
國立交通大學

資訊管理研究所

碩 士 論 文

指導教授：林妙聰 博士

有時間窗限制的線上廣告排程

Scheduling of Banner Advertisements with Time Windows

研究生：盧彥廷

中華民國九十六年六月

有時間窗限制的線上廣告排程

Scheduling of Banner Advertisements with Time Windows

 研 究 生：盧彥廷 Student: Yen-Ting Lu
指導教授：林妙聰 Advisor: B.M.T. Lin

國立交通大學

資訊管理研究所

碩士論文

A Thesis
Submitted to Institute of Information Management

College of Management
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master of Business Administration
in

Information Management
June 2006

Hsinchu, Taiwan, the Republic of China

中華民國九十六年六月

i

誌謝

 碩班兩年，過著可說是很愜意的生活，擁有一間小套房，一個溫暖的研究室與窩在裡

面的夥伴，在專業而又開明的教授指導下，一步一步完成自己研究的課題。新竹，成了

我的第二個家鄉，有熟悉的朋友，熟悉的景物，有忘不了的深刻記憶，唯一不足夠的，

也許是我能待在這的時間吧。

 筱嵐學姊，可說是我進交大後第一個熟識的朋友，雖然已經是博班新生了，比我多懂

很多東西，可是年紀相近，有很多話可以聊，兩年來受了你很多的關心與照顧，很感心。

延聰是同期一起奮鬥的夥伴，待人和善好相處，尤其又比我細心很多，讓我很多事可以

趕在到期之前完成，真的很不容易啊。亞梅學姊進來得比較晚，可是是個生活達人，研

究室裡大大小小的事物都暗藏著她的巧思，讓這個小地方，更像一個家。昱劭、癸棠兩

個學弟，在碩班的第二年陪著我趴趴走，讓我有機會去新竹各處走訪，睡研究室時不必

自己關燈，可說是讓我＂獲益匪淺＂。我要感謝林教授的除了學業上的指導之外，開明

而包容的引導是讓我能快樂的做研究最大的原因，也讓 meeting 成了一件開心的事情。

牛義是研究室外最好的朋友，幾乎什麼事都能跟你討論，也因為你讓我有多一間研究室

可以去。小六是資管所外最好的朋友，也是交大裡我認識最久的朋友，在我低潮時總能

給我理性的諮詢與建議。小摩姊雖然不在交大，雖然偶爾就會消失，你的鼓勵與分享總

帶來久旱甘霖的驚喜感。我的家人們，雖然常不在台灣，但也讓我成了有國際電話關心

的孩子，知道你們工作很辛苦，給了我讀碩班的機會真的很感謝，讓我可以留下很多人

生的體驗，結交很多的朋友。奶奶的離去，是兩年內最悲傷的事情，感謝那段期間曾給

我幫助的所有人。其他如羽球殺手怡君，沉默酷哥平祺與網路研究室的朋友們，曾來訪

新竹的菸鬼、鬼魅跟印地安，在此祝大家事事如意，平平安安，有沒頭路都賺大錢，有

沒伴侶都不孤單，謝謝大家。

 i

Title of Thesis: Scheduling of Banner Advertisements with Time Windows

Name of Institutes: Institute of Information Management

Student Name: Yen-Ting Lu Advisor Name: Professor B.M.T. Lin

Abstract

As the population of the Internet users increases explosively, the media power of the

Internet becomes concrete and remarkable. One of the leading commercial applications on the

Internet is banner advertisements publishing, which also is the major source of income of

many portal websites. However, there are few researches on how to schedule banners

efficiently and profitably in the past decades. We thereby propose a new model for banner

advertisements scheduling that further resembles the Internet business world. In the proposed

model, we apply a feasible time window to each candidate order, and we schedule

advertisements into various predefined banner spaces on the webpage. This approach allows

various pricing strategies according to banner types, contrary to previous research models

which schedule and price by banner space sharing. Each order will demand its frequency of

each type of banner. The goal is to select orders and schedule their demands to achieve a

maximum total profit. We first give a mathematical formulation to formally describe the

problem. Due to the computational complexity of the studied problem, we seek to produce

approximate solutions in a reasonable time. A three-phase heuristic is developed to cope with

this problem. An upper bound on the profits is developed. Computational experiments are

designed to examine the performance of the heuristic. Statistics from the experiments reveal

that the heuristic can successfully fill up to 97 % of the ad spaces.

Keyword: Banner advertisements, operations scheduling, time windows

 ii

摘要

隨著網際網路使用者數量的快速累積，網際網路其媒體力量隨之變得具體而引人注目。

網頁版面上的橫幅廣告為其最重要的商業應用之一，同時也是許多入口網站最主要的收

入來源。然而，對於如何有效率的排程這些網路廣告以增加獲利的研究卻顯得稀少，因

此，我們在這篇論文中，提出了一個更加貼近今日網際網路商業情形的模式。在此模式

中，我們為每筆廣告訂單設定一段有效的刊登期間，然後站在廣告排程者的立場，努力

滿足每筆訂單中對不同廣告欄位的次數需求，完全滿足者方可依各廣告欄位的訂價賺取

收入。此模式不同於以往的研究，以廣告欄位的種類計價，而不以所占用的分割廣告空

間大小為計價方式。而排程的目標，則是選取訂單並滿足其訂單內容，以獲得最大的營

收。在這篇論文裡，我們先提出一個正式的數學式描述這個題目，考量此題目的計算複

雜度，我們試著在合理的運算時間下尋求近似解。我們設計了一個三段式解題的啟發式

演算法來解題，也設計一個推算可得利潤上限的方法，最後實作了此啟發式演算法，實

驗結果顯示此法可有效的填滿百分之九十七的總廣告欄位。

關鍵字: 網路, 廣告, 時間窗

 iii

Table of Contents

Chapter 1 Introduction ..1

Chapter 2 Problem statement and preliminaries ..7

Chapter 3 Placement Algorithm ...9

Chapter 4 Upper Bound...19

Chapter 5 Computational Experiments ...23

Chapter 6 Conclusions ...28

References ...29

Appendix: ..31

 iv

Chapter 1 Introduction

Since the emergence of advertisements, ads are seldom absent on any influential media,

like flier, newspaper, radio, television, and there is no exception of the Internet. We can

hardly find one website or portal with business power but without hanging advertisement

banners on their board in this Internet times. There are 99 percent of all web sites offer

standard banner advertisements (Buchwalter et al. 2001). The growth rate of the Internet ads

market is still booming in 2006. The IAB Internet Advertising revenue report (2006

second-quarter and first six-month results) shows that the growth rate of the second quarter

revenue based on its of first quarter in 2006 is 5.5% (4,061 versus 3,848 million) , and the

growth rate of first 6-month revenue of 2006 based on its of 2005 is 36.7% (7,909 versus

5,787 millions). Although the unique price of Internet advertisement has not been yet as high

as its of TV advertisement, the latter can be charged thousands of dollars to show on TV for

couple seconds and this investment being effective and profitable cause the population of TV

viewers is so large, but many properties on the Internet are worthy to utilize, for example, the

lower cost and more convenience of connection to other countries and even other continents.

In 2006, England and Sweden have the online advertisements market beyond 10% of their

total domestic market of advertisements, these two countries are the first two in the world

with two-digit percent market share, and it may happen on Australia, Israel, Japan, Norway,

South Korea, and Taiwan before 2008 predicted by eMarketer. The value of web ads may be

illustrated by some decisions of the famous IT companies, Google acquiring Doubleclick for

$3.1 billion and Yahoo buying RightMedia for $680 million in April 2007, and Microsoft

buying aQuantive for $6 billion in May 2007.

As the information technologies progress rapidly, the popularity of internet advertising

 1

rises with many unique advantages which had not ever appeared on other traditional media.

Four main attractive characteristics of internet advertising:

1. Interaction: The advertisements on the Internet are not just showing and delivering

information to browsers like ads on papers or TV. They can interact with their viewers step by

step, like an extension of direct marketing. This feature can catch the viewer’s attention

effectively and communicate with the targeted audience in depth.

2. Traceability: One of the most convenient functions of the Internet is hyperlinks, and

the users of the Internet can reach the websites of the ad hosts easily and rapidly from the

page they are viewing, and even finish the whole transaction process just on the net. This

function makes the feedback and effectiveness of advertising traceable and measurable. It is a

very useful tool for ads hosts to make decisions and to improve advertisement quality.

3. Segmentation: Website hosts can collect visitors’ information by online table directly

or record their behavior on the Internet at a low cost. It is very useful for targeted promotion,

which not only improves the effectiveness of advertising but also reduces the possibility of

disturbing the people who are not happy to receive the ads.

4. Flexibility: Websites on the Internet can operate around the clock. Hosts can modify

and update the ads easily anytime. This makes the promotion activities more flexible and

powerful. One of the remarkable instances is the online auction.

As the importance of web advertisement increases, many researches focus on this subject

in recent years. One part of researches is studying how to improve the effectiveness of web

advertisement of each impression, and they are based on many different social science

methodologies. Some researches founded the models and algorithms to select the attractive

advertisements for the specified web guests by observing and recording their behavior and

hobbies on the Internet. Some researches made effort to classify the types of advertisements

and the types of web context (or content), and then put the relative advertisements on the

matching web pages. Google, Yahoo!, AOL, and MSN the four big portals in American made

 2

$12.5 billion in 2005, which is 53.7% of Internet ad spending in the year (EADP 2007). The

phenomenon that revenues of web ads center on these extremely big portals is not only caused

by their huge mass browsers but also the various services they provide which can hold the

visitors longer time, be useful to website managers to record the browsers’ behavior, target

their interests, and raise the effect of ads impressions. United States Patent No. 5948061,

“Method of Delivery, Targeting, and Measuring Advertising over Networks” belong to

Double Click Inc. is one famous instance revealing the commercial value of spreading

strategy of ads.

Another part of researches is studying how to select and allocate the advertisement orders

to make best profits for advertisement agents or website owners. Internet advertising have to

face the same challenge like ads on other media, how to fill in the ads to the contents which

audience want to receive and not disturb them too much, and get the maximum revenues of

media owners with the limited display space/time slots. This is the topic we study in this

paper and we will review the literature below.

Before go back to our topic on the Internet, we may examine some researches which

developed practical and applicable methods useful to schedule TV advertisements and were

taken in practice by NBC. One special property of TV advertisements is that the first and last

slots in a commercial break are more valuable because of their higher audience ratings than

other slots, and the schedulers of TV ads have to guarantee the advertisers the proper

percentage of their ads appearing in the hot period (i.e. the first or last slots in a break).

Besides, each ad being to be displayed must be classified to some specific type and two ads of

competing hosts belonging the same type are not allowed to appear in the same break.

Bollapragada et al. (2004) presented a formal mathematical program formulation for this

problem and developed a heuristic replacing the existing manual schedule process of NBC.

Another property of TV advertisements is that advertisers hope their ads could be displayed as

evenly as possible during the feasible periods, by each identical ad as a unit. Bollapragada et

 3

al. (2004) presented a formal formulation for this problem and developed heuristics for

different size of problems to get the near-optimal solution within reasonable computing time.

The scheduling problem of Internet advertising was first formulated by Adler et al.

(2002), who presented a space-sharing model for this scheduling problem. They defined a

fixed area for advertising on the webpage, and each ad needed put on has its specified

geometry size and displayed frequency. One special constraint for the Internet ads scheduling

problem is, we cannot put the same ads at the same time slot due to the real effectiveness

consideration, for all the types of problems we will mention below. For the first type of

problem in this paper, our schedule has to satisfy the frequency of each ad and cannot violate

the space constraint at any moment, and our objective is to use the minimal time slots to finish

all the tasks, and we can view this problem as a variant of bin packing problem. Another type

of problem is that we set a fixed number of time slots (limited planning time horizon), and

select the optimal subset of ads to maximize the revenues of ad agents, based on the

assumption that the price of each ad showed once is in direct ratio to its display space. The

authors also provide efficient algorithms in this paper to find optimal solutions to the former

problem with specified restrictions and 2-approximation solutions for the latter problem. They

also discuss how to make a decision to take the orders or not in online condition, and one

algorithm was designed for it in the paper.

The maximum revenues problem in offline mode, which means all demands of ads must

be implemented, was broadly discussed and studied, and many algorithms and approximation

results were published. Amiri et al. (2003) used Lagrangean decomposition to solve the

problem in relatively short computing time to get good results. Dawande et al. (2003)

provided the first known algorithms with constant factor approximations to this problem, the

simple one guarantees 1/4 and the complex one does 3/10 ratio of their performance to upper

bound value presented in this paper. Freund et al. (2004) designed a algorithm guarantee

1/(3+ε)-approximate for general case and 1/(2+ε) for two special cases.

 4

For the same objective function, to get the maximum revenues of ad agents, Menon et al.

(2004) introduced another model to the Internet ads scheduling problem. They relaxed the

constraint of reaching all demands of accepted ads, and this model allowed the ad agents to

make better revenues but just satisfy partial demands of the ads in schedule. They used

Lagrangean decomposition and column generation to solve this problem and compare their

performances, and the column generation got better results and took a shorter time. Amiri et al.

(2006) present a more flexible and practical model, the same relaxation on demands of ads as

mentioned before, but a more precise pricing scheme for the real world trading. The ad

customers can list out several levels of demands been implemented, and each display of ad

need to pay to ad agents by its levels, the level with more counts of display, the higher

individual price of each display. Authors of this paper deploy a Lagrangean

decomposition-based solution procedure to deal with problems of this new model, and this

approach can perform very well for reasonably large problems.

Except the maximum revenues objective, some researches were trying to solve the

problem call “MINSPACE”, defined by Dawande et al. (2003), we set a fixed number of time

slots for use, and we have to schedule all the ads with their demands exactly, and try to

minimize the maximum slot fullness. The solution of this problem can help the ad agents

decide what size the banner is being efficient and suitable for their customers’ demands.

Dawande et al. (2003) provide a 2-approximation algorithm for this problem. Dawande et al.

(2005) present an online version of the MINSPACE problem, and provided an algorithm with

the performance bound of (2-1/N), and they provided two off-line algorithms with

performance ratios (1+1/ 2) and 3/2 , respectively. The N stands for the maximum capacity

of one slot.

In this thesis, we present a new model that schedules the off-line orders contents with

static pricing scheme but limit the feasible time window for each ad order (i.e. release date

and due date), with the same objective of maximizing revenues of ad agents. The rest of this

 5

thesis is organized as follows. We present a new model called Scheduling of Banner

Advertisements with Time Windows in Chapter 2. In Chapter 3, we introduce our heuristic to

solve this problem and implement the heuristic with a small size data set. In Chapter 4, we

design one upper bound for our objective, and we will implement the upper bound with the

same data set. Chapter 5 is our computational experiments and analysis of the results. Chapter

6 is the conclusion and remarks.

 6

Chapter 2 Problem statement and preliminaries

Formal Formulation of the Problem

A web site offers m different types of advertisement space S = {s1, s2, …, sm}, in which

space type sj charges pj per day. There are n orders placed O = {o1, o2, …, on}. An order may

contain ads of one or more types. Each order oi has a time window [αi, βi] that specifies the

duration of its ad activities. Denote by wij the number of days on which ads of space type sj

are required by order oi. The days scheduled for an order are not necessarily consecutive, i.e.

all ads of an order may scatter non-consecutively within the given window. An order is

fulfilled and the web site gets paid only if (1) All ads described in the order are scheduled

within the window; (2) On each day of the schedule, at most one ad of any type from the

order can be scheduled due to the real effectiveness consideration. Subsequently, we need the

assumption to maintain the feasibility of each individual order. For

the collection O of n orders, a scheduling horizon of T days is given. Our objective is to

maximize the revenues by taking some orders and scheduling the demand of orders

successfully.

ii
m

j iji wW αβ −≤= ∑ =1

To describe the studied problem better, in the following we give an integer

programming (IP) formulation. Binary decision variables xijt to be 1 if ad type sj in order oi is

scheduled on day t for 1≤i≤n, 1≤j≤m, 1≤t≤T, and yi to be 1 if order oi is selected and

scheduled successfully for 1≤i≤n.

(Problem P)

Maximize ∑ ∑ ∑
= = =

n

i

m

j

T

t
jijk px

1 1 1

subject to

 7

1
1

≤∑
=

m

j
ijtx , for any order oi and day t; (1)

(No two ads from the same order can be scheduled on the same day.)

ij
t

ijt wx
i

i

=∑
=

β

α
yi, for any order oi and space type sj ; (2)

0
1

1
=∑

−

=

i

t
ijtx

α
, for the ad of space type sj in order oi; (3)

0
1

=∑
+=

T

t
ijt

i

x
β

, for the ad of space type sj in order oi; (4)

otherwise.
;day on scheduled is order in typead if

0
1 tos

x ij
ijt

⎩
⎨
⎧

=

otherwise.
scheduled; is order if

0
1 i

i
o

y
⎩
⎨
⎧

=

 8

Chapter 3 Placement Algorithm

In this chapter, we will present a heuristic algorithm to deal with the banner ads

scheduling problem of revenue maximization. The designed algorithm will be applied to a test

set for an illustration.

The heuristic consists of 3 phases so as to maximize revenues in web banner scheduling.

Phase 1 of the algorithm seeks to derive an initial solution. It first fills up the slots in a

forward manner and then changes the direction to allocated unscheduled orders in a backward

manner. In phase 2, the algorithm manages to arrange the remaining orders by shifting the

scheduled ads without sacrificing the feasibility of scheduled orders. In the phase 3, we cancel

the scheduled orders of less commercial value so as to arrange orders that can provide better

gains. Because we do not have the pricing data of the real industry, we define the sequence of

ad types in the non-increasing order of its unique price in the operation of our heuristic and

the heuristic can be easily transfer to an applied model by inserting the price scheme of ad

types. We will temporarily set an identical price for every ad type to evaluate the performance

of our heuristic in the following example and the experiment in chapter 5. To better describe

the algorithm, we use the following data set for an illustration.

Consider n = 10 orders {A, B, …, I, J}, m = 4 types of ads space with scheduling

horizon of T = 16 days. The specifications of orders are given in 6-tuple vectors. For example,

order A consists of 2 days of type 1, 3 days of type 2, 4 days of type 3 and does not require

type 4. Its allowed time window is from day 2 to day 12.

10 orders:

 A (2, 3, 4, 0; 2, 12)
 B (3, 2, 1, 2; 1, 10)
 C (4, 0, 0, 0; 0, 8)
 D (2, 0, 0, 0; 0, 15)
 E (1, 6, 0, 2; 0, 12)
 F (2, 5, 0, 0; 7, 15)

 9

 G (2, 1, 1, 2; 4, 14)
 H (0, 0, 0, 3; 6, 12)
 I (0, 1, 2, 3; 5, 13)
 J (0, 5, 0, 0; 10, 15)

Phase 1: Initial Placement

This phase consists of two approaches for arranging the given orders. The first one,

called putS, selects orders based upon release dates and space type. With a partial schedule,

we locate the last day on which the scheduling of the last order was finished. The unscheduled

order with the earliest release date from the located finishing day is selected to schedule. If the

last scheduled order was finished with ads of type sj, we start arranging the selected order by

sequencing its type sj ads first, followed by type sj+1 ads, …, sm, s0, s1,…, and then type sj-1 ads

in a round-robin way. This method aims to keep the slots of the target types as full as

possible.

The other method, called rev_putS, which runs in the reverse direction to putS, and

schedule the orders backward from the rear end of the planning horizon. We selects the

unscheduled order with the latest due date to the earliest scheduled slots on the target type

frame, and put in the ads of the order with the sequence from the target slot type sj to sj-1,…,s0,

sm, sm-1,…, sj+1.

The deployment of the two approaches depends on the current time point under

consideration. PutS is applied first. If the completion of the order just finished exceeds 1/2 of

the time horizon on its target type, and we then use rev_putS to schedule the same target

frame until no order can be scheduled with rev_putS, and set the next slot type as the target

type to start with for the next round. After finishing m rounds, we will check if any

unscheduled order can be further completed by putS or rev_putS. The following outlines the

main steps of Phase 1:

 10

1. Start with frame of type 1 as the target frame for the round 1.

2. Schedule the order with the earliest release date as the first one by putS, and schedule the

next order which has the earliest release date to the completion date of the previous

scheduled order on the target frame by puts. Repeat the process until the completion time

of the current order exceeds the middle point of the scheduling horizon. Schedule the

order with the latest due date by rev_putS, and schedule the next order which has the

latest due date to the earliest scheduled date of the previous order on the target frame type

by rev_putS until all the orders are examined once.

3. Move on to the next target frame until all frames are considered as the target frame once.

4. Apply putS and rev_putS to dispatch all the unscheduled orders.

Following is the detailed implementation of Phase 1:

1. Start with target frame type sj = 1

2. Set time pointer p = 0, tag all un-scheduled orders un-checked.

3. If un-checked order exists, go to step 4, otherwise set sj = sj+1, and go to step 2.

4. Check if pointer p < T/2. If yes, go to step 5, otherwise go to step 6.

5. Find the un-checked order oi with the nearest release date αi to p and try to put the order in

schedule by method putS and tag oi checked. If fails, go to step 3 ; if succeeds, set p = the

latest date when ad of oi been put in space j and go to step 3.

6. Set time pointer q = T

7. If un-checked order exists, go to step 8, otherwise set sj = sj+1, and go to step 2.

8. Find the order oi which has not been checked with the nearest due date βi to q and try to

put the order in schedule by method rev_putS and tag oi checked. If fails, go to step 7; if

succeeds, set q = the earliest date when ad of oi been put in space m and go to step 7.

9. Finish when sj = m is done.

10. Examine if any orders can be scheduled by method putS or rev_putS.

 11

Applying Phase 1 to the 10-order instance will produce the plan shown in Table 3.1.

Table 3.1: Output of Phase 1.

Time
Frame-type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 C C C C G G B F F B D D
2 B B B G I F F F F F
3 G B I I
4 B G G B I I I

The detail process is given in the following. The success of applying putS to some order is

denoted by “s” and failure by “f”. Same to rev_putS.

Round 1:

putS(C) = s ; putS(G) = s; H is skipped because there is no demand of type 1;

putS(F) = s ; Reverse the direction because p = 8 > 7.

D is skipped because there is no demand of type 4;

rev_putS(J) = f ; rev_putS(I) = s ;

A is skipped because there is no demand of type 4;

rev_putS(B) = s ; rev_putS(H) = f; rev_putS(E) = f ;

Round 2:

D is skipped because there is no demand of type 2;

putS(E) = f ; putS(A) = f ;

H is skipped because there is no demand of type 2;

putS(J)= f;

 12

Round 3:

D is skipped because there is no demand of type 3;

E is skipped because there is no demand of type 3;

putS(A) = f ; H is skipped because there is no demand of type 3;

J is skipped because there is no demand of type 3;

Round 4:

D is skipped because there is no demand of type 4;

putS(E) = f ; A is skipped because there is no demand of type 4;

putS(H) = f ; J is skipped because there is no demand of type 4;

Final Check:

putS(A) = f ; rev_putS(A) = f ;

putS(D) = s ;

putS(E) = f ; rev_putS(E) = f ;

putS(H) = f ; rev_putS(H) = f ;

putS(J) = f ; rev_putS(J) = f ;

Phase 2: Shift the filled slots to accommodate remaining unscheduled orders

In this phase, we move the filled slots around so as to arrange the unscheduled orders one by

one. Method shiftA is applied first to a selected order. If it fails to schedule the order, then we

will use another method, called shiftB. If shiftB also fails, then we skip the considered order

and move on to the next unscheduled order..

 13

shiftA:

1. For each unscheduled order oi, we consider its ads in the ordering of type s1, s2, …, sm.

2. Start from date αi. If a slot of a certain type is not occupied but an ad of some other type

in order oi is scheduled on the same date, then we move the scheduled ad to other feasible

date and put it the current ad. If the slot has been occupied by some ad of other order,

move the scheduled ad to some other feasible date and put in the current ad. No matter

whether if we can arrange the current ad successfully or not, we keep examining the next

time slot until the ads required on the slot type are successfully placed or the time βi is

reached. If the scheduling of the order of this ad type is successful, then proceed to the

next space type and repeat Step 2. Otherwise, give up this order and select the next one for

consideration until all the unscheduled orders are inspected exactly once.

shiftB:

1. Start from time αi, we put the ads in by the sequence of space type with non-increasing of

remaining jobs to each frame. The remaining operations of shiftB are the same as those of

shiftA.

From Table 3.1, we know that schedules A, B, H, J were not successfully scheduled in

Phase 1. Therefore, we consider the four orders one by one and have the following results in

which the plan is augmented by inserting order A. The new plan is shown in Table 3.2.

shiftA(A) = s ;

shiftA(E) = f ; shiftB(E) = f ;

shiftA(H) = s ;

shiftA(J) = f ; shiftB(J) = f ;

 14

Table 3.2: Output of Phase 2.

Time
Frame-type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 C C C C A A B F F B D D G G
2 B A B B A A I F F F F F G
3 A B I I G A A A
4 B G H H H G B I I I

Figure 3.1 shows part of the scheduling procedure in Phase 2 for one order. The

process with “*” in Figure 3.2 uses method shiftA to schedule the ads of any single order. If

the trial of scheduling the order fails, we will clear all the ads belonging the order on the

schedule, and use method shiftB to schedule the order again.

Figure 3.1: Operations of Phase 2.

 15

Phase 3: Exchange scheduled and unscheduled orders

In the previous two phases, we manage to arrange the orders as many as possible. In this

phase, we improve the plan by canceling some orders so as to accommodate unscheduled such

that the total revenue can be increased. The exchange process is explained below.

1. Maintain two sets of orders, P = the set of scheduled orders and Q = the set of

unscheduled orders. Sort the orders of Q in non-increasing order of its commercial value.

2. Examine orders oi by their indices from i = 0 to i = n. If order oi belongs to Q, skip it and

move on to the next order. If order oi is in P and the commercial value of oi is less than

that of the first order, say oj, of Q, then remove order oi from the plan and find the first

order of Q that can successfully take the place of the removed order oi. If such a

replacement is successfully then Put oj into P and oi into Q. Proceed to examine the next

scheduled order.

Applying the operations of Phase 3 to the tentative plan shown in Table 3.2, we have the

following detail steps and a new plan in Table 3.3

Total demands of unscheduled orders: E(9) ≧ J(5)

Check order A: A(9) ≧ E(9)

Check order C: C(4) < E(9), cancel C , putS(E) = f , rev_putS(E) = f, shiftA(E) = f, shiftB(E)

= f; putS(J) = f , rev_putS(J) = f, shiftA(J) = f, shiftB(J) = f; ; recover C ;

Check order D: D(2)< E(9), cancel D, putS(E) = f, rev_putS(E) = f, shiftA(E) = f, shiftB(E) =

f, putS(J) = f, rev_putS(J) = f,shiftA(J)=f, shiftB(J)=f; recover D;

Check order F: F(7) < E(9),cancel F, putS(E) = s ,

Total demands of unscheduled orders: F(7) ≧ J(5)

Check order I: I(6) < F(7) , cancel I , putS(F) = f, rev_putS(F) = f , shiftA(F)= f, shiftB(F) = f,

 16

skip J because I(6) > J(5)

Table 3.3: Intermediate plan resulted from insertion of order E

Time
Frame-type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 C C C C A A B E B D D G G
2 E B E A B B A A I E E E E G
3 A B I I G A A A
4 E B E G H H H G B I I I

Table 3.4: Final plan resulted from Phase 3.

Time
Frame-type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 C C C C A A B E B D D G G
2 E B E A B B A A I E E E E G
3 A B I I G A A A
4 E B E G H H H G B I I I

Figure 3.2 shows the operations of Phase 3. The process with “*” in Figure 3.3 uses the

four scheduling methods used before, including putS, rev_putS, shiftA, and shiftB. If all

methods cannot successfully schedule the order, we will give up this order and proceed to

another unscheduled order.

 17

Figure 3.2: Operations of Phase 3.

 18

Chapter 4 Upper Bound

While it is very unlikely to derive the optimal value of the studied scheduling problem, it

is reasonable to derive an upper bound on the optimal number of slots that can be filled. The

upper bound can be used to estimate the optimal value as well as to measure the quality of the

plan produced by the proposed placement algorithm. In this section we present theoretical

analysis of an upper bound by scrutinizing the profiles of the given orders. The upper bound

is developed by consider the other side of the question: deriving a lower bound on the number

of slots that is impossible to be used. In the development, the lower bound, denoted by LB, is

expressed as

LB = X + max{Y 1, Y 2} + Z.

In the following, the derivation of each term will be explained in details. We will use a

numerical example for an illustration for each term.

Initialization

For day t = 1 to T, define variable ct as the number of orders eligible for time t, i.e An

order oi is eligible on day t if t is covered by the interval [αi, βi]. The ct values of the

10-order instance are given in the following:

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ct 3 4 5 5 6 7 8 9 9 8 9 8 8 5 4 3

The value of X

For any ct < m, we can readily have m− ct slots that will not be used on day t. Therefore,

for the whole planning horizon, at least X =
1

m
tt

χ
=∑ slots can never be used, where

 19

, if ;
0, otherswise.

t t
t

m c c m
χ

− <⎧
= ⎨
⎩

In the example data, we have X = 1+0+0+0+0+0+0+0+0+0+0+0+0+0+0+1 = 2.

The value of Y1

When deriving
tχ for some specific day t, we assumed ct slots will be used. Further

inspection suggests that some of the assumed-to-be-filled slots will not be filled. Denote

variable fi for order oi the number of days on which order oi is eligible and ct >0. In the

development of all
tχ ’s, order oi occupies fi slots. The actual total demand of order oi is wi. If

wi < fi, then among the assumed-to-be-filled slots will never be used. Therefore, we can obtain

the following value and denoted it by Y1:

Y1 =
1

n
ii if w

=
−∑ for all orders oi satisfying wi < fi.

In the example, the orders satisfying the condition on each day are shown in the following
table.

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ct 3 4 5 5 6 7 8 9 9 8 9 8 8 5 4 3

Order
oi

C
D
E

B
C
D
E

 D
F
G
J

D
F
J

Therefore, we examine the orders B, C, D, E, F, G, J.

oi B C D E F G J

fi 1 2 4 2 2 1 2

wi 8 4 2 9 7 6 5

fi - wi 0 0 2 0 0 0 0

The value of Y1 is 2, resulted from order D.

 20

The value of Y2 and Z

In this part, we examine the potential conflicts between each two orders. Two orders are

said to have conflict with each other if it is impossible to arrange both of them in a plan.

Therefore, one of the two orders will not be fulfilled and needs to be discarded. Definition of

conflicts will be given later. For example, when m = 4 and there is some day t with ct = 3, if

we find 2 orders eligible on this day and conflicting with each other, then we can have X = 1

and Y2 = 1 because on day t we can actually assign at most 2 orders only. The conflict

between two orders is determined in the following. We find the length of the union of their

time windows and the sum of demands for each frame type. If the sum of demands for any

frame type exceeds the length of union of time windows, then the two orders have conflicts.

The conflict occurs when two orders compete for the same type of ad space and their feasible

time windows overlap in a large proportion. Consider the following two orders as an example,

oi = (8, 0, 0, 0; 0, 10) and oj = (6, 2, 0, 0; 1, 11). The length of unified time window is 12,

from time t = 0 to 11, and the sum of demands for type 1 is 8 + 6 = 14. Because 12 < 14, it is

impossible to arrange orders oi and oj both in a single plan.

To determine the value of Y2, we investigate the potential conflicts that may arise on each

individual day. Assume there are kt orders whose durations include day t. A undirected graph

is constructed. Each order is represented by a node. If a conflict does exist between two orders,

then an edge is added to connect the two corresponding nodes. We select the largest number,

say kt
’, of orders such that they are mutually free from conflicts. Any of the remaining kt－kt

’

orders has conflicts with at least one of the kt
’ orders. In other words, at least kt－kt

’ (lower

bound) among the k orders cannot be scheduled on day t. Therefore, Y2 can be calculated by

summing kt－kt
’ over all days if the value kt’ is less than m. However, there is one difficulty in

finding kt－kt
’ for each t because it is equivalent to the maximum independent set problem,

which is already known to be NP-hard. For considerations of effectiveness and efficiency in

 21

the design of our upper bound scheme, we only examine the conflicts among eligible orders

on the days when ct is smaller than m+2. The computational challenge is avoided by

enumerating all patterns that will help determine the lower bound value, kt－kt
’. The

simplicity stems from our previous assumption (or limitation) that we investigate the cases

where ct is smaller than m+2. We separate the impossible lower bound by this conflict

detection method into two parts, the Y2 value covers days with ct from 2 to m and Z value

covers days with ct from m+1 to m+2. In Appendix, all patters are enumerated with their

associated lower bounds included.

We can see that Y1 could be implemented if ct ranges from 1 to m, and Y2 could be

counted if ct ranges from 2 to any larger number. We will compare the effectiveness of these

two methods when ct ranges from 1 to m, and plus the lower bound value from X and the

lower bound value of Z when ct is larger than m and the sum is our final impossible lower

bound in the case.

In the numerical example, we will first detect conflicts between orders F and J.

Conflicts occur on day 14 and day 15. Examining the patterns given in Appendix, we have

that at most 3 of the 4 eligible orders can be scheduled on day 14, and at most 2 of the 3

orders can be scheduled on day 15. Therefore, Y2 = 2.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ct 3 4 5 5 6 7 8 9 9 8 9 8 8 5 4 3

Y2 0 0 0 0 0 0 1 1

As aforementioned, although we can examine all of the conflict situations at time t with ct

larger than 2, for efficiency consideration, we only calculate the Y2 value when the ct value is

between 2 and 6.

 22

Chapter 5 Computational Experiments

In this chapter, we design the experiments of the banner scheduling problem to study

the performance of the proposed placement algorithm. The upper bound will be also

examined. The platform of the experiments is a personal computer with a Pentium 4 CPU of

3.4 GHz PC and 512 MB memory, running Microsoft Windows XP. The programs are coded

in Java.

In the experiments, the planning horizon is 365 days. The length of allowable duration

i.e. Wi, specified by order oi is determined by probability: 10% for Wi ∈[1, 10], 35% for Wi

∈[11, 30], 40% for Wi ∈[41, 60], and 15% for Wi ∈[61, 90], and. A roulette wheel is used for

the random selection. When each Wi is determined, the demands for different types of space is

sampled with the uniform distribution. We randomly generate release date αi and due date βi

of order oi subject to the feasibility constraint . For the simplicity in

comparing the effectiveness of schedules, we set the prices of all types of ad frames are

assumed to be the same. We use our heuristic to solve test instances with 4, 6, and 8 types of

ads space, and the numbers of orders are 50, 100, 150, 200, 300, and 400. The computational

results shown in the tables below are average values over the 50 instances for each

combination of number of space types and number of orders.

ii
m
j ijw αβ −≤∑ =1

Notations used in the tables include:

 n: number of orders;

 #_Orders_Scheduled: average number of orders successfully scheduled;

 #_Slots_Filled: average number of slots successfully filled;

 23

 UB: average upper bound;

 Utilization (%): average percentage of filled slots out of all slots, i.e.

#_ _ 100%
#_ _

Slots Filled
Slots All

× .

 Adjusted_Utilization (%): average percentage of slots filled based on UB, i.e.

#_ _ 100%Slots Filled
UB

× .

 time (sec.): average run time.

From the statistics are shown in Tables 5.1, 5.2, and 5.3, we make our first observation

on the trend of utilization. When the number of orders increases, the placement algorithm

achieves better utilizations of slots. When 4 types of ads spaces are provided for 50 orders, the

utilization is 89.99%. If the number of order we receive is 400, then the utilization climbs to

97.95%. The trend occurs for different number of ads types.

Second observation is made on the lower bounds. Recall that we estimate the number of

slots that are impossible to be used in any plan. Or, in other words, we give an upper bound

that is an estimate of the slots that can be used. The numerical results reveal that upper bounds

become tighter as the number of order increase. This trend can be evinced in the three tables

for different numbers of ads types. Another implicit relationship between upper bounds and

numbers of ads types can be established. Consider the rows of n = 200 orders in Tables 5.1,

5.2 and 5.3. The ratios between upper bounds and total number of slots are

1430 2131 28170.9794, 0.9733, and 0.9647.
1460 2190 2920

= = =

The ratio appears to decrease (or another interpretation is that the upper bounds become tight)

when the number of ads types increases, although the decrease is slight.

 24

The discussion has addressed the effectiveness of the placement algorithm. Still we

need to further present remarks on this issue. The utilization we cited above is calculated

using the total number of slots. The development of UB has indicated that some fraction of

the slots will never be used. Considering the “effective” slots, we have better utilizations as

shown in the columns entitled Adjusted_Utilization. The results further demonstrate the

impressive effectiveness of our algorithm.

We integrate some columns in the table 5.1, table 5.2, and table 5.3 to get the Table 5.4,

which shows us the average demand amount of orders we scheduled. We can find the average

demand of orders scheduled decrease when the n values increases, i.e. our heuristic will select

and schedule successfully the orders with small demand easier and make a better solution for

this kind of scheduling problems.

The final concern of our discussion is about the efficiency, i.e. the run time required by

producing the final plan. Phase 2 and Phase 3 of the proposed placement algorithm are

designed for improving the initial plan and their execution depends on how many scheduled

slots are moved around and how many unscheduled orders are examined and eligible for

insertions. Therefore, no strict formula is given to describe the overall time complexity. Still

we circumvent rigorous theoretical analysis to look into the elapsed run time in the

experiments. First of all, the actual run time does not exhibit an exponential growth of the

number of orders. For example, consider the rows of n = 100, 200, and 400 in Table 5.2. The

run times are 2.00, 7.39 and 22.48. The ratios between each two successive run times for the

values of n doubled are 3.7 and 3.0. We turn to examine the role of m, the number of ads

 25

types. Consider the scenarios of n = 200 orders in three Tables. The run times for m = 4, 6 and

8 are 5.23, 7.39, 10.8. The ratios between 6 and 4, and between 8 and 6 are 1.50 and 1.33,

respectively. The ratios between 7.39 and 5.23, and between 10.8 and 7.39 are 1.41 and 1.46,

respectively. It appears that the ratio between two successive run times coincides with the

ratio between two successive values of m. From the above discussion, we realize that the run

time of the proposed algorithm will not drastically deteriorate when the number of orders and

the number of ads types increase. From a practical point of view, solving 400 orders in twenty

some seconds is acceptable.

Table 5.1: m = 4 types of ads space, number of slots is 4×365=1,460.

n
#_Orders_

Scheduled

#_Slots_

Filled
Utilization (%) UB

Adjusted_

Utilization (%)
Time (sec.)

50 38.20 1,313.9 89.99 1,390.57 94.49 0.37

100 48.93 1,400.3 95.91 1,420.50 98.58 1.61

150 53.63 1,423.5 97.50 1,435.67 99.15 3.34

200 57.23 1,430.0 97.95 1,437.93 99.45 5.23

Table 5.2: m = 6 types of ads space, number of slots is 6×365=2,190.

n
#_Orders_

Scheduled

#_Slots_

Filled
Utilization (%) UB

Adjusted_

Utilization (%)
Time (sec.)

100 64.04 2,069.32 94.49 2,102.28 98.43 2.00

200 75.52 2,131.68 97.34 2,146.10 99.33 7.39

300 81.92 2,151.58 98.25 2,163.12 99.47 15.08

400 85.66 2,161.28 98.69 2,169.84 99.61 22.48

 26

Table 5.3: m = 8 types of ads space, number of slots is 8×365=2,920.

n
#_Orders_

Scheduled

#_Slots_

Filled
Utilization (%) UB

Adjusted_

Utilization (%)
Time (sec.)

100 77.80 2,671.28 91.48 2,775.40 96.25 3.52

200 93.78 2,817.94 96.50 2,845.46 99.03 10.80

300 99.28 2,854.56 97.76 2,874.16 99.32 21.05

400 105.74 2,870.96 98.32 2,887.50 99.43 34.16

Table 5.4: the average demand amount of orders scheduled

m n orders scheduled slots sold out
average demand of
orders scheduled

4 50 38.2 1313.9 34.40

4 100 48.93 1400.3 28.62

4 150 53.63 1423.5 26.54

4 200 57.23 1430 24.99

6 100 64.04 2069.32 32.31

6 200 75.52 2131.68 28.23

6 300 81.92 2151.58 26.26

6 400 85.66 2161.28 25.23

8 100 77.8 2671.28 34.34

8 200 93.78 2817.94 30.05

8 300 99.28 2854.56 28.75

8 400 105.74 2870.96 27.15

 27

Chapter 6 Conclusions

We present a new model called Scheduling of Banner Advertisement with Time

Windows in this paper. Except the addition of time window to each order, we also replace the

pricing scheme in the previous research of web banner scheduling, with price levels to

different types of ad spaces. We design a heuristic and a upper bound to this maximum

revenues problem and implement them with 4, 6, and 8 ad space types, respectively. The

scheduling results show the performance of our heuristic is good and the upper bound we

designed is tight.

Link to one of the most popular portals, your eyes may be caught by some interesting

messages or funny games, and you may never sense that you are receiving the advertisement

information after the whole promotion process. Attract people surfing on the Internet to

access the messages you want to distribute actively, it is the core value of web advertisements.

The scheduling of banner advertisements discussed in this thesis is a very important and

valuable subject to the hosts of the powerful websites, and we think adding the on-line

scheduling quality may make the research more practical and flexible. Furthermore, we think

how to integrate different web advertising tools including banner ads, keyword searching, and

classified ads, etc. to achieve the impression number required by ad hosts and make maximum

revenues of websites managers being an interesting and useful subject to research.

 28

References

[1] Adler, M., P.B. Gibbons, Y. Matias. 2002. Scheduling space-sharing for Internet

advertising. Journal of Scheduling. 5 103-119.

[2] Amiri, A., S. Menon. 2003. Efficient scheduling of Internet banner advertisements. ACM

Transactions on Internet Technology. 3(4) 334-346.

[3] Amiri, A., S. Menon. 2006. Scheduling web banner advertisements with multiple display

frequencies. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and

Humans. 36(2) 245-251.

[4] Bollapragada, S., H. Cheng, M. Phillips, M. Garbiras, M. Scholes, T. Gibbs, M.

Humphreville. 2002. NBC’s optimization systems increase revenues and productivity.

Interfaces. 32(1) 47-60.

[5] Bollapragada, S., M. Garbiras. 2004. Scheduling commercials on broadcast television.

Operations Research. 52(3) 337-345.

[6] Bollapragada, S., M. R. Bussieck, S. Mallik. 2004. Scheduling commercial videotapes in

broadcast television. Operations Research. 52(5) 679-689.

[7] Chickering, D.M., D. Heckerman. 2003. Targeted advertising on the web with inventory

management. Interfaces. 33(5) 71-77.

[8] Dawande, M., S. Kumar, C. Sriskandarajah. 2003.Performance bounds of algorithms for

scheduling advertisements on a web page. Journal of Scheduling. 6 373-393.

[9] Dawande, M., S. Kumar, C. Sriskandarajah. 2005. Scheduling web advertisements: a

note on the minspace problem. Journal of Scheduling. 8 97-106.

[10] Freund, A., J. Naor. 2004. Approximating the advertisement placement problem. Journal

of Scheduling. 7 365-374.

[11] Menon, S., A. Amiri. 2004. Scheduling banner advertisements on the web. INFORMS

Journal on Computing. 16(1) 95-105.

 29

[12] Payne, T., E. David, N.R. Jennings, M. Sharifi. Auction mechanisms for efficient

advertisement selection on public displays. The 17th European Conference on Artificial

Intelligence. 259

[13] Reyck, B.D., Z. Degraeve. 2003. Broadcast scheduling for mobile advertising.

Operations Research. 51(4) 509-517.

 30

Appendix:

The following graphs show us how to count the Y2 and Z on the day with ct value, and the

conflicting situation between the eligible orders on the day. Each node means an eligible order

and the line linking two nodes means conflict occurring between the two orders linked. We

use max meaning the maximum number of orders not conflicting to each other. The Y2 = ct –

max in the conflicts situation between the orders on the same day showing in the following

graphs if max is smaller than m. If the conflicts situation on some day is actually the models

we draw below, we will get the max to evaluate the Y2.

 31

 32

 33

 34

 35

 36

 37

 38

