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摘要 

 

可重組式硬體不但提供了利用硬體加速的效能，也同時保留軟體使用的彈性，在

市面上有一種稱作 FPGA（可程式化邏輯陣列）的產品就是此種硬體的先驅者，其已

廣泛使用在 I/C 產品的雛型驗證中。目前 FPGA 的發展趨勢在於使用較多的運算單元來

達成大量的運算，為了因應運算單元的增加，必須提高繞線的能力，因此 FPGA 上會

有許多的稱為繞線元件線和電閘，高度的繞線能力需求將使得 FPGA 大部分的硬體面

積被繞線元件所佔用。 
本篇論文的目的在於提供運算最大平行度的前提下，尋求所需盡量小的繞線面

積。藉由針對特定領域的應用來設計可重組式硬體，如此一來祇需要有限度的繞線能

力，自然減少對於繞線元件的需求；因此本論文的重點在於提出減少繞線面積的演算

法。我們從特定領域的應用中，選出值得以可重組式硬體加速的迴圈，並將它們轉換

成資料流程圖，找出資料流程圖以可重組式硬體來實現時，需要用到哪些運算單元和

繞線元件。這個步驟稱為 Placement and Routing，一般的做法是先配置資料流程圖上所

有的運算應該用可重組式硬體上哪個運算單元實現，之後再找出運算跟運算之間的資

料傳送路徑在可重組式硬體上的繞線路徑。這樣的做法使得繞線時的路徑會受限於出

發點和到達點的位置，雖然繞線快速，但不見得有效減少繞線面積。因此我們所提出

的方法為邊放邊繞，在放置每一個運算到可重組式硬體上時，同時考慮如何繞出資料

傳送路徑所增加的繞線面積最小，這個步驟的繞線是已知出發點位置，找出到達點對

應的運算單元及繞線路徑，使得所需增加的繞線面積最小。我們採用了貪婪演算法，

每次找出目前所需最小繞線面積，並以盡量不增加新路線為原則，繞線時優先利用硬

體上已存在的未使用路線片段。基於這個原則，先被選出放置的運算對於後面運算的

放置位置具有影響性，因此運算被選出放置的順序亦在我們考慮之內。 
實驗結果顯示，我們的方法繞出來的面積比用傳統 VPR（Versatile Placement and 

Routing）方法繞時少了 28.2%，可以有效降低硬體的成本，當可重組式硬體需求的運

算單元增多時，我們的方法不但可避免因大量的繞線元件需求限制晶片上可容納的運

算單元數量，同時可以減少耗電甚至於因繞線而引起的延遲。 
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ABSTRACT 

 

The reconfigurable computing offers computation ability in hardware to increase 

performance, but also keeps the flexibility in software solution. There is a kind of product 

called FPGA (Field Programmable Gate Array) in the market, which is the harbinger of 

reconfigurable hardware. It has been common used in IC product verifications. The current 

developing trend of general FPGAs is to use more processing elements for a large number of 

computations. For more processing elements, the routability must be increased. Therefore 

there would be many wires and switches called routing resources in FPGA. High routability 

demand makes most of the chip area of FPGA used by routing resources. 

The purpose of this thesis is to get small wiring area as far as possible and the 

precondition is to supply the maximal parallelism for computations. By designing our 

reconfigurable hardware for a fixed set of applications, so only limited routability is needed, 

and the demand for routing resources is decreased naturally. Therefore the focal point of this 

thesis is to propose an algorithm of reducing wiring area. From specific applications, we 

extract loops, which are worth speeding up in reconfigurable hardware. These loops are 

transferred to data flow graphs, and we must decide what processing elements and routing 

resources are needed when these data flow graphs are implemented in reconfigurable 

hardware. This step is called “Placement and Routing”. The general method is first to allocate 

all nodes in a data flow graph should be implemented by which processing elements in 

reconfigurable hardware and then to find all edges should be what routing paths in 

reconfigurable hardware. This kind of method makes routing paths limited by positions of 
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sources and destinations. Although it is fast, it is not necessarily to reduce wiring area 

efficiently. So we propose a method of simultaneous placement and routing. While place 

every node in reconfigurable hardware, simultaneously consider how to route edges to make 

added wiring area minimal. The routing in this step is that the position of the source is known 

and to find the processing element for the destination and the routing path to make the added 

wiring area minimal. We adopt greedy algorithm to find current needed minimal wiring area 

every time. The principle is not to add new wires as far as possible. The existed non-used wire 

segments in hardware are used preferentially for routing. On the basis of the principle, the 

former selected node’s placement would influence the latter node’s placement position. So the 

order of selected nodes is also one of our considerations. 

The simulation results show that the area is fewer by 28.2% when use our method than 

use traditional VPR (Versatile Placement and Routing). When need processing elements in 

reconfigurable hardware are increased, to use our method is not only to prevent to limit 

accommodated processing elements in a chip because of a large number of routing resources 

and to reduce power consumption even delay comes from routing. 
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CHAPTER 1       INTRODUCTION 
 
 
 

There are two primary methods in conventional computing for the execution of 

algorithms [7]. The first is to use hardwired technology, such as Application Specific 

Integrated Circuit (ASIC). ASICs are designed specifically to perform a given computation 

for which they were designed. However, the circuit cannot be altered after fabrication. This 

forces a redesign and re-fabrication of the chip if any part of its circuit required modification. 

The second method is to use software-programmed microprocessors—a far more flexible 

solution. Processors execute a set of instructions to perform a computation. By changing the 

software instructions, the functionality of the system is altered without changing the hardware. 

However, the downside of this flexibility is that the performance can suffer, if not in clock 

speed then in work rate, and is far below that of an ASIC. 

Reconfigurable computing is intended to fill the gap between hardware and software, 

achieving potentially much higher performance than software, while maintaining a higher 

level of flexibility than hardware.  

The most common used reconfigurable hardware is FPGA. An FPGA contain an array of 

computational elements whose functionality is determined through multiple programmable 

configuration bits. These elements, sometimes known as configurable logic blocks or logic 

blocks, are connected using a set of routing resources that are also programmable. Routing 

resources include wires and switches. The routability of an FPGA depends on the number of 

wires and switches.  
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1.1 .The current situation 
 

The developing trend of general FPGAs is to use more logic blocks for a large number of 

computations [1]. In order to use the same hardware to complete all kinds of computations, 

there must be very high routability in the hardware. In the other word, there are many wires 

and switches in the chip. These wires and switches will make the chip area very large. When 

different computations are completed in the hardware, some wiring area will be idle.  

Although the technology grows fast, a chip could contain much more logic blocks. 

However, the need for high routability makes most chip area is used in routing resource (often 

80-90%)[2]. 

 
 

1.2 Motivations 
 

Because high routability comes at a large expense in interconnect costs, we will devise 

our reconfigurable hardware for some special area applications. By limiting the range of 

computations in the reconfigurable hardware, we can lower the needed routability.  

The multimedia applications are very popular in the market. When we apply them in the 

reconfigurable hardware, on the one hand we can speed up the intensive computations of 

multimedia applications and on the other we can lower the cost by employing the same 

hardware to complete different multimedia applications. 

According as integration technologies grow fast, the size of logic blocks will be smaller 

than before. However, the amount of interconnections will not decrease much. And the chip 

area will be limited because of many interconnections in the hardware. If we can efficiently 

arrange wires position, the wiring area will be reduced much more. 

 
 

2 



1.3 Objective and Proposed approach 
 

The objective of this thesis is to reduce the needed wiring area in the reconfigurable 

hardware, and the prerequisite is to fix the amount of the logic blocks to keep performance. 

We will design a reconfigurable hardware from a given logic block array (just like FPGA), 

and develop a set mechanism to decide the minimal wiring area to complete all need 

computations selected from multimedia applications. To achieve this objective, we first need 

to analyze the multimedia applications. Intensive computations will be selected to process on 

the reconfigurable hardware. We will consider these computations as dataflow graphs, and we 

must determine how to accomplish these dataflow graphs on the logic block array. This step is 

called “placement and routing”. By placement, every node in a data flow graph will be 

decided to use which logic block to complete its computation. By routing, every edge in a 

data flow graph will be decided to use which routing resources. Good placement and routing 

makes the needed wiring area reduced.  

 

 

1.4 Organization of This Thesis 
 

The organization of this thesis is as follows: In Chapter 2, the background and related 

work are presented. In Chapter 3, the design idea and placement and routing algorithms are 

described. In Chapter 4, our experimental results and related analysis are presented. Finally, 

conclusions and future work are presented in Chapter 5. 
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CHAPTER 2          BACKGROUND 
AND RELATED WORK 

 
 
 

In this chapter, we will describe the FPGA features and present placement and routing 
algorithms. 

 
 

2.1Background: Features of FPGA 

 

Most commercial FPGA architectures have the same basic structure, a two-dimensional 

array of programmable logic blocks, that can implement a variety of logic functions, 

surrounded by channels of track segments to interconnect logic block I/O. Three main classes 

of FPGA architecture have evolved over the past decade: cell-based FPGA architectures, 

hierarchical architectures, and island-style FPGA. The features of them are listed as follow. 

1. Cell-based FPGA 

A. Consist of a two-dimensional array of simple logic blocks which contain two or 

three two-input logic structures such as XOR, AND, and NAND gates 

B. Inter-logic block communication: directed wired connections from logic block 

outputs to inputs on adjacent logic blocks 

C. Small numbers of wire segments that span multiple logic blocks offer a minimal 

amount of global communication but typically not enough to implement circuits 

with randomized communication patterns. 

D. Theses routing restrictions frequently limit the application domain of these devices 

to circuits with primarily nearest-neighbor connectivity such as bit-serial arithmetic 

units and regular 2-D filter arrays. 
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2. Hierarchical architectures 

A. Contain a 2-D array of complex logic blocks with many LUTs and flip-flops per 

logic block (8 or more) 

B. Inter-logic block signals are carried on wire segments that span the entire device 

providing numerous high-speed paths between device I/O and internal logic blocks 

C. Lead to an ideal implementation setting for designs with many high-fanout signals 

D. Effectively be used to implement many types of logic circuits exhibiting a variety of 

interconnection patterns. 

3. Island-style FPGA 

A. This style is between cell-based and hierarchical architectures and characterized by 

logic blocks of moderate complexity generally containing a small number of LUTs 

B. Routing channels with a range of wire segment lengths are available to support both 

local and global device routing 

C. Contain a square array of logic blocks embedded in a uniform mesh of routing 

resources. 

 

Generally to speak, a common FPGA structure is as Figure 2-1, the logic blocks are 

embedded in a general routing structure. Given a logic block array, the space between 

columns or rows is channel. A channel contains some tracks for programmable routing. The 

channel capacity means the amount of tracks in the channel.  
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Figure 2-1 FPGA Structure 

 
 

2.2 Related work: Simulated Annealing Placement 
 

The simulated annealing placement is easier to add new optimization goals or constrains 

than min-cut and analytic placer and it is the most common iterative technique for island-style 

FPGAs (and for many other design problems) [4]. It starts with a feasible placement, created 

either through random assignment of design logic blocks to physical logic blocks, or through 

the use of constructive approaches and then repeatedly generates placement perturbations in 

the form of logic blocks swaps. While it clearly makes sense to greedily accept perturbations 

that reduce overall cost, the search aspect that makes simulated annealing unique is its 

treatment of swaps that increase or have no effect on overall cost. To avoid local cost minima, 

there is a need for simulated annealing to occasionally accept logic block swaps that increase 
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overall cost. By accepting these moves, the global placement can be moved away from a local 

minimum enhancing the prospect that further cost-reducing swaps may find a more optimal 

final placement.  

An important aspect of the simulated annealing algorithm is the determination of how 

frequently cost-increasing swaps are accepted. For most algorithms, this acceptance rate is 

determined based on a probability, T
t

e
cos∆

−
, where cost∆ is the swap cost increase and T is the 

temperature, a probability parameter which directly controls the acceptance rate. A common 

cost function is the sum over all nets of the half-perimeter of their bounding boxes. Initially, T 

is set to a high value so that almost all swaps, good and bad, are accepted. During progression 

of the algorithm, T is repeatedly reduced and fewer higher cost permutations are accepted, 

thus allowing convergence to a final result. Important factors that effect the run time and 

quality of simulated annealing algorithms are the determination of starting temperature T, 

adjustment of T, number of permutations attempted at each T, and the ending criteria for the 

algorithm. 

In [4], the pseudo code is as follows. 

T = Starting() 

Moves per iter = MovesPerIter() 

While (StoppingCriterion(T) == FALSE) 

    Move count = 0 

    While (Move count < Moves per iter) 

        Swap blocks 

        Evaluate  If < 0 Accept swap cost∆ cost∆

        Else if (random(0, 1) < T
t

e
cos∆

−
 ) Accept swap 

        Else Reject swap 

        Move count++ 

    EndWhile 

    T = Adjust(T) 

EndWhile  
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The initial annealing temperature is set to 20 times the standard deviation of the 

for performing Ncost∆ blocks random pair-wise swaps. The temperature(T) is updated 

according to the follow schedule table so that Tnew=αTold. The ideal commended default 

number of moves at each temperature is . Annealing is terminated when T is less 

than 

3/4
blocksN10

netsN
Cost

×005.0 . 

 

 

 

 
 
 

0.8Raccept ≤ 0.15

0.950.15 < Raccept ≤ 0.8

0.90.8 < Raccept ≤ 0.96

0.5Raccept > 0.96

αFraction of moves accepted Raccept

Table 2-1 Schedule table [3] 
 

2.3 Related work: Basic Routing Algorithms 

In this section, we describe the basic maze routing algorithm, the rip-up and re-route 

algorithm, and the multi-iteration algorithm, which are the basic for many of routing 

algorithms. By far the most popular routing algorithms for FPGAs are maze-routing 

algorithms based on Dijkstra’s shortest path algorithm. The routing search starts at a net 

source and is followed by an iterative evaluation of track segments, based on segment cost, in 

an effort to avoid congested resources. If all net routed are not initially successful, selected 

nets are ripped-up and rerouted in an effort to free contested resources. 
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2.3.1 Maze routing [5] 

 

The maze routing algorithm was designed to find the shortest path between two points on 

a rectangular grid by using a breadth-first search. The algorithm is guaranteed to find a path, 

if one exists. When applied to an FPGA, the maze routing algorithm starts at the source node 

of a net and expands each neighboring node. Expansions continue until the sink node of the 

net is reached, or all nodes have been visited and no path has been found. However the 

biggest weakness is very slow. So two main improvements were developed. 

1. Depth-first search 

Rubin showed that using a depth-first search could significantly reduce the run-time, 

while still finding the shortest path between two nodes []. For a two-terminal net, 

choosing a terminal located closer to one of the four corners of the rectangular grid 

helps to reduce the run-time since the edges of the grid impose boundaries on the 

search. 

2. Directed search 

Soukup altered the basic algorithm to make it expand nodes that were successively 

closer to the sink of a net, creating a directed search algorithm. This algorithm provides 

an order of magnitude speedup over the basic maze routing algorithm. 

The Figure 2-2 shows examples of breadth-first search maze router and directed search 

maze router. The source of the net is marked with an “S” and the target sink is marked with a 

“T”. The black squares mark blocked nodes or congestion. The directed search expands 

significantly fewer nodes than the breadth-first search, since the search expands directly 

towards the target sink. If there is a significant amount of congestion, the directed search may 

end up expanding most of the nodes to find a path to the target sink. In the worst case, the 

directed search has to expand as many nodes as the breadth-first search. 
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Figure 2-2 Maze router examples [5] 

 

2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algorithm 

 

Since the routing resources in an FPGA are limited, routing algorithms face the problem 

of routing congestion. The problem is that routing one net using particular resources may 

make it impossible to route some other nets. There have been two types of algorithms to deal 

with the congestion problem [5]. The first type of algorithm is known as rip-up and re-route, 

such as the work done by Linsker. Another solution to the congestion problem, know as the 

multi-iteration approach, was conceived by Nair . The main features are as follows. 

1. Rip-Up and Re-Route Algorithm 

� Nets using resources that are congested are ripped-up and re-routed  

� The success is dependent on the choice of which nets to rip-up and the order in 

which ripped-up nets are re-routed 

2. Multi-iteration algorithm 

� A routing iteration is the ripping-up and re-routing of every single net 

� Each net is ripped-up and separately (leaving all the other in place) and re-routed 

� Nets are routed in the same order, but only one net is ripped-up at a time 
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Nair’s technique is very effective, because nets in non-congested areas can also be 

relocated to allow nets using congested resources to be routed more easily. 

 

 

2.4 Related work: Versatile Place and Route (VPR) tool [3][5] 

 

Many placement and routing tools use the basic algorithms in section 2.2 and section 2.3 

for their implementation goals, such as to minimize the required wiring length (wire-length-

driven), to balance the wiring density across the FPGA (routability-driven), or to maximize 

circuit speed (timing-driven). In terms of minimizing routing area, VPR outperforms all 

published FPGA place and route tools. In this thesis, we will take VPR to compare with our 

design. 

2.4.1 Placement algorithm 

VPR uses the simulated annealing algorithm mentioned in section 2.2 for placement. A 

linear congestion cost function provides the best results in a reasonable computation time. The 

In the above formulation, the summatio

functional form of this cost function is 

n is over all the nets in the circuit. For each net, bbx 

]
)(
)(

)(
)()[( 

,1  , nC
nbb

nC
nbbnqCost

yav

y
N

n xav

x
nets

+= ∑
=

and bby denote the horizontal and vertical spans of its bounding box, respectively. The q(n) is 

correction factor which compensates for the fact that the bounding box wire length model 

underestimates the wiring necessary to connect nets with more than three terminals. Its value 

depends on the number of terminals of net n; q is 1 for nets with 3 or fewer terminals, and 

slowly increases to 2.79 for nets with 50 terminals. For example, a net with just two or three 

terminals will have a correction factor of 1.0 as shown in Figure 2-3. The crossing count of a 

11 



four terminal net is about 1.08, since extra wiring is need to reach the fourth terminal, as 

shown in Figure 2-3. The correction factors for different fanout nets were determined by 

creating thousands of Steiner trees for randomly distributed net terminals and averaging the 

correction factor for each of the different fanout nets. Table 2-2 lists the correction factors for 

nets with up to fifty terminals. Cav,x(n) and Cav,y(n) are the average channel capacities (in 

tracks) in the x and y directions, respectively, over the bounding box of net n. This cost 

function penalizes placements, which require more routing in areas of the FPGA that have 

narrower channels.  

 
Figure 2-3 Examples of correction factors [5]  

Num. Terminals Correction Facto

 
 

r Num. Terminals Correction Factor 
2~3 1.00 15 1.69 

4 1.08 20 1.89 
5 1.45 25 2.87 
6 1.22 30 2.23 
7 1.28 35 2.39 
8 1.34 40 2.54 
9 1.40 45 2.66 
10 1.45 50 2.79 

Ta e 2-2 Correction factors for nets with up to fifty terminals [5] 
 

VPR’s router is based on the Pathfinder negotiated congestion algorithm. Basically, this 

algor

bl

2.4.2 Routing algorithm 

ithm initially routes each net by the shortest path it can find, regardless of any overuse of 

wiring segments or logic block pins that may result in route fail. An iteration of the router 
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consists of sequentially ripping-up and re-routing (by the lowest cost path found) every net in 

the circuit. The cost of using a routing resource is a function of the current overuse of that 

resource and any overuse that occurred in prior routing iterations. By gradually increasing the 

cost of oversubscribed routing resources, the algorithm forces nets with alternative routes to 

avoid using oversubscribed resources, leaving only the net that most needs a given resource 

behind. 

VPR contains two routers: one router is routability-driven, and the other router is timing-

drive

 for 

custo

finder algorithm routes nets using a breadth-first maze routing algorithm. 

A co

= A(i,j)*d(n) + [1 – A(i,j)] * Cost(n)     (2.1) 

wher (n) i the co gestion cost of using node n, and 

n. We describe VPR’s routability-driven router because it completely devotes to solve 

congestion without delay time considering. This is the same with our design. The routability-

driven routing algorithm in VPR is very similar to the breadth-first routability-driven 

Pathfinder algorithm, with a few important changes and enhancements. 

The Pathfinder algorithm is based upon Nair’s method of iterative maze routing

m integrated circuits. During each iteration, every net is ripped-up and re-routed, in the 

same order during each iteration. During early iterations, nets are allowed to share routing 

resources with other nets. As the iterations proceed, the sharing of routing resources is 

penalized, increasing gradually with each iteration. After a large number of iterations, the nets 

will negotiate among congested resources to try and find a way to successfully route the 

circuit, allocating key resources to the nets that need them the most. By re-routing all of the 

nets during each iteration, nets that do not absolutely require congested routing resources can 

also be relocated.  

The basic Path

st function is applied to each node (routing resource) to try and minimize congestion and 

the delay of more critical nets. The cost function, C(n), applied to each node n by the maze 

router is: 

C(n) 

e d(n) is the intrinsic delay of node n, Cost s n
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A(i,j) is the slack ratio from the source of net i to the jth sink of net i. The congestion cost is 

calculated as: 

Cost(n) = [b(n) + h(n)] * p(n)       (2.2) 

wher g ode n set to e intr sic delay of node n), h(n) is the 

(i,j) to 0 for all nets makes the router 

mple

n) * p(n)       (2.3) 

excepti

he present congestion penalty, p(n), is calculated by VPR as: 

where , capacity(n) is the maximum 

e b(n) is the base cost of usin n  ( th in

historical congestion penalty based upon the over-use of node n during previous routing 

iterations, and p(n) is the present congestion penalty based on the over-use of node n during 

the current routing iteration. If a connection lies on the critical path, then A(i,j) will equal 1.0, 

and cost function (2.1) will be weighted completely towards optimizing delay. If a connection 

lies on a path with a large slack, A(i,j) will approach 0, and the cost function (2.1) will be 

heavily weighted towards minimizing congestion. 

 VPR’s routability-driven algorithm sets A

co tely routability-driven. In the other word, cost function (2.1) becomes congestion cost 

function (2.2). And for avoiding having to normalize b(n) and h(n), the congestion cost 

function used by VPR is: 

 Cost(n) = b(n) * h(

VPR sets the bases costs of almost all of the routing resources to 1. the only 

ons are input pins, which are given a base cost of 0.95. This causes the router to 

expand any input pins reached first and speeds up the routability-driven router by up to 1.5 to 

2 times. 

T

p(n) = 1 + max(0, [occupancy(n) + 1-capacity(n)] * pfac) 

occupancy is the number of nets presently using node n

number of nets that can legally use node n, and pfac is a value that scales the present 

congestion penalty. The present congestion penalty is updated whenever a net is ripped-up and 

re-routed.
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The historical congestion penalty, h(n), is calculated by VPR as: 

where i al congestion penalty. 

{ 11,i
1ih*)]capacity(n(n)[occupancymax(0,h(n) fac),

1i)( =
>−+−=inh

 is the iteration number, and hfac is a value that scales the historic

The historical congestion penalty is updated after a routing iteration. 
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CHAPTER 3                       DESIGN 
 
 
 

In this chapter, we will introduce the problem description and a brief introduction about 

our design. Then the assumption of our reconfigurable hardware is given. After all, the detail 

design will be described. 

 

 

3.1 Problem Descriptions 

About our problem, we give some conditions to be our basic design environment.  

1. Given conditions 

  We extract computation intensive loops from benchmark suites. These computation 

intensive loops are worth speeding up in reconfigurable hardware. And for the convenience of 

our design, we use data flow graphs to represent these loops. 

Because no loops would be executed at the same time, every time we only need to 

reconfigure one loop’s circuit in the reconfigurable hardware, and no reconfiguration occurs 

when a loop is executing.  

That means our design will consider a loop’s placement and routing to be a main work. 

Every loop must run the main work one time to decide its needed circuit in the reconfigurable 

hardware. After all loops’ placement and routing are completed, the needed wiring area will 

be decided. 

2. Objective  

Our objective is to find small wiring area in reconfigurable hardware as far as possible to 

implement all computation intensive loops. 
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3.2 Basic Ideas 

 

For general placement and routing tools just like VPR, first, all nodes in a data flow 

graph will be placed in reconfigurable hardware; then all edges will be routed in 

reconfigurable hardware. After all nodes positions are decided, the routing paths are almost 

limited in determinate field. The needed wiring area is almost decided after placement. 

Routing just devotes to route successfully with little influence on wiring area reducing. But, 

during routing, routing paths gradually dissipate routing resources; a good routing algorithm 

without limited by placement should make needed wiring area smaller.  

Based upon above-mentioned attitude, our design advances the moment of routing. 

Different from that all nodes are first placed then all edges are routed, a node and its edges are 

placed and routed simultaneously. And this node’s position is decided by its edges’ routing to 

make small wiring area as far as possible. 

When we decide to take a node and its edges to be placed and routed simultaneously, we 

find different nodes’ order would result in different needed wiring area. Because preceding 

nodes’ positions and edges’ routing paths will influence later nodes’ and edges’ placement and 

routing, the nodes’ order is one of our discussions. 

For finding small wiring area as far as possible to implement all loops, we initial logic 

block array without tracks in it. After a loop is placed and routed, the needed tracks in the 

logic block array will be left for next loop to route. In the process of placing and routing a 

loop, the existed track in the logic block array is given higher precedence than new added 

track. Just like nodes’ order, different loops’ order make different needed wiring area. The 

loops’ order also is one of our discussions. 
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3.3 Hardware Assumptions 
 

We assume our reconfigurable hardware is like Figure 3-1. In our reconfigurable 

hardware, every logic block is a processing element and every logic block is a square of equal 

size. Every logic block is responsible for logic functions and easy arithmetic computations 

such as addition, subtraction, and multiplication. For easy to evaluate the wiring area, a logic 

block is assigned as a square. Because of the fast growing of integration technologies, we 

think these assumptions about the logic blocks in our reconfigurable hardware are reasonable. 

In order to get detail information of a track (which part is empty or which part is full), 

the track is split into track segments. A track segment is a part of a track that spans one logic 

block. 

For the I/O pads, we have two independent assumptions. The result of these two different 

assumptions will be displayed in our simulations. These two different assumptions are as 

follows: 

1. With I/O limit 

In this assumption, we assign I/O pins in the logic blocks of the four sides of the logic 

block array. In order to keep all routing resource for interconnection, we can assign I/O 

pins in the logic blocks of the four sides of the logic block array. With this assignment, 

the routing resource can be concerned in interconnection without working for 

transferring data with CPU and memory. However, the placement will be more 

limitations. That means the I/O nodes must be placed only in the logic blocks of the four 

sides of the logic block array. 

2. Without I/O limit 

We give more flexibility to placement in this assumption. The logic blocks of the four 

sides of logic block array are still with I/O pins. But the other logic blocks inside the 

logic block array are given the ability of transferring data with CPU and memory. 
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However, when these inside logic blocks transfer data with CPU and memory, they must 

use extra track segments. 

 

We design our reconfigurable hardware as a logic block array. If there are M*N logic 

blocks in the logic block array, there would be (M-1)+(N-1) channels. Among these channels, 

there are (M-1) horizontal channels and (N-1) vertical channels. And M*N logic blocks can 

implement all computation intensive loops selected from multimedia applications.  

 

1 2 3

4 5 6

7 8 9

S3

S1 S2

S4

: Logic block : Switch box : track

 
Figure 3-1 the reconfigurable hardware of our design

 
 
 

3.4 The Main Work in Our Design 
 

Every time when a data flow graph is selected to place and route in reconfigurable 

hardware, we use the follow main work to decide how many wiring area is needed to 

implement this data flow graph. 
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While there are nodes in the data flow graph not be placed on reconfigurable 

hardware 

1. Select a node u and V= {vi|vi have been placed on reconfigurable hardware 

and have edge from or to u} 

2. Try to route every (u,vi) to find its suitable routing path which will make 

wiring area minimal at the moment, and then to place u on reconfigurable 

hardware 

In this step, vi has been placed in reconfigurable hardware. According to vi’s 

position, try to find the best routing path for every (u, vi) which the wiring 

area added fewest. 

 

The initial reconfigurable hardware is only a logic block array, and no tracks in it. 

After a data flow graph is implemented on the reconfigurable hardware, some needed 

tracks will be added on reconfigurable hardware. When other data flow graph is selected 

to implement on the reconfigurable hardware, the existed tracks will be given precedence 

for routing. The Figure 3-2 represents our flow chart. 
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Figure 3-2 the flow chart of our main work 

 
 

3.5 Order Decision 
 

We adopt the order dependent method to solve our problem. A good order of placement 

and routing will take us to a good solution. We divide the order of our problem into two parts 

as: 

1. The loops’ order 

The more edges in a data flow graph, the more routing resource needed when 

placing the nodes and routing the edges in the logic block array. So we can easily decide 

the order of all loops according to the amount of edges in every data flow graph. A data 

flow graph with more edges will be given higher precedence than others with fewer 
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edges to place and route in the logic block array. 

2. The nodes’ order in a data flow graph 

In this part, we apply three evaluations to put the nodes in a dataflow graph in order. 

Before describe how to decide the priority of nodes, we define these three evaluations as 

follows. 

i. Sub-tree edges: the edges in the sub-trees of a node 

In Figure 3-3, the sub-tree edges of node 1 are seven and the sub-tree edges of 

node 2 are four. 

ii. Node degree: the summation of the in-degree and the out-degree of a node 

In Figure 3-3, the node degree of node 1 is two, and the node degree of node 2 

is three. 

iii. Level edges: the edges in the same level of the node’s sub-trees 

In Figure 3-3, for node 1, the level edges in the first level are two, the level 

edges in the second level are three, and the level edges in the third level are 

two. 

 

Figure 3-3 example of node’s order 

 

Three hypothesizes in this thesis are given as follows:  

� The more a node’s sub-tree edges, the higher its routing resource 

requirement;  

� The higher a node’s node degree, the higher its routing resource 
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requirement;  

� The more the closer level edges of a node, the higher its routing resource 

requirement. 

 When a node is with higher routing resource requirement, it will be given higher 

priority. When we can’t use sub-tree edges evaluation select the highest priority node, we 

apply node-degree evaluation. If the highest priority node still can’t be taken out, the 

level edges evaluation is used. If still more than one node competes with the highest 

priority, a random node is selected from the competed nodes. Other priority nodes are 

selected as above-mentioned. 

 
 

3.6 Placement and Routing Design 
 

Our design would try to insert routing process into placement. By this method, our 

design is combined placement and routing. And because the objective is to find small wiring 

area as far as possible, whenever routing an edge, the existed empty track segments in the 

reconfigurable hardware would be given higher precedence than to add new tracks in the 

reconfigurable hardware for routing the edge.  

 

3.6.1 Undirected routing graph 

 

We define an undirected routing graph for placement and routing. In Figure 3-4, we have 

two kinds of vertices. One kind is Tij and the other is Sk. Tij means a track segments node that 

is the set of the track segments that transfer data for the ith logic block or the jth logic block 

directly by the same connection box without passing any switch boxes. Sk means a switch 
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node, which represents the kth switch box in the reconfigurable hardware. So we can define an 

undirected routing graph G(V,E): 

� V={Tij | data from logic blocki or logic blockj} U{Sk | switch box}E= {(Tij,Sk)| 

data is transferred between Tij and Sk} 

 
Figure 3-4 the undirected routing graph 

 

3.6.2 Routing requirement 

 

When we try to route an edge e in a data flow graph, we may get many possible routing 

paths. In this moment, the best routing path for e must be decided. So we apply the three 

evaluations as follows. 

i. The fewest added tracks: 

ii. The minimal added chip area 

iii. The shortest routing path 

When more than one routing path can route e: 

(1) We first select the routing path which track added the fewest. 
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(2) If more than one routing path is possible, then we select the routing path which chip 

are added the fewest from (1). 

 (3) If more than one routing path is possible, then we select the routing path that is the 

shortest from (2). 

(4) If more than one routing path is possible, then we randomly select a routing path 

from (3). 

 

3.6.3 Detail placement and routing design 

 

When we select a non-placed node u and a node set V= {vi | vi have been placed on 

reconfigurable hardware and have edge from or to u}, first we can classify u according to 

whether u is an I/O node that means u needs to transfer data with CPU or memory. Because 

we have two different assumptions for I/O node placement, classification of u is necessary. 

Further we can classify V according to the number of elements in V. When u is not an I/O 

node, we describe in CASE I. When u is an I/O node, it is described in CASE II. And 

classification of V will be both described in CASE I and CASE II. 

 

CASE I: u is a non-I/O node 

We describe different methods for different classifications of node set V according to its 

number of elements as follows. CASE I.1 describes the situation of one element in node set V, 

and CASE I.2 describes that of more than one element in node set V. 

CASE I.1: Only one element in node set V={v}, v’s position on reconfigurable hardware is 

the source of the routing path for (u,v).  

For the fewer tracks added, the fewer wiring area added, and for saving routing time, we will 

try the fewest added track first. That means, if routing paths is found behind the condition of 
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fewer added tracks, routing paths with more added tracks would not be found out. Because 

routing paths with fewer routing requirement have been found, it is unnecessary to find 

routing paths with more routing requirement. The follow four steps are detail method for 

CASE I.1 to route (u,v) and to place u on reconfigurable hardware. 

Step I.1.1: no track added 

Use maze routing as mentioned in section 2.3.1, limit no track can be added, and 

routing should be stop in the first empty logic block. In the process, find all possible 

routing paths, and the end of any one routing path must be an empty logic block for u to 

be a possible position. 

Step I.1.2: If no routing path found in Step1.1, add one track 

Use maze routing, limit only one track can be added, and stop in the first empty logic 

block. In the process, find all possible routing paths, and the end of any one routing path 

must be an empty logic block for u to be a possible position.  

Step I.1.3: If no routing path selected in Step1.1 and Step1.2, add two tracks 

Use maze routing, allow two tracks can be added, and stop in the first empty logic 

block. In this step, to add two tracks to find all possible routing paths is the worst case, 

because a vertical track and a horizontal track would lead a source of a routing path to 

any destination. In the process, find all possible routing paths, and the end of any one 

routing path must be an empty logic block for u to be a possible position.  

Step I.1.4: Place u 

For the end of the selected routing path, the upper empty logic block has higher 

priority than the empty lower logic block, and the left empty logic block have higher 

priority than the right empty logic block. Select the highest priority empty logic block 

to place u.  
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CASE I.2: Multiple elements in node set V={vi| vi have been placed on reconfigurable 

hardware and have edge from or to u}, and apply ei=(u,vi). 

In this case, there exists more than one source must reach the same destination. In the other 

word, more than one edge must be assigned its suitable routing path that make u have a 

unique position and the wiring area added fewest in this case. If every ei is assigned a routing 

path with the minimal routing requirement, there may exist many positions for u. We continue 

to use method in CASE I.1, but route to the farthest possible empty logic blocks to give more 

routing paths for every ei. From these routing paths, select suitable routing path for every ei to 

find the unique position to place u. The follow steps are detail method for CASE I.2 to route 

every (u,vi) and to place u on reconfigurable hardware.Step I.2.1: Route every ei base on the 

routing method in the CASE I.1, but the farthest possible empty logic blocks is the 

routing end. Every empty logic block in the scope of possible routing paths would be 

put in candidate seti

Step I.2.2:  find the intersection set of candidate sets 

CASE I.2.1: the intersection is not empty 

In the intersection set, select the logic block, which have the shortest distance 

with every vi to place u. 

CASE I.2.2: the intersection is empty 

Step I.2.2.1: Find the logic block (lb1) that exists at most candidate sets, and apply 

. Then try to place u at lb1 and route ei11 set candidate~set candidate  lb ∈ i+1 ~ en. 

Step I.2.2.2: On reconfigurable hardware, find the logic block (lb2) which have the 

shortest distance with every vi . Then try to place u at lb2, and route every e I

Step I.2.2.3: compare the routing requirements of step I.1.2.1and step I.2.2.2 

if routing requirement of step I.1.2.1 < routing requirement of step I.2.2.2  

then place u at lb1   

else place u at lb2 
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CASE II: u is an I/O node 

In hardware assumption, we have two different assumptions in connection with I/O 

pins. These two different assumptions influence the placement of node u when no 

element in V. We describe two different placements for u as follows. 

Assumption 1 Without I/O limit: Any logic block can transfer data with CPU and 

memory 

In this assumption, we find two different cases:  

Case 1 is that empty logic blocks exist in the four sides of the reconfigurable hardware, 

whether u can be placed on any one of these empty logic blocks with/out tracked added 

will be described.  

Case 2 is that no empty logic blocks exist in the four sides of the reconfigurable 

hardware; whether replace and reroute preceding nodes and edges to make smaller 

wiring area will be described. 

 

Case 1: try to place u on the empty logic blocks in the four sides of the 

reconfigurable hardware  

That will be two situations happened. One is Case 1.1: no track added. The other is Case 

1.2: tracks must be added, and reroute may be used to reduce new added tracks. These 

situations are described as follows. 

 

Case 1.1: no track added when try route 

We use routing methods of CASE I to try route (u,v) or every (u,vi) and limit u to be 

placed on empty logic blocks in the four sides of the reconfigurable hardware. If no track 

added when try route, this will be the best situation for u with I/O need with CPU r 

memory. Because it is unnecessary for u to use extra track segments to transfer data with 
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CPU or memory. So we can place u on the empty logic block in the four sides of the 

reconfigurable hardware with the minimal routing requirement to route (u,v) or every 

(u,vi). 

 

Case 1.2: track added when try route 

In this situation, we want to find whether u can be placed on the empty inside logic 

blocks of the reconfigurable hardware and no new track added when route (u,v) or every 

(u,vi) using methods of CASE I . If not, preceding routing paths around empty logic 

blocks in the four sides of the reconfigurable hardware may be reroute. The rerouting is 

try to make u can be placed on an empty logic block in the four sides of the 

reconfigurable hardware and (u,v) or every (u,vi) can be routed with fewer routing 

requirement. The follow steps are detail method description. 

 

Step 1.2.1: try route to find the routing path (rp1) with the minimal routing requirement 

(try to place u on empty logic blocks in the four sides of the reconfigurable hardware) 

 

Step 1.2.2: try to place in the empty inside logic blocks of the reconfigurable hardware 

then try route to find the routing path (rp2) with the minimal routing requirement 

¾If no area added, use rp2 to route and place the I/O node  

¾If area added: 

Try to reroute the routing paths around the empty logic blocks of the four sides of the 

reconfigurable hardware to try route to find the routing path (rp3) with the minimal 

routing requirement for the I/O node’s in/out edge  

� If no area added, use rp3 to route and place the I/O node 

� If area added, use the minimal routing path in {rp1, rp2, rp3} to route and place 

the I/O node 
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Case 2: no empty logic blocks in the four sides of the reconfigurable hardware 

In this case, we first try to place u on empty inside logic blocks of the reconfigurable 

hardware and route (u,v) or every (u,vi) to get routing paths with minimal routing 

requirement. Then we try to backtrack the data flow graph, to find a node (non-I/O node), 

which have placed on the logic block in the four sides of the reconfigurable hardware. To 

see whether the routing requirement can be fewer than place u on empty inside logic 

blocks of the reconfigurable hardware and route (u,v) or every (u,vi), after backtrack to 

release a logic block for u to place. The detail steps are as follows. 

Step 2.1: try to place the I/O node in the inside empty logic blocks of the reconfigurable 

hardware then try route to find the routing paths with the minimal routing requirement  

Step 2.2: backtrack the data flow graph to replace and reroute 

Backtrack to the placed non-I/O node, which are placed on the logic block in the four 

sides of the reconfigurable hardware 

�   Try to release the occupied logic block to place u and rip up the non-I/O node’s 

edges’ routing paths. 

�   Replace the node’s position and reroute the edgesFind a replaced node that the area 

will be added minimal after replaced and reroute and place u and route u or every (u,vi) 

Step 2.3: compare the routing path in Step 2.1 and Step 2.2, accept the routing path with 

less routing requirement then place the I/O node 

 

 

 

 

Assumption 2 With I/O limit: Limit the logic blocks in the four sides of 

reconfigurable hardware for I/O 
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In this assumption, when an I/O node is selected to place on the reconfigurable 

hardware, its possible position will be limit on the empty logic blocks in the four sides 

of the reconfigurable hardware. And behind this limitation, we use the routing methods 

in CASE I to route (u,v) or every (u,vi). Non-I/O node still can be placed on any logic 

blocks, so these non-I/O nodes may exhaust the logic blocks in the four sides of the 

reconfigurable hardware. In this situation, we assign an initial placement for roots of a 

data flow graph before main placement and routing to prevent that non-I/O nodes 

exhaust the logic blocks in the four sides of the reconfigurable hardware  

The first row of the logic block array work is assigned to roots. The initial 

placement for roots is as follows.  

Step1: Allocate the first row of the logic block array to every root according to its 

descendants 

� Sort the roots by its descendants (from more to less) 

� Sequentially allocate successive logic blocks to every root from left to right 

of the logic blocks of the first row 

Step2: Place every root sequentially in the middle of the logic blocks allocated to it
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CHAPTER 4             SIMULATION 
ENVIRONMENT AND 

SIMULATION RESULTS 
 

 

 

In this chapter, we will describe our simulation environment and show the simulation 

results. For loop’s order, we will prove give a loop precedence to placement and routing is 

better. For nodes order, the simulation result of three evaluations mentioned in section 3.5 

with six different priorities will tell us which is the best for wiring area. The end, the influence 

of different limits for I/O nodes will be shown and the best result of our design will compare 

with VPR. 

 

 

4.1 Benchmark Suite 

In this section, we discuss the criteria for selecting our benchmarks, and describe our 

benchmark suite. 

4.1.1 Criteria for Selecting Benchmarks 

The criteria for selecting the benchmarks of our simulation are described as follows： 

¾ Embedded applications: 

Since the reconfigurable system is usually utilized for embedded applications, it is 

important and practical to choose suitable embedded applications as our benchmarks. 

For the popular IA (Information Appliance) products recently, most of them are 
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multimedia and communication applications, such as mpeg1/2 encoder/decoder, code 

encrypt/decrypt, and gsm mobile communication. 

¾ Media processing applications： 

The trend toward ubiquitous computing will be fueled by small embedded and 

portable systems that are able to run multimedia applications for audio, video, image, 

and graphics processing effectively. The reconfigurable system needed for such 

devices is actually a merged general-purpose processor and reconfigurable hardware. 

The challenge is to exploit the effective reconfigurable system implementations from 

the total execution time standpoint for media processing applications. 

 

According to the criteria described above, we adopt the MediaBench consisting of well-

known multimedia and communication applications, such as jpeg, mpeg2, gsm, etc., as our 

benchmark. We will introduce MediaBench in detail in the next subsection. 

 

4.1.2 MediaBench Benchmarks 

MediaBench suite is developed to address the modern embedded multimedia and 

communication applications. The initial goals of MediaBench are as follows. 

¾ Accurately represent the workload of emerging multimedia and communications 

systems. 

¾ Focus on portable applications written in high-level languages, as processor 

architectures and software developers are moving in this direction. 

¾ Precisely establish the benefits of MediaBench compared to existing alternatives, e.g., 

integer SPEC. 

¾ Develop a tool that is effective for system evaluation as well as system synthesis. 
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MediaBench is composed of complete applications coded in high-level languages. All of 

the applications are publicly available, making the suite available to a wider user community. 

MediaBench 1.0 contains applications culled from available image processing, 

communications, and DSP applications. We give a description of the current components in 

MediaBench suite as follows. 

¾ JPEG： 

JPEG is a standardized compression method for full-color and gray-scale 

images. JPEG is lossy, meaning that the output image is not exactly identical 

to the input image. Two applications are derived from the JPEG source code： 

cjpeg, which does image compression, and djpeg, which does decompression. 

¾ MPEG： 

MPEG2 is the current dominant standard for high-quality digital video 

transmission. The important computing kernel is a discrete cosine transform 

for coding and the inverse transform for decoding. The two applications used 

are mpeg2enc and mpeg2dec for encoding and decoding, respectively. 

¾ GSM： 

European GSM 06.10 is a provisional standard for full-rate speech trans-

coding, prI-ETS 300 036, which uses residual pulse excitation/long term 

prediction coding at 13Kbit/s. GSM 06.10 compresses frames of 160 13-bit 

samples (8 KHz sampling rate, i.e. a frame rate of 50 KHz) into 260 bits. 

¾ G.721 Voice Compression： 

G.721 refers to the implementations of the CCITT (International Telegraph and 

Telephone Consultative Committee). 

¾ PGP： 

PGP uses "message digests" to form signatures. A message digest is a 128-bit 

cryptographically strong one-way hash function of the message (MD5). To 
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encrypt data, it uses a block-cipher IDEA (International Data Encryption 

Algorithm), or RSA for key management and digital signatures. 

¾ PEGWIT： 

PEGWIT is a program for public key encryption and authentication. It uses an 

elliptic curve over GF ( ), SHA1 for hashing, and the symmetric block cipher 

square. 

2552

¾ RASTA： 

A program for speech recognition that supports the following techniques： PLP, 

RASTA, and Jah-RASTA. The technique handles additive noise and spectral 

distortion simultaneously, by filtering the temporal trajectories of a non-linearly 

transformed critical band spectrum. 

¾ EPIC： 

EPIC is an experimental image compression utility. The compression algorithms 

are based on a bi-orthogonal critically sampled dyadic wavelet decomposition 

and a combined run-length/Huffman entropy coder. The filters have been 

designed to allow extremely fast decoding without floating-point hardware. 

¾ ADPCM： 

Adaptive differential pulse code modulation ADPCM is one of the simplest and 

oldest forms of audio coding. 

 

4.2 Evaluation 

According to a beforehand experiment, we had known that there were 97 nodes in the 

largest loop. Therefore we design our reconfigure hardware as a 10x10 logic block array for 

our simulation. For the computation convenience, some assumptions are given. In our 

experiment, the logic block array is initially no tracks. Gradually, a loop followed a loop will 

add tracks in the logic block array according to their routing requirement. The logic block 
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array before placement and routing is as follow left Figure 4-1(a). We assume the size the 

initial logic block array is l*l. When some tracks are added the wiring area will be added like 

Figure 4-1(b). In Figure 4-1(b), m vertical tracks and n horizontal tracks are added. We 

assume width or length w will be added after a track is added.  
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4.3 Simulation Results 

der will result in different wiring area. We note subtree edges 

as s,

4.3.1 Loop Order 

From Figure 4-2 and Figure 4-3, we can see two group bars in every figure. These two 

grou

4.3.2 nodes order 

In section 3.5, we set three evaluations to decide nodes order. In this section, we compare 

diffe

In every figure, different or

 node degree as n, level edges as l, and (i,j,k) as priority relation. For example: (s,n,l) 

means subtree edges priority is higher than node degree and node degree priority is higher 

than level edge. 

ps represent two different loop orders: the one is that give precedence to a loop of fewer 

edges, and the other is that give precedence to a loop of more edges. From the two figures, we 

can know that give precedence to a loop of more edges will result in smaller wiring area at the 

end of placement and routing all loops 

rent nodes order from six priorities of the three evaluations. From Figure 4-2 and Figure 

4-3, when priority relation is: subtree edge higher than node degree and node degree higher 

than level edges, the last needed wiring area will be the smallest. 
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Figure 4-2 results of “with I/O limit” 

 

4.3.3 Compare results

We combine Figure 4-2, Figure 4-3, and VPR result in Figure 4-4. VPR’s best result 

need
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Figure 4-3 results of “without I/O limit” 

 with VPR 

s 1.282 times our best result, which is no I/O, limit for all nodes. Although our result, 

which is with I/O limit, needs 1.065 times the best result, but it needs less computation time 
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because backtrack and reroute are not used. 
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CHAPTER 5               
CONCLUSIONS AND FUTURE 

WORK 
 

 

Our design algorithms use no estimation in placement, but give node’s order previously, 

arrange an order of small area added as far as possible in iterations. 

During iteration, we process small area added routing as far as possible to determine 

placement. Our superiority is that it is easier to get better result from actually saving area of 

routing to determine placement. When need processing elements in reconfigurable hardware 

are increased, to use our method is not only to prevent to limit accommodated processing 

elements in a chip because of a large number of routing resources and to reduce power 

consumption even delay comes from routing. 

But computation time is more than VPR because of exhaustive search for the best 

routing path. If we can establish a cost function to more efficiently determine the best routing  

path, the computation time will be lower.
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