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半導體雙廠區產能相互支援的途程規劃 
 

研究生：陳振富           指導教授：巫木誠 博士 

 

國立交通大學工業工程與管理研究所 

 

中文摘要 

    

 

   半導體產業是資本密集的產業。設備的成本非常昂貴。為了迅速對市場需求

的熱烈作回應，一般半導體公司通常在擴大產能能力上採取一個雙廠區的策略。

本篇論文針對雙廠區的途程規劃問題提出一種方法來求解此問題。途程規劃問題

可以包含兩部份：途程的切割點決策以及途程的生產比例決策，其目標是在一目

標生產週期時間下產出最大化。本研究利用 LP-GA 的方法來求解此問題。我們

首先利用線性規劃模組來決定途程切割點，然後用基因演算法來求得各途程的生

產比例解。結果顯示 LP-GA 方法明顯比其他方法好。 

 

 

 

 

 

 

 

關鍵字：雙廠區、跨廠、途程規劃、產出、產能支援 
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Route Planning for Two Wafer Fabs with Capacity Sharing 

Mechanisms 

 

Student：Ting-Uao Hung    Advisor：Dr. Muh-Cherng Wu 

 
Department of Industrial Engineering and Management 

National Chiao Tung University 
 

Abstract 

Semiconductor manufacturing is a capitally intensive industry. The cost of 

equipment is very expensive. In order to quickly respond to market demand booming, 

a semiconductor company usually adopts a dual-fab strategy in expanding capacity. 

This paper presents an approach to solve the route planning problem for a 

semiconductor dual-fab. The route planning problem involves two 

decisions—determining the cutoff point and route ratio for each product—in order to 

maximize the throughput subject a cycle time constraint. An LP-GA method is 

proposed to solve the route planning problem. We first use the LP module to make the 

cutoff point decisions, and proceed to use the GA module for making the decision of 

route ratio. Results show that the LP-GA method significantly outperforms the other 

methods. 
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Chapter 1 Introduction 

Semiconductor manufacturing is a capitally intensive industry. The cost of 

equipment is very expensive. A typical 12 inch wafer fab costs about two billion 

dollars; over 80% of the expense is for equipment. The lead time for the acquisition of 

equipment is quite long, ranging from 3 to 9 months. In contrast, building factory 

space is relatively low in expense but with a much longer lead time—taking about one 

to two years.   

In order to quickly respond to market demand booming, a semiconductor 

company usually adopts a dual-fab strategy in expanding capacity. That is, a 

large-scale factory space which could accommodate two fabs is established in 

advance. Then, equipments for the two fabs are gradually moved into the space 

according to the market demand trace over time. Finally, the semiconductor company 

has two fabs, which are in operation and close to each other in location.  

With such a dual-fab configuration, a relatively easy way to manage a fab is 

manufacturing each wafer job within a particular fab. That is, each fab is run 

separately, without any mutual support in capacity. Such a separate-operation 

paradigm would usually lead to the underutilization of equipment. To remedy the 

underutilization issue, a cross-fab production paradigm is proposed. That is, a wafer 

job is partly manufactured in one fab and partly manufactured in the other fab.  

This cross-fab production paradigm yields a route planning problem—how to 

appropriately assign the operations of a wafer job to each of the two fabs. Only a few 

studies on such a route planning problem have been published. Toba et al. (2005) 

addressed the route planning problem in a real-time manner. Whenever an operation 

of a job is completed, a decision—which fab to manufacture the next operation—must 

be immediately made. Wu and Chang (2006) investigated the route planning problem 
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in a short-term or weekly manner. The two fabs exchange capacity weekly to 

maximize the total throughput. 

Though having established significant milestones, these two prior studies have 

some limitations due to make an implicit assumption. They both assumed that the 

transportation times within a fab or among fabs are a constant. This implies that the 

transportation capacity is infinite, and the proposed capacity planning engine may 

yield too much transportation. This may lead to traffic jam and as a result may lower 

the throughput and lengthen the cycle time.  

In semiconductor manufacturing, the wafer size has steadily increased over time. 

In an up-to-date fab (12 inch wafer fab), wafer jobs must be transported by automatic 

vehicles because a wafer job weighs about 30 Kg and cannot be handled manually. 

This may yield a traffic jam problem because the transportation capacity is limited. 

Our interview with practitioners indicates that the traffic jam symptom would occur, 

in particular for a dual-fab layout. Therefore, transportation capacity has to be 

considered in the route planning problem for an up-to-date fab.  

This research investigates the route planning problem for a dual-fab layout and is 

unique in two-fold. First, we assume that the transportation capacity is finite and the 

transportation times would vary. Second, the route planning decision is made based on 

a relatively longer time horizon—for example, one or several months. This 

research—focusing on longer time horizon complements prior studies which focused 

on either short-term or immediate decisions on route planning. 

The remainder of this paper is organized as follows. Section 2 describes 

literature relevant to this research. Section 3 presents the route planning problem in 

detail. Section 4 described the proposed solution method. Numerical experiments are 

discussed in Section 5 and concluding remarks are in the last section. 
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Chapter 2 Relevant Literature

Given a customer demand, there may exists more than one manufacturing sites to 

fulfill the demand. A decision problem is how to allocate the demand to each 

manufacturing site. This capacity allocation problem can be addressed either in 

product level or in operation level. For the problem in the product level, each site is 

designated to manufacture a set of products. This implies that a product should be 

completely manufactured within a single site—cross-site production is prohibited. 

While in the operation level, each site is designated to manufacture a group of 

operations. Then, the operations for manufacturing a product could be distributed 

among different sites—cross-site production is allowed. This leads to the need for 

studying the route-planning problem among different sites. 

For the capacity allocation problem—without cross-site routes, Wu et al. (2005) 

have given a comprehensive survey. The multiple manufacturing sites may be 

governed by a single company ( Frederix 2001) or by different companies ( Rupp ＆ 

Ristic 2000）, ( Karabuk ＆ Wu 2003), ( Lee et al. 2006). Linear programming (LP) 

models are typically formulated to solve the problems ( Manmohan 2005). To address 

the interactions among manufacturing sites, Game theory was proposed to enhance 

the LP models ( Wu et al. 2005).   

For the capacity allocation problem—with cross-site routes, most studies were 

addressed in the context of group technology (GT). That is, each site is a 

manufacturing cell and multiple cells form a factory. Cross-cell production for 

manufacturing a product is permitted. However, each product is preferably 

manufactured within a particular cell and cross-cell production should be minimized. 

Most prior studies allocated the capacity demand to cells through solving a cell 

formation problem ( Lee ＆ Abhary 1997), ( Defersha ＆ Chen 2006), ( Kim et al. 
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2005), ( Vin et al. 2005), ( Nsakanda et al. 2006). That is, in order to minimize the 

number of cross-cell transportations, they have to answer how many cells should be 

formed and how each cell should be equipped. After the cell formation problem is 

solved, each product is assigned to a particular cell for handling most of its operations. 

The remaining operations, much fewer in number, are handled by other cells. A GT 

cell is designed only for manufacturing a group of products, and by nature is limited 

in functional capacity. Therefore, cross-cell routes are unavoidably demanded in GT 

in order to provide a comprehensive functional spectrum. 

However, in the route-planning problem we address, each of the two fabs is 

assumed to be functionally comprehensive. That is, a product can be completely 

manufactured in either one of the two fabs. The purpose of cross-fab production is to 

increase the total throughput of the two fabs, and the rationale is explained below. 

In practice, a semiconductor fab is equipped to fulfill a particular product 

mix—the demand forecast at the time of purchasing equipment. However, the demand 

of product mix may change over time. Therefore, a fab may be underutilized due to 

the significant change of assigned product mix. In addition, the two fabs, even both 

functionally comprehensive, may differ in number for each type of machines. This 

implies that their originally designed product mixes may also differ. Cross-fab 

production therefore is needed to increase the total throughput of the two fabs.  
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Chapter 3 Problem Statement 

This section aims to describe the dual-fab route planning problem more precisely. 

We first present the assumptions that confine the context of the route planning 

problem; and then proceed to introduce the decision variables, objective function and 

constraints of the problem. In explaining the assumptions, the two fabs are 

respectively called Fabs A and B.  

Assumption 1: Each fab is functional comprehensive. Each of the two 

semiconductor fabs is functionally comprehensive. That is, each fab is so 

comprehensively equipped that it can handle the manufacture of each product by itself, 

without the functional support of the other fab.  

Assumption 2: A product has four possible routes. To implement 

cross-production, the manufacturing route of each product is cut into two parts, where 

the route’s break point is called a cut-off point. The two parts are manufactured in 

different fabs, and yield two possible routes for cross-production. One, represented by 

βα → , denotes that the first part of the route is manufactured at Fab_A and the 

second part is at Fab_B. The other one, represented by αβ → , denotes 

manufacturing at Fab_B and then at Fab_A. Since each fab is functionally 

comprehensive, the manufacturing of a product thus has four possible routes, α , β , 

βα → , αβ → , where α  and β  denotes the routes in a single fab. 

Assumption 3: The transportation path between any two workstations/buffers is 

unique, rather than multiple. In each fab, a transportation system for moving wafer 

jobs has been established. Theoretically, there may exist multiple paths in transporting 

from a workstation to another; however, to reduce the complexity of traffic control, 

we predefine a fixed path for such a transport. 

The route planning problem has two decision variables for each product: its 
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cutoff point and the ratios of its four possible routes (simply called route ratios). Let 

the cutoff point and route ratios of product i be represented by ( iπ , Ri). For n products  

ito produce—with a given product mix, the route planning problem is to determine (π , 

Ri) for each product in order to maximize the total throughput of the two fabs, subject 

to the constraint of meeting a target cycle time.  
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 the dual-fab route planning problem is shown 

 

Fig 1 Solution Framework 

uf

Chapter 4 Solution Framework 

 A framework proposed for solving

in Fig. 1, which involves two modules. 

 

In Module 1, each transportation path is assumed to be with infinite capacity; and 

the transportation time between any two workstations/b fers is zero. With the routing 

problem so simplified, we attempt to find an optimum iπ , in terms of minimizing the 

number inter-fab transportations. The problem is solved by an iterative use of a linear 

program (LP) model. For a particular iπ , the LP model aims to compute its mi mum 

number of inter-fab transportations, which is regarded as the performance of i

ni

π . We 

then develop a binary search algorithm to identify an optimum iπ  as the ultimate 

decision for cutoff point. 

In Module 2—with the obtained iπ  taken as parameters, we deal only with the 

decision variables Ri. In this module, each transportation path is taken as a tool with 

limited capacity. The transportation time required for passing a path can be varied, 

depending upon the traffic flow intensity. The higher the traffic intensity, the longer is 

the cycle time.  

Module 1

Module 2 

Linear program (LP) 

Genetic algorithm (GA) 

Cutoff Point 

Route Ratio 

Queueing network 
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Module 2 involves two sub-mo ules. The first one aims to develop a 

performance evaluator for a particular ( i

d

π , Ri). To do so, we first construct a queueing 

network model ( Connors et al.1996 ) in order to com ute the resulting mean cycle 

time, subject to a target throughput and a particular ( i

p

π , Ri). This queueing m del is 

then enhanced. That is, subject to a target mean cycle time and a particular ( i

o

π , Ri), 

th  enhane ced model could compute the re performasulting throughput—the nce of the 

( iπ , Ri). 

The second sub-module aims to search an optimal of Ri, with a performance 

evaluator for the use of ( iπ , Ri). The performance evaluator is in fact only for the use 

of Ri, because iπ  is now taken as a parameter in Module 2. A genetic algorithm is 

e solution space of the dual-fab 

by S 

proposed to solve the search problem—finding the ultimate decision of Ri.  

    In summary, th routing planning problem can be 

described = }_,_|,{( SetRRSetR iiii ∈∈πππ . The objective is to find an 

optimum ),( ii Rπ  from S, in terms of maximizing throughput subject to a target cycle 

time. Since S can be very huge, the problem is decom osed into two sub-problems. 

The first one is to find an optimum iπ a

p

. T king  as parameters, the second 

to find an optimum

* *
iπ

sub-problem proceeds  *
iR . 
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Chapter 5 Module 1－P Model and Search Algorithm 

   Obtaining the solution for Module 1 is through an iterative use of a LP program. 

We first describe the LP model and then present the iterative method—a binary-search 

algorithm.  

 

Indices 

i: index of product 

g : index of workstation in Fab_A 

h: index of workstation in Fab_B 

 

Parameters 

n: number of products 

iπ : cutoff point for defining the cross-fab routes of product i 

Π : [ ],  1i i nπΠ = ≤ ≤ , a vector for describing the cut-off points of all products 

Q : an estimated value for the total throughput of the two fabs (in lots)  

iP : percentage of product i in the product mix 

gC : available machine hours of workstation g in Fab_A 

hC : available machine hours of workstation h in Fab_B 

am : total number of workstations in Fab_A 

bm : total number of workstations in Fab_B 

a
igW : total processing time per lot required on workstation g, while product i is 

manufactured by route α  

c
igW  total processing time per lot required on workstation g, while product i is 

manufactured by route α β→  
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d
igW : total processing time per lot required on workstation g, while product i is 

manufactured by route β α→  

b
ihW : total processing time per lot required on workstation h, while product i is 

manufactured by route β  

c
ihW : total processing time per lot required on workstation h, while product i is 

manufactured by route α β→  

d
ihW  total processing time per lot required on workstation h, while product i is 

manufactured by route β α→  

 

Decision Variables 

ia : percentage of using route α  in producing product i  

ib : percentage of using route β  in producing product i 

ic : percentage of using route α β→  in producing product i 

id  percentage of using route β α→  in producing product i 

 

5.1 LP Model  

    The LP program is to compute a minimum number of cross-fab transportation for 

a particular --a decision for the route cutoff points, which is known before solving 

the LP problem. The objective function of the LP program is thus denoted by Z( ).  

Π

Π

    Min 
1

( ) ( )
n

i i i
i

Z Q P c d
=

Π = ⋅ ⋅ +∑          

s. t. 

          1                       (1)           1i i i ia b c d+ + + = i n≤ ≤

                       (2) 1
1

=∑
=

n

i
iP
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1
( )

n
a d c

i i ig i ig i ig g
i

Q P a W d W c W C
=

⋅ ⋅ ⋅ + ⋅ + ⋅ ≤∑   1 ag m≤ ≤     (3)                          

1
( )

n
b d c

i i ih i ih i ih
i

Q P b W d W c W C
=

⋅ ⋅ ⋅ + ⋅ + ⋅ ≤∑ h   1 bh m≤ ≤      (4)                          

                                                                                  

    The objective function is to minimize the number of cross-fab production. The 

rationale for defining this objective is that cross-fab production requires longer 

transportation time than within-fab production. Subject to a target cycle time, an 

attempt to minimize cross-fab production tends to increase throughput. Constraints (1) 

and (2) described the dependent relationships among the route ratios and product 

ratios. Constraints (3) and (4) ensure that the capacity used in each workstation should 

be lower than its available supply. 

5.2 Binary Search Algorithm 

The binary search algorithm is to find an optimum solution from a space. The 

space, denoted by { ∏ }, is the possible combinations of cutoff points for all products.  

The algorithm is an iterative process. In an iteration, each product has two 

possible cutoff points to select. Taking a product route as a line, the two cutoff points 

are respectively on the first and the third quartiles (Fig 2). By evenly cutting the route 

into two sections, each cutoff point is in the middle of a particular section. Of the two 

evenly divided sections, the one where a cutoff point stays is called the housing 

section of the point.  

Iteration 1 

Iteration 2 

Iteration 3 

Iteration n 
 

Fig 2 Process of the cutoff point 
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In an iteration, the size of the space { ∏ } is  if there are n products. By 

solving the LP program  times, we can obtain the best one--denoted by . For 

each product, defines a particular cutoff point, whose housing section is called the 

current

2n

2n *Π

*Π

λ -section of the product. Theλ -sections obtained in an iteration is the input 

of the next iteration. The binary search algorithm is summarized below. 

Algorithm Search _Cutoff_Points  

Initialization 

 For each product, take the whole route as itsλ -section. 

For iteration = 1 to N 

 Create the two cutoff points on the λ -section of each product 

 Solve LP programs to find *Π  

 Compute theλ -section for each product based on *Π  

End for 

Output the cutoff points for each product 
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Chapter 6 Module 2—Queueing and GA 

The problem to be solved in Module 2 can be stated as follows. Given a target 

cycle time ( ) and a cutoff point decision (0CT
1

* *[ ,..., ]nπ πΠ = ) obtained from Module  

1, we attempt to find an optimal route ratio decision 1[ ,... ]nR r r=  in order to 

maximize the total throughput of the two fabs subject that the corresponding cycle 

time is less than . 0CT

This problem is essentially a space search problem, with a solution space 

1{ } {[ ,... ] | ( , , , )}n i i i i iH R r r r a b c d= = = . A genetic algorithm is proposed to solve the 

problem. In the algorithm, the fitness (performance) of a solution R is evaluated by a 

queueing network model. We first introduce the queueing network model and proceed 

to the genetic algorithm.  

 

6.1 Queueing Network 

The queueing network model is an extension of the model developed by Connors 

et al. (1996). The I/O function of the model developed by Connor et al. (1996) can be 

briefly formulated as follow: ( , ,CT f TH R )= Π . That is, given a total throughput 

(TH), a route ratio decision (R), and a cutoff point decision (Π ), the model can 

compute the two fabs’ mean cycle time (CT). However, Connor et al. (1996) did not 

consider the effect of transportation on CT.  

We extended the application of their model based on two assumptions. First, we 

assume that the transportation path between any two stations is unique, where a 

station is either a workstation or a WIP storage buffer. Secondly, each transportation 

path between any two stations is modeled as a “conveyor machine” with only one unit 

of capacity. Such an extension makes the developed queueing model closer to the real 
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world. Likewise, the I/O function the extended queuing model can also be described 

as . ( , , )CT f TH R= Π

The objective function in Module 2 is to maximize throughput (TH) subject to a 

target cycle time (CT0). To evaluate the objective function, we used a bi-section 

search technique to find the total throughput (TH) for a particular route ratio (R); that 

is  where *
0( , , )TH f R CT= Π *Π denotes the cutoff point decision obtained in 

Module 1 and  is the target cycle time. The bi-section search technique denotes 

searching a value for TH, based on the function 

0CT

*( , ,CT f TH R )= Π  for a given R, in 

order to obtain ; and the search algorithm is just like that of the binary 

search for a particular point on a line segment. 

0CT CT=

 

6.2 Genetic Algorithm 

 The genetic algorithm (GA) is to identify an optimal solution *R  from the space 

S = {R}. As stated, the performance of R is obtainable by the enhanced queueing 

model. A possible solution R (or called a chromosome) is represented by a vector 

1[ ,... ]nR r r=  where ( , , , )i i i i ir a b c d= . We call  ir  a gene-segment and each of its 

element a gene, and the gene values are imposed by the following constraints: 

 and 0 .  1i i i ia b c d+ + + = , , , 1i i i ia b c d≤ ≤

 The GA is an iterative algorithm which can be briefly described as follows.  

Procedure GA 

 Step 1: Initialization  

 t = 0, Status = ‘Not-terminate’ 

 Randomly generate valid chromosomes to form a population PpN 0 

    Step 2: Genetic Search 

While (Status = ‘Not-Terminate’) do 
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 Use cross-over operator to create  new chromosomes  cN

 Use mutation operator to create  new chromosomes mN

 Form a pool by the union of Pt and the newly created chromosomes 

 t = t + 1, and select the best chromosomes from the pool to form PpN t 

 Check if termination condition is met; if yes, set Status = “Terminate”  

Endwhile 

Step 3: Output the best chromosome *R  in Pt

  

 The crossover operation is to create two new chromosomes (say, R3 and R4) from 

two existing ones (say, R1 and R2). Let each gene-segment i in R1 and R2 be 

respectively represented by 1ir  and 2ir . We proposed a one-point crossover 

operation (Binh & Lan 2007) on gene-segments 1ir  and 2ir  to create two new ones 

3ir  and 4ir , which in turn could yield two new chromosomes: 3 3[ ]iR r= , 

4 4[ ],  1iR r i= ≤ n≤ . 

 The one-point crossover operation on a gene-segment is briefly introduced. For 

two gene-segments (i.e., 1ir  and 2ir ), randomly choose a gene, swap their gene 

values, and modify another gene values in order to ensure a constraint satisfaction . 

Consider an example where the second gene is chosen for 1 1 1 1 1( , , , )i i i i ir a b c d=  and 

2 2 2 2 2( , , , )i i i i ir a b c d= . By the swap and modification operations, we would obtain 

3 1 2 1 1 2( , , ,1 )i i i i i i ir a b c a b c= − − 1−  and )---1,,,( 2122124 iiiiiii cbacbar � . 

 In the mutation operation, a new chromosome (say, R2).is created by an existing 

one (say, R1). The mutation algorithm creates R2 by modifying a particular 

gene-segment in R1. The modified gene-segment is randomly chosen. While being 
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selected, two of its genes are randomly chosen and their gene values are swapped.       

For example, if gene-segment  is chosen for modification; and the 2*i nd and 4th 

genes are chosen to swap for * 1 1 1 11
( , , , )i i i ii

r a b c d= , then * 1 1 1 12
( , , , )i i i ii

r a d c b= , which 

in turn yield a new chromosome * 12 11 2
[ ,.. ,... ]ni

R r r r=  from * 11 11 1
[ ,.. ,... ]ni

R r r r= . 

Two termination conditions are defined for the GA. First, the best solution in Pt 

has been no change for over a certain period (say, Tb iterations). Second, the 

population Pt has evolved over a certain iterations; that is, t has reached its predefined 

upper bound (Tu). 
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Chapter 7 Experiments

7.1. Benchmarks and Data 

By numeric experiments, we attempt to evaluate the effectiveness of the 

proposed method. Two other methods are used as benchmarks for comparison. The 

proposed method is designed as LP-GA, where LP denotes the linear program, GA 

denotes the genetic algorithm. The two benchmark methods are special cases of 

LP-GA. The first one is called M-GA, which denotes that the cutoff point of each route 

has been predetermined—just on the middle of the route. The second one is called 

N-GA, where denotes that cross-fab production is not allowed. Such a comparison is 

to tell how much benefit a dual-fab would obtain if the LP-GA method is used.  

In the dual-fab experiments, the data for machines and product routes are 

adapted from an HP-fab in literature ( Wein 1988). Of the two fabs, one involves 93 

machines and the other involves 72 machines. Being functionally identical, each fab 

involves 4 batch workstations and 21 series workstations. The MTBF (mean time 

between failure) and MTTR (mean time to repair) of each machine is available, 

exponentially distributed. Three types of products are produced. One product involves 

150 operations; the other two both involve 172 operations but are different in 

processing times. In implementing the GA, we set Tb = 1000, Tu = 30, P0 = 100, Pcr = 

0.8, and Pm = 0.1. 

 

7.2 Performance Comparison 

The three methods are compared in two scenarios, with product mixes RA = 

(3:2:5) and RB = (5:4:1) respectively. For each product mix, by the queueing model, 

we obtain a throughput level that will keep the two fabs in high utilization: Q

B

A = 128 

lots and QBB = 169 lots.  
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We compare the three methods from two perspectives. First, given a target 

throughput level, the mean cycle time of each method is compared. In the comparison, 

QA and QB are used as the target throughput levels. Second, given a target cycle time, 

we compare the throughput of each method. In the comparison, we set CT

B

0 =11081 

min. for RA and CT0 =11445 for RBB. 

The cutoff points of each route obtained by the LP-GA method are shown in 

Table 1, which indicates that the cutoff points suggested by the LP-GA are different 

from that of M-GA. 

Table 2 shows the comparison of mean cycle times, subject to a target throughput. 

The LP-GA outperforms the two benchmark methods. The cycle time of the LP-GA 

method is about 2-9% lower than that of M-GA, and 11-17% lower than that of N-GA. 

This implies that optimal planning of cross-fab production is positive in reducing 

cycle time. 

Table 3 shows the comparison of throughput, subject to a target cycle time. The 

LP-GA method also outperforms the two benchmark methods. The throughput of the 

LP-GA method is about 0.8-2.5% higher than that of M-GA, and about 3.2-5.0% 

higher than that of N-GA. This implies that optimal planning of cross-fab production 

is positive in increasing throughput. 

 

Table 1: Cutoff points obtained by the LP program 

 Product 1 Product 2 Product 3 

Total Step 

Number 
172 172 150 

RA 85th step 85th step 129th step 

RBB 84th step 84th step 78th step 
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Table 2: Comparison of mean cycle time 

 RA (QA = 128 (lots)) RB (QB = 169 (lots)) B

Algorithm CT (min)  Gaps (%) CT (min) Gaps (%) 

LP-GA 11,080 11.10% 11,639 17.30% 

M-GA 12,175 2.31% 12,811 8.98% 

N-GA 12,463 0% 14,075 0% 

 

Table 3: Comparison of throughput 

 RA (CT0=11081(min)) RB (CTB 0=11445(min)) 

Algorithm
Throughput

(lots) 

Gap 

(%) 

Throughput 

 (lots) 

Gap 

(%) 

LP-GA 128 3.23% 169 4.97% 

M-GA 125 0.81% 165 2.48% 

N-GA 124 0% 161 0% 

 

Figs. 3 and 4 reveal the relationship between cycle time and throughput for RA 

and RB respectively. The higher the throughput, the longer is the cycle time. The two 

figures also show that the higher the throughput, the larger is the performance gap. 

That is, the contribution of the LP-GA method becomes higher while it is applied in a 

high-demand scenario. 

B

 

 19



8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

70 80 90 100 110 120 123 124 125 128

Throughput

C
yc

le
 t

im
e LP-GA

M-GA

N-GA

(RA) 

 

Fig 3: Relationship between throughput and cycle time for product mix RA 
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Fig 4: Relationship between throughput and cycle time for product mix RB 
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Chapter 8 Conclusion

 This paper presents an approach to solve the route planning problem for a 

semiconductor dual-fab. In the problem, each product can be manufactured in either 

fab. And each product has four possible production routes, which are defined by a 

cutoff point. The route planning problem involves two decisions—determining the 

cutoff point and route ratio for each product—in order to maximize the throughput 

subject a cycle time constraint.  

 An LP-GA method is proposed to solve the route planning problem. We first use 

the LP module to make the cutoff point decisions, and proceed to use the GA module 

for making the decision of route ratio. The LP-GA method is compared with two 

benchmark methods by numerical experiments. Results show that the LP-GA method 

significantly outperforms the other methods.  

 Some extensions of this research are being considered. One is the extension of 

this approach to a multiple-fab production system—for example, three or more fabs 

shall share the capacity in production. The other is the extension to a scenario with 

higher flexibility in production routes—for example, each product could have two 

cutoff points and in turn have more than four routes. 
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