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A Study of Efficient Mining Algorithms of Frequent

Patterns on Data Streams

Student : Hua-Fu Li Advisor : Dr. Suh-Yin Lee

Department of Computer Science

National Chiao Tung University

Abstract

Online mining of data streams is an important data mining problem with broad applications.
However, it is a difficult problem since thesstreaming'data possess some specific characteristics,
such as unknown or unbounded léngth, possibly very fast arrival rate, inability to backtrack over
previously arrived transactions, and a lack of system control over the order in which data arrives.
Among various objectives of data stream mining; the mining of frequent patterns in data streams
has been the focus of knowledge discovery. In this dissertation, the design of several core
technologies for mining frequent patterns and changes of data streams is investigated.

For mining of frequent itemsets over data streams with a landmark window, we propose the
DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm to find the set of all frequent
itemsets over the entire history of the data streams. An effective projection method is used in the
proposed algorithm to extract the essential information from each incoming transaction of the
data streams. A data structure based on prefix tree is constructed to store data summary. DSM-FI
utilizes a top-down pattern selection approach to find the complete set of frequent itemsets.

Experiments show that DSM-FI outperforms BTS (Buffer-Trie-SetGen), a state-of-the-art
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single-pass algorithm, by one order of magnitude for discovering the set of all frequent itemsets
over a landmark window of data streams.

For mining of frequent itemsets in data streams with a sliding window, efficient bit vector
based algorithms are proposed. Two kinds of sliding windows, i.e., transaction-sensitive sliding
window and time-sensitive sliding window, are discussed. MFI-TransSW (Mining Frequent
Itemsets over a Transaction-sensitive Sliding Window) is developed to mine the set frequent
itemsets over data streams with a transaction-sensitive sliding window. A single-pass algorithm,
called MFI-TimeSW (Mining Frequent Itemsets over a Time-sensitive Sliding Window), based
on MFI-TransSW algorithm and a dynamic encoding method is proposed to mine the set of
frequent itemsets in a time-sensitive sliding window. An effective bit-sequence representation of
items is used in the proposed algorithms to reduce the time and memory needed to slide the
windows. Experiments show that the proposed algorithms not only attain highly accurate mining
results, but also run significantlyfaster ‘and consume léss memory than existing algorithms for
mining recent frequent itemsets over data streams.

For mining changes of items across two data streams, we propose two one-pass algorithms,
called MFC-append (Mining Frequency Changes of append-only data streams) and
MFC-dynamic (Mining Frequency Changes of dynamic data streams), to mine the set of frequent
frequency changed items, vibrated frequency changed items, and stable frequency changed items
across two continuous append-only and dynamic data streams, respectively. A new summary data
structure, called Change-Sketch, is developed to compute the frequency changes between two
data streams as fast as possible. Theoretical analysis and experimental results show that our
algorithms meet the major performance requirements, namely single-pass, bounded space

requirement, and real-time computing, in mining data streams.
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Mining path traversal patterns from Web click streams is important in Web usage mining and
Web user profiling. One of the most important We proposed two single-pass algorithms, called
DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark Window) and
DSM-TKP (Data Stream Mining for Top-K Path traversal patterns), to discover the path traversal
patterns over Web click-streams with and without a user-defined minimum support constraint.
Experiments of real data show that both algorithms successfully mine maximal reference
sequences with linear scalability.

Comprehensive experiments have been conducted to assess the performance of the proposed
algorithms. The empirical results show that these algorithms outperform the state-of-the-art
algorithms with respect to various mining parameters and datasets of different characteristics.
The scale-up experiments also verify that our algorithms successfully mine frequent patterns with

good linear scalability.
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Chapter 1 Introduction

1.1 Background

Data mining, which is also referred to as knowledge discovery in databases, has been
recognized as the process of extracting non-trivial, implicit, previously unknown and
potentially useful information or knowledge from large amounts of data. The typical data
mining tasks include association mining, sequential pattern mining, classification, and
clustering. The tasks help us to finding interesting patterns and regularities from the data.
Traditional data mining techniques assume the targeting databases are disk resident or could
be fit into the main memory. Hence, due to. the complexity of mining tasks, almost all data
mining algorithms require scanning the data several times.

Recently, database and knowledge discovery communities have focused on a new model
of data processing, where data arrtve in the form of continuous streams. It is often referred to
as data streams or streaming data. The new data model addresses the data explosion from two
new perspectives. First, the arrival of data streams and the volume of data are beyond our
capability to store them. For example, the network traffic information of a router, though
extremely important, is often impossible to record. Second, data streams processing requires
real-time constraint. Generally, the need to process the data timely prohibits rescanning the
data from secondary storage. For example, detecting network intrusion in real-time is the
necessary condition to prevent the damage. The new model has captured a large class of
important applications in current world, such as discovering the patterns of sensor data
generated from sensor networks, analyzing the transactional behaviors of transaction flows in
retail chains, mining user traversal behaviors from the Web record and click-streams,

protecting network securities, timely finding terrorist activities, monitoring call records in



telecommunications, analyzing stock and business data, and so on [6, 33].

In order to facilitate the following discussions, we will first introduce the streaming data
model in more detail. Data streams assume the data elements arrive in some order. Moreover,
the amount of data is often huge and can not be held in the main memory or even disks. This
means that once a new data element arrives, it must be processed quickly. In general, the
period for a data element staying in the main memory is quite short. Once a data element is
removed from the main memory, it is not available to be accessed again. In other words, we
can only have one look at the data.

Data mining over streaming data brings many new challenges [6]. The first challenge is
how to perform data mining tasks on data streams. Most of existing data mining algorithms
require scanning datasets multiple times, such as Apriori algorithm of association rule mining,
k-means of clustering, and C4.5 of decision tree construction. The new data model limits us to
have only one look at the data, or at. most to scan it onee. Further, the relatively small memory
compared with the large amount-of streaming-data results in the fact that we can only store a
concise summary or partial data of the data stteam. Therefore, getting precise results from
data streams is commonly impossible or very difficult. The challenge is how to design
efficient algorithms to get approximate results with high accuracy and confidence. The second
challenge is how to understand the changes of data streams. The data streams bring us much
new useful information to explore, such as the knowledge that if and when the underlying
distribution has changed for continuous data streams. An example is to find such products in
the retail chains that have become very popular recently in certain regions, but relatively
unpopular for quite a long time before. In conclusions, how to perform data mining tasks, how
to discover new knowledge, and how to mine changes of data streams make stream mining

very challenging.



1.2 Research Objectives and Contributions

The research objective of this dissertation is to investigate efficient and scalable algorithms
for mining frequent itemsets, path traversal patterns, and the changes of items over continuous

data streams.

The first research issue of this dissertation is the online mining of frequent itemset over
data streams. We propose the DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm
to find the set of all frequent itemsets over the entire history of the data streams. An effective
projection method is used in the proposed algorithm to extract the essential information from
each incoming transaction of data streams. A summary data structure based on the prefix tree
is constructed. DSM-FI utilizes a top-down pattern selection approach to find the complete set
of frequent itemsets. Experiments shew that DSM-FI outperforms BTS (Buffer-Trie-SetGen),
a state-of-the-art single-pass algorithm, by: one order of magnitude for discovering the set of
all frequent itemsets over a landmark window of data streams. For mining of frequent itemsets
in data streams with a sliding window,. we propose-an online algorithm, called MFI-TransSW
(Mining Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of
frequent itemsets in streaming data with a transaction-sensitive sliding window. Moreover,
another single-pass algorithm called MFI-TimeSW (Mining Frequent Itemsets over a
Time-sensitive Sliding Window) based on the proposed MFI-TransSW algorithm, is proposed
to mine the set of frequent itemsets in a time-sensitive sliding window. An effective
bit-sequence representation of items is used in the proposed algorithms to reduce the time and
memory needed to slide the windows. Experiments show that the proposed algorithms not
only attain highly accurate mining results, but also run significantly faster and consume less
memory than do existing algorithms for mining recent frequent itemsets over data streams.

The second research issue of the thesis is change mining of data streams. We define a

new problem of the online mining of changes of items across two data streams, and propose
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an one-pass algorithm, called MFC-append (Mining Frequency Changes of append-only data
streams), to mine the set of frequent frequency changed items, vibrated frequency changed
items, and stable frequency changed items across two continuous append-only data streams.
Furthermore, a single-pass algorithm, called MFC-dynamic (Mining Frequency Changes of
dynamic data streams) based on MFC-append, is proposed to mine the changes across two
dynamic data streams. A new summary data structure, called Change-Sketch, is developed to
compute the frequency changes between two data streams as fast as possible. Theoretical
analysis and experimental results show that our algorithms meet the major performance
requirements, namely single-pass, bounded space requirement, and real-time computing, in

mining streaming data.

The third issue of the work is the online mining of all path traversal patterns over Web
click-streams. We proposed the first single-pass algorithm, called DSM-PLW (Data Stream
Mining for Path traversal patterns’in a Landmark Window), to discover the path traversal
patterns over Web click-streams with.a user-defined minimum support constraint. Moreover,
we proposed the first online algorithm, called DSM-TKP (Data Stream Mining for Top-K
Path traversal patterns), to mine the set of top-K path traversal patterns without a
user-specified minimum support threshold. Experiments of real click-streams show that both

algorithms successfully mine maximal reference sequences with linear scalability.

All the proposed algorithms are verified by experiments of mining continuous streams of
various characteristics. In the experiments comprising comprehensive comparisons, the
proposed algorithms outperforms several related algorithms, and they all show excellent

linear scalability with respect to the size of the streaming data.

1.3 Organization of this Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we describe efficient



one-pass algorithms for mining frequent itemsets and maximal frequent itemsets in a
landmark window of data streams. Efficient single-pass algorithms for mining frequent
itemsets over stream sliding windows are delineated in Chapter 3. Chapter 4 addresses the
problem of mining of changes of items over append-only and dynamic data streams. Efficient
algorithms for mining path traversal patterns with a user-specified minimum support
constraint over Web click-streams are introduced in Chapter 5. The problem of mining top-K
path traversal patterns is discussed in Chapter 6. Finally, the conclusions and future work are

given in Chapter 7.



Chapter 2 Online Mining of Frequent Itemsets in Data Streams

In recent years, database and knowledge discovery communities have focused on a new data
model, where data arrive in the form of continuous streams. It is often referred to as data
streams or streaming data. Data streams possess some computational characteristics, such as
unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over
previously-arrived data elements (only one sequential pass over the data is permitted), and a
lack of system control over the order in which the data arrive [6]. Many applications generate
data streams in real time, such as sensor data generated from sensor networks, transaction
flows in retail chains, Web record and click-streams in Web applications, performance
measurement in network monitoring and traffic management, and call records in
telecommunications.

Online mining of data streams différs from traditional mining of static datasets in the
following aspects [6]. First, each data element in streaming data should be examined at most
once. Second, the memory usage for mining data streams should be bounded even though new
data elements are continuously generated from the stream. Third, each data element in the
stream should be processed as fast as possible. Fourth, the analytical results generated by the
online mining algorithms should be instantly available when requested by the users. Finally,
the frequency errors of outputs generated by the online algorithms should be as small as
possible. The online processing model of data streams is shown in Figure 2-1.

As described above, the continuous nature of streaming data makes it essential to use the
online algorithms which require only one scan over the data streams for knowledge discovery.
The unbounded characteristic makes it impossible to store all the data into the main memory

or even in secondary storage. This motivates the design of summary data structure with small



footprints that can support both one-time and continuous queries of streaming data. In other
words, one-pass algorithms for mining data streams have to sacrifice the exactness of its
analytical results by allowing some tolerable counting errors. Hence, traditional multiple-pass
techniques studied for mining static datasets are not feasible to mine patterns over streaming

data.

Synopsis
in Memory

JL

Stream
Mining |:$ (Approximate)

Processor Results

Data Streams

Figure 2- 1. Typical processing model of data streams

2.1 Introduction

Frequent itemsets mining is one of the most important research issues in data mining. The
problem of frequent itemsets mining of static datasets (not streaming data) was first
introduced by Agrawal et al. [2] described as follows. Let ¥ = {ij, i, ..., i} be a set of
literals, called items. Let database DB be a set of transactions, where each transaction 7
contains a set of items, such that 7 ¢ ¥ The size of database DB is the total number of
transactions in DB and is denoted by IDBI. A set of items is referred to as an itemset. An
itemset X with [ items is denoted by X = (x;x2... x;), such that X < ¥ The support of an
itemset X is the number of transactions in DB containing the itemset X as a subset, and
denoted by sup(X). An itemset X is frequent if sup(X) = minsup-|DB|, where minsup is a
user-specified minimum support threshold in the range of [0, 1]. Consequently, given a

database DB and a user-defined minimum support threshold minsup, the problem of mining
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frequent itemsets in static datasets is to find the set of all itemsets whose support is no less
than minsup-IDBI. In this paper, we will focus on the problem of mining frequent itemsets
over the entire history of data streams.

Many previous studies contributed to the efficient mining of frequent itemsets in
streaming data. According to the stream processing model [70], the research of mining
frequent itemsets in data streams can be divided into three categories: landmark windows,
sliding windows, and damped windows, as described briefly as follows. In the landmark
windows model, knowledge discovery is performed based on the values between a specific
timestamp called landmark and the present time. In the sliding windows model, knowledge
discovery is performed over a fixed number of recently generated data elements as the target
of data mining. In the damped windows model, recent sliding windows are more important
than previous ones.

In [53], Manku and Motmani.developed two single-pass algorithms, Sticky-Sampling
and Lossy Counting, to mine frequentiitems-over a landmark window. Moreover, Manku and
Motwani proposed the first single-pass-algorithm B7S (Buffer-Trie-SetGen) based on the
Lossy-Counting [53] to mine the set of frequent itemsets (FI) from streaming data. Chang and
Lee [11] proposed a BTS-based algorithm for mining frequent itemsets in sliding windows
model. Moreover, Chang and Lee [10] also developed another algorithm, called estDec, for
mining frequent itemsets in streaming data in which each transaction has a weight decreasing
with age. In other words, older transactions contribute less toward itemset frequencies, and it
is a kind of damped windows model. Teng et al. [63] proposed a regression-based algorithm,
called FTP-DS, to find frequent itemsets across multiple data streams in a sliding window. Lin
et al. [51] proposed an incremental mining algorithm to find the set of frequent itemsets in a
time-sensitive sliding window. Giannella et al. [31] proposed a frequent pattern tree

(abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine frequent itemsets at



multiple time granularities by a novel tilted-time windows technique. Yu et al. [68] discussed
the issues of false negative or false positive in mining frequent itemsets from high speed
transactional data streams. Jin and Agrawal [39] proposed an algorithm, called StreamMining,
for in-core frequent itemset mining over data streams. Chi et al. [18] proposed an algorithm,
called MOMENT, that might be the first to find frequent closed itemsets (FCI) from data
streams. A summary data structure called CET is used in the MOMENT algorithm to maintain
the information of closed frequent itemsets.

Because the focus of the chapter is on frequent itemses mining over data streams with a
landmark window, we mainly address this issue by comparison with the BTS algorithm
proposed by Manku and Motwani [53]. In the following, we describe the BTS algorithm in
detail. In the BTS algorithm, two estimated parameters: minimum support threshold s, and
maximum support error threshold g;.are used, where 0 < € < s < 1. The incoming data stream
is conceptually divided into buckets of width-w = [1/e] transactions each, and the current
length of the stream is denoted by V. transactions:

The BTS algorithm is composed-of three steps. In the first step, BTS repeatedly reads a
batch of buckets into main memory. In the second step, it decomposes each transaction within
the current bucket into a set of itemsets, and stores these itemsets into a summary data

structure D which contains a set of entries of the form (e, e.freq, e.A), where e is an itemset,
e.freq 1s an approximate frequency of the itemset e, and e.A is the maximum possible error in
e.freq.

For each itemset e extracted from the incoming transaction 7, BTS performs two
operations to maintain the summary data structure D. First, it counts the occurrences of e in
the current batch, and updates the value e.freq if the itemset e already exists in the structure D.
Second, BTS creates a new entry (e, e.freq, e.A) in D, if the itemset e does not occur in D, but

its estimated frequency e.freq in the batch is greater than or equal to lbatchl-€, where the value



of maximal possible error e.A is set to | Ibatchl-€ |, and Ibatchl denotes the total number of

transactions in the current batch. To bound the space requirement of D, BTS algorithm deletes
the updated entry e if e.freq + e.A < |batchl-¢. Finally, BTS outputs those entries e; in D, where
ei.freq = (s—€)-N, when a user requests a list of itemsets with the minimum support threshold s
and the support error threshold &.

The motivation of the proposed work is to develop a method that utilizes some
space-effective summary data structures to reduce the cost in mining frequent itemsets over
data streams. In this paper an efficient, single-pass algorithm, referred to as Data Stream
Mining for Frequent Itemsets (abbreviated as DSM-FI), is proposed to improve the efficiency
of frequent itemset mining in data streams. A new summary data structure called summary
frequent itemset forest (abbreviated as_SFI-forest) is developed for online incremental
maintaining of the essential information about.-the set of all frequent itemsets of data streams
generated so far.

The proposed algorithm DSM=FI-has three-important features: a single pass of streaming
data for counting the support of significant itemsets; an extended prefix tree-based, compact
pattern representation of summary data structure; and an effective and efficient search and
determination mechanism of frequent itemsets. Moreover, the frequency error guarantees
provided by DSM-FI algorithm is the same as that of BTS algorithm. The error guarantees are

stated as follows. First, all itemsets whose true support exceeds s-N are output. Second, no

itemsets whose true support is less than (s — €)-N is output. Finally, estimated supports of

itemsets are less than the true support by at most €-N.

The comprehensive experiments show that our algorithm is efficient on both sparse and
dense data, and scalable to the continuous data streams. Furthermore, DSM-FI algorithm
outperforms BTS, a state-of-the-art single-pass algorithm, by one order of magnitude for
discovering the set of all frequent itemsets over the entire history of the data streams.
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The remainder of the chapter is organized as follows. Section 2.2 defines the problem of
single-pass mining frequent itemsets in a landmark window over data streams. The proposed
DSM-FI algorithm is described in Section 2.3. The extended prefix tree-based summary data
structure SFI-forest is introduced to maintain the essential information about the set of all
frequent itemsets of the stream generated so far. Theoretical analysis and experiments are

presented in Section 2.4. We conclude the chapter in Section 2.5.

2.2 Problem Definition

Based on the estimation mechanism of the BTS algorithm, we propose a new, single-pass

algorithm to improve the efficiency of mining frequent itemsets over the entire history of data
streams when a user-specified minimum support threshold s € (0, 1), and a maximum support
error threshold € € (0, s) are given,

Let ¥= {iy, i», ..., in} be dsetof literals; called-items. An itemset is a nonempty set of
items. A [-itemset, denoted by (xqxp... X7), iS an itemset with / items. A transaction 7" consists
of a unique transaction identifier (fid)‘and a set of items, and denoted by <fid, (xix2... x4)>,
where x; € ¥, Vi =1, 2, ..., q. A basic window W consists of k transactions. The basic

windows are labeled with window identifier wid, starting from 1.

Definition 2-1 A data stream, DS = [W;, W,, ..., Wy), is an infinite sequence of basic
windows, where N is the window identifier of the “latest” basic window. The current length

of DS, written as DS.CL, is kN, i.e., IWil + W5l + --- + [Wal. The windows arrive in some

order (implicitly by arrival time or explicitly by timestamp), and may be seen only once.

Mining frequent itemsets in landmark windows over data streams is to mine the set of all
frequent itemsets from the transactions between a specified window identifier called landmark

and the current window identifier N. Note that the value of landmark is set to 1.
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To ensure the completeness of frequent itemsets for data streams, it is necessary to store
not only the information related to frequent itemsets, but also the information related to
infrequent ones. If the information about the currently infrequent itemsets were not stored,
such information would be lost. If these itemsets become frequent later on, it would be
impossible to figure out their correct support and their relationship with other itemsets. The
data stream mining algorithms have to sacrifice the exactness of the analytical results by
allowing some tolerable support errors since it is unrealistic to store all the streaming data into
the limited main memory. Hence, we define two types of support of an itemset, and divide the
itemsets embedded in the stream into three categories: frequent itemsets, significant itemsets,

and infrequent itemsets.

Definition 2-2 The frue support of an,itemset X, denoted by X.tsup, is the number of
transactions in the data stream containing the itemset X as a subset. The estimated support of
an itemset X, denoted by X.esup;is the estimated true support of X stored in the summary data

structure, where 0 < X.esup < X.tsup.

Definition 2-3 The current length (CL) of data stream with respect to an itemset X stored in

the summary data structure, denoted by X.CL, is (N—j+1)k, 1.e., IWjl + Wiyl + -+ + [Wpl,

where W; is the first basic window with the window identifier j stored in the current summary

data structure containing the itemset X, and N is the window identifier of current window.

Definition 2-4 An itemset X is frequent if X.tsup > s-X.CL. An itemset X is significant if

s-X.CL > X.tsup =2 € X.CL. An itemset X is infrequent if € X.CL > X.tsup.

Definition 2-5 A frequent itemset is maximal if it is not a subset of any other frequent

itemsets generated so far.

Therefore, given a data stream DS = [By, B, ..., By ), a user-defined minimum support
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threshold s in the range of [0, 1], and a user-specified maximum support error threshold € in
the range of [0, s], the problem of mining frequent itemsets in landmark windows over data

streams is to find the set of all frequent itemsets in single scan of the data stream.

2.3 The Proposed Algorithm: DSM-FI

The proposed DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm consists of four

steps.
(a) Read a basic window of transactions from the buffer in main memory, and sort
the items of transaction in the lexicographical order (Step 1).
(b) Construct and maintain the in-memory summary data structure (Step 2).
(c) Prune the infrequent information from the summary data structure (Step 3).
(d) Find the frequent itemsets from the summary data structure (Step 4).

Steps 1 and 2 are performed in sequence’for.a new incoming basic window. Step 3 is
performed after every basic window has been-processed. Finally, step 4 is usually performed
periodically or when it is needed. Since the reading of a basic window of transactions from
the buffer is straightforward, we shall henceforth focus on Steps 2, 3, and 4, and devise
algorithms for effective construction and maintenance of summary data structure, and

efficient determination of frequent itemsets.

2.3.1 Construction and Maintenance of Summary Data structure

In this section, we describe the algorithm which constructs and maintains the in-memory
summary data structure called SFI-forest (Summary Frequent Itemset forest).
Definition 2-6 A summary frequent itemset forest (SFI-forest) is a summary data structure

and is defined as follows.
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1. SFI-forest consists of a frequent item list (FI-list), and a set of summary frequent
itemset trees (SFI-trees) of item-prefixes, denoted by item-prefix.SFI-trees.

2. Each node in the item-prefix.SFI-tree consists of four fields: item-id, item-id.esup,
item-id.window-id, and item-id.node-link. The first field item-id is the item identifier
of the inserting item. The second field item-id.esup registers the number of
transactions represented by a portion of the path reaching the node with the item-id.
The value of the third field item-id.window-id assigned to a new node is the window
identifier of the current window. The final field item-id.node-link links up a node with
the next node with the same item-id in the same SFI-tree or null if there is none.

3. Each entry in the FI-list consists of four fields: item-id, item-id.esup,
item-id.window-id, and item-id.head-link. The item-id registers which item identifier
the entry represents, item-id.esup records the number of transactions containing the
item carrying the item-idythe value of item-id.window-id assigned to a new entry is the
window identifier of current window,-and item-id.head-link points to the root node of
the item-id.SFI-tree. Note that each entry with ifem-id in the Fl-list is an item-prefix
and it is also the root node of the item-id.SFI-tree.

4. Each item-prefix.SFl-tree has a specific opposite frequent item list (OFI-list) with
respect to the item-prefix, denoted by item-prefix.OFI-list. The item-prefix. OFI-list is
composed of four fields: item-id, item-id.esup, item-id.window-id, and
item-id.head-link. The item-prefix. OFI-list operates the same as the FI-list except that
the field head-link links to the first node with the same item-id in the
item-prefix.SFl-tree. Note that litem-prefix.OFI-listl = |FI-listl in the worst case,

where |FI-list] denotes the total number of entries in the FI-list.

Figure 2-2 outlines the SFI-forest construction of the proposed DSM-FI algorithm. First

of all, DSM-FI algorithm reads a transaction 7" from the current window By. Then, DSM-FI
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projects this transaction 7" into many sub-transactions, and inserts these sub-transactions into
the SFI-forest. The details of this projection are described as follows. A transaction T with m
items, such as (x;x;... xy), in the current window should be projected by inserting m
item-prefix sub-transactions into the SFI-forest. In other words, the transaction T = (x1x;... X;,)
is converted into m sub-transactions; that is, (x1xs... X)), (0X3... Xn), ...y, Kme1Xm), and (x;,).
These m sub-transactions are called item-prefix transactions, since the first item of each
sub-transaction is an item-prefix of the original transaction 7. This step, called transaction
projection, is denoted by TP(T) = {x|IT, xIT, ..., xIT, ..., x,|T}, where xiT = (xxjs1... Xm), Vi
=1, 2, ..., m. The projecting cost of a transaction of length m for constructing the summary

data structure SFI-forest is (m2+m)/2, ie., m + (m—1) + --- + 2 + 1. Recall that the

decomposing cost of a transaction with m items of BTS algorithm for constructing the
summary data structure is (2"-2). dn generals-the constructing cost of summary data structure
of our algorithm is extremely less than that of BTS algorithm.

After performing the transaction projection of the incoming transaction 7, DSM-FI
algorithm inserts 7 into the FI-list, and then removes T from the current window in the main
memory. Then, the items of these item-prefix transactions are inserted into the
item-prefixes.SFl-trees as branches, and the estimated support of the corresponding
item-prefixes.OFI-lists are updated. If an itemset shares a prefix of an itemset already in the
SFI-tree, the new itemset will share a prefix of the branch representing that itemset. In
addition, an estimated support counter is associated with each node in the tree. The counter is
updated when an item-prefix transaction causes the insertion of a new branch. Figure 2-3

shows the subroutines of SFI-forest construction and maintenance.

Example 2-1. Let the W; be a window with the landmark identifier j, and it contains six
transactions: < acdf >, < abe >, < df >, < cef >, < acdef > and < cef >, where a, b, ¢, d, e and f

are items in the data stream. The SFI-forest with respect to the first two transactions, < acdf >
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and < abe >, constructed by DSM-FI algorithm is described as follows. Note that each node of
the form (id: id.esup: id.wid) is composed of three fields: item-id, estimated support, and
window-id. For example, (a: 2: j) indicates that, from basic window W; to current basic

window Wy (1 £j < N), item a appeared twice.

Algorithm SFI-forest construction

Input: A data stream, DS = [B), By, ..., By) with landmark 1, a user-specified minimum
support threshold se (0, 1), and a maximum support error threshold € € (0, s).

Output: A SFI-forest generated so far.

I: Fl-list={}; /*initialize the FI-list to empty.*/

2: foreach window Bjdo /*j=1,2,...,N*/

3: foreach transaction 7= (xix2... x,) € B (j=1,2,...,N) do

/* m 2:1-and j is the current window identifier */

4: foreach item x; € T"do |7* the maintenance of FI-list */
5: if x; ¢ FI-list then
6: create a new. entry of form.(x;, 1, j, head-link) into the FI-list;

/* the entry formis (ifem-id, item-id.esup, window-id, head-link)*/
7 else /* the entry already exists in the FI-list*/
8: Xi.esup = x;.esup + 1;
/* increment the estimated support of item-id x; by one*/
9: end if
10: end for
11: call TP(T7, j);
/* project the transaction with each item-prefix x; for constructing the x;.SFI-tree */
12:  end for
13:  call SFI-forest-pruning(SFI-forest, €, N); /* Step 3 of DSM-FI algorithm */
14: end for

Figure 2- 2. Algorithm SFI-forest Construction

Subroutine TP /* Step 2 of DSM-FI algorithm: construct and maintain the SFI-forest */
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Input: A transaction T = (xx;... Xx,,,) and the current window-id j;

Output: x;.SFl-tree, Vi=1, 2, ..., m;

1: foreachitemux;, Vi=1,2, ..., m, do
2: SFI-tree-maintenance([x;jX], x;.SFI-tree, j);
/* X =x1, X2, ..., Xp 1S the original incoming transaction 7" */

/* [x;1X] is an item-prefix transaction with the item-prefix x;*/

3: end for

Subroutine SFI-tree-maintenance /* Step 2 of DSM-FI algorithm  */
Input: An item-prefix transaction (xixi;... X;;), the current window-id j, and x;.SFI-tree, where
i=1,2, ..., m;
Output: A modified x;.SFI-tree, where i=1, 2, ..., m;
1:  foreachitem x;do /* [=i+1,i+2,...,m*/
2: if x; ¢ x;,OFI-list then /* x; OFI-list maintenance */
3: create a new entry of form (x;, 1, J, head-link) into the x;.OFI-list;
/* the entry form is (item-id, item-id.esup, item-id.window-id,
item-id.head-link)*/
4: else /* the entry already exists in‘the x;.OFI-list */
5: xp.esup = x..esup + 1
/* increment the estimated support of item-id x; by one*/
6 end if
7:  endfor
8 foreach item x;, Vi =1, 2, ..., m, do /* x;.SFI-tree maintenance */
9 if SFI-tree has a child node with item-id y such that y.item-id = x;.item-id then
10: y.esup = y.esup +1; /*increment y’s estimated support by one*/
11: else create a new node of the form (x;, 1, j, node-link);
/* initialize the estimated support of the new node to one, and link its parent link to

SFI-tree, and its node-link linked to the nodes with same item-id via the node-link structure.

*/
12: end if
13: end for
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Subroutine SFI-forest-pruning /* Step 3 of DSM-FI algorithm: prune the infrequent
information from the SFI-forest */
Input: A SFi-forest, a user-specified maximum support error threshold €, and the current
window identifier N;
Output: A SFI-forest which contains the set of all significant and frequent itemsets.
1: foreach entry x; (i=1, 2, ..., d) € Fl-list, where d =IFI-listl do
if x; .esup < €.x;,CL then /* if x; is an infrequent item */
delete x;.SFI-tree;
delete the entry x; from the FI-list;
delete x; from other x;.OFI-list if it exists in x;.OFL-list G =1, 2, ..., d; j # 0);

AN A T

delete those nodes (item-id = x;) in other SFI-trees via node-link structures and
merge the fragmented sub-trees;
/* a simple way is to reinsert or to join the remainder sub-trees into the SFI-tree */;

7: end if

8: end for
Figure 2- 3. Subroutines of SFI-forest-construction algorithm
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Figure 2- 4. SFI-forest construction after processing the first transaction < acdf >

18



a.OFI-list

< [1]5 cOFIL-list d.OFI-list ~ eOFIlist  fOFHist D-OF[-list
d| 1 ali b el LT [DL] CIT]
£ 1] R
b|1]j
e |1]j
FI-list a:2j c:l;j d:1; f:1; b:1;j

1:
l l
f.SFI-tree e.SFI-tree

I-tree

g(_@. g -
9&@ :

d.SFI-tree

a.SFI-tree
c.SFI-tree

Figure 2- 5. SFI-forest construction after processing the second transaction < abe >

(a) First transaction < acdf >: First of'all, DSM-FI algorithm reads the first transaction and

calls the Transaction-Projection(< aedf >).. Then, DSM-FI inserts four item-prefix
transactions: <acdf>, <cdf>; <df>, and <f> into the FI-list, [a.SFI-tree, a.OFI-list],
[c.SFI-tree, c.OFlI-list], [d.SFI-tree, d.OFl-list},"and [f.SFI-tree, f.OFI-list], respectively.
The result is shown in Figure 2-4. In the following steps, the head-links of each

item-prefix.OFI-list are omitted for concise presentation.

(b) Second transaction <abe>: DSM-FI algorithm reads the second transaction and calls the

Transaction-Projection(<abe>). Next, DSM-FI inserts three item-prefix transactions:
<abe>, <be>, and <e> into the Fl-list, [a.SFI-tree, a.OFI-list], [b.SFI-tree, b.OFI-list], and
[e.SFI-tree, e.OFI-list], respectively. The result is shown in Figure 2-5. After processing

all the transactions of window W;, the SFI-forest generated so far is shown in Figure 2-6.

2.3.2 Pruning Infrequent Information from SFI-forest

According to the Apriori principle, only the frequent 1-itemsets are used to construct

candidate k-itemsets, where k > 2. Thus, the set of candidate itemsets containing the
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infrequent items stored in the summary data structure is pruned. The pruning is usually
performed periodically or when it is needed.

Let the maximum support error threshold be € in the range of [0, s], where s is a
user-defined minimum support threshold in the range of [0, 1]. The space pruning method of
DSM-FI is that the item x and its supersets are deleted from SFI-forest if x.esup < €-x.CL. For
each entry (x, x.esup, x.window-id, x.head-link) in the FI-list, if its x.esup is less than €-x.CL, it
can be regarded as an infrequent item. In this case, three operations are performed in sequence.
First, DSM-FI deletes the x.OFI-list, x.SFI-tree, and the infrequent entry x from the FI-list.
Second, DSM-FI removes the infrequent item x of other OFI-lists by traversing the FI-list.
Third, DSM-FI deletes the infrequent item x from other SFI-trees, and reconstructs these
SFI-trees. After pruning all infrequent items from SFI-forest, SFI-forest contains the set of all

frequent itemsets and significant itemsets of the.data.stream generated so far.
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Figure 2- 6. SFI-forest construction after processing the window W;
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Figure 2- 7. SFI-forest after pruning all infrequent items

Example 2-2: Let the maximum support error threshold € be 0.2. Hence, an itemset X is
infrequent in Figure 2-6 if X.esup <.€X.CL. Note thate-X.CL = 0.2-6 = 1.2. After computing
the current window W,, the next step of DSM=FLis to prune all the infrequent items from the
current SFI-forest. At this time, DSM-Fl-deletes  the b.SFI-tree, b.OFI-list, and item b itself
from the Fl-list, since item b is an infrequent item; that is, b.esup = 1 < 1.2. Then, DSM-FI
updates the a.OFI-list and reconstructs a.SFI-tree, because a.OFI-list and a.SFI-tree contains
the infrequent item b. The result is shown in Figure 2-7.

The next step of DSM-FI is to determine the set of all frequent itemsets from SFI-forest
constructed so far. The step is performed only when the current results of the data stream is
requested. Note that the number of candidate 2-itemsets is a performance bottleneck in the
Apriori-based frequent itemset mining algorithms [3, 35]. DSM-FI algorithm can avoid this
performance problem. This is because DSM-FI can generate all frequent 2-itemsets
immediately by combining the frequent items in the FI-list with the frequent items in the

corresponding OFI-list.
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2.3.3 Determining Frequent Itemsets from Current SFI-forest

Once SFI-forest containing all the frequent items of the data stream generated so far is
constructed, we can derive all the frequent itemsets by traversing the SFI-forest according to
the Apriori principle. Therefore, we propose an efficient mechanism called top-down frequent
itemset selection (todoFIS), as shown in Figure 2-8, for mining frequent itemsets. It is
especially useful in mining long frequent itemsets. The method is described as follows.

Assume that there are k frequent items, namely ey, e, ..., €, in the current FI-list, and
each item ¢;, Vi = 1, 2, ..., k, has an associated e;.OFI-list, where the size of e;.OFI-list is
denoted by le;.OFI-listl. Note that the items, namely oy, 02, ..., 0;, within the e; OFI-list are
denoted by e;.01, e;.0o, ..., €;.0j, respectively, where the value j equals to le; OFI-listl. For each
entry e¢;, Vi = 1, 2, ..., k, in the current,Fl+list, DSM-FI algorithm first generates a maximal
candidate itemset with (j+1) items, 1:e.;1(¢;e;.01€,.02". .€;.0;) by combining the item-prefix e;
with all frequent items in e;. OFI-list. Then; DSM-FI uses the following scheme to count its
estimated support.

First, we start with a specific frequent item e;.0; (1 <[ < j), whose estimated support is
smallest, and traverse the paths containing e;.0; via node-links of e;. SFI-tree to count the
estimated support of the candidate (ee;.0ie.02 ...e.0)). If the estimated support of the
candidate is greater than or equal to (s—€)- e;.CL, then it is a frequent itemset. All subsets of
this frequent itemset are also frequent itemsets according to the Apriori principle. Hence, the
complete set of the frequent itemsets stored in the e;.SFI-tree can be generated by enumeration
of all the combinations of the subsets of frequent (j+1)-itemset, (e;e;.01€,.07 ...e;.0;). On the
other hand, if the estimated support of the candidate (j+1)-itemset is less than the threshold
(s—€)- e;.CL, then it is not a frequent itemset. Now, we need to use the same mechanism to test
all the subsets of the (j+1)-itemset until the candidate 3-itemsets. This is because all frequent

2-itemsets can be generated by combining the item e; and the frequent items of the e;. OFI-list.
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Note that a (j+1)-itemset can be decomposed into C(j+1, j) j-itemsets. We decompose one
candidate j-itemset from the (j+1)-itemset at a time, and use the same scheme described above
to count the estimated support of this candidate j-itemset. Finally, all the maximal frequent
itemsets are maintained in a temporal MFI-list, called MFlemp-list, for efficient generation of
the set of all frequent itemsets. If such a MFlmp-list is obtained, all the frequent itemsets can
be generated efficiently by enumerating the set of all maximal frequent itemsets in the current
MFliemp-list without any candidate generation and support counting. Note that if the user
request is just to find the set of all maximal frequent itemsets so far, DSM-FI algorithm can

output all maximal frequent itemsets efficiently by scanning the MFlemp-list.

Example 2-3. Let the minimum support threshold s be 0.5. Therefore, an itemset X is frequent
in Figure 2-7 if X.esup = s-X.CL. Note that s:X.CL = 0.5-6 = 3 in this case. The online mining

steps of DSM-FI algorithm are describedsas follows.

(1) First of all, DSM-FI starts the frequentitemset mining scheme from the first frequent item
a (from left to right). At this moment, only item.@ is a frequent itemset, since the estimated
support of items ¢, d, e, and f in the a.OFI-list are less than s-a.CL, where s-a.CL = 3. Now,
DSM-FI stores the maximal frequent 1-itemset (a) into the MFlepp-list.

(2) Next, DSM-FI starts on the second entry ¢ for frequent itemset mining. DSM-FI generates
a candidate maximal 3-itemset (cef), and traverses the c.SFI-tree to count its estimated
support. As a result, the candidate (cef) is a maximal frequent itemset, since its estimated
support is 3 and it is not a subset of any other frequent itemsets in the MFIemp-list. Now,
DSM-FI stores the maximal frequent itemset (cef) into the MFliemp-list.

(3) Next, DSM-FI starts on the third entry d and generates a candidate maximal 2-itemset (df).
DSM-HI stores the itemset (df) into the MFlepp-list without traversing d.SFI-tree because
(df) is a frequent 2-itemset and is not a subset of any other maximal frequent itemsets

stored in the MFliepp-list.
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(4) On the fourth entry f, DSM-FI algorithm generates one frequent 1-itemset (f) directly,
since the f.OFI-list is empty. DSM-FI does not store it into the MFlemp-list, because (f) is a
subset of a generated maximal frequent itemset (cef).

Finally, on the fifth entry e, DSM-FI generates a frequent 2-itemset (ef) directly. However, the

frequent 2-itemset (ef) is a subset of a maximal frequent itemset (cef) stored in the MFiemp-list.

DSM-FI algorithm does not store it into the MFliemp-list.

Algorithm todoFIS

Input: A current SFI-forest, the current window identifier N, a minimum support threshold s,
and a maximum support error threshold €.

Output: A set of all frequent itemsets.

I:  MFlemp-list = &;

/* MFlemp-list is a temporary list'used to store the set of maximal frequent itemsets */

2:  foreach entry e in the current Fl-list do
3: construct a maximal candidate itemset E with size |El /* |El = 1+le.OFI-listl */
4: count E.esup by traversing the e.SFI-tree;
5: if E.esup > (s—€) -E.CL then
6: if E & MFlemp-list and E is not a subset of any other patterns in the
MFIemp-list
then
7: add E into the MFlemp-list;
8: remove E’s subsets from the MFlemp-list;
9: end if
10: else /* if E is not a frequent itemset */
11: enumerate £ into itemsets with size |El-1;
12: end if
13: until todoFIS finds the set of all frequent itemsets with respect to entry e;
14:  end for

Figure 2- 8. Algorithm todoFIS
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After processing all the entries in the Fl-list, the MFlmp-list generated by DSM-FI
algorithm contains the set of current maximal frequent iemsets: {(a), (cef), (df)}. Therefore,
the set of all frequent itemsets can be generated by enumerating the set: {(a), (cef), (df)}.

Consequently, the set of all frequent itemsets in Figure 2-7 are {(a), (cef), (ce), (cf), (ef), (¢),

(e), (N, (@), (d)}.

2.4 Theoretical Analysis

In this section, we discuss the upper bound of estimated support error of frequent itemsets
generated by DSM-FI algorithm, and the space upper bound of prefix-tree-based summary

data structure.

24.1 Maximum Estimated Support Error Analysis

In this section, we discuss the imaximum estimated- support error of all frequent itemsets
generated by DSM-FI algorithm. Let' X:wid be the window-id of itemset X stored in the
current SFI-forest. Assume that the'window contains k transactions. Let the maximum support
error threshold be €. Let the current window-id of the incoming stream be wid(N). Now, we
have the following theorem of maximum estimated support error guarantee of frequent

itemsets generated by the proposed algorithm.

Theorem 2-1 X.tsup — X.esup < € (X.wid —1)-k.

Proof: We prove by induction. Base case (X.wid = 1): X.tsup = X.esup. Thus, X.tsup — X.esup
<e(Xowid -1)-k.

Induction step: Consider an itemset of the form (X, X.esup, X.wid) that gets deleted for
some wid(N) > 1. The itemset is inserted in the SFI-forest when wid(N+1) is being processed.

The itemset X whose window-id is wid(N+1) in the FI-list could possibly have been deleted as
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late as the time when X.esup < € (wid(N+1)-X.wid+1)-k. Therefore, X.tsup of X when that
deletion occurred is no more than & (wid(N+1)—-X.wid+1)-k. Furthermore, X.esup is the
estimated true support of the itemset X since it is inserted. It follows that X.zsup, which is the
true support of X in the first window containing X though the current window, is at most
X.esup + € (wid(N) —1)-k. Thus, we have X.tsup — X.esup < €-(X.wid—1)-k. As a result, DSM-FI
generates no false negative.
U

Because our algorithm is a false-positive algorithm, the answers produced by DSM-FI
will have the following guarantees the same as those of BTS algorithm [53]:

(a) All itemsets whose true frequency exceeds s-N are output. There are no false

negatives.

(b) No itemsets whose true frequencysis less.thah. (s—&)-N is output.

(c) Estimated frequencies are less than the true frequencies by at most &N.
If it is desired that the error dose”not increase linearly with the value of window id, we can
modify the line 5 of algorithm todoFIS from “if E.esup = (s—&)-N then” to “if E.esup = s-N
then”. After that DSM-FI algorithm becomes a false-negative algorithm.

Note that a false-positive approach returns a set of itemsets that includes all frequent
itemsets but also some infrequent itemsets. A false-negative algorithm returns a set of itemsets

that does not include any infrequent itemsets but misses some frequent itemsets.

2.4.2 Space Requirement Analysis

In this section, we discuss the space upper bound of any single-pass algorithm for

constructing a summary data structure based on a prefix tree structure.

Theorem 2-2. A prefix tree-based summary data structure has at most 2" nodes for storing the

set of all frequent itemsets of data streams, when m frequent items are given.
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Proof: Let m be the number of frequent items, i.e., 1-itemsets, in the data stream generated so
far. Hence, the number of potential frequent itemsets is C(m, 1) regarding one item, C(m, 2)
regarding two items, ..., C(m, i) regarding i items, ..., and C(m, m) regarding m items
according to the Apriori heuristic. In a prefix tree-based summary data structure, an itemset is
represented by a path and its appearance support is maintained in the last node of the path.
Thus, there are C(m, 1) nodes in the first level, C(m, 2) nodes in the second level, ..., C(m, i)
nodes in the i-th level, ..., and C(m, m) nodes in the m-th level. There are totally C(m, 1) +

Cim, 2) + -+ + C(m, i) + -~ + C(m, m) nodes in the prefix tree-based summary data

structure. Consequently, the space upper bound of a prefix-tree based summary data structure

is 0(2™).

The construction cost of summary data structure of DSM-FI algorithm is extremely less
than that of BTS algorithm although theoretically, their worst case space complexities are

same, i.e., O(2"™), when m frequent.items are given.

2.5 Performance Evaluation

All the experiments are performed on a 1GHz IBM X24 with 384MB, and the program is
written in Microsoft Visual C++ 6.0. To evaluate the performance of algorithm DSM-FI, we
conduct the empirical studies based on the synthetic datasets. In Section 2.6.1, we report the
scalability study of algorithm DSM-FI. In Section 2.6.2, we compare the memory and
execution time requested by DSM-FI with BTS algorithm. The parameters of synthetic data

generated by IBM synthetic data generator [3] are described as follows.

IBM Synthetic Dataset: 710./5.D1M and 730.120.D1M. The first synthetic dataset 710.I5
has average transaction size T of 10 items and the average size of maximal frequent itemset /
is 5-items. It is a sparse dataset. In the second dataset 730.120, the average transaction size T
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and average size of maximal frequent itemset / are set to 30 and 20, respectively. It is a dense
dataset. Both synthetic datasets have 1,000,000 transactions. Items were drawn from a
universe of 10K distinct items. In the experiments, the synthetic data stream is broken into
basic windows of size 50K (i.e., 50,000 transactions) for simulating the continuous

characteristic of streaming data. Hence, there are total 20 windows in these experiments.

2.5.1 Scalability Study of DSM-FI Algorithm

In this experiment, we examine the two primary factors, execution time and memory usage, to
discover frequent itemsets in a data stream environment, since both should be bounded online
as time advances. Therefore, in Figure 2-9(a), the execution time grows smoothly as the
dataset size increases from 2,000K to 10,000K. The default value of minimum support
threshold s is 0.01%. The memory usage in Figute 2-9(b) for both synthetic datasets is stable
as time progresses, indicating the-scalability and feasibility of algorithm DSM-FI. Notice that,

the synthetic data stream used in-Figure 2-9(b)is divided into 20 basic windows each of 50K.

1800

1500 ——T10.I5
—8—T30.120

1200 |

900

600

Execution Time (Sec.)

300

0
2000K 4000K 6000K 8000K 10000K

Number of Incoming Transactions
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Figure 2- 10. Comparison of DSM-Fl'and BTS: (a) Execution time, (b) Memory Usage

2.5.2 Comparison with BTS algorithm

In this experiment, we examine the execution time and memory usage between DSM-FI and
BTS by dataset 730./120.D1M. In Figure 2-10 (a), we can see that the execution time incurred
by DSM-FI is quite steady and is less than that of BTS. The experiment shows that DSM-FI
performs more efficiently than BTS algorithm. In Figure 2-10 (b), the memory usage of
DSM-FI is more stable and extremely less than that of BTS. It also shows that DSM-FI

algorithm is more suitable for mining frequent itemsets in large-scale data streams.

2.6 Conclusions

In this chapter, we proposed a new, single-pass algorithm, called DSM-FI (Data Stream

Mining for Frequent Itemsets), which mines the set of all frequent itemsets in the landmark
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model of data streams. In the DSM-FI algorithm, a new in-memory summary data structure,
called SFI-forest (Summary Frequent Itemset forest), is constructed for storing the frequent
and significant itemsets of the streaming data generated so far. An efficient frequent itemset
search mechanism, called todoFIS (top-down Frequent Itemset Selection), is developed to
find the set of all frequent itemsets from the current SFI-forest. Experiments tested on
synthetic data streams show that DSM-FI is efficient on both sparse and dense datasets, and
demonstrates linear scalability to very long data streams. Moreover, DSM-FI outperforms the
well-known, single-pass algorithm - BTS - for mining frequent itemsets over the entire history

of the streaming data.
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Chapter 3 Online Mining of Frequent Itemsets over Stream

Sliding Windows

Many previous studies contributed to the efficient mining of frequent items [12, 20, 22, 39, 40,
54] and frequent itemsets (FI) in streaming data [10, 11, 18, 21, 31, 51, 53, 63, 64, 68].
According to the stream processing model [70], the research of mining frequent itemsets in
data streams can be divided into three categories: landmark windows, sliding windows, and
damped windows, as described briefly as follows. In the landmark window model, knowledge
discovery is performed based on the values between a specific timestamp called landmark and
the present. In the sliding window model, knowledge discovery is performed over a fixed
number of recently generated data elements.whichis the target of data mining. Two types of
sliding widow, i.e., transaction- 'Sensitive sliding window (TransSW) and time-sensitive
sliding window (TimeSW), are used.in’ mining data streams. The basic processing unit of
window sliding of first type is an expired transaction while the basic unit of window sliding of
second type is a time unit, such as a minute or an hour. The sliding windows are shown in
Figure 3-1. In the damped window model, recent sliding windows are more important than

previous ones.

Stream \ (I « 0

T | : T?wrent

T : : TCurrent

T | : ‘TCurrent

System start

TransSW: Mining frequent itemsets from only the latest w transactions
TimeSW: Mining frequent itemsets from only the latest w time units

Figure 3- 1. Transaction-sensitive sliding window and time-sensitive sliding window [51]
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3.1 Introduction

In [53], Manku and Motwani developed two single-pass algorithms, Sticky-Sampling and
Lossy Counting, to mine frequent items over offline data streams with a landmark window.
Moreover, Manku and Motwani proposed the BTS (Buffer- Trie-SetGen) algorithm based on
Lossy Counting for mining the set of frequent itemsets from offline data streams. Jin and
Agrawal [39] proposed an algorithm, called StreamMining, for in-core frequent itemset
mining over online data streams. Yu et al. [68] discussed the issues of false negative or false
positive in mining frequent itemsets from high speed offline transactional data streams.

Chang and Lee [11] proposed a BTS-based algorithm, called SWFI-stream, for mining
frequent itemsets in online data streams with a transaction-sensitive sliding windows model.
Teng et al. [63] proposed a regression-<based algorithm, called FTP-DS, to find temporal
patterns (frequent inter-transaction [itemsets) across multiple online data streams in a
time-sensitive sliding window. Teng et al.“[64] proposed a resource-aware algorithm called
RAM-DS, to mine temporal pattetns in multiple online data streams with a time-sensitive
sliding window. Lin et al. [14] proposed an incremental mining algorithm to find the set of
frequent itemsets in offline data streams with a time-sensitive sliding window. Chi et al. [18]
proposed a transaction-sensitive sliding window based algorithm, called MOMENT, which
might be the first to find frequent closed itemsets (FCI) from online data streams with a
transaction- sensitive sliding window. A summary data structure, called CET, is used in the
MOMENT algorithm to maintain the information of closed frequent itemsets.

Chang and Lee [10] developed a damped window based algorithm, called estDec, for
mining frequent itemsets in online streaming data in which each transaction has a weight
decreasing with age. In other words, older transactions contribute less toward itemset
frequencies, and it is a kind of damped windows model. Giannella et al. [31] proposed a

frequent pattern tree (abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine
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frequent itemsets at multiple time granularities by a novel tilted-time windows technique.
FP-stream focuses on offline data streams.

The first target of this chapter is on frequent itemsets mining over online data streams
with a transaction-sensitive sliding window. An efficient algorithm, called MFI-TransSW
(Mining Frequent Itemsets over Transaction-sensitive Sliding Windows), is proposed to mine
frequent itemsets over online data streams with a transaction-sensitive sliding window. The
experiments show that the MFI-TransSW algorithm not only attain highly accurate mining
results, but also run significant faster and consume less memory than that of SWFI-stream
algorithm [11] for mining frequent itemsets over recent data streams. The second purpose of
the chapter is to mine frequent itemsets over online data streams with a time-sensitive sliding
window. A MFI-TransSW based algorithm, called MFI-TimeSW (Mining Frequent Itemsets
over Time-sensitive Sliding Windows), is developed for mining frequent itemsets over online
data streams with a time-sensitive sliding window.

The remainder of this chapter is lerganized-as follows. The problem of frequent itemsets
mining in a transaction-sensitive sliding window is defined in Section 3.2. The algorithm
MFI-TransSW is proposed in Section 3.3. Experiments of MFI-TransSW algorithm are
discussed in Section 3.4. The issue of mining in a time-sensitive sliding window is defined
and algorithm MFI-TimeSW is proposed in Section 3.5 and Section 3.6, respectively. Finally,

we conclude this chapter in Section 3.7.

3.2 Problem Definition: Mining Frequent Itemsets in a TransSW

LetW = {i, ip, ..., i,,} be a set of items. A transaction 7 = (tid, x;x>'*x,), x; € ¥, for 1 <i<n,

is a set of items, while n is called the size of the transaction, and tid is the unique identifier of
the transaction. An itemset is a non-empty set of items. An itemset with size k is called a

k-itemset. A transaction data stream 7DS = T, T, ..., Ty is a continuous sequence of
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transactions, where N is the tid of latest incoming transaction 7.
A transaction-sensitive sliding window (7ransSW) in the transaction data stream is a
window that slides forward for every transaction. The window at each slide has a fixed

number, w, of transactions, and w is called the size of the window. Hence, the current

transaction-sensitive sliding window is TransSWx w+1 = [Tn-w+1, TN-w+2, ..., Tn], where

N—w+1 is the window id of current TransSW. The support of an itemset X over TransSW,

TransSW 15 the number of transactions in TransSW containing X as a subset.

denoted as sup(X)
An itemset X is called a frequent itemset (FI) if sup(X)"“™*" > s.w, where s is a user-defined
minimum support threshold (MST) in the range of [0, 1]. The value s-w is called the frequent
threshold of TransSW (FT""***").

Given a transaction-sensitive sliding window TransSW, and a MST s, the problem of

online mining of frequent itemsets in_recentitransaction data streams is to mine the set of all

frequent itemsets by one scan of'the TransSW-.

Transaction Data Stream | FIsiin TransSW, FIs in TransSW,
<Ti, (acd) > (@), (b), (0), (e), (ac), | (b), (c), (e), (bc), (be),
<T, (bce) > (be), (be), (ce), (bce) | (ce), (bce)
v <T3;, (abce) >
<Ty, (be) >

A transaction data stream is formed by transactions arriving in series

Figure 3- 2. An example transaction data stream and the frequent itemsets over two
consecutive TransSWs

Example 3-1 Let the first four transactions in a transaction data stream be <77, (acd)>, <T>,
(bce)>, <T;, (abce)>, and <Ty, (be)>, where T, T», T5, and T, are transactions and a, b, c, d,
and e are items. Let the size of sliding window w be 3 and the user-defined minimum support
threshold s be 0.6. Hence, the transaction data stream consists of two transaction-sensitive

sliding windows, i.e., TransSW, = [T, T,, T3] and TransSW, = [T,, T3, T4], where first
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window TransSW, contains the transactions 7, T», and T3, and the second window TransSW>

contains the transactions 75, T3, and T4. The example is shown in Figure 3-2.

In Figure 3-2, the frequent itemsets in TransSW; are (a), (b), (¢), (e), (ac), (bc), (be), (ce),
and (bce), and the frequent itemsets in TransSW, are (b), (c), (e), (d), (bc), (be), (ce), and (bce).
In this instance, we can find that itemsets (a) and (ac) are frequent itemsets in TransSW,, but

not frequent ones in TransSW,.

3.3 The Proposed Algorithm: MFI-TransSW

In this section, we proposed an efficient single-pass algorithm, called MFI-TransSW (Mining
Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of all
frequent itemsets in data streams with a transaction-sensitive sliding window. An effective
bit-sequence representation of items is usé€d in‘the proposed algorithm to reduce the time and

memory needed to slide the windows.

3.3.1 Bit-Sequence Representation

In the proposed MFI-TransSW algorithm, for each item X in the current transaction-sensitive
sliding window TransSW, a bit-sequence with w bits, denoted as Bit(X), is constructed. If an
item X is in the i-th transaction of current TransSW, the i-th bit of Bit(X) is set to be 1;
otherwise, it is set to be 0. The process is called bit-sequence transform.

For example, in Figure 3-2, the first sliding window TransSW; consists of three
transactions: <71, (acd) >, <T», (bce) >, and <T3, (abce) >, but the TransSW, consists of
transactions: <7, (bce) >, <Ts, (abce) >, and <T4, (be) >. Because item a appears in the Ist
and 3rd transactions of TransSWj, the bit-sequence of a, Bit(a), is 101. Similarly, Bit(b) =

011, Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011.
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3.3.2 The MFI-TransSW Algorithm

MFI-TransSW algorithm consists of three phases, window initialization phase, window sliding
phase, and frequent itemsets generation phase.
3.3.2.1 Window Initialization Phase
The phase is activated while the number of transactions generated so far in a transaction data
stream is less than or equal to a user-predefined sliding window size w. In this phase, each
item in the new incoming transaction is transformed into its bit-sequence representation.

For instance, in Figure 3-3, the first sliding window TransSW, contains three transactions:
Ty, T, and T3. The bit-sequences of items of TransSW; in the window initialization phase are

shown in Figure 3-4.

Window-id | Transactions Bit=Sequences of items
TransSW, <T, (acd) > Bit(a) = 101, Bit(c) = 111, Bit(d) = 100,
<T,, (bee).> Bit(h) = 011, Bit(e) =011

<T;, (abce) >
TransSW, <T>, (bce) > Bit(a) = 010, Bit(c) = 110, Bitteh—=-000,
<T;, (abce) > | Bit(b) =111, Bit(e) = 111

<Ty, (bE) >

Figure 3- 3. Bit-sequences of items in window initialization phase of TransSW

tid Items Bit-Sequences in current TransSW,

T, (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100

T, (bce) Bit(a)=100,Bit(c)=110,Bit(d)=100,Bit(»)=010,
Bit(e)=010

T; (abce) Bit(a)=101,Bit(c)=111,Bit(d)=100, Bit(b)=011,
Bit(e)=011

Figure 3- 4. Bit-sequences of items after sliding TransSW; to TransSW,
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3.3.2.2 Window Sliding Phase

The phase is activated after the sliding window TransSW becomes full. A new incoming
transaction is appended to the sliding window, and the oldest transaction is removed from the
window.

For removing oldest information, an efficient method is used in the proposed algorithm.
Based on the bit-sequence representation, MFI-TransSW algorithm uses the bitwise left shift
operation to remove the aged transaction from the set of items in the current sliding window.
After sliding the window, an effective pruning method, called Item-Prune, is used to improve
the memory usage. The pruning approach is that an item X in the current transaction-sensitive
sliding window is dropped if sup(X)"™™*" = 0.

For example, in Figure 3-2, before the fourth transaction <74, (be)> is processed, the first
transaction 7} must be removed ftom the current window using bitwise left shift on the set of
items. Hence, Bit(a) is modified from 101 to 010. Similarly, Bit(c)=110, Bit(d)=000,
Bit()=110, and Bit(e)=110. Then the-new transaction <7y, (be)> is processed by
bit-sequence transform. The result is shown‘in Figure 3-4. Note that item d is dropped since

Bit(d)=000, i.e., sup(d)""*" = 0.

Algorithm MFI-TransSW
Input: 7DS (a transaction data stream), s (a user-defined minimum support threshold in the
range of [0, 1]), and w (the user-specified sliding window size).
Output: a set of frequent itemsets, FI-Output.
Begin
TransSW = NULL; /* TransSW consists of w transactions */
Repeat:

for each incoming transaction 7; in TransSW do

38



if TransSW = FULL then

Do bitwise-shift on bit-sequences of all items in TransSW;

else
for each item X in T; do
Do bit-sequence transform(X);
end for
end if
end for

for each bit-sequence Bit(X) in TransSW do
if sup(X) = 0 then
Drop X from TransSW;
end if
end for
/* The following is the frequent itemsets generation phase. The phase is performed only when
requested:by users. */
FI, = {frequent 1-itemsets};
for (k=2; FI;_1#= NULL; k++) do
Cly = CIGA(FLy);
Do bitwise AND to find the supports of Cly;
for each candidate ¢, € ‘CI/do
if sup(ci)"5Y > w-s then
FL. = {ci € CL | sup(cp)™™ W > w-s);
end if
end for
end for
FI-Output = U (Fl;
End

Figure 3- 5. Algorithm MFI-TransSW
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Transactions in Bit-Sequences in FI, in TransSW, (s = 0.6) sup
TransSW, TransSW,
<T>,, (bce) > Bit(a) = 010 {(b) | Bit(b) =111} 3
<T3, (abce) > Bit(c) =110 {(c) | Bit(c) = 110} 2
<Ty, (be) > Bit(b) =111 {(e) | Bit(e) = 111} 3
Bit(e) = 111
CL in SW, FL, in TransSW, sup
{(bc) | Bit(b) = 111 AND Bit(c) = 110} {(bc) | Bit(bc) = 110} 2
{(be) | Bit(b) = 111 AND Bit(e) = 111} {(be) | Bit(be) = 111} 3
{(ce) | Bit(c) = 110 AND Bit(e) = 111} {(ce) | Bit(ce) = 110} 2
CL; in TransSW, FIL; in TransSW, sup
{(bce) | Bit(bc) = 110 AND Bit(be) = {(bce) | Bit(bce) = 110} 2
111 AND Bit(ce) = 110}

Figure 3- 6. Steps of frequent itemsets generation in TransSW,

3.3.2.3 Frequent Itemsets Generation Phase

The phase is performed only when the up-to-date set of frequent itemsets is requested. In this
phase, MFI-TransSW algorithm uses a level-wise method to generate the set of candidate
itemsets CI; (candidate itemsets with k items) from the pre-known frequent itemsets FI;_;
(frequent itemsets with k-1 items) according to the Apriori property [3]". The step is called
CIGA (Candidate Itemset Generation using Apriori property). Then, the proposed algorithm
uses the bitwise AND operation to compute the support (the number of bit 1) of these
candidates in order to find the frequent k-itemsets FI;. The candidate-generation-then-testing
process stops when no new candidates with k+1 items (Cliy;) are generated. The
MFI-TransSW algorithm is shown in Figure 3-5.

For instance, consider the bit-sequences of TransSW; in Figure 3-4, and let the minimum

! It is a downward closure property, i.c., if a pattern is frequent, all of its sub-patterns will
also be frequent.
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support threshold s be 0.6. Hence, an itemset X is frequent if sup(X)"***" > 0.6-3 = 1.8. In the
following, we discuss the step of frequent itemset mining of TransSW,. The generated patterns
are shown in Figure 3-2.

First, MFI-TransSW algorithm generates three candidate 2-itemsets, (bc), (be) and (ce),
by combining frequent 1-itemsets: (b), (c) and (e), where Bit(b) = 111, i.e., sup(b) = 3, Bit(c)
= 110, i.e., sup(c) = 2, and Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an infrequent
itemset, since its Bit(a) = 010, i.e., sup(a) = 1. All other candidates are frequent itemsets after
using bitwise AND operations to count the supports of these candidates. Because the Bit(bc)
is 110, the support of candidate 2-itemset bc are 2, i.e., sup(bc) = 2. Similarity, sup(be) = 3,
and sup(ce) = 2. Second, MFI-TransSW generates one candidate 3-itemset (bce) according to
Apriori property and uses bitwise AND operation to count the sup(bce) =2, i.e., Bit(bc) AND
Bit(be) AND Bit(ce) = 110.. Because no. new candidates are generated, the
generation-then-test process stops. Hence, there are six frequent itemsets, (b), (¢), (bc), (be),
(ce), (bce), generated by MFI-TransSW-algorithm ' in TransSW,. The process is shown in

Figure 3-6.

3.4 Problem Definition: Mining Frequent Itemsets in a TimeSW

Let ¥ = {iy, i2, ..., i} be a set of items. An itemset is a non-empty set of items. An itemset
with size k is called a k-itemset. A transaction data stream 7DS = Ty, T, ..., Ty is a
continuous sequence of transactions, where N is the transaction identifier of latest incoming
transaction Ty. A transaction 7 = (TUid, Tid, itemset), where TUid is the identifier of the time
unit, and 7id is the identifier of the transaction.

A time-sensitive sliding window (7imeSW) in the transaction data stream is a window
that slides forward for every time unit (TU). Each time unit TU; consists of a variable number,

ITU;l, of transactions, and ITU;l is also called the size of the time unit. Hence, the current
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time-sensitive sliding window with w time units is TimeSWy +; = [TUN-y+1, TUN—y12, .-,

TUy], where N—w+1 is the id of time unit of current TimeSW, and N is the TUid of latest time
unit 7Uy. The window at each slide has a fixed number, w, of time units. The value w =

|TUpN-p41l + ITUn- 40l + -+ + |ITUy is called the size of the time-sensitive sliding window and

denoted as |TimeSWI.

TimeSW 45 the number of

The support of an itemset X over TimeSW, denoted as sup(X)
transactions in 7imeSW containing X as a subset. An itemset X is called a frequent itemset

(FI) if sup(X)™V > s-|TimeSWI, where s is a user-defined minimum support threshold (MST)

in the range of [0, 1]. The value s-17imeSWI is called the frequent threshold of TimeSW
( FTTimeSW)_

Given a time-sensitive sliding window: ;LimeSW, and a MST s, the problem of online
mining of frequent itemsets in recent transaction data'streams is to mine the set of all frequent

itemsets by one scan of the TimeSW.

Example 3-2 Let the size of the time-sensitive sliding window w be 3 and the user-defined
minimum support threshold s be 0.5. Figure 3-7 records the transactions that arrive in the
stream in two successive windows, TimeSW, = [T}, T», T3, T4, Ts, Ts, T7] and TimeSW> = [T,
Ts, Ts, T7, Tg, To]. The first window TimeSW, contains seven transactions and the frequent

threshold FT = 0.6-7 = 3.5. The second window TimeSW, contains six transactions and the FT

=0.5-6 =3.

In Figure 3-7, the frequent itemsets in 7imeSW; are (b), (¢), (e), (bc), (be) and (ce), and

the frequent itemsets in TimeSW, are (a), (¢), (d), (e), (ac), (ae) and (ce).
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Transaction Data Stream FIs in TimeSW, FIs in TimeSW,
<TU,, T;, (be) > (@), (b), (¢), (e), (ac), | (@), (b), (c), (d),
<TU,, T,, (bce) > (be), (be), (ce), (bce) | (e), (ac), (ae), (ce)
<TU,, T3, (bce)>
<TU,, T,, (acd)>
<TU,, Ts, (abce)>
<TUs, Ts, (abce)>
<TUs, T5, (ace)>
<TU,, Ty, (bcde)>
<TU,, T9, (Cd€)>

‘MSMI]

MSoui]

Figure 3- 7. An example transaction data stream and the frequent itemsets over two
time-sensitive sliding windows

3.5 The Proposed Algorithm: MFI-TimeSW

Based on the MFI-TransSW algorithm, a time-sensitive sliding window-based algorithm

MFI-TimeSW (Mining Frequent Itemsets in a Time-sensitive Sliding Window) is proposed in

this section.

3.5.1 Time Unit List and Bit-Sequences of Items

For mining frequent itemsets over a time-sensitive sliding window, a time unit list (TU-list) is
developed in the MFI-TimeSW algorithm. A TU-list consists of a list of time unit entries,
where each time unit entry records the size of the time unit, i.e., TU-list = < (TUid, ITUy-,y+1),
(TUid, ITUn-y+2)), -+, (TUid, \TUy1)>.

The bit-sequence transform process of MFI-TimeSW algorithm is described as follows.
For each item X in the current time-sensitive stream sliding window TimeSWy_,.+1, a

TimeSWN-w+1 is constructed. If an item

bit-sequence with 1TimeSWy_,, .1l bits, denoted as Bit(X)
X is in the i-th transaction of TimeSWy_,+1, the i-th bit of Bit(X)"™W N++1 s get to be 1;

otherwise, it is set to be 0.
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For example, in Figure 3-7, the first sliding window TimeSW; consists of seven
transactions: <TU,, T, (be)>, <TU,, T, (bce)>, <TU,, T3, (bce)>, <TU,, Ty, (acd)>, <TU,, Ts,
(abce)>, <TUs, Tg, (abce)>, and <TUs, T7, (ace)>, but the second window TimeSW, consists
of six transactions: <TU,, Ty, (acd)>, <TU,, Ts, (abce)>, <TUs, Te, (abce)>, <TUs, T7, (ace)>,
<TU,, Tg, (bce)>, and <TUy, T,, (cde)>. Because item a appears in the fourth, fifth, sixth and
seventh transactions of TimeSW), the bit-sequence of a, Bit(a)"*"!, is 0001111. Similarly,
Bit(h)""*"1=1110110, Bit(c)"™*"=0111111, Bit(d)"*"'=0001000, and Bit(e)""*"! =
1110111. After sliding one time unit of TimeSW, the set of bit-sequences of items is changed,
ie., Bit(@™ " = 111100, Bit(b)""*"? = 011010, Bit(c)""**"* = 111111, Bit(d)""*"? =

100011, and Bit(e) ™" = 011111.

3.5.2 The MFI-TimeSW Algorithm

The MFI-TimeSW algorithm is composed of three phases, window initialization phase (phase

1), window sliding phase (phase 2), and frequent.itemsets generation phase (phase 3).
3.5.2.1 Window Initialization Phase

The window initialization phase of MFI-TimeSW algorithm is activated while the number of
time units generated so far in a transaction data stream is less than or equal to a
user-predefined time-sensitive sliding window size w (i.e., w time units). In this phase, each
item X of a new incoming transaction is transformed into its bit-sequence representation
Bit(x) eV,

For example, in Figure 3-7, the sliding window TimeSW, contains seven transactions: 77,
T,, T5, T4, Ts, Ts, and T7. The bit-sequence transform of items of TimeSW; are shown in

Figure 3-8.
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3.5.2.2 Window Sliding Phase

The window sliding phase of MFI-TimeSW algorithm is activated after the sliding window
TimeSW becomes full, i.e., TimeSW contains w time units. A new time unit 7Uyy; is appended
to the time-sensitive sliding window, and the oldest time unit 7Uy_,. is removed from the
window.

For removing oldest information, an efficient method is used in the proposed algorithm.
Based on the bit-sequence representation, MFI-TimeSW algorithm uses the bitwise left shift
operation to remove the aged time unit from current time-sensitive sliding window. If the
aged time unit 7Un-,+ contains d transactions, MFI-TimeSW performs d times of bitwise left
shift operation on the current sliding window. After sliding the window, an effective pruning
method, called Item-Prune, is used to improve.the memory usage. The pruning approach is
that an item X in the current timessensitivé Sliding window is dropped if sup(X)"™*" = 0.

For example, in Figure 3-7;before processing the fourth time unit which consists of two
transactions, <TUy,, T, (bede)> and <TU,, Ty, (cde)>, the first time unit (7U;) which consists
of three transactions (7}, T, and 73) must be removed from the current TimeSW; using
bitwise left shift operation on the set of items. Therefore, Bit(a)"™*" changes from 0001111
to 1111. Similarly, Bit(c)"™" changes from 0111111 to 1111, Bit(d)""*" changes from
0001000 to 1000, Bit(b)"™*" changes from 1110110 to 0110, and Bit(e)"™*" changes from
1100111 to O111. Then, the new time unit (TU,4) is processed by bit-sequence transform.
Hence, Bit(a)"™*" changes from 1111 to 111100, Bit(c)"*" changes from 1111 to 111111,
Bit(d)"™*" changes from 1000 to 100011, Bit(h)""*" changes from 0110 to 011010, and

Bit(¢)"™" changes from 0111 to 011111. The result is shown in Figure 3-9.
3.5.2.3 Frequent Itemsets Generation Phase

The frequent itemsets generation phase of MFI-TimeSW algorithm is also performed only
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when requested by users. In this phase, MFI-TimeSW uses the same method CIGA as used in
MFI-TransSW algorithm to generate the set of candidate itemsets Cl; (candidate itemsets with
k items) from the frequent itemsets FI;_; (frequent itemsets with k-1 items). Then, the
proposed algorithm uses the bitwise AND operation to compute the support (the number of bit
1) of these candidates in order to find the frequent k-itemsets FI;. The
candidate-generation-then-testing process stops when no new candidates with k+1 items
(Cli4) are generated. The MFI-TimeSW algorithm is shown in Figure 3-10.

For example, consider the bit-sequences of TimeSW, in Figure 3-9, and let the minimum

support threshold s be 0.5. Therefore, an itemset X is frequent in TimeSW if sup(X)""*"! >

0.5-7 = 3.5. In the following, we discuss the steps of frequent itemsets generation of 7imeSW;.

The generated frequent itemsets are shown in Figure 3-7.

TUid tid Items Bit-Sequences of Items in TimeSW,
1 T, (be) Bit(5)=1000000, Bit(e)=1000000
1 T, (bce) Bit(5)=1100000, Bit(e)=1100000,
Bit(c)=0100000
1 T; (bce) Bit(b)=1110000, Bit(e)=1110000,
Bit(c)=0110000
2 T, (acd) Bit(5)=1110000, Bit(e)=1100000,

Bit(c)=0111000, Bit(a)=0001000,
Bit(d)=0001000
2 Ts (abce) Bit(b)=1110100, Bit(e)=1100100,
Bit(c)=0111100, Bit(a)=0001100,
Bit(d)=0001000
3 Ts (abce) Bit(b)=1110110, Bit(e)=1100110,
Bit(c)=0111110, Bit(a)=0001110,
Bit(4)=0001000
3 T; (ace) Bit(b)=1110110, Bit(e)=1100111,
Bit(c)=0111111, Bit(a)=0001111,
Bit(4)=0001000

Figure 3- 8. Bit-sequences of items in window initialization phase of TimeSW,;
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Window-id Transactions Bit-Sequences of items

TimeSW, <TU,, T\, (be) > Bit(b) = 1110110
<TU,, T, (bce) > Bit(e) = 1100111
<TU,, T5, (bce)> Bit(c) =0111111
<TU,, T, (acd)> Bit(a) =0001111
<TU,, Ts, (abce)> Bit(d) = 0001000
<TUs, Ts, (abce)>
<TUs, T;, (ace)>

TimeSW, <TU,, Ty, (acd)> Bit(b) =011010
<TU,, Ts, (abce)> Bit(e) =011111
<TUs, Ts, (abce)> Bit(c)=111111
<TUs, T, (ace)> Bit(a) = 111100
<TU,, T, (bcde)> Bit(d) = 100011
<TU,, Ty, (Cd€)>

Figure 3- 9. Bit-sequences of items after sliding TimeSW; to TimeSW,

First, MFI-TimeSW algorithm generates candidate 2-itemsets, (ab), (ac), (ae), (bc), (be),
and (ce), by combining frequent:1-itemsets; (a), (), (¢) and (e¢). Only one I-itemset (d) is an
infrequent itemset, since its Bit(d)™ " =-0001000, i.c., sup(d)"™ ™' = 1. All these
candidates are frequent itemsets after using bitwise AND operations to count the supports (the
number of 1) of these candidates. Therefore, the support of 2-itemset (ab) is 2, since
Bit(ab)"™*" is 0000110. Similarity, sup(ac)"™*V! = 4, sup(ae)"™ ™! = 3, sup(be) ™SV =
4, sup(be) "™ SWV! = 4 and sup(ce) "™ WV! = 4. Hence, four frequent 2-itemsets, (ac), (bc), (be),

and (ce), are found.

Algorithm MFI-TimeSW
Input: 7DS (a transaction data stream), TU-list (a time unit list), s (a user-defined minimum
support threshold in the range of [0, 1]), and w (the user-specified sliding window size, i.e., w

time units).
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Output: a set of frequent itemsets, FI-Output.

Begin
TimeSW = NULL; /* TimeSW consists of w time units */
Repeat: /¥ N is the id of current time unit*/

for each new time unit TUy from 7DSdo /* N 2>1%/
if TimeSW = FULL then
Do ITUp-,+1| times of bitwise-shift operation on bit-
sequences of all items in TimeSW;

else
for each transaction 7; of TUy do
for each item X in T; do
Do bit-sequence transform(X);
end for
end for
end if

end for
for each bit-sequence Bit(X) in TimeSW do
if sup(X) = 0 then
Drop X from TimeSW;
end if
end for
N=N +1;

/* The following is the frequent itémsets generation phase. The phase is performed only when
requested by users. */

FI, = {frequent 1-itemsets };
for (k=2; FI;,_1# NULL; k++) do
Cl, = CIGA(FI;1);
Do bitwise AND to find ‘the'supports of Cl;
for each candidate ¢, € CI; do
if sup(c)”™" > |TimeSWI-s then
FL; = {cx € CL | sup(cp)™™ Y > | TimeSW1-s};

end if
end for
end for
FI-Output = U (Fl;

End

Figure 3- 10. Algorithm MFI-TimeSW

Next, two candidate 3-itemsets, (ace) and (bce), are generated by MFI-TimeSW
according to Apriori property. After using the bitwise AND operation to count the supports of
(ace) and (bce), respectively, only one 2-itemset (bce) is a frequent itemset. Because no new
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candidates are generated, the candidate-generation-then-testing process stops. Consequently,
there are nine frequent itemsets, (a), (b), (c), (e), (ac), (bc), (be), (ce), and (bce), generated by

MFI-TimeSW algorithm in TimeSW,. The process is shown in Figure 3-11.

Transactions in

Bit-Sequences in FI; in TimeSW, (s = 0.5 sup
TimeSW, TimeSW, and FT=3.5)

<T,, (be) > Bit()=1100110, {(b)IBit(h)=1100110} 4
<T>, (bce) > Bit(e)=1100111, {(e)Bit(e)=1100111} 5
<T;, (bce)> Bit(¢)=0111111, {(0)IBit(c)=0111111} 6
<T4, (acd)> Bit(a)=0001111, {(a)IBit(a)=0001111} 4
<Ts, (abce)> Bit(d)=0001000
<Ts, (abce)>
<T5, (ace)>

CL, in TimeSW, FI, in TimeSW, sup
{(ab) | Bit(a) AND Bit(b)} {(ac) | Bit(ac) = 0001111} 4
{(ac) | Bit(a) AND Bit(c)} {(bc) | Bit(bc) = 0100110} 3
{(ae) | Bit(a) AND Bit(e)} {(be) | Bit(be) = 1100110} 4
{(bc) | Bit(b) AND Bit(c)} {(ce) I Bit(ce) = 0100111} 4
{(be) | Bit(b) AND Bit(e)}
{(ce) | Bit(c) AND Bit(e)}

CL; in TimeSW; FI; in TimeSW, sup

{(bce) | Bit(bc) AND Bit(bé) AND {(bce) | Bit(bce) = 3
Bit(ce) } 0100110}

Figure 3- 11. Steps of frequent itemsets generation of MFI-TimeSW in TimeSW,;

3.6 Performance Evaluation

In this section, we report the experimental results of the proposed algorithm MFI-TransSW.
All the programs are implemented using Microsoft Visual C++ Version 6.0 and performed on
a 1.80 GHz Pentium(R) PC machine with 512 MB memory running on Windows 2000. For
testing frequent itemsets mining over sliding windows, we generate online data streams using
IBM synthetic data generator proposed by Agrawal and Srikant [2, 3]. The synthetic data
stream, denoted by T5.14.D1000K, of size 1 million transactions (D1000K) has an average

transaction size of 5 items (T5) with average maximal frequent itemset size of 4 items (I4). In
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all experiments, the transactions of T5.14D1000K are looked up in sequence to simulate the

environment of an online data stream.

3.6.1 Experiments of MFI-TransSW Algorithm

In this section, we compare the results of mining by SWFI-stream algorithm [11] and
MFI-TransSW algorithm. The experiments of memory usage are shown in Figures 3-12, 3-13,
and 3-14, and the processing times are shown in Figures 3-15 and 3-16. The minimum
support threshold s and the size of a sliding window w are set to 0.1% and 20,000,
respectively. As shown in these experiments, MFI-TransSW significantly outperforms
SWFI-stream for both memory consumption and CPU cost.

Figure 3-12 shows the memory usage of the window initialization phase. As shown in
Figure 3-12, MFI-TransSW algorithm requires only about 2.1 MB in window initialization
phase, but the memory requirement of SWEI=stream increases linearly from 11.2 MB to 109.7
MB. Figure 3-13 shows the memory, usage of the window sliding phase. In this phase, the
memory requirement of MFI-TransSW is also approximately 2.1 MB, but that of
SWFI-stream is between 109.7 MB to 120.3 MB. Figure 3-14 gives the memory usage of the
frequent itemsets generation phase. In this phase, the memory requirement of MFI-TransSW
is between 33.5MB to 39MB. As shown in Figures 3-12 through 3-14, MFI-TransSW
algorithm outperforms SWFI-stream for memory consumption.

Figure 3-15 shows the processing time of window initialization phase under different
window sizes from 20,000 (200K) transactions to 100,000 (1,000K) transactions. Figure 3-16
shows the total time of window sliding time and pattern mining time at each 100K
transactions using various window sizes from 200K transactions to 1000K transactions. As
shown in Figures 3-15 and 3-16, MFI-TransSW algorithm outperforms SWFI-stream for

processing time consumption.
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Figure 3- 12. Memory usages in window initialization phases of algorithms SWFI-stream and
MFI-TransSW (s = 0.1% and w = 20,000)
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Figure 3- 13. Memory usages in window sliding phases of algorithms SWFI-stream and
MFI-TransSW (s = 0.1% and w = 20,000)
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Figure 3- 14. Memory usages in frequent itemset generation phases of algorithms
SWEI-stream and MFI-TransSW (s = 0.1% and w = 20,000)
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Figure 3- 15. Processing time in window initialization phases of algorithms SWFI-stream and
MFI-TransSW under different window sizes (s = 0.1%)
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Figure 3- 16. Processing time including window sliding time and pattern generation time of
algorithms SWFI-stream and MFI-TransSW under window size 200K transactions (s = 0.1%)
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Figure 3- 17. Memory usages of MFI-TimeSW algorithm in different phases (s = 0.1%)
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Figure 3- 18. Processing time of MFI-TimeSW algorithm in different phases (s = 0.1%)

3.6.2 Experiments of MFI-TimeSW Algorithm

Because the proposed MFI-TimeSW algorithm is“the first single-pass approach for mining
frequent itemsets over online data streams with a time-sensitive sliding window, we only
report the experimental results of MFI-TimeSW in the section. The experiments of memory
usage of the proposed algorithm MFI-TimeSW is shown in Figure 3-17, and the processing
time of the algorithm is shown in Figure 3-18. The minimum support threshold s is set to
0.1%. In order to simulate a time-sensitive sliding window over an online data streams, the
size of a time-sensitive sliding window w is set to 5, where ITU,| = 200K, ITU,| = 400K, ITU;|
= 800K, ITU4l = 1,000K, ITUsl = 1,000K, ITUql = 200K, ITU;I = 500K, ITUsl = 1,000K, ITUol
= 800K, and ITU ol = 800K. Note that 1K transactions equals to 1,000 transactions.

Figure 3-17 shows the memory usage of phases 1-2 (window initialization phase +

window sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase

54



+ frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-17,
the memory usage of MFI-TimeSW is increased linearly as the window size increased.

Figure 3-18 shows the processing time of phases 1-2 (window initialization phase + window
sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase +
frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-18, the
processing time of phases 1 and 2 of MFI-TimeSW is increased linearly as the window size

increased.

3.7 Conclusions

In this chapter, we proposed two efficient one-pass algorithms, called MFI-TransSW and
MFI-TimeSW, for mining frequent itemsets over online data streams with a transaction-
sensitive sliding window and a timessensitive sliding window, respectively. Experiments show
that the proposed algorithms not only attain.highly- accurate mining results, but also run
significant faster and consume less memory-than existing algorithms for mining frequent

itemsets over recent online data streams:
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Chapter 4 Online Mining of Changes of Items across Two Data
Streams

As data streams are gaining prominence in a growing number of emerging applications,
advanced analysis and mining of data streams is becoming increasingly important. While
there are some recent studies on mining data streams, we would like to ask the following
essential question: What are the distinct features of mining data streams compared to mining
other kinds of data? Online mining of the changes in data streams is one of the core issues
[24]. In this chapter, we propose a new interesting research problem and propose efficient

algorithms for this problem.

4.1 Introduction

The motivation of the problem of ‘online mining changes of items between distributed data
streams comes from the context of online transaction flows in large organizations. These
companies generate the millions of records every day. For example, Google handles 70-110
millions searches, AT&T produces 250-300 million call records, and WallMart which consists
of thousands of branch stores, and records 20-40 million transactions in a single day. With the
computation model of distributed data streams presented in Figure 4-1, a data stream
processor and the in-memory summary data structure are two major components in the
distributed data streaming environment. The streams in questions are sequences of transaction
data which is composed of the records in the form of <Store-ID, Timestamp, Transaction-ID,
Items>. In other words, a transaction record is a purchasing log generated by a customer in a
specific time and store. These transaction flows are sent to the server, and we are interested in
finding the frequent frequency changes in items between pairs of data streams purchased by

the most customers in some period of time. Note that the buffer mechanism can be optionally
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set for temporary storage of recent transactions from the transaction data streams.

In this chapter, we study the problem of online mining frequent frequency changes of
items between pairs of continuous, high-volume, open-ended data streams. Three types of
frequency change are defined: frequent changed-item (or FCI in short), vibrated frequent
changed-item (or VFCI in short), and stable frequent changed-item (or SFCI in short). A new
summary data structure, called change-sketch, is developed to store the essential information
over the pairs of data streams. The MFC-append (Mining Frequency Changes of append-only
data streams) algorithm is proposed to find the changes across two append-only data streams.
The MFC-dynamic algorithm based on MFC-append is developed to find the changes over
two dynamic data streams. The best space bound we achieve is Q(mlog(n/m)), where n is the
size of the union of two data streams, and m is the size of the working bucket for frequent
changed-items mining. Moreover, the proposed algorithms take O(log(n/m)) time in the worst
case to process each new data element, but only O(1) amortized time per data element.

The remainder of the chapter is organized-as follows. We review some related work in
Section 4.2 and formulate the problem inSection 4.3. Algorithms MFC-append and
MFC-dynamic are described in Section 4.4. Performance evaluation is presented in Section

4.5. We conclude the work in Section 4.6.

Synopsis
in Memory

Tee==[0 J[
El EEN EE P%E%i%r [$ (Ap}greos)lililr:;ate)
EEEN

Data Streams

Figure 4- 1. Processing model of distributed data streams
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4.2 Related Work

Change mining on static datasets has been studied in the last ten years [29, 25, 52]. Ganti et al.
[29] proposed a framework to quantify the deviation in the induced models, such as two
decision tree classifiers, clusters, and frequent itemsets, in the large datasets. The quantitative
measure is the amount of work required to transform one model into the other. Dong et al. [25]
proposed an algorithm to find the emerging patterns, and used these patterns to characterize
the changes from one dataset to the other. Liu et al. [52] proposed a method to discover the
changes in the new data with respect to the old data, and the old decision tree models, and
generate the exact changes that have occurred to the user. These studies are focused on the
effects of data changes of data mining models and algorithms, whereas this chapter is focused
on the problem of measuring and understanding the changes of data directly rather than

measuring the effects of data mining models.

4.3 Problem Definition: Mining of Changes of Items across Two
Data Streams

Let ¥={i\, in, ..., i} be a set of literals, called data items (or items in short). A data stream
is an infinite sequence of data items, where the items arrive in some order, and may be seen
only once. It is also referred to as item-stream. In the item-stream model, we focus on two
performance issues: workspace required in main memory, which is measured as a function of
the input union size n of two data streams, and the time to process an incoming data item over
the streams. In this chapter, we assume that the data arrives in the unordered’ form, and the
same value can appear multiple times within the streaming data. This is termed the unordered

cash register, unordered aggregated model [6, 33].

The streaming data items from various domains arrive in no particular order and without any pre-processing.
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Definition 4-1. A data stream is called an append-only data stream (or ADS in short) if it has
no updates and deletions. A data stream is called a dynamic data stream (or DDS in short) if

there are removal as well as addition of data items.

Definition 4-2. Two parallel item-streams are P = <py, p2, ..., pi, ...>, and Q = <qi, qa, ...,
gj, ...> with time-varying data rates, where p;, gje ¥. The frequency of a data item x in an
item-stream S over a time period 7T is the number of items in 7 in which x occurs, and is

denoted as frequency(x, S, T). The size of T is n, the total number of data items so far in 7.

Definition 4-3. The changed support of a data item x is the difference in frequency between
two data streams P and Q divided by the total data items observed in 7, and is denoted as

changeSup(x, T).

Definition 4-4. The changed rate of'a data’item x is the number of frequency vibration
divided by the total time-points gbserved in 7, and is‘denoted as changeRate(x, T), where the
time-point is a basic unit of time over which the system collects data, e.g., second or minute.

Frequency vibration is the ratio of frequency change which exceeds a user-specified threshold, vibrate
rate. In this research, we assume that the rate is 100% for simplicity, i.e., frequency vibration is a
frequency change from positive one to negative one, or vice versa.

Definition 4-5. A data item x is called a frequent frequency changed item (or FFCI in short)
if changeSup(x, T) = mcs, where mcs is a user-defined minimum changed support threshold in
the range of [0, 1]. It is a sub-frequent frequency changed item (or SFFCI in short) if ase <
changeSup(x, T) < mcs, where ase is a user-defined approximate support error threshold in the
range of [0, mcs]. It is an infrequent frequency changed item (or IFFCI in short) if

changeSup(x, T) < ase.

Definition 4-6. A data item x over a time period T is called a vibrated frequency changed item

(or VFCI in short) if its changed rate and changed support are greater than or equal to a
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user-defined minimum changed rate (or mincr in shot) and ase, respectively. It is a stable
frequency changed item (or SFCI in short) if its changed rate is less than a user-specified
maximal changed rate (or maxcr in short), and changeSup(x, T) = mcs, where mincr is a real

number in the range of [0, 1] and maxcr > mincr.

For example, there are fen time-points (T = [#;: t19], where t; is the starting time-point and
t101s the current time-point) in Figure 4-2, and we assume that mincr = 0.1, and maxcr = 0.5.
In Figure 4-2, data item a and b are VFClIs, where changeRate(a, T) = 9/10 = 0.9 > 0.5, and
changeRate(b, T) = 6/10 = 0.6 > 0.5, and items c, d, e are SFCIs, where changeRate(c, T) =

0/10 =0 <0.1, changeRate(d, T) = 0/10 =0 £ 0.1, and changeRate(e, T) = 1/10 = 0.1 <0.1.

The goal of this chapter is to find the changes of items (FFCIs, VFClIs, and SFCIs) over

the pairs of data streams, either in ADS:or-DDS.
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Figure 4- 2. Examples of VFCIs and SFCIs
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4.4 Online Mining Changes of Items over Distributed ADSs

In this section, a new summary data structure, called Change-Sketch, is developed to maintain
the essential information about the set of all FFCIs, VFCIs, and SFCIs embedded in data
streams. A deterministic single-pass algorithm MFC-append (Mining Frequency Changes of
append-only data streams) is proposed to find the changes of items over the pairs of data
streams. The proposed algorithm uses at most mlog(n/m) space, where n is the size of the

union of the estimated data streams, and m is the size of working bucket.

44.1 A New Summary Data Structure: Change-Sketch

The proposed in-memory summary data structure Change-Sketch is a list of entries of the
form (g, g.count, q.wis, q.rate), where g_is, a data item in the streams, g.count is an integer
representing its estimated support, the value of g wij.assigned to a new entry g is the window
identifier of current window, and g.rate is the number of frequency vibration of item g. An
item ¢ is stored in the current Change*Sketch if'g.count > ase-m-(Weyrrenr-ia— q-wia), where m is
the window size and m = [1/ase]. Note that the parameter ase is an acronym of the

user-specified approximate support error threshold.
Two operations are used to maintain the Change-Sketch:

(1) Update Change: For each entry (g, g.count, g.wy, gq.rate) € Change-Sketch,
MFC-append increases g.count by computing the frequency changes of ¢ in the current
window. If the updated entry ¢ takes place a frequency vibration, its g.rate is increased
by one. If the changed support of updated entry ¢ is less than the user-specified
minimum changed support threshold mcs, the entry is deleted from the current

Change-Sketch.
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(2) New Change: If an item p ¢ Change-Sketch, and its changed support is larger than or
equal to the threshold ase-m-(Weysrenr-ia— p-wia), @ new entry of the form (p, 1, p.-Weurrent-id»

0) is created into the current Change-Sketch.

44.2 The MFC-append Algorithm

Algorithm MFC-append uses the notations and conventions illustrated in Figure 4-3. In the
framework of mining changes of items over data streams, the streaming data is divided into
fixed sized buckets By, B,, ..., B;, ..., By, where By is the “latest” bucket with bucket
identifier N, and B; is the “oldest” one. Note that each bucket contains k items. The bucket
length from B; to B; is denoted as B(i, j), where i > j. Let 1y, t», ..., t, be the timepoints (the
smallest unit of time) which group the buckets so far in the streams, where #, is the most
recent timepoint, and ¢, is the oldest'one. The formrof bucket B; is (StreamlD, t;, items), where
t; is the timepoint when the items-appeared in the stream with identifier StreamlD.

The window-id of t; is denoted as w;; and-the-number of buckets arrived from ¢, to ¢; 1s lwyl,
and the number of items (i.e., size) in w;.is-denoted as lw;l. The size of buckets arrived in T
equals Iwil + lwggil + -+ +Iw,l, Vk=1, 2, ..., n. As described above, the goal is to find the set
of all FFCIs, VFCls, and SFCIs in a time period T =t U f41 U - U t,, Vk=1,2, ..., n.
Hence, the pair of input data streams P and Q are divided into two sequences of basic
windows, i.e., P = wi[Bp, + Bpy + *** + Bp] + wa[Bp,,; + Bp;,, + =+ + Bpl+ =+ + wulBp, +

Bpk+1 + - +Bp

currentid-1

I, and Q =wi[Bg, + Bg, + *** + Bl + wa[Bg,,; + Bo;,, + = + Bg)]
+ o+ walBo, + Bogyy + 0+ Boyreniar]- The notation Wil Bsireamin; + Bsireaminyy + =+ +
Bsireamip] denotes that the buckets of data stream with id StreamlD arrived at timepoint 7;, and

the current bucket id is denoted as Bsseamip Note that Bsireamip yyron = [n/m] + 1. For

current®
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example, there are five buckets in the first window w; of Figure 4-1, in which two buckets

(Bp,and Bp,) in stream P, and three buckets (Bg,, Bg,, and Byp,) in stream Q.

Increasing time

Batch buckets BP, BP, BP; BP,, BP;, BP; BPeurrentid
Current
timepoint
Timepoints ty £y t, ... t, t,
Stream P + E
Stream Q ' s E
i Data elements
i that will be seen
E in the future
Batch Buckets E
Bo1 Bgo Bz Bos Bos B, \
wy w, twy,

Figure 4- 3. Notations and eonventions used in the proposed algorithms

The algorithm description of MFC-append is shown in Figure 4-4. Four parameters are
used in MFC-append algorithm: mcs, ase, maxcr, and mincr, where mcs is an acronym of the
minimum changed support threshold, ase is an acronym of the approximate error support
threshold, maxcr is an acronym of the maximum changed rate, and mincr is an acronym of the
minimum changed rate. At any moment, a list of FFCIs with their estimated changed supports
and changed rates is generated by the proposed algorithm. These approximate answers (i.e., a
list of FFCls) have the following guarantees. First, all items whose changed support exceed
mcs-n are output, i.e., no false negative. Second, no items whose changed support is less than
(ase—mcs)-n are output. Third, estimated changed supports are less than the true changed
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supports by at most ase-n. Finally, all items whose changed rate exceed mcr-n or less than

mcr-n are output, respectively.

Algorithm MFC-append
Input: (1) Two continuous append-only data streams, P = <py, p2, ..., Pn, ...> and Q = <q,

q2, ..., qn, ...> Wwith time-varying data rate, (2) A user-defined approximate support

error threshold, ase, i.e., the window size m is |_1/ase_|, (3) A user-defined minimum

changed support threshold, mcs, (4) A user-specified maximum changed rate maxcr, (5)

A user-specified minimum changed rate minicr.
Output: A list of FFClIs, VFClIs, and SFCls.
Begin

Change-Sketch( )<—{ };
Repeat:
for each bucket from the data streams (P and Q) do
for each item ¢ in wi(C, B)do" [*i=1,2, ..., [alm 1 */
Change-Sketch(q, q.count+s GWids G-rare);
for each item ¢ in wi(D; B;).do
Change-Sketch(q, q.count-> 4-Wids G-rate);
while Change-Sketch(q, q.count» §-Wid> G-rare) # D then
if 1g.cound = mes-m-(Weyprens— q.-wiq) then
item ¢ is a frequent frequency change pattern in Change-Sketch;
else if 19.q. count 12 ase-m-(Weyprens — g.w;) then
preserve g in Change-Sketch;
else remove g from Change-Sketch;
if g.w; change its symbol (either from positive frequency to negative one or from
negative one to positive one)
then q. 4 ++;
End

Figure 4- 4. Algorithm MFC-append
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The maintenance process of Change-Sketch is described as follows. Let the window
identifier of current window be k. Initially, Change-Sketch is empty. For each item ¢ in the
current window of item-stream P, MFC-append first checks Change-Sketch to see whether an
entry with id ¢ already exists or not. If the entry exists in the current Change-Sketch, the
frequency of ¢ (i.e., g.count) is increased by one. Otherwise, a new entry of the form (g, 1, &,
0) is created in the current Change-Sketch. After processing all items in wy of stream P,
MFC-append computes all the items in wy of another stream Q to maintain the changed
information in Change-Sketch. The computation first checks Change-Sketch to see whether
an entry ¢ already exists or not in the Change-Sketch. If the search succeeds, the proposed
algorithm updates the entry with id ¢ by decreasing its frequency g.count by one. Otherwise, a
new entry of the form (g, -1, k, 0) is created in the current Change-Sketch. Now, if the
updated entry g take place frequengy vibration, g.rate is increased by one, i.e., from zero to
one.

In order to bound the memeory usage-in-mining changes of items over data streams, a
pruning mechanism of Change-Sketch is. proposed. The technique deletes some entries of
Change-Sketch before MFC-append computes the next working window with window-id k+1.
It is a trade-off between the accuracy of the outputs and the memory requirement of
Change-Sketch. The pruning is described as follows. An entry of the form (g, g.count, q.w;,
g.rate) is deleted, if |g.countl < ase-m-(Weyrenr-ia — q-wiq). After the pruning, MFC-append
computes the next working windows with window-id wy,; of data streams P and Q in the
same way as described above.

When a user requests the results of the set of all FFCIs, VFCls, and SFCIs embedded in
the data streams, MFC-append algorithm outputs the entries whose |g.countl >
mes-m-(Weyrrent-id —q-Wia), |g.ratel = mincr-m-(Weyprenr-ia— q-Wia), and lg.ratel = maxcr-m-(Weyrrent-ia

— q.wiy), respectively, by one scan of the current Change-Sketch.
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4.4.3 Space Analysis of Change-Sketch

In this section, we prove that MFC-append algorithm uses at most O(mlog(n/m)) space, where
n denotes the current length of the estimated data streams, and m = [1/ase] is the size of

working bucket.
Theorem 4-1: The space requirement of MFC-append algorithm is O(mlog(n/m)).

Proof: Let Wy reni-ic be the current window-id, i.e., Weurrent-id = [ n/m | , where m 1is the size of
working bucket. Let ¢; denote the number of items in Change-Sketch, whose window id is

Weurrent-id — 1+1. Since the size of each working bucket is m, we get the following constraints:
k .
> ici<km fork=1,2, ..., Weurrent-ia- (D)

We claim that

k k m
Z ¢ < z - for k = 1, 27 -« s Woeurrent-id- (2)

We prove Inequality (2) by induction.enk. If k = 1, then the claim is true because c¢; < m,
i.e., we prove it from Inequality (1) directly. We now assume that Inequality (2) is true for k =
1, 2, ..., j-1, and prove that this assumption implies that it is true for k = j. We now add

Inequality (1) for k = to j-1 instances of Inequality (2) and we have

j-1
ﬂ,+ SR ﬁ
I o1 1

m

- +
l

J
1=

1 2 j
ici+Y ¢+ ¢+ o+ ag<jm+
1 i=1 i=1 i=1

I -
T e

—_—

l l

= ci+ 20+ -+ (-Deja+je+ [cr+ (ci+ ) + =+ +(ci+ 2+ - +ci)] <jm+[m
+(m+ml2)+ - +(m+m/2+ -+ + ml(j-1))].

= jeitjer+ o +jeiatjoi<jm+ [G=Dm + (G-2)m/2 + -+ +m/(j-1)]
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L J . I G-im
Upon rearrangement, we getj > ¢; <jm+ Y —~———

i=1 i=1 !

, which can be easily simplified

to Inequality (2) for £ = j. Then we can complete the induction.

WCMN‘WX/ WCMN‘NX/
Since |Change-Sketchl= Y c;, from Inequality (2), we get |Change-Sketchl < Y 5 S
i=1 i=1

m log(wcurrenl—id) =m log(n/m)

Note that, if ase < (1/m), the space is effectively Q(m log(n/m)). If we set ase = (d/m) for
some small d, then it requires time at most O(m log(n/m)). However, this occurs only every

1/m items, and so the total time is O(n log(n/m)).

4.5 Online Mining Changes of Items over Distributed DDSs

In this section, a MFC-append "based-algorithm,. called MFC-dynamic (Mining Frequency
Changes of dynamic data streams), is proposed to mine the set of all FFCIs, VFCIs, and
SECIs over dynamic data streams. Note that a data'stream is called a dynamic data stream (or
DDS in short) if there are removal as well as addition of data items.

An effective encoding method is used in the proposed algorithm to distinguish the
inserted items and deleted items over DDSs, and is described as follows. If an item ¢ is an
inserted item, MFC-dynamic encodes it to be a “positive” item, denotes as +g. Otherwise, a
deleted items ¢ is encoded as a “negative” item, denotes as —q. After processing the encoding,
MFC-append algorithm is used to find the set of all FFCIs, VFCIs, and SFCIs over dynamic
data streams. Figure 4-5 presents the description of MFC-dynamic algorithm. From the
interpretation of MFC-dynamic, a space usage guarantee, which is similar to Theorem 4-1, is

given as follows.
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Claim 4-1. Whenever the deletions of item g occurs, frequency (q)peierea < frequency(q),

where frequency(q)peierea1s the frequency of item g needed to be drop.
Claim 4-2. An item g ¢ Change-Sketch, if lg.countl < ase-m-(Weyrrent-ia— q-Wia)-
Theorem 4-2. The space requirement of MFC-dynamic algorithm is O(mlog(n/m)).

Proof: According to the pruning rule, only items with frequency f or larger within the last

updated f windows age are not pruned. Thus, at most m/f items could have been survived from

n/m
that window which gives m Zl. as the upper-bound on the number of items we are keeping
i=1!

track of. Now, using the well know inequality fl <log(p), the result follows directly.

i=1!

4.6 Performance Evaluation

4.6.1 Synthetic Data Generation

In the experiments of MFC-append, we generated three datasets |DI of 10,000, 100,000, and
1,000,000 transactions of single-item, and searched for frequent frequency changes while
varying the Zipf parameter from O (uniform) to 3 (highly skewed), and the ase from 1% to
0.001%. In order to evaluate algorithm MFC-dynamic, we use the generation approach of
synthetic data from [20]. The generated data consists of three parts: (1) a sequence of
insertions distributed uniformly over a small range; (2) a sequence of insertions was drawn
from a Zipf distribution with varying parameter (from O to 3); (3) a sequence of deletions was

distributed uniformly over the same range as the starting sequence. We examine
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MFC-dynamic in the fourth dataset of 1,000,000 transactions of single-item, Zipf parameter

from O to 3, and ase from 1% to 0.001%.

Algorithm MFC-dynamic

Input: (1) Two dynamic data streams, C={cy, ca, ..., ¢, ...} and D={d,, d», ..

o dp, ...} with

time-varying data rate, (2) A minimum change support threshold, mcs, (3) An

approximation support error threshold, ase, (4) A maximum change rate threshold,

maxcr, (5) A minimum change rate threshold, minicr.
Output: A list of change patterns { g;, ..., g; } over dynamic data streams.
Begin
Dynamic_Encode_Streamming_Items(C, D);
MFC-append(C, D, mcs, ase,;maxcr, minicry;
End
Procedure Dynamic_Encode_Streamming_dtems(C, D);
Begin
for each bucket w¢; of stream € and bucket wp, of stream D
if the item ¢ is an inserted item then
Set it to be a positive (+g) item;
else
Set it to be a negative (-g) item;
end
endfor

End

Figure 4- 5. Algorithm MFC-dynamic
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4.6.2 Experimental Results

In this following experimental testing (results as shown in Figure 4-6 through Figure 4-9), we
use threshold mcs = 0.01, and ase = 0.1-mcs. First, we computed recall and precision for
MFC-append, with the results shown in Figure 4-6. In this Figure, we can see that
MFC-append algorithm has excellent precision (0.90-1.00) and recall (0.6-0.81) on the
synthetic data IDI=10,000 transactions, and the recall decreases as the parameter ase increases,
while the precision increases as the ase decreases. An important observation is that the Zipf
parameters (from O to 3) do not affect the recall and precision of MFC-append.

In Figure 4-7, we can see that MFC-append has precision (0.93-1.00) and recall (0.57-0.76)
on the synthetic data IDI=100,000 transactions. In Figure 4-8, we can see that MFC-append

has precision (0.92-1.00) and recall ,(0:51-0.71) on the synthetic data |DI=1,000,000

transactions.
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Figure 4- 6. Experiments on synthetic data (10" transactions) for MFC-append. Left: recall
(proportion of the frequent change patterns reported). Right: precision (proportion of the
output frequency change patterns which are frequent)
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Figure 4- 7. Experiments on synthetic data (10° transactions) for MFC-append. Left: recall.
Right: precision
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Figure 4- 8. Experiments on synthetic data (10° transactions) for MFC-append. Left: recall.
Right: precision

71



Recall on Synthetic Data (1D 1=1,000,000) Precision on Synthetic Data (1D =1,000,000)
10 1.0 A—p—A—-A—A—nr—n
s | 09 X
08 | 0.8 [
07 =0.7 |
' 206 |
_ 06 I o o o o o I 205 |
€05 ————o— 04
=04 | 203 | ——1.000% —=—0.100%
03| —¢—1.000% —m—0.100% 8% I 0.010% 0.001%
02 | 0.010% 0.001% 00 A
01}
0.0 ‘ ‘ ‘ ‘ ‘ 00 05 10 15 20 25 3.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Zipf parameter
Zipf parameter

Figure 4- 9. Experiments on synthetic data (10° transactions) for MFC-dynamic. Left: recall.
Right: precision

In Figure 4-9, we can see that the MFC-dynamie has the similar experimental results as
algorithm MFC-append. The recall increases- as the ase decreases while the precision
decreases as the ase increases, and thevarious Zipf parameters do not influence the recall and

precision of MFC-dynamic.

4.7 Conclusions

In this chapter, we propose two single-pass algorithms, called MFC-append and
MFC-dynamic, for mining frequent frequency changed items, vibrated frequency changed
items, and stable frequency changed items over continuous append-only and dynamic data
streams, respectively. A new summary data structure, called Change-Sketch, is developed to
store the essential changed patterns of data streams. The space complexity of Change-Sketch
is O(mlog(n/m)), and the proposed algorithms take O(log(n/m)) time in the worst case to

compute each newly arrived item, but only O(1) amortized time per item. The experimental
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results show that our algorithms have linear scalability and high accuracy in the analytical

outputs.
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Chapter 5 Online Mining of Path Traversal Patterns over Web

Click-Streams

Mining of path traversal patterns is one of the most important research issues of Web usage
mining. The problem of mining of path traversal patterns from a large static Web click
dataset was presented and two multiple-pass algorithms, FS (Full Scan) and SS (Selective
Scan), are proposed by Chen et al. [13]. However, multiple-pass algorithms FS and SS are not
feasible to mine the set of path traversal patterns in a streaming Web click-sequence
environment. Hence, in this chapter, we modified the path traversal pattern mining problem

proposed by Chen et al. [13] into a new research problem of Web usage mining.

5.1 Introduction

Cooley et al. [19] and Srivastava‘et al.<[62] have surveyed the major technical advances and
research problems in Web data mining. In general, Web data mining can be divided into three
categories: Web structure mining, Web content mining and Web usage mining. The goal of
Web structure mining is to generate structural summary about the Web site and Web page. The
goal of Web content mining is to describe the automatic search of information resource
available online, and to discover Web data content. Web usage mining is the process of
automatic discovery of user navigation patterns from Web server logs. In this section, a brief
review of Web user navigation pattern mining is described as follows.

Chen et al. [13] defined a problem of mining path traversal patterns in a large Web-log
dataset. Two algorithms, FS (Full Scan) and SS (Selective Scan), were proposed. These
algorithms use level-by-level methods, i.e., Apriori-based approach [3], to discover maximal

reference sequences in a static Web click dataset. Although FS and SS mine path traversal
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patterns in a static Web log dataset efficiently, they are not feasible in the mining of streaming
Web click-sequences. This is because FS and SS algorithms need to scan the dataset at least
twice.

Spiliopoulou et al. [61] proposed a navigation pattern discovery miner, called WUM
(Web Utilization Miner), and proposed an algorithm for building an aggregating tree from
static Web logs. Then, WUM mines the Web access patterns by MINT mining language.
Borges and Levene [9] proposed a model of hypertext that captures the user navigation
behavior patterns. The set of user navigation sessions is modeled as a HPG (Hypertext
Probabilistic Grammar), and the set of strings which are generated with higher probability
correspond to the navigation trials preferred by users. Pei et al. [57] proposed a WAP-tree
(Web Access Pattern tree) to store the frequent Web page-sequences of user navigation
behaviors, and proposed an efficient pattern-growth WAP-mine algorithm to mine the Web
access patterns from the WAP-tree. WAP-min¢ is. a-two-pass algorithm. Shan and Li [60]
proposed a two-pass algorithm Fast-Walk to-mine the Web traversal walks. A Web traversal
walk is a structural sequence of forward and backward traversal paths. In Fast-Walk algorithm,
an extended prefix-tree structure is constructed in main memory from Web logs, and the
frequent Web traversal walks are generated from the in-memory tree structure efficiently.

Pabarskaite [56] suggested several hypotheses that could help improve the retention of
Web site and proposed decision trees for Web user behaviour analysis. The decision tree
package C4.5 is used in [56], and showed reasonable computational performance and
accuracy. Xing and Shen [67] proposed two efficient algorithms UAM (User Access Matrix)
and PNT (Preferred Navigation Tree) based on the concepts of selection and time preference
for the mining of user preferred navigation patterns. Considering the Web site topology, UAM
algorithm can obtain user preferred access paths by the page-page transition statistics of all

the users’ behaviours. The PNT is similar to WAP-tree. However, each node of PNT records
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the support, which is the frequency and the time of user’s visiting the node along the same
route, and the preference represents how users prefer visiting this node to the previous nodes.

Web prefetching and prediction of HTTP requests are important applications of Web
usage mining [15, 59]. Chen et al. [15] proposed a popularity-based PPM (Prediction by
Partial Match model) for Web prefetching. The popularity-based mode uses grades (grades 3,
2, 1 and 0) to rank URL access patterns and builds these patterns into a predictor tree to aid
Web prefetching. The popularity-based PPM uses only the most popular URLSs as root nodes
and makes space optimizations to the completed tree by removing non-root nodes and those
nodes accessed only once. Schechter et al. [59] introduced the use of path profiles for
describing HTTP request behavior and proposed an algorithm for creating these path profiles
efficiently.

Association rule and sequential pattern mining algorithms are also common for mining
Web visitors behaviours [3, 35, 16, 58, 50]: Agrawal and Srikant [3] proposed the well-known
Apriori property, i.e., all nonempty subsets-of-a-frequent itemset must also be frequent, and
developed three multiple-pass algorithms based on the Aprioir property for mining frequent
itemsets by using candidate-generation-and-testing approaches. Han et al. [35] proposed a
prefix-tree structure FP-tree (Frequent Pattern tree) and a two-pass pattern-growth algorithm
FP-growth to discover the set of frequent itemsets without generating candidate itemsets.
Chenug and Zaiane [16] proposed a data structure called CATS Tree (Compressed and
Arranged Transaction Sequence Tree), an extension of FP-tree, to discover the set of frequent
itemsets. The CATS tree is a prefix tree structure and it contains all elements of FP-tree
including the header, the item links etc.

Pei et al. [58] proposed a two-pass, pattern-growth algorithm PrefixSpan (Prefix-
projected Sequential pattern mining) to mine sequential patterns. PrefixSpan finds frequent

I-sequences, i.e., length-1 sequential patterns, after scanning the sequence database once.
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Then, the database is projected into smaller datasets according to the frequent 1-sequences.
Finally, the set of sequential patterns is found recursively by growing subsequence fragments
in each projected database. Although PrefixSpan discovers sequential patterns efficiently, the
cost of disk I/O might be high due to the creation and processing of the projected
sub-databases. Hence, the two-pass algorithm PrefixSpan is not practical for mining
streaming data. Lin and Lee [50] proposed a memory-indexing algorithm MEMISP (MEMory
Indexing for Sequential Pattern mining) for fast discovery of sequential patterns. MEMISP
reads data sequences into memory in one pass if the memory is enough to store these
sequences. Then MEMISP discovers the sequential patterns by using a recursive
find-then-index technique. Although MEMISP is a single-pass algorithm, it is still not feasible
for mining patterns in a streaming data. This is because the MEMISP is not an incremental
mining algorithm while the data stream is a continuous sequence of data elements.

In this chapter, an efficient, single-pass: algorithm, called DSM-PLW (Data Stream
Mining for Path traversal patterns intaLandmark Window), is proposed to mine the set of
path traversal patterns in the landmark -window' of a online, continuous stream of Web click
sequences. The purpose of mining patterns in a landmark window of data streams is to
discover patterns over the entire history of the data streams [70]. An effective in-memory
summary data structure, called SP-forest (Summary Path traversal pattern forest), is proposed
for storing the essential information about the frequent reference sequences of the stream so
far. Finally, the set of all maximal reference sequences, i.e., path traversal patterns, is
determined from the SP-forest by a depth-first-search mining mechanism, called MRS-mining
(Maximal Reference Sequence mining). To the best of our knowledge, this is the first study of
online, single-pass mining path traversal patterns over streaming Web click-sequences.

The remainder of the chapter is organized as follows. The problem is defined in Section

5.2. In Section 5.3, we describe the proposed algorithm DSM-PLW. Theoretical analysis and
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performance results are presented in Section 5.4. Finally, we conclude the chapter in Section

5.5.

5.2 Problem Definition: Online Mining of Path Traversal Patterns

Let S be an infinite sequence of Web clicks, where a Web click wc consists of a Web user
identifier (Uid) and a Web page reference r accessed by the user, i.e., we = (Uid, r). In a
steaming environment, a segment of Web click stream arrived at timestamp #; can be divided
into a set of Web click-sequences (or click-sequences in short). For example, a fragment of
stream, S = [#;, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200,
a), (200, e)], arrived at timestamp #;, can be divided into two click-sequences: <100, abcde>,
and <200, abcae>, where 100, 200 are user identifiers of Web users, and a, b, ¢, d, e are
references accessed by these users,+A (Web) click-sequence, CS , consists of a sequence of
forward references and backward references accessed-by a Web user. A backward reference
means revisiting a previously visited reference by the same user.

A maximal forward reference (MER) is.a forward reference path without any backward
references. Hence, a click-sequence with [ backward references can be divided into (/+1)
maximal forward references. For example, a click-sequence <abcae> can be divided into two
MFRs: <abc> and <ae>, because the second reference a is a backward reference in this
click-sequence. Therefore, we can map the problem of mining path traversal patterns into the
one of finding frequent occurring consecutive sequences, called reference sequences (RSs),
among all maximal forward references. The estimated support (esup) of a reference
sequence RS, denoted as RS.esup, is the number of maximal forward references in the stream
containing RS as a substring.

A reference sequence RS is called a frequent reference sequence if RS.esup > s-N,

where s is a user-defined minimum support threshold in the range of [0, 1], and N is the
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current length of stream, i.e., the number of maximal forward references so far. A reference
sequence si, S2, ..., S, 1S called a super-sequence of another reference sequence ry, 72, ..., Ik
if there exists an 7 such that s;,; = rj, for 1 <j < k. A frequent reference sequence is called
maximal frequent reference sequence (abbreviated as maximal reference sequence in the
context of this chapter) if it is not a substring of any other frequent reference sequences.
Consequently, the problem of online, single-pass mining path traversal patterns in a
landmark window over Web click-sequence streams is to mine maximal reference sequences
by one scan of a continuous stream of maximal forward references when the value of

minimum support threshold s is given.

Maximal Forward

Reference Generator

In-Memory Summary
Data Structure

Web click
streams bufferl buffer2 .

Maxima

Forward I 1

Reference
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— Single-Pass Path
‘Iraversal Patterns
Mining algorithms
Click Streams ﬂ Click-Sequence @
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Web Click Sequence
Generator (Approximate) Path

Traversal Patterns

Figure 5- 1. Process of online mining of path traversal patterns in Web click streams

5.3 The Proposed Algorithm: DSM-PLW

The process of mining path traversal patterns in Web click streams is shown in Figure 5-1.

Algorithm DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark
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Window) is composed of four steps.

(a) Read a basic window which consists of a fixed sized maximal forward references
from the buffer in the main memory (Step 1).

(b) Construct an in-memory summary data structure by processing each incoming basic
window (Step 2).

(c) Prune and maintain the summary data structure (Step 3).

(d) Find the set of path traversal patterns from the current summary data structure (Step
4).

Steps 1 and 2 are performed in sequence for a new basic window. Steps 3 and 4 are
usually performed periodically or when it is needed. Since the step 1 is straightforward, we
shall henceforth focus on Steps 2, 3, and 4, and devise algorithms for the effective
construction and maintenance of summary data structure, and efficient determination of the

set of path traversal patterns.

5.3.1 Construction of the In-memory Summary Data Structure

In this section, a new in-memory summary data structure, called SP-forest (Summary Path
traversal pattern forest), is proposed to store the essential information about path traversal
patterns of each incoming basic window, and an efficient algorithm is proposed to construct

the summary data structure. Then, we use a running example to illustrate.

Definition 5-1 A Summary Path traversal pattern forest (abbreviated as SP-forest) is a prefix

tree-based summary data structure defined below.

1. SP-forest consists of a list of frequent references (denoted by FR-list), such as ry, ro, ..., 1y,
where r.esup > s-N, and a set of Path traversal pattern_tree (abbreviated as Path-tree) of
references r;, denoted by r;.Path-tree, Vi=1, 2, ..., k.

2. Each node in the r;.Path-tree, Vi = 1, 2, ..., k, consists of four fields: fr_id, esup, mfr_id,
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and node-link, where fr_id is the identifier of the incoming forward reference, esup
registers the number of maximal forward references represented by a portion of the path
reaching the node with the fr_id, the value of mfr_id assigned to a new node is the
identifier of current maximal forward reference, and node-link links up a node with the
next node with the same f_id in the SP-forest or null id if there is none.

3. Eachentryr, Vi=1,2, ..., k, in the FR-list consists of four fields: fr_id, esup, mfr_id, and
head-link, where fr_id registers the forward reference identifier the entry represents, esup
records the number of maximal forward references in the stream so far containing the
reference with identifier fr_id, mfr_id assigned to a new entry is the identifier of the
current maximal forward reference, and head-link is a pointer pointing to the root node of

the fr_id.Path-tree.

Figure 5-2 gives the SP-forest construction algorithm. First of all, DSM-PLW algorithm
reads a maximal forward reference MFRy = <ry, ra, ..., Ij, ..., In> from the buffer and
maintains the SP-forest using the MFR-projection(MFR;). The maintenance process is
described as follows. For each reference r; in MFR;, if the reference r; exists in the current
FR-list, the estimated support of the reference, i.e., rj.esup, is increased by one. Otherwise, a
new entry of the form (7j, 1, i, ;) is created in the FR-list. Note that the notation —>r;
indicates the head-link of r;, and i is the current MFR’s identifier. Next, MFR; is projected into
m reference-suffix maximal forward references (denoted by rs-MFRs) according to the order
of references in the MFR;. The step is called a maximal forward reference projection, and is
denoted by MFR-projection(MFR;) = {rilMFR;, rn\MFR;, ..., rjiMFR,;, ..., r,IMFR;}, where
HIMFR; = <rjrjpirp>, Vj=1,2, ..., m.

For example, a maximal forward reference <acdef> is projected into five reference-suffix
maximal forward references: <acdef>, <cdef>, <def>, <ef>, and <f>. Note that the cost of

maximal forward reference projection is (m2+m)/2, ie., m + (m—1) + .-+ + 1. Next, these
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rs-MFRs with prefix r;, Vi = 1, 2, ..., m, are inserted into the respective r;.Path-tree as
branches. If an rs-MFR shares a prefix with an MFR already in the Path-tree, the new MFR
will share a prefix of the branch representing that MFR. In addition, an estimated support
counter is associated with each node in the Path-tree. The counter is updated when a
reference-suffix maximal forward reference causes the insertion of a new branch. Figure 5-3

shows the subroutines of SP-forest construction and maintenance.

Algorithm SP-forest construction
Input: A stream of maximal forward references, MFR,, MFR,, ..., MFRy, and a user-defined
minimum support threshold s.€*(0, 1)
Output: A SP-forest so far.
1. FR-list = {}; /* initialize the FR-list to empty */
2. foreach MFR;= <ry, ry, ..., > do/*Vi=-152, ..., N, where N is the identifier of current
MFR*/
foreach reference rje MFR;do /*Vj=1,2,...,k*/
if r; ¢ FR-list then

create a new entry of form (7, 1, i, = r;) into the FR-list;

ri.esup = rj.esup + 1;
end if
call MFR-projection(MFR;, r;);
10.  end for
11. end for
12. call SP-pruning(SP-forest, N, s);

3
4
5
6. else
7
8
9

Figure 5- 2. Algorithm SP-forest construction
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Subroutine MFR-projection

Input: A maximal forward reference MFR; = <ri, ra, ..., Tj, ..., I'm>.
Output: r;.Path-tree, Vj=1,2, ..., m.

1. foreach reference rj, Vj=1,2, ..., m, in MFR; do

2. call Path-tree-maintenance(r;IMFR;, r;.Path-tree, i);

3. end for

Subroutine Path-tree-maintenance
Input: A reference-suffix maximal forward reference rjIMFR; = <rjrj,-- 1,,>, rj.Path-tree, and
the identifier of current maximal forward reference i;
Output: A modified r;.Path-tree, Vj =1, 2, ..., m.
. foreach reference r;, VI =j, j+1, ..., m, in rj]MFR; do
if r..Path-tree has a child node with id y such that y.fr_id = r.fr_id then
y.esup = y.esup+1;

1

2

3

4. else
5 create a new node of form.(x;, 1, i) in+the r,.Path-tree;
6 end if

7

. end for

Subroutine SP-pruning
Input: A SP-forest, a user-defined minimum support threshold s in the range of [0, 1], and the
identifier of current maximal forward reference N.
Output: A SP-forest containing the set of all path traversal patterns.
1. foreach entry r; € FR-list do
if rj.esup < s-N then
delete r;.Path-tree;

delete r; from FR-list;

A

delete the sub-trees of a node whose fr_id is j in other r;.Path-tree (I # j) by

traversing the node-links in the SP-forest;

end if

N

end for

Figure 5- 3. Subroutines of SP-forest construction algorithm
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Figure 5- 4. SP-forest after processing the first maximal forward reference <acdef>
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Figure 5- 6. SP-forest after processing the first six maximal forward references

Example 5-1 Let the first six maximal forward references in the stream of Web
click-sequences be <acdef>, <abe>, <cef>, <acdf>, <cef>, and <df>, where a, b, c, d, e, and f
are Web references. The SP-forest with respect to the first two MFRs, <acdef> and <abe>,
constructed by DSM-PLW algorithm is shown in Figure 5-4 and Figure 5-5, respectively.
Note that the dotted-line arrows, node-links, in Figure 5-4 are used to link up a node with the
next node of the same fr_id in the current SP-forest. However, in the following steps, as
demonstrated in Figure 5-5 through Figure 5-7, the node-links are omitted for concise
presentation.

First, DSM-PLW algorithm reads the first maximal forward reference <acdef> from the
buffer, and projects it into five reference-suffix maximal forward references: <acdef>, <cdef>,
<def>, <ef>, and <f>. Next, the algorithm inserts <acdef>, <cdef>, <def>, <ef>, and <f> into
the empty trees, i.e., a.Path-tree, c.Path-tree, d.Path-tree, e.Path-tree, and f.Path-tree,
respectively. The step results in a single path in each Path-tree: root(a:1:1) 2 (a:1:1) 2 (c:1:1)
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2> (d:1:1) 2> (e:l:1) > (f:1:1), root(c:1:1) > (c:1:1) > (d:1:1) > (e:1:1) > (f:1:1),
root(d:1:1) 2 (d:1:1) =2 (e:1:1) > (f:1:1), root(e:1:1) = (e:1:1) = (f:1:1), and root(f:1:1) >
(f:1:1). The projected result is shown in Figure 5-4.

Then, DSM-PLW inserts the result of MFR-projection(<abe>): <abe>, <be>, and <e>
into a.Path-tree, b.Path-tree, and e.Path-tree, respectively. Hence, <abe> leads to one path
with a being the common prefix: root(a:2:1) =2 (a:2:1) 2> (c:1:1) 2 (d:1:1) > (e:1:1) >
(f:1:1) and root(a:2:1) = (a:2:1) = (b:1:2) = (e:1:2). Then, <be> results in a single path in
b.Path-tree: root(b:1:2) > (b:1:2) > (e:1:2). Finally, DSM-PLW algorithm inserts <e> into
the SP-forest. At this time, no new node is created, but the first path of e.Path-tree is changed
to: root(e:2:1) 2> (e:2:1) = (f:1:1). After processing the second maximal forward reference
<abe>, the result is shown in Figure 5-5. After processing the six maximal forward references,

the SP-forest is given in Figure 5-6,

5.3.2 Pruning Mechanism of the Summary Data Structure

According to the Apriori principle/[3], only the frequent references are used to construct
candidate k-RSs (k-reference-sequences) in the next pass, where k > 1. Thus, the set of
candidates containing the infrequent references stored in SP-forest is pruned. The pruning is
usually performed periodically or when it is needed.

Let the user-defined minimum support threshold be s in the range of [0, 1], and the length
of Web click-sequence stream be N, i.e., N maximal forward references. In the pruning
mechanism of SP-forest, a reference sequence X and its super-sequences are deleted from
SP-forest if X.esup < s-N. For each entry of form (fr_id, esup, mfr_id, 2>fr_id) in the FR-list,
if its fr_id.esup is less than s-(N—mfr_id+1), it can be regarded as an infrequent reference.
Three operations are preformed in sequence. First, DSM-PLW deletes the fr_id.Path-tree.

Second, it deletes the reference with id fr_id from the FR-list. Finally, DSM-PLW deletes the
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infrequent reference with id fr_id and its suffix paths from other Path-trees by node-links.
After pruning all infrequent references from SP-forest, SP-forest contains the set of all

frequent path traversal patterns of the stream so far.

Example 5-2 Let the user-specified minimum support threshold be 0.3. Hence, a reference
sequence X is called infrequent in Figure 5-6 if X.esup < 0.3-6 = 1.8. At this time, only
reference b (b.esup = 1) is infrequent by searching the current FR-list. Now, in order to
maintain the frequent patterns in the SP-forest, DSM-PLW deletes b.Path-tree, b’s suffix paths

from a.Path-tree, and b from the FR-list. The result is shown in Figure 5-8.

The next step of DSM-PLW algorithm is to determine the set of all path traversal patterns
from SP-forest constructed so far. The step is performed only when the analytical results of

the stream is requested.

SP-forest
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d:2:
f:2:3

f.Path-tree
e:1:1
e.Path-tree
@ fi11 fi14 d.Path-tree
c.Path-tree
a.Path-tree

Figure 5- 7. SP-forest after pruning the infrequent reference b
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5.3.3 Determination of Path Traversal Patterns from SP-forest

Assume that there are k frequent references, namely ry, r, ..., rt, in the current FR-list. Let
the minimum support threshold be s in the range of [0, 1], and the current length of stream be
N. For each entry r;, Vi =1, 2, ..., k, in the FR-list, DSM-PLW traverses the r;.Path-tree to
find the reference sequences with prefix r; whose estimated support is greater than s-N in
depth-first-search (DFS) manner. Then, DSM-PLW stores the maximal reference sequences in
a temporal list, MRS-list. Finally, DSM-PLW outputs the set of path traversal patterns stored
in the temporal list. Figure 5-8 gives the path traversal pattern mining algorithm, called

MRS-mining (Maximal Reference Sequence mining).

Example 5-3 The example illustrates the mining of the path traversal patterns from the

current SP-forest shown in Figure 5-7: Let the minimum support s be 0.3.

First, MRS-mining algorithm starts the path traversal pattern mining scheme from the first
reference a in the FP-list, and-generatésTa-fréequent reference sequence <acd> by DEFS.
MRS-mining adds <acd> into MRS-list because <acd> is not a substring of any other patterns
stored in the current MRS-list. Next, on the second entry ¢, MRS-mining algorithm finds two
frequent reference sequences: <cd> and <cef>. However, only <cef> is added into the
MRS-list. This is because <cd> is a substring of a generated maximal reference sequence
<acd>. On the third entry d, only one frequent reference sequence <df> is generated by
MRS-mining, and stored into the MRS-list. On the fourth entry e, only one frequent reference
sequence <ef> is generated, but it is not a maximal reference sequence. This is because <ef> is
a substring of <cef>. On the last entry f, only one frequent reference sequence <f> is obtained,
but <f> is not a maximal reference sequence. This is because <f> is a substring of <cef>.
Finally, MRS-list contains the set of maximal reference sequences, i.e., path traversal

patterns: <acd>, <cef>, and <df>.
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Algorithm MRS-mining
Input: A SP-forest constructed so far, the current length of maximal forward references N,
and a user-defined minimum support threshold s in the range of [0, 1].

Output: A temporal list of maximal reference sequences, MRS-list,

1. MRS-list = &;

2. foreach entry r; in the current FR-list do

3. do Depth-First-Search to find the esup of each reference sequence Y with prefix r; in
the r;.Path-tree;

4. if Yesup > s.N and Y is not a substring of any other frequent reference sequences

stored in the MRS-list then
5 add Y into the MRS-list;

6 end if

7. end for

8. if MRS-list # & then

9 output patterns form the MRS-list;
10. end if

Figure 5- 8. Algorithm MRS-mining

5.4 Performance Evaluation

To evaluate the performance of DSM-PLW algorithm, two experiments were performed. The
experiments were carried out on the synthetic Web traversal path data generator proposed by
Chen et al. [13]. In these experiments, a traversal tree is constructed to mimic a Web site
structure whose starting position is a root node of the tree. The traversal tree is composed of
internal nodes and leaf nodes. A traversal path consists of nodes accessed by a Web user. The
size of each traversal path is picked from a Poisson distribution with mean equal to | P |,

where | P | is the average size of reference paths. With the first node being the root node, a
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traversal path is generated probabilistically within the traversal tree as follows. Each edge
connecting to an internal node is assigned with a weight. The weight corresponds to the
probability that each edge will be accessed next by the Web user. The weight to its parent
node is assigned with po, which is generally 1/(n+1) where n is the number of child nodes.
The probability of traveling to each child node, p; is determined from an exponential
distribution with unit mean. Moreover, the probability is normalized that the sum of the
weights for all child nodes is equal to 1-py. When the path arrives at a leaf node, the next
move would be either to its parent node in backward (with a default probability 0.25) or to
any internal node (with an aggregate probability 0.75). More detail about the generation of
synthetic traversal paths can be found in [13].

Three synthetic data streams, H10P5.D200K, H10P10.D200K, and H10P15.D200K, of
size 200,000 reference paths are studied. HxPy means that x is the height of a traversal tree,
and y is the average size of the reference paths. D200K means that the number of reference
paths is 200,000. A traversal tree_for H10-was-ebtained when the height of the tree is 10, and
the fanout at each internal node is beétween 4-and 7. The root node consists of 7 child nodes.
Moreover, the number of internal nodes is 16,200 and the number of leaf nodes is 73,006. In
all experiments, the click-sequences of each datasets are looked up in sequence to simulate the
environment of a data stream. All the experiments are performed on a 1.80 GHz Pentium 4
processor with 512 megabytes main memory, running on Microsoft Windows 2000. In

addition, all the programs are written in Microsoft/Visual C++ 6.0.

5.4.1 Experimental Results of Synthetic Data

We first evaluated the effect of various minimum support threshold s for synthetic data
streams having a typical value of 200,000 (200K) reference paths. In Figure 5-9, we plot total

execution time taken by our algorithm for minimum support threshold s ranging from 0.2% to
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1%. The figure shows how decreasing s leads to increase in running time. Figure 5-10 shows
how decreasing s leads to increase in memory usage. The memory usage shown in Figure
5-10 (a) is the memory requirement in Steps 2 and 3 of DSM-PLW algorithm, and Figure 5-10
(b) is the total memory requirement of DSM-PLW algorithm in Steps 2, 3, and 4.

To measure the relative accuracy of DSM-PLW algorithm, an average support error ASE
proposed in [10] is used. Figure 5-11 shows the average support error of the mining results of
the proposed algorithm with respect to that of the FS algorithm [13] performed on the
synthetic streaming data by varying the user-specified minimum support threshold s.
Generally, the average support error increases as the value of s increases in Figure 5-11.

To assess the scalability of our algorithm, scale-up experiments were conducted. Figure
5-12 shows that the execution time of DSM-PLW increases linearly as the streaming data size
increases, ranging from 200K to 1000K. Different minimum support thresholds s yield similar
and consistent results. The result of s = 0:2%.1s shown in Figure 5-12, and it exhibits good

linearity in scale-up.
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Figure 5- 9. Performance comparisons of total execution time over various minimum support
thresholds
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Figure 5- 10. Performance comparisons of memory usage over various minimum support
thresholds
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Figure 5- 13. Memory usage of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over
various minimum support thresholds
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Figure 5- 14. Execution time of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over
various minimum support thresholds
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5.4.2 Experimental Results of Real Data

Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain
several months worth of click-stream data from two e-commerce web sites, are used to
evaluate the performance of the DSM-PLW algorithm. The real data was provided by Blue
Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The
BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum
transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is
2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512
transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average
transaction size is 5 items. Note that an item is regarded as a reference and a transaction is
regarded as a maximal forward reference in.these experiments.

In the experiments, two major factors;meinory.and execution time, are examined in the
online, single-pass mining path-traversal patterns of-streaming Web click-sequences, since
both should be bounded online astimé advances. As shown in Figure 5-13, the memory usage
of DSM-PLW algorithm is relatively insensitive to the minimum support thresholds. As the
support decreases, the memory consumption of DSM-PLW increases stably, indicating the
feasibility of the proposed algorithm. In Figure 5-14, the execution time of DSM-PLW grows
smoothly as the support decreases for both real datasets. Hence, the experiments show that
DSM-PLW algorithm is a practical scheme to mine the set of path traversal patterns in real

data.

5.5 Conclusions

In this chapter, a new interesting research problem of Web usage mining, namely, online
single pass mining path traversal patterns in streaming Web click-sequences is presented. A

new single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns
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in a Landmark Window), is developed to discover the set of all path traversal patterns over the
entire history of continuous stream of Web click-sequences. In the proposed DSM-PLW
algorithm, an effective in-memory summary data structure, called SP-forest (Summary Path
traversal pattern forest), is developed to maintain the essential information of all maximal
reference sequences in the stream so far. The set of all maximal reference sequences, i.e., path
traversal patterns, is determined from the SP-forest by a depth-first-search mechanism, called
MRS-mining (Maximal Reference Sequence mining). Experimental results show that
DSM-PLW can meet the performance requirements of data stream mining: single-pass,

bounded space, and real time.
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Chapter 6 Online Mining of Top-K Path Traversal Patterns over
Web Click-Streams

In this chapter, we study the problem of mining top-k path traversal patterns over Web
click-streams. In the framework of DSM-PLW algorithm as discussed in Chapter 3, it requires
a user-specified minimum support threshold minsup, and then mines path traversal patterns
with estimated support values that are higher than the minimum support threshold.
Unfortunately, the setting of minimum support threshold is quite tricky and it leads to the
following problem that may hinder its popular use.

If the value of minimum support threshold is too small, the pattern mining algorithm
may lead to the generation of thousands of pattetns, whereas a too big one may often generate
a few patterns or even no answgers. As it is difficult to predict how many patterns will be
mined with a user-defined minimum support threshold, the top-k pattern mining has been

proposed.

6.1 Introduction

The first top-k pattern mining algorithm Itemset-Loop was proposed by Fu et al. [28].
Itemset-Loop algorithm mines the k& most frequent itemsets with lengths shorter than a
user-defined value of m. LOOPBACK and BOMO [17] are top-k pattern mining algorithms
based on a FP-tree structure, and uses the same estimated mechanism of Itemset-Loop.
Moreover, experiments in [17] show that LOOPBACK and BOMO outperform the
Itemset-Loop. TFP algorithm [66] is a FP-tree-based algorithm and mines the top-k closed
frequent itemsets with lengths longer than a user-specified value of min_[. TSP [65] is the first
algorithm to mine the top-k closed sequential patterns of lengths no less than the user-defined
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minimum length of mined patterns min_1.

Recently, Metwally et al. [54] proposed a single-pass algorithm to mine the top-k
elements over data streams. However, the top-k elements are top-k items. In this chapter, we
propose an efficient single-pass algorithm, called DSM-TKP (Data Stream Mining for Top-K
Path traversal patterns), to mine the top-k path traversal patterns over Web click streams. An
effective summary data structure, called TKP-forest (Top-K Path forest), and an efficient
structure pruning mechanism, called KP (K Pruning), are proposed to overcome the data
stream mining issues such as bounded space requirement and approximation. Based on our
knowledge, DSM-TKP is the first single-pass algorithm for mining top-k path traversal
pattern over streaming click-data.

The remainder of the chapter is organized as follows. The problem definition is
introduced in Section 6.2. In Section 6.3, we deseribe the design of our proposed algorithm
for mining top-K path traversal-patterns over Web elick-sequence streams. We discuss the

experiments in Section 6.4. Finally, we conclude this work in Section 6.5.

6.2 Problem Definition

Let S be a continuous steam of Web clicks, where a Web click wc consists of Web user
identifier (Uid) and a Web page reference r accessed by the user, i.e., we = (Uid, r). In a
steaming environment, a segment of Web click stream arrived at timestamp #; can be divided
into a set of Web click-sequences (or click-sequences in short). For example, a fragment of
stream, S = [#;, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200,
a), (200, e)], arrived at timestamp #;, can be divided into two click-sequences: <100, abcde>,
and <200, abcae>, where 100, 200 are identifiers of Web users, and a, b, ¢, d, e are references

accessed by these users. A (Web) click-sequence CS consists of a sequence of forward
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references and backward references accessed by a Web user. A backward reference means
revisiting a previously visited reference by the same user. A maximal forward reference
(MFR) is a forward reference path without any backward references. Hence, a click-sequence
can be divided into several maximal forward references, i.e., CS = MFR;, MFR,, ..., MFR;,
where i > 1. For example, a click-sequence <abcae> can be divided into two MFRs: <abc>
and <ae>. Therefore, we can map the problem of mining top-k path traversal patterns into the
problem of finding top-k occurring consecutive sequences, called reference sequences (RSs),
among all maximal forward references. The support of a reference sequence RS, denoted as
sup(RS), is the number of maximal forward references in the stream containing RS as a
substring. A reference sequence is called maximal if it is not a substring of any other
reference sequences. A maximal reference sequence is also called a path traversal pattern. A
reference sequence RS is a top-k maximal reference sequence if there exists no more than
(k-1) maximal reference sequencesywhose support-is-higher than that of RS. In this chapter,
our task is to mine the top-k maximal reference-sequences by one scan of a continuous stream

of Web clicks when the value of k is given:

6.3 The Proposed Algorithm: DSM-TKP

The proposed algorithm DSM-TKP (Data Stream Mining for Top-K Path traversal patterns) is
composed of four steps.
(a) Read a maximal forward reference from the buffer in the main memory (Step 1).
(b) Construct an in-memory summary data structure (Step 2).
(¢) Prune and maintain the summary data structure (Step 3).
(d) Find the path traversal patterns from the summary data structure so far (Step 4).
Steps 1 and 2 are performed in sequence for a new maximal forward reference. Steps 3

and 4 are usually performed periodically or when it is needed. Since the step 1 is
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straightforward, we shall henceforth focus on steps 2, 3, and 4, and devise algorithms for

effective construction and maintenance of summary data structure, and efficient determination

of path traversal patterns.

6.3.1

Effective Construction of the Summary Data Structure

In this section, we describe an algorithm which constructs the in-memory summary data

structure, called Top-K Path forest.

Definition 6-1 A Top-K Path forest (abbreviated as TKP-forest) is a prefix tree-based

summary data structure defined below.

1.

TKP-forest consists of a K-References list (abbreviated as KR-list), such as <r; r; ...
r>, and a set of Local Path traversal pattern trees (abbreviated as LP-trees) of
references, denoted by ryiLP-tree;nVi=1, 2, ..., k, where r; is the root node of

ri.LP-tree.

Each node in the r.LP-tree, Yi =1, 2, ..., k, consists of four fields: fid, esup, mfr_id,
and node-link, where fid is the identifier of the incoming maximal forward reference,
esup registers the number of maximal forward references represented by a potion of
the path reaching the node with the fid, the value of mfr_id assigned to a new node is
the identifier of current maximal forward reference, and node-link links up a node with

the next node with the same fid in the same LP-tree or null if there is none.

Each entry in the KR-list consists of four fields: fid, esup, mfr_id, and head-link, where
fid registers which reference identifier the entry represents, esup records the number of
maximal forward references containing the reference carrying the reference id, the
mfr_id assigned to a new entry is the identifier of current maximal forward reference,

and head-link is a pointer, and points to the root node of the fid.LLP-tree.
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The construction algorithm of TKP-forest is shown in Figure 6-1. The scenario of
TKP-forest construction is described as follows. First of all, DSM-TKP reads a maximal
forward reference MFR = <rr; ...r,,>, from the buffer, projects the MFR into m sub-maximal
forward references (abbreviated as sub-MFRs), and inserts these sub-MFRs into the
TKP-forest as branches. Note that m is the number of references in the maximal forward
reference. The projection of each incoming maximal forward reference is described as follows.
Each maximal forward reference, MFR = <r| ry ... r,,>, 1s converted into m sub-MFRs; that is,
TPy e By >, < PI3 ... Py >, ..., and < r, >. These m sequences are called reference-suffix
maximal forward references (abbreviated as rs-MFRs), since the first reference of each
sequence is a suffix of the original maximal forward reference. The projection step is called
maximal forward reference projection, and denoted by MFR-projection (MFR) = {r|IMFR,
rnIMER, ..., IMFR, ..., r,IMFR}, where r,IMFR =.<riri1...r,>, Vi=1, 2, ..., m. The cost of
this projection is (m2+m)/2, ie., m+@m—1)+ . +2+1.

After performing the MFR=projection;"DSM-TKP algorithm inserts the MFR into the
KR-list, and then removes it from the buffer in the main memory. Next, the set of rs-MFRs
are inserted into the r;.LP-trees (Vi =1, 2, ..., m) as branches. If a MFR shares a prefix with a
MEFR already in the LP-tree, the new MFR will share a prefix of the branch representing that
MFR. Moreover, an estimated support counter is associated with each node in the tree. The
counter is updated when a rs-MFR causes the insertion of a new branch. The step is called the

rs-MFR insertion.

Example 6-1. Let the first six maximal forward references be < abcde >, < acd >, < cef >, <
acdf >, < cef >, and < df >, where a, b, c, d, e and f are references in the stream. The
TKP-forest with respect to the first two MFRs, < abcde > and < acd >, constructed by

DSM-TKP algorithm is shown in Figure 6-2 and Figure 6-3, respectively.
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Algorithm TKP-forest construction

Input: A continuous stream of maximal forward references, S = [MFR, MFR;,

user-specified value k.

Output: A TKP-forest generated so far.

1: KR-list={}; /*initialize the KR-list to empty.*/

2: foreach MFR;, = <x1x2* Xx,,>, do
Fm=1,i=1,2,...,N*

3: foreach reference x; € MFR; do

4: if x; ¢ KR-list then

5: create a new entry of form (x;, 1, i, head-link)

into the KR-list;

6 else /* the entry already exists in-the KR-list*/

7: xj.esup = xj.esup + 1;

8 end if

9 end for

10:  call MFR-Projection(MFR;);

11:  call rs-MFR insertion;

12: end for

13: call TKP-forest-pruning(7KP-forest, k);

14: end for

..., MFRy), a

/* Step 3 of DSM-TKP algorithm: prune and maintain the summary data structure */

Figure 6- 1. Algorithm of TKP-forest Construction
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Figure 6- 2. TKP-forest construction after processing the first maximal forward reference
<abcde>

Figure 6- 3. TKP-forest construction after processing the second maximal forward reference
<acd>
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6.3.2 Effective Pruning of the Summary Data Structure

The TKP-forest pruning mechanism used in DSM-TKP is performed when the number of
references in the KR-list is greater than the value k. The pruning mechanism used in
DSM-TKP algorithm is shown in Figure 6-4.

The next step of DSM-TKP algorithm is to determine the top-k path traversal patterns
from the current TKP-forest. The step is performed only when the analytical results of the

stream is requested.

Subroutine TKP-forest-pruning(7KP-forest, k)
1: sort the references, ry, 1o, ..., re, in the KR-list and reorder the references in an estimated
support decreasing order, i.e., ri’5 ¥2 , ..., I, Where sup(r;’) = sup(ry’) = -+ = sup(ry);
2:  find rg;’ in the reordered KR=list;
/* rg;’ be a reference whose €stimated support is the k-th largest one in the KR-list; */
foreach r;’e KR-list, Vi=1,2.... "KL do
esup(r;’) = esup(r;’) — esup(rxp.1");
endfor
foreach r/’e KR-list, Vj = KL+1, KL+2, ..., k’ do
delete r;” from the current KR-list;

delete r;” .LP-tree;

N e A

endfor

Figure 6- 4. Algorithm of TKP-forest pruning
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Figure 6- 5. Example of TKP-forest

6.3.3 Determination of the Top-K Path Traversal Patterns

Assume that there are k references, namely ry, r3;5°.+., 1, in the current KR-list. For each entry
ri, Vi =1, 2, ..., k, in the KR-list, DSM-TKP algorithm traverses the r.LP-tree to find the
estimated support of each reference sequence with a prefix r; in a depth-first-search (DFS)
manner. Then, DSM-TKP stores these reference sequences into a temporal list of candidate
maximal reference sequences, i.e., path traversal patterns, in a support decreasing order.
Finally, DSM-TKP outputs the first X maximal reference sequences from the temporal list. For
example, in Figure 6-5, the top-3 path traversal patterns are <acd: 3>, <cef: 2>, and <df: 2>,

where the 3-th largest estimated support in the reordered KR-list is 2.

6.4 Performance Evaluation

All the experiments are performed on a 1.80 GHz Pentium 4 processor with 512 megabytes

main memory, running on Microsoft Windows 2000. In addition, all the programs are written
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in Microsoft/Visual C++ 6.0.

Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain
several months worth of click-stream data from two e-commerce web sites, are used to
evaluate the performance of the DSM-TKP algorithm. The real data was provided by Blue
Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The
BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum
transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is
2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512
transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average
transaction size is 5 items.

We evaluate the effect of various k values for BMS-WebView-1 and BMS-WebView-2.
Figure 6-6 (a) plots the total execution time.taken'by our algorithm for values of k ranging
from 1000 to 200. The figure shows how decreasing k leads to decrease in running time.
Figure 6-6 (b) shows how decreasing k leads to decrease in memory usages of DSM-TKP in

BMS-WebView-1 and BMS-WebView-2, tespectively.

6.5 Conclusions

In this chapter, we proposed an online single-pass algorithm, DSM-TKP, for mining top-k
maximal reference sequences in an infinite sequence of Web click-sequences. An effective
summary data structure TKP-forest is developed to store the essential information about the
set of top-k path traversal patterns of the Web click-stream so far. An efficient pruning
mechanism of TKP-forest is presented to guarantee that the upper bound of the summary data
structure is predictable. Experiments show that DSM-TKP is efficient and exhibits good

scalability.
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Figure 6- 6. Execution time and memory usage of DSM-TKP on BMS-WebView-1 and
BMS-WebView-2 under various k values
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Chapter 7 Conclusions and Future Work

In this chapter, summaries of our works are given. Some possible future works are also
discussed. For mining of frequent itemsets from data streams, we study the problems
involving landmark window-base mining of frequent itemsets and sliding window-base
mining of frequent itemsets. For mining of path traversal patterns from Web click streams, we
focus on single-pass mining of path traversal patterns and online mining of top-k path
traversal patterns without minimum support threshold. For mining of changes of items across
two data streams, two one-pass mining algorithms are proposed. All the proposed algorithms
are verified by experiments of mining continuous streams of various characteristics. In the
experiments comprising comprehensive comparisons, the proposed algorithms outperforms
several related algorithms, and they all show excellent linear scalability with respect to the

size of the streaming data.

7.1 Conclusions

7.1.1 Summary of Mining of Frequent Itemsets in Data Streams

For the mining of frequent itemsets over the entire history of data streams, we propose an
efficient single-pass algorithm, called DSM-FI (Data Stream Mining for Frequent Itemsets),
to discover the set of all frequent itemsets over data streams. An effective projection scheme
is developed to extract the essential information of frequent itemsets from data streams.
Experiments show that DSM-FI outperforms BTS [53], a state-of-the-art single-pass
algorithm, by one order of magnitude for discovering the set of all frequent itemsets over data

streams with a landmark window.
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7.1.2 Summary of Mining of Frequent Itemsets over Stream Sliding
Windows

For the mining of frequent itemsets over data streams with a transaction-sensitive sliding
window, we develop an efficient one-pass algorithm, called MFI-TransSW (Mining Frequent
Itemsets over a Transaction-sensitive Sliding Window) based on bit-vectors, to mine the set of
frequent itemsets from only the latest w transactions. Experiments show that MFI-TransSW
outperforms SWFI-stream [11] for discovering the set of frequent itemsets in data streams
with a transaction-sensitive sliding window.

For the mining of frequent itemsets over data streams with a time-sensitive sliding
window, we proposed the first one-pass algorithm, called MFI-TimeSW (Mining Frequent
Itemsets over a Time-sensitive Sliding Window), based on the MFI-TransSW to mine the set
of frequent itemsets from only the latest w time units. Experiments show that MFI-TimeSW id

efficient and exhibits good scalability.

7.1.3 Summary of Mining of Changes of Items across Two Data Streams

We define a new interesting research problem of mining changes of items from data streams
in data mining. For the mining of two append-only data streams, we propose a single-pass
algorithm, called MFC-append (Mining Frequency Changes of append-only data streams), to
find the set of changes of items across two append-only data streams. A new summary data
structure, called Change-Sketch, is developed to store the essential changed patterns of data
streams. The space complexity of Change-Sketch is O(mlog(n/m)). For mining of two
dynamic data streams, an one-pass algorithm, called MFC-dynamic (Mining Frequency
Changes of dynamic data streams), is developed to mine the changes of items across two
dynamic data stream. The proposed algorithms take O(log(n/m)) time in the worst case to

compute each newly arrived item, but only O(1) amortized time per item.
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7.1.4 Summary of Mining of Path Traversal Patterns over Web Click-
Streams

For the mining of path traversal patterns over Web click-streams, we propose the first
single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns in a
Landmark Window), to discover the set of all path traversal patterns over streaming maximal
forward references. The comprehensive experiments demonstrate that DSM-PLW is efficient

and exhibits good scalability.

7.1.5 Summary of Mining of Top-K Path Traversal Patterns

We define a new interesting research problem of mining of top-k path traversal patterns over
Web click streams, and propose the first one-pass algorithm, called DSM-TKP (Data Stream
Mining for Top-K Path traversal patterns); for mining of top-k path traversal patterns without
the user-defined minimum support threshold. An:efficient pruning mechanism of the proposed
summary data structure is presented to guarantee that, the upper bound of the summary data
structure is predictable. Experimients show that DSM-TKP is efficient and exhibits good

scalability.

7.2 Future Work

With the mining capabilities of the proposed algorithms, there are several interesting
extensions on frequent pattern mining and change mining, as listed below.
® Resource-aware mining of frequent patterns over data streams.
Resource such as CPU, memory space, and sometimes energy, are very precious in
a stream mining environment. They are very likely to be used up when processing
data streams which arrive with rapid speed and a huge amount. How to use these
resources when we use the proposed algorithms for mining frequent itemsets and

changes is an important research issue in our future work.
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Online mining of sequential patterns over data streams with a sliding window.
Online mining of sequential patterns in data streams is more complicated than
mining of frequent itemset. There are several challenges of mining of sequential
patterns from data streams, such as how to define the meaning of sequential patterns
in a stream environment, how to define the model of sliding window for mining
sequential patterns of data streams, and how to design an efficient single-pass
algorithm for mining the set of sequential patterns from data streams.

Online mining of high utility itemsets over data streams with a sliding window.
Although mining itemsets correlations is important in some applications, in many
applications people are more interested in finding out how a set of items that is useful by
some measure, such as utility. The frequent itemsets do not reflect the impact of any other
factor except frequency of thespresence on-absence of an item. Frequent itemsets may only
contribute a small portion:of the overall profit,-whereas infrequent itemsets may contribute
a large portion of the profit. Hence, utility mining is likely to be useful in a wide range of
practical application. There are several challenges on mining high utility itemsets over data

streams, such as how to define” the model of sliding window for mining high utility
itemsets of data streams, how to define the meaning of high utility itemsets in a
stream environment, and how to design an efficient one-pass algorithm for

discovering the set of high utility itemsets from data streams with a sliding window.
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