
Adaptive Minimum-Redundancy

Coding over Binary Channel with

Unequal Cost Letters :

Implementation and Analysis

Chi-Huan Tsai

July 23, 2004



2

Abstract

In this paper we consider the adaptive case of prefix-free coding with

unequal letter costs. That is, given an alphabet with size n, and a binary
channel with unequal cost digits, we try to construct a prefix-free code W
adaptively. Our goal is to achieve or approximate minimum-redundancy a

tree-based method can generate.

Our experimental results show that generally our adaptive algorithms can

construct codes with low redundancy.

.

Key Words: information theory, source coding, unequal cost, adaptive algo-
rithm, binary channel.
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Chapter 1

Introduction

In this paper we consider the adaptive case of prefix-free coding with
unequal letter costs. That is, given an alphabet with size n, and a binary
channel with unequal cost digits, we try to construct a prefix-free code W
adaptively. Our goal is to approximate the minimum redundancy codes.
The original Karp’s problem[13] is an optimization problem and many

research papers have tried to solve it[1]. But the general case solution still
needs exponential time complexity so far, thus not suitable for practical
application. Basically, we study the approximation method of the adaptive
case of Karp’s problem for two reasons:

1. Nowadays, the adaptive data compression(e.g. adaptive Huffman cod-
ing, adaptive arithmetic coding) is proved to be more useful than static
compression methods for some specific applications.

2. The adaptive case is essentially approximate.

Since 1948 Shannon’s fundamental theorem proved that there do exist
codes which achieve sharp upper bounds on the transmission rates over dis-
crete noiseless channel, researchers had tried to construct the codes. Huffman[12]
first proposed a tree-shaped structure that can construct the optimal code.
That is, given an alphabet with n source symbols {α1, . . . , αn}, each sym-
bol αi with probability pi, we can use Huffman tree to build the codeword
mapping W that minimizes the total length of stream transmitted over the
discrete noiseless channel.
However, Huffman’s minimum-redundancy coding only applies to chan-

nels with equal letter length. Sometimes, letters may have different features
other than ”length”. For example, over a binary channel, to transmit digit
1 may cost more energy than digit 0, thus digit 1 and digit 0 have different
‘costs’, in the extreme case, the cost of a digit could be 0[8].
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8 CHAPTER 1. INTRODUCTION

Later in 1961, Karp[13] formally stated the unequal letter costs problem.
Given an alphabet set A with n source symbols {α1, . . . , αn}, without loss of
generality, let the source symbols have probabilities p1 ≤ . . . ≤ pn, and the
costs of the r letters {l1, . . . , lr} have c0 ≤ . . . ≤ cr−1. A codeword wi for
αi is a string with letters l

′
is. We define Numj(wi) as the number of letter

lj which appears in wi. Naturally, the cost of a codeword wi is cost(wi) =
∑

j cj · numj(wi). A code W is a collection of codewords. COST (W ) =
∑

i pi · cost(wi), wi ∈W .

Definition 1.0.1. A code W is optimal if COST (W ) is minimum for all
possible code.

Definition 1.0.2. A code is prefix-free if no codeword is a prefix of any other
codeword. We call such a code prefix code.

Note that we can construct a n-leaf full tree T (called a parsing tree),
assign a symbol αi to certain leaf node, and the path from root to the leaf
node defines the codeword wi for αi. Every parsing tree T represents certain
prefix code W , but not all the prefix code can be represented by a parsing
tree. In this paper we focus on the prefix codes which can be represented by
a parsing tree.

Karp’s problem is: can we efficiently construct an optimal prefix code?
Karp thought of it as an integer programming problem, but the algorithm
needed exponential time. Since then, there is still no known polynomial
time algorithm for Karp’s problem. We don’t even know whether it’s an
NP-Hard problem in essence. The best known solution is provided by Golin
and Rote[11], the algorithm uses dynamic programming technique and gives
the solution in O(nC+2), where n is the size of the input alphabet and C is
the largest letter cost. This polynomial time algorithm, however, can only
deal with special case that ci’s are all integers. Moreover, when C is very
large the running time is unacceptable. Bradford et. al.[7] later improved the
algorithm, but considered only binary channel with costs c0 and c1. The time
complexity was reduced to O(nC). When c0 is 1 and c1 is 2, time complexity
is improved from O(n4) to O(n2)1.

Golin et al.[10] have also developed a scheme that approximates Karp’s
problem in polynomial time. This approximation algorithm has time com-

plexity nd log(n)exp(O( ln(1/ε)2

ε2
)) to find a prefix code of cost at most (1 +

ε)OPT, where OPT stands for the optimal cost.

1This is the simplest case these algorithms can solve and the most apparent improve-
ment is shown.



9

Besides the above algorithms, heuristic functions for constructing the
parsing tree are also considered in [4, 9, 14, 15]. These heuristic func-
tions don’t give exact solution, but try to approximate it to some extent.
Two heuristic functions will be analyzed and implemented in this paper.
Mehlhorn[15] proposed a top-down approach to build the parsing tree for
approximating the optimal cost. While Gilbert[9] proposed a bottom-up ap-
proach. We’ll describe their original algorithms in chapter 2, and provide our
improvement on these methods in chapter 3.
The above all relates to static model. We will also discuss the performance

of the above algorithms when applied to adaptive environment. We intro-
duce two adaptive methods, based on the top-down approach and bottom-up
approach, respectively. Our algorithms can encode and decode data adap-
tively over binary channel with unequal cost letters. The experimental results
will be shown in chapter 4. Bradford et al.[7]’s algorithm will also be im-
plemented in order to acquire the optimal solution for comparison with our
approximation algorithms.
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Chapter 2

Preliminaries

The capacity C of a discrete channel is defined as [18]:

C = lim
T→∞

logN(T )

T
, (2.1)

where T is the duration of the channel and N(T ) is the number of all possible
letter streams the channel can serially transmit in duration T , that is, the
maximum number of distinguishable letters. Here we can simply think of
duration as some kind of “cost”, and in our case the costs could be different.
Suppose there are n letters with durations {t1, ..., tn}. As we know the last
letter of an output stream can be any one of the allowed letter on the channel,
thus

N(T ) = N(T − t1) + . . .+N(T − tn) (2.2)

Let X0 be the largest real solution of the following equation:

X−t1 + . . .+X−tn = 1 (2.3)

When t is large, N(t) will be near X t
0, and plugging it into equation 2.1,

we will have C = logX0. Note that the entropy of a source distribution is
defined to be:

H = −
∑

i

pi log pi (2.4)

Entropy is the expected number of letters needed to transmit a symbol. Thus,
in our noiseless binary channel, since in every single time(i.e. cost) unit at

11
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most logX0 letters can be transmitted, the maximum amount of symbols we

can communicate through it is
logX0

H
. That is, we can transmit a symbol

with cost at least
H

logX0

.

Therefore, after we can generate a code W for the source distribution, we
can measure its efficiency as below. First, compute the entropy H according
to source distribution, and X0 according to channel characteristic. Second,
estimate the cost of the transmission while we apply the code to the source
distribution: COST (W ) =

∑

i pi · cost(wi), wi ∈ W .
Compare the performance of the code COST (W ) with the expected rate

H

logX0

to judge the efficiency of the code W . The closer they are, the less

redundancy is induced.

We will describe three algorithms proposed before dealing with the un-
equal letter cost problem. Note that the code they generate are all tree-
based(i.e. can be represented by a tree). The main drawback of tree-based
coding technique is that we can only map a symbol to a codeword of letters
with integral length. As for other compression algorithms(e.g. arithmetic
coding), the limitation doesn’t exist and thus can be asymptotically close to
entropy. However, by now the only known algorithms for solving unequal
letter costs problem are all tree-based. It’s an open problem that if there
exists a good algorithm which is “not” tree-based.

2.1 Digital Expansion Method

Consider the Shannon-Fano encoding method first. For a source distri-
bution p1 ≤ . . . ≤ pn, the algorithm splits the probabilities into two piles,
each has sum of probabilities as close to 1

2
as possible. Then assign letter ‘0’

to one pile and ‘1’ to the other. Continue to split probabilities and assign
letters until a pile of only one probability remains.

For example, consider a probability distribution {0.1, 0.2, 0.3, 0.4}, we can
encode as follows:

0.1 0 0 0
0.2 0 0 1
0.3 0 1
0.4 1

The expected number of a codeword is 1.9 bits.
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Note that if we try to take 0.1 and 0.4 together at the first step, in order
to approach 1

2
, the resulting code will be:

0.1 0 0
0.4 0 1
0.2 1 0
0.3 1 1

The expected bit number of a codeword is 2. Also note that if in every
step we can split equal size piles, the parsing tree will be exactly the Huffman
tree and is the optimal one.
Now we consider the unequal letter cost case. Suppose we have only

two symbols to be transmitted over a binary channel, and their probabilities
are p and 1 − p, respectively. What p should be if we want to transmit
with the highest rate? In the beginning of this section, we have shown

that COST (W ) ≥
H

logX0

(remember X0 is the largest real root of equation

2.3) and our goal is to find the code with least COST (W ). If the source
distribution is variable, we can estimate how good the splitting method can

be. We know
H

COST (W )
has an upper bound logX0, but when achieved?

Just replacing p and 1− p with X−c0
0 and X−c1

0 , respectively, we can see
that

H

COST (W )
=

−p log p− (1− p) log (1− p)

c0p+ c1(1− p)

=
−X0

−c0 logX0
−c0 −X0

−c1 logX0
−c1

c0X0
−c0 + c1X0

−c1
= logX0 (2.5)

Thus when p0 = X−c0
0 and p1 = X−c1

0 , we’ll have the highest information
transmission rate.
We try to split the probabilities as follows. For the probabilities p1 ≤

. . . ≤ pn, we split them as p1 ≤ . . . ≤ pi and pi+1 ≤ . . . ≤ pn, where
i
∑

1

pk

is as close to X−c0
0 as possible. Then we separately deal with the two piles

recursively, expand forward the deeper level. Expanding stops while there is
only one probability in a pile, and we can assign a codeword to the symbol
with that probability. In the same spirit, we expect that splitting like this
at every stage would generate good parsing tree(i.e. nearly optimal prefix
code).
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2.2 Generalized Huffman Method

In the beginning of this chapter, we have seen that the best code W is the
one with cost equivalent to the lower bound. We call it the zero-redundancy
coding.
Apparently not all source can be coded without redundancy. However, a

source which can be coded without redundancy has its own interesting char-
acteristics. Since in this paper we focus on the tree-based coding methods,
naturally we would ask: what characteristics does a parsing tree have if it’s
regarding to a zero-redundancy coding?
In the last section, in each stage of digital expansion method, the proba-

bilities are separated into two piles, and we have seen that when these two
piles of probabilities have ratio (X−c0

0 : X−c1
0 ), the optimum is achieved, thus

zero-redundancy. Therefore, digital expansion method assumes source can
be coded without redundancy and split the piles as if the ratios are always
ideal (X−c0

0 : X−c1
0 ).

Digital expansion method builds a parsing tree with a top-down approach.
Actually, we may build a parsing tree with a bottom-up approach too. Also
the zero-redundancy characteristic will be used to be the assumption. In our
view, essentially generalized Huffman method and digital expansion method
are similar, in spite of the difference in building the parsing tree.
In [2], zero-redundancy coding occurs for those distributions p1, . . . , pn

for which:

n
∑

i=1

pi · cost(wi) =
H

logX0

=

−
n
∑

i=1

pi log pi

logX0

⇒ logX0
pi = −cost(wi)

⇒ pi = X0
−cost(wi)

= X0

−
r−1
∑

j=0

cj ·numj(wi)

= X0
−c0·num0(wi)−c1·num1(wi)(∵ binary channel)

= (X−c0
0 )num0(wi) · (X0

−c1)num1(wi) (2.6)

Any pair of siblings have the same path from root to their parent, and dif-
ferent in the edges between parent and the leaves. Thus for a zero-redundancy
code over binary channel, any pair of siblings in its parsing tree must have
ratio Xc1−c0

0 > 1(∵ X0 ∈ (1, 2]).
The algorithm mentioned in [9] tries to approximate the zero-redundancy

code with the above idea. The only difference between Huffman coding and
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left side: B sequence(from bottom to top)
right side: each Nk(B) on level k

Figure 2.1: c0 = 2, c1 = 5

generalize Huffman method is the way they merge the nodes. In Huffman
coding, the two symbols with the least probability are merged. In generalized
Huffman method, one symbol has the least probability p0, and the other has
probability as close to p0 ·X

c1−c0
0 as possible.

2.3 Dynamic Programming Approach

In [7], dynamic programming technique is used to solve the unequal costs
problem, where the costs can only be integers.
Suppose a tree T has left link with length(cost) c0, right link with length(cost)

c1, where c0 and c1 must be integers, and c1 > c0. Then at every depth, cer-
tain leaf nodes or internal nodes could locate there. Let B be the sequence
(b0, ..., bd−1), where bi is the number of right children and d is the depth of
T , no matter leaf nodes or internal nodes, at or below level i. Note that
level 0 is the first level with right children and thus the lowest. Say B is the
characteristic sequence of T. B is always monotonic(i.e. b0 ≤ . . . ≤ bd−1).
We show an example in Figure 2.1.
Let Nk(B) be the number of leaf nodes at or below level k. We know every

leaf nodes in the parsing tree T may represent some symbol, and to achieve
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lower cost, symbol with lower probability shall be located at lower level.
Thus Nk(B) is the number of symbols with the lowest probabilities which
will be allocated at or below level k. And Nk(B) is decided by sequence B
as follows:

Theorem 2.3.1. Nk(B) = bk + bk−(c1−c0) − bk−c1

Proof. At first we add the right children at or below level k. But left children
must also be considered. Apparently for any right children at or below level
k − (c1 − c0), it must have a sibling as the left children at or below level
k. However the internal nodes could be counted in and we need to subtract
them. Similarly, for any right children at or below level k − c1, its parent
must be at or below level k. The proof is complete.

Next we define cost(B,P ) as the cost if we assign symbols with probability
distribution P to the parsing tree T that has characteristic sequence B. The
depth of a leaf node is equivalent to the cost of the node’s regarding codeword.
In Figure 2.1, the tree has 5 leaves with depth {12, 10, 9, 7, 4} respectively.
If the 5 symbols have occurred for {2, 3, 4, 5, 10} times respectively, after
assigning them to the tree, we have cost(B,P ) = 6.875. We can decide
cost(B,P ) by Nk(B).

Theorem 2.3.2. cost(B,P ) =
∑

0≤k<d

SNk(B), where Si =
∑

j≤i

pj.

Proof. To calculate the cost(B,P ) when we assign symbols that has proba-
bility distribution P to the parsing tree T that has characteristic sequence,
first we should know the depth of leaf nodes and their corresponding symbols.
Then cost(B,P ) =

∑

i depth(i) · prob(i).

Suppose that a symbol ai with probability pi is located at level k
′. To

calculate cost(B,P ), at every level k, if pi is among the smallest Nk(B)
probabilities(i.e. k′ ≤ k), pi must be added once. After every level has been
through, pi is added for (d − k′) times, that’s the depth of the symbol, and
thus we can calculate cost(B,P ) by this method.

When parsing tree T is available, we can make its characteristic sequence
B easily. But what if we have only the sequence B? Can we establish T by
B?
In fact, the inverse direction is easy too. First process b0 of sequence

B. Indexing the nodes by their cost, let k be the index of the lowest left
leaf node. k must be bc1−c0−1 + 1 since there are no left children below level
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c1 − c0. Thus, p1 can be assigned to one of the b0 leaf nodes, and pk can
be assigned as the left sibling. Their parent internal node then becomes a
leaf node. Change the B sequence. Add probability p1 + pk to the set of
probabilities. Then process next element of sequence B in the same way,
until all the probabilities are assigned properly.
Therefore all we need to do is to establish characteristic sequence B with

minimum cost. Then build the parsing tree T by processing B.
For a c1-elements section of sequence B, let it be a c1 tuple (i0, . . . , ic1−1),

0 ≤ i0 ≤ . . . ≤ ic1−1 ≤ n − 1. Note that each element is smaller than n − 1
since there are only n symbols in the alphabet, there is no need to consider
a parsing tree with more than n leaf nodes, there are at most n− 1 internal
nodes and thus at most n− 1 right children.
When we move the section(or window) from bottom to top, the new c1

tuple we get is (i1, . . . , ic1−1, ic1), where ic1 must be at least ic1−1. And this
is just like the way we described in Theorem 2.3.2. Therefore we have:

Theorem 2.3.3. By every move-up, the cost shall increase Sic1+ic0−i0.

Proof. As in Theorem 2.3.2, by every move-up the cost increases SNk(B).
According to Theorem 2.3.1, Nk(B) = bk + bk−(c1−c0) − bk−c1 = ic1 + ic0 − i0,
(k = c1, since level c1 is just climbed onto). Our statement is proved.

When all the elements in the c1 tuple are n − 1, we stop. This process
shall compute the cost(B,P ).
We restate the data structure to be a graph and then solve it as a shortest

path problem. Let any c1 tuple be a vertex. And if first c1 − 1 elements of
vertex u and last c1 − 1 elements of vertex v overlapped, there is an edge
between u and v, and its weight is Sic1+ic0−i0 . It’s easy to see the shortest
distance between vertex (0, . . . , 0) and (n− 1, . . . , n− 1) is cost(B,P ).
For example, let c0 = 2, c1 = 3, n = 5. To find the shortest path we may

go through:

(0, 0, 0)
S1→ (0, 0, 1)

S3→ (0, 1, 2)
S4→ (1, 2, 2)

S4→ (2, 2, 3)
S4→ (2, 3, 3)

S4→ (3, 3, 3)
S4→ (3, 3, 4)

S5→ (3, 4, 4)
S5→ (4, 4, 4)

This produce the sequence (1, 2, 2, 3, 3, 3, 4, 4, 4), cost(B,P ) = cost(4, 4, 4) =
S1 + S3 + 5S4 + 2S5.
The graph has O(nc1+1) edges, thus need O(nc1+1) time. Time complexity

can be further improved to O(nc1) and it needs much more complicated
processing.
Let δ = (i1, . . . , ic1−1) be a (c1 − 1)-tuple. Define a matrix Aδ as follows:
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Definition 2.3.4. Aδ(i, j) = cost(i, i1, . . . , ic1−1) + Sj+ic0−i

Aδ can be used to compute cost of c1-tuples.

Theorem 2.3.5. cost(δ, j) = mini{Aδ(i, j)}

Proof. δ is the overlapped part of tuple (δ, j) and (i, δ), that is, from (i, δ) to
(δ, j) we are moving one level up. And the only possible previous section of
(δ, j) is (i, δ), where j ≥ ic1 and i ≤ i1. Thus the cost(δ, j) can be calculated
by one of them. By Theorem 2.3.3, we know that Sj+iα−i is the cost needed
for moving up one level. Therefore we can calculate cost(δ, j) by means of
processing matrix Aδ, that is, when column j is given, find the row i which
has the minimum.

Note that Aδ is a Monge matrix:

Aδ(i, j) + Aδ(i+ 1, j + 1) ≤ Aδ(i, j + 1) + Aδ(i+ 1, j)

This property can be proved as follows.

Theorem 2.3.6. Aδ is a Monge matrix.

Proof.

Aδ(i, j) + Aδ(i+ 1, j + 1)− Aδ(i, j + 1)− Aδ(i+ 1, j)

= cost(i, δ) + Sj+ic0−i + cost(i+ 1, δ) + Sj+ic0−i

−cost(i, δ)− Sj+ic0−i+1 − cost(i+ 1, δ)− Sj+ic0−i−1

= pj+ic0−i − pj+ic0−i+1 ≤ 0

Definition 2.3.7. A matrix is monotone if for 1 ≤ i1 ≤ i2 ≤ n,j(i1) ≤ j(i2),
where j(i) is the column at which row i has its minimum value. If every
submatrix is monotone, the matrix is totally monotone.

Every 2 x 2 submatrix of a Monge matrix is monotone, thus the Monge
matrix is totally monotone. The algorithm described in [3] can determine all
the j(i) in a totally monotone matrix and has time complexity O(n).
The dynamic programming algorithm is just to compute the cost of all

the c1-tuples by means of processing δ in lexicographic order. For example,
let n be 5, to calculate cost(2, 3, 3), we know δ = (2, 3) and j = 3, and Aδ(i, 3)
need the value of cost(i, δ), i ≤ 2, they are (0, 2, 3), (1, 2, 3), (2, 2, 3). Since we
process δ in lexicographic order, before (2, 3) is processed, (0, 2), (1, 2), (2, 2)
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must have been processed and the relative cost value has bee produced. After
processing the last δ (4, 4), our goal cost(4, 4, 4) must have been completed.
There are nc1−1 δ’s to be processed, and each needs O(n) time to find

the j(i). Note that entries of Aδ can be retrieved in constant time(by the
argument in last paragraph). Thus the total time complexity is O(nc1).
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Chapter 3

Improvements and

Implementations

3.1 Digital Expansion Method

Digital expansion method can be viewed as a divide-and-conquer process
that each time we partition the set of probabilities into two parts, then use
the same partition way to deal with them individually, and assume the former
partition is correct.

According to [15] digital expansion method generates code W where effi-
ciency can be bounded as:

COST (W )−
H

logX0

≤
1− p1 − pn
logX0

+ c1 (3.1)

When c1 gets larger, logX0 becomes smaller, and performance degrades.
Also observe that for skewed distribution, we can let p1 and pn be the largest
two probabilities to improve the bound. We’ll be back on this issue in chapter
4.

Due to its top-down nature, digital expansion method is adequate for
adaptive coding. As to generalized Huffman method, if it’s necessary to
know where a symbol is located in a parsing tree, we need to build the
whole parsing tree to acquire the exact path from root to the leaf(i.e. the
codeword). However, as far as digital expansion method is concerned, we can
get the codeword by simply deciding the path the symbol belongs to.

Figure 3.1 describes our adaptive digital expansion method algorithm.
And Figure 3.2 illustrates how the algorithm works.

21
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procedure AdaptiveDEM( sym, low, high, sum )
// sym: the symbol to be transmitted
// low: the index of the beginning of the section of the array
// high: the index of the end of the section of the array
// sum: the total sum of the probabilities indexed from low to high

// global variables
X0: largest real root of equation X−c0

0 +X−c1
0 = 1

prob[n]: the array of probabilities

// initialization
probsum := 0;
pivot := low;

// only one probability, no need to split
If low = high
begin

return;
end

//make pivot closest to the ideal index that separates the two piles
WHILE probsum < sum ∗ X−c0

0

begin
probsum := probsum+ prob[pivot];
pivot := pivot+ 1;

end

// try to separate the two piles more precisely
IF (probsum− sum) > (sum− (probsum− prob[pivot]))
begin

probsum := probsum− prob[pivot];
pivot := pivot− 1;

end

IF sym < pivot
begin

write bit 0 to stream;
AdaptiveDEM(sym, low, pivot− 1, probsum);

else
write bit 1 to stream;
AdaptiveDEM(sym, pivot, high, sum− probsum);

end

Figure 3.1: Adaptive Digital Expansion Method
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It can be seen that procedure AdaptiveDEM only expands the path
regarding to the symbol in hand to be transmitted(as Figure 3.2 depicted).
After transmitting the codeword, the probability model is modified. Then
the next symbol is grabbed and processed just the same way, until data
stream ends.
Also note that digital expansion method arranges the codeword by the

appearance order of the probabilities. Take a simple example, for c0 = 1, c1 =
2, and p1 = 0.2, p2 = 0.8. Digital expansion method will arrange the left child
of root node to the symbol with the probability 0.2, right child to the symbol
with probability 0.8. Though the parsing tree is just the same as the optimal
one, but the codeword mapping is inverse. We improve this by simply sorting
the resulting codewords in the order of the probabilities. The symbol with
higher probability shall be assigned a codeword with lower cost.

3.2 Generalized Huffman Method

3.2.1 Static Case

For original Huffman coding, it builds the parsing tree as follows. First,
prepare a list of n nodes, each has its own probability of certain symbol.
Then process the list as follows for n− 1 times:

1. find two nodes, t1 and t2, with the least probabilities,

2. create a node as their parent node tp,

3. let the probability of tp be the sum of probabilities of t1 and t2,

4. delete t1 and t2.

The only node remained is the root node of the parsing tree.
The first step needs O(log n) searching time if we use a heap structure

to manipulate the list (in fact, no better data structure exists in this case),
and the next three steps need constant time. Thus to build a parsing tree,
totally O(n log n) is required.
As for the generalized Huffman method, t1 is the node with the least

probability, and t2 is the one with probability closest to t1’s probability mul-
tiply Xc1−c0

0 . To find t2 we need a different data structure instead of array.
If we use arrays to implement generalized Huffman coding, we’ll need O(n)
time complexity to search for t2.
We choose binary search tree as the data structure. We establish a binary

search tree such that the keys of the nodes are their probabilities. We need
the following binary search tree manipulation routines:
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1. c0 = 1, c1 = 2, X
−c0
0 = 0.618

2. 8 symbols occur for {3, 7, 9, 6, 2, 4, 8, 5} times respectively, and the sym-
bol to be transmitted is the one occurring for 9 times(its section of
probability is circled by dashed line).

3. In each stage of separation, if the symbol to be transmitted is in the
left pile, go down left link(i.e. bit 0), otherwise, go down right link(i.e.
bit 1). The accumulated sum closet to X−c0

0 is underlined.

4. The final codeword for it is 001. At the last stage, only one symbol
remains, thus end the expanding.

Figure 3.2: top-down expanding
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1. Insert(t, T ): insert node t into the binary search tree T .

2. Delete(t, T ): delete node t from the binary search tree T .

3. FindMin(t, T ): in the subtree of T , which root node is t, find the node
with the smallest key then return it.

4. FindNearest(k, T ): find the node with key value nearest to k, then
return it.

The algorithm is shown in Figure 3.3.

All the binary search tree routines need O(d) time, where d is the depth
of the tree. Therefore our algorithm needs O(n · d) = O(n2) time to build
the parsing tree.
Note that the binary search tree can be further improved to be balanced,

since the nodes added are inclined to be monotone increasing, especially
when there are fewer nodes remain in the tree-building phase. We know that
for a monotone increasing sequence the binary search tree may degrade to
have search time O(n). A balanced binary search tree(e.g. red-black tree[5],
skip lists[16],. . . etc) can avoid worst case, achieve O(log n) time complexity
and guarantee the overall time complexity O(n log n). But the programming
complexity and overhead shall be cautiously handled.
The code generated by the parsing tree may have a problem that a symbol

with smaller probability does not necessarily own the codeword with the
greater cost. Like digital expansion method, we can simply sort the symbol-
codeword mapping by means of the costs of the codewords. Since it can be
observed that the mapping is already nearly sorted, we choose insertion sort
and achieve O(n) time complexity[17].

3.2.2 Adaptive Case

We also develop a adaptive algorithm using generalized Huffman coding.
Since generalized Huffman method is a bottom-up approach, we can’t use the
way we modify the static digital expansion method to reduce the amount of
computation. And the tree-building phase is very time-consuming actually.
Thus it’s natural to think of some ‘lazy’ way building the parsing tree for
less times. Since the generalized Huffman method tries to approximate the
optimal parsing tree by ‘mimicking’ the characteristic of zero-redundancy
coding, we develop our adaptive algorithm as follows. When a parsing tree is
temporarily built, we give each pair of children a value origin, that stores the
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// data structure prepared
prob[n ∗ 2]: array for internal and external nodes
parent[n ∗ 2]: array for storing parent node
lchild[n]: array for storing left child node
rchild[n]: array for storing right child node
T: empty binary search tree

// Initialization
For i := 1 to n
begin

Insert(i, T );
end
tp := n+ 1;

// tree-building phase
While tp < n ∗ 2 // there are more than one node in T
begin

t1 := FindMin(root of T, T );
t2 := FindNearest(t1, T );

parent[t1] := tp;
parent[t2] := tp;
rchild[tp] := t1;
lchild[tp] := t2;

prob[tp] := prob[t1] + prob[t2];

Insert(tp, T );
Delete(t1, T );
Delete(t2, T );

tp := tp + 1;
end

Figure 3.3: Generalized Huffman coding
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case 1: origin < θ case 2: origin > θ

Figure 3.4: Deciding Range

ratio of their probabilities. origin may be larger than the ideal ratio X c1−c0
0

or smaller. While we use this parsing tree to process the next symbol to be
transmitted, the model of probability is changed. If the ratio of probabilities
of this symbol and its sibling is out of range , we need to rebuild the parsing
tree. Not only the ratio of the pair of leaf nodes are checked, but also all
the ratio of the ancestors along the path to the root and their siblings are
checked. Let θ = Xc1−c0

0 . The ratio r must be in the range:

origin

{

< θ : (origin / r2) < r < (θ ∗ r1)
o/w : (θ / r1) < r < (origin ∗ r2)

where r1 and r2 are floating point numbers that assist to decide the range
of r.
If the original ratio has been larger than the ideal θ, we allow the ratio to

be larger than origin ∗ r2(let origin decide the upper bound). But the ratio
may also become smaller, and we require it to be at least θ ∗ r1(let θ decide
the low bound). We can do similarly for the ratio smaller than θ.
Here we explain why we store origin values. In generalized Huffman

coding, sometimes the ratios of certain pairs of siblings could be very far
from the ideal θ, and we can’t avoid it. If we decide the range only by θ, very
soon we’ll need to rebuild the parsing tree and we’ll get a similar one. This
won’t help a lot for reducing redundancy but takes much time for rebuilding
the parsing tree. Hence we shall consider origin too, for deciding the ranges
of ratios. We show how the above mechanism works in Figure 3.4 and Figure
3.5.
In Figure 3.5, suppose c0 = 1, c1 = 2, hence θ = 1.618. Four symbols

so far have been transmitted {1, 2, 3, 10} times, respectively. We call it a
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origin=1.66

origin=1

origin=2

root

10 6

3

2 1

3

new=1.43

new=1.33

new=3

root

10 7

4

3 1

3

Figure 3.5: Adaptively Rebuild Parsing Tree

weight distribution. In the left part of the figure, a parsing tree has been
built by using the static generalized Huffman method. From the lowest level,
the pairs of siblings have ratio {2, 1, 1.66}. They are stored as origin.

The right part of the figure shows that when the symbol that appears
right then is the one with weight 2. Now the ratios have been changed to
{3, 1.33, 1.43}, respectively. If any of the ratios is out of the range which
depends on origin and θ, we need to rebuild the parsing tree. If the ratios
are all still in the ranges they are constrained, the parsing tree won’t be
modified and will be used to encode the next symbol.

When a new symbol is added, the parsing tree is forced to be . Note that
after rebuilding the parsing tree could be just the same one as before. The
remaining problem is: what r1 and r2 shall we choose? If r1 is too large,
the ratios could become far from the ideal value θ, and the resulting parsing
tree can’t keep up with the probability distribution so far and thus result in
more redundancy. Or if r1 is too small, the frequency of rebuilding could get
higher and slow down the whole coding process. Similarly, if the chosen r2 is
too large, redundancy is produced. If r2 is too small, frequently rebuilding
causes a waste of time.

In our example, the original ratio of the lowest pair of siblings is 2(left
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side), and by now the ratio is 3(right side), larger than origin(case 1 in Figure
3.4). If r1 = 1.2, 3 > 1.2∗2 (i.e., out of range), then the parsing tree is rebuilt.
If r1 = 1.6, 3 < 1.6 ∗ 2 (i.e, still in the range), then we do nothing.
In chapter 4, we’ll show experimental results about the effects of choosing

different r1 and r2.

3.3 Dynamic Programming Approach

Although dynamic programming algorithm is such an elegant approach
which runs in polynomial time, we find that the enormous space it uses is
really a problem worth further studying.
The spirit of dynamic programming is cutting the main problem into

small sub-problems and solving them. The solutions of sub-problems can be
easily used to establish the solution of main problem. Any solution may be
used at some time, we can’t delete it to save the space. Thus there is no
much room for us to think of some method to reduce the space complexity
O(nc1).
Assume a system equipped with 4GB memory, and each entry in the

cost array need 4 bytes, we do the following analysis. If there are 256 source
symbols(byte-based), the system can afford c1 ≤ 3 cases. As to a typical text
file, there are around 80 source symbols, the system can afford only c1 ≤ 4
cases. Even for n = 27(English letter plus space), c1 can only be at most 6.
Before time appears to be a problem, memory has been exhausted.
Since the entries in the tuples must be monotonely increasing, by simple

combinatorical argument, there are only

(

n+ c1 − 1

c1

)

entries of cost array

used, other entries are useless. This is similar to the problem we illustrated

in Figure 3.6. Thus the space usage ratio is

(

n+c1−1
c1

)

nc1
. When c1 changes from

c to c+ 1, the space usage ratio also changes:

(

n+c
c+1

)

nc+1

/

(

n+c−1
c

)

nc
=

n+ c

n(c+ 1)
< 1(∵ n ≥ 1, c > 1)

The space usage ratio keeps decreasing. Also note when n is much larger

than c1, the space usage ratio is approximately
1

c1!
.

Also we can deduce that over a binary channel with c0, c1 fixed, more
source symbols(i.e. n ↑) results in worse space usage.
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Figure 3.6: analogy of choosing balls

Here we present an easy way to fully use the space for storing the cost

array. First we initialize the cost array with size

(

n+ c1 − 1

c1

)

. Again com-

binatorics offer the fact that for a c1-tuple (d0, . . . , dc1−1), we can give it
an index number which depends on n and c1. Let in,c1(sbegin, send) be the
number of the monotonely increasing sequences between sequences sbegin and
send, and each has c1 entries with value from 0 to n − 1. For example,
i3,2(01, 12) = 4, since there are 4 suitable sequences 01, 02, 11, 12.
We can calculate the index number by dealing with each digit separately.

For example, to calculate i10,4(0000, 6779), we have:

i10,4(0000, 6779) = i10,4(0000, 6665) + i10,4(6666, 6779)

= [i10,4(0000, 9999)− i4,4(0000, 3333)] + i4,3(000, 113)

The sequences after 6665 have entries smaller than 10 − 6 = 4. It’s easy to
calculate i10,4(0000, 9999)−i4,4(0000, 3333) =

(

10+4−1
4

)

−
(

4+4−1
4

)

= 715−35 =
680. Similarly, we can replace i4,3(000, 113) with

i4,3(000, 111) + i3,2(00, 02) = [i4,3(000, 333)− i3,3(000, 222)] + i3,2(00, 02)

=

(

4 + 3− 1

3

)

−

(

3 + 3− 1

3

)

+ i3,2(00, 02)

= 20− 10 + 3 = 13



3.3. DYNAMIC PROGRAMMING APPROACH 31

Thus i10,4(0000, 6779) = 680 + 13 = 693.
Every time we need to retrieve an entry in the array, we compute the index

number. Since c1 is being viewed as a constant, computing this index number
is a feasible procedure that won’t interfere the O(nc1) time complexity.
For another interesting situation, c1 may be much larger than n. Our

array-indexing method can trim the space used from intractable size to ex-
tremely small amount. However, if c1 is so large, it’s more realistic to try all

the parsing tree. Since there are only
1

n

(

2n− 2

n− 1

)

((n−1)th Catalan number)

n-leaf full binary trees.
Also note that our array-indexing method only offers marginal improve-

ment. It makes more cases possible to run on modern computers, but the
breakthrough in space efficiency still relies on theoretical result.
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Chapter 4

Experimental Results

In this chapter we show our experimental results. Our test data includes
the Canterbury Corpus[6] and several de facto standard compression evalu-
ation files.

The 8 files listed below are to be compressed:

1. alice.txt: a standard text file from Canterbury corpus.

2. fields.c: a source code file from Canterbury corpus.

3. ptt5: a fax image file from Canterbury corpus.

4. sum: an executable file from Canterbury corpus.

5. bible.txt: a large text file from Canterbury corpus.

6. E.coli.txt: a large file from Canterbury corpus, with only 4 symbols(A,T,C,G).

7. lena.tiff: de facto standard image files

8. peppers.tiff: de facto standard image files

Our experiments run on a machine equipped with the following setup:

• CPU: Intel Pentium 4 3.2GHz processor(800MHz FSB)

• Memory: 1GB RAM(Dual DDR400)

• Operating System: Windows Server 2003

33
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4.1 Adaptive Digital Expansion Method

In this section we adjust r1 and r2(as described in section 3.2.2) and run
experiments to find the tradeoff between compression ratio and performance.
We have tested 6 cases: r1 = r2 = 1, 1.1, 1.2, 1.5, 2.0, 3.0. Ideally, higher

value means wider range, thus less times for rebuilding the parsing tree and
the redundancy increases(see section 3.2.2). If r1 = r2 = 1, with high proba-
bility the incoming symbols will very soon make the ratios out of the range.
This will take lots of time to rebuild the parsing tree and make the adaptive
coding very slow. Thus we consider the other cases. From the results of
chapter 2, the redundancy percentage rp is defined as:

rp =
COST (W )− H

logX0

H
logX0

(4.1)

The codeW we generate can’t be better than the ideal lower bound H
logX0

.
Smaller rp means lower redundancy.
Ideally, rp is in inverse proportion to the processing time. However, in

our experiments only 4 files obey this. We only show these 4 files in Figure
4.1. Although other files are not shown, in fact they are inclined to be that
rp is in proportion to the processing time, but in a much irregular way.
We can see that when r1 and r2 are large enough, the time spent won’t be

reduced. If throughput is in consideration, 2.0 case is suitable. By now, we
focus on rp so we choose 1.2 case in the following experiment. Also note that
sometimes even the larger values are chosen, the rp value is not improved.
Since the adaptive generalized Huffman method is just to “approximate”, the
parsing trees obtained are not guaranteed to be the optimal ones. Sometimes
fewer rebuilding of parsing tree would get better results, which is contrary
to the expectation.

4.2 Comparison of Two adaptive Algorithms

In this section we run experiments for our two adaptive algorithms. We
choose 3 cases, c0 : c1 = { 1 : 2, 1 : 5, 1 : 10 }. The results are shown in
Figure 4.2 - 4.4.
In the 1 : 2 case, note that the files ptt5 and E.coli. have very skewed

distributions(87.12% of the file are the symbol ‘0’). For a skewed distribution,
any minor difference from the optimal parsing tree may cause severe cost.
For the approximation method, by chance it could build a parsing tree with
high cost. The file E.coli has only 4 symbols. Thus the parsing tree is very
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Figure 4.1: r1 = r2 = 1.1, 1.2, 1.5, 2.0, 3.0
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small and there are only a few possibilities. Similarly, the approximation
method could build a tree with a slight difference with the optimal one and
has cost far from optimal.

In the cases 1 : 5 and 1 : 10, results of ptt5 have been improved, but E.coli
still gets worse. Since there are only 4 symbols in E.coli, we suggest using
exhaustive search for all binary trees and it will be more precise and faster.

Compare the two adaptive algorithms, adaptive generalized Huffman cod-
ing performs better for most situations. However, for images files, the redun-
dancy percentage of adaptive digital expansion method is apparently smaller,
approximately one-half. That’s because image files have high “locality”,
and adaptive digital expansion method updates its model of probability ev-
ery time a symbol is transmitted. But for adaptive generalized Huffman
method, its “lazy” update method sometimes can’t keep up with the local-
ity of data. For the text files alice29.txt and bible.txt, adaptive generalized
Huffman method is more suitable.

4.3 Comparison with Static Algorithms

In this section we compare the original two static algorithms. In both algo-
rithms, after the parsing trees are built, the codeword mapping are sorted to
guarantee that symbols with lower probability will be mapped to higher cost
codewords.

Again we test 3 cases:{ 1 : 2, 1 : 5, 1 : 10 }. We show the results in
Figure 4.5 - 4.7. In 1 : 2 case, performance of generalized Huffman method
performs better. However, in the other cases, performance of digital expan-
sion method becomes better than generalized Huffman method. Generally,
these two static methods have codewords with redundancy lower than 5%,
rarely high than 10%.

Note that when c0 : c1 = 1 : 2, the optimal parsing tree for the file ptt5 has
rp = 19.12%(we calculate this by the dynamic programming approach). Thus
indeed static digital expansion method has achieved near-optimal result. And
when c0 : c1 = 1 : 10, the optimal parsing tree for the file E.coli has rp =
16.48%. Both the static algorithms find the optimal code.

4.4 Dynamic Programming Approach

As described in section 3.3, to acquire the optimal parsing tree, we need very
much computation power and memory space. For the test files, we have the
following results. For every file containing n symbols, if c1 ≤ c, then we are
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able to acquire the minimum-redundancy with a tree-based coding.

n c rp
alice29.txt 74 5 0.11%
fields.c 90 5 0.09%
ptt5 159 4 7.57%
sum 255 4 0.22%
lena.tiff 256 4 0.11%
peppers.tiff 255 4 0.26%
bible.txt 63 6 0.12%

Generally, text files have fewer symbols, therefore c1 can be a little larger.
We also compress an English text file with 27 symbols(its distribution was
as mentioned in [9]), c1 can be at most 9, rp = 0.18%.
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Chapter 5

Conclusion

Our adaptive generalized Huffman coding offers the function for adjusting
the parameter r1 and r2. And its performance is better than adaptive digital
expansion method. In static cases, when c1 becomes large, digital expansion
method is better.
Digital expansion method seems to be very suitable for coding image files.

When c1 is small, generalized Huffman coding can achieve very low rp for
text files.
Also note that for files with very skewed distribution sometimes gener-

alized Huffman coding has very high rp. Digital expansion method has an
upper bound as mentioned in section 3.1.
When optimal solution is needed, dynamic programming approach can be

used but very limited. When n is small(< 15), we suggest exhaustive search.
When c1 is very large, both static digital expansion method and gener-

alized Huffman method perform well, but not in the adaptive case. [9] have
provided some other solutions for large c1, but considered only static case.
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