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Sensitivity of Gate-All-Around Nanowire MOSFETs
to Process Variations—A Comparison
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Abstract—This paper investigates the sensitivity of gate-all-
around (GAA) nanowire (NW) to process variations compared
with multigate devices using analytical solutions of Poisson’s equa-
tion verified with device simulation. GAA NW and multigate
devices with both heavily doped and lightly doped channels have
been examined regarding their immunity to process-induced vari-
ations and dopant number fluctuation. Our study indicates that
the lightly doped GAA NW has the smallest threshold voltage
(Vth) dispersion caused by process variations and dopant number
fluctuation. Specifically, the GAA NW shows better immunity to
channel thickness variation than multigate devices because of its
inherently superior surrounding gate structure. For heavily doped
devices, dopant number fluctuation may become the dominant
factor in the determination of overall Vth variation. The Vth

dispersion of GAA NW may therefore be larger than that of
multigate MOSFETs because of its larger surface-to-volume ratio.

Index Terms—FinFET, gate-all-around (GAA), multigate
MOSFETs, nanowire (NW), trigate, variation.

I. INTRODUCTION

DUE TO their better gate control, the multigate struc-
ture [1]–[3] and gate-all-around (GAA) nanowire (NW)

[4]–[6] are considered important candidates for future CMOS
scaling. The GAA NW features the surrounding gate channel,
which is an ideal structure to provide better gate control.
However, with the scaling of device geometry, the impact
of process variations has become a crucial issue to device
design. Although the GAA NW is a promising alternative
for future device scaling, its immunity to process variations
remains an important question. Wang et al. [7] suggested that
the NW structure may have larger performance variations than
the double-gate FinFET structure. Wang et al. [8] also con-
cluded that process fluctuations will severely impact NW device
characteristics. However, Paul et al. [9] showed that the NW
device is less sensitive to process-induced variations as com-
pared with the FinFET device. Whether there is an optimum
choice between the NW MOSFET and FinFET merits further
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Fig. 1. Schematic sketch of the (a) multigate structure and (b) cylindrical
GAA NW structure investigated in this paper. For the cylindrical GAA NW, the
origin (r = 0 and y = 0) is defined at the center of the channel/source junction.

examination. In this paper, we assess the sensitivity of GAA
NW to process variations compared with multigate MOSFETs
using theoretical calculation. A theoretical framework that can
be used to assess the feasibility of GAA NW and multigate
devices [10] by tackling their electrostatic integrities and sensi-
tivities to process variations will be provided.

This paper is organized as follows. In Section II, we derive
the subthreshold current model for the GAA NW and multigate
structure, respectively. The threshold voltage (Vth) can then
be determined based on the calculated subthreshold current.
In Section III, we investigate the Vth sensitivity to process
variations for the GAA NW compared with that of multigate
devices based on our theoretical calculation. The conclusions
will be drawn in Section IV.

II. SUBTHRESHOLD CURRENT AND Vth CALCULATION

Fig. 1(a) and (b) shows the schematic sketch of the multigate
SOI structure and the cylindrical GAA NW, respectively. For
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the multigate structure, the Si-fin body covered by a gate
insulator is a cuboid with six faces, and each face is connected
to a voltage bias. For the cylindrical GAA NW, the cylindrical
channel is wrapped by a gate insulator and is connected to the
gate terminal. The front and back faces are connected to the
source and drain.

An analytical potential solution is crucial to the derivation of
subthreshold characteristics such as subthreshold current and
Vth. The channel potential solutions for the multigate structure
and the cylindrical GAA NW are described as follows.

A. Potential Solution for the Multigate Structure

In the subthreshold regime, the Si-channel is fully depleted
with negligible mobile carriers. Therefore, the potential distrib-
ution φ(x, y, z) satisfies Poisson’s equation
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∂x2
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where Na is the doping concentration of the Si-fin. Under the
same boundary conditions as described in our previous work
[10], the potential solution of the 3-D boundary value problem
can be expressed as φ = φ1 + φ2 + φ3
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where εsi, εi, and εox are the dielectric constants of the Si-
channel, gate dielectric, and buried oxide, respectively. Wfin,
Hfin, and Leff are defined as the fin width, fin height, and
channel length, respectively. ti,t, ti,f , ti,b, and tox,u are the
thicknesses of the top gate dielectric, front gate dielectric, back
gate dielectric, and buried oxide, respectively.

B. Potential Solution for the Cylindrical GAA NW

For the cylindrical GAA NW, the device structure in this
paper is symmetrical in the θ-direction [Fig. 1(b)], and the

potential distribution φ(r, y) satisfies Poisson’s equation
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Ci = 2εi/(D · ln(1 + 2ti/D)) (4c)

φ(r, y = 0) = −φms (4d)

φ(r, y = Leff) = VDS − φms (4e)

where D and ti are the channel diameter and thickness of the
gate insulator, respectively. VGS is the voltage bias of the gate
terminal. Note that (4c) is the capacitance per unit length for an
infinitely long cylindrical capacitor, which neglects the fringing
effect of the field near the edges of the capacitor [11].

Similarly, this 2-D boundary value problem can be divided
into two subproblems, including 1-D Poisson’s equation and
2-D Laplace equation. Using the superposition principle, the
complete potential solution is φ = φ1 + φ2, where φ1 and φ2

are solutions of the 1- and 2-D subproblems, respectively.
Solving the boundary value problem in the cylindrical coordi-
nate [12], the solution can be expressed as

φ1(r) = Ar2 + B (5a)
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where Jν(x) is called the Bessel function of the first kind of
order ν [12]. λn can be determined by
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The coefficients kn and k′
n can be expressed as

kn =
2[(

Ci

λnεsi

)2

+ 1

]
· J2

0

(
λn

D

2

)
· sinh (λnLeff)

·
{

− A ·
[

1
λn

(
D

2

)3

· J1

(
λn

D

2

)

− 2

(
1
λn

)2 (
D

2

)2

· J2

(
λn

D

2

)]

+ (VDS − φms − B)
1
λn

D

2
· J1

(
λn

D

2

) }
(8a)



3044 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 11, NOVEMBER 2008

k′
n =

2[(
Ci

λnεsi

)2

+ 1

]
· J2

0

(
λn

D

2

)
· sinh(λnLeff)

·
{

− A ·
[

1
λn

(
D

2

)3

· J1

(
λn

D

2

)

− 2

(
1
λn

)2 (
D

2

)2

· J2

(
λn

D

2

)]

+ (−φms − B)
1
λn

D

2
· J1

(
λn

D

2

)}
. (8b)

C. Subthreshold Current Calculation and Verification

Using the channel potential solution, the subthreshold current
can be calculated by [13]

IDS =
qμn(kT/q)

(
n2

i /Na

)
[1−exp (−VDS/(kT/q))]
P

. (9a)

The denominator P in (9a) depends on the device structure
and channel potential distribution. For multigate MOSFETs,
P is calculated using the channel potential φ(x, y, z) for the
multigate structure

P =

Leff∫
0
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Hfin∫
0
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0

exp [qφ(x, y, z)/(kT )] dxdz

. (9b)

For the cylindrical GAA NW, P is calculated using the channel
potential φ(r, y)

P =
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0
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2π
D/2∫
0

r · exp [qφ(r, y)/(kT )] dr

. (9c)

The subthreshold current derived by (9) has been verified
by 3-D device simulation [14]. Fig. 2(a) and (b) compares
the derived subthreshold current with device simulation for
heavily doped and lightly doped devices, respectively. Note
that a smaller equivalent oxide thickness is used in the lightly
doped case to sustain the electrostatic integrity [2]. In addition,
we define the Vth as the gate voltage at which the calculated
subthreshold current IDS = 300 nA × Wtotal/Leff [15], where
Wtotal is the total width. For the multigate structure, Wtotal =
2Hfin + Wfin, and for the GAA NW, Wtotal = π · D. Since our
calculated subthreshold current is applicable for the subthresh-
old regime, we focus on the accuracy for VGS below Vth. For
heavily doped devices [Fig. 2(a)], the Vth is around 0.4 V, and
for lightly doped devices [Fig. 2(b)], the Vth is around 0.2 V. It
can be seen that our model shows satisfactory accuracy.

Compared with technology computer-aided design (TCAD)
device simulation, our methodology shows higher efficiency in
determining the subthreshold current and Vth of the multigate
structure and GAA NW. In our calculation, the CPU time
needed is less than 20% of that needed for TCAD simulation.
More importantly, this theoretical framework provides more
scalable and predictive results than experimental or TCAD
simulation does.

Fig. 2. Calculated subthreshold current compared with the result of 3-D
device simulation. (a) Heavily doped channel. (b) Lightly doped channel with
high-k dielectric (the dielectric constant of HfO2 is 25). A midgap workfunc-
tion is given for both heavily and lightly doped devices (4.5 eV).

III. SENSITIVITY OF GAA NW TO PROCESS VARIATIONS

To assess the sensitivity of GAA NW and multigate
MOSFETs to process variations, we assume that the device
parameters such as channel length (Leff), channel diameter (D)
of GAA NW, and fin width (Wfin) of multigate MOSFETs
vary by ±2.5 nm (±3σ value, with σ being the standard
deviation) [16]. This 3σ value is estimated from the combina-
tion of process variations such as lithography variation, etch
variation, and resist trim variation [16]. In addition, the impact
of dopant number fluctuation is crucial to Vth variation of
heavily doped devices. In this paper, we assess the Vth sen-
sitivity to dopant number fluctuation using our analytical Vth

model. We assume that the channel dopant number follows the
Poisson distribution [17] and that the σ of the dopant number
is n

1/2
a , where na is the average dopant number in the Si-

channel. The corresponding Vth variation for process variations
and dopant number fluctuation can be calculated as ΔVth =
[Vth(+3σ) − Vth(−3σ)]/2 [17].
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Fig. 3. Comparison of ΔVth caused by dopant number fluctuation
(ΔVth,RDF) between GAA NW and multigate MOSFETs (AR = 1 and 2).
Both heavily doped and lightly doped channels are considered.

To compare the GAA NW with multigate MOSFETs, the
total widths (Wtotal) of GAA NW (Wtotal = π · D) and multi-
gate MOSFETs (Wtotal = 2Hfin + Wfin) are equal to make
fair comparison. Multigate structures with various ARs (AR =
Hfin/Wfin) are considered, including FinFET (AR = 2) and
trigate (AR = 1) [10]. Devices with various channel dopings
are considered in this paper. For heavily doped devices, the
channel doping is equal to 6 × 1018 cm−3. For lightly doped
devices, the channel doping is equal to 1 × 1017 cm−3. More-
over, gate oxide (tox = 1 nm) is used for heavily doped devices,
while high-k dielectric (tHfO2 = 2 nm, and the dielectric con-
stant of HfO2 is 25) is used for lightly doped ones to sustain the
device electrostatics [2].

Fig. 3 shows the calculated ΔVth caused by dopant number
fluctuation (ΔVth,RDF) for Wtotal = 75 nm and Leff = 25 nm,
and the results are verified with device simulation [14]. The
ΔVth,RDF for GAA NW MOSFETs is larger than that for
multigate MOSFETs. This is because, for a given total width,
the GAA NW possesses smaller channel volume than FinFET
and trigate. Furthermore, it can be seen that for heavily doped
channels, the ΔVth,RDF is significantly larger than that for
lightly doped ones. The Vth dispersion due to dopant number
fluctuation is a crucial concern for heavily doped device design.

Fig. 4 shows the calculated ΔVth caused by Leff varia-
tion (ΔVth,Leff) for Wtotal = 75 nm and Leff = 25 nm. The
discrepancies of ΔVth,Leff for heavily doped devices are not
significant. For lightly doped channels, the ΔVth,Leff of GAA
NW is also close to that of FinFET. However, the ΔVth,Leff of
GAA NW is much smaller than that of trigate. The ΔVth,Leff is
determined by Vth roll-off characteristics. Fig. 5(a) shows that
for the heavily doped channel, the Vth roll-off characteristics
of the three devices are similar because channel doping reduces
the geometry dependence of electrostatic integrity. In Fig. 5(b),
the Vth roll-off characteristic of the lightly doped GAA MOS-
FET is close to that of the lightly doped FinFET.

Fig. 6 shows the calculated ΔVth caused by channel thick-
ness (tsi) variation (ΔVth,tsi) for Wtotal = 75 nm and Leff =
25 nm. Wfin and diameter variations are considered for multi-
gate MOSFETs and GAA NW, respectively. It can be seen that

Fig. 4. Comparison of ΔVth caused by Leff variation (ΔVth,Leff) between
GAA NW and multigate MOSFETs (AR = 1 and 2).

Fig. 5. Vth roll-off behaviors of GAA NW and multigate MOSFETs
(AR = 1 and 2). (a) Heavily doped channel. (b) Lightly doped channel with
high-k dielectric.

for the lightly doped channel, the ΔVth,tsi of GAA NW is
smaller than that of multigate MOSFETs. This is because the
surrounding gate structure of GAA NW reduces the channel
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Fig. 6. Comparison of ΔVth caused by channel thickness (tsi) variation
(ΔVth,tsi) between GAA NW and multigate MOSFETs (AR = 1 and 2). Wfin

variation and diameter variation are considered for multigate MOSFETs and
GAA NW, respectively.

Fig. 7. Comparison of Vth sensitivity to channel thickness for trigate
(AR = 1), GAA structure with a square cross section, and cylindrical
GAA NW.

thickness dependence of Vth. Fig. 7 shows that the GAA
structure with a square cross section (which possesses the same
channel volume as the cylindrical GAA structure) shows similar
Vth sensitivity (dVth/dWfin) as that (dVth/dD) of the cylindri-
cal GAA structure. Although multigate structures with higher
AR can be used to improve the immunity to Wfin variation,
Fig. 8 shows that with the scaling of Wtotal, the ΔVth,tsi of
GAA NW decreases more rapidly than that of FinFET.

To assess the overall Vth variation (ΔVth,total) for GAA NW
and multigate devices, we assume that variation sources such
as dopant number fluctuation, Leff variation, and channel thick-
ness variation are independent. The overall Vth variation can
then be calculated as ΔV 2

th,total = ΔV 2
th,RDF + ΔV 2

th,Leff +
ΔV 2

th,tsi. Fig. 9 compares the calculated ΔV 2
th,total of GAA

NW and AR = 2 FinFET for Wtotal = 75 nm and Leff =
25 nm. For the heavily doped channel, dopant number fluctu-
ation dominates the overall Vth dispersion, and the ΔVth,total

of GAA NW is larger than that of FinFET because of its smaller
channel volume. For the lightly doped channel, process-induced

Fig. 8. Model prediction of ΔVth,tsi dependence on total width (Wtotal) for
lightly doped GAA NW and FinFET (AR = 2 and AR = 3).

Fig. 9. Comparison of square of overall Vth variation (ΔV 2
th,total) between

GAA NW and AR = 2 FinFET. (a) Heavily doped channel. (b) Lightly doped
channel with high-k dielectric.

geometry variations dominate the overall Vth dispersion, and
the ΔVth,total of GAA NW is smaller than that of FinFET
because of its better immunity to channel thickness variation.
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One key physical effect neglected in our analysis is the
quantum–mechanical effect [18], [19]. Although the field con-
finement in the inversion layer may be significant for heavily
doped devices, our comparison regarding Vth dispersion be-
tween GAA NW and multigate devices is basically valid. This
is because the overall Vth dispersion for heavily doped devices
is dominated by dopant number fluctuation, which is mainly de-
termined by the channel volume. For lightly doped devices, the
surface electric field is not strong in the subthreshold regime,
and the field confinement may be neglected. However, when the
channel thickness is below 10 nm, the structural confinement
becomes significant for lightly doped devices [20], [21] and
has to be considered by self-consistent solution of Poisson and
Schrödinger equations.

IV. CONCLUSION

We have compared the sensitivity of GAA NW to process
variations with multigate structures using analytical solutions
of 3-D Poisson’s equation verified with device simulation.
The lightly doped GAA NW shows the smallest Vth variation
caused by process variation and dopant number fluctuation. In
particular, the GAA NW shows better immunity to channel
thickness variation than the multigate structure because of
its inherently superior surrounding gate structure. For heavily
doped devices, dopant number fluctuation may become the
dominant factor in the determination of overall Vth variation.
The Vth dispersion of GAA NW may therefore be larger than
that of multigate MOSFETs because of its larger surface-to-
volume ratio.
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