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Abstract

Semiconductor manufacturing is a capitally intensive industry. The cost of
equipment is very expensive. In orderto quickly respond to market demand booming,
a semiconductor company usually adopts a dual-fab strategy in expanding capacity.
This paper presents an approach to.solve the route planning problem for a
semiconductor  dual-fab. The ..route planning problem involves two
decisions—determining the cutoff point and route ratio for each product—in order to
maximize the throughput subject a cycle time constraint. An LP-GA method is
proposed to solve the route planning problem. We first use the LP module to make the
cutoff point decisions, and proceed to use the GA module for making the decision of
route ratio. Results show that the LP-GA method significantly outperforms the other

methods.
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Chapter 1 Introduction

Semiconductor manufacturing is a capitally intensive industry. The cost of
equipment is very expensive. A typical 12 inch wafer fab costs about two billion
dollars; over 80% of the expense is for equipment. The lead time for the acquisition of
equipment is quite long, ranging from 3 to 9 months. In contrast, building factory
space is relatively low in expense but with a much longer lead time—taking about one
to two years.

In order to quickly respond to market demand booming, a semiconductor
company usually adopts a dual-fab strategy in expanding capacity. That is, a
large-scale factory space which could accommodate two fabs is established in
advance. Then, equipments for the«two fabsare gradually moved into the space
according to the market demand:trace over time: Finally, the semiconductor company
has two fabs, which are in operation and.close to each'other in location.

With such a dual-fab configuration, a relatively easy way to manage a fab is
manufacturing each wafer job within a particular fab. That is, each fab is run
separately, without any mutual support in capacity. Such a separate-operation
paradigm would usually lead to the underutilization of equipment. To remedy the
underutilization issue, a cross-fab production paradigm is proposed. That is, a wafer
job is partly manufactured in one fab and partly manufactured in the other fab.

This cross-fab production paradigm yields a route planning problem—how to
appropriately assign the operations of a wafer job to each of the two fabs. Only a few
studies on such a route planning problem have been published. Toba et al. (2005)
addressed the route planning problem in a real-time manner. Whenever an operation
of a job is completed, a decision—which fab to manufacture the next operation—must

be immediately made. Wu and Chang (2006) investigated the route planning problem



in a short-term or weekly manner. The two fabs exchange capacity weekly to
maximize the total throughput.

Though having established significant milestones, these two prior studies have
some limitations due to make an implicit assumption. They both assumed that the
transportation times within a fab or among fabs are a constant. This implies that the
transportation capacity is infinite, and the proposed capacity planning engine may
yield too much transportation. This may lead to traffic jam and as a result may lower
the throughput and lengthen the cycle time.

In semiconductor manufacturing, the wafer size has steadily increased over time.
In an up-to-date fab (12 inch wafer fab), wafer jobs must be transported by automatic
vehicles because a wafer job weighs about 30 Kg and cannot be handled manually.
This may yield a traffic jam problem because the transportation capacity is limited.
Our interview with practitioners indicates that the traffic jam symptom would occur,
in particular for a dual-fab layout, Therefore, transportation capacity has to be
considered in the route planning problem.for.an up-to-date fab.

This research investigates the route planning problem for a dual-fab layout and is
unique in two-fold. First, we assume that the transportation capacity is finite and the
transportation times would vary. Second, the route planning decision is made based on
a relatively longer time horizon—for example, one or several months. This
research—focusing on longer time horizon complements prior studies which focused
on either short-term or immediate decisions on route planning.

The remainder of this paper is organized as follows. Section 2 describes
literature relevant to this research. Section 3 presents the route planning problem in
detail. Section 4 described the proposed solution method. Numerical experiments are

discussed in Section 5 and concluding remarks are in the last section.



Chapter 2 Relevant Literature

Given a customer demand, there may exists more than one manufacturing sites to
fulfill the demand. A decision problem is how to allocate the demand to each
manufacturing site. This capacity allocation problem can be addressed either in
product level or in operation level. For the problem in the product level, each site is
designated to manufacture a set of products. This implies that a product should be
completely manufactured within a single site—cross-site production is prohibited.
While in the operation level, each site is designated to manufacture a group of
operations. Then, the operations for manufacturing a product could be distributed
among different sites—cross-site production is allowed. This leads to the need for
studying the route-planning problem among, different sites.

For the capacity allocation problem==without cross-site routes, Wu et al. (2005)
have given a comprehensive “survey. The multiple manufacturing sites may be
governed by a single company (“Frederix 2001) or by different companies ( Rupp &
Ristic 2000 ) , ( Karabuk & Wu 2003),('Lee et al. 2006). Linear programming (LP)
models are typically formulated to solve the problems ( Manmohan 2005). To address
the interactions among manufacturing sites, Game theory was proposed to enhance
the LP models ( Wu et al. 2005).

For the capacity allocation problem—with cross-site routes, most studies were
addressed in the context of group technology (GT). That is, each site is a
manufacturing cell and multiple cells form a factory. Cross-cell production for
manufacturing a product is permitted. However, each product is preferably
manufactured within a particular cell and cross-cell production should be minimized.

Most prior studies allocated the capacity demand to cells through solving a cell

formation problem ( Lee & Abhary 1997), ( Defersha & Chen 2006), ( Kim et al.



2005), ( Vin et al. 2005), ( Nsakanda et al. 2006). That is, in order to minimize the
number of cross-cell transportations, they have to answer how many cells should be
formed and how each cell should be equipped. After the cell formation problem is
solved, each product is assigned to a particular cell for handling most of its operations.
The remaining operations, much fewer in number, are handled by other cells. A GT
cell is designed only for manufacturing a group of products, and by nature is limited
in functional capacity. Therefore, cross-cell routes are unavoidably demanded in GT
in order to provide a comprehensive functional spectrum.

However, in the route-planning problem we address, each of the two fabs is
assumed to be functionally comprehensive. That is, a product can be completely
manufactured in either one of the two fabs. The purpose of cross-fab production is to
increase the total throughput of the‘two fabs, and the rationale is explained below.

In practice, a semiconductor.fab 1S equipped: to fulfill a particular product
mix—the demand forecast at the time of purchasing equipment. However, the demand
of product mix may change over time:. Therefore, a fab may be underutilized due to
the significant change of assigned product mix. In addition, the two fabs, even both
functionally comprehensive, may differ in number for each type of machines. This
implies that their originally designed product mixes may also differ. Cross-fab

production therefore is needed to increase the total throughput of the two fabs.



Chapter 3 Problem Statement

This section aims to describe the dual-fab route planning problem more precisely.
We first present the assumptions that confine the context of the route planning
problem; and then proceed to introduce the decision variables, objective function and
constraints of the problem. In explaining the assumptions, the two fabs are
respectively called Fabs A and B.

Assumption 1: Each fab is functional comprehensive. Each of the two
semiconductor fabs is functionally comprehensive. That is, each fab is so
comprehensively equipped that it can handle the manufacture of each product by itself,
without the functional support of the other fab.

Assumption 2: A product has., four possible routes. To implement
cross-production, the manufacturing routesof each product is cut into two parts, where
the route’s break point is called a cut-off point. The two parts are manufactured in
different fabs, and yield two possible-routes-for crass-production. One, represented by
a — [, denotes that the first part of the route is manufactured at Fab_A and the
second part is at Fab_B. The other one, represented by S —>a , denotes
manufacturing at Fab B and then at Fab_A. Since each fab is functionally
comprehensive, the manufacturing of a product thus has four possible routes, «, £,
a—p, f—a,where ¢ and [ denotes the routes in a single fab.

Assumption 3: The transportation path between any two workstations/buffers is
unique, rather than multiple. In each fab, a transportation system for moving wafer
jobs has been established. Theoretically, there may exist multiple paths in transporting
from a workstation to another; however, to reduce the complexity of traffic control,
we predefine a fixed path for such a transport.

The route planning problem has two decision variables for each product: its



cutoff point and the ratios of its four possible routes (simply called route ratios). Let
the cutoff point and route ratios of product i be represented by (7, , Ri). For n products
to produce—with a given product mix, the route planning problem is to determine ( r;,

R;j) for each product in order to maximize the total throughput of the two fabs, subject

to the constraint of meeting a target cycle time.



Chapter 4 Solution Framework

A framework proposed for solving the dual-fab route planning problem is shown

in Fig. 1, which involves two modules.

Cutoff Point  |————+ Module 1 ————+ Linear program (LP)

Genetic algorithm (GA)

A

I
|
Route Ratio F-—--—- Module 2 |---
|
|

Queueing network

Fig 1 Solution Framework

In Module 1, each transportation path is-assumed to be with infinite capacity; and
the transportation time between any two workstations/buffers is zero. With the routing
problem so simplified, we attempt to find an optimum z;, in terms of minimizing the
number inter-fab transportations. The problem is solved by an iterative use of a linear
program (LP) model. For a particular 7z, , the LP model aims to compute its minimum
number of inter-fab transportations, which is regarded as the performance of z,. We
then develop a binary search algorithm to identify an optimum z; as the ultimate
decision for cutoff point.

In Module 2—with the obtained 7z, taken as parameters, we deal only with the
decision variables R;. In this module, each transportation path is taken as a tool with
limited capacity. The transportation time required for passing a path can be varied,
depending upon the traffic flow intensity. The higher the traffic intensity, the longer is

the cycle time.



Module 2 involves two sub-modules. The first one aims to develop a

performance evaluator for a particular (z;, Ri). To do so, we first construct a queueing
network model ( Connors et al.1996 ) in order to compute the resulting mean cycle
time, subject to a target throughput and a particular (7;, R;). This queueing model is
then enhanced. That is, subject to a target mean cycle time and a particular (z,, Ri),
the enhanced model could compute the resulting throughput—the performance of the
(7, Ri).

The second sub-module aims to search an optimal of R;, with a performance
evaluator for the use of (7, Ri). The performance evaluator is in fact only for the use
of Ri, because 7z, is now taken as a parameter in Module 2. A genetic algorithm is
proposed to solve the search problem—finding the ultimate decision of R;.

In summary, the solution space of the dual-fab routing planning problem can be
described by S ={(7,,R |7, ez _Set,R eR_Set}. The objective is to find an
optimum (z,,R,) from S, in tefms of maximizing throughput subject to a target cycle

time. Since S can be very huge, the problem-is decomposed into two sub-problems.

The first one is to find an optimum 7, . Taking 7, as parameters, the second

sub-problem proceeds to find an optimum R



Chapter 5 Module 1—P Model and Search Algorithm

Obtaining the solution for Module 1 is through an iterative use of a LP program.
We first describe the LP model and then present the iterative method—a binary-search

algorithm.

Indices
i: index of product
g : index of workstation in Fab_A

h: index of workstation in Fab_B

Parameters

n: number of products

7, . cutoff point for defining the:crass-fab routes of product i

IT: MI=[x], 1<i<n,avectorfor deseribing-the cut-off points of all products
Q: an estimated value for the total throughput of the two fabs (in lots)

P.: percentage of product i in the product mix
C, : available machine hours of workstation g in Fab_A

C, : available machine hours of workstation h in Fab_B
m, : total number of workstations in Fab_A

m, : total number of workstations in Fab_B

W, : total processing time per lot required on workstation g, while product i is
manufactured by route «

W;; total processing time per lot required on workstation g, while product i is

manufactured by route o —



Wig : total processing time per lot required on workstation g, while product i is
manufactured by route S — «

W, : total processing time per lot required on workstation h, while product i is
manufactured by route S

W, : total processing time per lot required on workstation h, while product i is
manufactured by route o — f

W, total processing time per lot required on workstation h, while product i is

manufactured by route S — «

Decision Variables

a. : percentage of using route ¢ Injproducing product i

b, : percentage of using route £ in producing product i
.. percentage of using route « <» £ “in producing product i

d, percentage of using route S — « in producing product i

5.1 LP Model

The LP program is to compute a minimum number of cross-fab transportation for
a particular TT--a decision for the route cutoff points, which is known before solving

the LP problem. The objective function of the LP program is thus denoted by Z(1T).
Min Z(IT) :ZQ P '(Ci +di)
i=1

S. L.

a,+b+c+d =1 1<i<n (1)

P =1 )

n
i
i=1

10



> Q-P-(a-Wg+d W +c-We)<C,  1<g<m, (3)
i=1
ZQR(bu Wy +d;-Wyi +¢,-W)<C, 1<h<m, 4)

i=1

The objective function is to minimize the number of cross-fab production. The
rationale for defining this objective is that cross-fab production requires longer
transportation time than within-fab production. Subject to a target cycle time, an
attempt to minimize cross-fab production tends to increase throughput. Constraints (1)
and (2) described the dependent relationships among the route ratios and product
ratios. Constraints (3) and (4) ensure that the capacity used in each workstation should
be lower than its available supply.

5.2 Binary Search Algorithm

The binary search algorithm is/ to find an optimum solution from a space. The
space, denoted by { I1 }, is the possible combinations‘of cutoff points for all products.

The algorithm is an iterative process. In.an iteration, each product has two
possible cutoff points to select. Taking a product route as a line, the two cutoff points
are respectively on the first and the third quartiles (Fig 2). By evenly cutting the route
into two sections, each cutoff point is in the middle of a particular section. Of the two
evenly divided sections, the one where a cutoff point stays is called the housing
section of the point.

Iteration 1 ®

Iteration 2 PN | o

lteration 3 I—. I P :

Iteration n ®

Fig 2 Process of the cutoff point

11



In an iteration, the size of the space { [] } is2" if there are n products. By
solving the LP program 2" times, we can obtain the best one--denoted byIT . For
each product, IT defines a particular cutoff point, whose housing section is called the
current A -section of the product. The A -sections obtained in an iteration is the input
of the next iteration. The binary search algorithm is summarized below.

Algorithm Search _Cutoff_Points

Initialization
® For each product, take the whole route as its A -section.

For iteration =1 to N
® Create the two cutoff points on the A -section of each product
® Solve LP programs to find IT°
® Compute the A -section for each product based on TT°

End for

Output the cutoff points for each.product

12



Chapter 6 Module 2—Queueing and GA

The problem to be solved in Module 2 can be stated as follows. Given a target

cycle time (CT,) and a cutoff point decision (IT" =[z,...,z,]) obtained from Module

1, we attempt to find an optimal route ratio decision Rz[F,...Fn] in order to

maximize the total throughput of the two fabs subject that the corresponding cycle

time is less than CT,.

This problem is essentially a space search problem, with a solution space
H:{R}:{[Fl,...?n]lFi:(ai,bi,ci,di)}. A genetic algorithm is proposed to solve the

problem. In the algorithm, the fitness (performance) of a solution R is evaluated by a
queueing network model. We first.introduce the queueing network model and proceed

to the genetic algorithm.

6.1 Queueing Network

The queueing network model is an extension of the model developed by Connors
et al. (1996). The 1/0 function of the model developed by Connor et al. (1996) can be
briefly formulated as follow: CT= f(TH,R,IT). That is, given a total throughput
(TH), a route ratio decision (R), and a cutoff point decision (IT), the model can
compute the two fabs” mean cycle time (CT). However, Connor et al. (1996) did not
consider the effect of transportation on CT.

We extended the application of their model based on two assumptions. First, we
assume that the transportation path between any two stations is unique, where a
station is either a workstation or a WIP storage buffer. Secondly, each transportation
path between any two stations is modeled as a “conveyor machine” with only one unit

of capacity. Such an extension makes the developed queueing model closer to the real

13



world. Likewise, the I/O function the extended queuing model can also be described
as CT=f(TH,R,IT1).

The objective function in Module 2 is to maximize throughput (TH) subject to a
target cycle time (CTp). To evaluate the objective function, we used a bi-section

search technique to find the total throughput (TH) for a particular route ratio (R); that
is TH = f(R,IT,CT,) where IIT denotes the cutoff point decision obtained in

Module 1 and CT, is the target cycle time. The bi-section search technique denotes

searching a value for TH, based on the function CT= f(TH,R,IT") for a given R, in

order to obtain CT=CT,; and the search algorithm is just like that of the binary

search for a particular point on a line segment.

6.2 Genetic Algorithm
The genetic algorithm (GA) isto identify an optimal solution R from the space
S = {R}. As stated, the performance of R-is-obtainable by the enhanced queueing

model. A possible solution R (or called a chromosome) is represented by a vector
R=[r,..r] where r =(a,b,c,d). We call r. a gene-segment and each of its
element a gene, and the gene values are imposed by the following constraints:
a,+b+c+d, =1 and 0<aq,b,c,d, <1.

The GAis an iterative algorithm which can be briefly described as follows.
Procedure GA

Step 1: Initialization

® t=0, Status = ‘Not-terminate’
® Randomly generate N valid chromosomes to form a population Po

Step 2: Genetic Search

While (Status = ‘Not-Terminate’) do

14



® Use cross-over operator to create NC new chromosomes

® Use mutation operator to create N, new chromosomes

® Form a pool by the union of P; and the newly created chromosomes

® t=t+1 andselectthe best N chromosomes from the pool to form P,

® Check if termination condition is met; if yes, set Status = “Terminate”
Endwhile

Step 3: Output the best chromosome R in Py

The crossover operation is to create two new chromosomes (say, R; and R4) from

two existing ones (say, R; and R;). Let each gene-segment i in R; and R, be

respectively represented by E and E We proposed a one-point crossover

operation (Binh & Lan 2007) on gene-segments H and E to create two new ones

r. and r, , which in turn® could ryield=two -new chromosomes: R,=[r,],

R, =[r,], 1<i<n.
The one-point crossover operation on a gene-segment is briefly introduced. For
two gene-segments (i.e., r, and r,), randomly choose a gene, swap their gene

values, and modify another gene values in order to ensure a constraint satisfaction .

Consider an example where the second gene is chosen for r, =(a,,b,,c,,d,) and
r,=(a,,b,,c,,d,). By the swap and modification operations, we would obtain

s = (&y,0,,Cy,1-3, —b, —¢,) and r, N (a;,,b,y,¢,1-a, -b, -C;,).
In the mutation operation, a new chromosome (say, R).is created by an existing

one (say, Rj;). The mutation algorithm creates R, by modifying a particular

gene-segment in R;. The modified gene-segment is randomly chosen. While being

15



selected, two of its genes are randomly chosen and their gene values are swapped.

For example, if gene-segment i" is chosen for modification; and the 2" and 4™
genes are chosen to swap for r. =(a,,b,,c,,d,), then r. =(a,,d,,c;,b,), which
in turn yield a new chromosome R, =[,,,.r.,..Tu] from R =[r,,.r. ,..rm].

Two termination conditions are defined for the GA. First, the best solution in P;
has been no change for over a certain period (say, T, iterations). Second, the
population P; has evolved over a certain iterations; that is, t has reached its predefined

upper bound (Ty).

16



Chapter 7 Experiments

7.1. Benchmarks and Data

By numeric experiments, we attempt to evaluate the effectiveness of the
proposed method. Two other methods are used as benchmarks for comparison. The
proposed method is designed as LP-GA, where LP denotes the linear program, GA
denotes the genetic algorithm. The two benchmark methods are special cases of
LP-GA. The first one is called M-GA, which denotes that the cutoff point of each route
has been predetermined—just on the middle of the route. The second one is called
N-GA, where denotes that cross-fab production is not allowed. Such a comparison is
to tell how much benefit a dual-fab would obtain if the LP-GA method is used.

In the dual-fab experiments, the data for machines and product routes are
adapted from an HP-fab in literature (\\Wein 1988)..0f the two fabs, one involves 93
machines and the other involves 72 machines. Being functionally identical, each fab
involves 4 batch workstations and 21.'series-workstations. The MTBF (mean time
between failure) and MTTR (mean ‘time to"repair) of each machine is available,
exponentially distributed. Three types of products are produced. One product involves

150 operations; the other two both involve 172 operations but are different in

processing times. In implementing the GA, we set T, = 1000, T, = 30, Py = 100, P,

0.8, and P, =0.1.

7.2 Performance Comparison

The three methods are compared in two scenarios, with product mixes Ra
(3:2:5) and Rg = (5:4:1) respectively. For each product mix, by the queueing model,
we obtain a throughput level that will keep the two fabs in high utilization: Qa = 128

lots and Qg = 169 lots.

17



We compare the three methods from two perspectives. First, given a target
throughput level, the mean cycle time of each method is compared. In the comparison,
Qa and Qg are used as the target throughput levels. Second, given a target cycle time,
we compare the throughput of each method. In the comparison, we set CT;=11081
min. for Ry and CTy=11445 for Rg.

The cutoff points of each route obtained by the LP-GA method are shown in
Table 1, which indicates that the cutoff points suggested by the LP-GA are different
from that of M-GA.

Table 2 shows the comparison of mean cycle times, subject to a target throughput.
The LP-GA outperforms the two benchmark methods. The cycle time of the LP-GA
method is about 2-9% lower than that of M-GA, and 11-17% lower than that of N-GA.
This implies that optimal planning of cross-fab:production is positive in reducing
cycle time.

Table 3 shows the comparison of-throughput, subject to a target cycle time. The
LP-GA method also outperforms the two _benchmark methods. The throughput of the
LP-GA method is about 0.8-2.5% higher than that of M-GA, and about 3.2-5.0%
higher than that of N-GA. This implies that optimal planning of cross-fab production

is positive in increasing throughput.

Table 1: Cutoff points obtained by the LP program

Product1 | Product 2 Product 3
Total Step
172 172 150
Number
Ra 85" step | 85Mstep | 129" step
Re 84" step | 84" step 78" step

18



Table 2: Comparison of mean cycle time

Ra (Qa =128 (lots)) Rg (Qs = 169 (lots))
Algorithm CT (min) | Gaps (%)| CT (min) | Gaps (%)
LP-GA 11,080 11.10% 11,639 17.30%
M-GA 12,175 2.31% 12,811 8.98%
N-GA 12,463 0% 14,075 0%
Table 3: Comparison of throughput
Ra (CTo=11081(min)) Rg (CTo=11445(min))
Throughput Gap Throughput Gap
Algorithm
(lots) (%) (lots) (%)
LP-GA 128 3.23% 169 4.97%
M-GA 125 0.81% 165 2.48%
N-GA 124 0% 161 0%

Figs. 3 and 4 reveal the relationship between cycle time and throughput for Ra
and Rg respectively. The higher the throughput, the longer is the cycle time. The two
figures also show that the higher the throughput, the larger is the performance gap.
That is, the contribution of the LP-GA method becomes higher while it is applied in a

high-demand scenario.
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Chapter 8 Conclusion

This paper presents an approach to solve the route planning problem for a
semiconductor dual-fab. In the problem, each product can be manufactured in either
fab. And each product has four possible production routes, which are defined by a
cutoff point. The route planning problem involves two decisions—determining the
cutoff point and route ratio for each product—in order to maximize the throughput
subject a cycle time constraint.

An LP-GA method is proposed to solve the route planning problem. We first use
the LP module to make the cutoff point decisions, and proceed to use the GA module
for making the decision of route ratio. The LP-GA method is compared with two
benchmark methods by numerical experiments. Results show that the LP-GA method
significantly outperforms the other methods:

Some extensions of this research are being considered. One is the extension of
this approach to a multiple-fab ‘production-system—for example, three or more fabs
shall share the capacity in production. The other is the extension to a scenario with
higher flexibility in production routes—for example, each product could have two

cutoff points and in turn have more than four routes.
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