootstrap methods for the 

difference and the ratio statistics with 16 combinations tabulated in Table 3, 

respectively. 
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 Figure 3. Error probability of  four bootstraps under 1 2 1.00pmk pmkC C= = . 
 

 
 
 
 
 
 
 
 
 
 
 

  

 

Ratio error analysis
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Figure 4. Error probability of four bootstraps under . 1 2/ 1pmk pmkC C = .00

According to error probability analysis, it is shown that for the difference test, 

there are 7 combinations out of the 16 cases which were outside the interval 

(0.0397, 0.0610) for the SB, PB, BT methods. In contrast, 5 out of the 16 cases are 

beyond the interval for BCPB method. As for the ratio test, there are 11, 7 and 13 
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cases out of the 16 combinations outside the interval (0.0397, 0.0603) respectively. 

However, the BCPB method has only 5 out of 16 cases beyond these limits. 

Consequently, we know that the BCPB method has smaller and stable error 

probabilities for both difference and ratio test. Tables 4 and 5 show the results of 

error probability analysis for difference and ratio test. 

Table 4. The results of error probability analysis for difference test. 

Bootstrap 

method of  

difference 

test 

Mean of  

these 16 

cases error 

Standard 

deviation of  

these 16 cases 

error 

Number 

of  out 

of  limits 

Out of  limits case 

SB 0.0532 0.020882 6 4,8,12,13,14,15 

PB 0.0548 0.021841 6 4,8,12,13,14,15 

BCPB 0.0560 0.010114 3 13,14,15 

BT 0.0502 0.012275 6 4,8,12,13,14,15 

Table 5. The results of error probability analysis for ratio test. 

Bootstrap 

method of  

ratio test 

Mean of  

these 16 

cases error 

Standard 

deviation of  

these 16 cases 

error 

Number 

of  out 

of  limits 

Out of  limits case 

SB 0.0423 0.017227 12 4,5,6,7,8,9,11,12,13,14,15 

PB 0.0548 0.021841 6 4,8,12,13,14,15 

BCPB 0.0548 0.009686 3 13,14,15 

BT 0.0286 0.008759 14 1,2,3,4,5,6,7,8,9,10,11,12,13,16 

In addition, an average lower bound and the standard deviation of the lower 

bound were calculated based on the 3000N =  distinct trials. The complete data 

for error probability with 16 combinations of σ1 1( , )aC  and σ2 2( ,aC )  under 

1pmkC = 2pmkC =1 is tabulated in Appendix A. Error probability analysis information. 

Table 6 displays the particular four combinations of the average lower bound and 

the standard deviation of the lower bound for each of the four bootstrap 

confidence intervals. 
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Table 6. Simulation results of  the four bootstrap methods for the difference and 
ratio statistics. 

Difference Statistic Ratio Statistic 
      

1pmkC
 

1μ  1aC  pmkC
 

2μ  2aC  
Bootstrap 

Method 
Error 

Prob. 

Average 

LCB 

Standard 

Deviation 

of LCB 

Error 

Prob. 

Average 

LCB 

Standard 

Deviation 

of LCB 

1 0.6 0.8 1 0.6 0.8 SB 0.0493 -0.18447 0.11463 0.0407 0.82844 0.09346 

      PB 0.0510 -0.18434 0.11593 0.0510 0.83943 0.09462 

      BCPB 0.0513 -0.18454 0.11551 0.0510 0.83920 0.09432 

      BT 0.0460 -0.18403 0.11246 0.0287 0.81287 0.09165 

1 0.6 0.8 1 0.2 0.93 SB 0.0520 -0.19235 0.12165 0.0430 0.82041 0.10078 

      PB 0.0517 -0.19182 0.12271 0.0517 0.83182 0.10174 

      BCPB 0.0587 -0.19097 0.12447 0.0577 0.83254 0.10349 

      BT 0.0517 -0.19237 0.12104 0.0350 0.80434 0.10057 

1 0.2 0.93 1 0.2 0.93 SB 0.0470 -0.20028 0.12669 0.0370 0.81347 0.10233 

      PB 0.0493 -0.20016 0.12756 0.0493 0.82669 0.10386 

      BCPB 0.0560 -0.20039 0.1305 0.0573 0.82669 0.10622 

      BT 0.0483 -0.20011 0.12702 0.0287 0.79479 0.10185 

1 0.2 0.93 1 0 1 SB 0.0253 -0.22557 0.12012 0.0203 0.79196 0.09364 

      PB 0.0263 -0.22695 0.12106 0.0263 0.80345 0.09512 

      BCPB 0.0450 -0.20843 0.12521 0.0413 0.81858 0.09958 

      BT 0.0337 -0.21407 0.12064 0.0163 0.78465 0.09414 

4.3. Selection Power Analysis 

Power is broadly defined as the probability that a statistical significance test 

will reject the null hypothesis for a specified value of an alternative hypothesis. 

Another way to define it is the ability of a test to detect an effect, given that the 

effect actually exists. If a study that is inefficiently precise or lacks power to reject 

a false null hypothesis, it will waste time and money in practical situation.  

Therefore, in this section, we conduct selection power analysis to compare 

the performance of those four bootstrap methods. It is essential to apply a method 

which is efficiently precise and with power in hypothesis testing. Further 

simulations of selection power analysis are implemented with sample sizes 

=10(10)200 for  and n 1 1.00pmkC = 2 1.05(0.05)1.50pmkC = . The selection power 

computes the probability of rejecting the null hypothesis 0 1: 2pmk pmkH C C≥  while 
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actually 1 1: 2pmk pmkH C C<  is true. For the difference statistic, the selection power 

computes the proportion of times that the LCB of 2 1pmk pmkC C−  is positive in the 

simulation. Similarly, for the ratio statistic, the selection power computes the 

proportion of times that the LCB of 2 / 1pmk pmkC C  is larger than 1. Figures 5-6 are 

the power curves of the four bootstrap methods for the difference and ratio 

statistic for on-target process with sample size = 10(10)200, , 

, 

n 1 1.00pmkC =

2 1.50pmkC = 1 0μ = , 2 0μ = , respectively. 
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Figure 5. The selection power for the 
difference statistic for on-target process 
with sample size n=10(10)200, 

, 1 1pmkC = 2pmkC =1.50, μ μ= =1 2 0 . 
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Figure 6. The selection power  for the 
ratio statistic for on-target process with 
sample size n =10(10)200, , 1 1pmkC =

2pmkC =1.50, μ μ= =1 2 0 . 

Similarly, Figures 7-8 are the power curves of the four bootstrap methods for the 

difference and ratio statistic for off-target process with sample size = 10(10)200, 

, , 

n

1 1.00pmkC = 2 1.50pmkC = 1 0.4μ = , 2 0.4μ = , respectively.  
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Figure 7. The selection power for the 
difference statistic for off-target process 
with sample size n=10(10)200, 

, 1 1pmkC = 2pmkC =1.50, μ μ= =1 2 0.4 . 
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Figure 8. The selection power for the 
ratio statistic for off-target process 
with sample size = 10(10)200, n

1 1pmkC = , 2pmkC =1.50, μ μ= =1 2 0.4 . 
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According to Figures 5-8, it is shown that the PB and BCPB methods have 

larger selection power with fixed sample size in contrast with the SB and BT 

methods. In other words, we only need smaller required sample size for the PB 

and BCPB methods when conducting hypothesis test. By evaluating both error 

probability and selection power, the BCPB method has more stable error 

probability and larger selection power with fixed sample size. Consequently, we 

suggest that the BCPB method among four bootstrap methods is the better 

approach for further analysis. Besides Figures 5-8, the complete data and power 

curves are shown in Appendix B.  
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5. Supplier Selection Based on BCPB Method 

5.1 Sample Size Determination with Designated Selection Power 

It is a practical and important issue to determine an appropriate sample size 

for supplier selection problem in manufacturing industries. A study that lacks of 

power to reject a false null hypothesis is a waste of time and money. On the other 

hand, an investigation collects too many samples or has too much power to reject 

Ho is also wasteful for manufacturing. Thus, the requirement of appropriate 

sample size with designed selection power should be determined carefully before 

conducting the hypothesis test. 

According to error probability and selection power, it has been suggested that 

the best of those four bootstrap methods in our study is the BCPB method. Thus, 

the simulation technique was applied to investigate the BCPB method with 

=3,000 bootstrap replications, and the single simulation was then replicated B

N =3,000 times. For practical application and engineers’ convenience, we 

calculate the requirement of sample size for difference and ratio hypothesis test by 

using MATLAB program. For both of the two tests, it has been investigated with 

1.00 and 1.33 for supplier I and 1pmkC = 2pmkC = 1.15(0.05)1.50 and 1.48(0.05)1.83 

for supplier II. The designated selection power = 0.90, 0.95, 0.975 and 0.99 which 

computes the probability of rejecting the null hypothesis 0 1: 2pmk pmkH C C≥  while 

actually 1 1: 2pmk pmkH C C<  is true. Tables 7-10 display the sample size required of 

the BCPB method for the difference and ratio statistic with various selection 

powers.  

Table 7. Sample size required of BCPB method for the difference statistics 
under 0.05α = , with power = 0.90, 0.95, 0.975, 0.99, , 

. 
1 1.00pmkC =

2 1.15(0.05)1.50pmkC =

1pmkC  1 1 1 1 1 1 1 1 

2pmkC  1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 

90% 505 288 189 140 107 83 69 58 

95% 627 365 246 174 138 107 87 74 

97.50% 745 430 284 207 164 125 104 87 

99% 918 538 369 263 200 158 130 115 
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Table 8. Sample size required of BCPB method for the ratio statistics under 
0.05α = , with power = 0.90, 0.95, 0.975, 0.99, , 

. 
1 1.00pmkC =

2 1.15(0.05)1.50pmkC =

1pmkC  1 1 1 1 1 1 1 1 

2pmkC  1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 

90% 504 293 199 143 109 83 72 58 

95% 624 378 241 176 135 110 89 73 

97.50% 765 446 291 214 156 127 105 88 

99% 945 531 364 248 203 157 128 108 

Table 9. Sample size required of BCPB method for the difference statistics 
under 0.05α = , with power = 0.90, 0.95, 0.975, 0.99, , 

. 
1 1.33pmkC =

2 1.48(0.05)1.83pmkC =

1pmkC  1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 

2pmkC  1.48 1.53 1.58 1.63 1.68 1.73 1.78 1.83 

90% 820 465 313 226 171 136 109 91 

95% 1027 582 397 275 212 168 136 113 

97.50% 1215 713 475 332 250 196 159 137 

99% 1485 863 580 413 307 248 198 165 

Table 10. Sample size required of BCPB method for the ratio statistics under 
0.05α = , with power = 0.90, 0.95, 0.975, 0.99, , 

. 
1 1.33pmkC =

2 1.48(0.05)1.83pmkC =

1pmkC  1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 

2pmkC  1.48 1.53 1.58 1.63 1.68 1.73 1.78 1.83 

90% 815 469 315 228 175 136 111 91 

95% 1059 582 386 275 213 169 140 116 

97.50% 1262 732 467 338 270 212 167 137 

99% 1912 1032 692 538 420 362 198 166 

For the convenience of observation, Figures 9-12 depict sample size curves 

based on the four sample size tables, respectively.  
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Figure 9. The sample size curve for the 
difference statistic under 0.05α = , with 
power = 0.90, 0.95, 0.975, 0.99, 

, . 1 1.00pmkC = 2 1.15(0.05)1.50pmkC =
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Figure 10. The sample size curve for the 
ratio statistic under 0.05α = ,with  
power = 0.90, 0.95, 0.975, 0.99, 

1 1.00pmkC = , 2 1.15(0.05)1.50pmkC = . 
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Figure 11. The sample size curve for the 
difference statistic under 0.05α = , with 
power = 0.90, 0.95, 0.975, 0.99, 

, . 1 1.33pmkC = 2 1.48(0.05)1.83pmkC =
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Figure 12. The sample size curve for the  
ratio statistic under 0.05α = , with  
power = 0.90, 0.95, 0.975, 0.99, 

1 1.33pmkC = , 2 1.48(0.05)1.83pmkC = . 

Clearly, the sample size calculated from MATLAB program indicates that 

the larger the value of the difference 2 1pmk pmkC Cδ = −  between supplier I and 

supplier II, the smaller the sample size required for fixed selection power. And for 

fixed difference 2 1pmk pmkC Cδ = −  and 1pmkC , sample size increases with various 

selection power. Besides, if the minimum requirement of pmkC  value is larger, 

more samples are needed to distinguish between two competing processes. The 

results could be explained that more precise to reject the false null hypothesis 

more cost and time is required for practitioners.    
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5.2 Selection Procedure of Two Competing Suppliers 

Supplier selection problem has become a more and more important issue in 

manufacturing industry. It is worthwhile to compare two processes with a 

standard and effective selection procedure. For engineers’ or practitioners’ 

convenience, the complete testing procedure for two suppliers’ processes is 

summarized in step form as follows: 

Step 1.  

Determine (a) the minimum requirement of pmkC  value (b) the minimum 

acceptable difference between two pmkC  indices, 2 1pmk pmkC Cδ = −  (c) required 

selection power. Then, the designated sample size can be obtained by checking 

Tables 8-10.  

Step 2.  

Take a random sample with sample size n from each supplier’s process and 

calculate the sample mean 
1

/
=

=∑n

ii
X X n  and sample variance 2

nS =  
2

1
( )

=
−∑n

ii
X X n/ . 

Step 3.  

Apply the Shapiro-Wilk test to confirm whether the sample data for the two 

suppliers are taken from normal processes. 

Step 4.  

Calculate the sample estimators, 1
ˆ

pmkC  and 2
ˆ

pmkC . Based on the BCPB 

method, we implement the Matlab program to obtain the LCB of 2
ˆ −pmkC 1

ˆ
pmkC  

for the difference test and the LCB of 2
ˆ /pmkC 1

ˆ
pmkC  for the ratio test. 

 

Step 5.  

The decision rule is : If the LCB of 2
ˆ −pmkC 1

ˆ
pmkC  is positive or the LCB of 

2
ˆ /pmkC 1

ˆ
pmkC  is larger than 1, it can be concluded that the supplier II is better than 

the supplier I. Otherwise, the existing supplier I is not better than the new supplier 

II.   
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6. Application Example  

6.1 Application Example of FPC  

FPC stands for Flexible Printed Circuits, which is the electronic component 

being much lighter and thinner than Rigid Printed Circuit (RPC).   Since 

Flexible Printed Circuit has excellent working efficiency and strong 

heat-resistance, FPC is widely used as a core component of all electronic goods. It 

is usually applied to the products like cameras, laptops, peripheral equipments, 

mobile phones, video, audio units, printers, DVD, TFT LCD, satellite equipment, 

military equipments and medical instruments, etc. Commercialized in the 1950s, 

it has been steadily developed and improved so far, global sales exceed $5.6 

billion USD in 2004. With the increasing demand of electronic goods, there will 

be large growth in the entire FPC industry. 

A flexible printed circuit consists of three layers of material: a base layer of 

dielectric, a central conductor layer and a top dielectric layer called a coverlayer 

(if a film) or covercoat (if a liquid coating) (Thomas (1996)). The coverlayer may 

be absent in low cost circuitry. Openings or apertures are provided in the 

coverlayer to allow contact with the conductor layer at desired terminal or pad 

locations. It’s typical for each pad – termination site, an enlarged area on a 

conductor, usually at the end. The termination sites have a throughhole to receive 

a FPC connector pin or other hardware item which is soldered to the pad. Most 

throughholes holes are created either by NC drilling or die punching. As the 

improvement of technology, the digital electronic products are thinner and 

smaller. The electronic components of FPC are also required to correspond to its 

specification. Among these components, the FPC connector is one of the critical 

parts in assembling electronic goods. Despite the low cost of FPC connector in 

most FPC components, the connector plays an important role in product 

reliability. With the gradual increasing requirements for part and device reliability, 

the need to evaluate process capability and product failure rates is now greater 

than ever.  Consequently, in order to make sure the reliable connection between 

FPC Connector and FPC board, the thickness of FPC board was investigated to 

ensure specification and quality reliability to meet customer requirements. Figures 

13-14 illustrate a particular type of FPC board and a kind of FPC Connector. 

(Figures are taken from http://www.bestfpc.com/.) 
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Figure 13. Coverlay Type - Single Sided FPC.  

 

 

 

 

Figure 14. 0.5 mm SMT FPC Connector —— Straight. 

The application example is taken from a corporation in Taipei, Taiwan. In 

order to enhance the product quality, the company desires to determine the more 

capable electronic components between two competing suppliers manufacturing 

FPC boards. For the SMT type of 0.5 mm FPC Connector, the USL, LSL, and 

the target value of FPC board thickness are 0.33 mm, 0.3 mm and 0.27 mm, 

respectively. The layout of the SMT type of 0.5 mm FPC Connector and 0.3 mm 

thickness FPC is shown in Figure 15.      

 

 

 

 

 

Figure 15. The layout of  the SMT type of  0.5 mm FPC Connector and 0.3 mm 
thickness FPC. 
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6.2 Data Analysis and Supplier Selection 

For the supplier selection problem applied to this application example, we 

first select two batches of goods from two competing FPC manufacturers. 

According to the selection procedure mentioned in Chapter 5.2, the complete 

procedure for two FPC board suppliers’ processes is summarized in step form as 

follow:    

Step1.  

In the application case, we determine (a) the minimum requirement of pmkC  

value is 1.00. (b) the minimum acceptable difference between two pmkC  indices, 

2 1pmk pmkC Cδ = − =0.35 (c) required selection power with 0.95. Then, by checking 

Tables 7-8, the sample size of difference test is 138 and of ratio test is 135. By the 

way, we take 138 samples for Suppler I and Supplier II, respectively. 

Step2. 

Take a random sample from each supplier’s process (the thickness of FPC 

board ). Tables 11-12 are the sample data of two suppliers and the sample mean 

1

/i
i

X X
=

= ∑
n

n  and sample variance 2

1

( )n i
i

S X X
=

= −∑ 2 /
n

n  are shown in Table 14. 

Table 11. Sample data of supplier I. 

0.28526 0.30794 0.29385 0.30208 0.29504 0.28902 0.29142 0.30913 0.32125 

0.29273 0.28734 0.31174 0.28497 0.29523 0.30050 0.30055 0.31728 0.30538 

0.29301 0.30420 0.28484 0.30078 0.30638 0.29491 0.30095 0.28915 0.30173 

0.29795 0.29788 0.30193 0.31085 0.31528 0.29322 0.30191 0.28961 0.30702 

0.30222 0.31251 0.28887 0.28862 0.31151 0.29932 0.29288 0.29574 0.29401 

0.29157 0.29692 0.30447 0.29865 0.28198 0.30181 0.29390 0.30284 0.29126 

0.30338 0.30874 0.28563 0.29846 0.31236 0.29021 0.30681 0.29976 0.28916 

0.29828 0.29725 0.29337 0.26961 0.31548 0.30249 0.29545 0.31697 0.29654 

0.28809 0.29012 0.28484 0.30190 0.30130 0.30373 0.29387 0.29891 0.29759 

0.30038 0.30922 0.29843 0.30404 0.28696 0.30866 0.30816 0.30147 0.30661 

0.29519 0.30214 0.29895 0.29137 0.29180 0.30232 0.30074 0.27449 0.27868 

0.30786 0.31494 0.30843 0.30240 0.29895 0.29834 0.29819 0.28830 0.29386 

0.30933 0.29587 0.28777 0.30473 0.30292 0.30098 0.28573 0.30603 0.29530 

0.30267 0.29290 0.30210 0.29892 0.29607 0.28127 0.29729 0.29566 0.30026 

0.29265 0.28585 0.30191 0.27615 0.28655 0.29777 0.29640 0.29550 0.28984 

0.30095 0.29664 0.30181       
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Table 12. Sample data of  supplier II. 

0.29604 0.30263 0.30055 0.30057 0.30148 0.30684 0.30558 0.29259 0.30955 

0.30842 0.31091 0.31227 0.31455 0.29358 0.30306 0.29415 0.29071 0.30884 

0.29320 0.30920 0.29910 0.29363 0.29812 0.30103 0.29592 0.30699 0.29734 

0.30383 0.30101 0.31328 0.31072 0.29676 0.29550 0.28476 0.29495 0.32367 

0.30149 0.29201 0.29069 0.30562 0.30186 0.29710 0.31395 0.30993 0.29973 

0.30611 0.30105 0.29845 0.30132 0.29917 0.30968 0.29224 0.29531 0.30479 

0.29776 0.29703 0.29779 0.30713 0.29841 0.29716 0.31045 0.29204 0.29955 

0.29462 0.30019 0.30284 0.30128 0.30731 0.30679 0.28966 0.30441 0.30105 

0.29399 0.30472 0.31237 0.30539 0.30691 0.31480 0.30288 0.30298 0.30667 

0.30983 0.29624 0.30411 0.30047 0.31015 0.30555 0.29452 0.30478 0.29512 

0.30132 0.29027 0.30454 0.28694 0.30540 0.30597 0.30010 0.30686 0.29425 

0.30904 0.29812 0.29751 0.31952 0.30396 0.30605 0.30190 0.29506 0.29733 

0.30849 0.29205 0.30282 0.30116 0.30037 0.30211 0.30859 0.29342 0.29764 

0.29869 0.30208 0.30394 0.31120 0.29960 0.30924 0.29495 0.30477 0.29275 

0.30038 0.30475 0.29904 0.29880 0.30601 0.29862 0.30565 0.30646 0.30059 

0.30042 0.29493 0.30681       

Step3.  

Apply the Shapiro-Wilk test to confirm whether the sample data for the two 

suppliers are taken from normal processes. With the Shapiro-Wilk test p-value 

>0.1 for two suppliers’ samples, we could conclude that the sample data for the 

two suppliers is taken from normal processes. The outcome of the Shapiro-Wilk 

test is shown in Table 13. Besides, Figures 16-19 display the histogram and 

normal probability plot of the 138 samples for two suppliers. 
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Histogram: Supplier 2
Shapiro-Wilk W=.99308, p=.74261
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Figure 16. Histogram of supplier I data.  Figure 17. Histogram of supplier II data. 
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Normal P-Plot: Supplier 1
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Figure 18. Normal probability plot for     Figure 19. Normal probability plot for 

Supplier I.                            Supplier II.  

Table 13. The outcome of Shapiro-Wilk test. 

population statistic W p-value conclusion 

Supplier I 0.99219 0.64639 Normal 

Suppler II 0.99308 0.74261 Normal 

     

Step4. 

We calculate the sample means, sample standard deviations and the sample 

estimators ˆ
pmkC  for supplier I and supplier II. The sample statistics are 

summarized in Table 14. Based on the BCPB method, we implement the Matlab 

program to obtain the LCB of 2
ˆ −pmkC 1

ˆ
pmkC = 0.13943 for the difference test and 

the LCB of 2
ˆ /pmkC 1

ˆ
pmkC = 1.1244 for the ratio test.  

Table 14. The sample statistics for two suppliers. 

Population X S  ˆ
pmkC  

Supplier I 

Suppler II 

0.29797 

0.30173 

0.0089350 

0.0066209 

1.0175 

1.3770 

Step5. 

The decision rule is: (a) The LCB of 2
ˆ −pmkC 1

ˆ
pmkC =0.13943 is positive. (b) 

The LCB of 2
ˆ /pmkC 1

ˆ
pmkC =1.1244 is larger than 1. Consequently, it could be 

concluded that for process capability of the FPC board thickness, the supplier II is 

better than the existing supplier I. 
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7. Conclusions 

In the field of supplier selection, it has been promoted the use of various PCIs 

for evaluating a supplier’s process capability. In the presence of all, many 

researchers have indicated varied approach for supply selection based on the 

indices pkC  and pmC . In order to take into account the process yield as well as 

the process loss, this study implements bootstrap approach for supplier selection 

based on pmkC . The findings is that the BCPB method among four bootstrap 

methods is the better approach for processes comparison based on the index pmkC . 

One possible conclusion is that the BCPB method has smaller and stable error 

probabilities for both difference and ratio test. And this method also has larger 

selection power with fixed sample size. Thus, it is recommended to apply this 

method to further analysis.  

By the result of simulation, we implement the BCPB method to develop a 

practical step-by-step testing procedure for engineers to refer to supplier selection 

decisions. We readily acknowledge that the processes from both suppliers should 

be in statistical control and have a normal distribution in our research. The 

approach outlined in this study could be replicated in many manufacturing plants 

for the decision of selecting the better supplier. Finally, a practical application 

example in FPC industry is also investigated and applied the selection procedure 

to illustrate decision steps in supplier selection problem.  
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