

國立交通大學

資訊管理研究所

碩 士 論 文

平行流線型機組排程-總完工時間之最小化
Scheduling on Multiple Flowshops to Minimize the Makespan

研究生：林延聰

指導教授：林妙聰 博士

中華民國九十六年六月

平行流線型機組排程-總完工時間之最小化
Scheduling on Multiple Flowshops to Minimize the Makespan

 研 究 生：林延聰 Student: Yen-Tsung Lin
指導教授：林妙聰 Advisor: B.M.T. Lin

國立交通大學
資訊管理研究所

碩士論文

A Thesis
Submitted to Institute of Information Management

College of Management
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master of Business Administration
in

Information Management
June 2006

Hsinchu, Taiwan, the Republic of China

中華民國九十六年六月

論文名稱：平行流線型機組排程-總完工時間之最小化

校院系：國立交通大學資訊管理研究所

研究生：林延聰 指導教授：林妙聰 博士

論文摘要

流線型機組排程是現今常見的排程問題之一，而總完工時間更是流線型機組最常探

討的問題。在過往的研究中，都是以單一條流線型機組為基礎，進行各類問題討論，本

研究以分析平行獨立流線型機組的總完工時間為主軸，在機組機器數量為兩台的情況

下，進行討論分析。本問題在機組數量為一條時，為最原始的流線型機組問題；在機組

機器數量為一台時，則為平行機組問題。單就平行機組問題已是 NP-Hard，因此再加上

流線型機組的條件，此問題亦是 NP-Hard。

本研究設計了動態規劃及兩個啟發式演算法，利用實驗比較兩個啟發式演算法的優

劣，再利用禁忌搜尋法，搭配兩個啟發式演算法和下界函數進行比較分析。本研究實驗

結果顯示，我們所提個兩個啟發式演算法效能優越，在流線型機組數量愈多時，第二個

啟發式演算法會拉大與第一個啟發式演算法的差距，且都僅需零到一秒的時間內，即可

解出一百組工作的解。

關鍵字：流線型機組、平行機組、動態規劃、下界函數、啟發式演算法、禁忌搜尋法

 i

Title of Thesis: Scheduling on Multiple Flowshops to Minimize the Makespan
Name of Institutes: Institute of Information Management
Student Name: Yen-Tsung Lin Advisor Name: Dr. Bertrand M.T. Lin

Abstract

In this thesis, we consider a multi-flowshop scheduling problem, where a set of jobs is to

be processed on multiple identical flowshops. The objective is to minimize the makespan, i.e.

the maximum completion time of the jobs. This problem is NP-hard because it is a

generalization of the classical parallel-machine scheduling. A dynamic programming

algorithm is designed for finding exact solutions. When the number of flowshops is fixed, the

time complexity is pseudo-polynomial, the same as that for parallel identical-machine

scheduling. To report approximate solutions in a reasonable time, we develop two dispatching

heuristics and a tabu search algorithm. Extensive experiments are conducted to examine the

performances of the proposed algorithms. Computational results show that the designed

algorithm can produce solutions with errors within 1% for all test instances.

Keyword: Flowshop, Parallel machines, Dynamic Program, Lower Bound, Heuristic, Tabu
Search

 ii

誌謝

 交大資管所兩年的生活很快的就要結束了，能在短短兩年中學習到以往未曾接觸過

的領域，我感到相當的滿足，很感謝一路來給我方向以及不同視野的筱嵐學姊及雅梅學

姊，總在我迷網時點醒我該走的路；也很感謝昱劭和癸棠兩位學弟，在我研究苦悶時，

陪我去運動打球，同時為實驗室帶來更多歡樂的氣氛；還有我最重要的研究伙伴彥廷，

他那讓我擔心的脫線個性和那令我羨慕的聰明才智，使我相當欣賞也喜愛與他相處，能

和他一同從交大資管所畢業，是我一生感到開心與驕傲的事；我也要感謝一路指導我的

林妙聰老師，他苦心帶領我進到排程這個領域，我在學習上老是狀況百出，他卻總是包

容與關懷的幫助我找出問題所在，很感謝他的耐心與細心指導，才能成就出今天這篇論

文。

 我更要感謝的人是這兩年來任勞任怨的父母，他們總深信著自己兒子是天才的美

夢，雖然我嘗試說破這個白日夢，卻無法撼動他們心中的信仰，但也因為他們的信任，

使我不斷督促自己往前邁進；還有做事少根筋的大姊芸蓮，總是在我需要鼓勵時，給我

站起來的力量，以及擁有女強人氣質的二姊穎秀，只要有什麼好康的東西都不會忘了幫

我買一份。我最感謝的人是兩年來和我一起成長進步，陪著我哭陪著我笑的怡君，無論

任何情況你總是在的身旁支持與鼓勵，讓我能夠成就今天的榮耀，真的很謝謝你。最後，

我感謝這兩年參與我生命的每一個人，謝謝大家，謝謝！

 iii

Table of Contents
Chapter 1 Introduction ..1

Chapter 2 Problem Formulation and Dynamic Program...4

2.1 Problem Formulation..4

2.2 Dynamic Programming Algorithm...6

Chapter 3 Approximation Algorithms ...8

3.1 Heuristic Algorithm H1...8

3.2 Heuristic Algorithm H2...9

3.3 Tabu Search ..10

3.3.1 Initial solutions ..12

3.3.2 Neighborhood structure ...12

3.3.3 Selection of Neighbors ..13

3.3.4 Stopping criteria ..14

Chapter 4 Computational Experiments ...15

Chapter 5 Conclusions ...23

References ...24

 iv

List of Figures
Figure 1: Gantt chart of solution 1 ...5

Figure 2: Gantt chart of solution 2 ...5

Figure 3: Example of Heuristic H1 ...8

Figure 4: Example of Heuristic H2 ...9

Figure 5: Flow chart of Tabu search...11

Figure 6: Neighborhood structure 1 ...13

Figure 7: Neighborhood structure 2 ...13

Figure 8: # of the best for two flowshops...21

Figure 9: # of the best for ten flowshops..21

Figure 10: Deviations of three flowshops ..21

Figure 11: average of “# of the best”..22

List of Tables
Table 1: Example of multiple flowshops..4

Table 2: Computational results of two flowshops..17

Table 3: Computational results of three flowshops..18

Table 4: Computational results of five flowshops..19

Table 5: Computational results of ten flowshops ...20

 v

Chapter 1 Introduction

 Scheduling is a decision-making process about how we allocate limited resources,

including time, facilities, and work force, to tasks or activities. This type of the

decision-making processes is important and common in procurement and production.

Allocating limited resources may face different conditions and different objectives in each

company. Therefore, the scheduling literature covers a variety of objectives, including for

example makespan (Cmax) and total completion time (
i

C∑). The theoretical results of

machine scheduling have abounded and applied since the 1950s. In this thesis, we consider a

scheduling issue that arises in the production line of industry.

 Production models can be categorized into several types, including single-machine,

parallel-machine, flowshop, job shop and open shop. Among the shop models, flowshop

scheduling is the most widely discussed due to its real-world applications and several

interesting structure properties. Before we formally define the flowshop problem, we provide

an example to illustrate its configuration and properties. There are two tasks (operations),

washing and waxing, for each car (job) to be processed in a car washing site. Each car needs

to wash before to wax. We assume machine one is for washing and machine two is for waxing.

An ordering of all cars on machine one must be the same as that on machine two. This is

called a two-machine flowshop in which all jobs need to visit machine one and then machine

two, and a machine-two operation cannot start until the corresponding machine-one operation

is finished and machine two is not occupied. With the two-machine model, we can generalize

it to a multiple-machine model where a number of operations have to be done for every job

and the operations have a fixed sequence of machines to visit, and the sequence is same to all

jobs.

 This thesis focuses on the flowshop model with two machines. The objective we

investigate is the maximum completion time among the jobs, i.e. the makespan. Scheduling to

minimize makespan in a two-machine flowshop is commonly denoted by the three-field

notation F2||Cmax, in which F2 indicates the two-machine flowshop environment and Cmax

specifies the objective to optimize. The problem was proposed and investigated by Johnson

(1954). In his seminal work, he proposed an O(n log n) algorithm to solve the problem to

optimality. This algorithm is referred to as Johnson’s algorithm. While the F2||Cmax problem

 1

can be solved in polynomial time, this thesis investigates a more complicated variant where

multiple independent flowshops are available for processing the jobs. We denote the problem

by lF2||Cmax, where lF2 specifies the machine configuration with l independent two-machine

flowshops.

It is common for a plant to have more than one production line. Moreover, a plant can

rent or borrow production lines from its peers in the industry to fulfill the production demand.

Therefore, we the multiple independent flowshop models can better reflect the real-world

applications. From the theoretical point of view, the proposed model can be regarded as a

hybridization of the standard F2 model and the standard parallel-machine model. In a

parallel-machine model (P2), each job has exactly one operation that can be processed on any

of the machines. It is easy to see that P2||Cmax is NP-hard in the ordinary sense because it is

can be reduced from the PAPTITION problem. Therefore, the problem we want to study is

also NP-hard.

 To the best of our knowledge, there is no previous work on the lF2||Cmax problem. In the

following, we introduce previous results on flowshop scheduling and parallel-machine

scheduling. The solution algorithm for the F2 ||Cmax problem was proposed by Johnson (1954).

He resolved the two machines of flowshop problem and then identified two special cases of

three-machine flowshops which can be solved in polynomial time. An integer programming

formulation of Fm ||Cmax is presented by Wagner (1959). The NP-hardness proof of F3 || Cmax

was presented by Garey, Johnson, and Sethi (1976). Monma and Rinnooy Kan (1983) gave an

overview of Fm ||Cmax models to elaborate the special structures that make the problem

polynomially solvable.

 To minimize the makespan in a parallel-machine environment, the shortest processing

time first (SPT) rule is the most well studied heuristic. The worst case analysis of the LPT

rule for Pm||Cmax was presented by Graham (1969). Graham gives a general bound, a

modified system and some special case. Finally, he provides an algorithm and some theorems

for list scheduling. The first examples of worst case analyses of heuristics are presented by

Graham (1966). It also provides a worst case analysis of an arbitrary list schedule for

Pm||Cmax. A more sophisticated heuristic for Pm || Cmax, with a tighter worst case bound,

called MULTIFIT, was proposed by Coffman, Garey, and Johnson (1978) and Friesen

(1984a). MULTIFIT is well known to have an error bound better than the LPT rule at the cost

of a longer running time. Lee and Massey (1988) analyze a heuristic that is based on the LPT

 2

rule as well as on the MULTIFIT. They design the combined algorithm in order to integrate

each advantage.

 In this thesis, we design a dynamic programming algorithm to optimally solve the

multiple flowshops problem. Furthermore, we also design a lower bound and two heuristics,

which are used to produce an initial solution of the tabu search approach. The rest of this

thesis is organized as follows. We define the multiple flowshops problem and design the

dynamic programming algorithm in Chapter 2. In Chapter 3, we introduce the existing lower

bounds, develop two heuristics and design our tabu search approach. Computational

experiments and analysis of the results are included in Chapter 4. Finally, we give our

conclusion in Chapter 5.

 3

Chapter 2 Problem Formulation and Dynamic Program

In this chapter, we introduce the definition of the parallel-flowshop scheduling problem,

followed by a numerical example. Then, we propose a dynamic programming algorithm for

producing optimal schedules.

2.1 Problem Formulation

There is a set of jobs N = {J1, J2, …, Jn} to be processed in l simultaneously available

identical flowshops F1, F2, …, and Fl, each of which consists of two machines. Any job can

be assigned to any flowshop. Any job Ji in N has two operations that will be performed by the

two machines of the flowshop it is assigned to. The processing times of the two operations of

job Ji are denoted by pi and qi, respectively. Each machine can process at most one job at a

time, and no preemption is allowed. Moreover, once a job is dispatched to a flowshop, it

cannot be transferred to any other flowshop. The objective is to minimize the makespan, i.e.

the maximum completion time of the jobs.

To illustrate the problem definition, we consider the following set of 7 jobs N = {J1,

J2, …, J7} to process in two independent flowshops. Assume jobs {J1, J5, J7} are dispatched

to F1 and jobs {J2, J3, J4, J6} to F2, and the jobs are sequenced in increasing order of their

indices in flowshops. The Gantt chart of the schedule is shown in Figure 1. We can see from

the chart that the maximum completion time is 30 units of time. Figure 2 shows another

solution that has a better makespan of only 26 units of time.

Table 1: Example of multiple flowshops

Job i J1 J2 J3 J4 J5 J6 J7

pi 1 3 4 5 6 7 22 processing
times qi 22 7 6 3 2 1 1

 4

1 6 22

22 2 1

Solution
one:

30

Flowshop 1

3 4 5

7 6 3

20

Flowshop 2

7

1

Cmax of solution one:
30

Figure 1: Gantt chart of solution 1

1

6

22

22

2

1

Solution
two:

24

Flowshop 1

3 4 5

7 6 3

26

Flowshop 2

7

1

Cmax of solution two:
26

Figure 2: Gantt chart of solution 2

From the above example, we learn that the problem we are studying consists of two

decisions: dispatching jobs to flowshops and sequence the jobs on each individual flowshop.

Consider some special cases. If there is only one flowshop, i.e. l = 1, then the problem

becomes scheduling in the classical two-machine flowshop and thus solvable in O(n log n)

time using Johnson’s algorithm (Johnson 1954). On the other hand, if we assume that the

machine-one operations of all jobs are null or the machine-two operations of all jobs are null,

then the problem is scheduling with parallel identical machines which is known to be NP-hard

in the strong sense (Garey and Johnson, 1979). Therefore, the parallel-flowshop scheduling

problem is strongly NP-hard.

 5

2.2 Dynamic Programming Algorithm

To optimally solve an NP-hard problem enumerative approaches are considered. Among

the enumerative approaches, dynamic programming strategy and branch and bound algorithm

are most commonly adopted. In this section, we design dynamic programming algorithm to

solve the problem optimally. Dynamic programming strategy is a very useful technique to

solve many combinatorial optimization problems. It is based on a concept called the principle

of optimality. In this thesis, we design a backward reasoning dynamic programming algorithm.

The following property gives the base for development of a dynamic programming algorithm.

PROPERTY 1: There is an optimal solution in which the jobs in each flowshop are arranged by

Johnson’s rule.

With PROPERTY 1, we can then re-index the jobs of N in Johnson’s rule. To design our

dynamic programming algorithm, we define binary function G(j, t1,1, t1,2, …, tk,1, tk,2, …, tl,1,

tl,2) as follows: Given that jobs 1, 2, …, j are considered, the function value is 1 if for each

flowshop Fk the completion times of the last job on the two machines are exactly tk,1 and tk,2; 0,

otherwise. Considering the last job Jj, there are l choices to dispatch it. Therefore, the

recursion will take into account of all l different scenarios. On any machine job Jj is

considered, it is scheduled last. Therefore, we need to examine the possible completion times

of the two machines if we removed job Jj for recursion. A dynamic programming algorithm is

accordingly defined in the backward recursive form as shown below.

 6

Dynamic Programming Algorithm

Initial conditions:
1,1 1,2 ,1 ,2

1,1 1,2 ,1 , 2

(, , , , ,)

1, if 1
, o th erw ise .

l l

l l

G j t t t t

j t t t t= = = = = =⎧
= ⎨∞⎩

…

Recursive formula: For ,1 nj ≤≤

1),,,,,(2,1,2,11,1 =ll ttttjG … ,

if there exists some flowshop Fk in which there exists some time point t’,

, such that ,1 ,2'k j kt p t t− ≤ ≤ − jq

.1),,',,,,,1(2,1,1,2,11,1 =−− lljk tttptttjG ……

Otherwise, it is 0.

Goal:

Minimize { }{ },2 1,1 1,2 ,1 ,2 ,1 ,2min max | (, , ;...; , ;...; ,) 1k k k lt G n t t t t t t =l

)

The above formulation consists of (l l
JSO nP C entries, where and

1

n
ii

P p
=

=∑ JSC is

the makespan of the Johnson’s sequence of all jobs. In the recursion formula, each entry is

determined in ()JSO C time. Therefore, the overall time complexity of the above algorithm is

1(l l)JSO nP C + . The complexity is clearly exponential. But when the number of flowshops l is

constant, the complexity becomes pseudo-polynomial. It is interesting to note that the

complexity status is the same as that of parallel-machine scheduling. Although each machine

in a parallel-flowshop is replaced by a two-machine flowshop, the complexity remains the

same.

From a practical point of view, the dynamic programming algorithm is not appropriate

for implementation taking into account memory space and flexibility. In later sections,

approximation algorithms will be developed to produce approximate solution in a reasonable

time.

 7

Chapter 3 Approximation Algorithms

As the parallel-flowshop scheduling problem is strongly NP-hard, it is very unlikely to

design algorithms that have can solve the problem in polynomial time. Therefore, we seek to

design heuristic and meta-heuristic algorithms for deriving approximate solution in an

acceptable time. In this section, we first proposed to heuristics that are based upon simple

dispatching rules. We also develop a tabu search algorithm to provide better solutions. We

use the solutions that are derived by the heuristics as the initial solutions for the tabu search

algorithm to start out with.

3.1 Heuristic Algorithm H1

The first heuristic H1 is based on a greed approach. By Property 1, we arrange the jobs

by Johnson’s rule. We then dispatch the jobs to the flowshop one by one. Let job i be the first

unscheduled job and flowshop k has the minimum completion time among all flowshops, then

job i is dispatched to flowshop k. The example given in Figure 3 illustrates the greedy

approach. The completion times of the two flowshops are 17 and 16, respectively. Therefore,

the first unscheduled job is dispatched to the second flowshop.

M1:Next Job (8)

M2: Next Job (6)

5 5

48

17

3 9

F2
9 4

16

M1:Next Job (8)

M2: Next Job (6)

26

F1

Figure 3: Example of Heuristic H1

 8

The time complexity of sorting the jobs is O(n log n). We maintain the job list in a

min-heap by Johnson’s rule. Another min-heap is used to store the current completion times

of all flowshops. Removing the first job from the job list and adjust the heap takes O(log n)

time. The time complexity for a loop of O(n) iterations is thus O(n log n). We also need to

identify the flowshop with the earliest completion time. The required run time for O(n)

iterations is O(n log l). Because l ≤ n, we therefore have that the overall time complexity of

Heuristic H1 is O(n log n).

3.2 Heuristic Algorithm H2

The second heuristic H2 is modified from H1. The jobs are initially sorted by Johnson’s

sequence. The first job retrieved from the list is tentatively assigned to each flowshop. We

identify the flowshop having the earliest completion time. Then, the job is permanently

assigned to that flowshop and removed from other flowshops. The process is illustrated in

Figure 4. Because the next job can produce a shorter completion time in flowshop 1 than in

flowshop 2, therefore it is dispatched to flowshop 1.

M1:Next Job (8)

M2: Next Job (6)

5 5

F1 48

17

M1:Next Job (8)

M2: Next Job (6)

24

3 9

F2

9 4

16
 Figure 4: Example of Heuristic H2

 9

The complexity of Heuristic H2 is different from that of Heuristic H1. It is due to the fact

that we need to compute the completion time of each flowshop resulted from appending the

first job in the job list. The run time of this part is O(ln) for n insertions. Therefore, the overall

time complexity is O(max{n log n, ln}).

3.3 Tabu Search

Tabu Search was first proposed by Glover (1989) and has been used to solve numerous

combinatorial optimization problems. The theme of tabu search is to develop procedures that

can avoid the traps resulted from the local optima which are commonly encountered in the

deployment of the steepest gradient approach. Tabu search encourage broad probing through

the solution space and utilize a tabu mechanism to prevent cycling.

Applied to the permutation parallel-flowshop scheduling problem, our tabu search

algorithm starts from some initial solution and move successively among neighboring

solutions. In each iteration, a move is made to the best solution in the neighborhood of the

current solution which may not be better than the current one. When the best solution in the

neighborhood is in the area which we can control, even it cannot improve current solution we

still choosing it. The purpose of such a relaxation is to allow the search proceed towards

unexplored regions of the solution space. To prevent the cycling problem a tabu list is used.

Tabu list is a special sort of memory mechanism, based on dependencies such as reflected in

measures of recency and frequency. A tabu list consists of attributes of the latest moves. The

size of the list can be fixed or variable along the course of explorations. Generally, tabu

search consists of the following elements:

 Generation of initial solutions;

 Mechanism for generating some neighborhood of the current solution;

 Tabu list;

 Stopping criteria.

For a more complete description of tabu search, the interested reader is referred to the

papers of Glover (1989, 1990 and 1997). In the following, we introduce the design of a tabu

search algorithm for solving the parallel-flowshop problem. The flowchart is presented in

Figure 5.

 10

Initial solution

Generate neighborhood
solutions

Select the best of
neighborhood

Check the solution in
tabu list

Check the solution better
to best solution

Select the next of
neighborhood

Start

No

Yes

No

Yes

iteration = 0

Swap neighborhood

Terminate?

Output solution

Yes

No

Figure 5: Flow chart of Tabu search

 11

3.3.1 Initial solutions

 To get an initial starting solution, we considered two heuristics: H1 and H2. These two

methods were complete introduced before.

3.3.2 Neighborhood structure

 We adopt a swapping scheme to construct the neighborhood structure of the tabu search.

Given a solution s, let N(s) denote the set of all solutions which can be obtained from s using

a swapping scheme. The scheme used in our development consists of two parts:

(1) Neighborhood structure one: Randomly select two flowshops f and f’ and a position i

in the two list of the two flowshops. The range of position i is the minimum number

of jobs in f and f’. The scope of random position i will lie between the first and final

jobs but not include them. We swap the jobs at position i. By PROPERTY 1, the

positions of the swapped jobs in the two flowshops need to be adjusted so as to meet

Johnson’s rule. (Figure 6)

(2) Neighborhood structure two: Assume flowshop f has the largest complete time. We

consider flowshop f and each individual flowshop f’. And selecting the f ’s and f’ ’s

first job and final job at the same time. Swap the first jobs of f and f’. Swap the last

jobs of f and f’. (Figure 7)

Neighborhood N(s) consists of 20 neighbors generated by structure 1 and all neighbor

generated by structure 2. And the size of tabu list is 7.

 12

f

…………

…………

…………

…………

…………

…………

f＇

…
…

…
…

Neighborhood

Frontward
tracing

Backward
tracing

Frontward
tracing

Backward
tracing

Step 1

Step 1

Step 2

Step 2
Figure 6: Neighborhood structure 1

f

…………

…………

…………

…………

…………

…………

f＇

…
…

…
…

Neighborhood 1 Neighborhood 2
Figure 7: Neighborhood structure 2

3.3.3 Selection of Neighbors

 We select the best solution N(s) and the best one of N(s), say s’. If solution of s’ is better

than s and s’ is not in the tabu list then we move to solution s’ and use it as the new current

solution. If the move from s to s’ happens to be in the tabu list, then we discard s’ and select

 13

the next one from N(s). To avoid early convergence and local optimal traps, if s’ is worse than

s with a deviation of less than 30%, then we still move on to s’ to have a better chance to visit

other portions of the solution space.

3.3.4 Stopping criteria

 The tabu search approach can be stopped when it conforms to some specified conditions,

such as iteration schema and the number of calls schema. In other words, it can be stopped by

a maximum number of iterations or a maximum number of calls. In our design, the tabu

search algorithm will terminate when the incumbent value is not improved with 500

consecutive iterations.

 14

Chapter 4 Computational Experiments

In this Chapter, we present the computational experiments designed to study the

performance of the algorithms proposed in Chapter 3. In the experiment, we use a personal

computer with an Intel Pentium(R) 4 CPU (3.4GHz) with RAM 504MB running Microsoft

Windows XP professional. The programs are coded in C++. The processing times of all job

operations are randomly drawn from uniform interval [1, 100]. In the experiment setting, the

number of flowshops, l, is two, three, five and ten. The test instances include n = 50, 100, 200,

300, 400 and 500 jobs. For each combination of l and n, 100 independent data sets were

generated and tested.

The results of the experiments are shown in Tables 2, 3, 4 and 5, each of which is

presented for a different number of flowshops. In the tables, we include lower bound values

and the objective values produced by two heuristics and two tabu search algorithms. The cited

values are the average over each 100 instances. We also present the four average deviations.

For example, for n = 50 the deviation of H1 is calculated by

1 100%HZ LB
LB
−

× ,

where LB the lower bound value and ZH1 is the solution value given by heuristic H1. The

value of LB is determined in the following way. First, we sequence all jobs by Johnson’s rule

as in a single two-machine flowshop and determine its makespan Cmax. Then, we divide the

makespan by the number of flowshops, l, and take the least integer greater than or equal to the

derived value, i.e. LB = ⎡Cmax/l⎤. The column entitled “# of the best” contains the number of

instances for which the corresponding algorithm produces the best solution among the four

algorithms.

First, we observe the trend of deviations. As we can expect, meta-heuristics outperform

simple heuristic rules in the aspect of deviations and number of the best solutions. We

compare two simple heuristic algorithms and two tabu search algorithms. For example, the

deviations produced by H1 are 1.16405% and 0.09012% for 50-job instances and 500-job

instances, respectively. The reduction is very significant and applied to all algorithms. When

there are only two flowshops, no significant difference exists between H1 and H2. However,

the superiority of algorithm H2 over algorithm H1 is clear when there are ten flowshops. The

comparison can be visualized by the bar charts shown in Figure 8 and Figure 9. For ten

 15

flowshops, algorithm H2 clearly dominates algorithm H1. The same observation can be

observed for H2+Tabu_Search and H1+Tabu_Search.

We discuss the deviations made by the four algorithms in terms of the problem scales.

Within each table, we can easily find that the deviations of each individual algorithm decrease

rapidly when the problem scale becomes large. Figure 10 shows the curves of deviations of

four algorithms given three flowshops. Therefore, our algorithms provide better solutions

when there are more jobs to process. Across the tables, we look into the effects of the number

of flowshops, l. The results show that the deviations deteriorate when there are more

flowshops. The two trends can be attributed to the following reasoning. In flowshop

scheduling, if there are more jobs, then we consequently have more jobs whose machine-one

operations are shorter than machine-two operations and thus created scheduling buffers for

the remaining jobs. Therefore, if there are more jobs, then it is easier to construct better, even

optimal, schedules. Therefore, the deviations decrease when the number of jobs increases. On

the other hand, given a fixed number of jobs, if the number of flowshops increases, then the

number of jobs distributed to each flowshop will decrease and thus reaching good schedules

becomes more difficult and the deviations become larger.

Another observation we are interested in is the “# of the best” values of the heuristics

provided different numbers of flowshops. Through analysis of the “# of the best” values

across the tables, we find that the corresponding values of heuristic H1 decrease when the

number of flowshops increases. For example, the average values of “# of the best” produced

by H1 are 72 and 22 for 2-flowshop instances and for 10-flowshop instances. The values of

heuristic H2 also decrease as the number of flowshops increases.(Figure 11) But the change is

not sharp. The observations suggest that when there are more flowshops available for

processing the given jobs, heuristic H2 will outperforms heuristic H1 for most test cases.

 16

Table 2: Computational results of two flowshops

H1 H2

n
Lower
Bound Value

Deviation
(%)

of the
best

Value
Deviation

(%)
of the

best
50 1312.66 1327.94 1.16405 66 1324.25 0.88294 85
100 2608.71 2624.15 0.59186 68 2619.78 0.42435 77
200 5157.58 5167.59 0.19408 74 5165.95 0.16229 78
300 7706.19 7716.23 0.13029 77 7716.35 0.13184 70
400 10253.8 10266.7 0.12531 73 10262.3 0.08290 76
500 12805.4 12816.9 0.09012 75 12813.4 0.06247 74

H1+Tabu Search H2+Tabu Search
n

Value
Deviation

(%)
of the

best
Value

Deviation
(%)

of the
best

50 1315.73 0.23388 91 1315.67 0.22931 96
100 2610.43 0.06593 95 2610.40 0.06478 97
200 5158.88 0.02521 97 5158.89 0.02540 97
300 7707.31 0.01453 99 7707.33 0.01479 99
400 10255.0 0.01083 98 10254.9 0.01063 100
500 12806.4 0.00804 99 12806.4 0.00797 100

 17

Table 3: Computational results of three flowshops

H1 H2

n
Lower
Bound Value

Deviation
(%)

of the
best

Value
Deviation

(%)
of the

best
50 882.05 907.54 2.88986 53 899.98 2.03276 82
100 1730.12 1751.43 1.23171 59 1745.96 0.91554 70
200 3433.85 3453.20 0.56351 61 3448.95 0.43974 72
300 5139.59 5161.39 0.42416 53 5154.31 0.28640 76
400 6846.08 6871.08 0.36517 56 6862.24 0.23605 73
500 8546.80 8568.00 0.24805 56 8561.40 0.17082 80

H1+Tabu Search H2+Tabu Search
n

Value
Deviation

(%)
of the

best
Value

Deviation
(%)

of the
best

50 889.11 0.80041 58 888.72 0.75619 72
100 1734.34 0.24391 66 1733.93 0.22022 80
200 3436.49 0.07688 77 3436.42 0.07484 79
300 5142.02 0.04728 79 5141.97 0.04631 87
400 6848.18 0.03067 83 6848.11 0.02965 87
500 8548.62 0.02129 84 8548.64 0.02153 86

 18

Table 4: Computational results of five flowshops

H1 H2

n
Lower
Bound Value

Deviation
(%)

of the
best

Value
Deviation

(%)
of the

best
50 529.48 565.61 6.82368 49 558.83 5.54317 67
100 1033.21 1066.76 3.24716 46 1059.52 2.54643 69
200 2076.48 2110.08 1.61812 44 2097.11 0.99351 73
300 3090.44 3126.55 1.16844 43 3112.32 0.70799 68
400 4093.27 4125.72 0.79277 39 4111.59 0.44756 78
500 5120.89 5154.57 0.65770 45 5141.27 0.39798 78

H1+Tabu Search H2+Tabu Search
n

Value
Deviation

(%)
of the

best
Value

Deviation
(%)

of the
best

50 545.77 3.07660 51 544.70 2.87452 71
100 1045.78 1.21660 52 1044.44 1.08690 67
200 2085.74 0.44595 50 2083.85 0.35493 75
300 3099.28 0.28604 44 3097.03 0.21324 76
400 4100.46 0.17565 55 4099.71 0.15733 72
500 5126.99 0.11912 57 5126.15 0.10272 72

 19

Table 5: Computational results of ten flowshops
H1 H2

n
Lower
Bound Value

Deviation
(%)

of the
best

Value
Deviation

(%)
of the

best
50 264.90 321.12 21.2231 16 305.45 15.3077 90
100 525.54 572.85 9.00217 21 557.05 5.99574 85
200 1021.90 1070.89 4.79401 27 1055.95 3.33203 73
300 1538.18 1586.34 3.13097 18 1566.23 1.82358 85
400 2053.00 2102.48 2.41013 25 2081.95 1.41013 80
500 2552.55 2604.38 2.03052 27 2583.34 1.20624 79

H1+Tabu Search H2+Tabu Search
n

Value
Deviation

(%)
of the

best
Value

Deviation
(%)

of the
best

50 298.16 12.5557 28 294.55 11.1929 85
100 554.64 5.53716 29 548.39 4.34791 75
200 1049.26 2.67737 31 1043.91 2.15383 74
300 1562.93 1.60904 28 1555.11 1.10065 78
400 2076.74 1.15636 22 2068.52 0.75597 85
500 2576.20 0.92652 29 2567.85 0.59940 76

 20

0

20

40

60

80

100

50 100 200 300 400 500

n

H1

H2

Figure 8: # of the best for two flowshops

0

20

40

60

80

100

50 100 200 300 400 500

n

H1

H2

Figure 9: # of the best for ten flowshops

0

0.5

1

1.5

2

2.5

3

3.5

50 100 200 300 400 500

the number of jobs

H1

H2

H1+Tabu

H2+Tabu

Figure 10: Deviations of three flowshops

 21

0

20

40

60

80

100

2 3 5 10

the number of flowhops

Average of "#

of the best"
H1

H2

Figure 11: average of “# of the best”

 22

Chapter 5 Conclusions

 The thesis considers a manufacturing model consisting of independent and identical

flowshops. The objective is to minimize the makespan. The problem is strongly NP-hard

because it generalizes both the general flowshop problem and the parallel-machine problem.

We discussed an optimality property of this scheduling problem and designed a dynamic

programming algorithm that runs in pseudo-polynomial time when the number of flowshops

is a constant. Two heuristics based on Johnson’s rule were proposed to derive approximate

solutions in an acceptable time. And, we analyze the approximation of the two heuristics.

Then, the two heuristics were embedded into tabu search algorithms for improving the

solution quality. Computational experiments were designed and conducted to test the

effectiveness of the proposed algorithms. Numerical results show that the heuristics and tabu

search algorithms can provide solutions close to lower bound values, in other words, the

effectiveness of the algorithms are very impressive.

 The multiple flowshops model is very close to realistic situations in a factor or in a

supply chain. Therefore, it suggests room of future research. A potential topic for future

research is to study the general model in which each flowshop has m stages for m > 2. A

challenging subject is to develop heuristic algorithms and theoretically analyze their

performance ratios.

 23

References

[1] Adiri, I., and Pohoryles, D. (1982), “Flowshop/No-idle or no-wait scheduling to

minimize the sum of completion time”, Naval Research Logistics Quarterly 29, pp.

495-504.

[2] Ahmadi, R.H., and Bagchi, U. (1990), “Improved lower bounds for minimizing the

sum of completion times of n jobs over m machines in a flow shop“, European Journal

of Operational Research 44, pp. 331-336.

[3] Bansal, S.P. (1977), “Minimizing the sum of completion times of n-jobs over

M-machines in a flowshop”, AIIE Transactions 9, pp. 306-311.

[4] Brucker, P. (1997), “Scheduling Algorithms”, Springer, New York.

[5] Chen, Z.-L. and Powell, W.B.(1999), “Solving Parallel Machine Scheduling Problems

by Column Generation”, INFORMS Journal of Computing, Vol. 11, pp. 78-94.

[6] Coffman, E.G., Jr., Garey, M.R., and Johnson, D.S.(1978), “An Application of

Bin-Packing to Multiprocessor Scheduling”, SIAM Journal of Computing, Vol. 7, pp.

177-201.

[7] Friesen, D.K.(1984a), “Tighter Bounds for the Multifit Processor Scheduling

Algorithm”, SIAM Journal of Computing, Vol. 13, pp. 170-181.

[8] Garvey MR, Johson DS, and Sethi R.(1976), “The Complexity of Flowshop and

Jobshop Scheduling”, Mathematics and Operations Research, Vol. 1, pp. 117-129.

[9] Glover, F. (1989), “Tabu search-Part I”, ORSA Journal on Computing, Vol.1, No.3,

pp.190-206.

[10] Glover, F. (1990), “Tabu search-Part II”, ORSA Journal on Computing, Vol.2, No.1,

pp.4-32.

[11] Glover, F., and Laguna M. (1997), “TABU SEARCH”, Kluwer Academic Publishers,

M.A.

[12] Graham, R.L.(1966), “Bounds for Certain Multiprocessing Anomalies”, Bell System

Technical Journal, Vol. 45, pp. 1563-1581.

[13] Graham, R.L.(1969), “Bounds on Multiprocessing Timing Anomalies”, SIAM Journal

of Applied Mathematics, Vol. 17, pp. 263-269.

[14] Johnson, S.M.(1954), “Optimal Two- and Three-Stage Production Schedules With

Setup Times Included”, Naval Research Logistics Quarterly 1, pp. 61-68.

[15] Lee, C.-Y. and Massey, J.D.(1988), “Multi-Processor Scheduling: Combining LPT and

 24

MULTIFIT”, Discrete Applied Mathematics, Vol. 20, pp.233-242.

[16] Monma, C.L. and Rinnooy Kan A.H.G.(1983), “A Concise Survey of Efficiently

Solvable Special Cases of the Permutation Flow-Shop Problem”, RAIRO Recherche

Operationelle, Vol. 17, pp. 105-119.

[17] Pinedo M.(1985), “A Note on Stochastic Shop Models in Which Jobs have the Same

Processing Requirements on Each Machine”, Management Science, Vol. 31, pp.

840-845.

[18] Pinedo, M. (2002), “Scheduling Theory, Algorithms, and Systems”, New Jersey.

[19] Sahni, S.(1976), “Algorithms for Scheduling Independent Tasks”, Journal of the

Association of Computing Machinery, Vol. 23, pp. 116-127.

[20] Shakhlevich, N., Hoogeveen, H., and Pindeo M.(1998), “Minimizing Total Weighted

Completion Time in a Proportionate Flow Shop”, Journal of Scheduling, Vol. 1, pp.

157-168.

[21] Smith, M.L., Panwalkar, S.S., and Dudek, R.A.(1975), “Flow Shop Sequencing with

Ordered Processing Time Matrices”, Management Science, Vol. 21, pp. 544-549.

[22] Smith, M.L., Panwalkar, S.S., and Dudek, R.A.(1976), “Flow Shop Sequencing

Problem with Ordered Processing Time Matrices: A General Case”, Naval Research

Logistics Quarterly, Vol. 23, pp. 481-486.

[23] Szwarc, W.(1971), “Elimination Methods in the m × n Sequencing Problem”, Naval

Research Logistics Quarterly, Vol. 18, pp. 295-305.

[24] Szwarc, W.(1973), “Optimal Elimination Methods in the m × n Flow Shop

Scheduling Problem”, Operations Research, Vol. 21, pp. 1250-1259.

[25] Szwarc, W.(1978), “Dominance Conditions for the Three-Machine Flow-Shop

Problem”, Operations Research, Vol. 26, pp. 203-206.

[26] Wagner, H.M.(1959), “An Integer Programming Model for Machine Scheduling”,

Naval Research Logistics Quarterly, Vol. 6, pp. 131-140.

 25

