第四章 系統驗證實驗與結果

本章將說明整個檢測系統所需要的設備、相關實驗設定,以及各個項目的檢 測結果。目的主要在驗證第三章所提之方法在實際應用時,可以將瑕疵找出來。 本章共分成四個小節,包括第4.1節實驗環境與系統架構、第4.2節色彩分析儀 量測說明、第4.3節 PLED 不均勻檢測說明、以及第4.4節 PLED 封膠檢測說明。

4.1 實驗設備與系統架構

4.1.1 實驗設備

本實驗採用之配備包括個人電腦(Personal Computer)、光源照明設備 (Lighting Source)、攝影機(CCD Camera)等硬體設備。實驗處理過程,係將 待測之 PLED 面板放置在夾具上後,透過攝影機取像後,得到數位影像資料,經 由個人電腦程式檢測並輸出其結果。各項硬體設備的功能及規格說明如下:

- 個人電腦(PC):使用 CPU 為 AMD Athlon 64 Processor 3200+(2.01GHz)個 人電腦,記憶體為 512M。功能為對全彩影像進行處理、運算與儲存,提供 程式撰寫及資料處理能力。
- 攝影機 (CCD Camera):使用 ARTCAM-300M 的彩色 CCD 取像,CCD 最 高解析度為 2048×1536 像素點,搭配變焦鏡頭將解析度提升至 0.034mm。
- **3.** 光源系統 (Lighting Source): 白光 LED 背光。
- 影像處理工具: Inspector2.2 版、MIL (Matrox Imaging Library) 7.01 版函式
 庫,提供實驗中影像資料之運算與處理。
- 色彩分析儀 (Colorimeter):使用 KONICA Chroma Meter CS-200 作為 PLED 通電後的亮度量測工具,提供一些實例上的驗證。
- 6. 程式語言: Visual Basic 6.0

4.1.2 系統架構

本實驗所使用之 PLED 樣品之尺寸為厚 1.5mm、長 71.5mm、寬 42.3mm, 其上面有 128×64 個發光點,每個發光點為 0.4mm×0.4mm。如下圖 4.1,每個發 光點之間的間隙為 0.03mm。影像擷取方式是將 PLED 固定在治具上,如圖 4.2, 其固定在一帶有滑軌的平台上。所擷取到的影像大小為 2048 (pixel) ×1536 (pixel),視野 (Field of View, FOV)為 72mm×55mm,一個影像點所對應的尺 寸大小為 0.034mm。只要一張影像便可以涵蓋整個 PLED 樣本。

4.2 色彩分析儀量測實驗

這一節主要利用實際操作來比較 CCD 與 Colorimeter 的取像量測結果,不同 於檢測 PLED 片瑕疵的系統,實驗時將 PLED 治具架設在 XY-Table 上,色彩分 析儀與待測 PLED 的距離為 460mm,架設完成後進行第 3.1 節的各項量測實驗, 量測對象為圖 3.1 的 PLED 樣本片,分述如第 4.2.1 節與第 4.2.2 節:

4.2.1 重複性量測說明

根據第 3.1.2 節所提出的「重複性與小幅移動量測」方法,分別以涵蓋範圍為 2×2、4×4、6×6、8×8 作重複性量測,再計算每一種範圍量得的變異數,觀察對同一點量測所得數值的變異情形,如下表 4.1 所示:

2×2		4×4		6×6		8×8	
No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$
1	606.93	1	563.16	1	823.57	1	589.67
2	606.9	2	563.92	2	826.37	2	588.64
3	605.48	3	565.04	3	828.67	3	588.79
4	606.56	4	564.53	4	829.98	4	591.54
5	604.77	5	564.94	5	829.55	5	590.49
6	608.64	6	564.55	6	824.04	6	590.55
7	605.59	7	565.42	7	826.48	7	591.43
8	606.79	8	564.97	8	827	8	591.19
9	606.42	9	564.38 E	9	825.29	9	590.94
10	607.13	10	564.1	10	826.18	10	590.51
11	606.09	11	562.95	11	824.77	11	590.62
12	609.25	12	562.93	12	826.27	12	590.38
13	608.86	13	563.05	13	823.25	13	591.13
14	607.88	14	561.56	14	831.54	14	589.83
15	603.72	15	561.45	15	826.37	15	590.81
16	606.33	16	561.22	16	824.16	16	590.64
17	606.97	17	560.75	17	829.55	17	591.73
18	606.61	18	560.84	18	829.98	18	591.32
19	607.75	19	560.96	19	824.32	19	591.41
20	611.99	20	561.34	20	828.82	20	591.46
21	609.21	21	560.19	21	826.4	21	590.99
22	608.45	22	560.66	22	820.85	22	591.1
23	609	23	560.78	23	824.32	23	590.19
24	608.94	24	560.59	24	828.42	24	590.98
25	609.1	25	560.21	25	827.95	25	590.46
26	606.81	26	559.95	26	822.78	26	589.85
27	608.22	27	559.97	27	826.04	27	590.65
28	609.11	28	559.54	28	828.67	28	590.2

表 4.1 使用色彩分析儀作重複性量測之結果

表 4.1 使用色彩分析儀作重複性量測之結果 (續)

29	609.06	29	559.67	29	828.37	29	590.36
30	608.34	30	558.98	30	825.66	30	590.69
Var.	2.798968	Var.	3.974595	Var.	6.347055	Var.	0.541918

實驗結果如表 4.1 所示,其中涵蓋範圍為 2×2 的變異數為 2.798,4×4 的變異數為 3.975,6×6 的變異數為 6.347,以及 8×8 的變異數為 0.542,可推論雖然變異數與 涵蓋範圍大小沒有直接的關連,但是 8×8 的變異數最小。

4.2.2 小幅移動量測說明

根據第 3.1.2 節所提出的「重複性與小幅移動量測」方法,同上一節重複性 量測,分別對四種不同的量測範圍進行小幅移動量測,量測後計算每一種範圍量 測的全距,觀察其小幅移動時數值跳動的情形,如下表 4.2 所示:

2×2		4×4	Š/EE	6×6	. 13	8×8	
No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$	No.	$Lv(cd/m^2)$
1	558.48	1	558.85	1	585.97	1	587.73
2	535.66	2	555.19	2	585.24	2	586.83
3	534.9	3	548.15	3	584.09	3	586.89
4	580.42	4	547.69	4	584.73	4	588.74
5	495.44	5	558.44	5	582.52	5	587.33
6	495.87	6	556.1	6	579.63	6	587.35
7	485.21	7	546.64	7	581.88	7	587.21
8	486.81	8	541.06	8	584.74	8	594.18
9	482.33	9	545.33	9	581.55	9	592.42
Range	98.09	Range	17.79	Range	6.34	Range	7.35

表 4.2 使用色彩分析儀作小幅移動量測之結果

如第 3.1.2 節預期,從涵蓋範圍 2×2 的全距為 98.09,4×4 的全距為 17.79,6 ×6 的全距為 6.34,觀察出隨著涵蓋範圍變大,全距大幅度縮小,雖然涵蓋範圍 8 ×8 的全距為 7.35,不如預期的當涵蓋範圍越大時其跳動幅度越小,但仍能由實 驗數據得到發光點與間隙比例對於量測會有一定程度的影響。

4.3 PLED 發光點不均勻檢測實驗

發光點檢測分成亮度不均勻與色度不均勻檢測,發光點不均勻檢測參照第 3.2.1 節與第 3.2.2 節所提出之演算法進行實驗,詳細實驗描述與結果將分別在第 4.3.1 節與第 4.3.2 節。

4.3.1 亮度不均匀檢測實驗

根據第 3.2.1.1 節與 3.2.1.2 節所提出之兩階段亮度不均勻檢測方法,檢測通 電後的 PLED 樣本,檢測實驗說明將在第 4.3.1.2 與 4.3.1.3 節詳細敘述。檢測前 必須設定檢測使用之門檻值參數,相關參數設定實驗詳見第 4.3.1.1 節。

4.3.1.1 亮度不均匀檢測參數實驗說明

亮度不均匀檢測的參數有兩個,一個是在進行第3.2.1.1節的亮度均勻度檢 測演算法所需要設定的亮度標準差門檻α,另一個則是在進行第3.2.1.2節的亮 度檢測演算法所需要設定的亮度平均值門檻β,兩者分述如下:

40000

一、亮度標準差門檻

由於 PLED 製造商沒有提供發光點亮度均匀的樣本標準片,故本研究從所有 製造商所提供的 PLED 樣本中,找出通電後以人眼目視 PLED 上發光點亮度較為 均匀的樣本作為對照。以圖 4.3 之 PLED 為例,從此樣本之亮度標準差之門檻值 訂為 0 開始,每次以 1 往上增加,直到檢測影像僅停在第 3.2.1.1 節演算法中的 起始步驟 (如圖 3.11),表示在此門檻值的檢測下,兩待測區檢測結果為均為均 勻,如此可以找到亮度標準差的門檻值下界,實驗結果則如圖 4.4 所列,並找出 亮度標準差門檻下界為 2。

另一方面,將 PLED 製造商所提供的發光點亮度不均勻樣本通電後取像,以 圖 4.5 為例,觀察影像的亮度標準差,將檢測門檻值訂為0開始,每次增加1, 直到不均勻樣本亮度的影像停在第 3.2.1.1 節演算法中的起始步驟(如圖 3.11), 因為此門檻值將不均勻樣本判斷成均勻,故以此數值作為亮度門檻值的上界,實 驗結果如圖 4.6 所列,並找到亮度標準差門檻上界為 5。所有的不均匀 PLED 實驗樣本之通電影像參照附錄一。

圖 4.4(a) 亮度標準差門檻值 α=0

圖 4.4(b) 亮度標準差門檻值 α=1

圖 4.4(c) 亮度標準差門檻值 α=2

圖 4.4 亮度標準差門檻值下界實驗結果

圖 4.5 參數實驗之不均勻 PLED 樣本通電影像

圖 4.6(a) 亮度標準差門檻值 α=0

圖 4.6(b) 亮度標準差門檻值 α=1

圖 4.6(c) 亮度標準差門檻值 α=2

圖 4.6(d) 亮度標準差門檻值 α=3

圖 4.6(e) 亮度標準差門檻值 α=4

圖 4.6(f) 亮度標準差門檻值 α=5

圖 4.6 亮度標準差門檻值上界實驗結果

二、亮度平均值門檻

對發光點亮度較為平均的 PLED 樣本 (圖 4.3),將其發光區影像先切成如圖 4.4(a)的 64 (行) ×32 (列) 個 2×2 小區塊,觀察小區塊與小區塊之間的亮度平 均值,並使用第 3.2.1.2 節的檢測演算法,以不同的檢測參數 β 檢測此樣本。檢 測參數 β 的訂定,則嘗試由低門檻值開始 (本研究以 8 開始),逐步提升至完全 檢測不出具不均勻區塊;接著,拿不同參數下的檢測結果與原 PLED 通電影像比 對。由實驗結果可以發現使用越低的門檻值 (較嚴格)時,會有越多的均勻區塊 被判斷成不均勻,藉由比對誤判結果的多寡與原通電影像選出一個值作為 β,當 門檻值挑選比β還低的時候,表示會將均勻區塊誤判成不均勻,亦即檢測過於嚴 格。用此β作為均勻檢測的亮度平均值門檻,下節的實驗結果是以12作為β, 被判定為不均勻的區塊,會將以深灰色區塊標示在結果影像中,代表此為不均勻 瑕疵發生的相對應位置,所有門檻值選取的實驗結果參照附錄二。

4.3.1.2 亮度均匀度檢測實驗說明

根據第 3.2.1.1 節所提出的演算法與第 4.3.1.1 節所實驗出的檢測門檻值α, 以圖 4.7 的 PLED 樣本為例。根據實驗結果,當α越小表示切割的門檻越嚴格, 故被切割成 2×2 小塊的結果會越多,實驗結果如下圖 4.8 所示,其他不均勻樣本 的檢測實驗結果參照附錄三。

圖 4.7 不均勻檢測實驗之 PLED 樣本通電影像

圖 4.8(a) 亮度標準差門檻值 α=2

圖 4.8(c) 亮度標準差門檻值 α=4 圖 4.8 使用亮度均匀度檢測演算法之檢測結果

4.3.1.3 亮度檢測實驗說明

將經過亮度均勻度檢測演算法檢測後的影像,再經由第 3.2.1.2 節的演算法 進行檢測,仍以圖 4.7 之實驗樣本為例,檢測結果以淺灰色區域代表 PLED 樣本 上發光區的範圍,以深灰色色塊代表不均勻瑕疵在 PLED 上出現的位置與分佈大 小,如圖 4.9 所列。根據實驗結果,由於越低的亮度標準差門檻值α會造成越細 的切割,故在第二階段亮度檢測的檢測結果,其不均勻瑕疵分佈的範圍越少,其 他樣本的實驗結果參照附錄四。

圖 4.9(a) $\alpha = 2$ 的亮度檢測實驗結果

圖 4.9(c) α=4 的亮度檢測實驗結果

圖 4.9 使用亮度檢測演算法之檢測結果

4.3.2 色度不均匀檢測實驗

根據第 3.2.2.1 節與 3.2.2.2 節所提出之兩階段色度不均勻檢測方法,檢測通 電後的 PLED 樣本,檢測實驗說明將在第 4.3.2.2 與 4.3.2.3 節詳細敘述。檢測前 必須設定檢測使用之門檻值參數,相關參數設定實驗詳見第 4.3.2.1 節。

4.3.2.1 色度不均匀檢測參數實驗說明

同第4.3.1.1 節的檢測參數實驗概念,將色度不均勻檢測參數也分成色度標 準差門檻值α與色度平均值門檻β,說明如下:

一、色度標準差門檻

同樣以圖 4.7 為例,將色度標準差門檻值由 0 開始,逐步往上增加 1;然而 當標準差門檻為 1 時,色度影像即停在第 3.2.2.1 節之色度均匀度檢測的起始步 驟,表示此樣本的色度差異非常小。故本研究選擇 1 作為色度標準差門檻的下 界,由於色度不均匀 PLED 樣本不易取得,因此沒有辦法找到色度標準差門檻的 上界,實驗結果如圖 4.10 所示。

圖 4.10(a) 色度標準差門檻值 α=0

圖 4.10(b) 色度標準差門檻值 α=1

圖 4.10 亮度標準差門檻值下界實驗結果

二、色度平均值門檻

將圖 4.7 之色度 PLED 樣本發光區影像先切成如圖 4.10(a)的 64(行)×32(列) 個 2×2 小區塊,觀察小區塊與小區塊之間的色度平均值並使用第 3.2.2.2 節的檢 測演算法依不同的檢測參數 β 檢測此樣本。同亮度檢測,本研究嘗試由 β 等於 1 開始逐步增加至完全檢查不出有色度不均勻區塊為止。接著比對不同參數下的檢 測結果與原通電 PLED 影像。由比對結果得知,當門檻值越低時,檢測要求越嚴 格,故越多應該屬於色度均勻的區塊,會被判斷成不均勻。透過這樣的比對方式, 可找出一門檻值 β 讓檢測結果與通電影像相似,下節實驗是以 β 等於 3 作為檢測 門檻值,所有相關的參數實驗樣本參照附錄五。

4.3.2.2 色度不均匀檢測實驗說明

將圖 4.7 之色度 PLED 樣本經由第 3.2.2.1 節與第 3.2.2.2 節所提出之色度不 均勻檢測方法檢測,以色度標準差門檻為 0,色度平均值門檻為 3 做為檢測參數, 經過兩階段檢測後的結果如圖 4.11 所示。

圖 4.11 色度不均匀檢測樣本實驗結果

4.4 封膠瑕疵檢測實驗

本節根據 3.3 節所提出的方法,進行封膠瑕疵檢測實驗。檢測成品前必須架設新的檢測硬體以及選取檢測所需參數,將分述如後。

4.4.1 檢測硬體設計說明

如 3.3 節所述,[2]在進行膠寬檢測時使用的是與亮度不均勻檢測時相同之舊 夾具,如圖 4.12 所示。為改善 3.3 節所述之舊夾具缺點,本研究改成利用壓克力 板做的長方形框,如圖 4.13 所示,此壓克力框剛好可放置一片 PLED 樣本。檢 測架構整體則如圖 4.14 所示。

圖 4.12 封膠檢測之舊夾具

圖 4.13 壓克力框示意圖

圖 4.14 封膠檢測之硬體架構圖

固定 PLED 與鏡頭的距離,並且控制所取得的影像之右上角一固定位置之灰 階值落在一範圍內,由 PLED 至光源的距離為 0 公分起,每增加 1 公分取一次像, 取像結果參照附錄六。

由實驗結果得知,當 PLED 離 LED 背光由 0cm 至 10cm 時,外膠邊緣輪廓 會越清楚,但實心內膠與空心內膠的連接處會越不明顯;另外,利用平行 LED 為背光源所得到的影像作為對照,如圖 4.15,能觀察出外膠邊緣很清楚,但實心 與空心內膠的連接處較不明顯,與本研究的實驗結果相符。所以在檢測封膠之 前,將會事先調整 PLED 與背光光源兩者至一較好工作距離(本研究使用之工作 距離為 5cm),再對全部待測 PLED 樣本取像。

圖 4.15 以平行 LED 背光所取得之 PLED 影像

4.4.2 選取檢測範圍說明

檢測封膠前必須選取一 γ 值作為掃瞄寬度,此掃瞄寬度代表每一次之投影量 與每次檢測區域(圖 3.24 的黃色框)之移動距離。本實驗將 γ 分兩部分討論, 第一部份討論 γ 值的選取,另外一部份則是檢測區域的移動方式與距離,分成不 重疊(如圖 4.16(a))、重疊(如圖 4.16(b))、與其他的 γ 計算方式(如圖 4.16(c) 與(d))。圖 4.17(a)-(h)依序為 $\gamma=2$ 、4、6、...、16 的結果,圖 4.18(a)與(b)則分別 是當 $\gamma=6$ 與 $\gamma=8$ 時,檢測區域移動以重疊 $\gamma/2$ 的結果,圖 4.19(a)-(d)是以其他 的 γ 選取方式時所獲得的影像,所有測試影像所設定之參數均相同。

由實驗結果得知, γ 值越小代表越能完整呈現邊界與氣泡瑕疵資訊(如圖 4.17(a)-(b)),但也越容易受封膠上的異物干擾邊界及氣泡瑕疵的偵測結果,並且 必須考量程式運算量的問題。而部分重疊檢測區域,如圖 4.18(a)與(b),其結果 與不重疊檢測區域相似,然而以此樣本而言,較難利用部分重疊的方式找出波浪 瑕疵(與圖 4.17(c)與(d)的波浪瑕疵結果相比),且運算量接近不重疊的兩倍。針 對其他的 γ 計算方式部分,由圖 4.19 的(b)與(d)得知間格一個 γ 的方法會造成一 些錯誤的邊界判斷,而平均移動的方式(圖 4.19(a)與(c))與 γ 不重疊的結果(圖 4.17(c)與(d))相比,更不容易被封膠內的異物影響偵測結果。考量程式運算量與 效果,以下的封膠檢測樣本實驗以 $\gamma=8$ 、不重疊的方式進行檢測演算法。