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Abstract. The bound states of a particle in a lens-shaped quantum dot with finite confinement potential
are obtained in the envelope function approximation. The quantum dot has circular base with radius a and
maximum cap height b, and the effective mass of the particle is considered different inside and outside the
dot. A 2D Fourier expansion is used in a semi-sphere domain with infinite walls which contains the geometry
of the original potential. Electron energies for different values of lens deformation b/a, lens radius a and
barrier height V, are calculated. In the very high confinement potential limit, the results for the infinite

barrier case are recovered.

PACS. 02.30.Nw Fourier analysis — 73.22.-f Electronic structure of nanoscale materials: clusters, nanopar-
ticles, nanotubes, and nanocrystals — 73.22.Dj Single particle states

1 Introduction

The carrier confinement within small regions such as quan-
tum wells [1], quantum wires [2] and quantum dots [3,4]
are of a great importance when in describing trans-
port phenomena, electrical and optical properties of these
“man-made” systems. Different geometries have been con-
sidered (pyramids [5-9], quantum disks [10], spherical
quantum dots [11-13], quantum lenses [14-19] and even
an arbitrary geometry [20]). Due to complex realistic ge-
ometries and boundary conditions to include the effects
of the surrounding media, it is not possible in general to
find analytical solutions using common standard proce-
dures. As a first approximation, impenetrable barriers are
often considered since it simplifies the mathematical prob-
lem. Nevertheless, the finite value of the potential barrier
could be a fundamental parameter when considering dif-
ferent external potentials or when including others phys-
ical effect, such as the presence of a hydrostatic pressure
in a quantum dot [21].

When including the finite barrier, different approaches
have been used. Bound states in rectangular cross-section
quantum wires as products of eigenstates of 1D problems
with a finite barrier in each direction were found in refer-
ence [22]. The energy levels are then corrected by the first-
order perturbation-theory. It was shown that the method
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is suitable for rectangles with sufficiently large linear di-
mensions. The same idea was previously applied in [23]
to calculate the electronic states in cylindrical quantum
dots of semiconductors. A 2D Fourier expansion has been
used in [24] to find the electronic states in InGaAs/InP
quantum well-wires structures and in self-assembled InAs
pyramidal quantum dots [25].

Likewise, previous theoretical studies in self-assembled
quantum dots with lens shape considered infinite wall po-
tential [26-28]. The aim of the present work is to develop
a model which allows the analytical calculations of the
electronic levels in self-assembled quantum dots with lens
shape including a finite barrier potential. The obtained
results are compared with those from considering infinite
barrier model and analysis is done establishing the cases
where the later represents a good approximation. The so-
lution of the problem is also found using numerical calcu-
lations for comparing with the analytical results. Finally,
some conclusion are outlined.

2 Model for finite potential

The eigenvalue problem of the Schrodinger equation in
a 3D lens shape with infinite barriers in the effective
mass approximation has been solved elsewhere [26]. In
our case, the problem for a finite barrier will be modeled
including a lens shape well potential with height V, in a
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Fig. 1. Transversal section of a 3D finite lens-well D;,
with barrier height V, and contour C2 inside an infinite
semispherical-well with contour Ci. Contour C7 and Cs> are
separated a distance equal or greater than A along the per-
pendicular axis.

hard-walls semi-spherical region as shown in Figure 1. The
semi-spherical region is divided in two regions, D+ with
potential V,, and region D;,, where it is zero. We will con-
sider a different value of effective mass for the particle
in each region. The solution of the problem given by the
lens with finite barrier in an infinite surrounding medium
can be obtained by minimizing the effect of the external
boundary C; over the wavefunction of the corresponding
energy level under study. This can be achieved by taking
a high enough value of the distance A. The equation for
the whole region D is given by:
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The analytical solution of equation (1) is sought in the
form of an expansion

v=30C ) (4)

where the set of functions {QZL-(O)} is a complete set of func-
tions in the 3D domain D given by the semi-sphere. Its
explicit representation can be found in [26], where a di-
agonalization procedure was implemented to obtain the
electron states. With such conditions, the functions ¥
satisfy the boundary condition of infinite barrier in the

contour C because the set of functions {Lpi(o)} does. On
the other hand, equation (1) and the corresponding so-
lution given by equation (4) are given in the whole do-
main D. It guarantees that the matching conditions at
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the contour Cs are also satisfied, but only at those points
where the derivative of the wavefunction is well-defined.
This does not occur at the corner and, generally speaking,
the problem is then not well-defined. Then, the obtained
eigenvalues constitute only an estimation of the real prob-
lem but this solution constitute a better estimation for the
eigenvalues when the finite barrier is included. This treat-
ment has been applied in [23] for a cylindrical domain and
in [29] for a rectangle, but not explicit analysis was done
in the fulfillment of the matching conditions between the
internal and the external domain.
Equation (1) can be rewritten as:

1
— V20 — o(r,0,)V <a(7~, 0 ¢)> v

+V(r,0,¢)0(r,0,0) ¥ = Ao(r,0,0)¥ (5)

where o(r,0,¢) = 1 and V(r,6,¢) = 0 in the internal
region Dy, and o(r, 0, ¢) = o = m,,/mi, and V(r, 0, ¢) =
V, = V,/E, in the external domain D,,;. The eigenvalue
is given now by A\ = E/E, where E, = h?/2m},R? is the
unit of energy.

From equations (5) and (4) it is obtained the matrix
representation of the problem

>0 {N6, — C(0.3) + AG.J) ~AB.7) =0 (6)

EO) are the corresponding eigenvalues of the set of

functions {QZL-(O)}. The matrix

oV <i) w}">>D (7)

is equal to zero because of the finite discontinuity of
o(r,0,), and

where \
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where ()p,, means an integration over the internal do-
main D;,,.

According to the axial symmetry, the Hilbert space
of the problem given by equation (6) is separated in dif-
ferent subspaces, each one characterized by a quantum
number m. The first five eigenvalues A for b/a = 0.51 as a
function of the external potential V, are shown in Figure 2.
Each one is labeled by a couple of indexes (N, m) mean-
ing the Nth energy level with axial quantum number m.
It is used o = m},,/mj, = 3.5 which is the ratio be-
tween the values of the effective masses in an InAs/GaAs

in
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Fig. 2. First five energy levels for a lens-shaped quantum dot
with b/a = 0.51 as a function of the external potential barrier
Vo in dimensionless quantities. The calculation is done taking
A/R = 0.3 (solid lines) and A/R = 0.1 (dotted lines). In both
cases it is used o = 3.5. Dashed lines represent the infinite
barrier case [26] while dash-dot-dot is the line where the energy
value is equal to the potential value.

quantum dot material [21]. It can be seen that, as the ex-
ternal potential increases, also increase the energy levels
approaching asymptotically to the corresponding values of
the infinite potential case which are shown horizontally in
dashed lines [26]. For a given value of the potential barrier,
the energy values for the lower levels are closer to the cor-
responding value taken the barrier as infinite than those
for higher levels, as expected. At the same time, as higher
the level, higher the percent of the wavefunction located
at region D,,; and stronger the influence of the artificial
boundary . This influence is also stronger for lower val-
ues of A/R. This effects can be seen in Figure 2 when
comparing the solid lines, calculated by using A/R = 0.3,
with the dotted lines, calculated by using A/R = 0.1 (only
for levels with m = 0). However, at those values of the po-
tential barrier where the solution is independent of the pa-
rameter A/R, the solution can be taken as independent of
the boundary C; and hence, as a good approximation for
the finite barrier case in an infinite surrounding medium.
Dash-dot-dot line represents the points where the energy
value is equal to the potential value.

In order to study a particular quantum dot material,
two different quantum lens configuration of InAs/GaAs
have been considered. In Figure 3 the first five electronic
levels are shown as a function of the lens radius, where a
500 x 500 matrix was used in the diagonalization proce-
dure. The material parameters used here for the calcula-
tion are the same as in [21].

In general, the values of the energy levels decrease for
increasing values of the radio. As shown in Figure 3a, for
b/a = 0.91 and according to the levels shown, the infinite
barrier model is a good approximation for radius of the or-
der of 20 nm or higher. Nevertheless, as seen in Figure 3b,
for lower values of b/a it is necessary to include the finite
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Fig. 3. First five electronic levels for an InAs/GaAs quan-
tum lens as a function of the lens radius. (a) b/a = 0.91,
(b) b/a = 0.51. The calculation is done taking A/R = 0.3
(solid lines). Results from the infinite barrier model are also
plotted for comparison (dotted lines). As a reference, the value
for the confinement potential used (V. = 0.531 eV) is shown by
dashed line in both panels. Filled dots correspond to numerical
calculations.

barrier effects to get better approximations of the energy
levels distribution for all the values of the radius shown.

As an intend of verifying the obtained results, nu-
merical calculations were carried out solving directly the
BenDaniel-Duke equation of the system, calculating the
eigenvalues by using the finite elements technique through
programs for Comsol application, as used in previous
works [30,31]. The corresponding results are shown by
filled dots in Figure 3, calculated with the same mate-
rial and geometrical parameters as those used in the ana-
lytical curves. Although qualitatively the behavior of the
analytical and numerical results are consistent, since the
quantitative point of view the numerically obtained val-
ues have always lower values than those represented by the
solid and the dotted lines. Furthermore, the tree models
coincide for higher enough values of the dot radius, but its
results become different when the radius decreases. The re-
sult obtained is mainly due to the presence of the frontier
(4 (at the analytical calculation) whose effects become im-
portant for smaller dots because of the increasing of the
energy values and correspondingly, the wavefunction has
higher percent outside the lens domain given by D, in
Figure 1. In the same way, the necessary basic truncation
introduce an error which becomes important for smaller
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dots and, as found in [26], the accuracy of the analytical
method requires bigger matrices for larger lens deforma-
tion (smaller values of b/a), which is in agreement with
the comparison of panels a) and b) from Figure 3.

3 Conclusions

In the present work the results from [26,27] have been
generalized to evaluate the electronic energies in self-
assembled quantum dots with lens shape geometry taking
into account the finite barrier height. The results obtained
by the present model was compared with the values ob-
tained when considering the potential barrier as infinite
and with a numerical calculation procedure. It was estab-
lished the range of values for the potential barrier, lens
deformation b/a and lens radius a where all the models
produce similar results. It was also argue the reasons for
its different energy values obtained for smaller dots and
for stronger lens deformations. The present model can be
applied to study analytically the electronic properties of
a self-assembled quantum dots with lens shape under the
presence of external potentials where it could be impor-
tant to consider the actual values of the finite barrier.

The authors thank many valuable discussions with Dr. C.
Trallero-Giner.
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