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論文摘要 

流線型機組排程是現今常見的排程問題之一，而總完工時間更是流線型機組最常探

討的問題。在過往的研究中，都是以單一條流線型機組為基礎，進行各類問題討論，本

研究以分析平行獨立流線型機組的總完工時間為主軸，在機組機器數量為兩台的情況

下，進行討論分析。本問題在機組數量為一條時，為最原始的流線型機組問題；在機組

機器數量為一台時，則為平行機組問題。單就平行機組問題已是 NP-Hard，因此再加上

流線型機組的條件，此問題亦是 NP-Hard。 

本研究設計了動態規劃及兩個啟發式演算法，利用實驗比較兩個啟發式演算法的優

劣，再利用禁忌搜尋法，搭配兩個啟發式演算法和下界函數進行比較分析。本研究實驗

結果顯示，我們所提個兩個啟發式演算法效能優越，在流線型機組數量愈多時，第二個

啟發式演算法會拉大與第一個啟發式演算法的差距，且都僅需零到一秒的時間內，即可

解出一百組工作的解。 

 
 
 
 

關鍵字：流線型機組、平行機組、動態規劃、下界函數、啟發式演算法、禁忌搜尋法 
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Abstract 

In this thesis, we consider a multi-flowshop scheduling problem, where a set of jobs is to 

be processed on multiple identical flowshops. The objective is to minimize the makespan, i.e. 

the maximum completion time of the jobs. This problem is NP-hard because it is a 

generalization of the classical parallel-machine scheduling. A dynamic programming 

algorithm is designed for finding exact solutions. When the number of flowshops is fixed, the 

time complexity is pseudo-polynomial, the same as that for parallel identical-machine 

scheduling. To report approximate solutions in a reasonable time, we develop two dispatching 

heuristics and a tabu search algorithm. Extensive experiments are conducted to examine the 

performances of the proposed algorithms. Computational results show that the designed 

algorithm can produce solutions with errors within 1% for all test instances. 

 
 
 
 
Keyword: Flowshop, Parallel machines, Dynamic Program, Lower Bound, Heuristic, Tabu 
Search 
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Chapter 1 Introduction 

 

 Scheduling is a decision-making process about how we allocate limited resources, 

including time, facilities, and work force, to tasks or activities. This type of the 

decision-making processes is important and common in procurement and production. 

Allocating limited resources may face different conditions and different objectives in each 

company. Therefore, the scheduling literature covers a variety of objectives, including for 

example makespan (Cmax) and total completion time (
i

C∑ ). The theoretical results of 

machine scheduling have abounded and applied since the 1950s. In this thesis, we consider a 

scheduling issue that arises in the production line of industry. 

 Production models can be categorized into several types, including single-machine, 

parallel-machine, flowshop, job shop and open shop. Among the shop models, flowshop 

scheduling is the most widely discussed due to its real-world applications and several 

interesting structure properties. Before we formally define the flowshop problem, we provide 

an example to illustrate its configuration and properties. There are two tasks (operations), 

washing and waxing, for each car (job) to be processed in a car washing site. Each car needs 

to wash before to wax. We assume machine one is for washing and machine two is for waxing. 

An ordering of all cars on machine one must be the same as that on machine two. This is 

called a two-machine flowshop in which all jobs need to visit machine one and then machine 

two, and a machine-two operation cannot start until the corresponding machine-one operation 

is finished and machine two is not occupied. With the two-machine model, we can generalize 

it to a multiple-machine model where a number of operations have to be done for every job 

and the operations have a fixed sequence of machines to visit, and the sequence is same to all 

jobs. 

 This thesis focuses on the flowshop model with two machines. The objective we 

investigate is the maximum completion time among the jobs, i.e. the makespan. Scheduling to 

minimize makespan in a two-machine flowshop is commonly denoted by the three-field 

notation F2||Cmax, in which F2 indicates the two-machine flowshop environment and Cmax 

specifies the objective to optimize. The problem was proposed and investigated by Johnson 

(1954). In his seminal work, he proposed an O(n log n) algorithm to solve the problem to 

optimality. This algorithm is referred to as Johnson’s algorithm. While the F2||Cmax problem 
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can be solved in polynomial time, this thesis investigates a more complicated variant where 

multiple independent flowshops are available for processing the jobs. We denote the problem 

by lF2||Cmax, where lF2 specifies the machine configuration with l independent two-machine 

flowshops.  

It is common for a plant to have more than one production line. Moreover, a plant can 

rent or borrow production lines from its peers in the industry to fulfill the production demand. 

Therefore, we the multiple independent flowshop models can better reflect the real-world 

applications. From the theoretical point of view, the proposed model can be regarded as a 

hybridization of the standard F2 model and the standard parallel-machine model. In a 

parallel-machine model (P2), each job has exactly one operation that can be processed on any 

of the machines. It is easy to see that P2||Cmax is NP-hard in the ordinary sense because it is 

can be reduced from the PAPTITION problem. Therefore, the problem we want to study is 

also NP-hard. 

    To the best of our knowledge, there is no previous work on the lF2||Cmax problem. In the 

following, we introduce previous results on flowshop scheduling and parallel-machine 

scheduling. The solution algorithm for the F2 ||Cmax problem was proposed by Johnson (1954). 

He resolved the two machines of flowshop problem and then identified two special cases of 

three-machine flowshops which can be solved in polynomial time. An integer programming 

formulation of Fm ||Cmax is presented by Wagner (1959). The NP-hardness proof of F3 || Cmax 

was presented by Garey, Johnson, and Sethi (1976). Monma and Rinnooy Kan (1983) gave an 

overview of Fm ||Cmax models to elaborate the special structures that make the problem 

polynomially solvable.  

    To minimize the makespan in a parallel-machine environment, the shortest processing 

time first (SPT) rule is the most well studied heuristic. The worst case analysis of the LPT 

rule for Pm||Cmax was presented by Graham (1969). Graham gives a general bound, a 

modified system and some special case. Finally, he provides an algorithm and some theorems 

for list scheduling. The first examples of worst case analyses of heuristics are presented by 

Graham (1966). It also provides a worst case analysis of an arbitrary list schedule for 

Pm||Cmax. A more sophisticated heuristic for Pm || Cmax, with a tighter worst case bound, 

called MULTIFIT, was proposed by Coffman, Garey, and Johnson (1978) and Friesen 

(1984a). MULTIFIT is well known to have an error bound better than the LPT rule at the cost 

of a longer running time. Lee and Massey (1988) analyze a heuristic that is based on the LPT 
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rule as well as on the MULTIFIT. They design the combined algorithm in order to integrate 

each advantage. 

    In this thesis, we design a dynamic programming algorithm to optimally solve the 

multiple flowshops problem. Furthermore, we also design a lower bound and two heuristics, 

which are used to produce an initial solution of the tabu search approach. The rest of this 

thesis is organized as follows. We define the multiple flowshops problem and design the 

dynamic programming algorithm in Chapter 2. In Chapter 3, we introduce the existing lower 

bounds, develop two heuristics and design our tabu search approach. Computational 

experiments and analysis of the results are included in Chapter 4. Finally, we give our 

conclusion in Chapter 5. 
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Chapter 2 Problem Formulation and Dynamic Program 
 

In this chapter, we introduce the definition of the parallel-flowshop scheduling problem, 

followed by a numerical example. Then, we propose a dynamic programming algorithm for 

producing optimal schedules. 

 

2.1 Problem Formulation 

There is a set of jobs N = {J1, J2, …, Jn} to be processed in l simultaneously available 

identical flowshops F1, F2, …, and Fl, each of which consists of two machines. Any job can 

be assigned to any flowshop. Any job Ji in N has two operations that will be performed by the 

two machines of the flowshop it is assigned to. The processing times of the two operations of 

job Ji are denoted by pi and qi, respectively. Each machine can process at most one job at a 

time, and no preemption is allowed. Moreover, once a job is dispatched to a flowshop, it 

cannot be transferred to any other flowshop. The objective is to minimize the makespan, i.e. 

the maximum completion time of the jobs.  

To illustrate the problem definition, we consider the following set of 7 jobs N = {J1, 

J2, …, J7} to process in two independent flowshops. Assume jobs {J1, J5, J7} are dispatched 

to F1 and jobs {J2, J3, J4, J6} to F2, and the jobs are sequenced in increasing order of their 

indices in flowshops. The Gantt chart of the schedule is shown in Figure 1. We can see from 

the chart that the maximum completion time is 30 units of time. Figure 2 shows another 

solution that has a better makespan of only 26 units of time. 

 

Table 1: Example of multiple flowshops 

Job i J1 J2 J3 J4 J5 J6 J7

pi 1 3 4 5 6 7 22 processing 
times qi 22 7 6 3 2 1 1 
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1 6 22

22 2 1

Solution 
one:

30

Flowshop 1

3 4 5

7 6 3

20

Flowshop 2

7

1

Cmax of solution one: 
30  

Figure 1: Gantt chart of solution 1 
 

1

6

22

22

2

1

Solution 
two:

24

Flowshop 1

3 4 5

7 6 3

26

Flowshop 2

7

1

Cmax of solution two: 
26  

Figure 2: Gantt chart of solution 2 
 

From the above example, we learn that the problem we are studying consists of two 

decisions: dispatching jobs to flowshops and sequence the jobs on each individual flowshop. 

Consider some special cases. If there is only one flowshop, i.e. l = 1, then the problem 

becomes scheduling in the classical two-machine flowshop and thus solvable in O(n log n) 

time using Johnson’s algorithm (Johnson 1954). On the other hand, if we assume that the 

machine-one operations of all jobs are null or the machine-two operations of all jobs are null, 

then the problem is scheduling with parallel identical machines which is known to be NP-hard 

in the strong sense (Garey and Johnson, 1979). Therefore, the parallel-flowshop scheduling 

problem is strongly NP-hard. 
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2.2 Dynamic Programming Algorithm 

To optimally solve an NP-hard problem enumerative approaches are considered. Among 

the enumerative approaches, dynamic programming strategy and branch and bound algorithm 

are most commonly adopted. In this section, we design dynamic programming algorithm to 

solve the problem optimally. Dynamic programming strategy is a very useful technique to 

solve many combinatorial optimization problems. It is based on a concept called the principle 

of optimality. In this thesis, we design a backward reasoning dynamic programming algorithm. 

The following property gives the base for development of a dynamic programming algorithm. 

 

PROPERTY 1: There is an optimal solution in which the jobs in each flowshop are arranged by 

Johnson’s rule. 

 

 

With PROPERTY 1, we can then re-index the jobs of N in Johnson’s rule. To design our 

dynamic programming algorithm, we define binary function G(j, t1,1, t1,2, …, tk,1, tk,2, …, tl,1, 

tl,2) as follows: Given that jobs 1, 2, …, j are considered, the function value is 1 if for each 

flowshop Fk the completion times of the last job on the two machines are exactly tk,1 and tk,2; 0, 

otherwise. Considering the last job Jj, there are l choices to dispatch it. Therefore, the 

recursion will take into account of all l different scenarios. On any machine job Jj is 

considered, it is scheduled last. Therefore, we need to examine the possible completion times 

of the two machines if we removed job Jj for recursion. A dynamic programming algorithm is 

accordingly defined in the backward recursive form as shown below. 
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Dynamic Programming Algorithm 

 

Initial conditions:  
1,1 1,2 ,1 ,2

1,1 1,2 ,1 , 2

( , , , , , )

1, if 1
, o th erw ise .

l l

l l

G j t t t t

j t t t t= = = = = =⎧
= ⎨∞⎩

…

Recursive formula: For  ,1 nj ≤≤

1),,,,,( 2,1,2,11,1 =ll ttttjG … , 

if there exists some flowshop Fk in which there exists some time point t’, 

, such that ,1 ,2'k j kt p t t− ≤ ≤ − jq

.1),,',,,,,1( 2,1,1,2,11,1 =−− lljk tttptttjG ……  

Otherwise, it is 0. 

 

Goal:  

Minimize  { }{ },2 1,1 1,2 ,1 ,2 ,1 ,2min max | ( , , ;...; , ;...; , ) 1k k k lt G n t t t t t t =l

)
 

The above formulation consists of ( l l
JSO nP C  entries, where  and 

1

n
ii

P p
=

=∑ JSC  is 

the makespan of the Johnson’s sequence of all jobs. In the recursion formula, each entry is 

determined in ( )JSO C  time. Therefore, the overall time complexity of the above algorithm is 

1( l l )JSO nP C + . The complexity is clearly exponential. But when the number of flowshops l is 

constant, the complexity becomes pseudo-polynomial. It is interesting to note that the 

complexity status is the same as that of parallel-machine scheduling. Although each machine 

in a parallel-flowshop is replaced by a two-machine flowshop, the complexity remains the 

same.  

From a practical point of view, the dynamic programming algorithm is not appropriate 

for implementation taking into account memory space and flexibility. In later sections, 

approximation algorithms will be developed to produce approximate solution in a reasonable 

time. 
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Chapter 3 Approximation Algorithms 
 

As the parallel-flowshop scheduling problem is strongly NP-hard, it is very unlikely to 

design algorithms that have can solve the problem in polynomial time. Therefore, we seek to 

design heuristic and meta-heuristic algorithms for deriving approximate solution in an 

acceptable time. In this section, we first proposed to heuristics that are based upon simple 

dispatching rules. We also develop a tabu search algorithm to provide better solutions. We 

use the solutions that are derived by the heuristics as the initial solutions for the tabu search 

algorithm to start out with.  

 

3.1 Heuristic Algorithm H1

The first heuristic H1 is based on a greed approach. By Property 1, we arrange the jobs 

by Johnson’s rule. We then dispatch the jobs to the flowshop one by one. Let job i be the first 

unscheduled job and flowshop k has the minimum completion time among all flowshops, then 

job i is dispatched to flowshop k. The example given in Figure 3 illustrates the greedy 

approach. The completion times of the two flowshops are 17 and 16, respectively. Therefore, 

the first unscheduled job is dispatched to the second flowshop. 

M1:Next Job (8)

M2: Next Job (6)

5 5

48

17

3 9

F2
9 4

16

M1:Next Job (8)

M2: Next Job (6)

26

F1

  
Figure 3: Example of Heuristic H1
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The time complexity of sorting the jobs is O(n log n). We maintain the job list in a 

min-heap by Johnson’s rule. Another min-heap is used to store the current completion times 

of all flowshops. Removing the first job from the job list and adjust the heap takes O(log n) 

time. The time complexity for a loop of O(n) iterations is thus O(n log n). We also need to 

identify the flowshop with the earliest completion time. The required run time for O(n) 

iterations is O(n log l). Because l ≤ n, we therefore have that the overall time complexity of 

Heuristic H1 is O(n log n).  

 

3.2 Heuristic Algorithm H2

The second heuristic H2 is modified from H1. The jobs are initially sorted by Johnson’s 

sequence. The first job retrieved from the list is tentatively assigned to each flowshop. We 

identify the flowshop having the earliest completion time. Then, the job is permanently 

assigned to that flowshop and removed from other flowshops. The process is illustrated in 

Figure 4. Because the next job can produce a shorter completion time in flowshop 1 than in 

flowshop 2, therefore it is dispatched to flowshop 1. 

 

 

M1:Next Job (8)

M2: Next Job (6)

5 5

F1 48

17

M1:Next Job (8)

M2: Next Job (6)

24

3 9

F2

9 4

16  
 Figure 4: Example of Heuristic H2
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The complexity of Heuristic H2 is different from that of Heuristic H1. It is due to the fact 

that we need to compute the completion time of each flowshop resulted from appending the 

first job in the job list. The run time of this part is O(ln) for n insertions. Therefore, the overall 

time complexity is O(max{n log n, ln}). 

 

3.3 Tabu Search 

Tabu Search was first proposed by Glover (1989) and has been used to solve numerous 

combinatorial optimization problems. The theme of tabu search is to develop procedures that 

can avoid the traps resulted from the local optima which are commonly encountered in the 

deployment of the steepest gradient approach. Tabu search encourage broad probing through 

the solution space and utilize a tabu mechanism to prevent cycling.  

Applied to the permutation parallel-flowshop scheduling problem, our tabu search 

algorithm starts from some initial solution and move successively among neighboring 

solutions. In each iteration, a move is made to the best solution in the neighborhood of the 

current solution which may not be better than the current one. When the best solution in the 

neighborhood is in the area which we can control, even it cannot improve current solution we 

still choosing it. The purpose of such a relaxation is to allow the search proceed towards 

unexplored regions of the solution space. To prevent the cycling problem a tabu list is used. 

Tabu list is a special sort of memory mechanism, based on dependencies such as reflected in 

measures of recency and frequency. A tabu list consists of attributes of the latest moves. The 

size of the list can be fixed or variable along the course of explorations. Generally, tabu 

search consists of the following elements: 

 Generation of initial solutions; 

 Mechanism for generating some neighborhood of the current solution; 

 Tabu list; 

 Stopping criteria. 

For a more complete description of tabu search, the interested reader is referred to the 

papers of Glover (1989, 1990 and 1997). In the following, we introduce the design of a tabu 

search algorithm for solving the parallel-flowshop problem. The flowchart is presented in 

Figure 5. 

 10 



 

Initial solution

Generate neighborhood 
solutions

Select the best of 
neighborhood

Check the solution in 
tabu list

Check the solution better 
to best solution 

Select the next of 
neighborhood

Start

No

Yes

No

Yes

iteration = 0

Swap neighborhood

Terminate?

Output solution

Yes

No

 
Figure 5: Flow chart of Tabu search 
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3.3.1 Initial solutions 

 To get an initial starting solution, we considered two heuristics: H1 and H2. These two 

methods were complete introduced before. 

 

3.3.2 Neighborhood structure 

 We adopt a swapping scheme to construct the neighborhood structure of the tabu search. 

Given a solution s, let N(s) denote the set of all solutions which can be obtained from s using 

a swapping scheme. The scheme used in our development consists of two parts: 

(1) Neighborhood structure one: Randomly select two flowshops f and f’ and a position i 

in the two list of the two flowshops. The range of position i is the minimum number 

of jobs in f and f’. The scope of random position i will lie between the first and final 

jobs but not include them. We swap the jobs at position i. By PROPERTY 1, the 

positions of the swapped jobs in the two flowshops need to be adjusted so as to meet 

Johnson’s rule. (Figure 6) 

(2) Neighborhood structure two: Assume flowshop f has the largest complete time. We 

consider flowshop f and each individual flowshop f’. And selecting the f ’s and f’ ’s 

first job and final job at the same time. Swap the first jobs of f and f’. Swap the last 

jobs of f and f’. (Figure 7) 

Neighborhood N(s) consists of 20 neighbors generated by structure 1 and all neighbor 

generated by structure 2. And the size of tabu list is 7. 
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f＇

…
…

…
…

Neighborhood

Frontward 
tracing

Backward 
tracing

Frontward 
tracing

Backward 
tracing

Step 1

Step 1

Step 2

Step 2  
Figure 6: Neighborhood structure 1 

 

f

…………

…………

…………

…………

…………

…………

f＇

…
…

…
…

Neighborhood 1 Neighborhood 2  
Figure 7: Neighborhood structure 2 

  

3.3.3 Selection of Neighbors 

 We select the best solution N(s) and the best one of N(s), say s’. If solution of s’ is better 

than s and s’ is not in the tabu list then we move to solution s’ and use it as the new current 

solution. If the move from s to s’ happens to be in the tabu list, then we discard s’ and select 
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the next one from N(s). To avoid early convergence and local optimal traps, if s’ is worse than 

s with a deviation of less than 30%, then we still move on to s’ to have a better chance to visit 

other portions of the solution space. 

 

3.3.4 Stopping criteria 

 The tabu search approach can be stopped when it conforms to some specified conditions, 

such as iteration schema and the number of calls schema. In other words, it can be stopped by 

a maximum number of iterations or a maximum number of calls. In our design, the tabu 

search algorithm will terminate when the incumbent value is not improved with 500 

consecutive iterations. 
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Chapter 4 Computational Experiments 
 

In this Chapter, we present the computational experiments designed to study the 

performance of the algorithms proposed in Chapter 3. In the experiment, we use a personal 

computer with an Intel Pentium(R) 4 CPU (3.4GHz) with RAM 504MB running Microsoft 

Windows XP professional. The programs are coded in C++. The processing times of all job 

operations are randomly drawn from uniform interval [1, 100]. In the experiment setting, the 

number of flowshops, l, is two, three, five and ten. The test instances include n = 50, 100, 200, 

300, 400 and 500 jobs. For each combination of l and n, 100 independent data sets were 

generated and tested. 

The results of the experiments are shown in Tables 2, 3, 4 and 5, each of which is 

presented for a different number of flowshops. In the tables, we include lower bound values 

and the objective values produced by two heuristics and two tabu search algorithms. The cited 

values are the average over each 100 instances. We also present the four average deviations. 

For example, for n = 50 the deviation of H1 is calculated by  

1 100%HZ LB
LB
−

× , 

where LB the lower bound value and ZH1 is the solution value given by heuristic H1. The 

value of LB is determined in the following way. First, we sequence all jobs by Johnson’s rule 

as in a single two-machine flowshop and determine its makespan Cmax. Then, we divide the 

makespan by the number of flowshops, l, and take the least integer greater than or equal to the 

derived value, i.e. LB = ⎡Cmax/l⎤. The column entitled “# of the best” contains the number of 

instances for which the corresponding algorithm produces the best solution among the four 

algorithms. 

First, we observe the trend of deviations. As we can expect, meta-heuristics outperform 

simple heuristic rules in the aspect of deviations and number of the best solutions. We 

compare two simple heuristic algorithms and two tabu search algorithms. For example, the 

deviations produced by H1 are 1.16405% and 0.09012% for 50-job instances and 500-job 

instances, respectively. The reduction is very significant and applied to all algorithms. When 

there are only two flowshops, no significant difference exists between H1 and H2. However, 

the superiority of algorithm H2 over algorithm H1 is clear when there are ten flowshops. The 

comparison can be visualized by the bar charts shown in Figure 8 and Figure 9. For ten 
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flowshops, algorithm H2 clearly dominates algorithm H1. The same observation can be 

observed for H2+Tabu_Search and H1+Tabu_Search.  

We discuss the deviations made by the four algorithms in terms of the problem scales. 

Within each table, we can easily find that the deviations of each individual algorithm decrease 

rapidly when the problem scale becomes large. Figure 10 shows the curves of deviations of 

four algorithms given three flowshops. Therefore, our algorithms provide better solutions 

when there are more jobs to process. Across the tables, we look into the effects of the number 

of flowshops, l. The results show that the deviations deteriorate when there are more 

flowshops. The two trends can be attributed to the following reasoning. In flowshop 

scheduling, if there are more jobs, then we consequently have more jobs whose machine-one 

operations are shorter than machine-two operations and thus created scheduling buffers for 

the remaining jobs. Therefore, if there are more jobs, then it is easier to construct better, even 

optimal, schedules. Therefore, the deviations decrease when the number of jobs increases. On 

the other hand, given a fixed number of jobs, if the number of flowshops increases, then the 

number of jobs distributed to each flowshop will decrease and thus reaching good schedules 

becomes more difficult and the deviations become larger. 

Another observation we are interested in is the “# of the best” values of the heuristics 

provided different numbers of flowshops. Through analysis of the “# of the best” values 

across the tables, we find that the corresponding values of heuristic H1 decrease when the 

number of flowshops increases. For example, the average values of “# of the best” produced 

by H1 are 72 and 22 for 2-flowshop instances and for 10-flowshop instances. The values of 

heuristic H2 also decrease as the number of flowshops increases.(Figure 11) But the change is 

not sharp. The observations suggest that when there are more flowshops available for 

processing the given jobs, heuristic H2 will outperforms heuristic H1 for most test cases. 
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Table 2: Computational results of two flowshops 

H1 H2

n 
Lower 
Bound Value 

Deviation 
(%) 

# of the 
best 

Value 
Deviation 

(%) 
# of the 

best 
50 1312.66 1327.94 1.16405 66 1324.25 0.88294 85 
100 2608.71 2624.15 0.59186 68 2619.78 0.42435 77 
200 5157.58 5167.59 0.19408 74 5165.95 0.16229 78 
300 7706.19 7716.23 0.13029 77 7716.35 0.13184 70 
400 10253.8 10266.7 0.12531 73 10262.3 0.08290 76 
500 12805.4 12816.9 0.09012 75 12813.4 0.06247 74 

H1+Tabu Search H2+Tabu Search 
n 

Value 
Deviation 

(%) 
# of the 

best 
Value 

Deviation 
(%) 

# of the 
best 

50 1315.73 0.23388 91 1315.67 0.22931 96 
100 2610.43 0.06593 95 2610.40 0.06478 97 
200 5158.88 0.02521 97 5158.89 0.02540 97 
300 7707.31 0.01453 99 7707.33 0.01479 99 
400 10255.0 0.01083 98 10254.9 0.01063 100 
500 12806.4 0.00804 99 12806.4 0.00797 100 
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Table 3: Computational results of three flowshops 

H1 H2

n 
Lower 
Bound Value 

Deviation 
(%) 

# of the 
best 

Value 
Deviation 

(%) 
# of the 

best 
50 882.05 907.54 2.88986 53 899.98 2.03276 82 
100 1730.12 1751.43 1.23171 59 1745.96 0.91554 70 
200 3433.85 3453.20 0.56351 61 3448.95 0.43974 72 
300 5139.59 5161.39 0.42416 53 5154.31 0.28640 76 
400 6846.08 6871.08 0.36517 56 6862.24 0.23605 73 
500 8546.80 8568.00 0.24805 56 8561.40 0.17082 80 

H1+Tabu Search H2+Tabu Search 
n 

Value 
Deviation 

(%) 
# of the 

best 
Value 

Deviation 
(%) 

# of the 
best 

50 889.11 0.80041 58 888.72 0.75619 72 
100 1734.34 0.24391 66 1733.93 0.22022 80 
200 3436.49 0.07688 77 3436.42 0.07484 79 
300 5142.02 0.04728 79 5141.97 0.04631 87 
400 6848.18 0.03067 83 6848.11 0.02965 87 
500 8548.62 0.02129 84 8548.64 0.02153 86 
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Table 4: Computational results of five flowshops 

H1 H2

n 
Lower 
Bound Value 

Deviation 
(%) 

# of the 
best 

Value 
Deviation 

(%) 
# of the 

best 
50 529.48 565.61 6.82368 49 558.83 5.54317 67 
100 1033.21 1066.76 3.24716 46 1059.52 2.54643 69 
200 2076.48 2110.08 1.61812 44 2097.11 0.99351 73 
300 3090.44 3126.55 1.16844 43 3112.32 0.70799 68 
400 4093.27 4125.72 0.79277 39 4111.59 0.44756 78 
500 5120.89 5154.57 0.65770 45 5141.27 0.39798 78 

H1+Tabu Search H2+Tabu Search 
n 

Value 
Deviation 

(%) 
# of the 

best 
Value 

Deviation 
(%) 

# of the 
best 

50 545.77 3.07660 51 544.70 2.87452 71 
100 1045.78 1.21660 52 1044.44 1.08690 67 
200 2085.74 0.44595 50 2083.85 0.35493 75 
300 3099.28 0.28604 44 3097.03 0.21324 76 
400 4100.46 0.17565 55 4099.71 0.15733 72 
500 5126.99 0.11912 57 5126.15 0.10272 72 
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Table 5: Computational results of ten flowshops 
H1 H2

n 
Lower 
Bound Value 

Deviation 
(%) 

# of the 
best 

Value 
Deviation 

(%) 
# of the 

best 
50 264.90 321.12 21.2231 16 305.45 15.3077 90 
100 525.54 572.85 9.00217 21 557.05 5.99574 85 
200 1021.90 1070.89 4.79401 27 1055.95 3.33203 73 
300 1538.18 1586.34 3.13097 18 1566.23 1.82358 85 
400 2053.00 2102.48 2.41013 25 2081.95 1.41013 80 
500 2552.55 2604.38 2.03052 27 2583.34 1.20624 79 

H1+Tabu Search H2+Tabu Search 
n 

Value 
Deviation 

(%) 
# of the 

best 
Value 

Deviation 
(%) 

# of the 
best 

50 298.16 12.5557 28 294.55 11.1929 85 
100 554.64 5.53716 29 548.39 4.34791 75 
200 1049.26 2.67737 31 1043.91 2.15383 74 
300 1562.93 1.60904 28 1555.11 1.10065 78 
400 2076.74 1.15636 22 2068.52 0.75597 85 
500 2576.20 0.92652 29 2567.85 0.59940 76 
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Figure 8: # of the best for two flowshops 

 

0

20

40

60

80

100

50 100 200 300 400 500

n

H1

H2

 
Figure 9: # of the best for ten flowshops 

 

0

0.5

1

1.5

2

2.5

3

3.5

50 100 200 300 400 500

the number of jobs

H1

H2

H1+Tabu

H2+Tabu

 
Figure 10: Deviations of three flowshops 
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Figure 11: average of “# of the best” 
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Chapter 5 Conclusions 
 

 The thesis considers a manufacturing model consisting of independent and identical 

flowshops. The objective is to minimize the makespan. The problem is strongly NP-hard 

because it generalizes both the general flowshop problem and the parallel-machine problem. 

We discussed an optimality property of this scheduling problem and designed a dynamic 

programming algorithm that runs in pseudo-polynomial time when the number of flowshops 

is a constant. Two heuristics based on Johnson’s rule were proposed to derive approximate 

solutions in an acceptable time. And, we analyze the approximation of the two heuristics. 

Then, the two heuristics were embedded into tabu search algorithms for improving the 

solution quality. Computational experiments were designed and conducted to test the 

effectiveness of the proposed algorithms. Numerical results show that the heuristics and tabu 

search algorithms can provide solutions close to lower bound values, in other words, the 

effectiveness of the algorithms are very impressive. 

 The multiple flowshops model is very close to realistic situations in a factor or in a 

supply chain. Therefore, it suggests room of future research. A potential topic for future 

research is to study the general model in which each flowshop has m stages for m > 2. A 

challenging subject is to develop heuristic algorithms and theoretically analyze their 

performance ratios. 
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