
在超長指令集程式壓縮上，根據利益評估建造分離式字典 

Building partitioned dictionary with benefit estimation for 

VLIW code compression 

研 究 生：楊 佳 原   Student : Jia-Yuan Yang 

指導教授：鍾 崇 斌 博士  Advisor : Dr. Chung-Ping Chung 

 

國 立 交 通 大 學 

資 訊 工 程 學 系 

碩 士 論 文 

 

A Thesis 

Submitted to Department of  

Computer Science and Information Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master 

In 

Computer Science and Information Engineering 

June 2004 

Hsinchu, Taiwan, Republic of China 

 

中華民國 九十三 年 六 月 

 i



 

在超長指令集程式壓縮上，根據利益評估建造分離式

字典 

 

學生：楊佳原   指導教授：鍾崇斌  教授 

 

國立交通大學資訊工程學系碩士班 

摘要 

在處理器上使用 VLIW 來提昇效能是個趨勢。但在可攜式系統上，程式總是

希望越小越好。VLIW 鬆散的程式結構對記憶體的使用而言是不好的。程式記憶

體的保存資料和存取，占了超過 50%的耗電，而壓縮程式碼不但可以減低處理器

對程式記憶體的需求，也能減少處理器和記憶體之間的傳送，因此希望設計一個

方法減少大幅減小程式碼的大小。 

在本篇論文中，引用操作碼（ Opcode）和運算元（Operand）序列分開建立

字典的想法。為了善用 VLIW 的重複性和規則性，我們採用壓縮程式碼附加長度

欄位，一次壓縮數道指令。依據我們訂定的利潤評估公式，挑選出最佳的一群

VLIW 序列放入字典中。操作碼和運算元字典的建造先後順序和空間壓力，最長

序列的限制也是我們討論的重點。 

 實驗結果顯示，在新的序列排列方法下可以達到 42%的壓縮率。 

 ii



 

Building partitioned dictionary with benefit estimation 

for VLIW code compression 
 

Student：Jia-Yuan Yang   Advisor：Dr. Chung-Ping Chung 
 

Institute of Computer Science and Information Engineering 
National Chiao-Tung University 

ABSTRACT 
It is a trend that people adopt VLIW to enhance processor performance. When it 

comes to embedded software, smaller is better. Decreasing code size to fit into cost- 
or space-constrained memory systems is important business these days. On VLIW 
embedded system, the power consumption of code memory is about 50%. By code 
compression, code size and traffic between memory and CPU could be reduced. So 
we hope to design an approach for VLIW code compression to reduce code size 
greatly. 

In this thesis, we adopt partitioned dictionary and codeword with length slot. 
Partitioned dictionary has opcode and operand dictionaries and has more chance to 
reuse dictionary entry. Codeword with length slot can reduce the number of 
codewords and let dictionary entry could be reused by different sequences. We mainly 
present a heuristic algorithm for building Dictionary. Depending on our benefit 
equation, we can judge which VLIW sequences are beneficial. Also, we discuss the 
relation between opcode and operand, the effect of max compress length and combine 
relation. 

Experimental results show that 40.2% compression ratio can be achieved on 
average.  

 iii



 

Chapter 1 Introduction ...................................................................................................1 

1.1 VLIW .....................................................................................................1 

1.2 Motivation........................................................................................................2 

1.3 Objective ................................................................................................3 

1.4 Organization of the Thesis .....................................................................3 

Chapter 2 Background ...................................................................................................5 

2.1 VLIW code compression .................................................................................5 

2.2 Dictionary-based Method ................................................................................6 

2.3 Partitioned Dictionary......................................................................................8 

2.3 Codeword with length slot ...................................................................11 

2.4 Summary........................................................................................................12 

Chapter 3 Design..........................................................................................................14 

Given Environment......................................................................................14 

Base idea ......................................................................................................15 

3.1 Build the dictionaries .....................................................................................16 

3.1.1 How to judge a sequence’s benefit......................................................17 

3.1.2 Build Dictionary flow .........................................................................19 

3.1.2.1 Create candidate sequence set..........................................................21 

3.1.2.2.1 Choose the benefit one into chosen set .........................................21 

3.1.2.2.2 Combine relation...........................................................................22 

3.1.2.3 Stop chosen set increasing ...............................................................22 

3.1.2.4 Re-count and remove impossible sequence .....................................23 

3.2 Replacing VLIW line sequence with codeword ............................................24 

3.2.1 How to replace sequence with codeword............................................24 

3.2.2 Determine the Length Bits ..................................................................26 

 iv



3.2.3 Codeword format ................................................................................26 

3.3 Place codeword into memory ........................................................................27 

Chapter 4 Simulation ...................................................................................................29 

4. Platform and Benchmark .................................................................................29 

4.1 The effect of Max compress length ...............................................................30 

4.2 Compare with optimal situation.....................................................................31 

4.3 The effect of OP and OPD dictionary with different sizes ............................31 

Chapter 5 Conclusion...................................................................................................34 

REFERENCES ............................................................................................................36 

 

 v



 

Figure 1.1 we can see IA64 NOP ratio on this picture. It is about 20%~30% NOP 

existed in IA64 code. .....................................................................................................2 

Figure 2-1: Dictionary-base compression example. ......................................................7 

Figure 2-4 Compression using Operand factorization .................................................10 

Figure 2-5 Instruction fetch path in the proposed code compression scheme for VLIW 

processor-based systems ..............................................................................................10 

Figure 2-6 Dictionary entries with sequential access ability .......................................12 

Figure 2-7 Dictionary entries can be inquired by different sequences ........................12 

Figure:3-2 After defining benefit, sequences are chosen in benefit order one by one.17 

Figure 3-3: Benefit equation. .......................................................................................18 

Figure 3-4 The flow of choosing the most beneficial sequences.................................20 

Figure 3-5 Flow of Choose algorithm..........................................................................20 

Figure 3-6: Create candidate sequences.......................................................................21 

Figure 3-8: What is combine relation ..........................................................................22 

Figure 3-10 Re-count ...................................................................................................23 

Figure 3-10 Replace VLIW line sequence with OP&OPD index and length ..............24 

Figure 3-11 How to replace lines depending on Mark.................................................25 

Figure 4-1 VLIW format ADSP-21535 DSP...............................................................29 

Figure 4-2: The effect of Max compress length...........................................................30 

Figure 4-3 Compare with optimal situation .................................................................31 

Figure 4-4 OP and OPD bit pattern program cover ratio.............................................32 

Figure 4-5 Compared with giving enough dictionary size, it has better cut some 

dictionary size to reduce codeword length...................................................................33 

 

 vi



 

Chapter 1 Introduction 

It is a trend that people adopt VLIW to enhance DSP and processor performance. 

When it comes to embedded software, smaller is better. Shrinking code size to fit into 

cost- or space-constrained memory systems is important business these days. By code 

compression, code memory size and traffic between memory and CPU could be 

reduced. 

 

1.1 VLIW  
In VLIW (Very long Instruction Word) architectures where a high-bandwidth 

instruction prefetch mechanism is required to supply multiple operations per cycle. 

Just few embedded system need to deal with complex computation. But modern 

embedded systems, such as network terminals or PDAs, consist of simple WWW 

browsers or some offices tools. The ability of computation is needed more and more 

on the embedded system. VLIW and super-scalar are two methods that are usually 

used to enhance performance. But VLIW is well suit to embedded system.  

VLIW processor is developed over twenty years, but the improvement of VLIW 

compiler falls behind the improvement of VLIW hardware. Recently VLIW compiler 

still can’t generate good density code. A lot of no operation instructions (NOP) exist 

in the code and some instructions, which could be parallel-execution don’t be fount 

out. Writing tight code is one thing, but a processor's instruction set affects memory 

footprints as well. No amount of clever tweaking of C source code will make up for a 

 1



chip that has lousy code density.  

To solve these problems, some now architectures are brought up, like that 

HP-Intel IA64 and TI C6x series. But they just solve a little part of problem. 

Generally there are about 40% NOP in TI C6x series code and 20% in IA64 code [1].  

 

Figure 1.1 we can see IA64 NOP ratio on this picture. It is about 20%~30% NOP 

existed in IA64 code. 

 

1.2 Motivation 
 

Shrinking code size to fit into cost- or space-constrained memory systems is 

important business these days. On VLIW embedded system, the power consumption 

of code memory is about 50%. It's not uncommon to spend more money on memory 

than on the microprocessor, so choosing a processor that's thrifty with memory can 

pay off. Thus, to reduce code size by compressing VLIW code is important for 

reducing system code memory size. Furthermore, to compress code offers the same or 

higher instruction fetching bandwidth by using less bus width and reduces power 

 2



consumption in advance. So it will reduce power consumption greatly by reducing 

code memory size and memory access.  

When compiling, VLIW compiler usually generates RISC code first. Then, 

depending on parallel rules, some instruction sequences will be combined to form 

VLIW line sequence. Some VLIW code optimization like loop unroll will repeat 

VLIW line sequences to enhance performance. Thus, the repetition of VLIW sequence 

is high. We could take this feature to reduce code size. 

 

1.3  Objective 
 

Design an approach for VLIW code compression to reduce code size to reduce 

data traffic between memory and CPU and memory size. 

Replacing the most frequent sequences with smaller codeword achieves 

compression for a program. Dictionary-based code compression can be an instruction 

format dependence method that can utilize the repetition and regularity of code more 

efficiently. By compressing code, we hope to reduce data traffic between Memory and 

CPU, Memory size decrease and core size increase as little as possible. 

 

1.4 Organization of the Thesis 
 

 This thesis is divided as follows. Chapter 2 discusses the factor in VLIW and 

dictionary-based code compression. In chapter 3 we describe our code compression 

algorithm based on Chapter2 code compression method. The experimental 

environment and benchmark suite are described in Chapter 4. Our experimental 

results and relative analysis are also presented in chapter 4. Then, we summarize our 

 3



conclusions and future works in Chapter 5. 

 4



 

Chapter 2 
Background 

We introduce dictionary-based code compression in this Chapter. First, we 

introduce what is dictionary-based. Replacing the most frequent sequences with 

smaller codeword achieves code compression. Then partitioned dictionary-based 

method is well done in the VLIW code compression. It divide dictionary into two, one 

for opcode dictionary and the other for operand dictionary. In order to take advantage 

of repetitions of VLIW line sequences, dictionary entry with sequential access ability 

is adopted. 

 

2.1 VLIW code compression 
Variable-to-fixed (V2F) VLIW code compression [6] is a VLIW code 

compression scheme that use variable-to-fixed (V2F) length coding. It also proposes 

an instruction bus encoding scheme, which can electively reduce the bus power 

consumption. It shows that the compression ratios using memoryless V2F coding for 

IA-64 and TMS320C6x are around 72.7% and 82.5% respectively. Markov V2F 

coding can achieve better compression ratio up to 56% and 70% for IA-64 and 

TMS320C6x respectively. The length of codeword on V2F VLIW code compression 

is still various. Decompressing one VLIW line in one cycle can not be ensured. If we 

want to speedup its decompression, more ROM and decompressing logic is needed.  

 5



Modern VLIW ISAs adapt a VLES (various length execution set) scheme to 

achieve high code density. But this size of fetch bundle on IA64 or TI series are fixed, 

and it means dictionary-based method is still flexible to modern VLIW code 

compression. But convention Dictionary-based code compression scheme on RISC 

machines are still needed some changes to suit to VLIW compression like adding 

extra dictionary output port.  

Considered compression ratio and decompress architecture, V2F isn’t on an 

advantageous position. And fetch bundle which is fixed length will be various after 

V2F. If V2F take instruction group as its compressing element, the existence of 

bundle is not needed and we need to redesign whole instruction set. Our research is 

the code compression application using dictionary-based scheme. 

 

2.2 Dictionary-based Method 
 

Dictionary-based compression methods attempt to find out common sequences 

of characters and replace them with a single codeword. Codeword is a basic element 

of compressed code. It includes Tag (represent compressed code or non-compressed 

code), Index (represent which dictionary entry is quarried) and else. To improving 

quarried frequency of entry is the most important thing. But not whole program will 

be compressed; some programs which just appear once are no need to be compressed. 

The reduction of code size is achieved if the code sequence in the dictionary 

appears more than once and can be replaced by a codeword that is smaller than the 

size of this code sequence. 

 

 6



Addi r1, r6, 1#03
…..

Sub r4,r5,r6 …..

Addi r7 ,r9,4 ……

Entry

Dictionary

#01

#02

Addi r1, r6, 1#03
…..

Sub r4,r5,r6 …..

Addi r7 ,r9,4 ……

Entry

Dictionary

#01

#02

….

Codeword #01

Codeword #01

…..

Codeword #02

…

Codeword #03

….

Codeword #01

Codeword #01

…..

Codeword #02

…

Codeword #03

….

Addi r7 ,r9,4 Subi……

Addi r1, r6, 1 Subi …

….

Sub r4,r5,r6  NOP …..

Addi r7 ,r9,4 Subi ……

….

….

Addi r7 ,r9,4 Subi……

Addi r1, r6, 1 Subi …

….

Sub r4,r5,r6  NOP …..

Addi r7 ,r9,4 Subi ……

….

 

Figure 2-1: Dictionary-base compression example.  

In Figure left part is program before compressing. If right dictionary have this bit 

pattern, we can replace code with codeword which has dictionary entry index. Some 

codes which is the part of (…..) cann’t be inquired by dictionary. These codes will not 

be compressed and still exist in program in original type or add some tag to present 

un-compressed state.  

 

Dictionary decompression uses a codeword as an index into the dictionary table, 

and then inserts the dictionary entry into the decompressed code sequence. If 

codeword are aligned with machine words, the dictionary lookup is a constant time 

operation. Sometimes, in order to get more compression space, use Huffman encoding 

and MPEG-2 VLC encoding to encode index, and variable length index is produced. 

The general design for a compressed program processor is given in Figure  

 

Compressed
Instruction 

Memory
(usually ROM)

Dictionary

CPU Core

Codeword 
or

Instruction Offset and Length

Uncompressed 
instruction

Dictionary Index Logic
(convert codeword to 

dictionary offset and length)

 

Figure 2-2 Compressed program processor  

 7



 

Lefurgy et al.[8] proposed a dictionary-based compression method, which stores 

a copy of the whole 32-bit instruction sequence, which appears frequently in the 

program, into the dictionary and replaces the occurrences of the sequence with shorter 

(fixed or variable-length) codeword. The average compression ratios of 61%, 66%, 

and 74% were reported for the PowerPC, ARM, and i386 processors respectively. 

Wolfe et al. proposed a Huffman-encoding compression method in Compressed Code 

RISC Processor (CCRP). Each 32-byte cache line is compressed into smaller aligned 

bytes or words.  

The compressed code size will have three parts as follows:  

1. Compressed size: After compression, most original program will be replaced 

by codeword and some program which don’t be compressed: Not all code 

can be compressed. So compressed size includes codeword size and 

un-compressed code size. 

2. Dictionary Size: We need dictionary to achieve compress code 

3.  According above, the estimate factor is: 

Compression ratio = Compressed Size +Dictionary size / Original Size 

Compressed Size = Codes which could not be compressed + codeword size 

 2.3 Partitioned Dictionary 

Improving Dictionary-Based Code Compression in VLIW Architectures 

[Sang-Joon NAM 1999][7], which divides one VLIW line into two groups, one for 

opcode group and the other for operand group In Figure two indexes are used to 

indicate different dictionary. Frequent-used VLIW lines are extracted from the 

original code to be mapped into two dictionaries, an opcode dictionary and an operand 

dictionary. An average code compression ratio is 63%. In program, OP[opcode] or 

 8



OPD[operand] part have more repetition opportunities than whole VLIW line. Maybe 

we can proceed to find out other way to split dictionary but this paper shows OP and 

OPD is a good way to split. 

Their algorithm has 2 steps as follows. 

1. Building entries of two dictionaries 

Building a dictionary that can achieve maximum compression is known as 

an NP-complete problem. This code compression scheme replaces an instruction 

word by an opcode sequence and an operand sequence, and limits their total 

bit-width to be the same as that normal operation. Thus, the maximum 

compression problem is changed from NP-complete problem to a simple greedy 

one. 

2. Replacing instruction words with the opcode dictionary index and operand 

dictionary index 

The occurrence of each opcode and operand in the entry of two dictionaries is 

simply represented by fixed length opcode index and operand index. Specifically, the 

total bit width as required for the opcode index and operand index is made equal to 

that of an uncompressed operation in order to align the compressed VLIW line with 

the cache boundary. This can result in worse compression than a variable-length 

opcode index and operand index encoding, but makes instruction-fetching and 

decoding mechanism simple and fast. In general, variable-length encoding methods 

such as Huffman encoding are expensive to decode.  

 

 9



…...

Sub Addi B   NOP

Addi Sub Ld And 

OP

Opcode dictionary

#01

#02

index

…...

Sub Addi B   NOP

Addi Sub Ld And 

OP

Opcode dictionary

#01

#02

index

R7,r9,4,r3,r4,r6,r5,0(r1),r11,r10,r9#03

R4,r5,r6,r1,r1,1,label 0, NOP

R2,r10,1, r3,r4,r6,r5,0(r1),r11,r10,r9

Entry (Size : OPD)

Operand dictionary

#01

#02

index

R7,r9,4,r3,r4,r6,r5,0(r1),r11,r10,r9#03

R4,r5,r6,r1,r1,1,label 0, NOP

R2,r10,1, r3,r4,r6,r5,0(r1),r11,r10,r9

Entry (Size : OPD)

Operand dictionary

#01

#02

index

Codeword

….

Codeword

Codeword

Codeword

….

Codeword

Codeword

VLIW Compressed code

OP  Index #1

OPD Index #3

 

Figure 2-4 Compression using Operand factorization 

 In figure 2-4, one VLIW line is replaced by one codeword which has two indexes. 

In partitioned-based dictionary code compression, each codeword must be added one 

extra index. But in program, we have few chances to find out two totally the same 

VLIW lines. Using program character, the part of opcode or operand in the program is 

similar to each other; we can get more chance to reuse dictionary entries. 

 

 
Figure 2-5 Instruction fetch path in the proposed code compression scheme for VLIW 

processor-based systems 

 Compressed program include compressed code and un-compressed code. When 

decompressing, we will inquire dictionary to decode codeword which is a shorter bit 

string to present compressed code. If un-compressed code is fetched, it will take the 

 10



bypass to enter processor directly. 

 

2.3 Codeword with length slot 
 

In Figure length slot is added to codeword. We adopt the dictionary to implement 

multiple-length common sequence. Sequences can start at any entry of dictionary and 

end at any following entry. The codeword is used as an index into the dictionary entry 

originally. But we give the ability to access dictionary with multiple entries. Length 

slot is added to codeword. According to length slot, Codeword can access any entry 

and its followings sequentially. A codeword takes two arguments: index and length. 

During decompression, the decompressor jumps to the point in the dictionary 

indicated by index and fetches length opcode or operands, and at next cycle 

decompressor would depend on length slot to access next codeword or increase index 

automatically. 

When compiling, VLIW compiler usually generates RISC code first. Then, 

depending on parallel rules, some instruction sequences will be combined to form 

VLIW line sequence. Some VLIW code optimization like loop unroll will repeat 

VLIW line sequences to enhance performance. Thus, the repetition of VLIW sequence 

is high. In order to use the advantage, we take dictionary entry with sequential ability. 

Several sequential VLIW lines could be just compressed by one codeword. 

By this way, the sum of codeword can be reduced. 

Addi r7 ,r9,4 Sub r3,r4,r6 Ld r5,0(r1) ….#003

NOP Addi r1,r1,1 NOP NOP#004

Sub r4,r5,r6 Addi r1,r1,1 B label 0 NOP

Addi r2 ,r10,1 Sub r3,r4,r6 Ld r5,0(r1)…

Entry (Size : One VLIW line ) 

Dictionary

#001

#002

index

Addi r7 ,r9,4 Sub r3,r4,r6 Ld r5,0(r1) ….#003

NOP Addi r1,r1,1 NOP NOP#004

Sub r4,r5,r6 Addi r1,r1,1 B label 0 NOP

Addi r2 ,r10,1 Sub r3,r4,r6 Ld r5,0(r1)…

Entry (Size : One VLIW line ) 

Dictionary

#001

#002

index

…..

Codeword

Codeword

…..

Codeword

Codeword

Compressed code

Index # 1

Length 3 3

 

 11



Figure 2-6 Dictionary entries with sequential access ability 

Dictionary

F

D

C

B

A

F

D

C

B

A

Codeword 1Codeword 1
Index # 1

Length 4

Codeword 2Codeword 2
Index # 3

Length 3

4

3

B

F

D

C

D

C

A

B

F

D

C

D

C

A

4Sequence : ABCD

Sequence : CDF

Dictionary

3

 

Figure 2-7 Dictionary entries can be inquired by different sequences 

 

Sequence can start at any entry in the dictionary. Sequence can end at any entry 

after start entry in the dictionary. Dictionary entry could be used efficiently. That can 

reduce repetition entry as possible. Small sequences can combine to a large one and it 

will be more beneficial.  

 

 

 
2.4 Summary 
 

Dictionary-based is an instruction format dependence method that can utilize the 

repetition and regularity of code more efficiently. To increase the dictionary entry 

quarried frequency, we take improving dictionary-based code compression. To take 

advantage of VLIW sequence, we let dictionary entry with sequential ability. We 

adopt partition dictionary to increase repetition of dictionary entry. We could have 

more opportunity to reuse entry, but extra index is needed. Dictionary entry with 

sequential ability could take advantage of frequency-used sequences. Several VLIW 

lines just need one codeword to represent. It reduces the sum of codeword and 

 12



dictionary entry could be used efficiently. But length slot is needed. Most research just 

take partial advantage: use greedy algorithm to find the most frequency sequences and 

sequentially put them into dictionary. We hope to take more advantage of this. 

 13



 

Chapter 3 Design 

We mainly present a heuristic algorithm for building Dictionaries. Goal of 

building dictionaries is present dictionaries for compression ratio. By benefit equation, 

we just allow most beneficial sequences exist in the dictionary. By combination, 

dictionary entry can be covered by different sequences to reduce repetition entry as 

possible. During building dictionary, compressed sequence in program is decided.  

 

Given Environment  
We have OP and OPD dictionaries, and they have more chance to be inquired in 

the same size. It is low frequency that we can find two the same VLIW lines in the 

program. But separating one VLIW line into OP and OPD can take well use of 

dictionary entry. Compared with one dictionary, two dictionaries cost more space and 

logic but it gets worthy compression ratio. 

We also adopt length slot is added to Codeword. It is commonly replacing 

compressing multiple with one codeword. Reduce the Number of codeword and 

Dictionary entry can be reused by different sequences.  

For decoding efficiently, OP dictionary entry size is full OP of one VLIW line 

and the same as OPD. We add decompressor to decode codeword, and some 

performance-constrain must keep. We hope that the minimum ability of decompressor 

is to decode one codeword per cycle. One dictionary port can output one dictionary 

entry per cycle. If one VLIW line is separated into two parts and both parts are placed 

 14



in the same dictionary, two output ports of dictionary are needed. We don’t assume 

dictionary hardware. Dictionary may be placed in the processor, memory, or some 

special hardware. So we don’t how many output ports which can supply. From 

conservative view, we assume that one OP dictionary entry size is total OP of one 

VLIW line. A sequence which length is two means this sequence has full OP or OPD 

of two VLIW line. 

 

Base idea 
The key idea of the building algorithm is to select the most frequent sequences, 

which should be inserted into the dictionary, and reduce redundancy as possible. 

Our goal is to build an efficient dictionary. An efficient dictionary could use each 

dictionary entry as well as possible. Partitioned dictionary-based is used and it is well 

done on many compression methods. Depending on the high frequency of VLIW line 

sequence, we want sequences can start at any entry of dictionary and end at any 

following entry. 

The task of determining an optimal dictionary for a given text is known to be an 

NP-complete in the size of the text. However, many heuristics have sprung up that 

find near optimal solutions to the problem, and most are quite similar. The modified 

algorithm proceeds as follows. 

We have OP and OPD dictionaries, and compression ratio is affected by both. 

When building dictionary, how to compress program will be decided. 1. We build one 

of each first and mark program which could be inquired in this dictionary. 2. 

Depending on marked program, we build another one dictionary. 3. After building 

dictionary, we compress program depending on mark. Some un-marked program may 

have change to be compressed lucky. 

 15



 

3.1 Build the dictionaries 
In Figure we separate all VLIW lines sequences into opcode sequences and 

operand sequences. And build each one of OP or OPD dictionaries first. OPD 

dictionary pressure is always bigger than OP dictionary. In ADSP-21535 DSP, about 

6.7~10.5% OP bit pattern dominate all program Ops. About 15.2~21.7% OPD bit 

pattern dominate all program OPDs. Build one dictionary first, and mark 

inquired-able sequences in the program. Another dictionary is built depending on 

marked program. Which dictionary should be built first will be discussed in Chapter 4. 

Now if we build OP dictionary first, we have an equation to judge a sequence is 

beneficial or not. After defining benefit, sequences are chosen in benefit order one by 

one.  

FopdCop
EopdBop
DopdAop

FopdCop
EopdBop
DopdAop

Cop
Bop
Aop

Cop
Bop
Aop

Copd
Bopd
Aopd

Copd
Bopd
Aopd

Fopd
Eopd

Dopd

Fopd
Eopd

Dopd

Separate 

VLIW line Sequences Opcode sequence Operand sequence

CopdCop
BopdBop
AopdAop

CopdCop
BopdBop
AopdAop

 

Figure 3-1 Separate VLIW line sequence. 

 16



Now we choose some sticks to 
make a new one

23

45
32

26

23.5

13

Sequences look likes sticks 
and each have different color 
combination and value

Build 
Dictionary 

…..

 

Figure:3-2 After defining benefit, sequences are chosen in benefit order one by one. 

 

3.1.1 How to judge a sequence’s benefit 
We will use a benefit function to judge a sequence which should be inserted into 

dictionary or not. Benefit is that if the sequence is inserted into dictionary, how much 

memory requirement per dictionary entry which represents the sequence could be 

reduced.  

First, we calculate how much memory requirement could be reduced by the 

Sequence. If it is an OP sequence, we just take care about OP in the program. 

Reduce-able memory requirement by the sequence is Size of OP program inquired by 

the one–Size of index and offset which present those OP program after 

compressing–Size of sequence. If another dictionary is built, we just calculate the 

program which is marked. OPD Benefit is 

( )  CostDictionarysizerdOPD Codewoe sizeed sequencOPD inquir
Occurence

−−∑=   
 

 

Then, in order to judge benefit between different lengths of sequences, we must 

take sequence length into consideration. So we add sequence length as denominator to 

calculate how much memory requirement can be reduced at per sequence length. But 

 17



in our dictionary, dictionary entry can be cover by different sequences. If partial of 

sequence are existed in the dictionary and can be reuse by this sequence, the benefit 

denominator of this sequence is just extra needed dictionary size. Benefit ratio is  

( )

 CostDictionary

y Cost Dictionarrd sizeOPD Codewoe sizeed sequencOPD inquir
Occurence

−−

=
∑  

 

So there will exists OP sequence S in the dictionary, sequence S’ benefit = (Size 

of OP program inquired by the one–Size of index and offset which present those OP 

program after compressing–Size of sequence) / extra needed dictionary size. 

C

B

(AB)

(BC)

DIC Size

A

(ABC)

C

B

(AB)

(BC)

DIC Size

A

(ABC)

B

C

C

B

A

A

B

B

C

C

B

A

A

B

Compressed 

program program after 
compressing

Original  
program size

Codeword size 

Dictionary 
Cost

Sequence size

means the effect of 
previous dictionary

Inquired 
sequence size

Inquired 
sequence size

…

Figure 3-3: Benefit equation. 

 Reduce-able memory requirement: If the sequence S exists in the dictionary, the 

size of program which could be inquired by dictionary entry is reduce-able. If 

sequence S is ABC, reduce-able program size is the sum of total A, B and C in the OP 

part of program. This value shows that Max reduce-able memory requirement could 

be got by this sequence. 

Codeword size: It is that how much codeword size is needed to represent 

reduce-able program. If three dictionary entries A, B, C, exist in the dictionary and are 

not placed sequentially, it would need three codeword to represent sequence ABC in 

the program. But if three VLIW lines are placed sequentially, we just need one 

 18



codeword to represent ABC. Therefore, the number of sequences and its sub-sequence 

will affect the sum of codeword.  

Sequence length: It means how many VLIW lines is presented by this sequence. 

Long sequence has more chance to replace more sequence in the program, but it takes 

more dictionary size. To represent this situation, benefit must divide sequence length 

to generate correct value. 

Benefit example is as follow: 

f(x) is the repetition of length x. If the opcode sequence is ABCD, f(3) is the 

number of ABC and BCD in the program. We assume that f(4) = 2, f(3) =2, f(2)=0, 

f(1)=0, length= 4. So (Reduce-able Program size – Codeword size) = 

Opcode size of one line *( f(4)*4 + f(3)*3 +f(2)*2+f(1)*1) – one codeword size * 

( f(4) + f(3) +f(2) +f(1)). Then that value which is divided by sequence length is 

benefit of sequence ABCD. 

 

3.1.2 Build Dictionary flow 
 Now, we have benefit equation to judge sequence. “Candidate set”: sequences in 

candidate set have changes to enter chosen set. “Chosen set”: sequences in chosen set 

will load into the dictionary. 

 

 19



Candidate 
set

Chosen 
Set

Dictionary

3.stop chosen  
set increasing?

No

Yes

2.2 Check the 
combination 
relation

4.Re-count some sequences’
benefit and remove some 
impossible sequences

1.Create 
candidate 
set

2.1 Choosing the 
beneficial one 

Sequence set

Action

One sequence

Judge

Load chosen 
to dictionary

2.3 add it into 
Chosen set

 

Figure 3-4 The flow of choosing the most beneficial sequences 

2.1 Select Most Beneficial Sequence (MBS) from 
Candidate set 

3.Dictionary size is enough or needed sequence is fully 
chosen

2.2 Insert MBS into Chosen set
Check combine relation between MBS and the 
sequences in the Chosen Set and Recursive combine

4. Remove MBS and its sub-sequence from 
candidate set and the benefit of Some candidate 
sequences should be re-count

Yes, 
over

No

1.Count all possible sequences’ benefit and create 
candidate set 

 
Figure 3-5 Flow of Choose algorithm 

 

 20



3.1.2.1 Create candidate sequence set  

Original program

15/4

4

9/24

5
3

6

6
6

6

….
Candidate sequence set 

Just pick up 
possible 
sequences

 
Figure 3-6: Create candidate sequences 

 If this dictionary is built first, we try all possible combination. If one 

dictionary is built, other one’s candidate set just consider program which is marked by 

previous dictionary. The Goal of candidate set is reduce computing time. We remove 

sequences which don’t be considered, like sequence’s benefit is smaller than 0.We 

also limit Max candidate sequence length. It is easier to simulate and we will test 

length from 1 to 8. 

 

3.1.2.2.1 Choose the benefit one into chosen set 

15/4

4

9/2

4

5

3

6

6

7

5.2

….

Candidate sequence set 

2.1 Choose the most 
beneficial one

7

Chosen set

6

 

 21



Figure 3-7: Choose a beneficial one from candidate set 

 

3.1.2.2.2 Combine relation  
 When one sequence is inserted into chosen set, it is a problem of repetition bit 

pattern. To avoid repetitions of bit pattern, we need combining sequences. By 

combining, the repetition could be reduced as possible. In dictionary, sequence ABC 

and BCD could be replaced by just ABCD (size=4), not ABC and BCD (size=6) 

 

Sequence 
in chosen 
set

D

C

B

A

D

C

B

A

C

B

A

C

B

A

D

C

B

D

C

B

New sequence 
in Chosen Set 

Combine-able Cannot combine

The one Sequence 
in chosen 
set

C

B

A

C

B

A

C

B

D

C

B

D

The one 

 

Figure 3-8: What is combine relation  

If a new chosen sequence is created, the one will check combine relation with 

others sequences in chosen set until no possibility of combining. 

Chosen set A Chosen set B

+

1st 
Combine

Chosen set C

2nd 
Combine

 

Figure 3-9 Recursive combine  

3.1.2.3 Stop chosen set increasing 
 After combining, we check candidate and chosen sets’ size. If chosen set’s size 

arriving limited size or candidate set is empty, load chosen sequences into dictionary 

 22



in high benefit order. This is the last step to build dictionary. Else, re-count some 

sequences’ benefit and repeat previous actions. If index has 8 bits, it means available 

dictionary size is 256 basic dictionary entry sizes. Sometimes we just need 200 entries, 

and strongly filling dictionary with 256 entries would cause adverse effects on 

compression ratio. By benefit, we can avoid this problem. 

3.1.2.4 Re-count and remove impossible 

sequence  
 After inserting one sequence into Chosen Set, some sequences’ benefit are not 

accurate. Ex: We suppose that BC is chosen and the benefit of ABCD, BCD, CDE and 

else should be re-count because their benefit has been take off a part by BC. So we 

recount some sequences’ benefit. 

15/4

4

9/2
5.6

5
3

5.5

….

Candidate sequence set 

67

Chosen set

3.1 Recount some 
sequences’ benefit

5

3.2 Remove low-
frequency sequences

3/4

4

3/2
4.8

1
3

The new one

New Candidate set  

Figure 3-10 Re-count  

Because of dictionary entry with sequential ability, long sequence could replace 

whole benefit of its sub-sequence. Remove the one which just is inserted into chosen 

set and its sub-sequence from candidate. So, if one sequence is inserted, its 

sub-sequences could be seemed as being inserted. If sequence ABC is inserted into B 

set, A, B, C, AB and BC would be removed from Set C. But why we need to re-count 

 23



some sequence’s benefit? It is a problem that some sequence’s benefit are not accurate 

after inserting one sequence into B Set. Because their partial benefit is taken off. For 

example, if ABC is inserted, any sequence, which includes A, B, C, AB and BC, 

should be re-count. Because sequence EBC includes sequence BC, the benefit of 

sequence EBC must remove the part benefit from sequence BC. By removing part 

benefit, the benefit of sequence EBC shows real value. 

 

3.2 Replacing VLIW line sequence 
with codeword 
 

Now, dictionary is already and we start to compress program. To improve 

traditional partition dictionary method, we bring up an idea about opcode or operand 

match. We also introduce length bits and codeword format in this chapter. 

 

3.2.1 How to replace sequence with codeword 

…...

Sub Addi B   NOP

Addi Sub Ld And 

Opcode

Opcode dictionary

#001

#002

index

…...

Sub Addi B   NOP

Addi Sub Ld And 

Opcode

Opcode dictionary

#001

#002

index

R7,r9,4, r3,r4, r6,r5,0(r1),r11,r10,r9#003

R4,r5,r6,r1,r1,1,label 0, NOP

R2,r10,1, r3,r4,r6,r5,0(r1),r11,r10,r9

Operand

Operand dictionary

#001

#002

index

R7,r9,4, r3,r4, r6,r5,0(r1),r11,r10,r9#003

R4,r5,r6,r1,r1,1,label 0, NOP

R2,r10,1, r3,r4,r6,r5,0(r1),r11,r10,r9

Operand

Operand dictionary

#001

#002

index

Compressed code

And r11,r10,r9Ld r5,0(r1)Sub r3,r4,r6Addi r2 ,r10,1 And r11,r10,r9Ld r5,0(r1)Sub r3,r4,r6Addi r2 ,r10,1

B label 0Addi r1,r1,1Sub r4,r5,r6 B label 0Addi r1,r1,1Sub r4,r5,r6

codewordcodeword Length 2

OP  Index #1

OPD Index #1

Length 1

OP  Index #1

OPD Index #3

 

Figure 3-10 Replace VLIW line sequence with OP&OPD index and length 

 

 24



We assume that the VLIW line is spilt into several parts. The rule of traditional 

partitioned dictionary-based compression code method is that one VLIW line will be 

compressed only when all parts can be quarried by dictionaries. In other words, if 

some part of VLIW line cannot be quarried by dictionary, this VLIW line still can’t be 

compressed. This limits the space of compression ratio. We hope to use dictionary 

more efficiently. 

When compressing, we have some limits of VLIW line sequence. One is branch 

target only appear at the start of sequence. If branch target is not at start, the branch 

instruction would not jump to other instruction correctly.  

Line11(BT)

Line10

Line7(BT)

Line9

Line6

Line8

Line5

Line4

Line3

Line2(BT)

Line1

Line11(BT)

Line10

Line7(BT)

Line9

Line6

Line8

Line5

Line4

Line3

Line2(BT)

Line1

OP Mark OPD  Mark

Unmark

 

Figure 3-11 How to replace lines depending on Mark 

 In Figure 3-11, continuous mark means they can be inquire in dictionary 

continuously. We have two type marks, and continuous mark must be tied to scattered 

mark. After we compress program which is marked by both, program has been 

colored. Each continuous color means they can be just replace by one codeword. 

Program which is colored by white means they cannot be compressed because OP and 

OPD don’t match at the same time. 

 

 25



3.2.2 Determine the Length Bits  
Length bits determine Max compress length. In our design, length bit slot is 

added to codeword. Max compress length is that how many VLIW lines could be 

compressed by one codeword. Max compress length (= 2 ^ (Length bits)) must be 

equal to or greater than candidate sequence length. The more length bit, the bigger 

codeword size. It is an overhead because that whatever sequence length any codeword 

need the same bits. But the more length bit, the longer the possible sequence. It is 

good for compression ratio because we could use just one codeword to replace long 

sequence not several. That is a tradeoff about length bits. Most branch target VLIW 

lines are at a distance of three or four VLIW lines. Longer sequence cannot get more 

advantage. So, we will test the length bits from 0 to 2. When building the dictionary, 

the benefit function is just designed for one candidate sequence length. If max 

compress length is not equal to candidate sequence length, the benefit is not correct 

and dictionary is not efficient, too. And, after experiment, we have proved this point. 

So, candidate sequence and length bits should be the same. We will test length bits 

from 0 to 2 and candidate sequence length is 2^length bits. 

 

3.2.3 Codeword format 
We use two type codeword to represent program. Many compressing paper have 

many definition of codeword. Whole compressed program size is the sum of 

codeword and un-compressed code. But here, we use a type of codeword to represent 

un-compressed code.  

After compressing, we need a tag slot to separate different type codeword. One 

bit is added to codeword and it different two type codeword: Both match and program 

which don’t be compressed.  

 26



Both match codeword: this codeword includes a tag, length slot and opcode 

index and operand index. 

Program which doesn’t be compressed: a tag is added in the front of original 

VLIW line.  

OP Index OPD IndexLengthTag=1 OP Index OPD IndexLengthTag=1

Uncompressed  VLIW linesTag=0 Uncompressed  VLIW linesTag=0

TAG : indicate which type 
the codeword is(1 bits) 

Compressed : OP and OPD can both inquired by dictionaries

Code which don’t be compressed

1 bits

Round down (Compressed codeword length/un-compressed)  = 3

65 bits

 

Figure 3-12: Codeword format 

 

3.3 Place codeword into memory 
One obvious side effect of a dictionary-based code compression scheme is that it 

alters the locations of instructions in the program. This presents a special problem for 

branch instructions, since branch targets change as a result of program compression. 

To avoid this problem, we do not compress relative branch instructions (i.e. those 

containing an offset field used to compute a branch target) and leave those 

instructions in the compressed code instead of in the dictionary. After compression, 

the targets of branch instructions are patched to the new location in the compressed 

code. 

Some branch target address is got from data memory. These instructions can be 

seemed as a normal instruction because its value doesn’t need change. But after 

compression, we should modify the target address in data memory. I assumes that 

memory is byte-align. The codeword, which includes branch target or PC-relative 

 27



branch instruction must be byte-aligned. So some space cannot be used. Other 

codeword follow previous codeword successively  

 28



 

Chapter 4 Simulation 

4. Platform and Benchmark 
 

We adopt ADSP-21535 DSP as our simulation platform.  

16-bit Instruction16-bit Instruction16-bit ALU/MAC16-bit ALU/MAC 16-bit Instruction16-bit Instruction16-bit ALU/MAC16-bit ALU/MAC  

Figure 4-1 VLIW format ADSP-21535 DSP 

One VLIW line has four slots. First two instructions can work as MIMD. They 

are ALU/MAC and control flow instructions. Last two instructions handle Immediate 

add, decrement, increment and memory access. 

 Benchmark: Programs for this DSP (download from http://www.analog.com) 

include Mpeg4 decoder, jpeg2000, FFT, Full-search mpeg2, r8x8invdct, corr_3x3, 

dilation and isadc. Program is written by C and inline assembly. The codes are 

compiled by the Visual DSP++ 3.0 with Enable Optimization and Interprocedural 

Optimization and using hand code library. 

 By memory dump, we get all branch targets, machine code, and its assembly. 

This is offline work. If figure is without special mark which shows which benchmark 

is used, it is average of all benchmark. 

 

 29

http://www.analog.com/


4.1 The effect of Max compress 
length 

We test all benchmark and found that the lowest compression is always at 

dictionary 4K byte. 4K means OP and OPD index’s index-able size, and don’t mean 

that we must exhaust full 4K dictionary. Some bigger benchmark, like Mpge4 or JPG, 

have the best compression ratio at max length =4. And some smaller program prefer 

max length =2. Others max compress length all cannot get better compression ratio 

than 2 and 4. 

The effect of Max compress length

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 32 64 128 256 512 1k 2k 4k

Max Dictionary Size

C
o
m

p
re

ss
io

n
 R

at
io

Max compress length=2 

Max compress length=4

Max compress length=8

 

Figure 4-2: The effect of Max compress length 

 When length slot bit is one or two, we can get better compression. We don’t 

show the situation which is without length slot because that always gets higher 

compression ratio that the situation with lengths slot. And adding length slot, we also 

need to consider the overhead by decompression machine. 

 Because branch target appear every four or five lines, we can easily explain why 

one or two length slot bits is better. 

 30



4.2 Compare with optimal situation 
 We mainly present a heuristic algorithm for VLIW code compression and we try 

to compare with optimal situation under our hardware constrain. Contract’s 

complexity is O(N^M),. N is all possible OP bit pattern and M is the number of 

entries. We test all dictionary combination and all compressing possible. Because of 

branch target, each time we just need to search small area to find optimal compressing 

sequence. In Max 4K dictionary size (OP+OPD) and Max compress length= 4, on 

average contract’s compression ratio have advantage about 1.78%. But it pays more 

time to compute. Our approach’s complexity is O(N^2).  

 

Compare with Optimal Situation 

 
Figure 4-3 Compare with optimal situation 

4.3 The effect of OP and OPD 
dictionary with different sizes 
 When dictionary size increases, compression ratio would be limited by OPD 

dictionary. We hope to increase OPD dictionary, but wouldn’t increase total dictionary 

size. By half OP dictionary size, we increase OPD dictionary size, and keep the same 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 Compression ratio
0.7 Contract

isadc corr_3x3 dilation 

Program Name

My Method 

 31



total dictionary size and codeword bits.  

OP Index OPD IndexLengthTag=1 OP Index OPD IndexLengthTag=1

1 bits 6 bits 6 bits

Ex .Codeword format 

OP Dic size : OPD = 64:64

OP Index OPD IndexLengthTag=1 OP Index OPD IndexLengthTag=1

1 bits 5 bits 7 bits

OP Dic size : OPD = 32:96 
or  30:98

 

 We remove 1 codeword bit from OP index to OPD index in example. Original 

Op index is 6 bits, and we cut 1 bit from OP to OPD. In this case, total codeword bits 

don’t increase and available OPD dictionary size increase. If available OP dictionary 

size is always the same as OPD, OP index may be not efficient. OP dictionary 

pressure is always lower than OPD. OPD dictionary has size pressure. So we release 

OP index to support OPD index and codeword length would not be changed. And 

OPD dictionary size pressure could be solved. 

Compress-able line (Full Mpeg2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

16 32 64 128 256 512 1k 2k 4k

Dictionary Size(Byte)

Th
e 

nu
m

be
r o

f l
in

es

Both

OP

OPD

 

Figure 4-4 OP and OPD bit pattern program cover ratio 

About 6.7~10.5% OP bit pattern dominate all program Ops. About 15.2~21.7% 

OPD bit pattern dominate all program OPDs. Considered that just program which 

could be inquired by both dictionaries can be compressed, it is better to balance 

percentage of OP and OPD inquired program. In figure4-4, the ratio of program which 

 32



is dominated by 1k OP dictionary is similar as 2k OPD dictionary.  

 

OP&OPD Dictionary with different size (Full mpeg2)

0.36

0.38

0.4

0.42

0.44

0.46

0.48

1K 2KOPD Dictionary Size

C
om

pr
es

si
on

 r
at

io

1K
1+1/16K
1+1/8K
1+3/16K
1+1/4K

 
Figure 4-5 Compared with giving enough dictionary size, it has better cut some 

dictionary size to reduce codeword length. 

 In figure4-5, different curves mean different OP dictionary size. Because small 

dictionary size has no use value, we test size from 1k OP and OPD size. Lower 

compression ratio is better. We can find that best compression ratio is appear at 1K OP 

dictionary size and 2K OPD dictionary size. Different sizes of OP and OPD are useful 

and needed.  

 33



 

Chapter 5 Conclusion  

 In this thesis, we proposed a heuristic algorithm to compress VLIW programs by 

partitioned dictionary and codeword with length slot. The key idea of this method is 

to separate the original instruction sequences into the opcode sequences and the 

operand list sequences, and then more repetitions of these sequences in the programs 

can be exploited. A benefit equation is proposed to illustrate how to build a partitioned 

dictionary and two related issues, replacements of common sequences and 

collaboration between opcode and operand dictionaries.  

There are several directions that our compression method could be further 

improved. First, we can reduce bit toggles for power efficiency. This method is 

off-line, and has no overhead on hardware. By some profiles, we can rearrange the 

placement of codeword and dictionary to reduce bit toggles during fetching codeword 

and decompression. When fetching codeword, we can place frequent-used continuous 

codeword with fewer bit toggles. As inquiring dictionary, continuous index’s bit 

toggles could be reduced too.  

Second, when dictionary-based code compression is adopted on VLIS (various 

length instruction set), how dictionary we design to suit it. Because VLIW line length 

could be one to eight instructions, dictionary entry which size is eight instructions 

may be not suitable. Multiple ports and variable dictionary entry size are feasible on 

VLIS. Multiple output ports provide the ability to inquire two dictionary entries at the 

same time but it will lead to increase dictionary size greatly. Variable dictionary entry 

 34



has ability to change basic entry size by hardware logic. Depending on program 

character, we can take two instructions or four instructions as our basic dictionary 

entry size. If one VLIW line’s length is over dictionary basic size, it may need special 

method to handle like adding output ports, changing codeword format or using two 

codeword. 

 

 35



 

REFERENCES 

[1] Intel Wed Site, http://www.intel.com 

[2] Jim Turley, “Code compression under the microscope”, Embedded Systems 

Programming, February, 2004. 

[3] M. Kozuch and A. Wolfe, “Compression of Embedded System Programs”, IEEE 

International Conference on Computer Design, 1994. 

[4] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain, “Code Compression Based 

on Operand Factorization”, 31st Annual ACM/IEEE International Symposium on 

Microarchitecture, 1998. 

[5] A. Wolfe and A. Chanin, “Executing Compressed Programs on an Embedded 

RISC Architecture”, Proceedings of the 25th Annual International Symposium on 

Microarchitecture, December 1992. 

[6] Yuan Xie, Princeton University, Princeton, NJ, USA, Wayne Wolf Princeton 

University, Princeton, NJ, USA, Haris Lekatsas, NEC USA, Princeton, NJ, USA, 

“Code compression for VLIW processors using variable-to-fixed coding”, ACM 

Special Interest Group on Ada Programming Language IEEE-CS\DATC : IEEE 

Computer Society, 2002 

[7] Sang-Joon NAM, In-Cheol PARK, and Chong-Min KYUNG, “Improving 

Dictionary-Based Code Compression in VLIW Architectures”, Special Section on 

VLSI Design and CAD Algorithms, NOVEMBER 1999. 

[8] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving Code Density Using 

Compression Techniques”, Proceedings of the 30th Annual International 

 36



Symposium on Microarchitecture, December 1997. 

[9] Chang Hong Lin, Yuan Xie, Wayne Wolf, “LZW-Based Code Compression for 

VLIW Embedded Systems”, 2003. 

[10] M. Benes, A. Wolfe, S. M. Nowick, “A High-Speed Asynchronous 

Decompression Circuit for Embedded Processors”, Proceedings of the 17th 

Conference on Advanced Research in VLSI, September 1997. 

[11] S. S. Gupta, D. Das, S.K. Panda, R. Kumar and P. P. Chakrabarty, “Code 

Compression for RISC Processors with Variable Length Instruction Encoding”, 

hipc2003, 2003 

[12] Guido Araujo, Paulo Centoducatte, Rodolfo Azevedo and Ricardo Pannain., 

“Expression tree based algorithms for code compression on embedded RISC 

architectures”, IEEE Trans. VLSI Systems, October 2000. 

 

 37


	摘要
	ABSTRACT
	Chapter 1 Introduction
	VLIW
	1.2 Motivation
	Objective
	Organization of the Thesis

	Chapter 2�Background
	2.1 VLIW code compression
	2.2 Dictionary-based Method
	2.3 Partitioned Dictionary
	Codeword with length slot
	2.4 Summary

	Chapter 3 Design
	Given Environment
	Base idea

	3.1 Build the dictionaries
	3.1.1 How to judge a sequence’s benefit
	3.1.2 Build Dictionary flow
	3.1.2.1 Create candidate sequence set
	3.1.2.2.1 Choose the benefit one into chosen set
	3.1.2.2.2 Combine relation
	3.1.2.3 Stop chosen set increasing
	3.1.2.4 Re-count and remove impossible sequence

	3.2 Replacing VLIW line sequence with codeword
	3.2.1 How to replace sequence with codeword
	3.2.2 Determine the Length Bits
	3.2.3 Codeword format

	3.3 Place codeword into memory

	Chapter 4 Simulation
	4. Platform and Benchmark
	4.1 The effect of Max compress length
	4.2 Compare with optimal situation
	4.3 The effect of OP and OPD dictionary with different sizes

	Chapter 5 Conclusion
	REFERENCES

