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低功率分支目標緩衝器 

學生：喬偉豪 

 

指導教授：鍾崇斌 博士 

 

 

國立交通大學 資訊科學與工程研究所 

摘 要       

本論文探討低功率分支目的緩衝器之省電設計。我們首先紀錄在程式軌跡中

兩相鄰分支指令間的非分支指令數量以減少不必要的分支目的緩衝器查詢動

作。再透過 block address based indexing 以及 entry buffering，節省了分

支目的緩衝器的存取功率。此外，為了節省分支目的緩衝器的靜態耗電，我們採

用 decay-based 電源模式管理器並且提出一個 entry pre-activation 技術使得

該電源模式管理器更有效率。 

另一方面，我們也探討減少分支目的緩衝器儲存空間的技術。將指令快取記憶

體之標籤記憶體與分支目的緩衝器共享可減短分支目的緩衝器的 entry 長度。再

進一步透過提早產生分支目的位址的技術，可減少分支目的緩衝器之 entry 數

量。此兩技術不但可以節省分支目的緩衝器所需的儲存空間，還可同時節省分支

目的緩衝器的動態以及靜態功率。 

最後，我們整合以上技術，使分支目的緩衝器在可容忍的效能下降前提下更省

電。 
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ABSTRACT 

This thesis addresses on low-power branch target buffer design. 

Through recording the number of non-branch instructions between a 

branch instruction and its subsequent instruction on execution path. The 

unnecessary BTB lookups are reduced. Through block address based 

indexing and entry buffering, the BTB access energy is also reduced. In 

order to reduce BTB leakage power, a decay-based power manager is 

applied and an entry pre-activation technique that makes the decay-based 

power manager being more efficient is developed.  

On the other hand, we also address on the storage cost reduction 

techniques for BTB. Through sharing the tag memory of instruction 

cache to BTB, the BTB entry length is shortened. Moreover, through 

generating the branch target address early, the number of BTB entries can 

be reduced. These two techniques not only reduce the BTB storage, but 

also reduce both BTB dynamic and leakage power significantly.  
Finally, we integrate the above techniques to further reduce BTB 

power consumption with tolerable performance degradation. 
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Chap 1 Introduction 

 

Computer scientists have always tried to improve the performance of computers. 

But although today’s computers are much faster and far more versatile than their 

predecessors, they also consume a lot of power; so much power, in fact, that their 

power densities and concomitant heat generation are rapidly approaching levels 

comparable to nuclear reactors. These high power densities impair chip reliability and 

life expectancy, increase cooling costs, and, for large data centers, even raise 

environmental concerns. 

At the other end of the performance spectrum, power issues also pose problems 

for smaller mobile devices with limited battery capacities. Although one could give 

these devices faster processors and larger memories, this would diminish their battery 

life even further. 

Without cost effective solutions to the power problem, improvements in 

micro-processor technology will eventually reach a standstill. Low-power design is a 

multidisciplinary field that involves many aspects (i.e., energy, temperature, 

reliability), each of which is complex enough to merit a survey of its own. The focus 

of this thesis will be on techniques that reduce the total power consumed by the 

branch target buffer (BTB) in a typical single issue pipelined processor. 

Almost all modern processors are highly pipelined today. To reduce the number 

of stall cycles due to branches, most processor cores perform dynamic branch 

prediction at the first pipeline stage. However, since the fetched instruction cannot be 

identified as a branch at this stage, the dynamic branch predictor, which includes a 

branch direction predictor and a BTB, is always exercised. Moreover, the BTB is a 

large array structure. Many works have shown that the BTB dissipates a non-trivial 
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amount of power – averaging to 5-10% of the total processor power [1-4]. The 

power-hungry nature of the above discourages the portable devices from using the 

dynamic branch prediction. Nevertheless, dynamic branch prediction is still very 

attractive to processors for power-miser applications owing to its success in 

performance improvement. Therefore, low-power issue for BTB becomes a 

significant research topic. 

 

EBTB = EBTB_acs * CountsBTB_acs + PBTB_leak * TimeEXE      (EQ1) 

 

 EQ1 shows the BTB energy equation, where the total BTB energy (EBTB) is 

partitioned into total BTB dynamic energy and total BTB leakage energy. While total 

BTB dynamic energy is equal to the products of the average BTB access energy per 

access (EBTB_acs) and total BTB access counts (CountsBTB_acs), total BTB leakage 

energy the product of the BTB leakage power (PBTB_leak) and the total execution time 

(TimeEXE). Previous works show that an accurate BTB needs large storage and high 

associativity. However, it has negative effects on EBTB_acs and PBTB_leak. Therefore, 

reducing the power related terms (CountsBTB_acs, EBTB_acs, and PBTB_leak) with tolerable 

accuracy degradation is a challenge in this thesis. 

 

Table1-1: Goals and research directions in this thesis 

Goals Research directions 

Reducing CountsBTB_acs a. Reducing the number of unnecessary BTB accesses 
Reducing EBTB_acs b. Buffering the frequent used BTB entries 
Reducing PBTB_leak c. Power management 

Reducing PBTB_leak and EBTB_acs d. Reducing BTB entry size 
e. Reducing the number of BTB entries 
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 Table 1-1 lists the goals and the corresponding research directions in this thesis. 

First, reducing the number of unnecessary BTB accesses is the way to reduce 

CountsBTB_acs. Next, buffering the frequent used BTB entries can reduce EBTB_acs, since 

most BTB accesses can be performed through accessing the buffering storage instead 

of accessing BTB. Next, power management is a well known technique to reduce the 

leakage power in cache [5-8]. We will introduce how to design a power manager for 

BTB in this thesis. Finally, reducing BTB entry size and the number of BTB entries 

can reduce both PBTB_leak and EBTB_acs simultaneously. 

This thesis is organized as follows. Chapter 2 introduces the background. 

Chapter 3 to Chapter 7 draws the 5 research topics in this paper. Chap 8 describes the 

integration of the proposed methods for each BTB power sources. The last chapter 

gives the conclusions. 
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Chap 2 Background 

 

2.1 Branch Prediction  
 

The control dependency has great impact on processor performance due to 

pipelined instruction execution. Branch prediction and target address caching can be a 

great help here. While static branch prediction uses the branch offset to predict branch 

direction, dynamic branch prediction uses the runtime behavior such as branch history 

to do so. Since dynamic branch prediction performs much better than the static 

counterpart, we limit our following discussion on dynamic branch prediction only. 

Figure 2-1 shows a typical dynamic branch predictor containing a direction 

predictor and a BTB. Various implementations of the direction predictor use different 

ways to record the branch status and use it to predict the branch direction [9-11]. 

Furthermore, hybrid implementations integrate several sub-predictors to improve 

prediction accuracy and are widely used in general-purpose processors for desktops or 

workstations [12]. BTB, which is used to record target addresses, is a cache in nature. 

If BTB hits and the branch direction is predicted taken, the branch target address is 

used as the next PC. Otherwise, the next sequential instruction address (PC+4) is used. 

A dynamic branch predictor in an embedded processor usually integrates the direction 

predictor and the BTB. Two branch history bits in each entry of BTB represent 

possible prediction states (see [13] for more details). 
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Figure 2-1: Dynamic Branch Predictor 

 

Figure 2-2: BTB 
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Figure 2-3: BTB management 

 

2.2 BTB Fundamentals  
 

Figure 2-2 shows a BTB. Because it provides the branch target address of the 

current fetched branch instruction, we must know whether the fetched instruction is a 

branch. If the PC of the current fetched instruction matches a PC in BTB, then the 

corresponding branch target address is outputted. The hardware for BTB is essentially 

identical to the hardware for a cache. Therefore, BTB can be direct-mapped or 

set-associative form for timing or hardware cost considerations. Figure 2-3 shows the 

BTB management for a typical pipeline front-end. From this we can see that BTB 

only stores the branch target addresses of taken branches. 
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Table 2-1: Simulation parameters 

Processor Core 
Instruction window 
Issue width 
Functional units 

64 RUU, 32 LSQ 
1 instructions/cycle 
1 IntALU, 1 IntMult, 1 FpAlu, 1 FpMult, and 1 Memory port

Memory Hierarchy 
L1 I-cache 
L1 D-cache 
L2 cache 
Memory 

16KB, 4-way, LRU, 32B blocks, 1cycle, wb 
16KB, 4-way, LRU, 32B blocks, 1cycle, wb 
512KB, 4-way LRU, 32B blocks, 12-cycle, wb 
100 cycles 

Branch Prediction 
Direction Predictor 
Misprediction Penalty 
BTB 

gshare 16K 
6 cycles 
256-entry, 4-way, LRU 

 

2.3 Simulation Environment 
 

This section introduces the simulation environment used in this thesis. Section 

2.3.1 describes the simulator and benchmarks. Section 2.3.2 gives the power models 

for the baseline processor and BTB. 

2.3.1 Simulator and Benchmarks 

 

Simplescalar v3.0d [14], an execution-driven, cycle-accurate simulator for 

modern processor cores, is used as the processor and BTB simulator. Cacti 4.2 [15] is 

utilized for power and energy estimation of BTB, since Cacti provides complete 

power libraries for BTB modules. Table 2-1 summarizes the detailed configurations of 

our simulations. 

The benchmark programs, comprising 12 programs from SPECINT2000 suite, 
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are evaluated. All these programs are compiled using the Compaq Alpha compiler 

with the SPEC peak settings. Most of them could be executed within Simplescalar. 

The failed test programs, applu, are removed from the simulation. The provided 

reference inputs are used. All benchmarks are fast-forwarded past the first half-billion 

instructions, and a full simulation is then performed for another half-billion 

instructions. 

2.3.2 Power and Energy Models 

 

The power models are constructed by the following equations: 

 EQ2 models total chip energy (Ecpu). The BTB, the hardware of low-power 

design, and all other components in the chip are modeled separately, denoted as 

EBTB, ELP, and Ecpu-BTB, respectively.  

 EQ3 models Ecpu-BTB. The dynamic part (Ecpu-BTB_dyn) and leakage part (Ecpu-BTB_lk) 

are modeled in EQ4 and EQ5, respectively. While Ecpu-BTB_dyn is equal to the 

products of the number of the total executed instructions (Instexe) and the average 

dynamic energy consumed by these components per instruction (Ecpu-BTB_dyn/inst), 

Ecpu-BTB_lk is equal to the products of average leakage energy in them per cycle 

(Ecpu-BTB_lk/cyl) and the total number of execution cycles (Cyclesexe). 

 EQ6 models the energy impacts of the applied low-power designs; including 

EBTB, ELP and the energy of chip except for BTB (Estall) consumed during the 

extra stall cycles (Cylsextra) induced by these designs. 

 EQ7 models Estall. To simplify this modeling, we assume all processor 

components are exercised during the extra stall cycles. 

 

Ecpu = Ecpu-BTB + EBTB + ELP          (EQ2) 
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Ecpu-BTB = Ecpu-BTB_dyn + Ecpu-BTB_lk         (EQ3) 

Ecpu-BTB_dyn = Ecpu-BTB_dyn/inst * Instexe        (EQ4) 

Ecpu-BTB_lk = Ecpu-BTB_lk/cyl * Cylsexe         (EQ5) 

EBTB&LP = EBTB + ELP+ Estall                     (EQ6) 

Estall = Cylsextra * (Ecpu-BTB_lk/cyl + Ecpu-BTB_dyn/inst)      (EQ7) 
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Chap 3 Unnecessary BTB lookup filtering 

 

BTB provides target address only upon the current fetched instruction is a branch 

and the predicted branch direction is taken. Otherwise, BTB lookup is useless and 

wastes power. Therefore, filtering unnecessary BTB lookups can significantly reduce 

BTB access energy. 

 

3.1 Related Work 
 

A Compiler-hinted approach, EIB [16], tries to analyze the basic block length of 

a program. If the basic block length can be revealed to processor when the first 

instruction of the basic block is fetched, BTB lookups for the following non-branch 

instructions can be avoided. Moreover, the address of the branch instruction in the end 

of the basic block can be obtained. With this information, dynamic branch direction 

prediction can be performed early so as the BTB lookups for the branches that 

predicted as not taken can also be avoided. EIB use static analysis to obtain program 

hotspot and the basic block length in the hotspot. Then, load the basic block length 

information in program hotspots into a special hardware unit called branch 

identification unit (BIU). With BIU, BTB lookups are performed only for branches 

that predicted as taken in hot-spot portions of programs. 

BIU has some limitations in nature. First, BIU could skip unnecessary BTB 

lookups in each hot spot of a program, but not the whole program. Secondly, it relies 

on the compiler to insert extended instructions, inevitably increasing the program size, 

and the complexity for the instruction decoder. Finally, which part of a program is hot 
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spot is a runtime behavior which varies according to the program input data or user 

behavior. Changing the program input data or different user behavior may decrease 

the hot spot identification accuracy, resulting in lowering the power efficiency. 

Architecture-level approaches examine dynamic behaviors of programs to avoid 

unnecessary predictor accesses. Figure 3-1 shows PPD method proposed in [2]. It 

employs a branch-free table (BFT) to determine whether the current accessed L1 

I-cache set (the cache lines with the same indexes) is control-free, so that the lookup 

in the branch predictor can be avoided. If the full cycle has insufficient time to allow 

the BFT to be accessed in-series with the BTB (serial scenario), then the power saving 

to BTB is limited. It implies that the access to the BFT can not complete in time to 

avoid the full BTB access, so the accesses of the BFT and BTB must be in parallel 

(parallel scenario). This situation means that only partial BTB is terminated. 

 

Figure 3-1: PPD method 

 

Lazy BTB [17] dynamically profiles the taken traces to avoid unnecessary BTB 

accesses. The number of instructions between a taken branch and its subsequent taken 

branch on execution path are collected into an additional BTB field. This collected 

information is then used to eliminate the BTB lookups. The simulation results in [17] 

show that Lazy BTB reduces the BTB access energy consumption by about 77% on 

average, with 1.7% performance degradations. Unfortunately, the extra chip-wide 
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energy due to the performance degradations (Estall) may be serious, especially in deep 

pipeline processors. However, no discussions about the extra chip-wide energy are 

found in [17]. 

 

3.2 Design for eliminating unnecessary BTB lookups 
 

This section introduces the design for eliminating unnecessary BTB lookups. We 

first present the system overview in Section 3.2.1. The function blocks of this design 

are then described in Section 3.2.2, 3.2.3 and 3.2.4. 

 

3.2.1 System Overview 

 

We intend to develop a method for the elimination of the unnecessary BTB 

lookups without performance degradation. The distance in terms of the number of 

non-branch instructions between a branch instruction and its subsequent branch 

instruction on execution path is defined as next branch distance (NBD). If NBD is 

revealed to the processor early, then the BTB lookups for these non-branch 

instructions can be avoided. Therefore, this work focuses on dynamically collecting 

NBDs and eliminating the unnecessary BTB lookups using these collected NBDs. 

Figure 3-2 displays the function blocks of this design integrated in a typical 

pipeline front-end which is composed of instruction fetch (IF), instruction decode (ID), 

and execution (EX) stages. An extra storage, NBD table (NBDT), is used to record the 

NBDs. During EX stage, an NBD counter (NBDC) collects the NBDs of the executed 

branches into NBDT. During IF stage, BTB, direction predictor (Dir-Pred), and 
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NBDT are looked up simultaneously, where the BTB and Dir-Pred lookups are for 

dynamic branch prediction and the NBDT lookups are for NBD probe. If a NBD 

equal to m is found during NBDT lookup, the next lookup filter filters the following 

m lookups in BTB, Dir-Pred, and NBDT. The control bit EN is used for the lookup 

filtering for each fetched instruction. If the lookup to Dir-Pred and BTB is allowed, 

the predicted next PC is determined by the typical dynamic branch prediction. 

Otherwise, the static branch prediction (predicted not taken) is used. 

 

 
Figure 3-2: The function blocks of this design integrated in a typical pipeline 

front-end 

 

3.2.2 NBD collection and NBDT management 

 

NBDT records the NBDs of all branch instructions existing in BTB. Each BTB 
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entry has its owned NBDT entry. Each NBDT entry contains two n-bit NBD fields 

and two single-bit valid fields, where tkn_NBD records the NBD of taken path, 

nt_NBD NBD of not taken path, tkn_v indicates if tkn_NBD is valid, and nt_v 

indicates if nt_NBD is valid. Initially, all valid fields are invalid. 

Figure 3-3 shows the NBD collection algorithm for a branch instruction and its 

NBDT management, during EX stage. The detailed descriptions are:  

 There is no operation if the branch is not taken and does not exist in BTB, since 

only the NBDs of the branch instructions existing in BTB are collected. 

 If the NBD had been already collected, the repetitive collection operations are 

useless. Therefore, NBD collection operation is performed only while the 

corresponding NBD field in NBDT entry is invalid. 

 The collected NBDs in NBDT should be consistent with the branches in BTB. In 

other words, if a BTB entry is allocated to a new branch or an indirect jump 

updates its target address, the corresponding NBD fields should be invalidated. 

This invalidation prevents the next lookup filter from receiving the NBD of the 

replaced BTB entry or the replaced jump target. After the invalidation, the new 

NBD starts to be collected. 
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Figure 3-3: NBD collection and NBDT management 
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Figure 3-4: The circuits of the NBD calculation and write controls of NBDT 

 

Figure 3-4 shows the circuits of the NBD calculation and write controls of 

NBDT. The detailed descriptions are:  

 The NBD calculation is performed using an n-bit saturating counter (NBDC). 

NBDC resets itself after a branch instruction (B1) is executed, and then, starts to 

increment itself for each following non-branch instruction. While the subsequent 

branch (B2) is executed, the value of NBDC is equal to that of B1’s NBD, and 

then, this value is stored into NBDT if the NBD collection of B1 is allowed. 

Therefore, a last BTB index register (L_IDX) and a last branch direction register 

(L_BDIR) are added to preserve the BTB index and branch direction of the 

branch instruction until the subsequent branch is executed. 

 The reset and set signals connected to valid fields of NBDT are used for valid 

field invalidation and validation, respectively. 

Table 3-1 shows an example of the NBD collection process using a trivial loop 

code. During the first iteration, BNE is placed in BTB. During the second iteration, 

the NBD of BNE on taken path (2) is calculated and stored into NBDT.  
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Table 3-1: NBD collection process 

Executed Instructions NBDC tkn_NBD of BNE tkn_v of BNE 
L: ADD R0, R0, #1 1 X 0 

CMP r0, #10 2 X 0 
BNE L 0 2 1 

 

3.2.3 Filtering the unnecessary BTB and direction predictor lookups 

Figure 3-4 shows the next lookup filter and its lookup filtering controls. Its 

output signal (Next_en) determines whether the next lookup is filtered or not. In order 

to control the lookup filtering for each fetched instruction, Next_en is latched into EN 

every instruction cycle. In addition, an n-bit enable register (ER) is used to record the 

number of upcoming non-branch instructions before the subsequent branch instruction, 

on execution path. Therefore, with correct management of ER, Next_en can be simply 

generated by checking if ER is equal to zero. 

The value of the ER is initialized with a default NBD value of zero. In order to 

find the NBD of the fetched branch instruction, NBDT and BTB are probed 

simultaneously. If the BTB lookup result is hit, then the fetched instruction is a branch. 

Both tkn_NBD and nt_NBD are read while NBDT is probed, yet only the one 

consistent with the predicted branch direction is selected. If the selected NBD is valid, 

then it is stored into ER; otherwise, ER is reset to the default NBD value of zero. In 

the non-branch instruction cycles, ER is decremented until its value reaches zero. 
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Figure 3-4: Next lookup filter and its corresponding lookup filtering controls 

Table 3-2: Lookup filtering process 

Fetched Instructions ER Next_en EN 
L: ADD R0, R0, #1 1 0 0 

CMP r0, #10 0 1 0 
BNE L 2 0 1 

 

Table 3-2 shows the lookup filtering process using the same code example in 

Table 3-1. In this example, the NBD of BNE on taken path has already been collected 

in NBDT. While BNE is fetched, NBDT is probed. The NBD value of BNE on taken 

path (2) is selected (assume pred_tkn is 1), and latched into ER. Therefore, if BNE is 

actually taken, the BTB and DirPred lookups of ADD and CMP are successfully 

eliminated. 
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3.2.4 Handling of incorrect BTB and direction predictor accesses 

 

There are two possible impacts on performance and energy if the value of ER is 

incorrect. An insufficient ER value actuates the BTB and direction predictor too early 

and wastes energy, whereas an over-estimated ER value paralyzes the BTB and 

direction predictor while the next branch instruction is being fetched, degrading both 

performance and energy efficiency. Since the over-estimated ER case has more 

serious impact on energy and performance, it should be avoided first. 

According to the proposed NBD collection and NBDT management, the 

collected NBDs in NBDT are consistent with the branches in BTB. In other words, if 

the predicted branch direction and the target address prediction is correct, ER receives 

a correct NBD value, a default NBD value of zero (the corresponding NBDT field is 

invalid), or an insufficient NBD value (the width of the corresponding NBDT field is 

insufficient). If a branch direction or target address misprediction occurs, then the 

instruction pipeline starts to fetch the new instructions from the correct branch 

direction or target. In this situation, the value of ER is incorrect and should be reset to 

avoid the performance loss due to the over-estimated ER. 

 

3.3 Experiments 
 

The objective of these experiments is to evaluate the impacts of the proposed 

design on energy. The simulator and the benchmark have been described in Section 

2.3.1. This section first defines the energy models used for this design. The simulation 

results are then provided. Finally, the proposed method and existing schemes are 

compared. 
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3.3.1 Energy Model 

 

This section gives the energy models. EQ8, EQ9, EQ10, and EQ11 model the 

BTB energy with all possible impacts of the proposed design, PPD [2], Lazy BTB 

[17], and EIB [16], respectively. These equations are constructed from remodeling 

EQ6 into a more detailed version. The detailed descriptions are:  

 Since this design focuses on BTB dynamic energy reduction, the leakage part of 

BTB energy is removed. 

 ELP, the energy consumed in the hardware of the proposed design, includes 

NBDT energy (ENBDT), extra logics and counters energy (Eothers). ELP for the three 

related works are model in a similar way. 

 Since Lazy BTB use an array structure similar to NBDT, this array structure is 

denoted as NBDT_lazy here.  

 Branch identification unit (BIU), which records the branch distance information 

of each hot spot, is also an array structure proposed in EIB. 

EQ12, EQ13, EQ14, EQ15, and EQ16 model ENBDT, EPPD, ENBDT_lazy, EBIU and 

Eothers, respectively. Since they are modeled in a similar way to EBTB, we ignore their 

descriptions here. 

 

EBTB&LP_our = EBTB_acs * CountsBTB_acs + ENBDT + Eothers + Estalls   (EQ8) 

EBTB&LP_PPD = EBTB_acs * CountsBTB_acs + EPPD + Estalls     (EQ 9) 

EBTB&LP_lazy = EBTB_acs * CountsBTB_acs + ENBDT_lazy + Eothers + Estalls  (EQ 10) 

EBTB&LP_EIB = EBTB_acs * CountsBTB_acs + EBIU + Eothers + Estalls   (EQ 11) 

ENBDT = CountNBDT_acs * ENBDT_acs + ENBDT_leak           (EQ 12) 
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EPPD = CountPPD_acs * EPPD_acs +EPPD_leak           (EQ 13) 

ENBDT_lazy = CountNBDT_lazy_acs * ENBDT_lazy_acs + ENBDT_lazy_leak       (EQ 14) 

EBIU = CountBIU_acs * EBIU_acs + EBIU_leak                    (EQ 15) 

Eothers = Countothers_acs * Eothers_acs + Eothers_leak                (EQ 16) 

 

3.3.2 Results 

 

3.3.2.1 The width of NBDT 
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Figure 3-5: Total branch distance ratio for each basic block size interval 

 

The width of tkn_NBD and nt_NBD (n) depends on the dynamic behavior of the 

benchmark programs. Figure 3-5 shows the average total branch distance ratio 

(R_Total_BD) for each basic block length interval for SPECcpu2000. Typically, most 

basic blocks have the lengths shorter than 32. For the best tradeoff between the BTB 

energy reduction and NBDT energy, the value of n is determined to be fixed 5-bit. The 

detailed simulation results are shown in Section 3.3.2.3. 
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3.3.2.2 Analysis for the NBD predictions and remained predictor lookups 

 

Table 3-3 lists all reasons for NBD mispredictions and the NBD misprediction 

ratio for each reason. The S1 mispredictions are unavoidable in any conservative 

design. The S2 and S3 mispredictions are dependent on the size, structure and 

replacement policy of BTB. In other words, the S1, S2, and S3 mispredictions are 

regarded as independent of our design effort. The energy trade-off between NBDT 

and the reduction for S4 mispredictions is shown in Section 3.3.2.3.  

Some unnecessary branch predictor lookups are still remained due to the NBD 

mispredictions. Figure 3-6 reports the predictor lookup ratios and their breakdown. 

The average lookup ratios are 11.68% and 26.26% for the branch and non-branch 

instructions, respectively. 

 

Table 3-3: The reasons for NBD mispredictions 

Reasons Descriptions 
S1 Upon first encountering of a branch instruction or a branch has 

not entered into BTB, there has been no NBD history in NBDT. 
S2 After a branch instruction is replaced in BTB, it loses its NBD 

information. 
S3 Upon branch misprediction, the enable register is reset. It forces 

the branch predictor lookups for the following non-branch 
instructions. 

S4 The width of NBDT is not wide enough to record the full NBD. 
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Figure 3-6: Branch predictor lookup ratios 
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Figure 3-7: Energy results for the proposed design (a) EBTB&LP_our with different 

values of n. (b) EBTB&LP_our distributions using n=5 

 

3.3.2.3 Energy Analysis 

 

Figure 3-7(a) illustrates EBTB&LP_our with different values of n. All the energy 

numbers are normalized to the dynamic energy of the baseline BTB without any 
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low-power schemes. According to the evaluation result from CACTI, using one extra 

bit of tkn_NBD and nt_NBD consumes 2.46% more energy. This extra energy can be 

well compensated for by the saved energy in the basic blocks with branch distance 

shorter than 32. Therefore, analytical results show that n=5 yields the largest energy 

reductions in branch predictor, on average 41.81%. The further partitioning of the 

EBTB&LP_our with n=5 is shown in Figure 3-7(b). The results are: 

 EBTB&LP_our is 58.19% on average where the BTB dynamic energy occupies 

38.23%. 

 ENBDT expends 19.23% on average. This is the main energy overhead of the 

proposed design, since the width of a NBDT entry is 20-bit. 

 Eothers occupies 0.73% on average due to the frequently set/reset the control 

registers and counters. 

 Estall is zero since the proposed design has no performance degradation. 

 

Table 3-4: Results of delay analysis 

Critical path of dynamic branch prediction 
TBTB_hit TAND Tmux  Total 
1.20ns 0.06 ns 0.12 ns  1.38 ns 
Critical path of lookup filtering circuit 
TNBDT Tmux Teq0 Tmux Total 
0.80 ns 0.12 ns 0.31 ns 0.12 ns 1.35 ns 
Delay Evaluations 
TBTB_hit, TNBDT and Teq0 are obtained using Cacti 4.2 
Tmux = Teq0 * 2/5 
TAND = Tmux * 1/2 

 

3.3.2.4 Timing Analysis 

 

This section analyzes the timing effect of this design. As shown in Figure 3-4, we 



 24

suppose that the most time critical paths in the proposed filtering circuit and dynamic 

branch prediction are [NBDT -> EN] and [BTB tag RAM -> PC], respectively. Table 

3-4 lists the delay of each component on the two paths, where the delay time is 

obtained from Cacti 4.2 and basic gate level analysis. The results show that the 

proposed filtering circuit fits into the processor pipeline without lengthening the 

critical paths of branch prediction. 

3.3.3 Comparisons of the existing methods 

3.3.3.1 High-level comparisons 

 

Compared to EIB, the proposed method is a hardware implementation without 

any software support. The proposed method can easily be adopted in processor cores 

without the need to modify program codes, system software, or ISA. The high-level 

comparisons between the proposed method and EIB are: 

EIB filters the BTB lookups only in hot spots, not the entire program, where the 

hot spots are identified by static profiling. However, which part of a program is hot 

spot is a runtime behavior which varies according to the program input data or user 

behavior. Changing the program input data or different user behavior may decrease 

the hot spot identification accuracy in EIB, resulting in lowering the power efficiency. 

This drawback does not exist in the proposed method due to its dynamic nature.  

The proposed method uses a runtime NBD collection, whereas EIB uses a static 

one. The static method has the negative effect on program compatibility, compiler 

complexity, program size, instruction decoder complexity, and the overhead of an 

extra storage to record the NBDs, whereas the proposed design on the power overhead 

of NBDT and NBDC only.  

The NBD prediction coverage and accuracy of the methods in EIB are mainly 
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depending on the hot spot identification accuracy, whereas that of the proposed 

method on the branch direction predictor accuracy and BTB hit rate. A higher 

accuracy branch direction predictor and BTB benefit the proposed method achieving a 

better power reduction result.  

Table 3-5: Comparisons of the low-power branch prediction techniques 

Tech. Low-power schemes Design targets Lookup 
filtering

PPD Avoid unnecessary BTB lookups Non-branches  Partial 
Lazy 
BTB 

Avoid unnecessary BTB lookups Non-branches and 
not-taken branches 

Full 

Proposed Avoid unnecessary BTB lookups Non-branches Full 

 

Table 3-5 lists the comparisons of the proposed method and other hardware 

methods. The proposed method has the following features: 

 For the low-power schemes, the proposed design filters the lookups to the entire 

BTB, not only to its partial component. 

 The BTB lookup filtering operation (controlled by EN) is independent of the 

filtering signal generation. If the BTB lookup is not allowed, the full BTB access 

is stopped, not only the partial one. 

 

3.3.3.2 Simulation Setups 

 

PPD, Lazy BTB, and EIB are included in our simulation, since their goals are 

closer to those of the proposed method. The simulator includes a PPD table with the 

number of entries exactly identical to the number of I-cache entries and a NBDT-like 

table with the number of entries exactly identical to the number of BTB entries. In 

order to make a fair comparison between the proposed design and Lazy BTB, the 

width of NBDT_lazy is equal to an optimum value of 3 of the in Lazy BTB 
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simulation. Note that the overestimated NBD problem of Lazy BTB discourages it 

from using larger NBDT_lazy, since larger NBDT_lazy causes more extra branch 

mispredictions. The simulation setups for EIB are: 

 The most x% frequently executed basic blocks of each benchmark program are 

hot spots. According to the fact that 90% of the execution cycles are spent on 

10% of the code, we use x=90 as the best case of EIB (EIB_X90). The cases of 

x=80, 70, and 60 (EIB_X80, EIB_X70, and EIB_X60) are also evaluated. 

 In each hot spot, the BTB lookups are performed only for the predicted taken 

branches, whereas the direction predictor lookups are performed after the next 

branch address is calculated by BIU. In the other part of program, the BTB and 

direction predictor lookups are performed for each fetched instruction. 

 We suppose branch distance is D, the number of instructions fetched per cycle is 

i, the latency to access the BIU and calculate the next branch address is t cycles, 

and the latency to access direction predictor is s cycles. According to the EIB 

design rule, if the time interval D/i - t is shorter than s, a BTB lookup is 

conditionally performed based on the static branch prediction. According to the 

processor parameters listed in Table 2-1, the value of i is equal to 1. We assume 

t=2 and s=1. Therefore, in each hot spot, static branch prediction is used for the 

branches in the basic blocks with D<3. A profile-based static branch predictor 

[18] is included for EIB simulation. 

 The configuration of BIU is determined according to [16]. We assume this 

storage capacity of BIU is sufficient to store all the required information of the 

basic blocks in each hot spot. Moreover, we only consider the energy overhead 

of BIU lookup and the extra chip-wide energy due to the static branch prediction. 

The other energy overheads are ignored. 
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3.3.3.3 Energy comparisons 

 

Figure 3-8 displays EBTB&LP_PPD, EBTB&LP_lazy, EBTB&LP_EIB and EBTB&LP_our. The 

corresponding branch predictor lookup ratios for these schemes are listed in Figure 

3-9. The results show that the proposed method outperforms PPD both on branch 

predictor energy and lookup ratio, since the proposed method targets on all 

non-branch instructions, whereas PPD on the non-branch instructions in branch-free 

cache lines only.  

Lazy BTB not only skips the lookups that the proposed design does but also the 

lookups of not-taken branches. However, this aggressive design also skips some 

necessary lookups, resulting in an extra payment on chip-wide energy. Therefore, the 

results show that EBTB&LP_lazy is less than EBTB&LP_our. 

EBTB&LP_EIB and the corresponding branch predictor lookup ratio are mainly 

dependent on the ratio of the most frequently executed basic blocks (x) being hot 

spots. Compared to the cases of x<=80, the proposed design has a better energy 

efficiency for all B_MISP. Even compared to EIB_X90, the proposed design is 

slightly better than EIB. 
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Figure 3-8: Energy comparisons between the proposed design and the related works 
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Figure 3-9: BTB lookup ratio comparisons between the proposed design and the 

related works 

 

3.3.3.4 Performance comparisons 

 

Since both PPD and our method have no performance degradations, we show the 

relative performance loss ratio only for Lazy BTB and EIB in Figure 3-10. Averagely, 

the performance loss ratio for Lazy BTB, EIB_X90, EIB_X80, EIB_X70, and 

EIB_X60 are 0.22%, 0.23%, 0.21%, 0.18% and 0.16%, respectively.  
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Figure 3-10: Performance loss ratio for the related works 
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3.4 Summary 
 

This topic addresses the issue of filtering of unnecessary BTB lookups. A 

dynamic next branch distance generation and collection method is proposed to filter 

the useless branch predictor lookups. Simulation results show that the proposed 

design reduces the energy consumption in the BTB by an average of 41.81% without 

performance degradation. Moreover, the proposed method saves more energy than 

PPD, Lazy BTB, and EIB does. 
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Chap 4 Reducing BTB access power through 

block-address based BTB indexing and entry 

buffering 

 

This chapter introduces the way to reduce BTB access power. Since the related 

works are the same as that listed in Chap3, we ignore the related work section here. 

 

4.1 Observations of BTB indexing methods 
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Figure 4-1: BTB indexing method (a) Address partition for a BTB access. (b) 

Instruction address based indexing. (c) Block address based indexing 

 

Figure 4-1(a) shows the address partition for a BTB access where the address is 

32-bit and all instruction words have a length of 4-byte. Each 2b instructions in the 

entire address space form a code block. Assuming that there are 2x BTB entries in the 

BTB, the general form of the BTB index equation is: 
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BTB index = (Instruction address >> b) MOD 2x 

In the cases of b>0, since the index bits are located in the middle part of the 

instruction address, the tag bits are split up into the high-order and low-order parts, 

denoted as H-tag and L-tag, respectively. 

Conventional BTB (CBTB), in which case b=0, uses instruction address 

indexing. Figure 4-1(b) shows an example of a 4-entry direct mapped CBTB. It can be 

observed that at runtime, most incoming instruction addresses are successive; yet the 

mapped instruction addresses to each BTB entry are broken. Therefore, the accessed 

BTB entries of two successive BTB lookups are generally different; implying that the 

probability of a BTB access hitting the most recently accessed entry is low. 

If block address indexing, in which case b>0, is used, the consecutive BTB 

accesses are likely to hit the same BTB entry. Figure 4-1(c) shows an example of the 

case b=2, where all other settings are identical to Figure 4-1(b). Since all instructions 

in a code block are mapped to the same BTB entry, there is a high probability that the 

accessed BTB entries of two consecutive BTB lookups are the same. There are only 

two exceptions: One is that the first lookup PC (program counter) is pointed to a 

block-end and the next PC is sequential; the other is that the next PC is non-sequential 

and crosses its block boundary. Note that only the index field is changed in block 

address indexing. The total length of tag is unchanged. Therefore, the branch 

identification in block address indexing BTB still works unambiguously. 

 

4.2 Design for BTB access power reduction 
 

Locality property has made cache and BTB designs being successful in 

performance improvement. Unfortunately, BTB and caches are very power inefficient 
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since the fraction of unique BTB entries and cache lines accessed during an interval of 

thousands of instructions is small. Various research works have added a small cache 

that stores frequently accessed cache lines to save access power in cache, since a 

smaller cache has lower access power.  

Similar idea can be applied to reduce BTB access power, yet the difficulty lies in 

the fact that temporal locality in BTB entries is weak due to conventional instruction 

address indexing. We use block address indexing such that consecutive BTB accesses 

are likely to hit the same BTB entry. An entry buffering approach that buffers the 

most recently accessed BTB entry is proposed here to filter the BTB lookups that hit 

the most recently accessed BTB entry. Figure 4-2(a) shows the low-power BTB 

lookup algorithm. Note that we show the process between BTB index decoding and 

BTB entry output only. The processes of tag comparison, ORing all the comparison 

results, and selecting the hit BTB entry according to the comparison results are not 

included in Figure 4-2(a). An entry buffer (EB) is added to record the most recently 

accessed BTB entry in such a manner that the access that hits this entry can be output 

from EB directly. If a new BTB entry is filled in BTB and the overwritten BTB entry 

is the most recently accessed one, a problem of inconsistency arises. In this situation, 

both BTB and EB are filled to avoid inconsistency. 

Figure 4-2(b) displays the circuit implementation. Before BTB access, a 

comparison between the current and last BTB index is performed to generate the 

index the same signal (ITS). To avoid the comparator delay, ITS can be also generated 

using content-change-aware register proposed in [19]. If the current BTB index is not 

changed (ITS=1), the BTB access is gated, and the read enable signal of EB (R_EN) 

is enabled to directly output the BTB entry from EB. Otherwise, BTB is accessed 

normally, and the output BTB entry is stored into EB. 

We continue to extend the low-power idea to a set-associative BTB. In a 
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set-associative BTB, each BTB way is a direct-mapped BTB. Therefore, each BTB 

way has an EB to record the most recently accessed BTB entry. 
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Figure 4-2: Low-power BTB lookup (a) Algorithm. (b) Circuit implementation. 

 

4.3 Experiments 
 

The objective of these experiments is to evaluate the impact of the proposed 

design on energy and performance. Section 4.3.1 describes the goals of these 

experiments; Section 4.3.2 introduces the power models; and Section 4.3.3 gives the 

results and analysis. 

 

4.3.1 Goals 

 

We reduce BTB dynamic energy by proposing entry buffering for BABTB. The 

goals which we intend to achieve through these experiments are:  

 Determining the optimum configurations of CBTB and the BABTB. 

 Evaluate the energy and performance of [BABTB with EB]. 
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4.3.2 Energy Model 

 

The power models are constructed by EQ17. It models the energy impacts of the 

applied low-power designs; including BTB dynamic energy, entry buffer energy (EEB) 

and the energy of chip except for BTB (Estall) consumed during the extra stall cycles 

(Cylsextra) induced by these designs. Since this design is for dynamic energy reduction, 

the common part, BTB leakage energy, is not included in EBTB&LP_EB. Table 4-1 lists 

the energy parameters estimated using CACTI 4.2. 

 

EBTB&LP_EB = EBTB_acs * CountsBTB_acs + EEB+ Estall                (EQ17) 

 

Table 4-1: Energy Parameters 

Energy parameters 
BTB dyn energy/access 
EB dyn energy/access 
EB leak energy/cycle 

4.32pJ 
0.28pJ 
0.016pJ 

 

4.3.3 Results and analysis 

 

In Table 4-2, all experiments are listed; BTB configurations are described in the 

first column and the evaluation metrics in the second. The first experiment observes 

the effects of code block size and BTB assosiativity on NPC accuracy (the number of 

correctly predicted next PC for branches by dynamic branch prediction over the 

number of total executed branches), IPC, and total chip energy. According to the 
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results of total chip energy, the [256-entry, 4-way, 1-instruction block] and [256-entry, 

4-way, 8-instruction block] are determined as the configurations for CBTB and the 

proposed BTB, respectively. The second experiments report the IPC and EBTB&LP_EB. 

 

Table 4-2: Experiments 

256-entry BTB configuration Evaluation metrics 
CBTB:1~8way without EB 
Proposed BTB:1~8way, 2~32-inst. blk with EB

NPC accuracy, IPC, and total chip 
energy 

4-way, 8-inst. blk + EB (BABTB_EB) IPC and EBTB&LP without EBTB_lk + 
EPM 

 

4.3.3.1 Block size and associativity 

 

Figures 4-3(a) and 4-3 (b) show the average NPC accuracy and IPC of the 

observed BTBs, respectively. The results for each associativity parameter are arranged 

in the following order: 1-instruction, 2-instruction, 4-instruction, 8-instruction, 

16-instruction, and 32-instruction block (denoted as 1, 2, 4, 8, 16, and 32, 

respectively). The 1-instruction BTBs (CBTB) are configured without EB, whereas 

the other BTBs (BABTB) are configured with EB. The first observation we made is 

that in the direct-mapped BTB with block sizes larger than 2, the NPC accuracy and 

IPC decrease while the block size increases. The cause of this is the fact that branches 

are not uniform distributed in programs. A contention problem for a single BTB entry 

may exist if the code blocks mapped to this entry contain more than one branch 

instruction. The second observation we made is that with higher associativity, the evil 

effects of this problem on NPC accuracy and IPC are not obvious. In some cases, the 

set associative BABTB even achieves higher NPC accuracy and higher IPC than the 
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corresponding set associative CBTB. 

Figure 4-3(c) shows the total chip energy corresponding to the simulated BTBs 

in Figures 4-3(a) and (b). The energy number is normalized with respect to the total 

energy consumed by the processor without BTB. It can be observed that a highly 

accurate BTB reduces the chip energy during the branch stall cycles. The results show 

that increasing associativity benefits chip energy only when associativity is less than 

or equal to 4, because increasing associativity also hurts BTB access energy. In 

addition, although increasing block size always benefits BTB access energy, it 

benefits chip energy only when IPC is improved. The lowest chip-wide energy 

configurations among the observed CBTBs and the proposed BTBs are [4-way 

1-instruction block] and [4-way 8-instruction block with EB], respectively. On 

average, the accuracy and IPC of the proposed BTB with the optimum configuration 

are 0.08% and 0.006% higher than that of CBTB, whereas the chip-wide energy is 

1.68% lower. These configurations are used for the simulations in Section 4.3.3.2. 
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Figure 4-3: Evaluations for the observed BTBs (a) Average NPC accuracy. (b) 

Average IPC. (c) Total chip energy. 

 

Table 4-3 lists IPC, total BTB dynamic energy, and total BTB leakage energy of 
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the [256-entry 4-way 1-instruction block] and [256-entry 4-way 8-instruction block] 

BTB for each benchmark program. In the simulations in Section 4.3.3.2, all the 

energy and performance results are normalized to the corresponding item in Table 4-3. 

 

Table 4-3: IPC, BTB dynamic energy, and BTB leakage energy of BABTB and CBTB 

  BABTB CBTB 

Benchmarks IPC BTB dyn (mJ) BTB leak (mJ) IPC BTB dyn (mJ) BTB leak (mJ)

bzip2 0.458 2.321  2.253  0.458 2.321  2.253  

crafty 0.476 2.419  2.170  0.465 2.458  2.224  

gap 0.502 2.313  2.057  0.500 2.314  2.065  

gcc 0.191 2.453  5.408  0.190 2.474  5.430  

gzip 0.599 2.327  1.723  0.599 2.327  1.723  

eon 0.510 2.521  2.027  0.518 2.500  1.995  

mcf 0.640 2.417  1.615  0.642 2.416  1.610  

parser 0.431 2.378  2.399  0.430 2.381  2.402  

perlbmk 0.581 2.514  1.777  0.581 2.514  1.777  

twolf 0.200 2.479  5.171  0.199 2.482  5.181  

vpr 0.233 2.394  4.432  0.233 2.397  4.435  

 

4.3.3.2 Evaluations of BABTB with entry buffering 

 

This section evaluates the energy and IPC of BABTB with EB. BABTB is setup 

as [256-entry 4-way 8-instruction block], which is determined in Section 4.3.3.1. All 

energy and performance values shown in this section are normalized to those in the 

BABTB without any low-power design. 
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Figure 4-4 shows the energy results for each benchmark program, respectively. 

We do not show performance result, since this design does not affect performance. 

[BABTB with EB] reduces the dynamic energy consumption in BABTB by an 

average of 73.17%, because [BABTB with EB] has the low BTB access ratio, low 

hardware overhead, and no performance degradation. 
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Figure 4-4: Energy result for BABTB with EB 

 

4.4 Summary 
 

This topic addresses the issue of BTB access power reductions. Through block 

address indexing and entry buffering, the dynamic power consumption of BTB access 

is reduced by an average of 73.17% without performance degradation. It outperforms 

the method proposed in Chap 3. These two methods target on different power sources, 

therefore, with the integration of these two methods, the dynamic power consumption 

in BTB can be further reduced. The integration issue will be discussed in Chap 8. 
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Chap 5 Reducing BTB leakage power through 

power management 

 

Reducing leakage power becomes a popular research issue, since leakage power 

may dominate the total power consumption as processor technology moves below 

0.1µm. This chapter introduces the way to reduce BTB leakage power. 

 

5.1 Related works 
 

5.1.1 BTB power modes 

 

Table 5-1: BTB power modes 

Power Mode Voltage State Can be accessed? 
Active 1V preserved Y 

Drowsy[21] 0.3V preserved N 

Sleep[20] 0V destroyed N 

 

Two circuit techniques have been proposed to reduce the leakage power in 

SRAM. The first one is drowsy cache [21], which lowers the supply voltage of SRAM 

until the data is just preserved. Another one is gated Vdd [20], which gates the supply 

voltage of SRAM. Therefore, the data is destroyed. We use these two techniques to 

reduce BTB leakage power. Table 5-1 lists three BTB power modes. Active mode uses 

the normal supply voltage, drowsy mode uses the state-preserved supply voltage 

proposed in [21], and sleep mode gates the supply voltage. 
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5.1.2 Power management for BTB 

 

Power management is a well known approach for reducing leakage power. A 

compiler-directed manager [22] manages BTB power modes in loops. During loop 

execution, this manager puts the BTB entries outside the loop into state preserving 

mode. All BTB entries are returned to normal mode after exiting the loop. Decay 

method [23] gates the supply voltage of the BTB entry predicted to be no longer used. 

However, in the time period from it entering in BTB to being used last time, it still 

consumes significant power. 

 

5.2 Design for BTB power management 
 

5.2.1 Decay-based power manager 

 

 

Figure 5-1: Decay-based power managers 

 

Figure 5-1 shows the decay-based power manager for each BTB entry using a 

hybrid of state-destroying and state-preserving modes [6]. Each BTB entry (both tag 
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and data fields are included) has three power modes which are implemented by 

combining the circuit techniques of gated-Vdd [20] and drowsy circuit [21]. In active 

mode (A), the entry is operated normally. In drowsy mode (D), the supply voltage of 

the BTB entry is lowered. The entry data in drowsy mode is preserved and can be 

reactivated with one cycle latency if necessary. In sleep mode (S), the supply voltage 

of the entry is gated, and the entry data is lost. While an active entry with an idle 

period of T1 is put into drowsy mode, a drowsy entry with an idle period of T2 is put 

into sleep mode. A sleep entry is returned to active mode if a new branch is placed in. 

The drowsy entry is returned to active mode with one cycle latency once an access 

requirement is coming. 

The decay-based power manager is usable for both CBTB and [BABTB with 

EB]. The experiment data in Section 5.3.3 shows that [BABTB with EB] with the 

decay-based power manager has better power efficiency than CBTB with the 

decay-based power manager. Therefore, we intend to further reduce BTB leakage 

power of [BABTB with EB] with the decay-based power manager. 

 

5.2.2 Entry pre-activation 

 

We propose an entry pre-activation method, which wakes up a drowsy BTB entry 

if it is to be accessed during next cycle, for [BABTB with EB] with the decay-based 

power manager. In [BABTB with EB], it is accessed only if the current BTB index 

differs from the previous one. Therefore, if the BTB index of the next cycle (i+1) is to 

be changed, the entry pre-activation method should predict the index value and the 

predicted value should be available at the beginning of the current cycle (i). 

Typically, there are five possible next PC sources: sequential PC, branch target 
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from BTB, branch target from ALU, indirect jump address from register, and 

exception vector address. Since the first two cases account for the vast majority of 

PCs, the entry pre-activation method only handles these two cases: 

 Sequential pre-activation: If the current PC is pointed to a block end and the next 

PC is sequential, the next BTB entry is the sequential entry. As a result, we 

pre-activate the sequential entry if the current PC is pointed to a block end. We 

do not wait for the dynamic branch prediction due to timing considerations. Note 

that the sequential pre-activation is different from the one proposed in [5], which 

is used for I-cache. In [5], when the current cache line is accessed, the sequential 

cache line is pre-activated. 

 Target pre-activation: If the next PC comes from BTB and crosses the current 

block boundary, the next BTB entry is the target entry. In CBTB, it is difficult to 

predict the index of the target entry one cycle before this entry is to be accessed. 

Fortunately, this is not a problem in the proposed BTB because consecutive BTB 

accesses are likely to hit the same BTB entry. Therefore, we propose a target 

pre-activator for the target entry pre-activation. The target pre-activator always 

checks whether the tag of the sequential PC and the tag of the current accessed 

BTB entry are identical. If they are identical, the sequential instruction is a 

branch and its mapped BTB entry is the currently accessed one. In other words, 

in the current cycle (i), if the current PC is sequential and the checking result 

during the previous cycle (i-1) was identical, the current fetched instruction is a 

branch and its mapped BTB entry is the same as the one accessed during the 

previous cycle (i-1). In this situation, the target pre-activator pre-activates the 

BTB entry to which the checked BTB entry points. Note that it is not necessary 

to add an extra storage for preserving the checked BTB entry, since it is certain 

to be in EB in this situation. 
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5.2.3 Implementation 

 

Figure 5-2(a) shows a block diagram of FDPM with the entry pre-activation 

method for the proposed BTB. Each BTB entry is accessed (ACS=1) only when its 

word line is enabled (WRD=1) and is not gated, where the word line gating signal 

comes from the dynamic power reduction method shown in Figure 4-2(b). We use 

SEC to indicate if this entry is the sequential entry. Each BTB entry has two power 

mode bits denoted as drowsy bit and sleep bit. The dynamic voltage scaling (DVS) 

circuit supplies three types of voltages: 1V, 0.3V, and 0V; which correspond to active, 

drowsy, and sleep modes, respectively. The power mode control of each BTB entry 

determines its power mode bits according to ACS, SEC, the target pre-activator, a 

global counter, and a block end identifier; where the target pre-activator generates the 

target pre-activation signal (TPAS) to pre-activate the target entry and the block end 

identifier generates the block end signal (BES) which indicates if the current PC 

points to a block end. 

Figure 5-2(b) presents the implementations of power mode control. We extend 

the hierarchical counter scheme in [8] to implement idle period identification in 

FDPM. A global counter and two 2-bit local counters are used, where the drowsy local 

counter (DLC) is used to identify the idle period T1 and the sleep local counter SLC 

T2. All other implementation details for idle period identification are identical to 

those in [8]. The entry pre-activation signal (PA) is enabled when the sequential 

pre-activation signal (SPA) or the target pre-activation signal (TPAS) are enabled, 

where the SPA is enabled if the PC points to a block end (BES=1) and the entry is 

sequential entry (SEC=1). If a drowsy BTB entry is pre-activated (PA=1) or accessed 



 45

(ACS=1), it is switched to active mode and its drowsy local counter is set to a 

maximum value of 3. 
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Power_Mode_Control ()
{
  ST1=2i;
  ST2=2j;
  Switch(PowerMode) 
  {
      Active:
            if (ACS) DLC=3;
            else 
            {
               if ( (GC MOD ST1 == 0) && (DLC>0) )   DLC--;
               if (DLC == 0)  { PowerMode=Drowsy; SLC=3; }
            }
      Drowsy:
            SPA = SEC & BES;
            PA = SPA || TPAS;
            if (ACS || PA) { PowerMode=Active; DLC=3; }
            else 
            {
                if ( (GC MOD ST2 == 0) && (SLC>0) )   SLC--;
                if (SLC == 0) PowerMode=Sleep;
            } 
      Sleep:
            if (A new branch is placed in)  { PowerMode=Active; DLC=3; }
  }
}

(b)

(c)
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Figure 5-2: The proposed power management. (a) Block diagram. (b) PMC 

implementation. (c) TPA implementation. (d) Block end identifier implementation. 
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Figures 5-2(c) and 5-2(d) show the implementations of the target pre-activator 

and the block end identifier, respectively. The target pre-activator uses a comparator 

to compare the tags of the sequential PC and the outputted BTB entry. If the result of 

comparison is equal and the next PC is sequential, then the next fetched instruction is 

a branch and its target is recorded in the outputted BTB entry. We set a one-bit 

register SB to indicate this situation. The target pre-activation signal (TPAS) is 

generated by decoding the BTB index field of branch target address in EB if SB=1. 

Block end identifier uses a comparator to check if the bits of L-tag in PC are all equal 

to one. 

 

5.3 Experiments 
 

The objective of these experiments is to evaluate the impact of the proposed 

design on energy and performance. Section 5.3.1 describes the goals of these 

experiments; Section 5.3.2 introduces the energy model; and Section 5.3.3 gives the 

results and analysis. 

 

5.3.1 Goals 

  

We reduce the leakage energy in the [BABTB with EB] by the decay-based 

power manager and entry pre-activation. The goal which we intend to achieve through 

these experiments is that comparing energy and performance of [CBTB with the 

decay-based power manager], [BABTB with EB and the decay-based power manager], 

and [BABTB with EB, the decay-based power manager, and entry pre-activation]. 
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5.3.2 Energy Model 

 

The power models are constructed by EQ18. It models the energy impacts of the 

applied low-power designs; including BTB leakage energy, the energy of power 

manager (EPM) and the energy of chip except for BTB (Estall) consumed during the 

extra stall cycles (Cylsextra) induced by these designs. Since this design is for leakage 

energy reduction, the common part, BTB dynamic energy, is not included in 

EBTB&LP_PM. 

 

EBTB&LP_PM = PBTB_leak * TimeEXE + EPM+ Estall                (EQ18) 

 

Table 5-2: Energy Parameters 

Energy parameters 
BTB active mode leak energy/cycle 
BTB drowsy mode leak energy/cycle 
BTB sleep mode leak energy/cycle 
Power mode transition energy 
Counter dyn energy/access 
Counter leak energy/cycle 

2.07pJ 
0.33pJ 
0pJ 
0.432pJ 
0.06pJ 
0.047pJ 

 

Table 5-2 lists the energy parameters estimated using CACTI 4.2 web interface 

[15]. According to the power characteristics reported in [20] and [21], we assume that 

for each BTB entry, the leakage power consumed in the drowsy mode and in the sleep 

mode is 16% and 0% of that in the active mode, respectively. The mode transition 

energy spent in switching from low-power mode to active mode is 10% of the 

single-access energy in BTB (EBTB_acs). 
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5.3.3 Results and analysis 

 

Table 5-3: Experiments 

256-entry 4-way BTB configuration Evaluation metrics 
1-inst. blk + decay based power manager (CBTB_PM) 
8-inst. blk + EB + decay based power manager 
(BABTB_EB_PM) 
8-inst. blk + EB + decay based power manager + entry 
pre-activation (BABTB_EB_PM_EPA) 

IPC and EBTB&LP_PM 

 

In Table 5-3, all experiments are listed; BTB configurations are described in the 

first column and the evaluation metrics in the second. The three experiments report 

the IPC and EBTB&LP_PM of CBTB and [BABTB with EB] each with the corresponding 

power managers. 

Figure 5-3(a) presents the energy results. For each power-managed BTB, T2 is 

fixed to 16K cycles and the energy results are arranged into: 64-cycle, 128-cycle, 

256-cycle, 512-cycle, 1K-cycle, 2K-cycle, 4K-cycle and 8K-cycle of T1. Each 

power-managed BTB has its own optimum T1. They are 2K cycles for CBTB_PM, 

2K cycles for BABTB_EB_PM, and 128 cycles for BABTB_EB_PM. From greatest 

to least, the order in power efficiency of each combination with its optimum T1 is: 

BABTB_EB_PM, BABTB_EB_PM, and CBTB_PM. 

Figure 5-3(b) and (c) show the energy and performance results for each 

power-managed BTB with its optimum T1, respectively. Except for gzip, 

BABTB_EB_PM yields the lowest energy for all benchmark programs. On average, 

compared to the BABTB without any low-power design, the IPC degradation rate of 

BABTB_EB_PM is only 0.38%. 

Figure 5-3(d) presents the average ratio of each power mode for each 

power-managed BTB with its optimum T1. Figure 5-3(e) further breaks down the 
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average EBTB&LP_PM according to the power sources; including BTB active leakage 

energy (EActive), BTB drowsy leakage energy (EDrowsy), power manager energy 

(EPM), and the chip-wide energy during the extra stall cycles (EStall). The analyses 

of these results are: 

 CBTB_PM: In CBTB, each fetched instruction performs BTB lookup. Moreover, 

consecutive BTB lookups are likely to hit the different BTB entries. This 

phenomenon implies that BTB entries spend a lot of time in active mode due to 

the frequent accesses. This is the primary reason that CBTB_PM has the highest 

BTB active leakage energy. 

 BABTB_EB_PM: Compared to CBTB_PM, power mode transition traffic in 

BABTB_EB_PM is decreased due to the fact that BTB is accessed only when 

the BTB index is changed. Therefore, it has better power efficiency than 

CBTB_PM. 

 BABTB_EB_PM_EPA: Entry pre-activation helps to significantly shorten T1. 

Therefore, BABTB_EB_PM_EPA consumes the lowest leakage energy among 

all. On average, BABTB_EB_PM_EPA yields a BTB leakage energy reduction 

of 57.77%. 
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(e) 

Figure 5-3: Comparisons for all power-managed BTBs. (a) Normalized BTB energy 

of all power-managed BTBs with various decay intervals of T1. (b) Normalized BTB 

energy for each power-managed BTB with its optimum T1. (c) Normalized IPC for 

each power-managed BTB with its optimum T1. (d) Ratio of each power mode for all 

power-managed BTBs with their optimum T1. (e) Energy breakdown for all 

power-managed BTBs with their optimum T1. 

 

5.4 Summary 
 

This topic addresses the issue of BTB leakage power reductions. Through decay 

based power manager and entry pre-activation, the leakage power consumption of 

BTB is reduced by an average of 57.77% with only 0.38% of performance 

degradation. It outperforms all the other power managed BTBs. 
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Chap 6 Reducing BTB entry size through 

I-cache based BTB 

 

BTB and instruction cache (I-cache) have some similar fundamental 

characteristics. First, BTB lookup is performed in parallel with instruction fetch. 

Second, BTB is essentially an on-chip cache as well. Finally, the high order bits in the 

tag field of both BTB and I-cache are identical. If the tag memory of I-cache can be 

shared with BTB, both dynamic and static power of BTB can be significantly reduced. 

This chapter intends to reduce BTB dynamic and leakage energy simultaneously 

through the integration of instruction cache and BTB. 

 

6.1 Related Work 
 

Johnson et al. [24] proposed a BTB architecture which appends a BTB entry to 

each I-cache line. Flynn et al. [25] analyzed the performance between the typical BTB 

and Johnson’s BTB. However, there was no discussion of power issues in Flynn’s 

reports. 

Compared with the typical BTB, the tag memory of Johnson’s BTB is shared 

with that of I-cache. Instead of recording the full tag, each BTB entry only keeps 

log2x bits to indicate which instruction of the corresponding I-cache line has occupied 

this entry, where x is the number of instructions per I-cache line. Consequently, both 

the static and dynamic power consumptions of BTB are reduced due to the saving in 

storage. However, Flynn has shown that a typical 16-entry BTB performs more 

accurately than Johnson’s BTB; even though there are more entries in Johnson’s BTB. 
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This design may increase the chip-wide energy expenditure; hence, Johnson’s BTB is 

not good choice for energy efficiency. If we want to take the advantage of tag-sharing 

with low-power, improving the accuracy of Johnson’s BTB becomes a challenging 

design issue. 

 

6.2 Design for I-cache based BTB 
 

This chapter describes the proposed design for an instruction cache based BTB 

(ICBTB), including the mapping methods for I-cache lines and BTB entries (Section 

6.2.1), the management for ICBTB (Section 6.2.2). 

 

6.2.1 Mapping methods for I-cache lines and BTB entries 

 

In order to share the I-cache tag memory with BTB while still maintaining high 

BTB accuracy, the contention problem in Johnson’s BTB should be resolved. To 

obtain the maximal power reduction, the power consumptions of both the BTB and 

the entire chip are taken into consideration. Two methods achieving this goal are 

presented as follows. 

The first method is to increase the capacity of Johnson’s BTB. More specifically, 

we append k (k>1) BTB entries to each I-cache line. This straightforward idea only 

improves the BTB accuracy. Although the chip-wide energy is reduced due to the 

improvement of the BTB accuracy, the BTB energy may increase by a factor of k. 

Moreover, for the cache lines in which the number of branch instructions is less than k, 

some of the BTB entries are still useless and waste power. Therefore, this method is 
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not a good choice. 

The second method is to design an entry-sharing approach, through which the 

BTB entries can be used by multiple cache lines. Compared to Johnson’s BTB, this 

method balances the unbalanced use of the BTB entries resulting from the 

non-uniformly distributed branches. The extra overhead of this alternative is that each 

BTB entry needs a few extra bits to indicate which cache line is using this entry. 

Therefore, the problem now becomes how to design this entry-sharing policy with 

minimal hardware cost. 
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Figure 6-1: ICBTB and its integration with a typical pipeline front-end 

 

6.2.2 ICBTB management 
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Figure 6-1 shows an ICBTB and its integration with a typical pipeline front-end, 

which is composed of instruction fetch (IF), instruction decode (ID), and execution 

(EX) stages. During IF stage, ICBTB lookup and instruction fetch are performed 

simultaneously. The dynamic branch predictor (not shown in Figure 6-1), which is 

either integrated in the BTB entry or implemented separately, performs the branch 

direction prediction at the same time. If ICBTB lookup result is a hit, then the fetched 

instruction is a branch. If the predicted direction is taken, the output of ICBTB, which 

is the target address of the branch, is used as the next PC. Otherwise, the sequential 

address is used. 

As shown in Figure 6-1, n ICBTB entries are attached to each set of the I-cache 

(n-grouping ICBTB). In other words, the n ICBTB entries can be used by all branches 

of the corresponding I-cache set. This implies that the optimal number of n for 

low-power consumption is highly dependent on the I-cache configurations. We 

determine n through simulations. In addition, instead of recording the full tag, each 

ICBTB entry uses an index field to indicate which instruction in the corresponding 

I-cache set is using this entry. The index field is composed of a way index (w_idx) 

and a line offset, where the way index represents the cache line index of the set and 

the line offset indicates the offset within the line. For a typical i-way set-associative 

I-cache with x instructions per cache line, the width of the index field is log2x+log2i 

bits. 

During EX stage, both the target address and the direction of a branch are 

available. If the target address of the branch has not been recorded in ICBTB and the 

branch is taken, then the target address, way index and line offset will be recorded in 

ICBTB. While the line offset is directly extracted from the address of the branch, the 

way index is derived from the I-cache circuit. However, if the way index of an 

instruction is discarded after I-cache access, the way index information is lost when 
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the instruction enters ICBTB (assume the instruction is a taken branch). Therefore, the 

way index of each instruction is preserved in the instruction pipeline until EX stage. 

Figure 6-2 shows the block diagram of a 2-grouping ICBTB attached to a 2-way 

I-cache. In this case, the 2-grouping ICBTB is composed of two BTB arrays, and the 

number of BTB entries in each BTB array is equal to that of the I-cache sets. PC is 

divided into three parts to access the I-cache and the ICBTB simultaneously, where 

the index is used to determine the set, the tag is used to determine if there is a match 

in the I-cache, and the line offset is used to extract the current instruction from the 

accessed cache lines. Note that this block diagram is a functional description, not a 

physical implementation. 
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Figure 6-2: 2-grouping ICBTB attached to a 2-way I-cache 

 



 58

As shown in Figure 6-2, circles indicate the micro-operations of an ICBTB and 

I-cache access. These operations are described as follows: 

 RAM accesses: The index part of PC is send to the I-cache RAMs and the 

ICBTB RAMs. Then, circles 1a and 1b indicate the RAM accesses of the I-cache 

and the ICBTB, respectively. 

 Comparisons: The comparators perform the match operations. Circle 2a indicates 

the tag comparisons of each I-cache way. The way index is then generated by 

encoding the comparison results. Circle 2b indicates the way index comparisons 

and line offset comparisons of each ICBTB array. Then, whether the access to 

each ICBTB array is a hit is determined by ORing the comparison results and the 

valid bit. 

 Data output: Based on the comparison results, the output instruction (circle 3b) 

and target address (circle 3d) are selected, and the I-cache hit signal (circle 3a) 

and ICBTB hit signal (circle 3c) are then produced. 

When an I-cache line is replaced, the corresponding ICBTB entries are also 

invalidated. If a taken branch attempts to enter ICBTB and all the attached BTB 

entries are used, the LRU replacement operation is performed. 

In order to illustrate ICBTB more clearly, we trace the operations in a 2-way 

I-cache and its attached 2-grouping ICBTB using a code example. Figure 6-3 shows 

the execution paths for two code segments and the corresponding operations in the 

I-cache and the ICBTB during the execution of these two code segments. The first 

code segment (I0~I15) takes place first, and then the second segment (J0~J15). There 

are four branch instructions: I7, J2, J7, and J15, and their targets are the addresses of 

I11, J5, J1, and J0, respectively. The stamps from t0 to t8 indicate the time order, and 

the arrows between the time stamps represent the execution paths: the arrow between 

t0 and t1 indicates the execution path on the first code segment, and all the remaining 
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arrows are for the second code segment. The description over each time interval is 

listed as follows: 

 t0->t1: Initially, both the I-cache and the ICBTB are empty. The first code 

segment is executed completely at t1, the corresponding code blocks are 

allocated in way 0 of the I-cache, and the first entry of array 0 in the ICBTB is 

assigned to I7. 

 t2->t3: The program continues from J0 to J7. When J0 is fetched, the code block 

J0 to J7 is allocated in way 1 of the I-cache. After branch J7 is executed at t3, the 

first entry of array 1 in the ICBTB is assigned to J7. 

 t4->t6: The program continues from J1 to J15. When J8 is fetched, the code 

block J8 to J15 is allocated in way 1 of the I-cache. After branch J15 is executed 

at t6, the second entry of array 0 in the ICBTB is assigned to J15. 

 t6->t7: The program continues in the order of J0, J1, J2, J5, J6, and J7. Since 

branch J2 is taken and all the ICBTB entries are full, one of the entries should be 

replaced. In this example, the first entry of array 0 in the ICBTB is discarded. 

 t7->t8: The program continues in the order of J1, J2, J5, J6, and J7. Both ICBTB 

lookups for branches J2 and J7 are hits at this interval. 
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Figure 6-3: Code examples to illustrate ICBTB 

 

6.3 Experiments 
 

The objective of the experiments is to evaluate the impact of the proposed 

ICBTB on energy, performance, and area. The energy model used in this design is the 

same in that listed in Chap 2-3. Therefore, we report the results of the related metrics 

for various BTBs here. 

 

6.3.1 Results and analysis 
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We now examine the interaction among BTB configuration, performance, energy, 

and storage characteristics for SPEC 2000. In the descriptions below, the term 

“average” means the arithmetic mean for the metrics across the simulated benchmark 

programs. Except for BTB accuracy, and IPC, all metrics reported in this section are 

normalized with respect to those of a 256-entry 4-way conventional BTB. The term 

“Base” means the conventional BTB, “Johnson” Johnson’s BTB, and ICBTB_k the k 

grouping ICBTB. 

 

6.3.1.1 BTB accuracy and IPC 
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Figure 6-4: NPC accuracy comparisons 
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Figure 6-5: IPC comparisons 

 

Figure 6-4 presents the average NPC accuracy, and Figure 6-5 presents the 
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corresponding IPC. The important observations and analyses of the simulation results 

are listed as follows: 

 Johnson’s BTB has 512 entries, while the baseline BTB only has 256 entries. 

However, Johnson’s BTB only achieves a relatively low BTB accuracy and low 

IPC due to the contention problem of the BTB entry for each I-cache line. 

 ICBTB_2, which has the same entries with the baseline BTB, improves the NPC 

accuracy and IPC, significantly. ICBTB_2 archives similar NPC accuracy and 

IPC of the baseline BTB. Compared with the baseline BTB, ICBTB_2 only has 

2.6% of performance degradation. 

 

6.3.1.2 Energy results 

 

Figure 6-6 shows the BTB dynamic energy, Figure 6-7 shows the BTB leakage 

energy, and Figure 6-8 shows EBTB&LP. The important observations and analyses of the 

simulation results are listed as follows: 

 Compared with the baseline BTB, Johnson’s BTB has relative high BTB 

dynamic and leakage energy due to it has more entries.  

 ICBTB_2 saves 55.44% and 34.19% of BTB dynamic and leakage energy, 

respectively. With the overhead energy (Estall) included, ICBTB_2 saves 16.54% 

BTB energy, with only 2.6% of performance degradation. 
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Figure 6-6: BTB dynamic energy comparisons 
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Figure 6-7: BTB leakage energy comparisons 
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Figure 6-8: EBTB&LP comparisons 

 

6.4 Summary 
 

This topic addresses the issue of BTB tag memory cost reductions. Through tag 
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memory sharing with I-cache, both dynamic and leakage power in BTB are reduced. 

Since the BTB entries are shared to the branches in each I-cache set, the performance 

degradation is insignificant. This method outperforms Johnson’s design.  
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Chap 7 Reducing the number of BTB entries 

through early target address generation 

 

If the number of BTB entries can be reduced with tolerable performance 

degradation, both dynamic and leakage BTB power can be reduced significantly. We 

address this issue in this chapter. Since no related research addressed in this topic, we 

introduce the proposed method directly. 

 

7.1 Design for early target address generation 
 

7.1.1 Overview 
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Figure 7-1: Ratio of PC-relative branches over total branches 

To reduce the number of BTB entries without causing performance degradation, 

we must design a mechanism that is logically equivalent to BTB, that is, provide 

targets of branch instructions for the pipeline front-end. More specifically, the 



 66

mechanism must fetch the instruction, identify its type (branch or not?), and 

furthermore provide the target address. Note all operations mentioned above should 

be finished in one cycle to meet the behavior of a conventional BTB. By having such 

a mechanism, branch instructions that can be processed need not to reside in the BTB 

anymore. 

There’re two major discoveries: the first result shows the proportion of different 

types of branches in SPEC2000, as in Figure 7-1. As we can see, the PC-relative 

branches were the absolute majority of all branches, averaging 89.31%. The second 

observation is shown in EQ19, which draws the target address generation rules for 

PC-relative branches. Generally, target address of PC-relative branches can be 

calculated when branch address and instruction (branch offset) is at hand. 

 

Target address = (branch address + 1) + branch offset     (EQ19) 

 

Figure 7-2 shows a typical pipeline front-end with the proposed design. Based on 

the mentioned facts, a PC-relative branch handling unit (PCBHU) is established. 

PCBHU fetches the incoming instructions in advance, determines if the fetched 

instructions are PC-relative branches (pc_branch), and generates their corresponding 

target addresses (PCBHU_TA). To generate target address in time, identification and 

target address calculation mechanisms need to be established without incurring 

additional delay to the pipeline frond-end. If the branch target address of the current 

fetched instruction in the pipeline front-end has been already generated by PCBHU, 

this target address does not need to be stored in BTB. In other words, with PCBHU, 

the number of BTB entries can be reduced. We call the smaller BTB as reduced BTB 

(RBTB). To exploit maximum power reduction, the placement and indexing methods 

for RBTB need to be redesigned. A dynamic branch direction predictor (DBP) is used 
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to predict the branch direction. If a branch instruction is predicted taken, its target 

address is provided by RBTB or PCBHU, and is used as the next PC. Otherwise, the 

sequential PC is used. 

Section 7.1.2 introduces the PCBHU design. Section 7.1.3 analyzes the timing 

and describes the pipelining PCBHU for high clock rate processors. Section 7.1.4 

draws the design and optimizations for RBTB.  

 

Figure 7-2: Typical pipeline front-end with PC-BHU and RBTB 

 

7.1.2 PC-relative branch handling unit (PCBHU) 

 

This section would be put into two parts. First, we introduce the fast instruction 

fetch and how it’s related to our PCBHU mechanism. Secondly, we take a closer look 

at the details of our PCBHU. 
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7.1.2.1 Fast instruction fetch 

 

Fast instruction fetch is essential to the PCBHU must be understood. Since the 

PCBHU must be provided with the instruction for branch identification and target 

address generation, a fast instruction fetch mechanism ought to be established to 

supply the input for PCBHU. A cache line buffer [26], which buffers the presently 

accessed I-cache line, can meet the requirement of short access latency. The fast 

instruction fetch delivered by the cache line buffer provided the base for later on 

branch identification and target address generation. By accessing the cache line buffer, 

not only the PCBHU can fetch the instruction in minimum time, the overall 

power-hungry cache accessing procedure can also be aborted once the instruction is 

obtained from the instruction buffer. Note that PCBHU only fetch instructions from 

instruction buffer due to the timing consideration. 

Here we would like to emphasize that the cache line buffer is not a part of our 

PCBHU design, but a proposed idea that has already been widely applied in modern 

processor implementations. Last but not least, the cache line buffer plays an important 

role in our work, and by correct adjustment, it could even be greatly beneficial to the 

design. 

 

7.1.2.2 Branch Identification and Target address generation 

 

Branch identification and target address generation are the two main logic 

functions of the PCBHU. In order to achieve shortest delay of PCBHU, the two logic 

units are designed to be exercised in parallel. That is, for a certain instruction, it 

should be decoded and be generated a target address simultaneously. If the instruction 

is a PC-relative branch, the generated target address can be used immediately. 
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Otherwise, the generated target address is meaningless. By referring to the result of 

the partial decoder, we can filter these meaningless target addresses from accidentally 

being used as the next PC. 
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Figure 7-3: PCBHU 

 

Figure 7-3 shows the design of PCBHU. We use a partial instruction decoder and 

a 32-bit adder to identify PC relative branch instructions and generate its targets, 

respectively. The partial instruction decoding can be easily done once the instruction 

is in hand. By examining the op code (or portion of op code) of the instruction, a 

simple logical decoder can identify the instruction in shortest amount of time and least 

overhead. If the currently fetched instruction is not a PC-relative branch or the current 

instruction cycle is cache line buffer miss, the generated target address is meaningless. 

 

7.1.3 Timing analyses and pipelining PCBHU 

 

If the target addresses of all PC-relative branches can be generated by PCBHU, 
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RBTB do not need to store the target addresses of PC-relative branches anymore. 

Unfortunately, this is not possible in practical. The problem involves physical 

constrains of both the instruction buffer and the PCBHU. Strategies must be proposed 

for the timing issue caused by the physical constrains. 

First, the cache line buffer cannot always be ready to provide the correct 

instruction for PCBHU. The cache line buffer should be refilled as program proceeds 

to a different cache line, under two circumstances: as execution sequentially stride 

into the next cache line or jump into a different cache line due to control instruction. 

During the refilling cycle, the PCBHU fails to obtain inputs (i.e. op code and branch 

offset) from cache line buffer. 
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Figure 7-4: Pipelined PCBHU 

 

Second, the circuits of partial decoding and target address generation have their 

time delays. Although one another can be hidden by exercising them in parallel, the 

process will introduce undesired delay to pipeline if either of the latencies exceeds the 

cycle time. Note that both partial decoding and target address generation can only be 

started after the instruction is successfully extract from the instruction buffer. These 
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two physical constrains would lead to malfunction of PCBHU, which we would have 

a clearer view in the next section. 

Suppose TPCBHU is the delay time of PCBHU, TIB the delay time of cache line 

buffer, TPD the delay time of the partial instruction decoder, Tcycle the clock cycle time 

and Tadd the delay time of the 32-bit adder. Since the PCBHU has partial decoder and 

target address generation exercised in parallel, the overall latency of the PCBHU 

should be dominated by the critical path of the two logic units. Hence we have: 

TPCBHU = max (TPD, TTAG) 

Assume N represents the number of cycles needed to successfully generate an 

target address. EQ20 can be used to find N. 

 

(N-1) * Tcycle < TPCBHU ≦ N * Tcycle        (EQ20) 

 

 N is the main parameter that should be taken into consideration when it comes to 

integrations. With different values of N, come different approaches to implement 

PCBHU. The case N = 1 shown in Figure 7-3 is that the target address generation can 

be completed within one cycle.  

 While with N≧2, modifications should be adapted for not incurring extra delay 

to the pipeline. The PCBHU mechanism should be pipelined, and a look-ahead 

technique ought to be applied. Take N = 2 as an example, an instruction must have its 

identification and target address generation process started one cycle before it enters 

the pipeline front-end. In other words, PC+8 must enter the pipelined PCBHU as PC 

hits the system pipeline front-end, and from then on, PCBHU is always one step 

ahead the system. In general, this can be parameterized according to the value of N 

and the modified PCBHU is shown in Figure 7-5. 

Timing incompatibility is initiated by an instruction buffer refill. During the first 
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cycle the instruction buffer is invalidated for the refill process to complete. Then, 

another (N-1) cycle is needed for a target address to be generated. The instructions 

that enter the pipeline within the 1 + (N-1) cycles are said to be timing incompatible. 

For target address cannot be correctly generated for these instructions by PCBHU. 

Intuitively, if there are PC-relative branches among these timing incompatible 

instructions, branch penalty would be incurred. In order to avoid performance 

degradation caused by these timing incompatible branches, we propose to put them 

into the Reduced BTB to keep the accuracy. 

 

7.2 Experiments 
 

The objective of the experiments is to evaluate the impact of the proposed idea 

on energy and performance. Section 7.2.1 shows the energy model. Section 7.2.2 

presents the results and analysis. 

 

7.2.1 Energy model 

The power models are constructed by EQ21. It models the energy impacts of the 

applied low-power designs; including BTB leakage energy, BTB dynamic energy, and 

the overhead energy of PCBHU. Since we only use the no-performance-degradation 

configuration of this design, Estall is not included in EBTB&LP_PM. Table 7-1 lists the 

energy parameters estimated using CACTI 4.2 web interface [15]. 

 

EBTB&LP_PM = EBTB_acs * CountsBTB_acs + PBTB_leak * TimeEXE + EPCBHU  (EQ21) 
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Table 7-1: Energy Parameters 

Energy parameters 
Baseline BTB access energy per access 
Baseline BTB leak energy/cycle 
PCBHU access energy per access 
PCBHU leak energy/cycle 
RBTB (256-entry 2-way) access energy per access
RBTB (256-entry 2-way) leak energy/cycle 
RBTB (128-entry 4-way) access energy per access
RBTB (128-entry 4-way) leak energy/cycle 
RBTB (128-entry 2-way) access energy per access
RBTB (128-entry 2-way) leak energy/cycle 
RBTB (64-entry 4-way) access energy per access 
RBTB (64-entry 4-way) leak energy/cycle 
RBTB (64-entry 2-way) access energy per access 
RBTB (64-entry 2-way) leak energy/cycle 

4.32pJ 
2.07pJ 
0.22pJ 
0.1pJ 
3.12pJ 
2.01pJ 
3.17pJ 
1.16pJ 
2.16pJ 
1.07pJ 
3.26pJ 
0.7pJ 
1.72pJ 
0.6pJ 

 

7.2.2 Results and analysis 

 

7.2.2.1 Performance results 

 

Figure 7-5 shows the normalized IPC for the baseline BTB (256-entry 4-way), 

and the PCBHU design with various RBTBs. The notation “256_4_2” means a 

2-stage PCBHU with a 256-entry 4-way RBTB. The analyses are: 

 A PCBHU with a smaller RBTB yields a better IPC than the baseline BTB. 

It implies that PCBHU successfully reduces the number of BTB entries. 

 For single stage PCBHU and under the constraint of no performance 

degradation, the cheapest RBTB configuration is 64-entry 2-way. 

 For 2-stage PCBHU and under the constraint of no performance degradation, 

the cheapest RBTB configuration is 128-entry 2-way. 
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Figure 7-5: Normalized IPC for the baseline BTB (256-entry 4-way), and the PCBHU 

design with various RBTBs 

 

7.2.2.2 Energy results 

 

Figure 7-6 shows the EBTB&LP of a single stage PCBHU with 64-entry 2-way 

RBTB. Figure 7-7 shows the EBTB&LP of 2-stage PCBHU with 128-entry 2-way RBTB. 

The results show that with a single stage PCBHU with a 64-entry 2-way RBTB, the 

BTB energy is reduced by an average of 61.11%.  A 2-stage PCBHU with a 64-entry 

2-way RBTB reduces the BTB energy by an average of 44.58%. 
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Figure 7-6: EBTB&LP of a single stage PCBHU with 64-entry 2-way RBTB 
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Normalized BTB energy with PCBHU
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Figure 7-7: EBTB&LP of 2-stage PCBHU with 128-entry 2-way RBTB 

 

7.3 Summary 
 

This topic addresses the issue of the reduction of the number of BTB entries. 

Through early generating the branch target address of PC-relative branches, most 

branch target addresses of PC-relative branches do not need to be recording in BTB. 

With this design, both dynamic and leakage power in BTB are reduced without 

performance degradation. 
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Chap 8 Integrations 

 

This chapter introduces the integrations of the proposed methods in this thesis. 

Section 8.1 presents the integration of power reduction only method. Section 8.2 gives 

integration of storage cost reduction methods. 

 

8.1 Integration of power reduction only method 
 

In the design of BABTB with EB, BABTB lookups are performed only upon the 

current BABTB index is different than the last one. However, if the current accessed 

block is branch-free, the corresponding BABTB lookups are useless. If the subsequent 

code block is branch-free or not is known, the filtering of the useless BABTB lookups 

can be done easily. It can further reduce the BABTB access power.  

In Section 3.2, we had proposed a NBD method for unnecessary typical BTB 

lookup filtering. If the NBD recording idea is applied for the recoding of the number 

of branch-free blocks before the subsequent branch on execution path, the number of 

BABTB accesses can be further reduced.  
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Figure 8-1: Integration of NBD method and BABTB with EB 

 

Figure 8-1 shows the system architecture for the integration of the NBD method 

and BABTB with EB. We modify the NBD method to filter the useless BABTB 

lookups. The modification is listed as follows:  

 NBDC is used to record the number of branch-free blocks from a branch 

instruction to its subsequent branch instruction on execution path. 

 NBDT is used to record the NBDC collecting results. 

 An n-bit enable register (ER) is used to record the number of upcoming 

branch-free blocks before the subsequent branch instruction, on execution path. 

Therefore, with correct management of ER, further lookup filtering of BABTB 

becomes trivial. The ER management is similar to the one proposed in Section 

3.2.3. 

 All the other implementation details are the same as the NBD method proposed 

in Section 3.2. 
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With the above design, BABTB lookups are performed only upon the current 

fetched block has branch instructions. If this BTB can be power managed, the leakage 

power can be also saved. The decay-based power manager with entry pre-activation 

can be applied to this BTB. However, if the entry pre-activation is applied without 

any modification, the next accessed BTB entry may be pre-activated too early. 

Therefore, the pre-activation is performed only when ER is equal to 0.  

 

8.2 Integration of storage cost reduction methods 
 

 

Figure 8-2: Integration of ICBTB and PCBHU 

 

The proposed methods in Chap 6 and Chap 7 are for the purpose of BTB storage 

cost reduction. ICBTB can reduce the BTB entry size. PCBHU can reduce the number 

of BTB entries. If these two methods can be integrated, the BTB storage cost can be 

further reduced.  
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Figure 8-2 shows the integration. PCBHU is adapted to a processor with ICBTB. All 

the branch target addresses that can be handled by PCBHU are not stored in ICBTB. 

Therefore, the number of ICBTB entries can be reduced.  
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Chap 9 Conclusion 

 

This thesis addresses the low-power issue for BTB. Through the proposed 

methods, the number of BTB accesses, the BTB access power, and the BTB leakage 

power are reduced with tolerant performance degradation. With the integration of the 

proposed methods, the BTB total BTB power consumption can be further reduced. 

The methods and the integrations can easily be adopted in processor cores without the 

need to modify program codes, system software, or ISA. 
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