F OO AL G A T E e N A

DESIGINING A WIRING AREA-EFFICIENT RECONFIGURABLE
HARDWARE FOR'A FIXED.-SET OF APPLICATIONS

PE R4 e B4 0

- BREE S
TR AR ﬁ% £

ﬂ‘j@

DESIGINING A WIRING AREA-EFFICIENT RECONFIGURABLE
HARDWARE FOR A FIXED SET OF APPLICATIONS

By oA pAE Student : Hui-Zhen Lu
R A Advisor : Dr. Chung-Ping Chung
B < F
TR
R S
A Thesis

Submitted to Department of Computer-Science and Information Engineering
College of Electrical-Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science and Information Engineering

September 2005

Hsinchu, Taiwan, Republic of China

PEARA e E4

SPEF [RAER 5P R

VPR TRV A
S frabe - g

It T 3p] ST RS R O

v

7@1ﬂw%T@%ﬁvWHﬁ%Wﬁwﬁ%’%Wﬁﬁﬁm%@”Wﬁ@’&
TF Eﬁﬁ*ﬂ%(ﬁﬁ”ﬁ%ﬁ@W)W%@@ﬁiéﬁﬁwi@?’ﬂu
BT VO R IR | ROATm s [BB ¢
L by R i e FPOA L
EJ e L (RO SRR TP FRGA R
Hiagse (F AT o

R A SR B AT w@mmﬁ*’m$%%ﬂ£Jm%%w
A < FE S A R i R 0 (0 SRR U g
W’Hﬁﬁbt#%ﬁﬁ#wﬁ$ WW¢%wwg%@twm%L%@w%umﬁ
oo FY |Fﬁr§é’.’ﬁjk ’{IEDLESZELJF‘EF'J Fli = Ll'@@l F[‘ fj;’”? i f}ﬂ Jpﬁp SRICIEE m}q«_»]fu, (g

e PR AEIR o £SO rRRA] R A SRR W ﬁTF’;[PP TR A
mﬂ&m ERE lﬁ[[ﬂfﬁ?ﬂt@ Placement and Routing > — &9 it ik fLAficl | E‘w}«[ﬁiﬁ@l A
[JLEngFj,F' HJE;'”:VEHF‘B Fpﬂﬁlﬁﬁﬁﬁﬂﬁ F- 1IN '&Hﬁé[,ﬁgﬁiﬁg I/ f ey
B G2 = T R VEIJIQE AUREREE 7 o = mpjli.ﬁi Iﬁl@gﬁﬁ*ﬁﬂjﬂ SER lif IHJJ‘M['
R U%ﬁﬁﬁ“‘u’ » HEJRESIGH - (T ? HERL J/'“i?»ip P o PRIEEY PR
T TR S bR S - b |a{£$‘"ﬂp’§ﬁ”ﬂ’ﬁl?ﬂ ﬂj Eﬂjﬂfuw[l[p et IE‘wH
Ia“x FhE wF”ﬁ@nppJ?%?g\p [%‘ﬂﬁj 15 R REERRL = A ,,ﬁ +'FF', (R
uhﬁﬁwu%:%ﬁ’@@mqﬂwm%%w%ﬁJ %ﬂﬁ“’p?ﬁ?ﬁ
EE Ve o] s A i”', BTSRRI R > ARG R
?ﬂ Pum T A (R A B o FLRS IFVLE'I s ALpLE WfF,'p YIE TSR ml}lﬁ%ﬁpj
SR T B+ [BT R 2 PR -

B B i&»m%r&ﬁ@%’ﬂ» ﬁlipﬁ?P“Jfﬁl"ﬁ VPR (Versatile Placement and
Routing) *bii?;%ﬁ Pt 28.2% 0 'l }f&ﬂé‘]%’ﬁﬁgpﬂ?‘/¢ ﬁifl’éir"“’ﬁ’ﬁ%%ﬂ*ﬁﬁﬁ
BT 67 5 - 25 I (R Tamw{%.pﬁ;%@ﬂ TR IR A i
FTIR 81 IR D il 2 e o g

DESIGINING A WIRING AREA-
EFFICIENT RECONFIGURABLE
HARDWARE FOR A FIXED SET OF
APPLICATIONS

Student : Hui-Zhen Lu Advisor : Dr. Chung-Ping Chung
Institute of Computer Science and Information Engineering
National Chiao-Tung University

ABSTRACT

The reconfigurable computing _offers :computation ability in hardware to increase
performance, but also keeps the flexibility:sin.software solution. There is a kind of product
called FPGA (Field Programmable.Gate Array) in the market, which is the harbinger of
reconfigurable hardware. It has been common used in IC product verifications. The current
developing trend of general FPGAS is t0 use more processing elements for a large number of
computations. For more processing elements,” the routability must be increased. Therefore
there would be many wires and switches called routing resources in FPGA. High routability
demand makes most of the chip area of FPGA used by routing resources.

The purpose of this thesis is to get small wiring area as far as possible and the
precondition is to supply the maximal parallelism for computations. By designing our
reconfigurable hardware for a fixed set of applications, so only limited routability is needed,
and the demand for routing resources is decreased naturally. Therefore the focal point of this
thesis is to propose an algorithm of reducing wiring area. From specific applications, we
extract loops, which are worth speeding up in reconfigurable hardware. These loops are
transferred to data flow graphs, and we must decide what processing elements and routing
resources are needed when these data flow graphs are implemented in reconfigurable
hardware. This step is called “Placement and Routing”. The general method is first to allocate
all nodes in a data flow graph should be implemented by which processing elements in
reconfigurable hardware and then to find all edges should be what routing paths in

reconfigurable hardware. This kind of method makes routing paths limited by positions of

sources and destinations. Although it is fast, it is not necessarily to reduce wiring area
efficiently. So we propose a method of simultaneous placement and routing. While place
every node in reconfigurable hardware, simultaneously consider how to route edges to make
added wiring area minimal. The routing in this step is that the position of the source is known
and to find the processing element for the destination and the routing path to make the added
wiring area minimal. We adopt greedy algorithm to find current needed minimal wiring area
every time. The principle is not to add new wires as far as possible. The existed non-used wire
segments in hardware are used preferentially for routing. On the basis of the principle, the
former selected node’s placement would influence the latter node’s placement position. So the
order of selected nodes is also one of our considerations.

The simulation results show that the area is fewer by 28.2% when use our method than
use traditional VPR (Versatile Placement and Routing). When need processing elements in
reconfigurable hardware are increased, to use our method is not only to prevent to limit
accommodated processing elements in a chip because of a large number of routing resources

and to reduce power consumption even.delay comes from routing.

Iz

ﬂ‘_f&%[ﬂ%ﬁ&ﬂ Jfﬁlﬁ—j-:yaﬁ 'iﬁ;ﬁ;—j@ s T]ﬂjF[SEEIEC=TNA N J)rrgﬂjik 7
i H.kr > Jf Eﬁ*{?[r‘ya‘iﬁzﬁﬁﬂﬂ%ﬁrﬁ U BETEEE L] R
H'I

Wﬁwr—&%jﬁ (R bl n“%‘lﬁf =y RLEG Y] :j;%KF pJEﬁﬁIF |92 > T Pl b
R IO o I PR A AT RO A -

IS I T SRR VRN - AR R R
B RICEIEERE ST A SN O R B2 B2 Sl

ARIRGHZIE "I MBI BRI H2 Rl RS- Rl &
HE5 ?4 » BEIGIEDF I IFIJIEUE[

TR IO IR I SRR - B
e -

B 2005/9/12

CONTENT

ABSTRACT et arre e e e 1
= = iv
CONTENT oo e e e e e s eanree s \
LAST OF FIQUIES ..o vii
LiSt Of TabIES.. ..o s viii
CHAPTER 1 INTRODUCTION ..ot 1
1.1 .The CUITeNt SITUALIONcceiiiiieiieie et 2
1.2 MIOTIVALIONS ...ttt bbbt bbbt 2
1.3 Objective and Proposed approach i lifis e 3
1.4 Organization Of THIS TheSISuii.. . .ucisrat bensiink e coatsbereereesseesseeseseesseesseseessessseseessens 3
CHAPTER 2 BACKGROUND AND'RELATED WORK................... 4
2.1Background: Features Of FRGA i il e e s 4
2.2 Related work: Simulated Annealing Placementccccoovviieiineni i 6
2.3 Related work: Basic Routing AIgOrItMScccoeviiiniiiiieee e 8
2.3.1 MAZ€ FOULING [5] .. veeveiierieeiee sttt 9
2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algorithm............... 10

2.4 Related work: Versatile Place and Route (VPR) tool [3][5]cccoeververiverivennnns 11
2.4.1 Placement algorithm.........coooiiiiiie e 11
2.4.2 Routing @lgorithim..........ooieieie e 12
CHAPTER SDESIGN ... 16
3.1 Problem DeSCrIPIIONScc.eiiiiiiieieieei ettt 16
3.2 BASIC IUBAS. ... ccueeieeiieieie e bbb 17
3.3 Hardware ASSUMPLIONScoeririeieieiesie sttt sb et 18
3.4 The Main Work in QU DESIQNccvviieiieeieiieceee et e e 19
RO o [Tl B =Tol 1] (o] o RO RS TORPRTRRN 21
3.6 Placement and ROULING DESIGNcvviieiieieiieieeie e 23
3.6.1 Undirected routing graph.........ccoooeiiiiiiiiee s 23
3.6.2 ROULING FEQUITEMENT.....cuviiieeie e ceesie ettt ee e ns 24
3.6.3 Detail placement and routing deSignccocereiieieninneeie e 25

CHAPTER 4 SIMULATION ENVIRONMENT AND SIMULATION

RE SU L T S ettt e e 32
4.1 BENCAMATK SUITEveeieieeeiee ettt ettt ettt e s et e e s e e e e s s etb et e e s ansneeeesearees 32
4.1.1 Criteria for Selecting Benchmarksccccoviiiiiiiiiiiees s 32
4.1.2 MediaBench BENCNMAIKSccoiiiriiiiieiiie ettt e e e e e s seaeee e 33

.2 EVAIUBLION. ...ttt e e e et e e e e et e e e e e e e e e eeeeeeeaaans 35
4.3 SIMUIATION RESUILSveeiiiiee ettt ettt e ettt e s et e e e s s e e s s sa et e e s aeanaeeessrrees 37
4,31 LOOP OFUEK ...ttt 37

L T 10 To [T o] 0] TR 37
4.3.3 Compare results With VPRcooiiiee e 38
CHAPTER 5 CONCLUSIONS AND FUTURE WORKccccov... 40
REFERENCE ...ttt 41

Vi

List of Figures

Figure 2-1 FPGA STrUCTUIE......ooi e 6
Table 2-1 Schedule table [3]cccooviiiiiiec e 8
Figure 2-2 Maze router eXamples........cccooevvviiiiieenec e 10
Figure 2-3 Examples of correction factors [5]........cccoeevviiiiiieneennn 12

Table 2-2 Correction factors for nets with up to fifty terminals [5].. 12

Figure 3-1 the reconfigurable hardware of our design............cccc....... 19
Figure 3-2 the flow chart of our main Workcccccoeviviiniieenieen, 21
Figure 3-3 example of Node’s order........ccccccevveiii i 22
Figure 3-4 the undirected routing,graphccccccevvveveiic e 24
Figure 4-1 chip area before.and after placement and routing........... 36
Figure 4-2 results of “with-l/O lImit™” ... 38
Figure 4-3 results of “without O TMIt” .. oo 38
Figure 4-4 compare all results..........o 39

vii

List of Tables

Table 2-1 Schedule table [3]ccooviiiiiec e 8

Table 2-2 Correction factors for nets with up to fifty terminals [5].. 12

viii

CHAPTER 1 INTRODUCTION

There are two primary methods in conventional computing for the execution of
algorithms [7]. The first is to use hardwired technology, such as Application Specific
Integrated Circuit (ASIC). ASICs are designed specifically to perform a given computation
for which they were designed. However, the circuit cannot be altered after fabrication. This
forces a redesign and re-fabrication of the chip if any part of its circuit required modification.

The second method is to use software-programmed microprocessors—a far more flexible
solution. Processors execute a set of instructions to perform a computation. By changing the
software instructions, the functionality of the system is altered without changing the hardware.
However, the downside of this flexibility isithat'the performance can suffer, if not in clock
speed then in work rate, and is far below that of an ASIC.

Reconfigurable computing is-intended.-to-fill the-gap between hardware and software,
achieving potentially much higher performance than software, while maintaining a higher
level of flexibility than hardware.

The most common used reconfigurable hardware is FPGA. An FPGA contain an array of
computational elements whose functionality is determined through multiple programmable
configuration bits. These elements, sometimes known as configurable logic blocks or logic
blocks, are connected using a set of routing resources that are also programmable. Routing
resources include wires and switches. The routability of an FPGA depends on the number of

wires and switches.

1.1 .The current situation

The developing trend of general FPGAs is to use more logic blocks for a large number of
computations [1]. In order to use the same hardware to complete all kinds of computations,
there must be very high routability in the hardware. In the other word, there are many wires
and switches in the chip. These wires and switches will make the chip area very large. When
different computations are completed in the hardware, some wiring area will be idle.

Although the technology grows fast, a chip could contain much more logic blocks.
However, the need for high routability makes most chip area is used in routing resource (often

80-90%)[2].

1.2 Motivations

Because high routability comes at.a large-expense in interconnect costs, we will devise
our reconfigurable hardware for some-special area applications. By limiting the range of
computations in the reconfigurable hardware, we can lower the needed routability.

The multimedia applications are very popular in the market. When we apply them in the
reconfigurable hardware, on the one hand we can speed up the intensive computations of
multimedia applications and on the other we can lower the cost by employing the same
hardware to complete different multimedia applications.

According as integration technologies grow fast, the size of logic blocks will be smaller
than before. However, the amount of interconnections will not decrease much. And the chip
area will be limited because of many interconnections in the hardware. If we can efficiently

arrange wires position, the wiring area will be reduced much more.

1.3 Objective and Proposed approach

The objective of this thesis is to reduce the needed wiring area in the reconfigurable
hardware, and the prerequisite is to fix the amount of the logic blocks to keep performance.
We will design a reconfigurable hardware from a given logic block array (just like FPGA),
and develop a set mechanism to decide the minimal wiring area to complete all need
computations selected from multimedia applications. To achieve this objective, we first need
to analyze the multimedia applications. Intensive computations will be selected to process on
the reconfigurable hardware. We will consider these computations as dataflow graphs, and we
must determine how to accomplish these dataflow graphs on the logic block array. This step is
called “placement and routing”. By placement, every node in a data flow graph will be
decided to use which logic block te complete tts-computation. By routing, every edge in a
data flow graph will be decidedto use which routing-resources. Good placement and routing

makes the needed wiring area reduced:

1.4 Organization of This Thesis

The organization of this thesis is as follows: In Chapter 2, the background and related
work are presented. In Chapter 3, the design idea and placement and routing algorithms are
described. In Chapter 4, our experimental results and related analysis are presented. Finally,

conclusions and future work are presented in Chapter 5.

CHAPTER 2 BACKGROUND
AND RELATED WORK

In this chapter, we will describe the FPGA features and present placement and routing
algorithms.

2.1Background: Features of FPGA

Most commercial FPGA architectures have the same basic structure, a two-dimensional
array of programmable logic blocks; that can, implement a variety of logic functions,
surrounded by channels of track segments f0:interconnect logic block 1/0. Three main classes
of FPGA architecture have evolved over the past decade: cell-based FPGA architectures,
hierarchical architectures, and island-style FPGA, The features of them are listed as follow.

1. Cell-based FPGA

A. Consist of a two-dimensional array of simple logic blocks which contain two or

three two-input logic structures such as XOR, AND, and NAND gates

B. Inter-logic block communication: directed wired connections from logic block

outputs to inputs on adjacent logic blocks

C. Small numbers of wire segments that span multiple logic blocks offer a minimal

amount of global communication but typically not enough to implement circuits
with randomized communication patterns.

D. Theses routing restrictions frequently limit the application domain of these devices

to circuits with primarily nearest-neighbor connectivity such as bit-serial arithmetic

units and regular 2-D filter arrays.

2. Hierarchical architectures
A. Contain a 2-D array of complex logic blocks with many LUTs and flip-flops per
logic block (8 or more)
B. Inter-logic block signals are carried on wire segments that span the entire device
providing numerous high-speed paths between device 1/0 and internal logic blocks
C. Lead to an ideal implementation setting for designs with many high-fanout signals
D. Effectively be used to implement many types of logic circuits exhibiting a variety of
interconnection patterns.
3. Island-style FPGA
A. This style is between cell-based and hierarchical architectures and characterized by
logic blocks of moderate complexity generally containing a small number of LUTs
B. Routing channels with a range of wire segment lengths are available to support both
local and global device-routing
C. Contain a square array of logic blocks embedded in a uniform mesh of routing

resources.

Generally to speak, a common FPGA structure is as Figure 2-1, the logic blocks are
embedded in a general routing structure. Given a logic block array, the space between
columns or rows is channel. A channel contains some tracks for programmable routing. The

channel capacity means the amount of tracks in the channel.

L : Logic block C : Connection box S . Switch box
L] || | |

L | §]]| L |
T e]‘ Eis
L ¢/ L H& | L | [d
ci— 3% — =t SiE
mii==I | == =
L | [[&= L ¢ L C
T =11

Figure 2-1 FPGA Structure

2.2 Related work: Simulated Annealing Placement

The simulated annealing placement is easier to add new optimization goals or constrains
than min-cut and analytic placer and it is the most common iterative technique for island-style
FPGAs (and for many other design problems) [4]. It starts with a feasible placement, created
either through random assignment of design logic blocks to physical logic blocks, or through
the use of constructive approaches and then repeatedly generates placement perturbations in
the form of logic blocks swaps. While it clearly makes sense to greedily accept perturbations
that reduce overall cost, the search aspect that makes simulated annealing unique is its
treatment of swaps that increase or have no effect on overall cost. To avoid local cost minima,

there is a need for simulated annealing to occasionally accept logic block swaps that increase

overall cost. By accepting these moves, the global placement can be moved away from a local
minimum enhancing the prospect that further cost-reducing swaps may find a more optimal
final placement.

An important aspect of the simulated annealing algorithm is the determination of how

frequently cost-increasing swaps are accepted. For most algorithms, this acceptance rate is

_ACOSt

determined based on a probability, e T , where Acost is the swap cost increase and T is the

temperature, a probability parameter which directly controls the acceptance rate. A common
cost function is the sum over all nets of the half-perimeter of their bounding boxes. Initially, T
is set to a high value so that almost all swaps, good and bad, are accepted. During progression
of the algorithm, T is repeatedly reduced and fewer higher cost permutations are accepted,
thus allowing convergence to a final result. Important factors that effect the run time and
quality of simulated annealing algorithmssaresthe determination of starting temperature T,
adjustment of T, number of permutations attempted at each T, and the ending criteria for the
algorithm.

In [4], the pseudo code is as follows.

T = Starting()
Moves per iter = MovesPerlter()
While (StoppingCriterion(T) == FALSE)
Move count =10
While (Move count < Moves per iter)
Swap blocks
Evaluate Acost If Acost <0 Accept swap

_ACOSt

Else if (random(0, 1) < € T) Accept swap

Else Reject swap
Move count++
EndWhile

T = Adjust(T)

EndWhile

The initial annealing temperature is set to 20 times the standard deviation of the
Acost for performing Npoks random pair-wise swaps. The temperature(T) is updated

according to the follow schedule table so that Tpew= @ Tow. The ideal commended default

number of moves at each temperature is 10N>, .. Annealing is terminated when T is less

than 0.005x =%t
nets
Fraction of moves accepted Raccent a
Raccent > 0.96 0.5
0.8 < Raccent =< 0.96 0.9
0.15 < Raceent = 0.8 0.95
Raccent = 0.15 0.8

Table 2-1:Schedule table [3]

2.3 Related work: Basic:Reuting Algorithms

In this section, we describe the:basic -maze routing algorithm, the rip-up and re-route
algorithm, and the multi-iteration algorithm; “which are the basic for many of routing
algorithms. By far the most popular routing algorithms for FPGAs are maze-routing
algorithms based on Dijkstra’s shortest path algorithm. The routing search starts at a net
source and is followed by an iterative evaluation of track segments, based on segment cost, in
an effort to avoid congested resources. If all net routed are not initially successful, selected

nets are ripped-up and rerouted in an effort to free contested resources.

2.3.1 Maze routing [5]

The maze routing algorithm was designed to find the shortest path between two points on
a rectangular grid by using a breadth-first search. The algorithm is guaranteed to find a path,
if one exists. When applied to an FPGA, the maze routing algorithm starts at the source node
of a net and expands each neighboring node. Expansions continue until the sink node of the
net is reached, or all nodes have been visited and no path has been found. However the
biggest weakness is very slow. So two main improvements were developed.

1. Depth-first search

Rubin showed that using a depth-first search could significantly reduce the run-time,
while still finding the shortest path between two nodes []. For a two-terminal net,
choosing a terminal located closer to-one,of-the four corners of the rectangular grid
helps to reduce the run-time_since-the edges of the grid impose boundaries on the
search.

2. Directed search

Soukup altered the basic algorithm to make it expand nodes that were successively
closer to the sink of a net, creating a directed search algorithm. This algorithm provides
an order of magnitude speedup over the basic maze routing algorithm.

The Figure 2-2 shows examples of breadth-first search maze router and directed search
maze router. The source of the net is marked with an “S” and the target sink is marked with a
“T”. The black squares mark blocked nodes or congestion. The directed search expands
significantly fewer nodes than the breadth-first search, since the search expands directly
towards the target sink. If there is a significant amount of congestion, the directed search may
end up expanding most of the nodes to find a path to the target sink. In the worst case, the

directed search has to expand as many nodes as the breadth-first search.

T T
4—|3| ¢
= |3|2]|3] ==
2] 1]2] 3] 121313156 T
3[211]S]|1] 2|3+ LIS] 234]5]6]— 0
21 {213 4 112[3[4]5]6
4—|3]2[3] 1»
(a) (b)

(a) Breadth-first search maze router, (b) directed search maze router
Figure 2-2 Maze router examples [5]

2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algorithm

Since the routing resources-in an FPGA are'limited, routing algorithms face the problem

of routing congestion. The problem is-that_routing one net using particular resources may

make it impossible to route some other-nets. There have been two types of algorithms to deal

with the congestion problem [5]. The first type of algorithm is known as rip-up and re-route,

such as the work done by Linsker. Another solution to the congestion problem, know as the

multi-iteration approach, was conceived by Nair . The main features are as follows.

1.

Rip-Up and Re-Route Algorithm

Nets using resources that are congested are ripped-up and re-routed

The success is dependent on the choice of which nets to rip-up and the order in
which ripped-up nets are re-routed

Multi-iteration algorithm

A routing iteration is the ripping-up and re-routing of every single net

Each net is ripped-up and separately (leaving all the other in place) and re-routed

Nets are routed in the same order, but only one net is ripped-up at a time

10

Nair’s technique is very effective, because nets in non-congested areas can also be

relocated to allow nets using congested resources to be routed more easily.

2.4 Related work: Versatile Place and Route (VPR) tool [3][5]

Many placement and routing tools use the basic algorithms in section 2.2 and section 2.3
for their implementation goals, such as to minimize the required wiring length (wire-length-
driven), to balance the wiring density across the FPGA (routability-driven), or to maximize
circuit speed (timing-driven). In terms of minimizing routing area, VPR outperforms all
published FPGA place and route tools. In this thesis, we will take VPR to compare with our

design.

2.4.1 Placement algorithm

VPR uses the simulated annealing algorithm mentioned in section 2.2 for placement. A
linear congestion cost function provides the best results in a reasonable computation time. The

functional form of this cost function is

Noete bb,
o S 240

In the above formulation, the summation is over all the nets in the circuit. For each net, bby

=

and bby denote the horizontal and vertical spans of its bounding box, respectively. The q(n) is
correction factor which compensates for the fact that the bounding box wire length model
underestimates the wiring necessary to connect nets with more than three terminals. Its value
depends on the number of terminals of net n; g is 1 for nets with 3 or fewer terminals, and
slowly increases to 2.79 for nets with 50 terminals. For example, a net with just two or three

terminals will have a correction factor of 1.0 as shown in Figure 2-3. The crossing count of a

11

four terminal net is about 1.08, since extra wiring is need to reach the fourth terminal, as

shown in Figure 2-3. The correction factors for different fanout nets were determined by

creating thousands of Steiner trees for randomly distributed net terminals and averaging the

correction factor for each of the different fanout nets. Table 2-2 lists the correction factors for

nets with up to fifty terminals. Cax(n) and Cay(n) are the average channel capacities (in

tracks) in the x and y directions, respectively, over the bounding box of net n. This cost

function penalizes placements, which require more routing in areas of the FPGA that have

narrower channels.
wire

terminal

half-perimeter
hounding box

L — —

2 terminals 3 ter

L — — —

'minals

correction factor =1 correction factor =1

extra wire

T

.
|
|

r— —

4 terminals
correction factor = 1.08

Figure 2:3 Examples of caorrection factors [5]

Num. Terminals| Correction FactorfNum. Terminals| Correction Factor
2~3 1.00 15 1.69
4 1.08 20 1.89
5 1.45 25 2.87
6 1.22 30 2.23
7 1.28 35 2.39
8 1.34 40 2.54
9 1.40 45 2.66
10 1.45 50 2.79

Table 2-2 Correction factors for nets with up to fifty terminals [5]

2.4.2 Routing algorithm

VPR’s router is based on the Pathfinder negotiated congestion algorithm. Basically, this

algorithm initially routes each net by the shortest path it can find, regardless of any overuse of

wiring segments or logic block pins that may result in route fail. An iteration of the router

12

consists of sequentially ripping-up and re-routing (by the lowest cost path found) every net in
the circuit. The cost of using a routing resource is a function of the current overuse of that
resource and any overuse that occurred in prior routing iterations. By gradually increasing the
cost of oversubscribed routing resources, the algorithm forces nets with alternative routes to
avoid using oversubscribed resources, leaving only the net that most needs a given resource
behind.

VPR contains two routers: one router is routability-driven, and the other router is timing-
driven. We describe VPR’s routability-driven router because it completely devotes to solve
congestion without delay time considering. This is the same with our design. The routability-
driven routing algorithm in VPR is very similar to the breadth-first routability-driven
Pathfinder algorithm, with a few important changes and enhancements.

The Pathfinder algorithm is based upon Nair’s method of iterative maze routing for
custom integrated circuits. During each iteration, every net is ripped-up and re-routed, in the
same order during each iteration. During early-iterations, nets are allowed to share routing
resources with other nets. As the“iterations.proceed, the sharing of routing resources is
penalized, increasing gradually with each iteration. After a large number of iterations, the nets
will negotiate among congested resources to try and find a way to successfully route the
circuit, allocating key resources to the nets that need them the most. By re-routing all of the
nets during each iteration, nets that do not absolutely require congested routing resources can
also be relocated.

The basic Pathfinder algorithm routes nets using a breadth-first maze routing algorithm.
A cost function is applied to each node (routing resource) to try and minimize congestion and
the delay of more critical nets. The cost function, C(n), applied to each node n by the maze
router is:

C(n) = A(i,j)*d(n) + [1 = A(i,j)] * Cost(n) (2.1)

where d(n) is the intrinsic delay of node n, Cost(n) is the congestion cost of using node n, and

13

A(i,j) is the slack ratio from the source of net i to the j™ sink of net i. The congestion cost is
calculated as:
Cost(n) = [b(n) + h(n)] * p(n) (2.2)

where b(n) is the base cost of using node n (set to the intrinsic delay of node n), h(n) is the
historical congestion penalty based upon the over-use of node n during previous routing
iterations, and p(n) is the present congestion penalty based on the over-use of node n during
the current routing iteration. If a connection lies on the critical path, then A(i,j) will equal 1.0,
and cost function (2.1) will be weighted completely towards optimizing delay. If a connection
lies on a path with a large slack, A(i,j) will approach 0, and the cost function (2.1) will be
heavily weighted towards minimizing congestion.

VPR’s routability-driven algorithm sets A(i,j) to 0 for all nets makes the router
completely routability-driven. In the other word, cost function (2.1) becomes congestion cost
function (2.2). And for avoiding having to normalize b(n) and h(n), the congestion cost
function used by VPR is:

Cost(n) = b(n) * h(n) * p(n) (2.3)

VPR sets the bases costs of almost all of the routing resources to 1. the only
exceptions are input pins, which are given a base cost of 0.95. This causes the router to
expand any input pins reached first and speeds up the routability-driven router by up to 1.5 to
2 times.

The present congestion penalty, p(n), is calculated by VPR as:

p(n) =1 + max(0, [occupancy(n) + 1-capacity(n)] * Prc)
where occupancy is the number of nets presently using node n, capacity(n) is the maximum
number of nets that can legally use node n, and p;. is a value that scales the present
congestion penalty. The present congestion penalty is updated whenever a net is ripped-up and

re-routed.

14

The historical congestion penalty, h(n), is calculated by VPR as:

i f Li=l
h(n) - { h(n)i’1+max(0,[occupancy(n)—capacity(n)]*hfac)vi>1
where i is the iteration number, and hg, is a value that scales the historical congestion penalty.

The historical congestion penalty is updated after a routing iteration.

15

CHAPTER 3 DESIGN

In this chapter, we will introduce the problem description and a brief introduction about
our design. Then the assumption of our reconfigurable hardware is given. After all, the detail

design will be described.

3.1 Problem Descriptions

About our problem, we give some conditions to be our basic design environment.
1. Given conditions
We extract computation intensive doops from benchmark suites. These computation
intensive loops are worth speeding up in reconfigurable hardware. And for the convenience of
our design, we use data flow graphs to represent these loops.

Because no loops would be executed at the same time, every time we only need to
reconfigure one loop’s circuit in the reconfigurable hardware, and no reconfiguration occurs
when a loop is executing.

That means our design will consider a loop’s placement and routing to be a main work.
Every loop must run the main work one time to decide its needed circuit in the reconfigurable
hardware. After all loops’ placement and routing are completed, the needed wiring area will
be decided.

2. Objective

Our objective is to find small wiring area in reconfigurable hardware as far as possible to

implement all computation intensive loops.

16

3.2 Basic ldeas

For general placement and routing tools just like VPR, first, all nodes in a data flow
graph will be placed in reconfigurable hardware; then all edges will be routed in
reconfigurable hardware. After all nodes positions are decided, the routing paths are almost
limited in determinate field. The needed wiring area is almost decided after placement.
Routing just devotes to route successfully with little influence on wiring area reducing. But,
during routing, routing paths gradually dissipate routing resources; a good routing algorithm
without limited by placement should make needed wiring area smaller.

Based upon above-mentioned attitude, our design advances the moment of routing.
Different from that all nodes are first placed then all edges are routed, a node and its edges are
placed and routed simultaneously.*And thisjnede’s position is decided by its edges’ routing to
make small wiring area as far as.possible.

When we decide to take a node and its edges to-be placed and routed simultaneously, we
find different nodes’ order would resultiin different needed wiring area. Because preceding
nodes’ positions and edges’ routing paths will influence later nodes’ and edges’ placement and
routing, the nodes’ order is one of our discussions.

For finding small wiring area as far as possible to implement all loops, we initial logic
block array without tracks in it. After a loop is placed and routed, the needed tracks in the
logic block array will be left for next loop to route. In the process of placing and routing a
loop, the existed track in the logic block array is given higher precedence than new added
track. Just like nodes’ order, different loops’ order make different needed wiring area. The

loops’ order also is one of our discussions.

17

3.3 Hardware Assumptions

We assume our reconfigurable hardware is like Figure 3-1. In our reconfigurable
hardware, every logic block is a processing element and every logic block is a square of equal
size. Every logic block is responsible for logic functions and easy arithmetic computations
such as addition, subtraction, and multiplication. For easy to evaluate the wiring area, a logic
block is assigned as a square. Because of the fast growing of integration technologies, we
think these assumptions about the logic blocks in our reconfigurable hardware are reasonable.

In order to get detail information of a track (which part is empty or which part is full),
the track is split into track segments. A track segment is a part of a track that spans one logic
block.

For the 1/0 pads, we have two.independent assumptions. The result of these two different
assumptions will be displayed in our simulations, These two different assumptions are as
follows:

1. With I/O limit
In this assumption, we assign 1/O pins in the logic blocks of the four sides of the logic
block array. In order to keep all routing resource for interconnection, we can assign 1/0
pins in the logic blocks of the four sides of the logic block array. With this assignment,
the routing resource can be concerned in interconnection without working for
transferring data with CPU and memory. However, the placement will be more
limitations. That means the 1/0O nodes must be placed only in the logic blocks of the four
sides of the logic block array.

2. Without 1/O limit

We give more flexibility to placement in this assumption. The logic blocks of the four

sides of logic block array are still with 1/0 pins. But the other logic blocks inside the

logic block array are given the ability of transferring data with CPU and memory.

18

However, when these inside logic blocks transfer data with CPU and memory, they must

use extra track segments.

We design our reconfigurable hardware as a logic block array. If there are M*N logic
blocks in the logic block array, there would be (M-1)+(N-1) channels. Among these channels,
there are (M-1) horizontal channels and (N-1) vertical channels. And M*N logic blocks can

implement all computation intensive loops selected from multimedia applications.

[]: Logic block []: Switch box ——: track
! ! !
o 1 2 3 |l
— S1 S2 ——
« 4) 6 |
—1 S3 A—
PIN 8 9 |l

! } !

Figure 3-1 the reconfigurable hardware of our design

3.4 The Main Work in Our Design

Every time when a data flow graph is selected to place and route in reconfigurable
hardware, we use the follow main work to decide how many wiring area is needed to

implement this data flow graph.

19

While there are nodes in the data flow graph not be placed on reconfigurable
hardware

1. Select a node u and V= {vi|vi have been placed on reconfigurable hardware
and have edge from or to u}

2. Try to route every (u,v;) to find its suitable routing path which will make
wiring area minimal at the moment, and then to place u on reconfigurable
hardware
In this step, vi has been placed in reconfigurable hardware. According to vi's
position, try to find the best routing path for every (u, vi) which the wiring

area added fewest.

The initial reconfigurable:hardware 1s‘only a logic block array, and no tracks in it.
After a data flow graph is-implemented .on the reconfigurable hardware, some needed
tracks will be added on reconfigurable hardware.-When other data flow graph is selected
to implement on the reconfigurable hardware; the existed tracks will be given precedence

for routing. The Figure 3-2 represents our flow chart.

20

Data flow graphs

Clear the occupied

,| Takeouta | logic blocks and
data flow graph track segments to be

non-occupied status

P

Initial RH >—

No

Data flow
graphs empty?

Any node
not be placed?

Place and route
the next priority
node and its

relativi' edges

RH information

1. The positions of existed tracks

2. The positions of occupied logic
blocks and track segments

3. The positions of non-occupied
logic blocks and track segments

Get the final RH

Figure 3-2°the flow chart of our main work

3.5 Order Decision

We adopt the order dependent method to solve our problem. A good order of placement
and routing will take us to a good solution. We divide the order of our problem into two parts
as:

1. The loops’ order
The more edges in a data flow graph, the more routing resource needed when
placing the nodes and routing the edges in the logic block array. So we can easily decide
the order of all loops according to the amount of edges in every data flow graph. A data

flow graph with more edges will be given higher precedence than others with fewer

21

edges to place and route in the logic block array.
The nodes’ order in a data flow graph
In this part, we apply three evaluations to put the nodes in a dataflow graph in order.
Before describe how to decide the priority of nodes, we define these three evaluations as
follows.
I. Sub-tree edges: the edges in the sub-trees of a node
In Figure 3-3, the sub-tree edges of node 1 are seven and the sub-tree edges of
node 2 are four.
ii. Node degree: the summation of the in-degree and the out-degree of a node
In Figure 3-3, the node degree of node 1 is two, and the node degree of node 2
is three.
iii. Level edges: the edges in the same level of the node’s sub-trees
In Figure 3-3, for-node 1, the level edges in the first level are two, the level
edges in the second level are three, and the level edges in the third level are

two.

The The The
first second third
level Ieviel Iev|e|

|
1

Figure 3-3 example of node’s order

Three hypothesizes in this thesis are given as follows:
< The more a node’s sub-tree edges, the higher its routing resource
requirement;

<~ The higher a node’s node degree, the higher its routing resource

22

requirement;
<~ The more the closer level edges of a node, the higher its routing resource
requirement.

When a node is with higher routing resource requirement, it will be given higher
priority. When we can’t use sub-tree edges evaluation select the highest priority node, we
apply node-degree evaluation. If the highest priority node still can’t be taken out, the
level edges evaluation is used. If still more than one node competes with the highest
priority, a random node is selected from the competed nodes. Other priority nodes are

selected as above-mentioned.

3.6 Placement and Routing Design

Our design would try to insert routing process: into placement. By this method, our
design is combined placement and routing.'And because the objective is to find small wiring
area as far as possible, whenever routing aniedge, the existed empty track segments in the
reconfigurable hardware would be given higher precedence than to add new tracks in the

reconfigurable hardware for routing the edge.

3.6.1 Undirected routing graph

We define an undirected routing graph for placement and routing. In Figure 3-4, we have
two kinds of vertices. One kind is Tjj and the other is Sg. Tj; means a track segments node that
is the set of the track segments that transfer data for the iy logic block or the ji logic block

directly by the same connection box without passing any switch boxes. Sy means a switch

23

node, which represents the kg, switch box in the reconfigurable hardware. So we can define an
undirected routing graph G(V,E):
m V={Tij| data from logic blocki or logic blockj} U{Sk | switch box}E= {(Tij,Sk)|

data is transferred between Tij and Sk}

track segments node

switch node

Figure 3-4 the undirected routing graph

3.6.2 Routing requirement

When we try to route an edge e in a data flow graph, we may get many possible routing
paths. In this moment, the best routing path for e must be decided. So we apply the three
evaluations as follows.

I. The fewest added tracks:
ii. The minimal added chip area
iii. The shortest routing path
When more than one routing path can route e:

(1) We first select the routing path which track added the fewest.

24

(2) If more than one routing path is possible, then we select the routing path which chip
are added the fewest from (1).

(3) If more than one routing path is possible, then we select the routing path that is the
shortest from (2).

(4) If more than one routing path is possible, then we randomly select a routing path

from (3).

3.6.3 Detail placement and routing design

When we select a non-placed node u and a node set V= {v;| vi have been placed on
reconfigurable hardware and have edge from or to u}, first we can classify u according to
whether u is an 1/O node that means.u needs to transfer data with CPU or memory. Because
we have two different assumptions for-1/O_node placement, classification of u is necessary.
Further we can classify V according to-the number of elements in V. When u is not an 1/O
node, we describe in CASE 1. When u is an 1/O node, it is described in CASE Il. And

classification of V will be both described in CASE | and CASE 1.

CASE I: uis a non-1/0 node

We describe different methods for different classifications of node set V according to its
number of elements as follows. CASE 1.1 describes the situation of one element in node set V,
and CASE 1.2 describes that of more than one element in node set V.
CASE 1.1: Only one element in node set V={v}, v’s position on reconfigurable hardware is
the source of the routing path for (u,v).
For the fewer tracks added, the fewer wiring area added, and for saving routing time, we will

try the fewest added track first. That means, if routing paths is found behind the condition of

25

fewer added tracks, routing paths with more added tracks would not be found out. Because
routing paths with fewer routing requirement have been found, it is unnecessary to find
routing paths with more routing requirement. The follow four steps are detail method for
CASE 1.1 to route (u,v) and to place u on reconfigurable hardware.
Step 1.1.1: no track added
Use maze routing as mentioned in section 2.3.1, limit no track can be added, and
routing should be stop in the first empty logic block. In the process, find all possible
routing paths, and the end of any one routing path must be an empty logic block for u to
be a possible position.
Step 1.1.2: If no routing path found in Stepl.1, add one track
Use maze routing, limit only one track can be added, and stop in the first empty logic
block. In the process, find all possible routing-paths, and the end of any one routing path
must be an empty logic block for u to be a-possible position.
Step 1.1.3: If no routing path selected in Stepl.1-and Stepl.2, add two tracks
Use maze routing, allow two tracks can be added, and stop in the first empty logic
block. In this step, to add two tracks to find all possible routing paths is the worst case,
because a vertical track and a horizontal track would lead a source of a routing path to
any destination. In the process, find all possible routing paths, and the end of any one
routing path must be an empty logic block for u to be a possible position.
Step 1.1.4: Place u
For the end of the selected routing path, the upper empty logic block has higher
priority than the empty lower logic block, and the left empty logic block have higher
priority than the right empty logic block. Select the highest priority empty logic block

to place u.

26

CASE 1.2: Multiple elements in node set V={vj| vi have been placed on reconfigurable
hardware and have edge from or to u}, and apply e;=(u,v;).
In this case, there exists more than one source must reach the same destination. In the other
word, more than one edge must be assigned its suitable routing path that make u have a
unique position and the wiring area added fewest in this case. If every e; is assigned a routing
path with the minimal routing requirement, there may exist many positions for u. We continue
to use method in CASE 1.1, but route to the farthest possible empty logic blocks to give more
routing paths for every e;. From these routing paths, select suitable routing path for every g; to
find the unique position to place u. The follow steps are detail method for CASE 1.2 to route
every (u,v;) and to place u on reconfigurable hardware.Step 1.2.1: Route every e; base on the
routing method in the CASE 1.1, but the farthest possible empty logic blocks is the
routing end. Every empty logic block in the scope of possible routing paths would be
put in candidate set;
Step 1.2.2: find the intersection.set of candidate sets
CASE 1.2.1: the intersection-is:not empty
In the intersection set, select the logic block, which have the shortest distance
with every v;to place u.
CASE 1.2.2: the intersection is empty
Step 1.2.2.1: Find the logic block (Ib;) that exists at most candidate sets, and apply
Ib, e candidate set, ~ candidate set;. Then try to place u at Ib1 and route ej;; ~ e,.
Step 1.2.2.2: On reconfigurable hardware, find the logic block (Ib2) which have the
shortest distance with every v; . Then try to place u at 1b2, and route every e
Step 1.2.2.3: compare the routing requirements of step 1.1.2.1and step 1.2.2.2
If routing requirement of step 1.1.2.1 < routing requirement of step 1.2.2.2
then place u at Ib1

else place u at 1b2

27

CASE Il: uisan I/O node

In hardware assumption, we have two different assumptions in connection with 1/0
pins. These two different assumptions influence the placement of node u when no
element in V. We describe two different placements for u as follows.

Assumption 1 Without 1/O limit: Any logic block can transfer data with CPU and
memory

In this assumption, we find two different cases:

Case 1 is that empty logic blocks exist in the four sides of the reconfigurable hardware,
whether u can be placed on any one of these empty logic blocks with/out tracked added
will be described.

Case 2 is that no empty logic blocks exist in the four sides of the reconfigurable
hardware; whether replace,and reroute-preceding nodes and edges to make smaller

wiring area will be described.

Case 1: try to place u on the empty logic blocks in the four sides of the
reconfigurable hardware

That will be two situations happened. One is Case 1.1: no track added. The other is Case
1.2: tracks must be added, and reroute may be used to reduce new added tracks. These

situations are described as follows.

Case 1.1: no track added when try route

We use routing methods of CASE 1 to try route (u,v) or every (u,v;) and limit u to be
placed on empty logic blocks in the four sides of the reconfigurable hardware. If no track
added when try route, this will be the best situation for u with 1/0 need with CPU r

memory. Because it is unnecessary for u to use extra track segments to transfer data with

28

CPU or memory. So we can place u on the empty logic block in the four sides of the
reconfigurable hardware with the minimal routing requirement to route (u,v) or every

(u,vi).

Case 1.2: track added when try route

In this situation, we want to find whether u can be placed on the empty inside logic
blocks of the reconfigurable hardware and no new track added when route (u,v) or every
(u,vi) using methods of CASE 1 . If not, preceding routing paths around empty logic
blocks in the four sides of the reconfigurable hardware may be reroute. The rerouting is
try to make u can be placed on an empty logic block in the four sides of the
reconfigurable hardware and (u,v) or every (u,v;) can be routed with fewer routing

requirement. The follow steps are detail methoed description.

Step 1.2.1: try route to find-the routing-path (rpZ) with the minimal routing requirement

(try to place u on empty logic blocks in the four sides of the reconfigurable hardware)

Step 1.2.2: try to place in the empty inside logic blocks of the reconfigurable hardware
then try route to find the routing path (rp2) with the minimal routing requirement

If no area added, use rp2 to route and place the 1/0 node

If area added:

Try to reroute the routing paths around the empty logic blocks of the four sides of the
reconfigurable hardware to try route to find the routing path (rp3) with the minimal
routing requirement for the 1/0 node’s in/out edge

< If no area added, use rp3 to route and place the 1/0 node

< If area added, use the minimal routing path in {rp1, rp2, rp3} to route and place

the 1/0O node

29

Case 2: no empty logic blocks in the four sides of the reconfigurable hardware
In this case, we first try to place u on empty inside logic blocks of the reconfigurable
hardware and route (u,v) or every (u,vj) to get routing paths with minimal routing
requirement. Then we try to backtrack the data flow graph, to find a node (non-1/0O node),
which have placed on the logic block in the four sides of the reconfigurable hardware. To
see whether the routing requirement can be fewer than place u on empty inside logic
blocks of the reconfigurable hardware and route (u,v) or every (u,v;), after backtrack to
release a logic block for u to place. The detail steps are as follows.
Step 2.1: try to place the 1/0 node in the inside empty logic blocks of the reconfigurable
hardware then try route to find the routing paths with the minimal routing requirement
Step 2.2: backtrack the data flow graph to replace and reroute
Backtrack to the placed non-1/O node, which are placed on the logic block in the four
sides of the reconfigurable hardware
[Try to release the occupied-logic block to place u and rip up the non-1/0 node’s
edges’ routing paths.
| Replace the node’s position and reroute the edgesFind a replaced node that the area
will be added minimal after replaced and reroute and place u and route u or every (u,v;)
Step 2.3: compare the routing path in Step 2.1 and Step 2.2, accept the routing path with

less routing requirement then place the 1/0 node

Assumption 2 With 1/O limit: Limit the logic blocks in the four sides of

reconfigurable hardware for 1/0O

30

In this assumption, when an 1/O node is selected to place on the reconfigurable
hardware, its possible position will be limit on the empty logic blocks in the four sides
of the reconfigurable hardware. And behind this limitation, we use the routing methods
in CASE 1 to route (u,v) or every (u,v;). Non-1/O node still can be placed on any logic
blocks, so these non-1/0 nodes may exhaust the logic blocks in the four sides of the
reconfigurable hardware. In this situation, we assign an initial placement for roots of a
data flow graph before main placement and routing to prevent that non-1/0O nodes
exhaust the logic blocks in the four sides of the reconfigurable hardware

The first row of the logic block array work is assigned to roots. The initial
placement for roots is as follows.

Stepl: Allocate the first row of the logic block array to every root according to its

descendants

B Sort the roots by-its descendants (from more to less)

B Sequentially allocate successive logic blocks to every root from left to right

of the logic blocks of the first row

Step2: Place every root sequentially in the middle of the logic blocks allocated to it

31

CHAPTER 4 SIMULATION
ENVIRONMENT AND
SIMULATION RESULTS

In this chapter, we will describe our simulation environment and show the simulation
results. For loop’s order, we will prove give a loop precedence to placement and routing is
better. For nodes order, the simulation result of three evaluations mentioned in section 3.5
with six different priorities will tell us which.is the best for wiring area. The end, the influence
of different limits for 1/0 nodes will be shown-and the best result of our design will compare

with VPR.

4.1 Benchmark Suite

In this section, we discuss the criteria for selecting our benchmarks, and describe our

benchmark suite.

4.1.1 Criteria for Selecting Benchmarks

The criteria for selecting the benchmarks of our simulation are described as follows :
» Embedded applications:
Since the reconfigurable system is usually utilized for embedded applications, it is
important and practical to choose suitable embedded applications as our benchmarks.

For the popular 1A (Information Appliance) products recently, most of them are

32

multimedia and communication applications, such as mpeg1/2 encoder/decoder, code
encrypt/decrypt, and gsm mobile communication.

Media processing applications :

The trend toward ubiquitous computing will be fueled by small embedded and
portable systems that are able to run multimedia applications for audio, video, image,
and graphics processing effectively. The reconfigurable system needed for such
devices is actually a merged general-purpose processor and reconfigurable hardware.
The challenge is to exploit the effective reconfigurable system implementations from

the total execution time standpoint for media processing applications.

According to the criteria described above, we adopt the MediaBench consisting of well-

known multimedia and communication applications, such as jpeg, mpeg2, gsm, etc., as our

benchmark. We will introduce MediaBench in detail in the next subsection.

4.1.2 MediaBench Benchmarks

MediaBench suite is developed to address the modern embedded multimedia and

communication applications. The initial goals of MediaBench are as follows.

>

Accurately represent the workload of emerging multimedia and communications
systems.

Focus on portable applications written in high-level languages, as processor
architectures and software developers are moving in this direction.

Precisely establish the benefits of MediaBench compared to existing alternatives, e.g.,
integer SPEC.

Develop a tool that is effective for system evaluation as well as system synthesis.

33

MediaBench is composed of complete applications coded in high-level languages. All of
the applications are publicly available, making the suite available to a wider user community.
MediaBench 1.0 contains applications culled from available image processing,
communications, and DSP applications. We give a description of the current components in
MediaBench suite as follows.

» JPEG:
JPEG is a standardized compression method for full-color and gray-scale
images. JPEG is lossy, meaning that the output image is not exactly identical
to the input image. Two applications are derived from the JPEG source code :
cjpeg, which does image compression, and djpeg, which does decompression.

> MPEG:
MPEG?2 is the current dominant standard for high-quality digital video
transmission. The-dimportant computing-kernel is a discrete cosine transform
for coding and the-inverse transform for decoding. The two applications used
are mpeg2enc and mpeg2dec for-encoding and decoding, respectively.

» GSM:
European GSM 06.10 is a provisional standard for full-rate speech trans-
coding, prl-ETS 300 036, which uses residual pulse excitation/long term
prediction coding at 13Kbit/s. GSM 06.10 compresses frames of 160 13-bit
samples (8 KHz sampling rate, i.e. a frame rate of 50 KHz) into 260 bits.

» (G.721 Voice Compression :
G.721 refers to the implementations of the CCITT (International Telegraph and
Telephone Consultative Committee).
» PGP:
PGP uses "message digests™ to form signatures. A message digest is a 128-bit

cryptographically strong one-way hash function of the message (MD5). To

34

encrypt data, it uses a block-cipher IDEA (International Data Encryption
Algorithm), or RSA for key management and digital signatures.

PEGWIT :

PEGWIT is a program for public key encryption and authentication. It uses an
elliptic curve over GF (2%°), SHAL1 for hashing, and the symmetric block cipher
square.

RASTA :

A program for speech recognition that supports the following techniques : PLP,
RASTA, and Jah-RASTA. The technique handles additive noise and spectral
distortion simultaneously, by filtering the temporal trajectories of a non-linearly
transformed critical band spectrum.

EPIC :

EPIC is an experimental image compression utility. The compression algorithms
are based on a bi-orthogonal critically’ sampled dyadic wavelet decomposition
and a combined run-length/Huffman entropy coder. The filters have been
designed to allow extremely fast decoding without floating-point hardware.
ADPCM :

Adaptive differential pulse code modulation ADPCM is one of the simplest and

oldest forms of audio coding.

4.2 Evaluation

According to a beforehand experiment, we had known that there were 97 nodes in the

largest loop. Therefore we design our reconfigure hardware as a 10x10 logic block array for

our simulation. For the computation convenience, some assumptions are given. In our

experiment, the logic block array is initially no tracks. Gradually, a loop followed a loop will

add tracks in the logic block array according to their routing requirement. The logic block

35

array before placement and routing is as follow left Figure 4-1(a). We assume the size the
initial logic block array is I*I. When some tracks are added the wiring area will be added like
Figure 4-1(b). In Figure 4-1(b), m vertical tracks and n horizontal tracks are added. We

assume width or length w will be added after a track is added.

I+mw —

0|10 -

I

—
LI -
L] -

/
|
5555“ e LI L
looo-o {alollic
(@) Before P&R (b) After P&R

l——
[]
Ly -
L
]

. DDDL

A ololle

Figure 4-1 chip area before-and afterplacement and routing

Given chip area as follow calculation:

(1 + mw) x (I +nw) = 12 + w[(m + n)l + mnw]

And take a determinate processing element which meet our demand such that:
| =2504*10,w=21%*32

| ~ 39w
A is the smallest size in a layout.

So we can derive the added chip area (wiring area) after m vertical tracks and n

horizontal tracks added is:

[39(m + n) + mn]w?

36

4.3 Simulation Results

In every figure, different order will result in different wiring area. We note subtree edges
as s, node degree as n, level edges as I, and (i,j,k) as priority relation. For example: (s,n,l)
means subtree edges priority is higher than node degree and node degree priority is higher

than level edge.

4.3.1 Loop Order

From Figure 4-2 and Figure 4-3, we can see two group bars in every figure. These two
groups represent two different loop orders: the one is that give precedence to a loop of fewer
edges, and the other is that give precedence to a loop of more edges. From the two figures, we
can know that give precedence to a loop of more edges will result in smaller wiring area at the

end of placement and routing all loops

4.3.2 nodes order

In section 3.5, we set three evaluations to decide nodes order. In this section, we compare
different nodes order from six priorities of the three evaluations. From Figure 4-2 and Figure
4-3, when priority relation is: subtree edge higher than node degree and node degree higher

than level edges, the last needed wiring area will be the smallest.

37

& Small loop l: Large loop

area:w™2 7500

7000 1

6500 | @88 ey O

. 6222

6158

5500

WG Ly (s (0Ls) (,s.n) (Ln,S) (5,0, (s,1,n) (s, (nuns) (,s,n) (1,n,s)

Figure 4-2 results of “with 1/O limit”

% Smallloop 2 Large loop
area: w2 7500

7000 |

6500 6391 6421 639
6211 6198

5811

5500 |

(s,n,D) (s,I,n) (n,s,) (n,l,s) (I,s,n) (I,n,s) (s,n,D) (s,I,n) (n,s,D) (n,l,s) (I,s,n) (I,n,s)

Figure 4-3 results of “without 1/O limit”

4.3.3 Compare results with VPR

We combine Figure 4-2, Figure 4-3, and VPR result in Figure 4-4. VPR’s best result
needs 1.282 times our best result, which is no /O, limit for all nodes. Although our result,

which is with I/O limit, needs 1.065 times the best result, but it needs less computation time

38

because backtrack and reroute are not used.

area/the smallest area E3: Small loop l: Large loop
15

14 r 1363 1.363

L3 |

1.247 . 1254
a1 1.25
1.219

12 |
L162 1.173

1.167 1.163

L1129 117
L 105115

(snD) sLn) (s (nLs) (,sn) (s . 6m,) (sLn) (nsh) (0Ls) (Ls,n) (Ln,s)

Without 170 limit ¢

Figure 4-4compare all results
e ¥ 3

With 1/0 limit VPR

FEP
L i L
'R]

39

CHAPTER 5
CONCLUSIONS AND FUTURE
WORK

Our design algorithms use no estimation in placement, but give node’s order previously,
arrange an order of small area added as far as possible in iterations.

During iteration, we process small area added routing as far as possible to determine
placement. Our superiority is that it is easier to get better result from actually saving area of
routing to determine placement. When need processing elements in reconfigurable hardware
are increased, to use our method is_not onlyto prevent to limit accommodated processing
elements in a chip because of a large ‘number:of routing resources and to reduce power
consumption even delay comes from routing.

But computation time is more than VPR because of exhaustive search for the best
routing path. If we can establish a cost function to more efficiently determine the best routing

path, the computation time will be lower.

40

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCE

A. Takahara, T. Miyazaki, T. Miyazaki, T. Murooka, M. Katayama, K. Hayashi, A.
Tsutsui, T. Ichimori and K. Fukami, “More Wires and Fewer LUTs: A Design
Methodology for FPGAS”, In Proceedings of the 1998 International Symposium on Field
Programmable Gate Arrays, 1998, pp. 12 - 19

André DeHon, “Balancing Interconnect and Computation in a Reconfigurable
Computation in a Reconfigurable Computing Array (or, why you don’t really want 100%
LUT utilization)”, In Proceedings of the International Symposium on Field
Programmable Gate Arrays, 1999, pp. 125 - 134.

V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research”, Int. Workshop on Field-Programmable Logic and Applications, 1997, pp. 213
-222.

V. Betz and J. Rose, Architecture and CAD for Deep-Submicron FPGAs,.Kluwer
Academic Publishers, 1999

J. Swartz, “A High Speed " Timing-Aware Router for FPGAs”, Master's Thesis,
Department of Electrical and Computer-Enginegring, 1998.

Russel G Tessier, “Fast Place -and Route.*Approaches for FPGAs”, Ph.D. thesis,
Department of Electrical. Engineering and Computer Science, MIT, February 1999.

K. Compton, S. Hauck, "Reconfigurable Computing: A Survey of Systems and Software",
ACM Computing Surveys, Vol. 34, No. 2. pp. 171-210. June 2002

41

	摘要
	ABSTRACT
	誌　謝
	CONTENT
	List of Tables
	CHAPTER 1 INTRODUCTION
	1.1 .The current situation
	1.2 Motivations
	1.3 Objective and Proposed approach
	1.4 Organization of This Thesis

	CHAPTER 2 BACKGROUND AND RELATED WORK
	2.1Background: Features of FPGA
	2.2 Related work: Simulated Annealing Placement
	Table 2-1 Schedule table [3]

	2.3 Related work: Basic Routing Algorithms
	2.3.1 Maze routing [5]
	2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algo

	2.4 Related work: Versatile Place and Route (VPR) tool [3][5
	2.4.1 Placement algorithm
	Table 2-2 Correction factors for nets with up to fifty termi

	2.4.2 Routing algorithm

	CHAPTER 3 DESIGN
	3.1 Problem Descriptions
	3.2 Basic Ideas
	3.3 Hardware Assumptions
	3.4 The Main Work in Our Design
	3.5 Order Decision
	3.6 Placement and Routing Design
	3.6.1 Undirected routing graph
	3.6.2 Routing requirement
	3.6.3 Detail placement and routing design

	CHAPTER 4 SIMULATION ENVIRONMENT AND SIMULATION
	4.1 Benchmark Suite
	4.1.1 Criteria for Selecting Benchmarks
	4.1.2 MediaBench Benchmarks

	4.2 Evaluation
	4.3 Simulation Results
	4.3.1 Loop Order
	4.3.2 nodes order
	4.3.3 Compare results with VPR

	CHAPTER 5 CONCLUSIONS AND FUTURE WORK
	REFERENCE

