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敲鍵行為統計學習模型應用於網路身份認證 

研究生：江檉皇                          指導教授：謝續平 

國立交通大學  資訊科學與工程研究所 

摘  要 

傳統網路身份認證機制單純依靠檢查帳號和密碼的正確性，已經不足以應付

急速發展的網路應用和快速成長的電子商務，如果發生使用者的帳號和密碼被他

人竊取使用的情況，傳統網路身份認證機制將無法正確辨識出登入者的真實身

份。敲鍵行為特徵分析屬於生物身份辨識科技的一種，具備低成本和透明性，相

當適合用來搭配或取代傳統網路身份認證機制。本篇論文提出結合統計學習理論

中的隱藏式馬可夫模型和高斯機率模型，來建立敲鍵行為特徵的統計機率模型，

利用此統計機率模型來分析使用者登入帳號和密碼的敲鍵時間資訊，藉此提高登

入者真實身份認證的準確性。實驗結果顯示，帳號和密碼的長度如果限制大於或

等於九的話，本篇論文所提出的方法可以將錯誤率降低到 2.54 %。 
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Keystroke Statistical Learning Model for Web 

Authentication 

Student: Cheng-Huang Jiang              Advisor: Shiuh-Pyng Shieh 

Department of Computer Science and Information Engineering 
National Chiao Tung University 

Abstract 

As the rapid evolution of E-commerce, traditional password authentication 

mechanism is insufficient to provide strong security and reliability for identity 

verification of web-based applications. Under the circumstance that the intruder could 

make use of the username and password stolen from the innocent individual, 

conventional password authentication mechanisms are incapable to distinguish the 

discrepancy between the intruder and the innocent individual. Keystroke typing 

characteristics is one of the most novel and creative biometric techniques. The 

low-cost and transparency of keystroke typing characteristics make it appropriate to 

complement, but not to replace traditional password authentication mechanism used 

by web-based applications. 

In this thesis, we proposed a statistical model for keystroke typing characteristics 

based on Hidden Markov Model and Gaussian Modeling from Statistical Learning 

Theory. The accuracy of the identity authentication can be substantially enhanced by 

analyzing keystroke timing information of the username and password using our 

proposed model. The results of the experiment showed that, with the condition on 

both the minimum length of the username and password restricted to be greater than 

or equal to 9, we achieved by far the best error rate of 2.54 %. 
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1. Introduction 

1.1. Background 

As the web interface becoming more powerful and convenient, the trend has 

been shown that more and more applications are developed for web-based 

services instead of for local use only. Web-based services change the way people 

using computer, and makes it more easily for people to globally and ubiquitously 

acquire information and resources. Unfortunately, it also makes more chances for 

malicious attack and intrusion to be happened. As a consequence, guarantee the 

accuracy of the user identity for web-based services has became a significant 

issue. 

Conventionally web-based services employ username/password pairs to 

authenticate the identities of the users. After the users pass the authentication 

phase, the systems assume the identities of the users are consistent and rarely use 

other mechanism to constantly assure the identities of the users. This comes up 

with two acute security issues. First one is at the authentication phase. An 

attacker can steal the username/password pair by any means from the user, say 

Alice, log on to the web-based services by claiming to be Alice, and gain access 

to the web-based service as Alice. Second one is after the authentication phase 

has been legally passed by Alice. An attacker can access the web-based services 

and act as Alice when she is temporarily leaving the computer without log out 

the systems or close the browser. Hence we need another security mechanism to 

complement or serve as a robust safeguard to prevent legal users from being 

impersonated and unauthorized. 

Keystroke dynamics, also referred to as keyboard typing characteristics or 
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keyboard typing rhythms, is one of the most novel and creative biometric 

techniques. There are two types of biometrics: physiological biometrics and 

behavioral metrics. Physiological biometrics requires user to provide a given 

physical characteristic in different positions and/or conditions, but always the 

same characteristic, such as fingerprint, facial recognition, hand geometry, iris 

scan, retinal scan, vascular patterns and DNA. Most of them require expensive 

hardware to support the dedicated function. As a result, they are impractical and 

inefficient to combine with the authentication mechanism of the web-based 

services. Behavioral biometrics requires user to behave in a consistent manner, 

including speaker recognition, keystroke dynamics, hand-writing and mouse 

movement. Keystroke dynamics has following advantages over others: 

♦ It is non-intrusive, since user will be typing at the keyboard anyway. 

♦ It is transparent, since keystroke patterns can be captured silently 

without interrupting user’s normal activity. 

♦ It is low-cost, since the hardware requirement is only the keyboard 

which is already presented, and the analysis can be conducted and 

implemented by software. 

Keyboard dynamics has the disadvantage of instability inherited from behavioral 

biometrics while the people may behave differently and be influenced by the 

environment, physiology status or different keyboards. Other than that, keystroke 

dynamics is considered to be an economical and practical measure to be in 

conjunction with, or in place of traditional authentication method of web-based 

services. 

 Keystroke dynamics is based on the assumption that different people have 

unique habitual rhythm patterns in the way they type. Previous work ([19, 11]) 

has been shown that keystroke dynamics is good evidence of identity. Within the 
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keystroke dynamics literatures, the research can be divided into two categories: 

fixed-text keystroke analysis and free-text keystroke analysis, according to the 

structures of the typing patterns to be analyzed. In the fixed-text keystroke 

analysis, the patterns are short, fixed and structured, such as login-password pairs 

at the authentication phase or the pass-phrase predetermined by the 

authentication system. The methods [2, 3, 4, 6, 9, 19] proposed for fixed-text 

keystroke analyses are usually encouraged to integrated with or replace of 

traditional web-based authentication method. As to the free-text keystroke 

analysis, the patterns are diverse and long. They can be collections of keystrokes 

from an email sending by an employee or anything a user typed in any period of 

time. Free-text keystroke analyses [1, 11, 15, 16] are suitable for continuously 

identity verification after the authentication phase has passed. 

1.2. Contribution 

In this thesis, we present a formal statistical model for keystroke dynamics 

analysis using Hidden Markov Model and Gaussian Modeling. Underlying the 

proposed model and the schemes for fixed-text keystroke analysis can be applied 

to web-based services as authentication mechanism for enhancing security 

strength according to different security requirements. The proposed model can be 

extended to devise scheme for free-text keystroke analysis. The experiment of 

our scheme for authentication resulted on 2.54 % of Equal Error Rate, which is 

the best so far in the literature. 

1.3. Synopsis 

This thesis is organized as follows. The related work of keystroke dynamics is 

presented in Chapter 2. In Chapter 3, formal model along with schemes for 

fixed-text keystroke analysis are proposed. Furthermore, the experiments and 
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results are given in Chapter 4. Finally, a conclusion and future work is given in 

Chapter 5. 
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2. Related Work 

In this chapter, we first review the features used to analyze by keystroke 

dynamics in Section 2.1, and the performance measurements for keystroke 

dynamics evaluation are presented in Section 2.2. Furthermore, we review the 

literature with regard to fixed-text keystroke analysis in Section 2.3. We present 

a review for free-text keystroke analysis in Section 2.4. 

2.1. Features 

There are several measurements can be used by keystroke dynamics analysis 

when the user press the keys on the keyboard. The possible measurements can be 

listed as follows: 

♦ Keystroke duration: The time a key stays pressed. 

♦ Keystroke latency: The time interval between two consecutive 

keystrokes (also referred to as digraph). It can be extended to N 

consecutive keystrokes (also referred to as n-graph). 

♦ Keystroke frequency: the number of times the keystroke appeared. 

First two of the list above is the most popular features used in the literature. The 

mean and standard deviation of the keystroke duration or latencies are the basis 

measurement to combine with other techniques for timing characteristics 

analysis. 

2.2. Performance Measures 

Typically biometric performance has three metrics for describing performance in 

terms of decision rates with regard to accuracy [21]: 

♦ False Reject Rate (FRR): The expected portion of valid user attempts 

identified as imposters. A false rejection is also referred to as a “Type 
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I” Error in mathematical literature, or false alarm rate (FAR). The 

higher the FRR is, the lower the feasibility and convenience the 

systems will perform. 

♦ False Accept Rate (FAR): The expected portion of imposter attempts 

identified as valid users. A false acceptance is also referred to as a 

“Type II” error in mathematical literature, or imposter pass rate (IPR). 

The higher the FAR is, the more opportunities the systems give the 

imposters to breach in. 

♦ Equal Error Rate (EER): In Figure 2.1, the value of the cross point at 

which the FAR and FRR are equal for a determined threshold. The 

threshold is the parameters which can be adjusted for different security 

strength in the algorithms. EER is also referred to as crossover error 

rate (CER). 

♦ Average False Rate (AFR): Average of FRR and FAR. 

 

Figure 2.1: EER is the cross point at which the FRR and FAR are equal. 

In most of the literature, the terms false reject rate and false accept rate are 

used interchangeably with false alarm rate and imposter pass rate. For the sake of 

clarity, in this thesis we will use FRR to denote the false reject rate, FAR to 

denote the false accept rate, and ERR to denote the equal error rate respectively. 
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2.3. Fixed-text Keystroke Analysis 

In the keystroke dynamics literature with regard to fixed-text keystroke analysis, 

the typing patterns to be analyzed are short, fixed, predetermined, and structured. 

The research can be separated into two portions based on the concerns the 

approaches presented. One portion puts their focuses on designing approaches 

which can be in conjunction with, or in place of traditional authentication 

mechanism by analyzing the keystroke timing information of username/password 

pairs typed by individuals. The other portion tries to figure out how to identify 

the user’s identity from keystroke timing information of predetermined texts 

typed by individuals for certain times. In the Section 2.3.1, we introduce the 

algorithms for keystroke timing information analysis of login-password. In the 

Section 2.3.2, the review of the keystroke analysis methods for predetermined 

text is presented. 

2.3.1. Traditional login-password Authentication Mechanism 

Joyce and Gupta [19] proposed a simple and promising approach to analyze four 

target strings (login, password, first name, last name) during a login process. 

Their system requires new users to type the reference signatures in term of four 

target strings for eight times. The mean reference signature is then given by: 

{ }lastnamefirstnamepasswordusername MMMMM ,,,=  

At the authentication phase, a test signature  is presented and compares with 

reference signature 

T

M  to determine the magnitude of the difference between 

M  and . Let  and T ( )nmmmM ,,, 21 K= ( )ntttT ,,, 21 K=  where n is the 

total number of latencies in the signature, the verifier computes the magnitude of 

the difference between M andT  as the  norm: 1l



 

 8

∑
=

=

−=−
ni

i
ii tmTM

1
1

 

Then a suitable threshold for an acceptable size of the magnitude is chosen for 

each user based on a measure of the variability of user's signatures. The mean 

and standard deviation of the norms iSM − , where  is one of the training 

signatures, are used to decide a threshold for an acceptable norm value of the 

latency difference vector between a given 

iS

M and T . If this norm is less than 

the threshold for the user, the attempt is accepted. Otherwise it is flagged as an 

imposter attempt. Thirty-three users were participated in the evaluation. 13.3% 

(4 out of 30) FRR and 0.17% (1 out of 600) FAR were obtained. EER is not 

available because they did not conduct the experiment for every possible 

threshold values. 

Magalhaes et al [6, 3] proposed a lightweight algorithm to analyze only one 

target string with password or pass-phrase. Each user has to type password or 

pass-phrase for twelve times to form the reference profile. They enhanced [6] 

based on [3] by integrated the concept of keyboard gridding in [5]. By using the 

concept of keyboard gridding, their algorithm is specifically designed and 

optimized for right-handed users. As a consequence, the algorithm they proposed 

can not ensure the same results on left-handed users. 5.58 % EER was obtained 

in [6], and less than 5% EER was achieved in [3]. 

Ru and Eloff [4] used fuzzy logic to characterize the typing behavior of the 

users based on the keystroke latencies, the distance of the keys on the keyboard, 

and typing difficulty of the key combinations. Twenty-five samples are required 

for enrollment. Username and password are used as target strings to be analyzed. 

7.4% FRR and 2.8% FAR were obtained in the experiment [2]. EER is not 

available because they did not conduct the experiment for every possible 
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threshold values. 

Haidar et al [9] presented a suite of techniques using neural networks, fuzzy 

logic, statistical methods, and several hybrid combinations of these approaches to 

learn the typing behavior of a user. In the experiment, 2% FRR and 6% FAR 

were obtained [2]. 

Bleha et al [23] proposed two approaches for authentication using minimum 

distance classifier and Bayesian classifier. The normalized minimum distance 

classifier was 

( ) ( )
i

i
t

i
i mX

mXmXD
⋅

−−
=  

, and the normalize Bayesian classifier was  

( ) ( )
i

ii
t

i
i mX

mXCmXd
⋅

−−
=

−1

 

, where the participant is claiming to be user ,  is the latencies vector,  

is the latency means of the reference samples and  is the latencies covariance 

of the reference samples. Both classifiers have defined thresholds for deciding 

the acceptance of the user. They din not mention the results would come up with 

while different threshold values were used. In the experiment, 8.1% FRR and 

2.8% FAR were obtained. EER is not available because they did not conduct the 

experiment for every possible threshold values. 

i X im

iC

2.3.2. Predetermined Text 

Gaines et al [18] conducted an experiment in which seven professional 

secretaries were asked to type three passages, about 300-400 words long (the 

first one is ordinary English text, the second one is the collection of random 
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words, and the third one is the collection of random phrases), for two different 

times separately within four months. Keystroke latency of the digraph that 

appeared more than ten times were computed for each individual. A classical 

two-sample t-test of statistical independence on the hypothesis that the 

percentage of the means and variances of the digraphs appeared in both sessions 

were the same that passed the test were between 80 and 95. Outliers were 

removed and the rest of data were transformed by logarithm. An assumption was 

made that the raw data was log-normally distributed, and the transformed data 

was observed to be approximately normally distributed. 4% FRR (2 out of 55) 

and 0% FAR were obtained. However, the number of volunteers was too small 

and the amount of data required to create the reference profiles was insufficient. 

Only twenty-six lower-case letters and space key were taken into consideration, 

resulted that only 27 * 27 = 720 different digraphs. Additionally, since the 

limitation by the length and content of the three passages, only 87 combinations 

of digraph were analyzed in the experiments. Consequently, the results of FAR 

and FRR obtained in the experiment resulted on a lower confidence. 

Leggett and Williams [8] proposed an improved approach based on [20]. 

They reported the results of two experiments similar to the experiment conducted 

in [18]. In the first experiment, seventeen programmers, with different typing 

ability, each one provided two samples. First sample was 1400 characters long 

served as the reference profile, and second one was 300 characters long served as 

the test profile. In the second experiment, thirty-six participants provided two 

passages in 537 characters long in two months separately with a delay of at least 

one month. Their approach compares all digraph latencies between all 

combinations of digraphs in the samples. The test digraph was classified as valid 

one if the test digraph latency was within 0.5 standard deviation of the reference 
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digraph latency mean. 5.5% FRR and 5% FAR were obtained.  

Bergadano et al [17] proposed an approach which measure digraph latencies 

based on the degree of disorder. Given two typing samples of the same text, the 

digraphs shared between both typing samples are retrieved, and the durations of 

n-graphs are computed. The mean of duration is calculated if n-graph is reported 

more than one time. Then the shared n-graphs in both typing samples are sorted 

by the duration and stored in two arrays respectively. The degree of disorder is 

computed as the sum of the distances between the positions of each n-graph in 

both sorted array. The predetermined sample texts in the experiment are a 

passage of one famous Italian novel plus a short text in English. Each sample 

was produced using only twenty-six lower-case letters, plus the space, the full 

stop, the comma, the apostrophe and the carriage return keys. 154 volunteers 

were involved in the experiments. 4% FRR and less than 0.01% FAR were 

achieved. 

2.4. Free-text Keystroke Analysis 

Monrose and Rubin [11] proposed the method using Euclidean Distance and 

probabilistic calculations on structured and unstructured texts. They made the 

assumption that the digraph latencies exhibit Gaussian distribution similar to the 

assumption in this thesis. As to the dynamic identity verification, the author 

pointed out that their approaches were not qualified to authenticate the user 

during the lifetime of a login session. Their approaches would fall hopelessly 

behind as the new measurements arriving almost each second, since the 

continuous nature of the problem and the expensive computation of their 

approaches. The experiments required forty-two users to type a few sentences 

from a list of available phrases and a few unstructured sentences. 90% of 
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accurate classification rate was achieved on structured texts, and only 23% of 

accurate classification rate was obtained on unstructured texts. 

Dowland et al [15, 16] reported a preliminary result on determining which 

approaches provide the basis for further research on continuous authentication 

with keystroke timing characteristics. Statistical analysis and data-mining 

analysis were used to investigate. 50% of accurate classification rate was 

obtained in [15], and 60% of accurate classification rate was improved in [16]. 

Gunetti and Picardi [1] improved the approach proposed in [17] and introduced 

two measures, R measure and A measure, to compute the degree of disorder 

between two samples of free texts. R measure was the one described in [17]. The 

authors concluded that the length of two typing samples must be long enough to 

gather enough shared n-graphs between two typing samples, resulted on the 

typing patterns to be analyzed were free text. If the number of shared n-graph 

was not sufficient, the degree of disorder computed for the free texts is less 

representative. A measure is to suppose that the durations of the same n-graph 

from two sample texts which came from the same individual are similar. The 

author combined two proposed measure with different n-graph to conduct the 

experiments. In the experiments, forty volunteers, each one provided 15 samples 

for building reference profiles. Another one hundred and sixty-five people, each 

one provided one samples as imposters. All of them were native Italians and the 

samples were written in Italian. No more than one sample provided each day via 

browser, and the samples were collected on the basis of the availability and 

willingness of volunteers over a period of six month. Each size of the samples is 

about 700 to 900 characters long. The limitation of their approach is that the 

length of the samples must be long enough. Furthermore, their approach is 

computationally expensive, and it is infeasible to be applied on verification of 
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identity via keystroke analysis in real time. 

2.5. Summary 

After the review of the keystroke dynamics analysis in the literature so far, we 

can see that the most common method the different approaches used as basis is 

that most of them leveraged the mean and standard deviation of the digraph 

latencies or durations. The approaches determined the valid attempts by checking 

whether the latencies or durations of the digraphs typed by the volunteers fall 

within the standard variation of the digraph latencies or duration mean as 

follows: 

pppp wDDDwDD σμσμ +≤≤−  

, where D  is one of the digraph latencies or durations in the test profile,  

and  are the corresponding digraph in the individual’s reference profile, and 

 is the weighting factor. 

pDμ

pDσ

w

 There are several issues concerned by keystroke analysis for it to be feasible 

and practical as follows. 

♦ The length of target strings to be analyzed. The longer the target string 

is, the more the digraphs can be used to compare between reference 

profiles and test profiles. By the nature limitation of traditional 

authentication method with username/password, it is difficult to force 

the users to remember their account information in terms of username 

and password with ten characters long respectively or even more. This 

limitation lead to the situation that the methods proposed in the 

literature can only have spare timing information to analyze. 

♦ The number of samples to construct the reference profile. The purpose 
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of calculating the mean and standard deviation of the digraph latencies 

and duration is to model the personal typing characteristics in statistics. 

The more the number of sampled provided, the higher the accuracy of 

the mean and variance is close to the actual behavior of individual’s 

typing characteristics. However, the number of samples also influences 

the feasibility of the methods in practical. In static keystroke analysis, 

all methods required the volunteers to type the same structured or 

predetermined texts for several times. The number of repetition times 

is inverse propositional to the desire of the volunteers and the users to 

adopt the proposed methods. 

Previous works, regarding continuously monitor and analyze the typing 

patterns for real time identification of individuals have not yielded satisfied 

results. Even if the accuracy is acceptable, it takes too long to recognize the 

identities of individuals. Consequently, it is infeasible in the environment with 

high security level, such as government and military computers, since the 

confidential information could have been stolen for long enough without raising 

the alarm. As the result, the time it takes for identification is a critical issue. In 

the literature with regard to this portion, the computation costs of the proposed 

algorithms are high. As a result, it is a problem to verify the user's identity in real 

time. Unlike the limitation in static keystroke analysis, the sample texts can be of 

any length, usually longer enough to have sufficient number of digraph 

combinations and repetition times for calculating more accurate mean and 

standard deviation to fit the individual’s typing behavior. But it has 

corresponding limitation that the reference samples and the test samples could be 

two totally different texts. The situation could happen while the digraphs in the 

test samples are not existent in the reference samples. The literatures regarding 
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free-text keystroke analysis have not discussed this issue, either they made the 

assumption that both the length of reference samples and test samples must be 

longer enough to exist shared digraph, or made the constraint that only 

twenty-six lower-case letter plus several punctuation marks were taken into 

consideration to construct the text to analyze. 

As to the experiment setting, it is very difficult to obtain a sample 

representative of the population, since we do not know how to characterize the 

population [6]. The experiment setting in each of the proposed method is 

different, such as the number of the volunteers involved, the length of the target 

strings, the number of samples to construct the reference profiles, and where the 

experiments were conducted. With all these variations resulted on that there is no 

fair standpoint to compare the results achieved by each method. 
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3. Modeling and Methodology 

In this chapter, we first make a formal definition of features we will use for 

keystroke analysis in Section 3.1. The Gaussian Modeling for n-graph timing 

information is presented in Section 3.2, and we introduce how to calculate 

parameters for Gaussian Modeling with Maximum Likelihood Estimation in 

Section 3.3. In Section 3.4, the Hidden Markov Model is used to model the 

timing information given a keystroke sequence, and the Forward algorithm used 

to calculate the probability given a keystroke sequence is presented in Section 

3.5. In Section 3.6, we devise three general modules for keystroke analysis. 

Furthermore, we introduce the schemes for keystroke analysis in Section 3.7. 

3.1. Features 

In the related work, we have reviewed the features used to analyze keystroke 

dynamics. In this section, we will give more formal definition on the features 

that will be taken into consideration in our model. A single keystroke will trigger 

two events, the key press event and the key release event, along with the time 

while both events occurred. Denote the set of keys of interest as , and let Q Q  

denote the cardinality of the set .We define the time point while the key is 

pressed as . We refer to N consecutive keystrokes as n-graph. The 

special case of single keystroke is referred to as unigraph. Two consecutive 

keystrokes are referred to as digraph in the literatures, and trigraph means three 

consecutive keystrokes, etc. Given a sequence of consecutive keystrokes 

, where m is the number of keystroke sequence, we have 

n-graph with the size of 

Q

pressedTKS

{ msssS ,,, 21 K= }

1+− nm . We define the duration of n-graph 
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11,321 },,,,{ +−≤≤∈= nmkNkkddddGD K  as follows: 

TKSTKS kkn s

pressed

s

pressedkd −= −+ 1 . 

The durations of n-graph are used as timing features for further analysis in our 

model. 

3.2. Gaussian Modeling 

Previous work [10, 11, 13, 18] have shown that the durations distribution of a 

given set of digraphs forms an approximate Gaussian distribution. Therefore we 

make a natural assumption that the n-graph , with duration , , 

forms a Gaussian distribution, such that 

nQq∈ y [ ]qy |Pr

2

2

2

)(

2
1]|Pr[ q

qy

q

eqy σ

μ

σπ

−
−

= , 

where qμ  is the mean value of the duration  for n-graph , and y q qσ  is the 

standard deviation. Since behavioral characteristics of the individuals could be 

influenced by many reasons, the statistical analysis method used by previous 

work can be viewed as the same probability was given to the valid attempts of 

digraph latencies and durations within the standard deviations of the mean 

durations. By using Gaussian Modeling, we can give higher probability to the 

n-graph durations of test samples that is more close to the n-graph mean 

durations of reference samples, and lower probability to the n-graph duration that 

is far from the mean of the n-graph for the reason that the individuals could be 

temporarily out of regular typing behavior, and we can take the irregular typing 

behavior without discarding the possibility that the set of  n-graph durations 

provided by the corresponding individuals. 



 

 18

3.3. Maximum Likelihood Estimation of the Parameters 

With the limitation that we are unable to collect all the typing keystrokes of the 

individual and calculate the exact parameters of the means and variances for each 

distinct combination of n-graph durations. We have to deduce { ( ) } nQqqq ∈σμ ˆ,ˆ  

of n-graph durations, give a keystroke sequence , by the method of maximum 

likelihood estimation of the parameters. Fortunately, the maximum likelihood 

estimation of the parameters for Gaussian distribution can compute the sample 

mean and sample variance as follows. 

S

[ ]
1

ˆ)(
ˆ

)(
ˆ

2

12

1

−

−
=

=

∑

∑

=

=

k

qd

k

qd

k

i
qi

q

k

i
i

q

μ
σ

μ
  

, where  is the number of n-graph  appeared in . k q S

3.4. Hidden Markov Model 

Hidden Markov Models (HMMs) [12, 14, 22] are proper for modeling sequential 

data, such as the sequence of keystroke timing information that we take into 

consideration in this thesis. HMMs have been widely applied in areas such as 

speech recognition, optical character recognition, machine translation, 

bioinformatics, and genomics. A Markov process is a stochastic process with the 

property that the probability of transitioning from previous state to current state 

depends only on the previous state and was independent of all other previous 

states. In general, a Markov model is a way of describing a process that goes 

through a series of states [14]. In a general Markov Model, the state is directly 

observed by the observer. In a Hidden Markov Model, the state is not directly 

visible, and some outputs from the state are observed. A Hidden Markov Model 
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ty

can be viewed as a chain of mixtures models with unknown parameters. 

The HMM we use to model the timing information of keystroke sequence is 

shown in Figure 3.1. It is a statistical graphical model, where each circle is a 

random variable. Unshaded circles  represent are unknown (hidden) state 

variables we wish to infer, and shaded circles  are observed state variables, 

where  is a specific point in time. 

tq

t A  is a state transition matrix holding the 

probabilities of transitioning from  to , where  (or ) means the 

i-th (or j-th) state. So we have 

i
t

q j
t

q
1+

iq jq

( ) ij
i
t

j AqqP
t

===
+

1|1
1

. η  is an state emission 

matrix holding the output probability ( )1| =i
tt qyP  of i-th state. iπ  is the initial 

state probability of i-th state. A compact notation ),,( πηλ A=  is used to 

indicate the complete parameter set of the 

model.

 

Figure 3.1: The Hidden Markov Model for keystroke analysis. 

In our setting, given a keystroke sequence , n-graph , [n+1]-graph 

, such that 

S G

G′
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. 

The state transition matrix A  is the probability of the frequency that the 

[n+1]-graph appeared in the  as follows.  S

nm
g

A t
gg tt −

′
=

+1,  

For instance in Figure 3.2, given a keystroke sequence “banana” and digraph is 

of interest, the digraph “na” is following the digraph “an”. We have 5 (6-2+1) 

digraphs in “banana”, 4 (6-3+1) trigraph in “banana”, and the trigraph “ana” 

appears two times. As a result, we have the transition probability of 5.04
2 =  

from “an” to “na”.  

 

Figure 3.2: Graphical mode for digraph with keystroke sequence “banana” 

The state emission matrix η  here is defined as the Gaussian distribution 

probability of the n-graph },,,,{ 1321 +−= nmggggG K  with duration 

( ) ( ) ( ) ( )},,,,{ 11332211 +−+−= nmnm gdgdgdgdGD K  as follows.  
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( )( ) ( )
( )[ ]

⎪
⎪
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−′
−

gg

ggeggdgd
g

ggd
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,
2

1]|Pr[
2

2

2σ
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σπη  

For example, given a sample duration 80ms of digraph “na” with the mean 

100ms and the standard deviation 30ms, we can calculate the emission 

probability of sample digraph duration as follows.  

( ) [ ]
( )

010648267.0
302

1"|"100Pr80 2

2

302
10080

"" =
⋅

== ⋅
−

−
enamsmsna π

η  

The initial probability vector π  is the probability of the frequency that the 

n-graph appeared in the . S

  There are three basic problems to solve with the HMM ),,( πηλ A= . These 

problems are the following. 

♦ Given a model parameters ),,( πηλ A=  and observation output 

sequence , compute the probability tOOOOO K321= )|( λOP  of the 

observation output sequence. 

♦ Given a model parameters ),,( πηλ A=  and observation output 

sequence , find the most probable state sequence tOOOOO K321=

tQQQQQ K321=  which could have generated the observation output 

sequence. 

♦ Given a observation output sequence tOOOOO K321= , generate a 

HMM ),,( πηλ A=  to maximize the )|( λOP . 

We make the assumption that each individual has his/her own HMM with 

),,( πηλ A=  for individual’s keystroke timing characteristics. The problem to 

solve is that, given a keystroke sequence  and its timing information, we have S
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to choose one from the number of HMMs which has the highest probability to 

generate the keystroke sequence . Consequently, first we have to calculate the 

probability of keystroke sequence  for each HMM. This is similar to the first 

basic problem to solve with HMM as described above, and we will show how to 

solve the problem with Forward algorithm in the next section. 

S

S

3.5. Forward Algorithm 

The problem of finding the probability of keystroke sequence  can be viewed 

as how well a given HMM 

S

),,( πηλ A=  would score on . We use the 

Forward algorithm [

S

22] to calculate the probability of a m long keystroke 

sequence  with n-graph , and n-graph durations , S G GD

{ }

},,,,{
},,,,{

,,,

1321

1321

21

+−

+−

∈

=
=

=

nm

nm

Nmm

ddddGD
ggggG

sssS

K

K

K

 

The state probabilities s'α  of each state can be computed by first calculating 

α  for all states at . 1=t

( ) ( ) ( )1111 1
dgg gηπα ⋅=  

Then for each time step kt ,,2 K= , the state probability α  is calculated 

recursively for each state. 

( ) ( )1,11 11
)( +++ ++

⋅⋅= tgggtttt dAgg
ttt

ηαα  

Finally, the probability of keystroke sequence  given a HMM S ),,( πηλ A=  

is as follows.  

[ ] ( ) ( kgggkkkk dAggGDGS
kkk

)ηααλ ⋅⋅==
−−− ,11 1

)(|,,Pr  

The Forward algorithm described above has certain difference from the 

original one in [22]. The emission probabilities take less computation to obtain 
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since we use the Gaussian distribution to model observed states. Additionally the 

observed states are only connected to the corresponding unknown states because 

we know the exact combination of n-graph the individual typed. So the 

summation of all partial probability of the state at time  is ignored and only 

one probability is calculated.  

t

In original version of the Forward algorithm, the computation involved in 

the calculation of ( )jtα , Tt ≤≤1 , Nj ≤≤1 , where T  is the number of 

observations in the sequence and  is the number of states in the model,  

requires 

N

( )TNO 2  calculations. In our modified version of the Forward 

algorithm, we can see that it only requires ( )NTO  calculations. 

3.6. General Modules for Keystroke Analysis 

In general, there are two problems can be solved using our model.  

♦ Given a keystroke sequence , and a HMM S λ  describing  

individual’s keystroke timing information, we wish to determine 

whether  come from S λ  or not. (Authentication) 

♦ Given a keystroke sequence  and a set of HMMs S s'λ  describing 

different individuals’ keystroke timing information, we wish to know 

which HMM most probably generated . (Identification) S

The first problem is that, given a test sample of keystroke sequence and a 

reference profile, we have to decide whether the sample belongs to the reference 

profile or not. The second problem is very similar to the solutions provided by 

physiological biometrics. In this section, we devise three modules: Profile 

Building Module, Authentication Module and Identification Module underlying 

the model and algorithm described in the previous sections.  
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In the Profile Building Module, first we have to build the reference profile 

for each user. It requires the user to provide the reference samples. The more 

quantity of reference samples provided, the more exact parameters can be 

extracted. After collecting sufficient number of reference samples, we use the 

maximum likelihood estimation for Gaussian Modeling to calculate the 

parameters of each n-graph duration. We also have to compute the transition 

probability matrix and initial probability vector with respect to Hidden Markov 

Model. Then the parameters calculated for Hidden Markov Model are treated as 

the base element of the reference profile for each user. The flow chart of Profile 

Building Module is shown in Figure 3.3. 

User provide sufficient number of 
reference samples

Transform the reference samples as 
combination of n-graph and duration 

time for each n-graph

Apply maximum likelihood estimation 
for Gaussian Modeling to calculate the 
duration mean and duration standard 

deviation of each distinct n-graph

Compute the transition probability 
matrix and initial probability vector of 
each n-graph state for Hidden Markov 

Model

A : Transition probability matrix of HMM
η : Emission probability matrix of HMM
π : Initial probability vector of HMM

Store the profile of the particular User with 
the form of HMM λ={A, η, π} into User 

Profile Database
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Figure 3.3: Flow chart for Profile Building Module 

In the Authentication Module, given a keystroke sequence  of target 

string from a user with claimed identity 

S

ID , we wish to examine the possibility 

that  generated by S ID . First we transform the keystroke sequence  to 

n-graph combinations  and calculate the timing information of n-graph 

duration  as usual. At this moment, we have 

S

G

GD { } NmmsssS ∈= ,,, 21 K , 

 and },,,,{ 1321 +−= nmggggG K },,,,{ 1321 +−= nmddddGD K . Now we produce a 

vector , such that GDT

},,,{
112211 +−+−

−−−=
nmnm ggggggGDT μ εσ μ εσ μ εσK  

, where ε  is the weighting factor, 
kgμ  is ID ’s duration mean of n-graph , 

and 

kg

kgσ  is ID ’s  duration standard deviation of n-graph .  is the 

n-graph duration vector to evaluate the threshold value of the probability 

produced by modified Forward algorithm. With the inputs , , and 

kg GDT

GD GDT IDλ , 

we can apply modified version of Forward algorithm to obtain two probability 

value ]|,,Pr[ IDGDGS λ  and ]|,,Pr[ IDGDTGS λ . ]|,,Pr[ IDGDTGS λ  can be 

viewed as the possibility if all the n-graphs durations in  are deviating G ε  

times of duration σ  from duration μ . ]|,,Pr[ IDGDTGS λ  is the threshold 

value of probability used to decide that the acceptance of the keystroke sequence 

 is confirmed if following expression is true. S

]|,,Pr[]|,,Pr[ IDID GDTGSGDGS λλ ≥  

The weighting factor ε  can be specified with respect to different level of 

security strength. The flow chart of Authentication Module is shown in Figure 
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3.4. 

  

Figure 3.4: Flow chart for Authentication Module 

In the Identification Module, given a keystroke sequence 

 from the individual and a set of HMMs { NmmsssS ∈= ,,, 21 K }

}{ ls λλλλλ ,,,' 321 K= , where  is the number of HMM. The problem is to 

choose the best one from 

l

s'λ  which most probably generated  or there is no 

such one existed. In the beginning, the keystroke sequence  is transformed to 

n-graph combinations  and the timing information of 

n-graph duration 

S

S

},,,,{ 1321 +−= nmggggG K

},,,,{ 1321 +−= nmddddGD K  is calculated. 

ljNjjGDGS ≤≤∈ 1,]|,,Pr[ λ  for each HMM in s'λ  is produced by modified 
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Forward algorithm. We select user U  with the maximum probability over 

others’, such as 

( )ljNjjU GDGSGDGS ≤≤∈= 1,]|,,Pr[max]|,,Pr[ λλ  

After that, we produce a vector  for user U , such that GDT

},,,{
112211

UUUUUUU
nmgnmggggg

GDT
+−+−

−−−= εσμεσμεσμ K  

, where ε  is the weighting factor,  is U ’s duration mean of n-graph , 

and  is U ’s  duration standard deviation of n-graph . Again we use the 

modified Forward algorithm to calculate the . If the 

expression , the keystroke sequence  

generated by user U  is confirmed. Otherwise, we consider the keystroke 

sequence  is not generated by any user in the User Profile Database. The flow 

chart is shown in Figure 3.5. 

U
kg

μ kg

U
kg

σ kg

]|,,Pr[ U
UGDTGS λ

],,Pr[]|,, U
U

U GDTGSGDG λλ ≥ |Pr[S S

S



 

 28

User provide testing sample with 
claimed identity ID.

Transform the testing sample as 
combination of n-graph and duration 

time for each n-graph

Produce GDT with weighting factor ε

Apply modified Forward algorithm to 
calculate Pr[S, G, GD | λ]  for each 
HMM in the User Profile Database

Confirmed that testing 
sample S is generated by 

user U

ID   : The claimed identity of the user
S   : Keystroke sequence of target string
G   : n-graph vector generated from S
GD   : n-graph duration vector for G from S
GDTU: n-graph duration vector for G from the 

    Gaussian Modeling parameters of user U
λ   : HMM parameters of user
J   : the number of profile in User Profile Database

Pr[S, G, GD | λU] >= Pr[S, G, GDTU | λU]
Unknown user in the 
User Profile DatabaseNo

Yes

Select 
Pr[S, G, GD | λU] = max(Pr[S, G, GD | λj]) 

for all j in J

 

Figure 3.5: Flow chart for Identification Module 

3.7. Scheme and Measures 

Within the literature of fixed-text keystroke analysis, most of the proposed 

approaches put the emphasis on the application of authentication. There are 

several aspects to be concerned as follows: 
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♦ The target string to be analyzed could be username, password, first 

name, last name, or pass-phrase, which are normally short and usually 

three to sixteen characters in length. 

♦ The samples used to build the reference profiles and the samples used 

to compare are identical and fixed strings, the difference is the timing 

information extracted from them. 

We devise the scheme for fixed-text keystroke analysis according to the concerns 

listed above. There are two phases in the scheme for static keystroke analysis, 

the training phase and the recognition phase. The training phase is to build the 

user profiles as the database for recognition phase to compare with. 

In the training phase, we have to decide the number of reference samples 

from each target string, and the size of n-graph to segment the target string. 

Figure 3.5 depicts the process of training phase. 

 

Figure 3.5: Flow chart of training phase for fixed-text keystroke analysis 

In the recognition phase, we divide it into two parts according the function 

for dedicated requirement: Authentication or Identification. Figure 3.6 depicts 

the process of recognition phase. 
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Authentication 
Module

τ, TS, λτ
Acceptance or 

Rejection of the 
claimed identity τ

User Profile 
Database

τ : Claimed identity of the user
TS : Testing samples of keystroke sequences and 

   timing information
λτ : Profile for τ as HMM parameters
λ's : All user profile in User Profile Database
τm : Identity matched TS

Recognition Phase

λτ

TS, λ's
Identification 

Module

λ's

τm found to match TS or 
report TS is unknown to 
User Profile Database

 

Figure 3.6: Flow chart of recognition phase for fixed-text keystroke analysis 

3.8. Authentication Strategy 

The target strings to be analyzed in traditional login-password authentication 

mechanism are username and password. We can use two strategies as follows: 

♦ O-Strategy 

The claimed identity is accepted if both username and password passed 

the verification phase. This strategy requires users make no mistakes 

on both target strings. 

♦ A-Strategy 

The claimed identity is rejected if both username and password denied 

at the recognition phase. This strategy allows users to make almost 

most one mistake on one of the target strings. 
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4. Experiments and Results 

4.1. Experiment Setting 

The experiment was conducted via web browser. A client-side JavaScript is used 

to gather the timing information of keystroke. Parts of the volunteers are 

colleagues and alumni of NCTU. Other parts of volunteers were anonymous 

from Internet. User provided their login name and password via html form, just 

like the way commonly employed by the web-based application. The timing 

accuracy we used is 1 millisecond. In this experiment, we use digraph as the 

segment size of keystroke sequence.  

4.2. Data Collection 

For the collection of reference samples, 58 volunteers provided two familiar 

strings as login name and password for 20 times. As to the collection of testing 

samples, the above 58 volunteer tried to be authenticated in their own account as 

legitimate users for 15 times, 870 testing samples were used to evaluate FRR. 

Another 257 anonymous volunteers tried to be authenticated in legitimate users’ 

accounts. Each account was attacked between 44 and 82 times. Total 3528 

imposter testing samples were collected. 

  The lengths of login name and password are between 4 and 14. Figure 4.1 

show the distribution of target string length. 
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Figure 4.1: Target string length distribution of reference samples 

4.3. Evaluation 

We evaluate the value of standard deviation weighting factor ε between 0.2 

and 3.5 with interval of 0.1 for both strategy. Figure 4.2 to Figure 4.5 shows the 

FAR and FRR of O-Strategy with minimum target length of 9, reference sample 

size of 5, 10, 15, 20, and 35 possible standard deviation weighting factor. 
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Figure 4.2: O-Strategy - Minimum target string length = 9, reference sample size 
= 5 
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Figure 4.3: O-Strategy - Minimum target string length = 9, reference sample size 
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= 10, EER = 5.71% 
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Figure 4.4: O-Strategy - Minimum target string length = 9, reference sample size 
= 15, EER = 5.24% 
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Figure 4.5: O-Strategy - Minimum target string length = 9, reference sample size 
= 20, EER = 4.76% 

Figure 4.6 to Figure 4.9 shows the FAR and FRR of A-Strategy with minimum 

target length of 9, reference sample size of 5, 10, 15, 20, and 35 possible 

standard deviation weighting factor. 
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Figure 4.6: A-Strategy - Minimum target string length = 9, reference sample size 
= 5, EER = 6.19% 
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Figure 4.7: A-Strategy - Minimum target string length = 9, reference sample size 
= 10, EER =3.81% 
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Figure 4.8: A-Strategy - Minimum target string length = 9, reference sample size 



 

 37

= 15, EER =2.91% 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.2 0.5 0.8 1.1 1.4 1.7 2 2.3 2.6 2.9 3.2 3.5

Threshold of Standard Deviation

FR
R 

vs
. F

A
R

FAR

FRR

 

Figure 4.9: A-Strategy - Minimum target string length = 9, reference sample size 
= 20, EER =2.54% 

We can see from Figure 4.2 to Figure 4.9 that A-Strategy obtained better ERR 

than O-Strategy. In Figure 4.10 and Figure 4.11, we show that the relation of 

EER vs. minimum target string length. 
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Figure 4.10: O-Strategy – EER vs. Minimum target string length 
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Figure 4.11: A-Strategy – EER vs. Minimum target string length 

We can see that as the EER drops as the minimum target string length increases. 
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Figure 4.12: O-Strategy: FRR with different number of reference samples 

O-Strategy

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Reference Samples

Fa
ls

e 
A

cc
ep

ta
nc

e 
Ra

te ε= 1.0

ε= 2.0

ε= 3.0

 

Figure 4.13: O-Strategy: FAR with different number of reference samples 
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Figure 4.14: A-Strategy: FRR with different number of reference samples 
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Figure 4.15: A-Strategy: FAR with different number of reference samples 

We can see from Figure 4.12 to Figure 4.15 that FRR of both strategies drop as 

the number of reference samples increase, and FAR of both strategies lift slightly 

as the number of reference samples increase. 
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5. Conclusions 

Our approach achieved the EER of 2.54%, which is near 2 % - values generally 

considered to be acceptable for this type of system. The ERR of our scheme can 

be improved as we conduct more experiment to collect more reference sample 

with length longer than 10. 

As to future work, we can combine the proposed scheme with the analysis 

of the surfing route to the login page. The proposed model can be extended to 

devise scheme for free-text keystroke analysis, such as continuously real-time 

identity verification. 
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