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Abstract

In this thesis, we consider a multi-flowshop scheduling problem, where a set of jobs is to
be processed on multiple identical flowshops. The objective is to minimize the makespan, i.e.
the maximum completion time of the jobs. This problem is NP-hard because it is a
generalization of the classical parallel-machine scheduling. A dynamic programming
algorithm is designed for finding exact solutions. When the number of flowshops is fixed, the
time complexity is pseudo-polynomial, the same as that for parallel identical-machine
scheduling. To report approximate solutions in a reasonable time, we develop two dispatching
heuristics and a tabu search algorithm. Extensive experiments are conducted to examine the
performances of the proposed algorithms. Computational results show that the designed

algorithm can produce solutions with errors:\within 1% for all test instances.

Keyword: Flowshop, Parallel machines, Dynamic Program, Lower Bound, Heuristic, Tabu
Search
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Chapter 1 Introduction

Scheduling is a decision-making process about how we allocate limited resources,
including time, facilities, and work force, to tasks or activities. This type of the
decision-making processes is important and common in procurement and production.
Allocating limited resources may face different conditions and different objectives in each
company. Therefore, the scheduling literature covers a variety of objectives, including for

example makespan (Cnax) and total completion time (Z c ). The theoretical results of

machine scheduling have abounded and applied since the 1950s. In this thesis, we consider a

scheduling issue that arises in the production line of industry.

Production models can be categorized into several types, including single-machine,
parallel-machine, flowshop, job shop and open shop. Among the shop models, flowshop
scheduling is the most widely discussed due to its real-world applications and several
interesting structure properties. Before we formally.define the flowshop problem, we provide
an example to illustrate its configuration=and properties. There are two tasks (operations),
washing and waxing, for each car (job) to e processed in a car washing site. Each car needs
to wash before to wax. We assume machine one-is for'washing and machine two is for waxing.
An ordering of all cars on machine‘one.-must be"the same as that on machine two. This is
called a two-machine flowshop in which all jobs need to visit machine one and then machine
two, and a machine-two operation cannot start until the corresponding machine-one operation
is finished and machine two is not occupied. With the two-machine model, we can generalize
it to a multiple-machine model where a number of operations have to be done for every job
and the operations have a fixed sequence of machines to visit, and the sequence is same to all

jobs.

This thesis focuses on the flowshop model with two machines. The objective we
investigate is the maximum completion time among the jobs, i.e. the makespan. Scheduling to
minimize makespan in a two-machine flowshop is commonly denoted by the three-field
notation F2||Cmax, in Which F2 indicates the two-machine flowshop environment and Cpax
specifies the objective to optimize. The problem was proposed and investigated by Johnson
(1954). In his seminal work, he proposed an O(n log n) algorithm to solve the problem to

optimality. This algorithm is referred to as Johnson’s algorithm. While the F2||Cmax problem



can be solved in polynomial time, this thesis investigates a more complicated variant where
multiple independent flowshops are available for processing the jobs. We denote the problem
by IF2||Cmax, Where IF2 specifies the machine configuration with | independent two-machine

flowshops.

It is common for a plant to have more than one production line. Moreover, a plant can
rent or borrow production lines from its peers in the industry to fulfill the production demand.
Therefore, we the multiple independent flowshop models can better reflect the real-world
applications. From the theoretical point of view, the proposed model can be regarded as a
hybridization of the standard F2 model and the standard parallel-machine model. In a
parallel-machine model (P2), each job has exactly one operation that can be processed on any
of the machines. It is easy to see that P2||Cyax is NP-hard in the ordinary sense because it is
can be reduced from the PAPTITION problem. Therefore, the problem we want to study is
also NP-hard.

To the best of our knowledge, there is no previous work on the 1F2||Cmax problem. In the
following, we introduce previous: results on flowshop scheduling and parallel-machine
scheduling. The solution algorithm for the F2||Ciax problem was proposed by Johnson (1954).
He resolved the two machines of flowshop problem ‘and then identified two special cases of
three-machine flowshops which can be solved-in polynomial time. An integer programming
formulation of Fm ||Cax is presented by Wagner (1959). The NP-hardness proof of F3 || Crax
was presented by Garey, Johnson, and Sethi (1976). Monma and Rinnooy Kan (1983) gave an
overview of Fm ||Cnax models to elaborate the special structures that make the problem

polynomially solvable.

To minimize the makespan in a parallel-machine environment, the shortest processing
time first (SPT) rule is the most well studied heuristic. The worst case analysis of the LPT
rule for Pm||Crax Was presented by Graham (1969). Graham gives a general bound, a
modified system and some special case. Finally, he provides an algorithm and some theorems
for list scheduling. The first examples of worst case analyses of heuristics are presented by
Graham (1966). It also provides a worst case analysis of an arbitrary list schedule for
Pm||Cmax. A more sophisticated heuristic for Pm || Cnax, With a tighter worst case bound,
called MULTIFIT, was proposed by Coffman, Garey, and Johnson (1978) and Friesen
(1984a). MULTIFIT is well known to have an error bound better than the LPT rule at the cost

of a longer running time. Lee and Massey (1988) analyze a heuristic that is based on the LPT



rule as well as on the MULTIFIT. They design the combined algorithm in order to integrate

each advantage.

In this thesis, we design a dynamic programming algorithm to optimally solve the
multiple flowshops problem. Furthermore, we also design a lower bound and two heuristics,
which are used to produce an initial solution of the tabu search approach. The rest of this
thesis is organized as follows. We define the multiple flowshops problem and design the
dynamic programming algorithm in Chapter 2. In Chapter 3, we introduce the existing lower
bounds, develop two heuristics and design our tabu search approach. Computational
experiments and analysis of the results are included in Chapter 4. Finally, we give our

conclusion in Chapter 5.



Chapter 2 Problem Formulation and Dynamic Program

In this chapter, we introduce the definition of the parallel-flowshop scheduling problem,
followed by a numerical example. Then, we propose a dynamic programming algorithm for

producing optimal schedules.

2.1 Problem Formulation

There is a set of jobs N = {Jy, J,, ..., Jo} to be processed in | simultaneously available
identical flowshops Fi, F», ..., and F;, each of which consists of two machines. Any job can
be assigned to any flowshop. Any job J; in N has two operations that will be performed by the
two machines of the flowshop it is assigned to. The processing times of the two operations of
job J; are denoted by p; and q;, respectively. Each machine can process at most one job at a
time, and no preemption is allowed. Moreover, once a job is dispatched to a flowshop, it
cannot be transferred to any other flowshop. The‘ebjective is to minimize the makespan, i.e.

the maximum completion time ofthe jobs.

To illustrate the problem definition; we consider the following set of 7 jobs N = {J;,
Ja, ..., J7} to process in two independent flowshops.” Assume jobs {J;, Js, J7} are dispatched
to F1 and jobs {J,, Js, Js4, Js} t0 F,, and the'jobs are sequenced in increasing order of their
indices in flowshops. The Gantt chart of the schedule is shown in Figure 1. We can see from
the chart that the maximum completion time is 30 units of time. Figure 2 shows another

solution that has a better makespan of only 26 units of time.

Table 1: Example of multiple flowshops

Job i Ji Jo J3 Ja Js Js J7
processing Pi 1 3 4 5 6 7 22
times o] 22 7 6 3 2 1 1




Flowshop 1
22 2 1
Solution 30
one:
3 4 5 7
Flowshop 2
7 6 3 1
Chax Of solution one:
30 20
Figure 1: Gantt chart of solution 1
1 22
Flowshop 1
22 1
Solution 24
two:
3 4 5 6 7
Flowshop 2
7 6 3 2 1

) 26
Chax Of solution two:

26

Figure 2: Gantt chart of solution 2

From the above example, we learn that the problem we are studying consists of two
decisions: dispatching jobs to flowshops and sequence the jobs on each individual flowshop.
Consider some special cases. If there is only one flowshop, i.e. | = 1, then the problem
becomes scheduling in the classical two-machine flowshop and thus solvable in O(n log n)
time using Johnson’s algorithm (Johnson 1954). On the other hand, if we assume that the
machine-one operations of all jobs are null or the machine-two operations of all jobs are null,
then the problem is scheduling with parallel identical machines which is known to be NP-hard
in the strong sense (Garey and Johnson, 1979). Therefore, the parallel-flowshop scheduling

problem is strongly NP-hard.



2.2 Dynamic Programming Algorithm

To optimally solve an NP-hard problem enumerative approaches are considered. Among
the enumerative approaches, dynamic programming strategy and branch and bound algorithm
are most commonly adopted. In this section, we design dynamic programming algorithm to
solve the problem optimally. Dynamic programming strategy is a very useful technique to
solve many combinatorial optimization problems. It is based on a concept called the principle
of optimality. In this thesis, we design a backward reasoning dynamic programming algorithm.

The following property gives the base for development of a dynamic programming algorithm.

PROPERTY 1: There is an optimal solution in which the jobs in each flowshop are arranged by

Johnson’s rule.

With PROPERTY 1, we can then re-index the jobs of N in Johnson’s rule. To design our
dynamic programming algorithm, we define binary. function G(j, ti1, t12, ..., tk1, tk2, ..., ti1,
ti») as follows: Given that jobs I, 2, ..+, j-are considered, the function value is 1 if for each
flowshop Fy the completion times of the lastjob on the:.two machines are exactly tc1 and ty»; O,
otherwise. Considering the last“job =J;; there-are | choices to dispatch it. Therefore, the
recursion will take into account of all.l different scenarios. On any machine job Jj is
considered, it is scheduled last. Therefore, we need to examine the possible completion times
of the two machines if we removed job J; for recursion. A dynamic programming algorithm is

accordingly defined in the backward recursive form as shown below.



Dynamic Programming Algorithm

G(j’tl,l7tl,2"" ’tl,l’tI,Z)
Initial conditions: |1, ifj=1t,=¢t,=-=1t,=t,=1
~ | o, otherwise.

Recursive formula: For 1< j<n,
G (j’tl,l’tl,Zl-“ ’t|,l't|,2) =1,

if there exists some flowshop Fyx in which there exists some time point t’,

t,— P; St'Stk,z_qj',SUCh that

G(i-Ltunto tka-pPjth. 1t 2)=1.

Otherwise, it is 0.

Goal:

Minimize min{max{tklz}|G(n,tlll,tm;...;tkll,tkz;...;t,ll,t,g)=1}

The above formulation consists of Q(nP'C!;) /entries, where p :Z_”_l p, and C, is

the makespan of the Johnson’s sequence of all jobs. In the recursion formula, each entry is

determined in O(C,;) time. Therefore, the overall time complexity of the above algorithm is

o(nP'ngl). The complexity is clearly exponential. But when the number of flowshops I is

constant, the complexity becomes pseudo-polynomial. It is interesting to note that the
complexity status is the same as that of parallel-machine scheduling. Although each machine
in a parallel-flowshop is replaced by a two-machine flowshop, the complexity remains the

same.

From a practical point of view, the dynamic programming algorithm is not appropriate
for implementation taking into account memory space and flexibility. In later sections,
approximation algorithms will be developed to produce approximate solution in a reasonable

time.



Chapter 3 Approximation Algorithms

As the parallel-flowshop scheduling problem is strongly NP-hard, it is very unlikely to
design algorithms that have can solve the problem in polynomial time. Therefore, we seek to
design heuristic and meta-heuristic algorithms for deriving approximate solution in an
acceptable time. In this section, we first proposed to heuristics that are based upon simple
dispatching rules. We also develop a tabu search algorithm to provide better solutions. We
use the solutions that are derived by the heuristics as the initial solutions for the tabu search

algorithm to start out with.

3.1 Heuristic Algorithm H;

The first heuristic H; is based on a greed approach. By Property 1, we arrange the jobs
by Johnson’s rule. We then dispatch the jobs to the flowshop one by one. Let job i be the first
unscheduled job and flowshop k has the:minimum completion time among all flowshops, then
job i is dispatched to flowshop k. The example given in Figure 3 illustrates the greedy
approach. The completion times:ofithe two flowsheps:are 17 and 16, respectively. Therefore,

the first unscheduled job is dispatched.to-the second flowshop.

M1:Next Job (8)

M2: Next Job (6)

5 5
F1
8 4
17
3 9 M1:Next Job (8)
F2
9 4 M2: Next Job (6)
16 26

Figure 3: Example of Heuristic H;



The time complexity of sorting the jobs is O(n log n). We maintain the job list in a
min-heap by Johnson’s rule. Another min-heap is used to store the current completion times
of all flowshops. Removing the first job from the job list and adjust the heap takes O(log n)
time. The time complexity for a loop of O(n) iterations is thus O(n log n). We also need to
identify the flowshop with the earliest completion time. The required run time for O(n)

iterations is O(n log I). Because | < n, we therefore have that the overall time complexity of

Heuristic Hy is O(n log n).

3.2 Heuristic Algorithm H,

The second heuristic Hy is modified from H;. The jobs are initially sorted by Johnson’s
sequence. The first job retrieved from the list is tentatively assigned to each flowshop. We
identify the flowshop having the earliest completion time. Then, the job is permanently
assigned to that flowshop and removed from other flowshops. The process is illustrated in
Figure 4. Because the next job can produce.a shorter completion time in flowshop 1 than in

flowshop 2, therefore it is dispatched to flowshop 1:

M1:Next Job (8)

M2: Next Job (6)

5 5 M1:Next Job (8)
F1 8 4 M2: Next Job (6)
17 24
3 9
F2
9 4
16

Figure 4: Example of Heuristic H,



The complexity of Heuristic H; is different from that of Heuristic Hs. It is due to the fact
that we need to compute the completion time of each flowshop resulted from appending the
first job in the job list. The run time of this part is O(In) for n insertions. Therefore, the overall

time complexity is O(max{n log n, In}).

3.3 Tabu Search

Tabu Search was first proposed by Glover (1989) and has been used to solve numerous
combinatorial optimization problems. The theme of tabu search is to develop procedures that
can avoid the traps resulted from the local optima which are commonly encountered in the
deployment of the steepest gradient approach. Tabu search encourage broad probing through

the solution space and utilize a tabu mechanism to prevent cycling.

Applied to the permutation parallel-flowshop scheduling problem, our tabu search
algorithm starts from some initial solution and move successively among neighboring
solutions. In each iteration, a move isymade to.the best solution in the neighborhood of the
current solution which may not be: better than-the current one. When the best solution in the
neighborhood is in the area which we can control, even it cannot improve current solution we
still choosing it. The purpose of such a“relaxation; s to allow the search proceed towards
unexplored regions of the solution.space. To prevent the cycling problem a tabu list is used.
Tabu list is a special sort of memory mechanism, based on dependencies such as reflected in
measures of recency and frequency. A tabu list consists of attributes of the latest moves. The
size of the list can be fixed or variable along the course of explorations. Generally, tabu

search consists of the following elements:
B Generation of initial solutions;
B Mechanism for generating some neighborhood of the current solution;
B Tabu list;
B Stopping criteria.

For a more complete description of tabu search, the interested reader is referred to the
papers of Glover (1989, 1990 and 1997). In the following, we introduce the design of a tabu
search algorithm for solving the parallel-flowshop problem. The flowchart is presented in

Figure 5.
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Figure 5: Flow chart of Tabu search
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3.3.1 Initial solutions

To get an initial starting solution, we considered two heuristics: H; and H,. These two

methods were complete introduced before.

3.3.2 Neighborhood structure

We adopt a swapping scheme to construct the neighborhood structure of the tabu search.
Given a solution s, let N(s) denote the set of all solutions which can be obtained from s using

a swapping scheme. The scheme used in our development consists of two parts:

(1) Neighborhood structure one: Randomly select two flowshops f and f* and a position i
in the two list of the two flowshops. The range of position i is the minimum number
of jobs in f and f. The scope of random position i will lie between the first and final
jobs but not include them. We swap the jobs at position i. By PROPERTY 1, the
positions of the swapped jobs in the two flowshops need to be adjusted so as to meet

Johnson’s rule. (Figure 6)

(2) Neighborhood structure twoz Assume flowshop f has the largest complete time. We
consider flowshop f and:each individual flowshop f’. And selecting the f ’s and f* ’s
first job and final job at'the same-time:--Swap the first jobs of f and . Swap the last
jobs of f and f*. (Figure 7)

Neighborhood N(s) consists of 20 neighbors generated by structure 1 and all neighbor

generated by structure 2. And the size of tabu list is 7.

12
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3.3.3 Selection of Neighbors

We select the best solution N(s) and the best one of N(s), say s’. If solution of s is better
than s and s’ is not in the tabu list then we move to solution s’ and use it as the new current

solution. If the move from s to s happens to be in the tabu list, then we discard s and select

13



the next one from N(s). To avoid early convergence and local optimal traps, if s’ is worse than
s with a deviation of less than 30%, then we still move on to s’ to have a better chance to visit

other portions of the solution space.

3.3.4 Stopping criteria

The tabu search approach can be stopped when it conforms to some specified conditions,
such as iteration schema and the number of calls schema. In other words, it can be stopped by
a maximum number of iterations or a maximum number of calls. In our design, the tabu
search algorithm will terminate when the incumbent value is not improved with 500

consecutive iterations.
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Chapter 4 Computational Experiments

In this Chapter, we present the computational experiments designed to study the
performance of the algorithms proposed in Chapter 3. In the experiment, we use a personal
computer with an Intel Pentium(R) 4 CPU (3.4GHz) with RAM 504MB running Microsoft
Windows XP professional. The programs are coded in C++. The processing times of all job
operations are randomly drawn from uniform interval [1, 100]. In the experiment setting, the
number of flowshops, |, is two, three, five and ten. The test instances include n = 50, 100, 200,
300, 400 and 500 jobs. For each combination of | and n, 100 independent data sets were

generated and tested.

The results of the experiments are shown in Tables 2, 3, 4 and 5, each of which is
presented for a different number of flowshops. In the tables, we include lower bound values
and the objective values produced by two heuristics and two tabu search algorithms. The cited
values are the average over each 100 instances. We also present the four average deviations.
For example, for n = 50 the deviation of Hj is calculated by

Z, LB

1L—B><100%!

where LB the lower bound value and Zys-is-the solution value given by heuristic H;. The
value of LB is determined in the following-way. First, we sequence all jobs by Johnson’s rule
as in a single two-machine flowshop and determine its makespan Cnax. Then, we divide the
makespan by the number of flowshops, |, and take the least integer greater than or equal to the
derived value, i.e. LB =[ Crma/l . The column entitled “# of the best” contains the number of
instances for which the corresponding algorithm produces the best solution among the four

algorithms.

First, we observe the trend of deviations. As we can expect, meta-heuristics outperform
simple heuristic rules in the aspect of deviations and number of the best solutions. We
compare two simple heuristic algorithms and two tabu search algorithms. For example, the
deviations produced by H; are 1.16405% and 0.09012% for 50-job instances and 500-job
instances, respectively. The reduction is very significant and applied to all algorithms. When
there are only two flowshops, no significant difference exists between H; and H,. However,
the superiority of algorithm H, over algorithm Hj is clear when there are ten flowshops. The

comparison can be visualized by the bar charts shown in Figure 8 and Figure 9. For ten

15



flowshops, algorithm H, clearly dominates algorithm H;. The same observation can be

observed for H,+Tabu_Search and H;+Tabu_Search.

We discuss the deviations made by the four algorithms in terms of the problem scales.
Within each table, we can easily find that the deviations of each individual algorithm decrease
rapidly when the problem scale becomes large. Figure 10 shows the curves of deviations of
four algorithms given three flowshops. Therefore, our algorithms provide better solutions
when there are more jobs to process. Across the tables, we look into the effects of the number
of flowshops, |. The results show that the deviations deteriorate when there are more
flowshops. The two trends can be attributed to the following reasoning. In flowshop
scheduling, if there are more jobs, then we consequently have more jobs whose machine-one
operations are shorter than machine-two operations and thus created scheduling buffers for
the remaining jobs. Therefore, if there are more jobs, then it is easier to construct better, even
optimal, schedules. Therefore, the deviations decrease when the number of jobs increases. On
the other hand, given a fixed number of jobs, if the number of flowshops increases, then the
number of jobs distributed to each flowshop will:decrease and thus reaching good schedules

becomes more difficult and the deviations become larger.

Another observation we are interested-in is the *# of the best” values of the heuristics
provided different numbers of flowshops.Through-analysis of the “# of the best” values
across the tables, we find that the corresponding values of heuristic H; decrease when the
number of flowshops increases. For example, the average values of “# of the best” produced
by H; are 72 and 22 for 2-flowshop instances and for 10-flowshop instances. The values of
heuristic H, also decrease as the number of flowshops increases.(Figure 11) But the change is
not sharp. The observations suggest that when there are more flowshops available for

processing the given jobs, heuristic H, will outperforms heuristic H; for most test cases.
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Table 2: Computational results of two flowshops

H; H,
n Lower Deviation | # of the Deviation | # of the
Bound | Value (%) best Value (%) best
50 1312.66 | 1327.94 | 1.16405 66 1324.25 | 0.88294 85
100 | 2608.71 | 2624.15 | 0.59186 68 2619.78 | 0.42435 77
200 | 5157.58 | 5167.59 | 0.19408 74 5165.95 | 0.16229 78
300 | 7706.19 | 7716.23 | 0.13029 77 7716.35 | 0.13184 70
400 | 10253.8 | 10266.7 | 0.12531 73 10262.3 | 0.08290 76
500 | 12805.4 | 12816.9 | 0.09012 75 12813.4 | 0.06247 74
H;+Tabu Search H,+Tabu Search
] - Deviation | # of the - Deviation | # of the
(%) best (%) best
50 1315.73 0.23388 91 1315.67 0.22931 96
100 2610.43 0.06593 95 2610.40 0.06478 97
200 5158.88 0.02521 97 5158.89 0.02540 97
300 7707.31 0.01453 99 7707.33 0.01479 99
400 10255.0 0.01083 98 10254.9 0.01063 100
500 12806.4 0.00804 99 12806.4 0.00797 100
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Table 3: Computational results of three flowshops

. Lower M — Hz —
Deviation | # of the Deviation | # of the
Bound | value ) best | Value ) i
50 882.05 | 907.54 | 2.88986 53 899.98 | 2.03276 82
100 | 1730.12 | 1751.43 | 1.23171 59 1745.96 | 0.91554 70
200 | 3433.85 | 3453.20 | 0.56351 61 3448.95 | 0.43974 72
300 | 5139.59 |5161.39 | 0.42416 53 5154.31 | 0.28640 76
400 | 6846.08 | 6871.08 | 0.36517 56 6862.24 | 0.23605 73
500 | 8546.80 | 8568.00 | 0.24805 56 8561.40 | 0.17082 80
H;+Tabu Search H,+Tabu Search
n Value Deviation # of the Value Deviation # of the
(%) best (%) best
50 889.11 0.80041 58 888.72 0.75619 72
100 1734.34 0.24391 66 1733.93 0.22022 80
200 3436.49 0.07688 77 3436.42 0.07484 79
300 5142.02 0.04728 79 5141.97 0.04631 87
400 6848.18 0.03067 83 6848.11 0.02965 87
500 8548.62 0.02129 84 8548.64 0.02153 86
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Table 4: Computational results of five flowshops

. Lower M — Hz —
Deviation | # of the Deviation | # of the
Bound | value ) best | Value ) i
50 529.48 | 565.61 | 6.82368 49 558.83 | 5.54317 67
100 | 1033.21 | 1066.76 | 3.24716 46 1059.52 | 2.54643 69
200 | 2076.48 | 2110.08 | 1.61812 44 2097.11 | 0.99351 73
300 | 3090.44 |3126.55| 1.16844 43 3112.32 | 0.70799 68
400 | 4093.27 | 4125.72 | 0.79277 39 4111.59 | 0.44756 78
500 | 5120.89 | 5154.57 | 0.65770 45 5141.27 | 0.39798 78
H;+Tabu Search H,+Tabu Search
n Value Deviation # of the Value Deviation # of the
(%) best (%) best
50 545.77 3.07660 51 544.70 2.87452 71
100 1045.78 1.21660 52 1044.44 1.08690 67
200 2085.74 0.44595 50 2083.85 0.35493 75
300 3099.28 0.28604 44 3097.03 0.21324 76
400 4100.46 0.17565 55 4099.71 0.15733 72
500 5126.99 0.11912 B 5126.15 0.10272 72
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Table 5: Computational results of ten flowshops

. Lower i - Hz -
Deviation | # of the Deviation | # of the
Bound | value ) best | Value ) -
50 264.90 | 321.12 | 21.2231 16 305.45 | 15.3077 90
100 525.54 | 572.85 | 9.00217 21 557.05 | 5.99574 85
200 | 1021.90 | 1070.89 | 4.79401 27 1055.95 | 3.33203 73
300 | 1538.18 | 1586.34 | 3.13097 18 1566.23 | 1.82358 85
400 | 2053.00 |2102.48 | 2.41013 25 2081.95 | 1.41013 80
500 | 2552.55 | 2604.38 | 2.03052 27 2583.34 | 1.20624 79
H;+Tabu Search H,+Tabu Search
] - Deviation | # of the - Deviation | # of the
(%) best (%) best
50 298.16 12.5557 28 294.55 11.1929 85
100 554.64 5.53716 29 548.39 4.34791 75
200 1049.26 2.67737 31 1043.91 2.15383 74
300 1562.93 1.60904 28 1555.11 1.10065 78
400 2076.74 1.15636 22 2068.52 0.75597 85
500 2576.20 0.92652 29 2567.85 0.59940 76
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Figure 9: # of the best for ten flowshops
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Figure 10: Deviations of three flowshops
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Chapter 5 Conclusions

The thesis considers a manufacturing model consisting of independent and identical
flowshops. The objective is to minimize the makespan. The problem is strongly NP-hard
because it generalizes both the general flowshop problem and the parallel-machine problem.
We discussed an optimality property of this scheduling problem and designed a dynamic
programming algorithm that runs in pseudo-polynomial time when the number of flowshops
is a constant. Two heuristics based on Johnson’s rule were proposed to derive approximate
solutions in an acceptable time. And, we analyze the approximation of the two heuristics.
Then, the two heuristics were embedded into tabu search algorithms for improving the
solution quality. Computational experiments were designed and conducted to test the
effectiveness of the proposed algorithms. Numerical results show that the heuristics and tabu
search algorithms can provide solutions close to lower bound values, in other words, the

effectiveness of the algorithms are very impressive.

The multiple flowshops model is very-close to realistic situations in a factor or in a
supply chain. Therefore, it suggests room of future:research. A potential topic for future
research is to study the general:model in“which each flowshop has m stages for m > 2. A
challenging subject is to develop. heuristic algerithms and theoretically analyze their

performance ratios.
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