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移動向量精煉新方法運用於視訊處理和視訊轉換編碼

的研究 
 

研究生:   艾斯拉夫                           指導教授:李素瑛 教授 

 

國立交通大學資訊工程學研究所 
 

摘要 
 

 

在這篇論文中，我們提出了修正視訊串流中移動向量特徵的新方法，並且實作

幾個以移動向量為基礎的應用。我們將討論與驗證在 MPEG 視訊串流中的物件偵測

與擷取，以物件為基礎的視訊串流，以及在有限資源環境中的視訊轉換編碼。我們

對直接由壓縮域中的視訊串流擷取出的位移向量做處理，以降低移動向量的雜訊並

獲得更多的物件資訊。透過我們所提出的系統，包含空間資訊過濾元件、時間資訊

過濾元件以及紋路過濾元件，可以使這些物件資訊變得更精確。此外我們針對特定

的應用提出了適應性移動向量修正的方法。因此，我們提出的視訊處理與通訊演算

法可以準確地取得使用者想要的結果，在執行時間上也更有效率。我們也針對系統

效能與其他常用的相關研究及技術作比較。 

我們針對 MPEG7 測試資料與額外的視訊測試序列(超過 200 小時)來進行實驗，

並用標準的指標評估系統效能，實驗結果顯示我們提出的系統效能明顯的優於其他

技術。我們也介紹了新的效能評估指標來正確地追蹤我們的系統效率。 

除此之外，本篇論文中也描述了我們發展的使用者介面，讓使用者可以維護與

監控演算法的執行過程。 
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Abstract 

 

In this thesis we propose novel approaches for refining motion vector features in 

video streams. Several motion vector based applications have been proposed and 

implemented.  Object detection and extraction in MPEG video streams, object based 

video steaming, and video transcoding with resource limited environment are all 

discussed, designated and verified.  Rather than processing the extracted motion vector 

fields directly extracted from video streams in the compressed domain, we perform 

several operations over the extracted motion vectors, in order to reduce the noise within 

the motion vector content and to obtain more robust object information. The information 

is refined through our proposed system which is composed of a spatial filter component, 

temporal filter component and texture filter component. In addition, an adaptive motion 

vector refinement has been proposed for specific applications. As a result, our proposed 
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video processing schemes are more capable of accurately gaining desired results with 

more efficient performance in terms of runtime. We compare the performance of our 

proposed system with other popular and commonly related work and techniques.  

Based on the experimental results performed over the MPEG7 testing dataset and 

additional video testing sequences –more than 200 hours of videos-, the performance 

measured by standard performance metrics using our proposed system is superior to the 

alternative techniques. Moreover, we introduce new performance metrics to trace the 

efficiency of the proposed systems accurately.  

A user system interfaces is also presented, where users can maintain and monitor the 

process of the proposed algorithms. 
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Chapter 1 

Introduction 

Digital imaging and video streams are becoming prevalent. It is essential to have 

effective methods and paradigms to search, filter and retrieve visual contents. As the 

proliferation of compressed video sequences in MPEG formats continues, the ability to 

perform video analysis directly in the compressed domain becomes increasingly 

attractive.  

To achieve the goal of identifying and selecting desired information, reliable semantic 

features need to be extracted and deployed as a primary step. Although it has been 

studied for many years, reliable video features extraction remains an open research 

problem. A robust, accurate and high performance approach is still a great challenge 

today. 

 With significant increases in desktop computer performance and storage comes the 

development of various multimedia compression standards. And the widespread 

exchange of multimedia information is becoming a reality. Video is the most popular 

means of communication and entertainment. With this popularity comes an increase in 

the volume of video data. Therefore, we need the ability to sift through and search for 

relevant material stored in large video databases automatically.  

A first consideration therefore is an attempt to increase speed when using existing 

compression standards. Performing analysis in the compressed domain reduces the 

amount of effort involved in decompression.  

1.1 Processing in Compressed Domain  

In general, there are two sources of information in video signals: visual features (such 
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as color, texture and shape) and motion information (such as motion vector). Motion 

vectors provide a source of information for those who are using spatial-temporal analysis 

in uncompressed [1] or compressed domain [2,3].The visual features in the pixel domain 

could be based on shape [4, 5] or color [6, 7] or others.  

A conventional solution to the problem of processing video streams, shown in the 

Fig. 1-1, involves either compressed domain or pixel domain processing. Approaches 

performed on raw images or decoded/re-constructed images at the pixel level are 

extremely computationally intensive and have other drawbacks compared to staying in 

the compressed domain.   

Video compression algorithms are being used to compress digital video for a wide 

variety of applications, including video delivery over the Internet, advanced television 

broadcasting, video streaming, video conferencing, and video storage and editing. The 

end-to–end compressed digital video systems motivate the need to develop efficient 

algorithms for handling compressed digital video.   

 
Fig. 1-1. The pixel domain processing steps 

Algorithms are needed to adapt compressed video streams for playback on different 

devices and for robust delivery over different types of networks.  Algorithms are needed 
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for performing video processing and editing operations, including VCR functionalities, 

on compressed video streams. These algorithms are applicable to a number of 

predominant image and video coding standards including JPEG, MPEG-1,MPEG-2, 

MPEG-4, H.261, H.263, and H.264/MPEG-4 AVC.  

 The analysis of compressed video can proceed in one of two fundamental ways.  The 

first way is by decompressing some or all of the video and using the individual frames to 

gather information about the video content. The second way involves exploiting encoded 

information contained in the compressed representation without incurring the overhead of 

decompression. In this thesis, most of the proposed techniques are conducted in the 

second approach. Although processing in pixel domain can generally get accurate result, 

but the work, in compressed domain, has the following advantages: 

1. Most videos are as compressed formats. 

2. Implementation of the manipulation algorithms in the compressed domain will be 

much cheaper than that in the uncompressed domain because the data rate is highly 

reduced in the compressed domain (e.g., a typical 20:1 to 50:1 compression ratio 

for MPEG). 

3. Full decoding and re-encoding of video are not necessary. Thus, we can avoid the 

extra quality degradation that usually occurs in the re-encoding process. 

4. Compressed video data offer us additional information like DC coefficients and 

motion vectors for various applications. 

 
1.2 Motion Vector based Video Processing and Applications  

Motion vector based applications addressed in this thesis, are object detection, video 

streaming and video transcoding.  In addition, motion vector feature have been deployed 
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and exploited in many video processing and communication applications, as depicted in 

Fig. 1-2. 

First video processing using motion vector is video object detection. Video object 

detection is a primary step for several video processing applications. Video object 

detection has two forms, either stand alone application or intermediate level form.  Stand 

alone video object extraction applications include:  

     1. Video surveillance  

     2. Vision-based control  

     3. Human-computer interfaces  

     4. Medical imaging   

     5. Robotics 

Intermediate layer object extraction applications include:   

     1. High level content based video retrieval.   

     2. Video event Detection. 

     3. Video Summarization and abstraction.  

     4. Video tracking.  

 
Fig. 1-2. Video processing and communication applications using motion vectors 
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Although, much work in pixel domain [8, 9, 10, 11], deploys the visual features and 

motion information, very little work has been carried out in the area of compressed 

domain video object extraction. Motion detection in pixel domain is performed based on 

the motion information at each pixel location like optical flow estimation [12], which is 

computationally very demanding.  

In many cases, especially in the case of well-textured objects, the motion vector 

values reflect the movement of objects in the scene very well. In this thesis, object 

detection work has been carried out based on motion vectors to keep the processing in the 

compressed domain. 

Video streaming enables simultaneous delivery and playback of the video.  This is in 

contrast to file download where the entire video must be delivered before playback can 

begin.  In video streaming there is usually a short latency in the start of delivery and the 

beginning of playback at the client. Therefore, deploying information available in the 

compressed domain will make the real-time video streaming task possible and efficient. 

In this thesis, an efficient motion vector based approach has been investigated on video 

streaming.  

Video transcoding application is also one of the most recent topics in video 

processing. It touches several newly established technologies such as 3G mobile network 

and Mobile TV.  Mobile access to multimedia contents requires video transcoding 

functionality at the edge of the mobile network for interworking with heterogeneous 

networks and services.   

   Under certain conditions, the bandwidth of a coded video stream needs to be drastically 

reduced.  Converting a previously compressed video bit stream to a lower bit rate through 

transcoding can provide finer and more dynamic adjustments of the bit rate of the coded 
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video bit  stream to meet various channel situations [18]–[24].  Depending on the 

particular strategy adopted, the transcoder attempts to satisfy network conditions or user 

requirements in various ways.  Since the delivery system must accommodate various 

transmission and load constraints, it is sometimes necessary to further convert the already 

compressed bitstream before transmission.  This thesis addresses all the aspects of video 

transcoding that deals with motion vectors. 

In sum, motion vector features provided by video in compressed domain is an 

important cue for analysis and communication applications. Thus, the need becomes clear 

for reliable and accurate motion vector information for those approaches deploying the 

motion information [2,3,13-27].  

However, it is sometimes hard to use motion vectors due to the noise which makes 

further processing of the data almost impossible.  Besides, motion vectors are still far 

from ideal, as the key motion estimation is carried out using coarse area-correlation 

method that has proven inefficient in terms of accuracy.  Some researchers [28] elaborate 

on the noise in motion vector due to the camera noise and irregular object motion. It is 

realized [32] that the motion fields in MPEG streams are quite prone to quantization 

errors, and at the encoding steps might be not correctly matched in low-textured area.  

However, typical samples in the motion vector field are usually inaccurate [33,34]. 

These defects can be combated with robust error recovery schemes that repair motion 

fields and eliminate the noise. Consequently, we can produce reliable motion vector 

features to be used in video processing and communication applications.  

Therefore, in this thesis, we introduce techniques that can overcome those defects and 

produce more reliable motion vectors. These techniques perform processing on the 

extracted motion vector fields from motion frames. Specific refinement techniques 

 6



remove noise and smooth motion vectors. It makes the resulting filtered data more 

representative of the original motion vectors and more reliable for use in further 

compressed domain video processing and communication applications.   

1.3 Organization of the thesis 

The rest of the thesis is organized as follows. Chapter 2 presents the background and 

related work.  Chapter 3 analyzes the motion vectors and their limitations.  Chapter 4 

describes the proposed motion vector schemes.  Chapter 5 presents the proposed object 

detection approach.  Chapter 6 describes object based video streaming technique.  

Chapter 7 discusses and provides video transcoding mechanism.  Chapter 8 presents the 

experimental results.  Chapter 9 draws the conclusion and suggests the future directions. 
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Chapter 2 

Background and Related Work 

Since we want to make use of motion vectors and DCT coefficients, we have to 

understand the MPEG video compression standard.   In addition, good explanation for the 

motion vector production should be stated. 

 
2.1 Background information for MPEG and motion vectors  

With recent improvements in processing and storage technologies, many personal 

computing systems have the capacity to receive, process, and render multimedia objects 

(e.g., audio, graphical and video content).  While MPEG-1 and MPEG-2 can significantly 

reduce the number of bits needed to represent a video sequence without appreciable 

degradation of image quality, the compressed format does not lend itself to easy video 

processing.   

The MPEG coding includes information in the bit stream to provide synchronization 

of audio and video signals, initial and continuous management of coded data buffers to 

prevent overflow and underflow, random access start-up, and absolute time identification.  

The coding layer specifies a multiplex data format that allows multiplexing of multiple 

simultaneous audio and video streams as well as privately defined data streams. 

The basic scheme of MPEG is to predict motion from frame to frame in the temporal 

direction and then to use Discrete Cosine Transform (DCT) coefficients to organize the 

redundancy in the spatial directions.  

MPEG uses two inter-frame coding techniques: predictive and interpolative. This 

results in three basic picture types in an MPEG stream: I-, P- and B-pictures.  An I-

picture is completely intra-coded.  It provides access points for random access but only 
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with moderate compression.  A P-picture is predictably coded with reference to a past 

picture, which can be either an I- or a P-picture. A P-picture will in general be used as a 

reference for future prediction.  A B-picture is bi-directionally coded.  It is similar to a P-

picture, but requires both a past and a future reference picture for prediction.  B-pictures 

provide the highest amount of compression. The relation between the three picture types 

is illustrated in Fig. 2-1. 

 
Fig. 2-1: A Group Of Pictures (GOP) structure 

 
GOP is based on a random access requirement. Typically, a starting point is needed at 

least once in every 0.4 seconds.  Providing an I frame every twelve frames correlates to 

starting with an I frame in every 0.4 seconds. To decode the bit stream, the I frame is first 

decoded followed by the first P frame.  The two B frames in between the I frame and the 

P frame are then decoded.  The primary purpose of the B frames is to reduce noise in the 

video by filling in or interpolating, between the I and the P frames, typically over a 33 or 

25 millisecond picture period without contributing to the overall signal quality. 
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The B frames and P frames contain the motion information.  The I frame has no 

motion values and stores the DCT information of the original frame of the video 

sequence. An interesting aspect of the MPEG-4 standard, necessary to support such 

interactive features, is that a video frame is actually defined as a number of video objects, 

each assigned to their own video object plane (VOP). When the compressed multimedia 

object is accessed for use, it is decompressed in accordance with the compression scheme 

used to compress the multimedia object, e.g., using the Inverse Discrete Cosine 

Transform (IDCT).  Once decompressed further analysis of the multimedia objects may 

then be performed. 

The difficult challenge in the design of the MPEG compression algorithm is the 

following. On one hand the quality requirements demand a very high compression ratio 

not achievable with intra-frame coding alone. On the other hand, the random access 

requirement is best satisfied with pure intra-frame coding.  Inter-frame coding can 

achieve high compression while it does not promise random access. This requires a 

delicate balance between intra-frame and inter-frame coding. Fig. 2-2 shows the 

hierarchical structure of an MPEG video stream, which is represented by the following 

six layers: 

Video Sequence: A sequence is the top level of the MPEG video coding.  It is composed 

of several groups of pictures (GoPs) used as a random context access unit.  For video 

analysis, information, such as frame rate, picture width and height, aspect ratio, and video 

bit rate, can be obtained from the video sequence layer.  

Group of Picture (GoP): A GoP consists of a series of pictures and is used as a random 

access unit for video coding.  Information, such as the number of pictures in the GoP, is 

available from the GoP layer.  A picture is the primary coding unit and consists of several 
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slices.  Information, such as picture type (I, P and B) and motion vector resolution, is 

available for video analysis from this layer. A slice is used as a re-synchronization unit 

and consists of several macroblocks. 

Macroblock: A macroblock contains a 16×16 pixel region of luminance component and 

the spatially corresponding 8 × 8 pixel region of each chrominance component since 

chrominance components are sampled at half the luminance resolution.  It thus has four 

8×8 luminance blocks and two 8 × 8 chrominance blocks.  For video analysis, the 

macroblock layer provides the type of coding (intra versus non-intra) and the motion 

vector. 

Block: A block is 8×8 pixels in size and is the unit of subsequent Discrete Cosine 

Transform (DCT).  It provides 64 DCT coefficients (either of original pixel values or of 

the residues after the motion compensation).  

MPEG uses a component color representation for each color pixel, namely one 

luminance (Y) and two chrominance components (Cb and Cr).  The conversion, from 

YCbCr to conventional RGB space, can be carried out by a linear mapping (a 3×3 

matrix).  Since the human visual system (HVS) is most sensitive to luminance 

component, the Y values are encoded at the full resolution.  The HVS is less sensitive to 

the chrominance information.  As a result, the two chrominance components are encoded 

at half the resolution of their luminance counterpart.  This considerably reduces the 

amount of information to be compressed. 

2.1.1 Motion Compensation 

Motion-compensated prediction assumes the current picture can be modeled as a 

translation of the picture at some previous time. The local unit used in MPEG is 

macroblock.  This is the result of a trade-off between the coding gain provided by the 
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motion information and the cost associated with coding the motion information.  Each 

macroblock in a P-picture is matched to the most similar group of 16 × 16 pixels in its 

reference picture.  This process is called motion estimation.   

 
Fig. 2-2 Stream structure for MPEG video 

 
Motion estimation obtains the motion vector, which is the displacement between a 

macroblock and its predictor candidate, by minimizing a cost function measuring the 

mismatch between the two macroblocks.  If no match is found within a specified search 

range, a macroblock will be intra-coded.  A macroblock in a P-picture can also be 

skipped, meaning it is exactly the same as the macroblock at the same location in the 

reference picture.   

     As a result, a skipped macroblock will be motion vector of zero.  For each macroblock 

in a B-picture, it can be forward-predicted, backward predicted, or bi-directionally 

predicted.  Consequently, its motion information consists of one forward motion vector, 

one backward motion vector, or both of the forward and backward motion vectors.  Once 

the motion vector for each macroblock is estimated, the prediction error or residue, the 
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difference between a macroblock and its matched candidate, is calculated. The residue 

will then be intra-coded by the DCT transform method. 

2.1.2 DCT Transform 

Both still-image and difference image (residue) signals have a very high spatial 

redundancy.  Because of the block-based nature of the motion compensation process and 

a relatively straightforward implementation, the two dimensional Discrete Cosine 

Transform (DCT) is chosen as the basis of compression of each I-picture and of the 

residue images from P- and B-pictures.  The Forward and Inverse DCT are defined as 

follows: 

 
 

 
 

Among the 64 DCT coefficients, c(0, 0) is the weighted value for the DCT basis 

function, referred to as the DC term.  The other 63 DCT coefficients, c(i, j), for i, j = 0, 1, 

..7 are referred to as the AC coefficients.    From the Forward DCT, we have 64 

coefficients for each block.  These coefficients are quantized, zig-zag ordered, run-length 

and then Huffman coded to reduce spatial redundancy. Fig. 2-3 presents a typical video 

encoder/decoder including all the described stages for decoding and encoding. In 

addition, the motion vector flowing path is stated. 

 13



 
 

 
Fig. 2-3 Typical video encoder/decoder flowchart 

2.2 Related Work 

The need for reliable and accurate motion vector information is clear for those 

approaches that are employing the motion information [2,14-16,27-29,33,35,36]. 

However, a refining process has to be performed on the motion vectors. 

 Some researchers applied the motion vector refinement in the pixel domain.  This 

implies they were actually filtering the visual features.  Some [1] matched the filtered 

visual feature with the motion vector.  Others used filtered visual features as a post-

processing step [29].   Although [1,29] claimed that the motion vector refining results can 

be improved significantly, drawbacks remain.  These drawbacks include the increment in 

computational complexity, as well as the other already mentioned drawbacks of doing 

video processing in the pixel domain.   

Median filter and modified median filter [33,37] has been used for refining motion 

vectors. However, results in [59,61] prove the usage of median filter is insufficient and 

unreliable for high level applications. In these approaches [33,37], the time consumption 

is high due to the computation complexity resulting from partially processing in the pixel 
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domain.  Approach [37] used P,B frames in order to extract motion vectors. [33] applied 

refining for the motion vector magnitude only, while in our proposed scheme, refinement 

is applied on both magnitude and direction, which will result in a more accurate and 

reliable outcome. 

The approach in [38] is based on an assumption which consider motion vector 

refining results from median filter is the closest to true motion vector.  In addition a fuzzy 

set membership function and some statistical approach were used to decide the motion 

vector robustness and filter it out accordingly.   

However their basic assumption is not accurate according to what has been discussed 

earlier regarding the weakness and the limitation of median filter in smoothing motion 

vectors.  In addition, the proposed post processing operations after using the motion 

vectors smoothing operation are sophisticated and time consuming.  Hence it is not 

suitable for real time application.  

Scheme in [39] performs motion vector refinement by using simple thresholding for 

both motion vector magnitude and direction. For general purpose, applying simple 

thresholding to the magnitude and the direction of the motion vector is not effective 

enough to remove random noisy vectors in the background region. In addition, the 

thresholding process based on experimental results only is not deterministic. 
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Chapter 3 

Motion Vector Analysis 

3.1 Motion Information Extraction from MPEG video 

The sparse motion vectors from the compressed video stream are extracted.  For the 

computation efficiency, only the motion vectors of P-frames are used for object detection 

algorithm since in general, in a video with 30 fps, consecutive P-frames separated by two 

or three B-frames, are still similar and would not vary too much. Besides, it must be 

noted that B frames are just ‘interpolating’ frames that hinge on the motion information 

provided in P frames and therefore using them for the concatenation of displacements 

would be redundant. Therefore, it is sufficient to use the motion information of P frames 

only in several video processing applications.   

3.2 Motion Vector Noise Analysis  

Due to the complexity of motion vector calculation in the encoding process, the raw 

motion vectors extracted from an MPEG or H.26x video stream may contain incorrect 

motion vectors and noise as will be proved later on in this section.  Therefore, the 

realization of any approach which utilizes motion vector has to contain a refining 

mechanism to eliminate the incorrect motion vectors and noise.   

Fig. 3-1 state the relation between the processing-time and the information level. 

Traditional methods start from the bottom level to detect raw motion information from 

the original video.  In contrast, our proposed scheme starts from the middle level by 

extracting the motion vectors directly from the MPEG videos. The top level operates on 

specified and semantically filtered motion information.  This represents a significant 

saving in computational cost in comparison to traditional approaches. This will be proven 
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in the result and discussion section. 

 
Fig. 3-1 Video processing level and cost effect 

3.2 Motion vector limitations  

Motion estimation can be seen as an optimization problem. The brute force methods 

simply try all possible vectors, in a predefined range, to be sure to obtain the global 

optimum of the criterion function.  Also, there are efficient approaches that test only the 

most likely motion vectors.  This likelihood is usually determined by spatial or temporal 

proximity, and, consequently temporal and spatial prediction vectors have been popular 

in the efficient motion estimation algorithms.  Depending on the motion estimation 

algorithm used, the quality of the resulting motion vector is different. 

At the decoder/receiver side, it is unknown what type of motion estimation algorithm 

was used at the encoder/transmitter side, so one must assume, as a worst case situation, 

that the MPEG motion vectors are optimized for an efficient compression, and that they 

do not represent true motion vectors.  

In sum, motion vectors in compressed domain suffer form the following limitations:   

1. A homogeneous background could produce strange and long inconsistent vectors 

when small change of light happens in a heterogeneous way.  More specifically, 
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periodical structures and noise in picture areas with little detail may cause such 

inconsistent vectors.  

2. In MPEG data streams, it is uncertain that all motion vectors are transmitted 

within the data stream. 

3. The motion vectors lack effective representation and its strong noise makes 

further processing almost impossible.  

4. Researchers [28] elaborate on the noise in motion vector due to the camera noise 

and irregular object motion.  However, it is known that the motion vectors in 

MPEG-1/2 may not represent the true motion of a Macro-block.  

5. The macroblock scheme makes the usage of motion vector hard. For example, in 

object detection application, objects that are too small are simply ignored and 

object contours are distorted [29,30,31].  

6. It is realized [32] that the motion fields in MPEG streams might have incorrectly 

matched in low-textured area. Fig. 3-2 and Fig. 3-3 show examples of extracted 

motion vectors from “walking person” and “interview” video streams 

respectively. Some of these motion vectors are either irrelevant or false. For 

example, in background areas or static object there exist ‘motion vectors,’ which 

contradict with basic idea of motion vector.  
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Fig. 3-2 extracted motion vectors from video stream “walking persons” 

 

Fig. 3-3 extracted motion vectors from video stream “interview” 

3.3 Motion Vector Noise Model  

These described limitations above do not exclude the motion vectors entirely from 

use in high quality video processing applications.  When an appropriate post-processing 

is applied, the motion vectors can be made useful.  More specifically, when the receiver 

is able to determine the quality of the motion vectors, and when it is able to improve the 

quality of the motion vectors so that they meet certain criteria for the intended 

processing, the motion vectors can be used. 

Now, we describe the motion vector noise model.  A motion vector can be 

represented in Eq. (3.1). v(i,j) is the sum of the true reliable motion vector and the 

noise , where i,j are the indices of the corresponding macroblock in each frame. 

),( jit

),( jin
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),(),(),( jinjitjiv +=           (3.1)                

 Noise within the content of the motion vector fields can generally be expressed as 

independent noise, which can often be described by an additive noise model.  
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Chapter 4 

Motion Vectors Refinement Approaches 

Several motion refinement approaches have been proposed and conducted.  These 

approaches are developed in different domains, such as spatial domain, temporal domain, 

texture domain.  Spatial domain filter concerns the motion vector refinement based on the 

spatial correlations among the motion vectors in each motion frame, such as P-frame.  

4.1 Gaussian Based Motion Vector Refinement 
 

Noise within the content of the motion vector fields can generally be expressed as 

independent noise, which can often be described by an additive noise model.  Additive 

noise is evenly distributed over the frequency domain, whereas a reliable motion vector 

exists at low frequencies.  Hence the noise is dominant for high frequencies and its 

effects can be reduced by using some kind of low pass filter.  This can be done either 

with a frequency filter or with a spatial filter, but a spatial filter is preferable as it is 

computationally less expensive than a frequency filter.  

Fig. 4-1 states the general scheme for Gaussian based motion vectors refinement.  

First step extracts the motion vectors from the MPEG video stream.  Then, noise 

elimination based on Gaussian filter controlled by the so called configuration box is 

conducted.  Configuration box is the module in charge of allowing users to interact and 

adjust the Gaussian filter parameters to optimize the noise elimination process.  

In the literature there are many spatial filters such as Gaussian, median and mean 

filters. We use the Gaussian filter due to its desirable characteristics. The Gaussian filter 

has the significant characteristic of its step response containing absolutely no overshoot.  

The Gaussian filter uses a kernel that represents the shape of a Gaussian distribution.  Fig. 
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4- 2 illustrates the Gaussian distribution. Gaussian functions are separable.  As a result, a 

Gaussian convolution can be implemented by a 1D horizontal convolution followed by a 

1D vertical convolution. Using this decomposition, the number of operations decreases 

significantly. Hence the Gaussian filter can fit real time applications.   

 
Fig. 4-1 General scheme for Gaussian based motion vector refinement 

 
 

The Gaussian function is uni-modal. The Gaussian filter provides gentler smoothing 

and preserves the crucial motion vector value better than mean filter.  Gaussian functions 

are rotationally symmetric in two dimensions.  Thus, the amount of smoothing is 

independent of the direction.  This property implies that no bias is introduced.   

The degree of smoothing is parameterized by the standard deviation of the filterσ .  

We can maintain this value interactively to control the result of motion vector filtering.  

Hence, using the Gaussian filter gives some flexibility, which makes the refinement 

scheme possible for a wide range of applications. 

4.1.1 Smoothing of Motion Vector Field 
 

Up to this stage we have the motion vectors extracted from motion frames in MPEG.  

Then, we will pass the motion vector magnitude and direction values to the Gaussian 

filter where using two values instead of only one makes the refinement process more 

robust and meaningful.  First we need to configure Gaussian filter by setting the 
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parameters such asσ .   Such parameters have a crucial effect in the smoothing process.  

Thus we implement a user interface “configuration box” as demonstrated in Fig. 4-3 

where users can interactively change the parameters for filtering until the optimal filter 

performance is obtained. 

 
Fig. 4-2. 2-D Gaussian distribution with mean (0,0) and σ =1 

First, the value of σ  is chosen to maximize the smoothing.  By experiment, the value 

σ =1.2 gives us the best performance for Gaussian filter.  [36] explored the use of a 

Gaussian filter, and excellent results can be achieved with a σ  value between 1.0 and 

1.5. Smaller values of σ (values less than 1.0) tend to leave slightly inhomogeneous 

cluster patterns as shown in Fig. 4-4. While larger values tend to form regularly spaced 

clusters patterns as shown in Fig. 4-5. This proved to be in agreement with our 

experiment over the motion vector smoothing.  

Concerning other parameters, the kernel size was chosen to be 3X3 since the window 

search in our object detection is 3X3 as well.  Moreover, the kernel size is recommended 

to be 3X3 in the interest of reducing the cost of computation.  The last parameter to 

determine is the iteration, the number of times to repeat the convolution step.  This will 

affect the degree of enhancement and the accuracy of the filter.  Empirically we find the 

value 5 to be a suitable value, taking into consideration the performance and the 

execution time. 
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Fig.  4-3. The user interface for motion vector smoothing 

 

 
Fig. 4-4 The effect of using smallσ  value, σ =0.002 

 

 
Fig. 4- 5. The effect of using large σ  value, σ =3.5 

 
Fig. 4-6(a)(b)(c)(d) show the performance of motion vector refinement using no filter, 

Gaussian filter, median filter and mean filter, respectively. The value of σ  has been 

chosen to be 1.2 and kernel size to be 3X3. The presented results show clearly the 

advantage  of  using  Gaussian   filter  comparing to the  usage of mean and median filters 
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Fig. 4-7 represents the same idea for the different video clip “walking person”.  

          
                                           (a)                                                                                                       (b) 

 

                                  
                                          (c)                                                                                        (d) 
 
Fig. 4-6 Extracted motion vectors from “interview video” after applying  (a) Without processing 

(b) Gaussian filter   (c) Mean filter (d) Median filter. 
 
      

         
                              (a)                                                                           (b) 

         
(c) (d) 

 
Fig. 4-7 Extracted motion vectors from “walking person  video” after applying (a) Without 

processing (b) Gaussian filter   (c) Mean filter (d) Median filter. 
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4.2 Cascade Filter Based Motion Refinement  
 

Through our experiment we noticed that there is a weakness in the single Gaussian 

filter performance when the object location is in the frame border.  This can be explained 

due to the lack of information in the neighborhood near the border. We use a cascade 

filter which is composed of a Gaussian filter followed by median filter to improve the 

performance. Fig. 4-8 and 4-9 schematically illustrates the cascade filtering. 

 

Fig. 4-8 Refinement scheme overview 

 
Fig. 4-9 Cascade filter design  

 
The deficiency in frame border will disappear due to the median filter’s characteristic 

of rearranging the motion vectors value to become more representative of the true motion 

vector and better aligned. The proposed cascade filter boosts the performance. In 

addition, the computational complexity is low.  Both the Gaussian and median filters are 

available as a readily implemented component in both hardware and software. 

The resultant motion vectors resulting after filtering are less noisy. Execution time of 

deploying the refined motion vectors will be reduced significantly compared to that 

without using a filter.  Although we are adding another block for filtering, the efficiency 

is almost the same or even better in terms of execution time for the entire object detection 

process. 

4.3 Temporal based Motion Vector Refinement  
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Temporal filter component is designed based on the temporal adjacent neighborhood 

of a macroblock.  The main idea is that a ‘fine’ motion vector should not have its 

direction altered in a drastic manner. 

Fig. 4-10 states the relation among the current, successive and precedent frames. 

Motion vectors in these frames are temporally correlated.  Each frame is affected by its 

successive and precedent frames.  The closer the frame is, the more correlated and 

contributing to its neighbor, so MVN+1 is twice important than MVN+2 to current motion 

vector MVN. Eq(4.1) states the temporal refinement.  

MVnew = (2(MVN+1 + MVN-1) + (MVN+2 + MVN-2))/6 + ½(MVN)          (4.1) 

where MVnew  is the refined motion vector in temporal domain, and N-1,N-2,N,N+1,N+2 

are frame numbers in the video sequence. 

 
Fig. 4-10 Relation among the current fame and other frames in temporal domain. 

 

4.4 Texture Based Motion Vector Refinement  
 
Up to this stage, motion vectors have been refined temporally and spatially.  Important 

domain is the texture domain due to the fact that well textured motion vector has good 

motion vector value.  This will lead us to adaptively refine the motion vectors based on 

texture. To calculate the texture for each motion vector we analyze the AC components 

of the DCT coefficients, thus staying in the compressed domain.  The proposed scheme 

was inspired by this fact.  

The MPEG compressed video provides one motion vector for each macroblock The 
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DCT information from I-frames are readily available in MPEG stream. Thus we need to 

spend too much time in decoding the MEPG stream.  Hence our approach can fit the real 

time application environment. 

4.4.1 Texture energy computation  

Important regions are distinguished from background using the distinguishing texture 

characteristics.  The video analysis is performed directly in the DCT compressed domain 

using the intensity variation encoded in the DCT domain.  Therefore, only a very small 

amount of decoding is required. In some applications, researchers do use either the 

horizontal intensity variation or vertical intensity variation.  For example, in the text 

detection, it is generally approved that text regions possess a special texture because text 

usually consists of character components which contrast the background and, at the same 

time, show a periodic horizontal intensity variation due to the horizontal alignment of 

characters.  In addition, character components form text lines with approximately the 

same spacing [42,43].  As a result, text regions can be segmented using texture features.   

In this thesis we propose a texture-based motion vector filter which operates directly 

in the DCT domain in video. The DCT coefficients in MPEG video [45], which capture 

the directionality and periodicity of local image blocks, are used as measures to identify 

high texture regions.  Therefore, we will be able to treat each motion vector accordingly.  

Each unit block in the compressed images is classified based on local horizontal, vertical 

and diagonal intensity variations.  

In summary, DCT coefficients in compressed domain images capture the local 

periodicity and directionality features in the spatial domain. We examine the coefficients 

of each  DCT block of a frame.  By noting the correlation of frequency distribution in 

each block and the corresponding spatial features (see Fig. 4-11(a)), we may choose to 
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process further only those blocks which meet certain criteria.  For example, to detect 

edges, only the medium and high frequency components are needed [10], and only the 

blocks containing coefficients in that range are considered for decompression.   

In addition, we may use the feature distribution patterns of DCT coefficients to 

choose subregions of a representative video frame (see Fig. 4-11(b)).  Blocks containing 

high and medium frequencies are selected, and only the set of blocks that correspond to a 

‘large’ region in the spatial domain are selected.  The computational savings that result 

from this simple step are many folds.  The DCT processing need not be applied to the 

entire image, resulting in additional savings in time.  Since a smaller image area is 

analyzed, all subsequent steps, such as detecting straight edges, or detecting long edges 

can be completed more effectively.  

To gain some insight into the DCT spectrum, Fig. 4-12(a) shows an input image and 

Fig. 4-12(b) shows the absolute values of the DCT coefficients directly extracted from 

the compressed domain of the intensity image.  Each subimage in Fig. 4-12(b) represents 

one DCT block of the input image.    

The blocks, from top to bottom, indicate horizontal variations, with increasing 

frequencies; and from left to right, indicate vertical variations, with increasing 

frequencies. The blocks on the top row, from left to right represents zero vertical 

frequency and increasing horizontal frequencies. Top left blocks represent the low 

frequency components, contain most of the energy, while the high frequency channels, 

which are located at the bottom right corner of each subimage, are mostly blank. 

These observations indicate that the blocks spectrums capture the directionality and 

coarseness of the spatial image. For all the vertical edges in the input image, there is a 

corresponding high frequency component in the horizontal frequencies, and vice versa.  
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Furthermore, diagonal variations are captured by the energies around the diagonal line.  

This example illustrates that the DCT domain features do characterize the texture 

attributes of an image. The basis images are placed with increasing horizontal frequency 

from left to right, and increasing vertical frequency from top to bottom. 

  
                         (a)      (b) 

Fig. 4-11 (a) frequency distribution (b) block distribution [11] 

 Therefore, we can design Directional Texture Energy Map in DCT domain as shown 

in Fig. 4-13, by assigning a directional intensity variation indicator for each AC 

coefficient as the following.  

H: Horizontal intensity variation 

V: Vertical intensity variation 

D: Diagonal intensity variation 

We are processing in the DCT domain to obtain the directional intensity variation, 

called directional texture energy, using only the information in the compressed domain.  

Note that the operating units are the 8X8 blocks in I-frames. 

                        
Fig. 4-12-a: Input image                                                     Fig. 4-12-b: The absolute values of the 
                                                                                            DCT coefficients directly extracted  
                                                                                            from the compressed domain. 
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For each DCT block, we compute the Horizontal energy Eh by summing up the 

absolute amplitudes of the horizontal harmonics of the block: which are marked as H in 

the directional texture energy map. For each DCT block, we compute the vertical energy 

Ev by summing up the absolute amplitudes of the vertical harmonics of the block: which 

are marked as V in the directional texture energy map. For each  DCT block, we compute 

the diagonal energy Ed by summing up the absolute amplitudes of the diagonal 

harmonics of the block: which are marked as D in the directional texture energy map.  

Finally, we will calculate the average energy Ea for each block, which is the average 

value of the Vertical energy, Diagonal energy and Horizontal energy as in Eq.( 4.2). 
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We will update Motion vector values based on the Ea as described in the following 

procedure. 

 
Fig. 4-13: Directional Texture Energy Map in DCT 
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We have used an adaptive threshold value. The following diagram in Fig. 4-14 

describes the process for texture filtering in the frame level.  The I-frame has no motion 

values and it stores DCT information of the original frame.  Though I-frame provides no 

motion information, we still could grasp the frame texture, and propagate that 

information to the P frames as described in next section.   

Fig. 4-14 clearly states the operation in algorithmic way, where, after knowing the 

frame type we send this frame for its specific module. If this frame is an I-frame, then we 

know it contains the DC value and AC components. Thus, we can calculate the texture 

energy as stated before according to the previous procedure and texture energy map. 

After we propagate those values into P-frames then we perform the texture filter on the 

motion vector values. 

Alternative procedure for texture and edge calculation has been proposed for providing 

additional texture information.  The details of the approach are presented herein. First of 

all the energy map is redefined according to Fig. 4-15. New energy detentions are 

introduced. 

Atot  : Total Energy 

AD  : Diagonal Energy 

AH  : Horizontal Energy 

AV   : Vertical Energy 

AFin : Final Energy 
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Energy calculation is based on the redefined texture energy map as show in Fig. 4-15. 

 

To make a decision regarding the texture of each macroblock the following procedure 

is deployed. 

 
Fig. 4-14: Flowchart of texture based motion vectors refinement. 
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                                               Fig. 4-15 Redefined Texture Energy Map  
 
4.4.2 Reconstruction of DC Images 
 

To propagate the texture information into the p frames we need to reconstruct the DC 

images for P frames.  In the following, only the reconstruction of the luminance DC 

images is discussed.  Chrominance DC images can be similarly reconstructed. For intra-

coded I-pictures, reconstruction of such DC images is trivial since the DCT DC value of 

each block can be directly obtained from an MPEG stream.   

The DC values of an intra-coded macroblock in a P-picture can be similarly obtained 

as those in an I-picture. Extraction of exact DC values for motion compensated 

macroblocks in a P-picture is given in [32] and is computationally expensive.   

Here we describe an approximation method proposed by [112].  A motion 

compensated macroblock in a P-picture has a motion vector and four blocks of DCT 

coded motion compensated errors.  The motion vector allows us to trace back the 

macroblock to its matching counterpart in the previous reference picture.  Each of the 

four luminance blocks will be matched in a location in the reference picture as shown in 

Fig. 4-16.  The matching block may overlap as many as four blocks in the reference 

picture.  Assume that the DC values of the reference picture are available and the 
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luminance variance within each block is small.  Then the DC value of the motion 

compensated block in a P-picture can be approximated by taking the overlapping area of 

the four blocks in the reference picture pointed by the motion vector plus its DC value of 

the residues as in Eq.(4.3). 

  
Where DC(bi) is the DC value of block i in the reference picture, and wi and hi are the 

overlapping width and height respectively.  Their values are related to the motion vector 

(u,v) as follows: w1=w3=u, w2=w4=8-u, h1=h1=v and h3=h4=8–v. The term 

DC(bresidue )  is the residue DC values of the current block. bi is block number .  

For those motion compensated macroblocks with both forward and backward motion 

vectors, their DC values can be   calculated as the average of those reconstructed from the 

previous reference picture and the future reference picture plus the DC values of their 

residues. Using the above method, we can reconstruct a DC image sequence from an 

MPEG stream, no matter what picture types (I, P or B) it contains. 

 

Fig. 4-16 illustrations on the relation among the current block, reference block and motion vector. 
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4.5 Overview of the Motion Vector Refinement System 
 

The proposed system architecture for motion vector refinement now is shown in Fig. 

4-17.  For an input video stream, we extract the motion vectors from inter-frames such as 

P-frame.  In practice, P-frames only are suggested to be processed in order to reduce the 

computational complexity. Meanwhile, we will extract the DCT coefficients from I 

frames, including the DC coefficient, and the AC components as well. Then, we will pass 

the DCT coefficients into a module to calculate the texture of each frame.  Later, we will 

propagate this texture information into the inter-frames using the DC image 

reconstruction technique described early.  After that, we will filter each motion vector 

based on its texture value.  

Then, we pass the filtered motion vectors to temporal filter component.  This filter is 

derived from the temporal adjacent neighborhood of a macroblock.    After obtaining the 

motion vector field’s magnitude and direction values, we pass these values through the 

Gaussian filter. Meanwhile, filter parameters such as standard deviation and kernel size 

are initialized to obtain the optimal performance.  We then pass these filtered motion 

vectors into a specific application. 

Furthermore, we use the median filter because it does not alter motion vector values. 

Rather, it simply rearranges motion vectors, not altering the values contained within any 

motion vector.  Hence the median filter is used to repair potential irregularities introduced 

by the previous filter processing and in order to straighten up some single motion vector 

which has been influenced.  

4.6 Adaptive Motion Vector Refinement 
This section introduces for adaptive motion vector refinement technique in spatial 

domain. Previously, the adaptation process is supported in texture domain, but in certain 
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cases, neither the texture domain nor the temporal domain techniques are applicable.  

Therefore, a spatial domain adaptive motion vector refinement is proposed.  Some 

application like video transcoding puts hard limitation on the refinement techniques and 

resources. Thus we develop a strict and very resource limited technique which lies only 

in spatial domain. In [1,12,41] the analysis showed that the differential reconstruction 

error causes incoming motion vectors to deviate from optimal values.   

 
Fig. 4-17. The proposed motion vector refinement system architecture 

Therefore, a fine motion vector can be obtained by refining the incoming motion 

vectors according to the proposed scheme.  Depending on the application, various types 

of noise can be distinguished. Gaussian additive noise is a commonly applied model to 

represent the noise as obtained in motion vector signals.  However, impulsive noise 

originating from uncertain defection can be recognized and requires an individual 

approach in order to get optimal performance.  In this chapter we will focus on the 

Gaussian additive noise, and optionally try to defeat the impulsive noise effects.   

 
Fig. 4-18 The overview architecture of the proposed adaptive motion vector refinement 

scheme 
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In Fig. 4-18, we introduce a general view of the proposed motion vector refinement 

scheme.  Our scheme consists of two parts; the first part is the noise level estimator.  It is 

used to estimate the noise power for every frame processed. This parameter will be used 

in the noise reduction block to generate the filter parameters. The second part is the noise 

reduction block.  It is a general spatial filter which uses the correlation between the 

current motion vector and its neighbourhoods.  The spatial filter is shown in Fig. 4-19.  It 

is a recursive spatial filter and includes a kernel and weighting module.  The kernel as 

shown in Fig. 4-12 consists of a 2D window of motion vectors MV (i) (i=0, l...8) where 

MV(0) is the central motion vector that will be filtered. MV(1)-MV(8) are the 

neighbourhoods of MV(0).  

 
Fig. 4-19. Block diagram of the noise reduction block 

 
MV1 MV2 MV3

MV4 MV0 MV5

MV6 MV7 MV8

Fig. 4-20. Kernel of 3X3 motion vectors  

In the weighting module, the output motion vector can be calculated as in Eq.(4.4). 
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where N1 = {1, 2, 3, 4} and N2 = {5, 6, 7, 8} are sets of neighbourhood vectors.  And the 

weights of each motion vector are defined as: 

111                   )()( NiiKziW ∈=      (4.5) 

222                   )()( NiiKziW ∈=                 (4.6)  

where z1 and z2 are the parameters related to the position of the weighted Motion 

vector. To use more information of refined motion vector, we have z1 =3* z2. K(i) is a 

parameter related to the local noise power and the absolute difference between the 

weighted neighbourhood motion vector (MV(i)) and the current input motion vector 

(MV(0)).  K(i) function is defined in Eq.(4.7). 
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where λ  is a parameter related to the local noise power of current input motion 

vector.  It is ranged within  PowerNoisePowerNoise   ≤≤− λ . λ  can be estimated by 

Eq.(4.8). 
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The weighting function K(i) indicates that the contribution of a neighborhood motion 

vector to the current centre motion vector is exponentially related to the difference 

between them.  The smaller the difference, the more contribution the neighbourhood 

motion vector has.  This property can eliminate the Gaussian noise effectively. 

4.6.1 Noise Power Estimator 
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We introduce a method for noise power estimation.  This noise estimation algorithm 

allows refinement at varying motion vector conditions.  To increase the adaptation of the 

concepts, a simple but effective new noise power estimation algorithm was designed that 

controls the parameters of the noise reduction.  The Noise Power Estimator is used to 

estimate the noise power for every frame processed.  Noise power values are used in the 

noise reduction.  The difference of every motion vector with its previous and next motion 

vector is calculated and the accumulated differences are delayed for four motion vectors 

and further accumulated into a variable entitled AC_DIFF. The Noise Power of each 

frame is updated as in Eq.(4.9). 
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Noise Power (f) is the noise power of frame f and the Thresholdt is an experimentally 

optimized constant defined as: 

100/)60*ectorotion   ( VMofNumberThresholdt =    (4.10) 

The number of Motion vector is defined as the total number of motion vectors in each 

frame. 

The Noise Power Indicator (NPI) is defined 

∑=
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B(MV)NPI                                                                (4.11)                   

where B(MV) is a binary variable assigned to every motion vector. 
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and AC_DIFF is the local noise power estimator calculated as a sum of Absolute 

Differences 
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Chapter 5 

Object Detection in Video Streams 

5.1 Introduction 
 

Over the last decade, there has been growing interest in content representation of 

video sequences with rapid developments in multimedia and internet applications. New 

representation of video sequences needs to be constructed not only in compact forms, but 

also as semantic entities for content-based functionalities such as retrieval and 

manipulation. Video semantic object is a perfect content representation.   

To bridge the semantic gap and achieve a high level of content based representation, 

some previous works [46] select video object plane supported by the MPEG-4 standard 

as the underlying video patterns for video content representation and feature extraction.  

However, the major problem is that semantic video object extraction in general does not 

perform automatically. A good performance still needs human's interaction at the current 

stage.  Recently, many researches on human visual system show that moving objects can 

be easily distinguished and have more attraction of visual attention.   

Approaches [47,48] extract moving objects as semantic objects for content 

representation. Moving objects can provide a good pattern for motion-related high-level 

semantic analysis.  

Studies on visual attention and eye movements [49,50] have shown that humans 

generally can only attend to a few areas in an image.  Even with unlimited viewing time, 

attention will continue to focus on these few areas rather than scan the whole image. An 

increasing number of researchers are now exploring the intermediate-level processing, 

shifting the focus of attention away from pixel-based indicators to high-level processing. 
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In [51], authors use motion information to construct salient map for video sequence. 

Salient region extraction based on saliency map [31] provides a good starting point for 

semantic-sensitive content representation.  However, perceived salient region extraction 

for image or video is still an unsolved problem.  One reason is that video sequence has 

more context information than single image. Hence, low-level features are often not 

enough to classify some regions unambiguously without the incorporation of high-level 

and human perceptual information into the classification process.  Another reason for the 

problems is perception subjectivity.  Different people can differ in their perception of 

high-level concepts. Thus a closely related problem is that the uncertainty or ambiguity of 

classification in some regions cannot be resolved completely. 

A basic difference between perceptions and measurements is that, in general, 

measurements are crisp whereas perceptions are fuzzy [52].  Moreover moving object 

detection is a useful tool for intelligent video browsing/analysis and video surveillance 

systems.  In order to meet the real-time requirement, no computationally intensive 

operation is included. Video object detection is a key operation for content-based video 

coding multimedia content description, and intelligent signal processing.   

New functionalities like object manipulation and scene composition can be achieved  

because the video bitstream contains the object shape information.  However, the shape 

information of moving objects may not be available from the input video sequences; 

therefore, segmentation is an essential task.  

 In addition, many multimedia communication applications have real-time 

requirement, and an efficient algorithm for automatic video segmentation is very 

desirable.  Motion estimation has been proposed [54] to solve this problem.  If both ends 

of a motion vector are inside the frame difference mask, then the corresponding area is 
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part of the object.  Otherwise, that area is assumed to be background.   

This approach has several drawbacks.  First, the motion estimation is not very 

accurate near the object boundary where highest accuracy is required.  Second, motion 

estimation can deal with the translation type of motion only. If other forms of movement 

are involved, motion vectors may fail to track the object motion.  Also, motion estimation 

is a computationally intensive operation and this process will dramatically increase the 

complexity of the segmentation system.   

Motion-based video object detection has been explored, with approaches generally 

based on the analysis of optical flows.  Compressed videos require the decompression of 

the sequences and the computation of optical flows, two steps computationally heavy.  In 

this chapter we propose some methods for motion-based video object detection by motion 

features (mainly related to motion vector) and by motion-based spatial segmentation of 

frames, in a fully automatic way.   

Our idea is to use motion vectors as an alternative to optical flows.  It does not require 

a decompression of the stream and saves us from computing optical flows.  Additional 

computational economy comes from having one motion vector each macroblock. This 

makes the algorithms faster than those that work with dense optical flows. Experimental 

results reported at the end of this chapter show that MPEG motion compensation vectors 

are suitable for this kind of applications. 

 

5.2 Related Work and Background 

Moving object detection techniques have been studied extensively [53-56] for 

purposes such as video content analysis as well as remote surveillance.  For example, in 

[53] optical flow method is employed in pixel domain and a moving object is detected 
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when similar optical flow is found in a certain area.  In [54], a moving object is detected 

using inter-frame difference after compensating camera work.  As for the compressed 

data domain processing, the [55] proposes the detection method by finding objects with 

similar motion vectors in a picture after compensating global motion.  

However, from experimental point of view, flat background was often falsely 

detected as a moving object since random motion vectors appear in the flat background 

[56].  Previously the authors have proposed a method to detect moving object area on 

MPEG coded data domain [56] by analyzing the motion vectors and DCT coefficients.  

In P- and B- pictures, moving objects are detected by analyzing motion vectors and 

spatial-temporal correlation of motion. In addition, by analyzing coding characteristics of 

intra macroblocks (MBs) in P- and B-pictures and by investigating temporal motion 

continuity in I-pictures, moving objects in these situations have been also detected in 

intra MBs. 

5.3 Object Detection and Extraction  

We started by thresholding motion vectors before the detection process in order to 

achieve more robust performance.  Motion vectors with magnitude equal to or 

approaching zero are recognized as undesirable and hence are not taken into 

consideration.  On the contrary, motion vectors with larger magnitude are considered 

more reliable and are therefore selected. 

5.3.1 Object Detection Algorithm 

An object detection algorithm is used to detect potential objects in video shots.  

Initially, undesired motion vectors are eliminated.  Subsequently, motion vectors that 

have similar magnitude and direction are clustered together and this group of associated 
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macroblocks of similar motion vectors is regarded as a potential object. Details are 

presented in the object detection algorithm.  Fig. 5-1 shows the graphical user interface 

for the moving object detection module, as video clips can be traced and monitored while 

this module detects each object in real time. 

 

Fig. 5-1 Graphical user interface for object detection 

The Object Detection Algorithm 

Input: P-frames of a video clip  

Output: object sets {Obj1 , Obj2 , … ObjN } where N is the total number of regions in P-

frame and ObjN means the Nth object of the P-frame. Each object size is measured in 

terms of number of macroblocks.  

1. Cluster motion vectors that are of similar magnitude and direction into the same 

group with region growing approach. 

1.1 Set search windows (W) size 3×3 macroblocks. 

1.2 Search all macroblocks (MB) within W, and compute the difference 

( and ) of motion vector (MV) magnitude (kdiffMag kdiffAng MV ) and direction 

( ) between center  and its neighboring eight motion vectors  

within W. 

MV∠ centerMV kMV
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1.2.1 diffMag = abs( | MVcenter | - | MVk | ) 

1.2.2 diffMag = abs( ∠MVcenter  - ∠MVk| ) 

1.2.3 EDGEk  = detect_edge(MBk)  ,

where k∈[1,8] and  is the MV in the center position of W centerMV

kMV ∈  MVs within W except  centerMV

1.2.4 For all 1≦ k ≦ 8, flag 

⎩
⎨ 
⎧ <<

= 
otherwise

TdiffAngandTdiffMag 
F AngkMagk 

k , 0 

, 1 and EDGEk

 

where  is the predefined threshold for MV magnitude and is the 

threshold for MV direction 

MagT AngT

1.2.5 If ∑ , mark f  as 1, where is the flag of the 

center MV within W. 

=

≥
8

1

6
k

kF centerF o centerMV centerF

Otherwise, set all flags within W to 0. 

1.3 Go to step 1.2 until all macroblocks are processed. 

1.4 Group macroblocks that are marked as 1 into the same cluster.  

1.5 Compute each object center and record its associated macroblocks. 

5.3.2 Edge Detection using AC coefficients  

We use the predefined two edge features [28] to derive edges.  The two horizontal 

and vertical edge features can be formed by two dimensional DCT of a block.  

In the DCT domain, the edge pattern of a block can be characterized with only one 

edge component, which is represented by projecting components in the vertical and 

horizontal directions, respectively.  The edge features from the DCT basis images is 
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shown in Fig. 5-2. In order to extract the edge features the following conditions in 

Eq(5.1) and Eq(5.2) are re-checked.        

HorizontalThresholdiH _
7

0
≥∑

=i
                                                            (5.1) 

 

VerticalThresholdV
j

j _
7

0
≥∑

=

                                                             (5.2) 

 

 
 

Fig. 5-2 Horizontal and vertical edge feature in DCT domain  
 

If the test results for the Eq.(5.1) and Eq.(5.2) conditions are ‘true’ and ‘false’, 

respectively, it is defined that the block contains a vertical edge.  For a horizontal edge in 

the block, the converse is true, i.e. the tests have to be ‘false’ and ‘true’, respectively.  If 

both tests are ‘true’, the block contains a diagonal edge and it is further tested to 

determine its orientation using the polarities of the first coefficients: H1 and V1. That is, 

the coefficients have the same polarities (V1 & H1 = positive, or V1 & H1 = negative) for 

a 45-degree diagonal edge, and different polarities (V1 = positive and H1 = negative, or 

V1 = negative and H1 = positive) for a 135-degree diagonal edge.  Therefore, we are now 

able to detect the edge block in each frame to decide is edge block or not. 

5.4 Object detection overview 

After all, we can introduce the whole object detection system including the motion 

vector refinement and our proposed video object detection. Then we use the proposed 
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object detection and edge information to finally detect the moving objects and its 

descriptors.   

Fig. 5-4 states the structure of the extracted object descriptors.  For instance an object 

descriptor can contain the appearance time field which state the time when the extracted 

object appears in the video sequence.  It may contain the time length for the object being 

active in the video sequence.  Velocity of the object can be added to object descriptor 

structure. Object shape attribute may be included in the object descriptor. This attribute 

gives the analyzer great sight regarding the information of the object shape. 

 
Fig. 5-3 Overview of the object detection system 

 
 

 

Fig. 5-4 Object descriptor structure 

The experimental results show that each moving object is successfully identified for 

several sequences.  Figures 5-5 through 5-7 show the detection results of using the 

filtered motion vectors and without using filtered motion vectors respectively.  The 

detected objects are marked over with thicker and darker lines in the figures.  Further 
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results are discussed in the result and discussion chapter. 

 
Fig. 5-5 object detection results for Miss America 

 

 
 

Fig. 5-6 object detection results for Speed way 
 

 
Fig. 5-7 object detection results for Car Phone  
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Chapter 6 

Fast and Robust Object Extraction Framework for Object 

Based Streaming System 

Video streaming poses significant technical challenges in the quality of service 

guarantee and efficient resource management. Generally, it is recognized that end-to-

end quality requirements of video streaming application can be reasonably achieved 

only by integration of advanced networking and content processing techniques.  

However, most existing integration techniques focus on the bit stream level, 

ignoring a deeper understanding of the media content. Yet, the underlying visual content 

of the video stream contains a vast amount of information that can be used to predict the 

bit-rate or quality more accurately. In the object based video streaming framework, 

video object is extracted automatically and used to control video quality under various 

manipulations and network resource requirements.  

In this chapter, we propose an efficient moving object extraction algorithm suitable 

for real-time content-based multimedia streaming systems. A motion vector based object 

extraction is used to dynamically detect the objects. To utilize the bandwidth efficiently, 

the video objects can be detected in real time, encoded, and transmitted with higher 

quality and a higher frame rate than those in the background. In order to meet the real-

time requirement, no computationally intensive operation is included in this framework. 

Moreover, in order to guarantee the highest speed, the entire implementation is 

operating in the compressed domain without need for decompression. Remarkable 

extraction performance is demonstrated in the experimental results. 

6.1 Introduction  
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Video has been an essential element in communication and entertainment for many 

years. Initially video was captured and transmitted in analog shape. The emergence of 

digital integrated circuits and computers led to the digitization of video, and digital 

video enabled a revolution in the compression and communication of video. Video 

compression [71,72] and transmission became an important area of research in the last 

two decades. It enabled a variety of applications including video storage on DVD and 

Video-CD, video broadcasting over digital cable, satellite and terrestrial digital 

television (DTV), High Definition TV (HDTV), video conferencing and videophone. 

With the rapid development of the internet, systems using video through the internet are 

rapidly increasing. 

Video over best-effort packet networks is complicated by a number of factors 

including unknown time-varying bandwidth, delay and packet losses. In addition, many 

issues such as how to fairly share the network resources amongst many flows and how 

to efficiently perform one-to-many communication for popular content “congestion 

control” are increasing the overhead of running video over best-effort networks. The 

Internet disseminates enormous amounts of information for a wide variety of 

applications all over the world. As the number of active users on the Internet has 

increased, so has the tremendous volume of data that is being exchanged, resulting in 

periods of transient congestion on the network. In regards to data transmitted over the 

internet, majority of the data bytes accessed on the Web are in the form of multimedia 

objects [64, 82]. 

Generally the most straightforward approach for video delivery in the Internet is 

using an approach similar to a file download, referred to as a video download. This 

scheme allows the use of established delivery mechanisms, for example TCP as the 
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transport layer, FTP, HTTP, or HTTPS at the application layers. However, this scheme 

has a number of drawbacks.  Generally, since videos are very large files, the download 

approach usually requires long download times and large storage spaces. These are all 

crucial practical limitations. In addition, the entire video file must be downloaded before 

viewing can start which lead us to long response time on the client part and reduces 

flexibility in certain scenarios.  

In one scenario, if the client is unsure of whether he wants to view the video, he 

must still download the entire video before viewing it and making a decision. In another 

scenario, the user may not be aware about the exact disk space on his machine, therefore 

he might start to download a large video file which takes a few hours, then an error 

message might pop up stating disk insufficiency. The user wasted hours but for nothing. 

These scenarios cause great obstacles in the video file download scheme.  

Video delivery by video streaming attempts to overcome the problems associated 

with the video file download scheme, and also provides a significant capability in 

“viewing flexibility”. In video streaming there is usually a short latency (usually 10-15 

seconds) between the start of delivery and the beginning of playback at the client. Video 

streaming provides a number of advantages including low delays before viewing starts, 

and low storage requirements since only a small portion of the video is stored at the 

client at any point in time.  

A general architecture for video streaming is presented in Fig. 6-1.  You may notice 

the streamed video can be transmitted, through different paths, among different users in 

different environments, such as a mobile user in wireless network, a video client in DSL 

network and modem. 

A number of basic problems afflict video streaming over the Internet as the Internet 
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only offers best effort service. Internet provides no guarantees on bandwidth, delay 

jitter, or loss rate. Therefore, a key goal of video streaming is to design a system which 

can reliably deliver high-quality video over the Internet when dealing with unknown and 

dynamic bandwidth, delay jitter and loss rate. The bandwidth available in the Internet is 

generally unknown and time-varying. If the server transmits faster than the available 

bandwidth then congestion occurs, some packets are lost, and there is a severe drop in 

video quality. If the server transmits slower than the available bandwidth then the 

receiver produces suboptimal video quality 

 

Fig. 6-1. General Video Streaming Architecture 

. To overcome the bandwidth dilemma, one has to estimate the available bandwidth 

and then match the transmitted video bit rate to the available bandwidth. Additional 

considerations that make the bandwidth problem very challenging include accurately 

estimating the available bandwidth, matching the pre-encoded video to the estimated 

channel bandwidth, transmitting at a rate that is fair to other concurrent flows in the 

Internet, and solving this problem in a multicast situation wherein a single sender 

streams data to multiple receivers while each may have a different available bandwidth.  

The end-to-end delay that a packet experiences may propagate from packet to 

packet. This variation in end-to-end delay is referred to as the delay jitter. Delay jitter is 
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a problem concerned because the receiver must receive, decode and display frames at a 

constant rate. Any late frames resulting from the delay jitter can produce problems in the 

reconstructed video. These problems are typically addressed by including a playout 

buffer at the receiver. While the playout buffer can compensate for the delay jitter, it 

also introduces an additional delay. The third fundamental obstacle is packet losses. A 

number of different types of losses may occur, depending on the particular network 

under consideration. Losses can have a very destructive effect on reconstructed video 

quality. To overcome the effect of losses, a video streaming system is designed with 

error control.  

Many of the traditional video streaming systems, consider videos as low-level bit 

streams, ignoring the underlying visual content. Unfortunately, current video 

applications adapt to fit the available network resources without regard to the video 

content. To overcome the aforementioned problems and to achieve the efficient robust 

video streaming we propose object based video streaming.  Object based video 

streaming is a new framework that explores the correlation between video content, video 

data (bit rate) and quality of service. Such a framework facilitates new ways of quality 

modeling, and resource allocation in video streaming. For instance video objects can be 

used for controlling the video generation. It can be used in selecting the optimal 

transcoding architecture and content filtering.  

The correlation between the video content and the traffic has been reported in [65-

67] in which a conceptual model for content-aware based video streaming has been 

proposed. Closer schemes to our approach are joint source-channel coding [63], 

adaptive media scaling and resilience coding [64], and object and texture aware video 
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streaming [65-67]. The object based streaming system dynamically detects the objects in 

a video stream in real time, objects are encoded and transmitted with a higher bandwidth 

and higher frame rate than those in the background.  

To achieve the objective of the object based streaming system, a reliable object 

extraction mechanism is needed as a primary step. Therefore, we present a novel and 

reliable object detection scheme suitable for object based video streaming. Our approach 

processes entirely in the compressed domain, thus saving great computation time and 

providing efficient video streaming. Moreover, we have designed a robust video 

streaming mechanism, which contains a component to refine the motion vector through 

a sophisticated filter scheme in order to get fine motion vectors. Our approach offers an 

accurate and fast object based video streaming as proved by the conducted experiments. 

6.2 Related Work 

Researchers have developed an object based streaming system implemented in the 

intelligent transportation system [58]. Unfortunately, their approach was fully conducted 

in pixel domain and results in a higher computation time. Although they claim their 

approach is portable for different platforms, the portability issue was not defined. 

Scheme in [57] proposes object based adaptive streaming approach for sports videos, 

and is operated in the so called semi-compressed domain, as they need to partially refer 

to the pixel domain. However, typical samples in the motion vector field are usually 

inaccurate [34,61]. These defects can be combated with robust error recovery schemes 

that repair motion fields and reduce noise [59,61]. Consequently we can produce a 

smoother shape boundary, where the motion vectors are used to determine object 

boundaries in object extraction. This refinement mechanism has been described in 

Chapter 4.  
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6.3 Object based Video Streaming  

First, we need to discuss the point of view of video communication protocols. To 

overcome short-term network condition changes and avoid long term congestion 

collapse, various network control strategies have been built into the Transmission 

Control Protocol (TCP). For video traffic, TCP is not the protocol of choice. Unlike 

traditional data flows, video flows do not necessarily require a completely reliable 

transport protocol because they can absorb a limited amount of loss without significant 

reduction in perceptual quality [77]. On the other hand, SVFTP [85] tries to exploit TCP 

protocol in order to deliver video content by setting up many TCP connections at the 

same time. Thus, video content delivering can be accomplished, but with inefficient 

network performance.   

According to our earlier discussion video flows have fairly strict delay and delay 

jitter requirements. Video flows generally use the User Datagram Protocol (UDP). This 

is significant since UDP does not have a network condition changes control mechanism 

built in, therefore most video flows are unable to respond to network congestion and 

adversely affect the performance of the network as a whole. While proposed multimedia 

protocols like [83] and [84] respond to congestion by scaling the bit rate, they still 

require a mechanism at the application layer to semantically map the scaling technique 

to the bit rate.  

In times of network condition changes, the random dropping of frames by the router 

[69,84] may seriously degrade multimedia quality since the encoding mechanisms for 

multimedia generally bring in dependencies between frames [74]. For instance, in 

MPEG encoding [71,72] dropping an independently encoded frame will result in the 

following dependent frames being presented as useless since they cannot be displayed 
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and would be better off being dropped, rather than occupying unnecessary bandwidth.  

A multimedia application that is aware of these data dependencies can drop the least 

important frames much more efficiently than can the router [65,66,78]. Such application 

specific data rate reduction is classified as content aware video streaming. Clearly, 

object based video streaming is a combination of the video object extractor, network 

condition estimator and a scaling mechanism to respond to the network conditions after 

studying the video content. The estimator part is clearly stated in the literatures of 

computer networks [79,81,89].  The video object extractor is proposed herein. It has 

been shown that the content of the stream can be an important factor in influencing the 

video streaming mechanism. Video scaling or transcoding techniques in the object based 

video streaming systems can be broadly categorized as follows [68,71,76]: 

1.  Spatial scaling: In spatial scaling, the size of the frames is reduced by 

transmitting fewer pixels thereby reducing the level of detail in the frame. 

2.  Temporal scaling: In temporal scaling, the application drops frames. The order 

in which the frames are dropped depends upon the relative importance of the 

different frame types. In the case of MPEG, the encoding of the I-frames is 

done independently and they are therefore the most important and are dropped 

last. The encoding of the P-frames is dependent on the I-frames and the 

encoding of the B-frames is dependent on both the I-frames and the P-frames, 

and the B-frames are least important since no frames are encoded based upon 

the B-frames. Therefore, B-frames are most likely to be dropped first. 

3.  Quality scaling: In quality scaling, the quantization levels are changed, 

chrominance is dropped or DCT and DWT coefficients are dropped. The 

resulting frames are of a lower quality and may have fewer colors and details. 
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In summary, it has been shown that the content of the video stream can be an 

important factor in influencing the choice of the scaling scheme [65-68,71].  

 
In sum, the object-based video streaming technique is designed as stated in Fig. 6-2. 

Our proposed object detection is in the block surrounded by dashed lines. Initially, we 

capture video stream in MPEG format, extract features, detect moving objects and 

transmit their encoded streams. Fig. 6-2(a) illustrates the streaming system architecture, 

which covers four key modules, including the Object Extraction, Sender, Receiver and 

Composer. Fig. 6-2(b) presents a typical RTP sender side. Fig. 6-2(c) presents a typical 

RTP receiver side.  

 

(a) 
 

 
(b) 
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(c) 

 
Fig.  6-2: (a) Streaming System Architecture, (b) Block Diagram of RTP Sender and (c) Block 

Diagram of RTP Receiver  
 

We are going to discuss different approaches relevant to object based video 

streaming. A fine grained, content-based, packet forwarding mechanism [75] has been 

developed for differentiated service networks. This mechanism assigns relative priorities 

to packets based on the characteristics of the macroblocks contained within it. These 

characteristics include the macroblock encoding type, the associated motion vectors, the 

total size in bytes and the existence of any picture level headers. [75] proposed 

mechanisms for queue management and weighted fair queuing to provide the 

differentiated forwarding of packets with high priorities.  

A basic mechanism that uses temporal scaling for MPEG streams is suggested in 

[73]. In case of network condition change, the frame rate is reduced by dropping frames 

in a predefined precedence (first B-frames and then P-frames) until the lowest frame 

rate, (only the I-frames) or minimum bandwidth. An adaptive MPEG streaming player 

based on similar techniques [76] has the capabilities for dynamic rate adaptation but 

does not support real-time, automatic content detection. Automatic adaptive content-

based scaling may significantly improve the perceptual quality of the played out 

streams.  

If a movie scene has little motion and need to be scaled, it would look better if a few 
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frames were dropped but the frames shown were of high quality [68]. Relevant approach 

[80] has developed a scaling mechanism for video applications capable of scaling video 

streams.  

Using these scaling mechanisms, it is possible to change the characteristics of video 

streams by dropping frames, dropping colors, changing the quantization levels.  [68,71] 

utilize these scaling mechanisms in conjunction with a real-time content analyzer that 

measures the motion in an MPEG stream in order to implement a content- aware scaling 

system. [68] conducts a pilot study on video scaling where the subjects rate of video 

clips that are first scaled temporally and then by quality in order to establish the optimal 

mechanism for scaling a particular stream. They find the content aware system can 

improve perceptual quality of video by as much as 50%.  

Various mechanisms have been proposed for video protocols to respond to network 

condition changes on the Internet [68,82]. Their mechanism is equation-based network 

condition changes control for unicast traffic. Unlike TCP, the control refrains from 

reducing the sending rate in half in response to a single packet-loss.  

A TCP-friendly protocol [79] was implemented and evaluated for fairness in 

bandwidth distribution. [89] is a TCP-friendly Rate Adaptation Protocol, which employs 

an additive increase and a multiplicative decrease scheme. Its primary goal is to be fair 

and TCP-friendly.  

Object based video streaming can make the most effective use of available 

bandwidth from these protocols. Another approach to media scaling uses a layered 

source coding algorithm [88] with a layered transmission system [87]. By selectively 

forwarding subsets of layers at constrained network links, each user may receive the 

best quality signal that the network can deliver. The receiver-driven layered multicast 
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scheme suggested that multicast receivers can adapt to the static heterogeneity of link 

bandwidths and dynamic variations in network capacity. However, this approach may 

encounter problems with excessive use of bandwidth for the signaling that is needed for 

hosts to subscribe or unsubscribe from multicast groups. Also fairness issues exist in 

that a host might not receive the best quality possible on account of being in a multicast 

group with low-end users. A semi-reliable protocol that uses a TCP congestion window 

to pace the delivery of data into the network has also been suggested to handle video 

network condition changes [86]. However other TCP algorithms, like retransmissions of 

dropped packets. that are detrimental to real time multimedia applications have not been 

incorporated. 

6.4 Object Extraction System  

Our system takes the motion vectors from the compressed video stream as input. 

Besides, we need to extract the DCT information from I-frames. This information is 

readily available in MPEG stream, thus not too much time is spent in decoding the 

MPEG stream. Hence, our approach fits for the real-time application environment. Now, 

we will present the following diagram which states an abstract overview of our object 

extraction proposed system, which is similar to the one described in Chapter 5. Fig. 6-3 

shows the proposed system architecture. Next, we extract the motion vectors from P-

frames to detect the objects. 

Meanwhile, we will extract the DCT coefficients from I frames, these coefficients 

include the DC coefficient, and the AC components as well. Then, we will pass the DCT 

coefficients into a module to calculate the energy values “texture” of each frame. After 

which, we will propagate these   “texture information” values into P frames. We pass 
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these texturally filtered motion vectors into our object extraction algorithm to get a set of 

detected objects in each frame.

 
Fig. 6-3  The Proposed Object Extraction System Overview. 

6.5 RTP Sender and Receiver 

To link the sender, receiver and transmission channel for real time video displaying 

sequences, a standard RTP based network streaming technique is used. The streaming 

module uses two categories of network protocols the network-layer protocol and 

transport protocol. Basing this on IP network, the network layer protocol uses a network 

address to serve the basic network support.  

The majority of transport protocols perform over an RTP stack, which is implemented 

on top of UDP/IP to provide an end-to-end network transport for video streaming. A 

sender is responsible for capturing and transforming audiovisual data for transmission, as 

well as for generation RTP packets, sender may also participate in error detection and 

correction and congestion control by adapting the transmitted media stream in response to 

receive feedback. Uncompressed media data is captured into a buffer, from which 

compressed frames are produced.  

Frames may be encoded depending on the compression algorithm used, which in our 

case is MPEG format. Compressed Frames are loaded into RTP packets, ready for 
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sending. If frames are large, they may be fragmented into several RTP packets. If they are 

small, several frames may be bundled into a single RTP packet. Depending on the error 

correction scheme in use, a channel decoder may be used to generate error correction 

packets or to reorder packets before transmission.  

After the RTP packets have been sent, the buffered media data corresponding to those 

packets is eventually freed. The sender must not discard data that might be needed for 

error correction or for the encoding process. This requirement may mean that the sender 

must buffer the data for some time after corresponding packets have been sent, depending 

on the codec and the error correction scheme used. The sender is responsible for 

generating periodic status reports for the media streams which the sender is generating, 

including those required for lip synchronization. It also receives reception quality 

feedback from other participants and may use the information to adapt its transmission.  

The receiver is responsible for collecting RTP packets from the network, correcting 

any losses, recovering the timing, decompressing the media and presenting the result to 

the user. The receiver also sends reception quality feedback, allowing the sender to adapt 

the transmission to the receiver, and receiver maintains a database of participants in the 

session. Implementations sometimes perform the operations in a different order 

depending on their needs.  

The first step of the receiver is to collect packets from the network, validate them for 

correctness, and insert them into a sender-specific input queue. Packets are collected from 

input queue and passed to an optional channel-coding routine to correct for loss. 

Following the channel coder, packets are inserted into a source-specific playout buffer. 

The playout buffer is ordered by timestamp, and the process of inserting packets into the 

buffer corrects any reordering induced during transport. Packets remain in the playout 
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buffer until complete frames have been received, and they are additionally buffered to 

remove any variation in inter packet timing caused by the network.  

Calculation of the amount of delay to add is one of the most critical aspects in the 

design of RTP implementation. Each packet is tagged with the desired playout time for 

the corresponding frame. After their playout time is reached, packets are grouped to form 

complete frames, and any damaged or missing frames are repaired. Following any 

necessary repairs, the frames are decoded (depending on the codec used, it may be 

necessary to decode the media before missing frames can be repaired). At this point there 

may be observable differences in the nominal clock rates of the sender and receiver.  

Such differences manifest themselves as drift in the value of the RTP media clock 

relative to the playout clock. The receiver must compensate for this clock skew to avoid 

gaps in the playout. Finally, the media data is played out to the user. Depending on the 

media format and output device, it may be possible to play each stream individually, for 

example, combining several audio sources for playout via a single set of speakers. As is 

evident from this overview, the operation of an RTP receiver is complex, and it is 

somewhat more involved than the operation of a sender. This increased complexity is 

largely due to variability of IP networks. Much of the complexity comes from the need to 

compensate for packet loss, and recover the timing of a stream affected by delay jitter, as 

the receiver needs to deploy some buffering mechanism to overcome delay jitter. 

6.6 Experimental Results and Discussion 

In order to verify the performance of the proposed scheme, the experiment has been 

designed to test on three video clips. These video clips are in MPEG format and are part 

of the MPEG7 testing dataset. Testing is performed using four types of related work 
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which are, Group A using Gaussian filter only [62],  group B using Median filter  [61], 

Group C using  Cascade Filter , group D our system, and finally without any kind of post 

processing.  

In order to compare the performance among these four systems, we  fix the 

configurations of all the experiments. The frame size is 320x240 which implies that we 

have 20X15 macroblocks in each P frame. Our testing dataset presents walking persons 

in different dimensions, positions, speed, and can vary slightly in object size. We choose 

the recall and precision metrics to evaluate object extraction system performance [41,60].  

Figures 6-4 through 6-6 show the results of object extraction performance over the 

second video clip among the MPEG testing dataset. We show the precision metric and 

recall metric of our object extraction scheme for this video clip both with and without the 

filter being used, and we construct manually the ground truth of the video clip. Figures 6-

4 through 6-5 illustrate the values of the recall and precision metrics for each frame in the 

video clip. We note that the performance of our system is consistently superior to 

performance using other schemes. We show the average recall metric and average 

precision metric for the whole clip in Fig. 6-6.  

 
Fig. 6-4: Precision for Object extraction in P frames 

Again, our system topped them all. Through our experiment we noticed that there is a 
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 weakness in the single Gaussian filter performance when the object location is in the 

frame border. This can be explained due to the lack of information in the neighborhood 

near the border. In summary, the proposed system boosts the performance, while keeping 

the computational complexity low. Both the Gaussian and Median filters are available as 

a readily implemented component in both hardware and software.  

In addition, the motion vectors, DCT coefficient and AC component are readily 

available in MPEG stream.  As we refine the motion vectors resulting in vectors that are 

easy to process, execution time of the object extraction algorithm after using the filter 

will be reduced significantly compared to that without using any kind of post processing. 
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Fig.  6-5: Recall for Object extraction in P frames 

In order to verify the previously mentioned fact about run time efficiency, we measure 

the performance of the object extraction performance in terms of run time. We use 

Pentium4 with 2 Giga Hertz CPU speed, and 30 Giga Byte Hard disk capacity. This 

result was prepared on the second video clip in walking person testing dataset. The 

experimental result is presented in Table 6-1. We show the run time in milliseconds (ms) 

for the object extraction module using our system, other related work, and without any 

post preprocessing. Also, we describe the I/O time needed to perform the object 

extraction task. 
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Fig. 6-6: Average Precision and Recall of object extraction for 2nd Video Clip of walking person 
sequences 

    
Finally, the total spent time. The reader may notice the run time difference among our 

system, other related work and without post processing. Where, our system’s 

performance is so efficient in terms of run time and I/O and certainly in terms of the total 

time spent. This result comes compatibly with our expectation and initial idea.  

Table 6-1:  Run time for object extraction in millisecond 
Without 
Post 
Processing 

•Group 
D 

‡Group 
C 

†Group 
B 

*Group 
A 

 

605  ms. 545 ms. 575  ms. 579 ms. 585 ms. Object 
Extraction Run 
time 

124   ms. 70 ms. 89 ms. 96  ms. 104 ms. I/O processing  

729 ms. 615  ms. 664 ms. 675  ms.689 ms. Total Time 

*Group A using Gaussian filter only [62]  †Group B using Median filter [61] 

‡Group C using Cascade Filter                •Group D the proposed system 
 

6.7 Future Work 

In this section, we will describe future work for both the deployment of the proposed 

approach and enhancements possible. Several future applications can be anticipated 

based on our proposed approach. First of all, Application Level Gateway can deploy our 
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scheme, as the function of application level gate is to respond the application 

requirements while it is transmitting video throughout the network.  

Therefore, our scheme provides very high quality of service in object level in 

response to system requirements and network conditions. Secondly, mobile video 

communication is very promising and hot research topic in academia and industry. To 

allow very smooth and attractive mobile video communication, streaming video in 

mobile network with high level features is crucial.  Online video broadcasting such as 

game broadcasting, news broadcasting and so forth, have real-time processing and 

display requirements.  

In addition these applications offer some presumptions about the video contents such 

as in game broadcasting context we have court shape, players number, games rules, and 

so on. For example, game players can be decided as moving objects and court areas as 

static scene along the streaming presentation time. Fourth application is video 

conferencing. As video conferencing applications have several known presumptions, 

such that we have background area and people talking in the foreground area. Talking 

heads as moving objects can be separated from the background area.  

Also our approach will fit for the real-time requirement imposed by video 

conferencing. Also E-Learning and web distance education may take advantage of 

our scheme in the same manner as video conferencing will do. But this time, lecturer or 

the expressions of the lecturer will be assumed as a moving object.   

6.8 Conclusions  
 

In this chapter, we present a novel object extraction scheme for the object based video 

streaming system. Object based video streaming overcomes the significant technical 

challenges in quality of service guarantee and efficient resource management for video 
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streaming. We conclude that end-to-end quality requirements of video streaming 

application can be reasonably achieved only by integrative study of advanced networking 

and content processing techniques.  

However, most existing integration techniques stop at the bit stream level, ignoring a 

deeper understanding of the media content. Yet, the underlying visual content of the 

video stream contains a vast amount of information that can be used to video streaming in 

a semantic manner. We explore different approaches that are thought to be content aware 

video streaming. Some approaches were more network-centric like approaches to solving 

the problems of unresponsiveness in video flows. Others were classified as either 

protocol-related solution or object based video streaming system. We believe object 

based video streaming is a very promising field for both video and communication 

societies.   Still there is a lot of room for investigation and development.  
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Chapter 7 

A Novel Approach for Improving the Quality of Service for 

Wireless Video Transcoding 

To deliver streaming video over wireless networks is an important component for 

most interactive multimedia applications running on wireless handset devices.  Such 

devices should be inexpensive, compact, and lightweight. Wireless channels have limited 

bandwidth and a high channel bit error rate.  Delay variation of packets due to network 

congestion with the high bit error rate lessens the quality of video at the handheld devices.   

Therefore, mobile access to multimedia content requires video transcoding 

functionality at the edge of the mobile network for interworking with heterogeneous 

networks and services. Under certain conditions, the bandwidth of a coded video stream 

needs to be drastically reduced. 

We propose a cost-efficient mechanism for improving the quality of service (QoS) 

delivered to the mobile user, by introducing a robust and efficient transcoding scheme as 

proven by extensive experiments.  The proposed approach refines the motion vectors 

value without the need to re-perform the motion estimation process.  Then the 

transcoding mechanism will be preformed using the new fine motion vectors.  Thus, great 

amounts of computing resources are saved.  To verify and prove the robustness of the 

proposed approach, experimental results demonstrate the exceptional performance. 

7.1 Introduction  

Recent advances in mobile communications and portable client devices enable us to 

access multimedia content ubiquitously.  However, when multimedia content becomes 
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richer, including video and audio, it becomes more difficult for wireless access due to 

many practical restrictions.  Most important of all, wireless connections usually have a 

much lower bandwidth compared to wired ones and communication conditions change 

dynamically due to the effect of fading [90].  Another practical factor is that portable 

client devices equipped with limited computing and display capabilities.   

Most portable devices are not suitable for high quality video decoding and displaying.  

Concerning the heterogeneity issue, the previous era has seen a variety of developments 

in the area of multimedia representation and communication.  In particular, we are 

beginning to see delivery of various multimedia data for all types of users and conditions.  

In a diverse and heterogeneous world, the delivery path for multimedia content to a 

multimedia terminal is not straightforward especially in the mobile communication 

environment.  Access networks vary in nature, sometimes limited, and differ in 

performance.   

The characteristics of end user devices vary increasingly, in terms of storage, 

processing capabilities, and display qualities, also the natural environment, e.g., position, 

elucidation or temperature changes.  Finally, users are different by nature, showing 

dissimilar preferences, special usage, disabilities, etc. However, the major traffic 

component in multimedia services is undoubtedly due to visual information encoded and 

delivered either as video frames or visual components [91].  In order to cope with the 

current heterogeneous communication infrastructure and the diversity of services and 

user terminals, different transcoding mechanisms are necessary at internet working nodes 

[92,93].  Whenever a client terminal or its access channel does not comply with the 

necessary requirements, media transcoding must be triggered to allow interoperability.   

This is basically an adaptation function operating on coded streams such as MPEG1/2 [94] 
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for matching a set of new constraints, different from those assumed when the signals 

were originally encoded.  Since many multimedia services are not specifically meant for 

mobile systems, in general the channel bandwidth required for transmission, as well as 

the coded signal format, do not match mobile applications [95-98].  Because of traffic 

characteristics such as high bit rate, video will be the dominant traffic in multimedia 

streams, hence it needs to be managed efficiently.  

 Obviously for efficient utilization of network resources, video must be compressed to 

reduce its bandwidth requirement. A wireless handset device, for instance personal data 

assistant, can integrate voice, video, and data in one device.  In contrast to solely text 

information, multimedia data can tolerate a certain level of error and fading. Therefore, 

although a wireless network has a high bit error rate when compared to a wireline one, it 

is possible to be in cost effective manner transmit multimedia over wireless networks 

with an acceptable quality [99].   

As mentioned earlier, although the constraints imposed by the heterogeneous nature 

of the communication network are quite different from those arising from the diversity of 

user terminals and the problem of fading and error in wireless channels, all of them may 

be dealt with the transcoding mechanism.  In this work we address the problem of MPEG 

stream video transcoding, where the bandwidth of a coded video stream must be 

drastically reduced in order to cope with a highly constrained transmission channel.   

Particularly, we work on the MPEG-2 compressed digital video content, as MPEG-2 

is being used in a number of products including the DVDs, camcorders, digital TV, and 

HDTV.  In addition, tons of MPEG2 data has already been stored in different accessible 

multimedia servers.  The ability to access this widely available MPEG-2 content on low-

power end-user devices such as PDAs and mobile phones depends on effective 
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techniques for transcoding the content to a more appropriate, low bit-rate video.  

 In the subject where video is concerned, transcoding may be needed to convert pre-

coded high quality videos into lower quality ones to display on handheld devices.  Video 

transcoding deals with converting a previously compressed video signal into another one 

with a different format, such as different bit rate, frame rate, frame size, or even 

compression standard.  Diversity of multimedia applications and the present 

communication infrastructure comprise of different underlying networks and protocols.   

Therefore, there is a growing need for inter-network multimedia communications 

over heterogeneous networks and devices.  Especially in applications where pre–encoded 

videos are spread to users through different connections, such as video on demand or 

streaming of pre-encoded videos, the end transmission channel conditions are generally 

unknown when the video is originally encoded.  By means of transcoding, pre-encoded 

videos can be converted on the fly as they are transmitted.   

Similar to source encoders, video transcoders can modulate the data they produce by 

adjusting a number of parameters, including quality, frame rate, or resolution.  However, 

using transcoders gives us another chance to dynamically adjust the video format 

according to channel bandwidth and end devices.  This is particularly useful when there 

are time variations in the channel characteristics. 

7.2 Related Work 

Converting a previously compressed video bit stream to a lower bit rate through 

transcoding can provide finer and more dynamic adjustments of the bit rate of the coded 

video bit stream to meet various channel situations [18-24]. Depending on the particular 

strategy that is adopted, the transcoder attempts to satisfy network conditions or user 

requirements in various ways.   
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In the context of video transmission, compression standards are needed to reduce the 

amount of bandwidth. Since the delivery system must accommodate various transmission 

and load constraints, it is sometimes necessary to further convert the already compressed 

bitstream before transmission.  Depending on these constraints, conventional transcoding 

techniques can be classified into three major categories: bit-rate conversion or scaling, 

resolution conversion and syntax conversion [21,100].  

 Bit-rate scaling can accommodate deficiency in available bandwidth.  Resolution 

conversion [18,19,96] can also accommodate bandwidth limitations, but is primarily used 

to account for limitations in the user devices, such as processing power, display 

constraints or memory capability.  To ensure adaptability across hybrid networks, syntax 

conversion [101,102] at the protocol layer is required.  Syntax conversions may also be 

considered at the compression layer to ensure receiver compatibility.   

The simplest way to develop a video transcoder is by directly cascading a source 

video decoder with a destination video encoder, known as the cascaded pixel domain 

transcoder [102].  Without using common information, this direct approach needs to fully 

decode input video and re-encode the decoded video by an encoder with different 

characteristics as described in Fig. 7-1. Obviously, this direct approach is usually 

computationally intensive.  The architecture is flexible, because the compressed video is 

first decoded into raw pixels, hence a lot of operations can be performed on the decoded 

video.   

However, as we mentioned earlier, the direct implementation of the Cascaded Pixel 

Domain Transcoder is not desirable because it requires high complexity of 

implementation. 

The alternative architecture for transcoding is an open-loop transcoding in which the 
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incoming bitrate is downscaled by modifying the discrete cosine transform (DCT) 

coefficients.  For example, the DCT coefficients can be truncated, requantized, or 

partially discarded in the optimal sense [18,102] to achieve the desirable lower bitrate. In 

the open-loop transcoding, because the transcoding is carried out in the coded domain 

where complete decoding and re-encoding are not required, it is possible to construct a 

simple and fast transcoder.   

 
Fig. 7-1. A typical transcoder architecture 

However, open-loop transcoding can produce “drift” degradations due to mismatched 

reconstructed pictures in the front-encoder and the end-decoder, which often result in an 

unacceptable video quality.  Drift-free transcoding is possible by the direct cascade of a 

decoder and an encoder.  Although this transcoder has a higher complexity than the open-

loop transcoder, some information extracted from the incoming video bit stream after the 

decoding can be used to significantly reduce the complexity of the encoder.   

Thus, the complexity may not be as bad as it looks.  In transcoding, full motion 

estimation is usually not performed in the transcoder because of its computational  

complexity.  Instead, motion vectors extracted from the incoming bit stream are reused.  

 Since a great deal of bit rate reduction is required, traditional transcoding methods 

based on simply reusing the motion vectors extracted from an incoming video bit stream 

[104,105,106]  are not adequate.  Fig. 7-2 states the basic scheme of these approaches.  

They would produce an unacceptable texture distortion in the reconstructed signals. 

Although an optimized motion vector can be obtained by full-scale motion estimation  
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[107,108], this is not desirable because of its high computational complexity. 

 
          Fig. 7-2. General scheme for transcoding video based on motion vector reuse 

  
Another related work [109], proposed to partially estimate the motion vectors based 

on predefined search area.  Their constructed images quality was relatively good.  The 

performance of video transcoding was boosted, but on the other hand they still have high 

computation complexity as they need to perform motion estimation even partially.  For 

further description, basic scheme of there proposed approach is drawn in Fig. 7-3. 

 
                            Fig. 7-3. Video transcoding scheme based on  partial motion vector estimation 

In this chapter, we consider the cascaded architecture as the framework for high-

performance transcoding.  The cascaded transcoder is very flexible and easily extendible 

to various types of transcoding, such as temporal or spatial resolution conversions.  We 

will investigate techniques which can reduce the complexity while maintaining the same 

level of video quality.  In transcoding, motion estimation is usually not performed in the 

transcoder because of its computational complexity.  Instead, motion vectors extracted 

from the incoming bit stream are reused.   

However, this simple motion-vector reuse- scheme may introduce considerable 

quality degradation in many applications [106,109,110].  Although an optimized motion 
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vector can be obtained by full-scale motion estimation, this is not desirable because of its 

high computational complexity.   

Therefore, in this chapter, we propose a new motion vector refinement scheme for a 

transcoder using the MPEG1/2 [94] encoded bit streams.  We propose an adaptive 

Gaussian motion vector refinement scheme that is capable of providing comparable video 

quality to those which can be achieved by performing a new full-scale motion estimation 

or partial-scale motion estimation.  Our scheme requires considerably less computation.  

The reuse of incoming motion vectors has been widely accepted because it is  almost as 

good as performing a new full scale motion estimation and was assumed in many 

transcoder architectures [21- 23].   

However, as proved in [106,109,110], simply reusing the incoming motion vectors is 

not optimal. Their simulation results show that its performance may be considerably 

worse than the one which can be achieved with new motion estimation.  [109] showed 

that the differential reconstruction error causes incoming motion vectors to deviate from 

optimal values.  In most macroblocks the deviation is within a small range and the 

position of the optimal motion vector will be close to that of the incoming motion vector.  

These defects can be combated with the robust motion vector refinement scheme that 

repairs motion fields.  Subsequently, the refined motion vectors can be reused in the 

transcoder side efficiently.  

7.3 Mobile and Wireless Video Transcoding System 

Architecture 

In this section, a full description for video transcoding in mobile and wireless network 

will be presented.  The proposed transcoding scheme is drawn in Fig. 7-4.  In this figure, 
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we capture video stream in MPEG format from the front encoder.  Front encoder is to be 

transcoded video source encoder.   

Usually this encoder will be located on the content provider or server side.  The first 

part of transcoder is typical decoder.  The second component is a module in charge of 

extracting motion vector after the decoding process has been started in the transcoder.  

The third module is motion vectors refining. The function of these modules is to refine 

motion vectors.  Finally, transcoder encodes the decoded images using the refined motion 

vectors according to the transcoding parameters.  Then transcoded video data will be 

transmitted to end users or clients.  End users are supposed to have end decoder to be able 

to render new video. 

Fig. 7-4. The proposed video transcoding system based on refined motion vectors 

 

Fig. 7-5. Overview of Mobile and Wireless Video Transcoding System Architecture 
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In order to enable users to access video through wireless network and handheld 

devices, we propose using a transcoder as an intermediate node to dynamically convert 

the video according to user devices and network connections.  In this approach, a content 

provider provides only one video stream, which is pre-encoded at high quality.  The 

video transcoding performs transcoding dynamically for each user and provides 

converted video streams.  

The architecture of the video transcoding system is illustrated in Fig. 7-5. The 

proposed system contains four important parts: user profile, video transcoder, control 

module and pre-encoded video content.  In this system, the transcoder is integrated into 

the video streaming server.  It can also be placed as an intermediate node along the 

transmission path.  The user profile maintains several profile modules. The handheld 

device profile includes hardware and software information on the devices, such as display 

size, processing power, storage capability and decoder information.  The user preference 

profile includes user preference information such as user preferred display size, user 

preferred video presentation and user preferred video player behavior.  

The communication profile will measure the download throughput and update the 

communication conditions.  The information included in the device profile and user 

profile will be transmitted to the video stream server before the start of the video 

transmission session.  The information included in the transmission profile will be sent to 

the stream server periodically to control the bit rate adaptation in the transcoder.  All 

information in the user profile is used for parameters in the transcoding process.  Table 7-

1 is a clear example for user profile information. 

The video transcoder is the actual conversion engine of a video stream.  It decodes a 

video stream, which is pre-encoded at high quality and stored in the video source, and 
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then performs transcoding according to our proposed scheme.  According to the result 

presented in section 6 in this chapter, our proposed scheme has a very high performance 

in terms of visual quality.  They are comparable to results which can be achieved by full-

scale motion estimation based transcoding.  But our proposed scheme outperforms the 

full-scale motion estimation based transcoding in terms of processing speed as proven by 

experiment results.  When fast transcoding architectures are used, it is possible to execute 

transcoding in real time.  Thus we can provide the handheld device user a smooth, online 

video presentation. 

Table 7-1: User profile Information used by control module 
Frame rate 
Pixel size 

Monitor resolution 
Graphic engine capability 

CPU Usage 
Memory usage 

Visual objects summary 
Visual combination report 

Audio object summary 
Scene description level 

 
The control module is responsible for creating a transcoding scheme according to the 

user profile Table 7-1 and other information. In order to decide appropriate transcoding 

parameters, decisions must be made by considering all of the factors adaptively.  For 

example, when connection throughput is low, the bit rate of the video needs to be 

converted.  At the same time, in order to ensure video quality, the frame rate of the video 

also needs to be reduced.  This way, each frame will have enough bit budgets to maintain 

tolerable visual quality. 

 80



7.4 Motion Estimation in Transcoding 

Current video compression techniques [94] exploit mainly two types of redundancies 

in the uncompressed video signal to achieve the desired compression gain. First, 

preserving only significant DCT coefficients can considerably eliminate the spatial 

redundancy between pixels within a single frame because of the energy compaction 

property of the DCT.   

Furthermore, the motion-compensated predictive coding scheme is used to remove 

the temporal redundancy between frames.  In other words, a motion-compensated block 

in the previous reconstructed reference frame is subtracted from the current macroblock. 

The residual signal is encoded using DCT to further remove the spatial redundancy.  To 

find the motion vector for a macroblock in the current frame, a best matching macroblock 

is searched within a predefined search window in the previous reconstructed reference 

frame.  The motion vector is defined as the displacement of the best matching block from 

the position of current macroblock.  According to the aforementioned description for 

video compression techniques, cascaded pixel domain transcoder can be presented as in 

Fig. 7-6. 

 
Fig. 7-6. Cascaded pixel domain transcoder 
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This transcoder will receive the encoded bitstream from the front encoder then decode 

the bitstream according to the encoding parameters provided from the front encoder.  One 

of the most important parameters is quantization step ‘Q1’ used by the inverse quantizer 

in the transcoder.  Then the transcoder will encode the decoded images according to a 

new encoding profile, for example new quantization step ‘Q2.’  Since the output bitrate is 

lower than the input bitrate, naturally, the quantization step size in Q2 in the transcoder is 

usually much coarser than the quantizer step size in Q1 in the front encoder.  According 

to [109], there are non-zero probabilities that the quantization errors may cause the 

incoming motion vector to be non optimal i.e., a better motion vector can be found. 

7.5 Motion Vector Refinement 

Although the optimized motion vector can be obtained through new motion 

estimation, it is not desirable because of its high computational complexity.  The reuse of 

the incoming motion vectors has been widely accepted because it was generally thought 

to be almost as good as performing a new full-scale motion estimation and was assumed 

in many transcoder architectures [21-23].   

Fig. 7-7 shows the performance of motion vector refinement.  The quality degradation 

introduced by reusing incoming motion vectors is about 0.40 dB on average comparing 

the full-scale search motion estimation with our approach. However, refinement of 

incoming motion vectors using the proposed motion vector refinement increases the 

performance close to that of the full-scale and partial-scale search motion estimation.  

Detailed simulation environment and coding parameters used in the simulations are 

described in the results section. 
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The subjective effectiveness of the spatial noise filter is therefore increased, by taking 

the noise weighting curve into account.  Table 7-2 provides some subjective results of 

applying motion vector refinement scheme in transcoding against the simple reuse of 

motion vectors and no transcoding.  It is evident from these frames that the motion vector 

refinement process eliminates a significant amount of noise in the reconstructed output. 

 
Fig. 7-7. Performance of motion vector refinement (“Claire of QCIF format. Process 50 frames)  

Incoming but rate at 128 Kb/s was transcoded t0 32 Kb/s with 30 frames/s. 
 

Table 7-2 subjective results of applying motion vector refinement on Carphone Sequence 
Frame number Original Image Transcoded by reuse 

motion vectors  
Transcoded by the 
proposed motion vector  
scheme  

Frame No. 59 
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7.6 Result and Discussion 

We have designed an experiment to test the proposed scheme on several video clips 

in order to verify the performance.  These video clips are part of the MPEG7 testing 

dataset.  In all the simulations presented in this chapter, test sequences of QCIF 

(176X144) were encoded at high bitrate using a fixed quantization parameter.   

At the front-encoder, the first frame was encoded as an intraframe (I-frame), and the 

remaining frames were encoded as interframes (P-frames).  These picture-coding modes 

were preserved during the transcoding.  In our simulations, bidirectional predicted frames 

(B-frames) were not considered, as it is sufficient to use the motion information of P-

frames only in our experiment design.   

Comparison is held among four types of work: transcoding scheme using full-scale 

motion estimation (FSME), using proposed motion vector refinement (PMVR), using re-

use motion vector (RUMV) and finally using partial-scale motion estimation (PSME).  

The peak signal-to-noise ratio (PSNR) measures the video quality, because it is most 

commonly used to evaluate such system performance [23,24,109,111].   

Assume we are given a source image  that contains N by N pixels and a 

reconstructed image 

y)f(x,

),(~ yxf where f~  is reconstructed by decoding the encoded version 

of .  First, we compute the mean squared error (MSE) of the reconstructed image 

as in Eq.(7.1). 

),( yxf

[ ]
2

2
),(~),(

N
yxfyxf

MSE ∑ −
=

      (7.1) 

Based on mean-square error (MSE), the PSNR for each colour component (Y, Cb, Cr) 

luminance and chrominance component is calculated separately.  The equation for PSNR 

calculation in decibels (dB) is computed as in Eq.(7.2). 
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In our result we present the PSNR values for Y components due to the space and 

readability.  As we are emphasizing the processing performance and its importance to the 

handheld devices, we measure the speed-up according to Eq.(7.3) 

)(
)(

xTimeExcution
YTimeExcutionupSpeed

−
−

=−
     (7.3) 

For comprehensive description sake, we provide simulation environment Table 7-3.  

The CPU, memory and hard-disk capability are listed under Hardware.  The operating 

system and programming environment are listed under Software. 

Table 7-3. Simulation Environment Hardware and Software Component 

 
Hardware 

 
Software                

CPU Memory Hard Disk Operating 
System 

Programming 
Language 

Pentium-3 
 

1GHz 

256 
SDRAM 

10025 
RPM 

Windows 
XP professional 

Visual Studio 
2005 

 
Fig. 7-8 and Fig. 7-9 show the simulation results of different motion vector 

refinement schemes at different frame-rates for “Mother and daughter” and “Coast 

guard” sequences. The performances of the FSME transcoding, PMVR transcoding, 

RUMV transcoding and transcoding using PSME were compared.  Based on our 

simulations, PMVR has about the same performance as FSME and PSME but requires 

less computation.  The proposed adaptive refinement scheme has eliminated most of the 

untrue incoming motion vectors were this elimination process has computational savings 

which are significant and demonstrate the effectiveness of the proposed adaptive 

refinement scheme. 
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According to the presented results, one can infer the advantages of deploying our 

scheme in described applications in both wireless platform and future work.  The results 

in Fig. 7-8 are conducted on mother and daughter video clip.  The PSNR values will 

range from frame to frame based on the motion vector refining. Our approach is gaining 

in average around 1 to 2 DBs, while keeping remarkable resources utilization as proved 

in the rest of this section.  Similarly, the presented results in Fig. 7-9 state the clear 

advantage from deploying our scheme in video transcoding for mobile and wireless 

networks.  The performances in terms of processing speed are summarized in Table 7-4, 

and Table 7-5 as the performances of the FSME, PMVR, RUMV and PSME transcoding 

were compared. According to Eq.(7.3), speed up is computed.  
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Fig. 7-8. Performance of the proposed motion vector refinement against related works on Mother 
and daughter. (a) outgoing frame-rate: 30 frames/s. (b) outgoing frame-rate: 15 frames/s and (c) 

outgoing frame-rate: 10 frames/s. 
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Fig. 7-9 Performance of the proposed motion vector refinement against related works on 
Coast Guard sequence. (a) outgoing frame-rate: 30 frames/s. (b) outgoing frame-rate: 15 

frames/s and (c) outgoing frame-rate: 10 frames/s. 
 

Clearly, the proposed motion vector refinement scheme has outperformed the re-use 

motion vector, spatial and full scale motion estimation approaches.  This is due to the fact 

that refining motion vector values consumes few operations as opposed to the full or 

 88



partial scale motion estimation, as motion estimation is very time and power consuming.  

Even, PMVR outperforms RUMV in terms of processing time, due to the PMVR ability 

to eliminate non fine motion vector before re-decoding process in the transcoder, and thus 

PMVR saves a lot of memory and CPU power usage.  These results are very important 

for real-time and interactive applications such as pre-encoded mobile video streaming.  In 

summary, the proposed system boosts the performance, while keeping the computational 

complexity low.              

Table 7-4 Execution time speed up table for Flower and garden sequence 
 

 RUMV PSME PMVR FSME 

Execution  
Time (S) 144.32 1555.09 120.16 1866.4 

Speed-up 12.93237 1.200188 15.53262 1 

 
 
 

 
 

 
 
 

 
Table 7-5 Execution time speed up table for Claire sequence 

 RUMV PSME PMVR FSME 
Execution  
Time (S) 

184.32 
 

1999.33 
 

158.77 
 

2250.33 
 

Speed-up 
12.20882 
 

1.125542 
 

14.17352 
 

1 
 

7.7 Conclusion and Future work  
In this chapter, we have discussed motion vector refinement for high performance 

transcoding.  Since a great deal of bit rate reduction is required, traditional transcoding 

methods based on simply reusing the motion vectors extracted from an incoming video 

bit stream are not adequate.  They would produce unacceptable texture distortion in the 

reconstructed signals.  However, by applying a new full-scale or partial-scale motion 

estimation quality of the transcoding mechanism is boosted the in favor of the high 

computation power consumed to realize these mechanisms.   
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In this chapter, we present a novel transcoding scheme, of which the quality can be 

significantly improved by refining the incoming motion vectors as opposed to applying a 

new full-scale motion estimation to find the optimal motion vectors or partial-scale 

motion estimation.  We propose a new motion vector refinement scheme for a transcoder 

using the MPEG1/2 CODEC.  Through extensive simulations we have showed that the 

proposed motion vector refinement scheme does improve the video quality to the level 

achieved by using the full-scale motion or partial-scale estimation, with minimal 

computational complexity.  

 In addition, our transcoding mechanism has been applied only in MPEG domain 

videos. We believe further researches should be conducted in different video domains 

such as H.263 and so forth.  Actually, extra investigation would result in good description 

for generic transcoding mechanism in any video processing domain.  Currently, a good 

trend towards the mobile TV has been brought to the academia and industries.  Therefore, 

video transcoding will be an interesting issue to address for mobile TV field. 
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Chapter 8 

Experimental Results and Discussion 

We have designed several experiments in order to verify the performance, to test the 

noise model assumptions, and to prove the goodness of our proposed techniques. 

Intensive experiments have been conducted in many subjective and objective manners. 

More than three hundred hours of video sequences have been tested.  Numerous Standard 

measurement metrics have been used. 

8.1 Objective Evaluation  

The proposed object detection approach are applied to various kinds of videos 

including the Spanish news in MPEG7 testing sequences, CNN news, CTTV news in 

Taiwan, baseball game in Taiwan.  The content of testing sequences mainly includes 

shots of the anchor person, interview, football games, baseball games, bicycle racing, 

entertainment education and scenery, etc.  The testing videos are of resolution of 320 X 

240 in MPEG1/2 format in most of the cases.   

The spread of video content features are so various in order to verify the proposed 

approach against different video contents.  For example the spread of edge features vary 

from scatter form, such as the full court view of the football came, to centralization form 

such as anchor person in the news.  The temporal edge variation is different from high, 

such as players in bicycle racing, through medium, such as the pitching view of baseball 

game, to low, such as the anchor person in the news.  Table 8-1 contains the description 

of a subset of the used video sequences. 

These details include the video sequence category, short description of each video 

sequence, and source.  These videos are subset of MPEG7 testing dataset.  In addition 
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several video sequence captured by us, or worldwide used in video research have been 

used.  For instance, video test sequences Mother Daughter, Akiyo, Claire, Miss America, 

Hall Monitor, have been used.  The simulation was not restricted to MPEG-7 test 

sequences.  The proposed algorithm was also applied to an indoor scene video captured 

by a low-end camera.  

8.1.1 Testing dataset configurations 

The frame size is 320X240 which implies that we have 20X15 macroblocks in each P 

frame.  Our testing dataset presents objects in different positions, speed, and object size.  

Objects in scattered form, such as the full court view of the football game and 

centralization form such as anchor person in the news.  The temporal variation is 

different from high, such as players in bicycle racing, through medium to low, such as the 

pitching view of baseball game to the anchor person in the news.  In addition, typical 

videoconference sequences (Mother Daughter, Akiyo, Claire)  and sequences containing 

objects with straight forward motion (Hall Monitor, Container Ship) have been tested.  

The metric used in the experiments are precision and recall, which are used together 

to measure the accuracy of the object detection system.  We choose the recall and 

precision metrics as defined in Eq(8.1) and Eq(8.2) as they are commonly used in 

performance evolution [36,28,41,60].  

In each frame, the number of hits is the number of macroblocks that contain an object 

and this object is correctly detected.  The number of false alarms is the number of 

macroblocks, which contain no object yet are falsely identified as containing objects. The 

number of misses is the number of macroblocks that contain an object but yet the 

detection algorithm fails to detect it.  We use the macroblock as the unit of measurement 

because we are doing the object detection in the compressed domain.  The aim of the 
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experiment is to evaluate the objective performance of the proposed system. 

Table 8-1:  video sequence clip database 

                               

News Two complete TV news programs Portuguese TV, RTP & 
SIC 

 Universal newsreel collection. 
B&W video. 

National Archives at 
Maryland 

 Daily TV news program Spanish TV, RTVE 
 Weekly TV news program Spanish TV, RTVE 
Drama/ Movie "Art" movie: Hallo Christoph Rodatz, GMD 
 Movie: "La sombra de un cipres es 

alargada" 
Spanish TV, RTVE 

 TV Drama series: "Pepa y Pepe" Spanish TV, RTVE 
 Sitcom (1 and 2) Portuguese TV, RTP & 

SIC 
Documentary "Science Eye": Bridge construction NHK 
 5 clips of scientific documentaries SFRS 
 Documentary about buildings Lancaster Television 
 Basic Ophthalmic Exam Univ. of Tennessee 

 Documentary about a village: 
"Santillana del Mar" 

Spanish TV, RTVE 

Sport 3 Sport Clips: Soccer, Cycling, 
Basketball  

Spanish TV, RTVE 

 2 Sport clips: Basketball, Golf Korean Broadcasting 
Station  

 Soccer sequence Samsung 

Commercial 14 items of commercials in Korean Samsung 
Music video and 
games 

Korea's pop singers' live music 
Show 

Korean Broadcasting 
Station  

 TV quiz program: "Saber y ganar" Spanish TV, RTVE 

 Music program: "Musica si" Spanish TV, RTVE 
 

 Variety Show. First 30 minutes of 
complete program 

Portuguese TV, SIC 

   
              (8.1) 
                                                           
 

                                                                                            (8.2) MissesofNumber  o HitsfNumber +
=

Hits ofNumber Recall

AlarmsFalseofNumber  Hits ofNumber 
Hits ofNumber 

+
=Precision 
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Figures 8-1 through 8-4 show the results of object extraction over the anchor person 

video clip from the MPEG testing dataset.  We show the precision metric and recall 

metric of our object extraction scheme for this video clip both with and without the filter 

being used, and we construct manually the ground truth of the video clip.   

Fig.8-1 and 8-2 illustrate the value of the recall and precision metrics for each frame 

in the video clip.  We note that the performance of object extraction using the Gaussian 

filter is consistently superior to that using other filters or no filter.  We show the average 

recall metric and average precision metric for the whole clip in Fig. 8-3 and Fig. 8-4.  

Again, the Gaussian filter topped them all for both precision and recall.  The high recall 

metric in the mean filter with low precision is due to the fact that the mean filter creates 

unrealistic motion vectors, generating a high recall value, but with many false alarms.   

Besides, we can infer from Figure 8-1 through 8-4 that the median filter due to its 

nature does not adjust motion vector values.  Rather it is just rearranging motion vectors, 

not adjusting the content of those values and not eliminating the noise within them.  

Hence, the precision is almost like that not using a filter and only the recall metric 

increases slightly.  In summary, the Gaussian filter boosts the object detection 

performance. In addition, the computational complexity is low as discussed previously.  

The Gaussian filter is available as a readily implemented component in both hardware 

and software, which demonstrates the flexibility and extendibility of the proposed 

scheme. Testing is performed using four types of related work which are, Group A using 

Gaussian filter only [37],  group B using Median filter  [28], Group C using  Cascade 

Filter , and group D our system, finally without any kind of post processing. 
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Fig. 8-1: Precision for Object extraction in P-frames of Anchor person  

 

 
Fig. 8-2: Recall for Object extraction in P-frames of Anchor person  

 

 
    Fig. 8-3 Average  Precision for object                              Fig. 8-4  Average Recall  for object 

  detection for anchor person Video                                 detection for anchor person Video 
 
  Figures 8-5 through 8-8 show the performance results of object extraction over the 

second video clip among the MPEG7 walking person testing dataset.  We show the 

precision metric and recall metric of our object extraction scheme for this video clip both 

with and without the filter being used, and we construct manually the ground truth of the 
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video clip.  Fig. 8-5 and 8-6 illustrate the values of the recall and precision metrics for 

each frame in the video clip.  

 We note that the performance of our system is consistently superior to other 

schemes.  We show the average recall metric and average precision metric for the whole 

clip in Fig. 8-7 and 8-8. Again, our system topped them all.  Through the experiment, we 

noticed that there is a weakness in the single Gaussian filter when the object location is in 

the frame border.  This is due to the lack of information in the neighborhood near the 

border.  

In summary, the proposed system boosts the performance, while keeping the 

computational complexity low.  Both the Gaussian and Median filters are available as a 

readily implemented component in both hardware and software.  In addition, the motion 

vectors, DCT coefficient and AC component are readily available in MPEG stream.  As 

we refine the motion vectors resulting in vectors that are stable, execution time 

of the object extraction algorithm after using the filter will be reduced significantly

compared to that without using any kind of post processing.  

 
Fig. 8-5: Precision for Object extraction in P frame2nd sequence In walking person testing dataset   
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Fig. 8-6: Recall for Object extraction in P frames 2nd sequence In walking person testing dataset   

 

 
   Fig. 8-7  Average precision of 2ndsequence          Fig. 8-8  Average Recall for 2nd sequence   
  In walking person testing dataset                          In walking person testing dataset     
 

We then computed the average numbers of missing MBs, false MBs.  Numbers of 

missing and false MBs are simply computed by comparing a segmented object mask with 

its related ground truth.  Fig. 8-9 presents results of object detection approach on various 

video test sequences. 

 
                                       (a)                                                                                 (b) 
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2 Sport clips: Basketball, Golf
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Fig. 8-9 Recall and precision for the following video clip (a) Interview (b) TV drama (c) Anchor 
person (d) Spanish news (e) Miss America (f) Spanish news (g) Hall monitor (h) Locally captured 
video (i) Documentary about buildings (j) Bicycle racing  (k) Sport scenes for golf courts  (l) 
commercial in Korean (m) three out door scenes (n)Akiyo  (o) football game 
 
8.1.2 Discussion  

The recall rate drops in the speedways sequence because vehicles are very small 

when they are far away.  “Hall Monitor,” is surveillance type of video containing small 

moving objects and complex background.  “Miss America” and “Akiyo” sequences are 

typical head-and shoulder type video in QCIF and CIF format, respectively.  For 
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sequences which have temporarily still objects from the beginning, such as “Miss 

America” or “Akiyo,” our proposed approach still have sufficiently good detection 

results.  

8.2 Subjective Evaluation 

Fig.-8-10 shows the segmentation results for several benchmark sequences.  The 

sequences are: 

• Speedway video sequence 

• Miss America video sequence 

• Foreman video sequence 

• Text in commercial video  

• Actress in TV festival  

• Actress in TV ceremony  

• Interview “professor “ from Spanish news 

• Interview “student” from Spanish news 

• Oil industry report from Spanish news 

• Sport Reporter 

• Presidential talk  

• Anchor person 

 

 
 

(a) 
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(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 
(f) 
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(g) 

 
(h) 
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(k) 
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(m) 

 
(n) 

 
Fig.8-10: Subjective detection results for the following video sequences (a) Miss America video 
sequence (b) Speedway video sequence (c) Foreman video sequence (d) Text in commercial 
video (e) Actress in TV festival  (f) Actress in TV ceremony (g) Interview “student” from 
Spanish news (h) Sport report from Spanish news (i) Interview from Spanish news (j) Oil 
industry report from Spanish news (k) Presidential talk  (l) Anchor person (m) Interview 
“professor “ from Spanish news (n) Interview from Spanish news 
 

The Akiyo and Weather sequences do not have background noise so their 

segmentation results tend to be better than those of other sequences.  Background noise 

does exist in the Hall Monitor sequence. Also, shadows cause by indoor illumination 

appear in the background region.  Still our segmentation results track the object shape 

quite well and are subjectively better than previous results.   
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8.3 Run Time Evaluation 

In order to verify the previous mentioned fact about run time efficiency, we measure 

the performance of the object extraction performance in terms of run time.  We use 

Pentium4 with 2 Giga Hertz CPU speed, and 30 Giga Byte Hard disk capacity.  This 

result was prepared on the anchor person video clip.  The experiment result will be 

presented in the Table 8-2.   

Table 8-2, shows the run time in milliseconds (ms) for the object extraction module 

using our system, other related work, and without any post preprocessing for the walking 

person clip. This video clip is among the MPEG7 testing dataset. The result is based on 

the first 500 frames. The groups A, B and C are the same related group used in 

comparing the objective result metrics. Also, we describe the I/O time needed to perform 

the object extraction task and the total spent time.  The reader may notice the run time 

difference among our system, other related work and without post processing, where, our 

system’s performance is so efficient in terms of run time and I/O and certainly in terms of 

the total time spent.  This result comes compatibly with our expectation and initial idea.  

Table 8-2:  Run time for object extraction in millisecond 
Without 
Post 
Processing 

Group 
D 

Group 
C 

Group 
B 

Group 
A 

 

 
300  ms. 

 
215 ms. 

 
258  ms. 

 
269. 

 
285 ms. 

Object 
Extraction Run 
time 

70   ms. 48 ms. 58 ms. 60  ms. 64 ms. I/O processing  
370  ms. 263  ms. 306 ms. 329  ms.349 ms. Total Time 

 
Generally the segmentation speed depends on the object size and the complexity of 

the scene.  For a typical object like Akiyo in CIF size images, it takes around 20 seconds 

per frame on a SUN UltraSparc-2 workstation.  Note that this includes all the 
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computation processes described in the system architecture.  Optimization may be 

performed to determine critical processes and non-critical processes may be ignored to 

reduce computations. Parallel processing can greatly improve the speed of our system.   

As one can see, the computations of feature maps, which are the most computation 

intensive parts of the system, can easily be done in parallel.  It can be seen that in the 

proposed approach, object detection is carried only on a part of the motion vectors, as 

many undesirable ‘noisy’ motion vectors have been eliminated. This drastically reduced 

the computation time as compared to existing algorithms for object detection.  
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Chapter 9 

Conclusion and Future Work 

9.1 Conclusion  

It is a well-known fact that motion information is an important cue for humans to 

perceive video content. The proposed algorithms are appropriate for various kinds of 

video processing and communication applications in which motion vector is an important 

clue. The contributions and characteristics of the proposed scheme can be summarized as 

follows: 

• Effectiveness: ability to refine motion vectors based on the texture, temporal and 

spatial features directly extracted from the compressed domain. 

• Real-time Processing: ability to process in real time due to its low complexity and 

the property of processing in compressed domain. 

• Open Framework: possibility to be incorporated to various kinds of applications. 

Along with the increasing popularity of video over internet and versatility of video 

applications, such as video surveillance, vision-based control, human-computer 

interfaces, medical imaging, robotics and so on, the availability and efficiency of videos 

will heavily rely on object detection and related object tracking capabilities. 

There are some special scenarios that automatic detection of video objects is a crucial 

issue.  For instance, it is inevitable in developing object-based video application system, 

with on-line detection schemes.  However, a desirable video objects extraction scheme 

for real-time object-based applications should meet the following criteria: 

• Segmented objects should conform to human perception, i.e., semantically 

meaningful objects should be segmented. 
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• Segmentation algorithms should be efficient and achieve fast speed. 

• Initialization should be simple and easy for users to operate (human intervention 

should be minimized). 

This has been verified by examining the results of our experiments.  We are 

achieving the additional advantages of efficiency and speed up by staying fully in the 

compressed domain, using only the P frames, and using a simple approach to filter 

implementation.  Moreover, initialization and operation of our system is simple as well. 

9.2 Future Work  

In the future, we will use our proposed scheme in adopting a method to convert 

motion vectors in the MPEG coded domain to a uniform set, which is independent of the 

frame type and the direction of prediction.  By utilizing these normalized motion vectors 

in our system, we expect to achieve better object detection.  We propose a cost-efficient 

mechanism for improving the quality of service (QoS) delivered to the mobile users, by 

introducing a robust and efficient transcoding scheme as proven by extensive 

experiments.  The proposed approach refines the motion vectors without the need to re-

perform the motion estimation process.   

Then the transcoding mechanism will be preformed using the refined motion vectors.  

Thus, great amounts of computing resources have been saved.  Actually, extra 

investigation would result in good description for generic transcoding mechanism in any 

video processing domain.  Currently, a good trend towards the mobile TV has been 

brought to the academia and industries.  Therefore, video transcoding will be an 

interesting issue to be addressed for mobile TV field.   

In the object based video streaming framework, video objects are extracted 

automatically and used to control video quality under various manipulations and network 
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resource requirements.    Several future applications can be anticipated based on our 

proposed approach.   

1. Mobile video communication is very promising and hot research topic in 

academia and industry.  To allow smooth and attractive mobile video 

communication, streaming video in mobile network with high level features is 

crucial. Therefore adapting our scheme could result in very promising outcomes. 

2. Online video broadcasting, such as game broadcasting and news broadcasting, has 

requirements real-time processing and display. Using our scheme, these 

applications can make use of the presumed environment parameters and map 

them as detected objects.  For example, game players can be decided as moving. 

3. E-Learning and web distance education may take advantage of our scheme.  But 

this time, lecturer face will be assumed as moving object.   

On enhancing the proposed scheme issues on the quality of service in RTP stack level, 

need to be further addressed.  We anticipate that further quality of service can be attained 

by co-operating the object detection result with the RTP stack definition.  
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