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摘要 資料串流探勘是一個快速成長的新興研究領域，但同時也帶來了新的挑戰。在眾多資料串流探勘的研究中，頻繁樣式探勘與變化探勘一直是資料串流探勘中重要的研究焦點。本論文主旨在於研發高效率的頻繁項目集合、路徑瀏覽樣式，以及項目變化樣式的單次線上掃描探勘方法。 

   頻繁項目集合是本論文所探討的第一個研究主題。首先，針對串流資料的標的物模型，我們提出一個可快速地探勘出所有頻繁項目集合的單次掃描演算法 DSM-FI。為了避免將每一筆新進交易中所有項目集組合都窮舉出來，我們設計了一個有效的交易投影機制，並提出一個新的摘要字首樹狀結構來儲存必要的集合項目資訊。此演算法在探勘出頻繁項目集合的同時，也可找出最大頻繁項目集合。 

    我們也針對串流資料的滑動窗模型提出了兩個單次頻繁項目集合探勘演算法
MFI-TransSW 與 MFI-TimeSW，可有效地在交易感知滑動窗模型以及時間感知滑動窗模型中探勘出目前存在的頻繁項目集合。MFI-TransSW 與 MFI-TimeSW 演算法主要是利用位元向量的特性來儲存單一項目在目前滑動窗中的出現位置，並利用位元向量的特性來達到快速滑動的效果。 
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    路徑瀏覽樣式是本論文所探討的第二個主題。我們提出可快速探勘出路徑瀏覽樣式的單次掃描演算法 DSM-PLW，此演算法沿用 DSM-FI 的精神，利用快速拆解使用者瀏覽路徑，以及字首樹狀結構的特性，來達到串流資料探勘的效能要求。此外，我們進一步提出一個不需要使用者輸入最小支持度門檻值，就可以進行的 Top-K 路徑瀏覽樣式的單次掃描探勘演算法。 

    串流資料變化探勘是本論文的第三個研究主題。我們提出 MFC-append 演算法來找出在兩條線上交易資料串流中，穩定分布的交易項目、常常變動的項目，或無一定分佈的變化樣式。此外，針對可執行刪除運算的動態資料串流，我們提出一個以 MFC-append 為基礎的演算法 MFC-dynamic，來探勘動態資料串流中的項目變化。 

    我們進行了相關的實驗以評估所提方法的效能。在我們的實驗範圍中的結果顯示，對於各個不同探勘參數以及不同特性的資料集，我們的方法都優於許多著名的方法。此外，針對資料量擴充的實驗也顯示出我們所提出的探勘頻繁樣式的方法具有線性的擴充能力。 

 



 iii 

 

 

 

A Study of Efficient Mining Algorithms of Frequent  

Patterns on Data Streams 

 

Student：Hua-Fu Li                         Advisor：Dr. Suh-Yin Lee 

 

Department of Computer Science 

National Chiao Tung University 

Abstract 

 

Online mining of data streams is an important data mining problem with broad applications. 

However, it is a difficult problem since the streaming data possess some specific characteristics, 

such as unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over 

previously arrived transactions, and a lack of system control over the order in which data arrives. 

Among various objectives of data stream mining, the mining of frequent patterns in data streams 

has been the focus of knowledge discovery. In this dissertation, the design of several core 

technologies for mining frequent patterns and changes of data streams is investigated. 

    For mining of frequent itemsets over data streams with a landmark window, we propose the 

DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm to find the set of all frequent 

itemsets over the entire history of the data streams. An effective projection method is used in the 

proposed algorithm to extract the essential information from each incoming transaction of the 

data streams. A data structure based on prefix tree is constructed to store data summary. DSM-FI 

utilizes a top-down pattern selection approach to find the complete set of frequent itemsets. 

Experiments show that DSM-FI outperforms BTS (Buffer-Trie-SetGen), a state-of-the-art 
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single-pass algorithm, by one order of magnitude for discovering the set of all frequent itemsets 

over a landmark window of data streams.  

    For mining of frequent itemsets in data streams with a sliding window, efficient bit vector 

based algorithms are proposed. Two kinds of sliding windows, i.e., transaction-sensitive sliding 

window and time-sensitive sliding window, are discussed. MFI-TransSW (Mining Frequent 

Itemsets over a Transaction-sensitive Sliding Window) is developed to mine the set frequent 

itemsets over data streams with a transaction-sensitive sliding window. A single-pass algorithm, 

called MFI-TimeSW (Mining Frequent Itemsets over a Time-sensitive Sliding Window), based 

on MFI-TransSW algorithm and a dynamic encoding method is proposed to mine the set of 

frequent itemsets in a time-sensitive sliding window. An effective bit-sequence representation of 

items is used in the proposed algorithms to reduce the time and memory needed to slide the 

windows. Experiments show that the proposed algorithms not only attain highly accurate mining 

results, but also run significantly faster and consume less memory than existing algorithms for 

mining recent frequent itemsets over data streams.  

    For mining changes of items across two data streams, we propose two one-pass algorithms, 

called MFC-append (Mining Frequency Changes of append-only data streams) and 

MFC-dynamic (Mining Frequency Changes of dynamic data streams), to mine the set of frequent 

frequency changed items, vibrated frequency changed items, and stable frequency changed items 

across two continuous append-only and dynamic data streams, respectively. A new summary data 

structure, called Change-Sketch, is developed to compute the frequency changes between two 

data streams as fast as possible. Theoretical analysis and experimental results show that our 

algorithms meet the major performance requirements, namely single-pass, bounded space 

requirement, and real-time computing, in mining data streams. 
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    Mining path traversal patterns from Web click streams is important in Web usage mining and 

Web user profiling. One of the most important We proposed two single-pass algorithms, called 

DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark Window) and 

DSM-TKP (Data Stream Mining for Top-K Path traversal patterns), to discover the path traversal 

patterns over Web click-streams with and without a user-defined minimum support constraint. 

Experiments of real data show that both algorithms successfully mine maximal reference 

sequences with linear scalability. 

    Comprehensive experiments have been conducted to assess the performance of the proposed 

algorithms. The empirical results show that these algorithms outperform the state-of-the-art 

algorithms with respect to various mining parameters and datasets of different characteristics. 

The scale-up experiments also verify that our algorithms successfully mine frequent patterns with 

good linear scalability. 
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Chapter 1  Introduction 

 

1.1  Background 

Data mining, which is also referred to as knowledge discovery in databases, has been 

recognized as the process of extracting non-trivial, implicit, previously unknown and 

potentially useful information or knowledge from large amounts of data. The typical data 

mining tasks include association mining, sequential pattern mining, classification, and 

clustering. The tasks help us to finding interesting patterns and regularities from the data. 

Traditional data mining techniques assume the targeting databases are disk resident or could 

be fit into the main memory. Hence, due to the complexity of mining tasks, almost all data 

mining algorithms require scanning the data several times.  

    Recently, database and knowledge discovery communities have focused on a new model 

of data processing, where data arrive in the form of continuous streams. It is often referred to 

as data streams or streaming data. The new data model addresses the data explosion from two 

new perspectives. First, the arrival of data streams and the volume of data are beyond our 

capability to store them. For example, the network traffic information of a router, though 

extremely important, is often impossible to record. Second, data streams processing requires 

real-time constraint. Generally, the need to process the data timely prohibits rescanning the 

data from secondary storage. For example, detecting network intrusion in real-time is the 

necessary condition to prevent the damage. The new model has captured a large class of 

important applications in current world, such as discovering the patterns of sensor data 

generated from sensor networks, analyzing the transactional behaviors of transaction flows in 

retail chains, mining user traversal behaviors from the Web record and click-streams, 

protecting network securities, timely finding terrorist activities, monitoring call records in 
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telecommunications, analyzing stock and business data, and so on [6, 33].     

    In order to facilitate the following discussions, we will first introduce the streaming data 

model in more detail. Data streams assume the data elements arrive in some order. Moreover, 

the amount of data is often huge and can not be held in the main memory or even disks. This 

means that once a new data element arrives, it must be processed quickly. In general, the 

period for a data element staying in the main memory is quite short. Once a data element is 

removed from the main memory, it is not available to be accessed again. In other words, we 

can only have one look at the data. 

    Data mining over streaming data brings many new challenges [6]. The first challenge is 

how to perform data mining tasks on data streams. Most of existing data mining algorithms 

require scanning datasets multiple times, such as Apriori algorithm of association rule mining, 

k-means of clustering, and C4.5 of decision tree construction. The new data model limits us to 

have only one look at the data, or at most to scan it once. Further, the relatively small memory 

compared with the large amount of streaming data results in the fact that we can only store a 

concise summary or partial data of the data stream. Therefore, getting precise results from 

data streams is commonly impossible or very difficult. The challenge is how to design 

efficient algorithms to get approximate results with high accuracy and confidence. The second 

challenge is how to understand the changes of data streams. The data streams bring us much 

new useful information to explore, such as the knowledge that if and when the underlying 

distribution has changed for continuous data streams. An example is to find such products in 

the retail chains that have become very popular recently in certain regions, but relatively 

unpopular for quite a long time before. In conclusions, how to perform data mining tasks, how 

to discover new knowledge, and how to mine changes of data streams make stream mining 

very challenging. 
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1.2 Research Objectives and Contributions 

The research objective of this dissertation is to investigate efficient and scalable algorithms 

for mining frequent itemsets, path traversal patterns, and the changes of items over continuous 

data streams.  

    The first research issue of this dissertation is the online mining of frequent itemset over 

data streams. We propose the DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm 

to find the set of all frequent itemsets over the entire history of the data streams. An effective 

projection method is used in the proposed algorithm to extract the essential information from 

each incoming transaction of data streams. A summary data structure based on the prefix tree 

is constructed. DSM-FI utilizes a top-down pattern selection approach to find the complete set 

of frequent itemsets. Experiments show that DSM-FI outperforms BTS (Buffer-Trie-SetGen), 

a state-of-the-art single-pass algorithm, by one order of magnitude for discovering the set of 

all frequent itemsets over a landmark window of data streams. For mining of frequent itemsets 

in data streams with a sliding window, we propose an online algorithm, called MFI-TransSW 

(Mining Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of 

frequent itemsets in streaming data with a transaction-sensitive sliding window. Moreover, 

another single-pass algorithm called MFI-TimeSW (Mining Frequent Itemsets over a 

Time-sensitive Sliding Window) based on the proposed MFI-TransSW algorithm, is proposed 

to mine the set of frequent itemsets in a time-sensitive sliding window. An effective 

bit-sequence representation of items is used in the proposed algorithms to reduce the time and 

memory needed to slide the windows. Experiments show that the proposed algorithms not 

only attain highly accurate mining results, but also run significantly faster and consume less 

memory than do existing algorithms for mining recent frequent itemsets over data streams.  

    The second research issue of the thesis is change mining of data streams. We define a 

new problem of the online mining of changes of items across two data streams, and propose 
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an one-pass algorithm, called MFC-append (Mining Frequency Changes of append-only data 

streams), to mine the set of frequent frequency changed items, vibrated frequency changed 

items, and stable frequency changed items across two continuous append-only data streams. 

Furthermore, a single-pass algorithm, called MFC-dynamic (Mining Frequency Changes of 

dynamic data streams) based on MFC-append, is proposed to mine the changes across two 

dynamic data streams. A new summary data structure, called Change-Sketch, is developed to 

compute the frequency changes between two data streams as fast as possible. Theoretical 

analysis and experimental results show that our algorithms meet the major performance 

requirements, namely single-pass, bounded space requirement, and real-time computing, in 

mining streaming data. 

    The third issue of the work is the online mining of all path traversal patterns over Web 

click-streams. We proposed the first single-pass algorithm, called DSM-PLW (Data Stream 

Mining for Path traversal patterns in a Landmark Window), to discover the path traversal 

patterns over Web click-streams with a user-defined minimum support constraint. Moreover, 

we proposed the first online algorithm, called DSM-TKP (Data Stream Mining for Top-K 

Path traversal patterns), to mine the set of top-K path traversal patterns without a 

user-specified minimum support threshold. Experiments of real click-streams show that both 

algorithms successfully mine maximal reference sequences with linear scalability. 

    All the proposed algorithms are verified by experiments of mining continuous streams of 

various characteristics. In the experiments comprising comprehensive comparisons, the 

proposed algorithms outperforms several related algorithms, and they all show excellent 

linear scalability with respect to the size of the streaming data. 

1.3  Organization of this Thesis 

The rest of this dissertation is organized as follows. In Chapter 2, we describe efficient 
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one-pass algorithms for mining frequent itemsets and maximal frequent itemsets in a 

landmark window of data streams. Efficient single-pass algorithms for mining frequent 

itemsets over stream sliding windows are delineated in Chapter 3. Chapter 4 addresses the 

problem of mining of changes of items over append-only and dynamic data streams. Efficient 

algorithms for mining path traversal patterns with a user-specified minimum support 

constraint over Web click-streams are introduced in Chapter 5. The problem of mining top-K 

path traversal patterns is discussed in Chapter 6. Finally, the conclusions and future work are 

given in Chapter 7. 
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Chapter 2 Online Mining of Frequent Itemsets in Data Streams 

 

In recent years, database and knowledge discovery communities have focused on a new data 

model, where data arrive in the form of continuous streams. It is often referred to as data 

streams or streaming data. Data streams possess some computational characteristics, such as 

unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over 

previously-arrived data elements (only one sequential pass over the data is permitted), and a 

lack of system control over the order in which the data arrive [6]. Many applications generate 

data streams in real time, such as sensor data generated from sensor networks, transaction 

flows in retail chains, Web record and click-streams in Web applications, performance 

measurement in network monitoring and traffic management, and call records in 

telecommunications.  

Online mining of data streams differs from traditional mining of static datasets in the 

following aspects [6]. First, each data element in streaming data should be examined at most 

once. Second, the memory usage for mining data streams should be bounded even though new 

data elements are continuously generated from the stream. Third, each data element in the 

stream should be processed as fast as possible. Fourth, the analytical results generated by the 

online mining algorithms should be instantly available when requested by the users. Finally, 

the frequency errors of outputs generated by the online algorithms should be as small as 

possible. The online processing model of data streams is shown in Figure 2-1.  

As described above, the continuous nature of streaming data makes it essential to use the 

online algorithms which require only one scan over the data streams for knowledge discovery. 

The unbounded characteristic makes it impossible to store all the data into the main memory 

or even in secondary storage. This motivates the design of summary data structure with small 



 7 

 

footprints that can support both one-time and continuous queries of streaming data. In other 

words, one-pass algorithms for mining data streams have to sacrifice the exactness of its 

analytical results by allowing some tolerable counting errors. Hence, traditional multiple-pass 

techniques studied for mining static datasets are not feasible to mine patterns over streaming 

data. 

 

 

 

 

 

 

 

 

Figure 2- 1. Typical processing model of data streams 

 

 

2.1 Introduction 

Frequent itemsets mining is one of the most important research issues in data mining. The 

problem of frequent itemsets mining of static datasets (not streaming data) was first 

introduced by Agrawal et al. [2] described as follows. Let Ψ = {i1, i2, …, in} be a set of 

literals, called items. Let database DB be a set of transactions, where each transaction T 

contains a set of items, such that T ⊆ Ψ. The size of database DB is the total number of 

transactions in DB and is denoted by |DB|. A set of items is referred to as an itemset. An 

itemset X with l items is denoted by X = (x1x2… xl), such that X ⊆ Ψ. The support of an 

itemset X is the number of transactions in DB containing the itemset X as a subset, and 

denoted by sup(X). An itemset X is frequent if sup(X) ≥ minsup⋅|DB|, where minsup is a 

user-specified minimum support threshold in the range of [0, 1]. Consequently, given a 

database DB and a user-defined minimum support threshold minsup, the problem of mining 
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frequent itemsets in static datasets is to find the set of all itemsets whose support is no less 

than minsup⋅|DB|. In this paper, we will focus on the problem of mining frequent itemsets 

over the entire history of data streams. 

Many previous studies contributed to the efficient mining of frequent itemsets in 

streaming data. According to the stream processing model [70], the research of mining 

frequent itemsets in data streams can be divided into three categories: landmark windows, 

sliding windows, and damped windows, as described briefly as follows. In the landmark 

windows model, knowledge discovery is performed based on the values between a specific 

timestamp called landmark and the present time. In the sliding windows model, knowledge 

discovery is performed over a fixed number of recently generated data elements as the target 

of data mining. In the damped windows model, recent sliding windows are more important 

than previous ones. 

In [53], Manku and Motmani developed two single-pass algorithms, Sticky-Sampling 

and Lossy Counting, to mine frequent items over a landmark window. Moreover, Manku and 

Motwani proposed the first single-pass algorithm BTS (Buffer-Trie-SetGen) based on the 

Lossy-Counting [53] to mine the set of frequent itemsets (FI) from streaming data. Chang and 

Lee [11] proposed a BTS-based algorithm for mining frequent itemsets in sliding windows 

model. Moreover, Chang and Lee [10] also developed another algorithm, called estDec, for 

mining frequent itemsets in streaming data in which each transaction has a weight decreasing 

with age. In other words, older transactions contribute less toward itemset frequencies, and it 

is a kind of damped windows model. Teng et al. [63] proposed a regression-based algorithm, 

called FTP-DS, to find frequent itemsets across multiple data streams in a sliding window. Lin 

et al. [51] proposed an incremental mining algorithm to find the set of frequent itemsets in a 

time-sensitive sliding window. Giannella et al. [31] proposed a frequent pattern tree 

(abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine frequent itemsets at 
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multiple time granularities by a novel tilted-time windows technique. Yu et al. [68] discussed 

the issues of false negative or false positive in mining frequent itemsets from high speed 

transactional data streams. Jin and Agrawal [39] proposed an algorithm, called StreamMining, 

for in-core frequent itemset mining over data streams. Chi et al. [18] proposed an algorithm, 

called MOMENT, that might be the first to find frequent closed itemsets (FCI) from data 

streams. A summary data structure called CET is used in the MOMENT algorithm to maintain 

the information of closed frequent itemsets. 

Because the focus of the chapter is on frequent itemses mining over data streams with a 

landmark window, we mainly address this issue by comparison with the BTS algorithm 

proposed by Manku and Motwani [53]. In the following, we describe the BTS algorithm in 

detail. In the BTS algorithm, two estimated parameters: minimum support threshold s, and 

maximum support error threshold ε, are used, where 0 < ε ≤ s < 1. The incoming data stream 

is conceptually divided into buckets of width w = 1/ε transactions each, and the current 

length of the stream is denoted by N transactions.  

The BTS algorithm is composed of three steps. In the first step, BTS repeatedly reads a 

batch of buckets into main memory. In the second step, it decomposes each transaction within 

the current bucket into a set of itemsets, and stores these itemsets into a summary data 

structure D which contains a set of entries of the form (e, e.freq, e.∆), where e is an itemset, 

e.freq is an approximate frequency of the itemset e, and e.∆ is the maximum possible error in 

e.freq.  

For each itemset e extracted from the incoming transaction T, BTS performs two 

operations to maintain the summary data structure D. First, it counts the occurrences of e in 

the current batch, and updates the value e.freq if the itemset e already exists in the structure D. 

Second, BTS creates a new entry (e, e.freq, e.∆) in D, if the itemset e does not occur in D, but 

its estimated frequency e.freq in the batch is greater than or equal to |batch|⋅ε, where the value 
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of maximal possible error e.∆ is set to |batch|⋅ε, and |batch| denotes the total number of 

transactions in the current batch. To bound the space requirement of D, BTS algorithm deletes 

the updated entry e if e.freq + e.∆ ≤ |batch|⋅ε. Finally, BTS outputs those entries ei in D, where 

ei.freq ≥ (s−ε)⋅N, when a user requests a list of itemsets with the minimum support threshold s 

and the support error threshold ε. 

The motivation of the proposed work is to develop a method that utilizes some 

space-effective summary data structures to reduce the cost in mining frequent itemsets over 

data streams. In this paper an efficient, single-pass algorithm, referred to as Data Stream 

Mining for Frequent Itemsets (abbreviated as DSM-FI), is proposed to improve the efficiency 

of frequent itemset mining in data streams. A new summary data structure called summary 

frequent itemset forest (abbreviated as SFI-forest) is developed for online incremental 

maintaining of the essential information about the set of all frequent itemsets of data streams 

generated so far.  

The proposed algorithm DSM-FI has three important features: a single pass of streaming 

data for counting the support of significant itemsets; an extended prefix tree-based, compact 

pattern representation of summary data structure; and an effective and efficient search and 

determination mechanism of frequent itemsets. Moreover, the frequency error guarantees 

provided by DSM-FI algorithm is the same as that of BTS algorithm. The error guarantees are 

stated as follows. First, all itemsets whose true support exceeds s⋅N are output. Second, no 

itemsets whose true support is less than (s − ε)⋅N is output. Finally, estimated supports of 

itemsets are less than the true support by at most ε⋅N.  

The comprehensive experiments show that our algorithm is efficient on both sparse and 

dense data, and scalable to the continuous data streams. Furthermore, DSM-FI algorithm 

outperforms BTS, a state-of-the-art single-pass algorithm, by one order of magnitude for 

discovering the set of all frequent itemsets over the entire history of the data streams.  
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    The remainder of the chapter is organized as follows. Section 2.2 defines the problem of 

single-pass mining frequent itemsets in a landmark window over data streams. The proposed 

DSM-FI algorithm is described in Section 2.3. The extended prefix tree-based summary data 

structure SFI-forest is introduced to maintain the essential information about the set of all 

frequent itemsets of the stream generated so far. Theoretical analysis and experiments are 

presented in Section 2.4. We conclude the chapter in Section 2.5. 

2.2 Problem Definition 

Based on the estimation mechanism of the BTS algorithm, we propose a new, single-pass 

algorithm to improve the efficiency of mining frequent itemsets over the entire history of data 

streams when a user-specified minimum support threshold s ∈ (0, 1), and a maximum support 

error threshold ε ∈ (0, s) are given. 

    Let Ψ = {i1, i2, …, im} be a set of literals, called items. An itemset is a nonempty set of 

items. A l-itemset, denoted by (x1x2… xl), is an itemset with l items. A transaction T consists 

of a unique transaction identifier (tid) and a set of items, and denoted by <tid, (x1x2… xq)>, 

where xi ∈ Ψ, ∀i =1, 2, …, q. A basic window W consists of k transactions. The basic 

windows are labeled with window identifier wid, starting from 1. 

Definition 2-1 A data stream, DS = [W1, W2, …, WN), is an infinite sequence of basic 

windows, where N is the window identifier of the “latest” basic window. The current length 

of DS, written as DS.CL, is k⋅N, i.e., |W1| + |W2| + … + |WN|. The windows arrive in some 

order (implicitly by arrival time or explicitly by timestamp), and may be seen only once. 

Mining frequent itemsets in landmark windows over data streams is to mine the set of all 

frequent itemsets from the transactions between a specified window identifier called landmark 

and the current window identifier N. Note that the value of landmark is set to 1. 
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    To ensure the completeness of frequent itemsets for data streams, it is necessary to store 

not only the information related to frequent itemsets, but also the information related to 

infrequent ones. If the information about the currently infrequent itemsets were not stored, 

such information would be lost. If these itemsets become frequent later on, it would be 

impossible to figure out their correct support and their relationship with other itemsets. The 

data stream mining algorithms have to sacrifice the exactness of the analytical results by 

allowing some tolerable support errors since it is unrealistic to store all the streaming data into 

the limited main memory. Hence, we define two types of support of an itemset, and divide the 

itemsets embedded in the stream into three categories: frequent itemsets, significant itemsets, 

and infrequent itemsets. 

Definition 2-2 The true support of an itemset X, denoted by X.tsup, is the number of 

transactions in the data stream containing the itemset X as a subset. The estimated support of 

an itemset X, denoted by X.esup, is the estimated true support of X stored in the summary data 

structure, where 0 < X.esup ≤ X.tsup. 

Definition 2-3 The current length (CL) of data stream with respect to an itemset X stored in 

the summary data structure, denoted by X.CL, is (N−j+1)⋅k, i.e., |Wj| + |Wj+1| + … + |WN|, 

where Wj is the first basic window with the window identifier j stored in the current summary 

data structure containing the itemset X, and N is the window identifier of current window.  

Definition 2-4 An itemset X is frequent if X.tsup ≥ s⋅X.CL. An itemset X is significant if 

s⋅X.CL > X.tsup ≥ ε⋅X.CL. An itemset X is infrequent if ε⋅X.CL > X.tsup.  

Definition 2-5 A frequent itemset is maximal if it is not a subset of any other frequent 

itemsets generated so far. 

Therefore, given a data stream DS = [B1, B2, …, BN ), a user-defined minimum support 
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threshold s in the range of [0, 1], and a user-specified maximum support error threshold ε in 

the range of [0, s], the problem of mining frequent itemsets in landmark windows over data 

streams is to find the set of all frequent itemsets in single scan of the data stream.  

2.3 The Proposed Algorithm: DSM-FI 

The proposed DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm consists of four 

steps. 

(a) Read a basic window of transactions from the buffer in main memory, and sort 

the items of transaction in the lexicographical order (Step 1). 

(b) Construct and maintain the in-memory summary data structure (Step 2). 

(c) Prune the infrequent information from the summary data structure (Step 3). 

(d) Find the frequent itemsets from the summary data structure (Step 4).  

    Steps 1 and 2 are performed in sequence for a new incoming basic window. Step 3 is 

performed after every basic window has been processed. Finally, step 4 is usually performed 

periodically or when it is needed. Since the reading of a basic window of transactions from 

the buffer is straightforward, we shall henceforth focus on Steps 2, 3, and 4, and devise 

algorithms for effective construction and maintenance of summary data structure, and 

efficient determination of frequent itemsets. 

2.3.1 Construction and Maintenance of Summary Data structure  

In this section, we describe the algorithm which constructs and maintains the in-memory 

summary data structure called SFI-forest (Summary Frequent Itemset forest).  

Definition 2-6 A summary frequent itemset forest (SFI-forest) is a summary data structure 

and is defined as follows. 
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1. SFI-forest consists of a frequent item list (FI-list), and a set of summary frequent 

itemset trees (SFI-trees) of item-prefixes, denoted by item-prefix.SFI-trees. 

2. Each node in the item-prefix.SFI-tree consists of four fields: item-id, item-id.esup, 

item-id.window-id, and item-id.node-link. The first field item-id is the item identifier 

of the inserting item. The second field item-id.esup registers the number of 

transactions represented by a portion of the path reaching the node with the item-id. 

The value of the third field item-id.window-id assigned to a new node is the window 

identifier of the current window. The final field item-id.node-link links up a node with 

the next node with the same item-id in the same SFI-tree or null if there is none. 

3. Each entry in the FI-list consists of four fields: item-id, item-id.esup, 

item-id.window-id, and item-id.head-link. The item-id registers which item identifier 

the entry represents, item-id.esup records the number of transactions containing the 

item carrying the item-id, the value of item-id.window-id assigned to a new entry is the 

window identifier of current window, and item-id.head-link points to the root node of 

the item-id.SFI-tree. Note that each entry with item-id in the FI-list is an item-prefix 

and it is also the root node of the item-id.SFI-tree. 

4. Each item-prefix.SFI-tree has a specific opposite frequent item list (OFI-list) with 

respect to the item-prefix, denoted by item-prefix.OFI-list. The item-prefix.OFI-list is 

composed of four fields: item-id, item-id.esup, item-id.window-id, and 

item-id.head-link. The item-prefix.OFI-list operates the same as the FI-list except that 

the field head-link links to the first node with the same item-id in the 

item-prefix.SFI-tree. Note that |item-prefix.OFI-list| = |FI-list| in the worst case, 

where |FI-list| denotes the total number of entries in the FI-list.    

Figure 2-2 outlines the SFI-forest construction of the proposed DSM-FI algorithm. First 

of all, DSM-FI algorithm reads a transaction T from the current window BN. Then, DSM-FI 
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projects this transaction T into many sub-transactions, and inserts these sub-transactions into 

the SFI-forest. The details of this projection are described as follows. A transaction T with m 

items, such as (x1x2… xm), in the current window should be projected by inserting m 

item-prefix sub-transactions into the SFI-forest. In other words, the transaction T = (x1x2… xm) 

is converted into m sub-transactions; that is, (x1x2… xm), (x2x3… xm), …, (xm-1xm), and (xm). 

These m sub-transactions are called item-prefix transactions, since the first item of each 

sub-transaction is an item-prefix of the original transaction T. This step, called transaction 

projection, is denoted by TP(T) = {x1|T, x2|T, …, xi|T, …, xm|T}, where xi|T = (xixi+1… xm), ∀i 

= 1, 2, …, m. The projecting cost of a transaction of length m for constructing the summary 

data structure SFI-forest is (m
2
+m)/2, i.e., m + (m−1) + … + 2 + 1. Recall that the 

decomposing cost of a transaction with m items of BTS algorithm for constructing the 

summary data structure is (2
m
−2). In general, the constructing cost of summary data structure 

of our algorithm is extremely less than that of BTS algorithm.  

After performing the transaction projection of the incoming transaction T, DSM-FI 

algorithm inserts T into the FI-list, and then removes T from the current window in the main 

memory. Then, the items of these item-prefix transactions are inserted into the 

item-prefixes.SFI-trees as branches, and the estimated support of the corresponding 

item-prefixes.OFI-lists are updated. If an itemset shares a prefix of an itemset already in the 

SFI-tree, the new itemset will share a prefix of the branch representing that itemset. In 

addition, an estimated support counter is associated with each node in the tree. The counter is 

updated when an item-prefix transaction causes the insertion of a new branch. Figure 2-3 

shows the subroutines of SFI-forest construction and maintenance. 

Example 2-1. Let the Wj be a window with the landmark identifier j, and it contains six 

transactions: < acdf >, < abe >, < df >, < cef >, < acdef > and < cef >, where a, b, c, d, e and f 

are items in the data stream. The SFI-forest with respect to the first two transactions, < acdf > 
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and < abe >, constructed by DSM-FI algorithm is described as follows. Note that each node of 

the form (id: id.esup: id.wid) is composed of three fields: item-id, estimated support, and 

window-id. For example, (a: 2: j) indicates that, from basic window Wj to current basic 

window WN (1 ≤ j ≤ N), item a appeared twice. 

                                                                             

Algorithm SFI-forest construction 

Input: A data stream, DS = [B1, B2, …, BN) with landmark 1, a user-specified minimum 

support threshold s∈(0, 1), and a maximum support error threshold ε ∈ (0, s). 

Output: A SFI-forest generated so far. 

1:  FI-list = {};  /*initialize the FI-list to empty.*/ 

2:  foreach window Bj do /* j = 1, 2, …, N */ 

3:    foreach transaction T = (x1x2… xm) ∈ Bj (j = 1, 2, …, N) do   

/* m ≥ 1 and j is the current window identifier */ 

4:         foreach item xi ∈ T do  /* the maintenance of FI-list */ 

5:               if xi ∉ FI-list then 

6:                  create a new entry of form (xi, 1, j, head-link) into the FI-list;  

/* the entry form is (item-id, item-id.esup, window-id, head-link)*/  

7:              else /* the entry already exists in the FI-list*/ 

8:                     xi.esup = xi.esup + 1;  

/* increment the estimated support of item-id xi by one*/ 

9:              end if 

10:         end for 

11:      call TP(T, j);  

/* project the transaction with each item-prefix xi for constructing the xi.SFI-tree */ 

12:   end for 

13:   call SFI-forest-pruning(SFI-forest, ε, N);  /* Step 3 of DSM-FI algorithm */ 

14: end for 

                                                                            

Figure 2- 2. Algorithm SFI-forest Construction 

 

Subroutine TP  /* Step 2 of DSM-FI algorithm: construct and maintain the SFI-forest */ 
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Input: A transaction T = (x1x2… xm) and the current window-id j; 

Output: xi.SFI-tree, ∀i = 1, 2, …, m; 

1:  foreach item xi, ∀i = 1, 2, …, m, do 

2:       SFI-tree-maintenance([xi|X], xi.SFI-tree, j);  

/* X = x1, x2, …, xm is the original incoming transaction T */ 

/* [xi|X] is an item-prefix transaction with the item-prefix xi*/ 

3:  end for 

 

Subroutine SFI-tree-maintenance  /* Step 2 of DSM-FI algorithm  */ 

Input: An item-prefix transaction (xixi+1… xm), the current window-id j, and xi.SFI-tree, where 

i=1, 2, …, m; 

Output: A modified xi.SFI-tree, where i=1, 2, ..., m; 

1:   foreach item xl do /* l = i+1, i+2, …, m */ 

2:       if xl ∉ xi.OFI-list then   /*  xi.OFI-list maintenance  */ 

3:           create a new entry of form (xl, 1, j, head-link) into the xi.OFI-list;  

/* the entry form is (item-id, item-id.esup, item-id.window-id, 

item-id.head-link)*/  

4:       else  /* the entry already exists in the xi.OFI-list */ 

5:            xl.esup = xl.esup + 1;  

/* increment the estimated support of item-id xl by one*/ 

6:       end if 

7:   endfor 

8:   foreach item xi, ∀i = 1, 2, …, m, do /* xi.SFI-tree maintenance */ 

9:       if SFI-tree has a child node with item-id y such that y.item-id = xi.item-id then 

10:           y.esup = y.esup +1; /*increment y’s estimated support by one*/ 

11:       else create a new node of the form (xi, 1, j, node-link);  

/* initialize the estimated support of the new node to one, and link its parent link to 

SFI-tree, and its node-link linked to the nodes with same item-id via the node-link structure. 

*/ 

12:       end if 

13:   end for 
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Subroutine SFI-forest-pruning  /* Step 3 of DSM-FI algorithm: prune the infrequent 

information from the SFI-forest  */ 

Input: A SFI-forest, a user-specified maximum support error threshold ε, and the current 

window identifier N; 

Output: A SFI-forest which contains the set of all significant and frequent itemsets. 

1:  foreach entry xi (i=1, 2, …, d) ∈ FI-list, where d =|FI-list| do 

2:     if xi .esup < ε⋅⋅⋅⋅xi.CL then  /* if xi is an infrequent item */  

3:        delete xi.SFI-tree; 

4:        delete the entry xi from the FI-list; 

5:        delete xi from other xj.OFI-list if it exists in xj.OFI-list (j = 1, 2, …, d; j ≠ i); 

6:        delete those nodes (item-id = xi) in other SFI-trees via node-link structures and  

              merge the fragmented sub-trees;  

         /* a simple way is to reinsert or to join the remainder sub-trees into the SFI-tree */; 

7:     end if  

8:  end for 

                                                                             

Figure 2- 3. Subroutines of SFI-forest construction algorithm 
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Figure 2- 4. SFI-forest construction after processing the first transaction < acdf > 
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Figure 2- 5. SFI-forest construction after processing the second transaction < abe > 

 

(a) First transaction < acdf >: First of all, DSM-FI algorithm reads the first transaction and 

calls the Transaction-Projection(< acdf >). Then, DSM-FI inserts four item-prefix 

transactions: <acdf>, <cdf>, <df>, and <f> into the FI-list, [a.SFI-tree, a.OFI-list], 

[c.SFI-tree, c.OFI-list], [d.SFI-tree, d.OFI-list], and [f.SFI-tree, f.OFI-list], respectively. 

The result is shown in Figure 2-4. In the following steps, the head-links of each 

item-prefix.OFI-list are omitted for concise presentation. 

(b) Second transaction <abe>: DSM-FI algorithm reads the second transaction and calls the 

Transaction-Projection(<abe>). Next, DSM-FI inserts three item-prefix transactions: 

<abe>, <be>, and <e> into the FI-list, [a.SFI-tree, a.OFI-list], [b.SFI-tree, b.OFI-list], and 

[e.SFI-tree, e.OFI-list], respectively. The result is shown in Figure 2-5. After processing 

all the transactions of window Wj, the SFI-forest generated so far is shown in Figure 2-6. 

2.3.2 Pruning Infrequent Information from SFI-forest 

According to the Apriori principle, only the frequent 1-itemsets are used to construct 

candidate k-itemsets, where k ≥ 2. Thus, the set of candidate itemsets containing the 
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infrequent items stored in the summary data structure is pruned. The pruning is usually 

performed periodically or when it is needed. 

Let the maximum support error threshold be ε in the range of [0, s], where s is a 

user-defined minimum support threshold in the range of [0, 1]. The space pruning method of 

DSM-FI is that the item x and its supersets are deleted from SFI-forest if x.esup < ε⋅x.CL. For 

each entry (x, x.esup, x.window-id, x.head-link) in the FI-list, if its x.esup is less than ε⋅x.CL, it 

can be regarded as an infrequent item. In this case, three operations are performed in sequence. 

First, DSM-FI deletes the x.OFI-list, x.SFI-tree, and the infrequent entry x from the FI-list. 

Second, DSM-FI removes the infrequent item x of other OFI-lists by traversing the FI-list. 

Third, DSM-FI deletes the infrequent item x from other SFI-trees, and reconstructs these 

SFI-trees. After pruning all infrequent items from SFI-forest, SFI-forest contains the set of all 

frequent itemsets and significant itemsets of the data stream generated so far.  
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Figure 2- 6. SFI-forest construction after processing the window Wj 
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Figure 2- 7. SFI-forest after pruning all infrequent items 

 

 

Example 2-2: Let the maximum support error threshold ε be 0.2. Hence, an itemset X is 

infrequent in Figure 2-6 if X.esup < ε⋅X.CL. Note that ε⋅X.CL = 0.2⋅6 = 1.2. After computing 

the current window Wj, the next step of DSM-FI is to prune all the infrequent items from the 

current SFI-forest. At this time, DSM-FI deletes the b.SFI-tree, b.OFI-list, and item b itself 

from the FI-list, since item b is an infrequent item; that is, b.esup = 1 < 1.2. Then, DSM-FI 

updates the a.OFI-list and reconstructs a.SFI-tree, because a.OFI-list and a.SFI-tree contains 

the infrequent item b. The result is shown in Figure 2-7. 

The next step of DSM-FI is to determine the set of all frequent itemsets from SFI-forest 

constructed so far. The step is performed only when the current results of the data stream is 

requested. Note that the number of candidate 2-itemsets is a performance bottleneck in the 

Apriori-based frequent itemset mining algorithms [3, 35]. DSM-FI algorithm can avoid this 

performance problem. This is because DSM-FI can generate all frequent 2-itemsets 

immediately by combining the frequent items in the FI-list with the frequent items in the 

corresponding OFI-list. 
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2.3.3 Determining Frequent Itemsets from Current SFI-forest 

Once SFI-forest containing all the frequent items of the data stream generated so far is 

constructed, we can derive all the frequent itemsets by traversing the SFI-forest according to 

the Apriori principle. Therefore, we propose an efficient mechanism called top-down frequent 

itemset selection (todoFIS), as shown in Figure 2-8, for mining frequent itemsets. It is 

especially useful in mining long frequent itemsets. The method is described as follows. 

Assume that there are k frequent items, namely e1, e2, …, ek, in the current FI-list, and 

each item ei, ∀i = 1, 2, …, k, has an associated ei.OFI-list, where the size of ei.OFI-list is 

denoted by |ei.OFI-list|. Note that the items, namely o1, o2, …, oj, within the ei.OFI-list are 

denoted by ei.o1, ei.o2, …, ei.oj, respectively, where the value j equals to |ei.OFI-list|. For each 

entry ei, ∀i = 1, 2, …, k, in the current FI-list, DSM-FI algorithm first generates a maximal 

candidate itemset with (j+1) items, i.e., (eiei.o1ei.o2 …ei.oj) by combining the item-prefix ei 

with all frequent items in ei.OFI-list. Then, DSM-FI uses the following scheme to count its 

estimated support.  

First, we start with a specific frequent item ei.ol (1 ≤ l ≤ j), whose estimated support is 

smallest, and traverse the paths containing ei.ol via node-links of ei.SFI-tree to count the 

estimated support of the candidate (eiei.o1ei.o2 …ei.oj). If the estimated support of the 

candidate is greater than or equal to (s−ε)⋅ ei.CL, then it is a frequent itemset. All subsets of 

this frequent itemset are also frequent itemsets according to the Apriori principle. Hence, the 

complete set of the frequent itemsets stored in the ei.SFI-tree can be generated by enumeration 

of all the combinations of the subsets of frequent (j+1)-itemset, (eiei.o1ei.o2 …ei.oj). On the 

other hand, if the estimated support of the candidate (j+1)-itemset is less than the threshold 

(s−ε)⋅ ei.CL, then it is not a frequent itemset. Now, we need to use the same mechanism to test 

all the subsets of the (j+1)-itemset until the candidate 3-itemsets. This is because all frequent 

2-itemsets can be generated by combining the item ei and the frequent items of the ei.OFI-list. 
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Note that a (j+1)-itemset can be decomposed into C(j+1, j) j-itemsets. We decompose one 

candidate j-itemset from the (j+1)-itemset at a time, and use the same scheme described above 

to count the estimated support of this candidate j-itemset. Finally, all the maximal frequent 

itemsets are maintained in a temporal MFI-list, called MFItemp-list, for efficient generation of 

the set of all frequent itemsets. If such a MFItemp-list is obtained, all the frequent itemsets can 

be generated efficiently by enumerating the set of all maximal frequent itemsets in the current 

MFItemp-list without any candidate generation and support counting. Note that if the user 

request is just to find the set of all maximal frequent itemsets so far, DSM-FI algorithm can 

output all maximal frequent itemsets efficiently by scanning the MFItemp-list. 

Example 2-3. Let the minimum support threshold s be 0.5. Therefore, an itemset X is frequent 

in Figure 2-7 if X.esup ≥ s⋅X.CL. Note that s⋅X.CL = 0.5⋅6 = 3 in this case. The online mining 

steps of DSM-FI algorithm are described as follows. 

(1) First of all, DSM-FI starts the frequent itemset mining scheme from the first frequent item 

a (from left to right). At this moment, only item a is a frequent itemset, since the estimated 

support of items c, d, e, and f in the a.OFI-list are less than s⋅a.CL, where s⋅a.CL = 3. Now, 

DSM-FI stores the maximal frequent 1-itemset (a) into the MFItemp-list.  

(2) Next, DSM-FI starts on the second entry c for frequent itemset mining. DSM-FI generates 

a candidate maximal 3-itemset (cef), and traverses the c.SFI-tree to count its estimated 

support. As a result, the candidate (cef) is a maximal frequent itemset, since its estimated 

support is 3 and it is not a subset of any other frequent itemsets in the MFItemp-list. Now, 

DSM-FI stores the maximal frequent itemset (cef) into the MFItemp-list.  

(3) Next, DSM-FI starts on the third entry d and generates a candidate maximal 2-itemset (df). 

DSM-FI stores the itemset (df) into the MFItemp-list without traversing d.SFI-tree because 

(df) is a frequent 2-itemset and is not a subset of any other maximal frequent itemsets 

stored in the MFItemp-list.  
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(4) On the fourth entry f, DSM-FI algorithm generates one frequent 1-itemset (f) directly, 

since the f.OFI-list is empty. DSM-FI does not store it into the MFItemp-list, because (f) is a 

subset of a generated maximal frequent itemset (cef). 

Finally, on the fifth entry e, DSM-FI generates a frequent 2-itemset (ef) directly. However, the 

frequent 2-itemset (ef) is a subset of a maximal frequent itemset (cef) stored in the MFItemp-list. 

DSM-FI algorithm does not store it into the MFItemp-list. 

                                                                                    

Algorithm todoFIS  

Input: A current SFI-forest, the current window identifier N, a minimum support threshold s, 

and a maximum support error threshold ε. 

Output: A set of all frequent itemsets.  

1:   MFItemp-list = ∅; 

/* MFItemp-list is a temporary list used to store the set of maximal frequent itemsets */ 

2:   foreach entry e in the current FI-list do 

3:         construct a maximal candidate itemset E with size |E|  /* |E| = 1+|e.OFI-list| */ 

4:         count E.esup by traversing the e.SFI-tree;  

5:         if E.esup ≥ (s−ε) ⋅⋅⋅⋅E.CL then 

6:           if E ⊄ MFItemp-list and E is not a subset of any other patterns in the 

MFItemp-list 

then 

7:               add E into the MFItemp-list; 

8:               remove E’s subsets from the MFItemp-list;                  

9:           end if 

10:        else /* if E is not a frequent itemset */ 

11:            enumerate E into itemsets with size |E|−1; 

12:        end if  

13:    until todoFIS finds the set of all frequent itemsets with respect to entry e; 

14:  end for 

                                                                            

Figure 2- 8. Algorithm todoFIS 
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After processing all the entries in the FI-list, the MFItemp-list generated by DSM-FI 

algorithm contains the set of current maximal frequent iemsets: {(a), (cef), (df)}. Therefore, 

the set of all frequent itemsets can be generated by enumerating the set: {(a), (cef), (df)}. 

Consequently, the set of all frequent itemsets in Figure 2-7 are {(a), (cef), (ce), (cf), (ef), (c), 

(e), (f), (df), (d)}.   

2.4 Theoretical Analysis 

In this section, we discuss the upper bound of estimated support error of frequent itemsets 

generated by DSM-FI algorithm, and the space upper bound of prefix-tree-based summary 

data structure. 

2.4.1 Maximum Estimated Support Error Analysis 

In this section, we discuss the maximum estimated support error of all frequent itemsets 

generated by DSM-FI algorithm. Let X.wid be the window-id of itemset X stored in the 

current SFI-forest. Assume that the window contains k transactions. Let the maximum support 

error threshold be ε. Let the current window-id of the incoming stream be wid(N). Now, we 

have the following theorem of maximum estimated support error guarantee of frequent 

itemsets generated by the proposed algorithm. 

 

Theorem 2-1 X.tsup − X.esup ≤ ε⋅(X.wid −1)⋅k. 

Proof: We prove by induction. Base case (X.wid = 1): X.tsup = X.esup. Thus, X.tsup − X.esup 

≤ ε⋅(X.wid −1)⋅k. 

Induction step: Consider an itemset of the form (X, X.esup, X.wid) that gets deleted for 

some wid(N) > 1. The itemset is inserted in the SFI-forest when wid(N+1) is being processed. 

The itemset X whose window-id is wid(N+1) in the FI-list could possibly have been deleted as 
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late as the time when X.esup ≤ ε⋅(wid(N+1)−X.wid+1)⋅k. Therefore, X.tsup of X when that 

deletion occurred is no more than ε⋅(wid(N+1)−X.wid+1)⋅k. Furthermore, X.esup is the 

estimated true support of the itemset X since it is inserted. It follows that X.tsup, which is the 

true support of X in the first window containing X though the current window, is at most 

X.esup + ε⋅(wid(N) −1)⋅k. Thus, we have X.tsup − X.esup ≤ ε⋅(X.wid−1)⋅k. As a result, DSM-FI 

generates no false negative.                                

 

    Because our algorithm is a false-positive algorithm, the answers produced by DSM-FI 

will have the following guarantees the same as those of BTS algorithm [53]: 

(a) All itemsets whose true frequency exceeds s⋅N are output. There are no false 

negatives. 

(b) No itemsets whose true frequency is less than (s−ε)⋅N is output. 

(c) Estimated frequencies are less than the true frequencies by at most ε⋅N. 

If it is desired that the error dose not increase linearly with the value of window id, we can 

modify the line 5 of algorithm todoFIS from “if E.esup ≥ (s−ε)⋅N then” to “if E.esup ≥ s⋅N 

then”. After that DSM-FI algorithm becomes a false-negative algorithm. 

    Note that a false-positive approach returns a set of itemsets that includes all frequent 

itemsets but also some infrequent itemsets. A false-negative algorithm returns a set of itemsets 

that does not include any infrequent itemsets but misses some frequent itemsets. 

2.4.2 Space Requirement Analysis 

In this section, we discuss the space upper bound of any single-pass algorithm for 

constructing a summary data structure based on a prefix tree structure.  

Theorem 2-2. A prefix tree-based summary data structure has at most 2
m
 nodes for storing the 

set of all frequent itemsets of data streams, when m frequent items are given. 
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Proof: Let m be the number of frequent items, i.e., 1-itemsets, in the data stream generated so 

far. Hence, the number of potential frequent itemsets is C(m, 1) regarding one item, C(m, 2) 

regarding two items, …, C(m, i) regarding i items, …, and C(m, m) regarding m items 

according to the Apriori heuristic. In a prefix tree-based summary data structure, an itemset is 

represented by a path and its appearance support is maintained in the last node of the path. 

Thus, there are C(m, 1) nodes in the first level, C(m, 2) nodes in the second level, …, C(m, i) 

nodes in the i-th level, …, and C(m, m) nodes in the m-th level. There are totally C(m, 1) + 

C(m, 2) + … + C(m, i) + … + C(m, m) nodes in the prefix tree-based summary data 

structure. Consequently, the space upper bound of a prefix-tree based summary data structure 

is O(2
m
).               

 

    The construction cost of summary data structure of DSM-FI algorithm is extremely less 

than that of BTS algorithm although theoretically, their worst case space complexities are 

same, i.e., O(2
m
), when m frequent items are given. 

2.5 Performance Evaluation 

All the experiments are performed on a 1GHz IBM X24 with 384MB, and the program is 

written in Microsoft Visual C++ 6.0. To evaluate the performance of algorithm DSM-FI, we 

conduct the empirical studies based on the synthetic datasets. In Section 2.6.1, we report the 

scalability study of algorithm DSM-FI. In Section 2.6.2, we compare the memory and 

execution time requested by DSM-FI with BTS algorithm. The parameters of synthetic data 

generated by IBM synthetic data generator [3] are described as follows. 

IBM Synthetic Dataset: T10.I5.D1M and T30.I20.D1M. The first synthetic dataset T10.I5 

has average transaction size T of 10 items and the average size of maximal frequent itemset I 

is 5-items. It is a sparse dataset. In the second dataset T30.I20, the average transaction size T 
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and average size of maximal frequent itemset I are set to 30 and 20, respectively. It is a dense 

dataset. Both synthetic datasets have 1,000,000 transactions. Items were drawn from a 

universe of 10K distinct items. In the experiments, the synthetic data stream is broken into 

basic windows of size 50K (i.e., 50,000 transactions) for simulating the continuous 

characteristic of streaming data. Hence, there are total 20 windows in these experiments. 

2.5.1 Scalability Study of DSM-FI Algorithm 

In this experiment, we examine the two primary factors, execution time and memory usage, to 

discover frequent itemsets in a data stream environment, since both should be bounded online 

as time advances. Therefore, in Figure 2-9(a), the execution time grows smoothly as the 

dataset size increases from 2,000K to 10,000K. The default value of minimum support 

threshold s is 0.01%. The memory usage in Figure 2-9(b) for both synthetic datasets is stable 

as time progresses, indicating the scalability and feasibility of algorithm DSM-FI. Notice that, 

the synthetic data stream used in Figure 2-9(b) is divided into 20 basic windows each of 50K. 
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(a) Linear scalability of DSM-FI algorithm (s = 0.01%) 
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(b) Space requirement of DSM-FI algorithm (s = 0.01%) 

 

Figure 2- 9. Resource requirements of DSM-FI algorithm for IBM synthetic datasets: (a) 

execution time, (b) memory usage 
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(a) Execution time compared with DSM-FI and BTS (s = 0.01%) 
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(b) Space requirement compared with DSM-FI and BTS (s = 0.01%) 

 

Figure 2- 10. Comparison of DSM-FI and BTS: (a) Execution time, (b) Memory Usage 

 

 

2.5.2 Comparison with BTS algorithm 

In this experiment, we examine the execution time and memory usage between DSM-FI and 

BTS by dataset T30.I20.D1M. In Figure 2-10 (a), we can see that the execution time incurred 

by DSM-FI is quite steady and is less than that of BTS. The experiment shows that DSM-FI 

performs more efficiently than BTS algorithm. In Figure 2-10 (b), the memory usage of 

DSM-FI is more stable and extremely less than that of BTS. It also shows that DSM-FI 

algorithm is more suitable for mining frequent itemsets in large-scale data streams. 

2.6 Conclusions 

In this chapter, we proposed a new, single-pass algorithm, called DSM-FI (Data Stream 

Mining for Frequent Itemsets), which mines the set of all frequent itemsets in the landmark 
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model of data streams. In the DSM-FI algorithm, a new in-memory summary data structure, 

called SFI-forest (Summary Frequent Itemset forest), is constructed for storing the frequent 

and significant itemsets of the streaming data generated so far. An efficient frequent itemset 

search mechanism, called todoFIS (top-down Frequent Itemset Selection), is developed to 

find the set of all frequent itemsets from the current SFI-forest. Experiments tested on 

synthetic data streams show that DSM-FI is efficient on both sparse and dense datasets, and 

demonstrates linear scalability to very long data streams. Moreover, DSM-FI outperforms the 

well-known, single-pass algorithm - BTS - for mining frequent itemsets over the entire history 

of the streaming data.
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Chapter 3  Online Mining of Frequent Itemsets over Stream 

Sliding Windows 

 

Many previous studies contributed to the efficient mining of frequent items [12, 20, 22, 39, 40, 

54] and frequent itemsets (FI) in streaming data [10, 11, 18, 21, 31, 51, 53, 63, 64, 68]. 

According to the stream processing model [70], the research of mining frequent itemsets in 

data streams can be divided into three categories: landmark windows, sliding windows, and 

damped windows, as described briefly as follows. In the landmark window model, knowledge 

discovery is performed based on the values between a specific timestamp called landmark and 

the present. In the sliding window model, knowledge discovery is performed over a fixed 

number of recently generated data elements which is the target of data mining. Two types of 

sliding widow, i.e., transaction- sensitive sliding window (TransSW) and time-sensitive 

sliding window (TimeSW), are used in mining data streams. The basic processing unit of 

window sliding of first type is an expired transaction while the basic unit of window sliding of 

second type is a time unit, such as a minute or an hour. The sliding windows are shown in 

Figure 3-1. In the damped window model, recent sliding windows are more important than 

previous ones. 

 

 

 

 

 

 

Figure 3- 1. Transaction-sensitive sliding window and time-sensitive sliding window [51] 

TransSW: Mining frequent itemsets from only the latest w transactions 

TimeSW: Mining frequent itemsets from only the latest w time units 

 



 33 

 

3.1 Introduction 

In [53], Manku and Motwani developed two single-pass algorithms, Sticky-Sampling and 

Lossy Counting, to mine frequent items over offline data streams with a landmark window. 

Moreover, Manku and Motwani proposed the BTS (Buffer- Trie-SetGen) algorithm based on 

Lossy Counting for mining the set of frequent itemsets from offline data streams. Jin and 

Agrawal [39] proposed an algorithm, called StreamMining, for in-core frequent itemset 

mining over online data streams. Yu et al. [68] discussed the issues of false negative or false 

positive in mining frequent itemsets from high speed offline transactional data streams. 

Chang and Lee [11] proposed a BTS-based algorithm, called SWFI-stream, for mining 

frequent itemsets in online data streams with a transaction-sensitive sliding windows model. 

Teng et al. [63] proposed a regression-based algorithm, called FTP-DS, to find temporal 

patterns (frequent inter-transaction itemsets) across multiple online data streams in a 

time-sensitive sliding window. Teng et al. [64] proposed a resource-aware algorithm called 

RAM-DS, to mine temporal patterns in multiple online data streams with a time-sensitive 

sliding window. Lin et al. [14] proposed an incremental mining algorithm to find the set of 

frequent itemsets in offline data streams with a time-sensitive sliding window. Chi et al. [18] 

proposed a transaction-sensitive sliding window based algorithm, called MOMENT, which 

might be the first to find frequent closed itemsets (FCI) from online data streams with a 

transaction- sensitive sliding window. A summary data structure, called CET, is used in the 

MOMENT algorithm to maintain the information of closed frequent itemsets. 

Chang and Lee [10] developed a damped window based algorithm, called estDec, for 

mining frequent itemsets in online streaming data in which each transaction has a weight 

decreasing with age. In other words, older transactions contribute less toward itemset 

frequencies, and it is a kind of damped windows model. Giannella et al. [31] proposed a 

frequent pattern tree (abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine 
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frequent itemsets at multiple time granularities by a novel tilted-time windows technique. 

FP-stream focuses on offline data streams. 

The first target of this chapter is on frequent itemsets mining over online data streams 

with a transaction-sensitive sliding window. An efficient algorithm, called MFI-TransSW 

(Mining Frequent Itemsets over Transaction-sensitive Sliding Windows), is proposed to mine 

frequent itemsets over online data streams with a transaction-sensitive sliding window. The 

experiments show that the MFI-TransSW algorithm not only attain highly accurate mining 

results, but also run significant faster and consume less memory than that of SWFI-stream 

algorithm [11] for mining frequent itemsets over recent data streams. The second purpose of 

the chapter is to mine frequent itemsets over online data streams with a time-sensitive sliding 

window. A MFI-TransSW based algorithm, called MFI-TimeSW (Mining Frequent Itemsets 

over Time-sensitive Sliding Windows), is developed for mining frequent itemsets over online 

data streams with a time-sensitive sliding window. 

    The remainder of this chapter is organized as follows. The problem of frequent itemsets 

mining in a transaction-sensitive sliding window is defined in Section 3.2. The algorithm 

MFI-TransSW is proposed in Section 3.3. Experiments of MFI-TransSW algorithm are 

discussed in Section 3.4. The issue of mining in a time-sensitive sliding window is defined 

and algorithm MFI-TimeSW is proposed in Section 3.5 and Section 3.6, respectively. Finally, 

we conclude this chapter in Section 3.7. 

3.2 Problem Definition: Mining Frequent Itemsets in a TransSW 

Let Ψ = {i1, i2, …, im} be a set of items. A transaction T = (tid, x1x2…xn), xi ∈ Ψ, for 1 ≤ i ≤ n, 

is a set of items, while n is called the size of the transaction, and tid is the unique identifier of 

the transaction. An itemset is a non-empty set of items. An itemset with size k is called a 

k-itemset. A transaction data stream TDS = T1, T2, …, TN is a continuous sequence of 
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transactions, where N is the tid of latest incoming transaction TN. 

    A transaction-sensitive sliding window (TransSW) in the transaction data stream is a 

window that slides forward for every transaction. The window at each slide has a fixed 

number, w, of transactions, and w is called the size of the window. Hence, the current 

transaction-sensitive sliding window is TransSWN－w+1 = [TN−w+1, TN−w+2, …, TN], where 

N−w+1 is the window id of current TransSW. The support of an itemset X over TransSW, 

denoted as sup(X)
TransSW

, is the number of transactions in TransSW containing X as a subset. 

An itemset X is called a frequent itemset (FI) if sup(X)
TransSW

 ≥ s⋅w, where s is a user-defined 

minimum support threshold (MST) in the range of [0, 1]. The value s⋅w is called the frequent 

threshold of TransSW (FT
TransSW

). 

    Given a transaction-sensitive sliding window TransSW, and a MST s, the problem of 

online mining of frequent itemsets in recent transaction data streams is to mine the set of all 

frequent itemsets by one scan of the TransSW. 

 

 

Transaction Data Stream FIs in TransSW1  FIs in TransSW2  

      <T1, (acd) > 

      <T2, (bce) > 

      <T3, (abce) > 

      <T4, (be) > 

(a), (b), (c), (e), (ac), 

(bc), (be), (ce), (bce) 

(b), (c), (e), (bc), (be), 

(ce), (bce) 

A transaction data stream is formed by transactions arriving in series 

Figure 3- 2. An example transaction data stream and the frequent itemsets over two 

consecutive TransSWs 

 

Example 3-1 Let the first four transactions in a transaction data stream be <T1, (acd)>, <T2, 

(bce)>, <T3, (abce)>, and <T4, (be)>, where T1, T2, T3, and T4 are transactions and a, b, c, d, 

and e are items. Let the size of sliding window w be 3 and the user-defined minimum support 

threshold s be 0.6. Hence, the transaction data stream consists of two transaction-sensitive 

sliding windows, i.e., TransSW1 = [T1, T2, T3] and TransSW2 = [T2, T3, T4], where first 
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window TransSW1 contains the transactions T1, T2, and T3, and the second window TransSW2 

contains the transactions T2, T3, and T4. The example is shown in Figure 3-2.     

    In Figure 3-2, the frequent itemsets in TransSW1 are (a), (b), (c), (e), (ac), (bc), (be), (ce), 

and (bce), and the frequent itemsets in TransSW2 are (b), (c), (e), (d), (bc), (be), (ce), and (bce). 

In this instance, we can find that itemsets (a) and (ac) are frequent itemsets in TransSW1, but 

not frequent ones in TransSW2. 

3.3 The Proposed Algorithm: MFI-TransSW 

In this section, we proposed an efficient single-pass algorithm, called MFI-TransSW (Mining 

Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of all 

frequent itemsets in data streams with a transaction-sensitive sliding window. An effective 

bit-sequence representation of items is used in the proposed algorithm to reduce the time and 

memory needed to slide the windows. 

3.3.1 Bit-Sequence Representation 

In the proposed MFI-TransSW algorithm, for each item X in the current transaction-sensitive 

sliding window TransSW, a bit-sequence with w bits, denoted as Bit(X), is constructed. If an 

item X is in the i-th transaction of current TransSW, the i-th bit of Bit(X) is set to be 1; 

otherwise, it is set to be 0. The process is called bit-sequence transform. 

    For example, in Figure 3-2, the first sliding window TransSW1 consists of three 

transactions: <T1, (acd) >, <T2, (bce) >, and <T3, (abce) >, but the TransSW2 consists of 

transactions: <T2, (bce) >, <T3, (abce) >, and <T4, (be) >. Because item a appears in the 1st 

and 3rd transactions of TransSW1, the bit-sequence of a, Bit(a), is 101. Similarly, Bit(b) = 

011, Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011. 
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3.3.2 The MFI-TransSW Algorithm 

MFI-TransSW algorithm consists of three phases, window initialization phase, window sliding 

phase, and frequent itemsets generation phase. 

3.3.2.1 Window Initialization Phase 

The phase is activated while the number of transactions generated so far in a transaction data 

stream is less than or equal to a user-predefined sliding window size w. In this phase, each 

item in the new incoming transaction is transformed into its bit-sequence representation. 

For instance, in Figure 3-3, the first sliding window TransSW1 contains three transactions: 

T1, T2, and T3. The bit-sequences of items of TransSW1 in the window initialization phase are 

shown in Figure 3-4. 

 

 

 

 

 

 

 

Figure 3- 3. Bit-sequences of items in window initialization phase of TransSW 

 

 

 

 

 

 

 

Figure 3- 4. Bit-sequences of items after sliding TransSW1 to TransSW2 

Window-id Transactions Bit-Sequences of items 

TransSW1 <T1, (acd) >       

<T2, (bce) > 

<T3, (abce) > 

Bit(a) = 101, Bit(c) = 111, Bit(d) = 100, 

Bit(b) = 011, Bit(e) = 011 

TransSW2 <T2, (bce) > 

<T3, (abce) > 

<T4, (be) > 

Bit(a) = 010, Bit(c) = 110, Bit(d) = 000, 

Bit(b) = 111, Bit(e) = 111 

tid Items Bit-Sequences in current TransSW1 

T1 (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100 

T2 (bce) Bit(a)=100,Bit(c)=110,Bit(d)=100,Bit(b)=010, 

Bit(e)=010 

T3 (abce) Bit(a)=101,Bit(c)=111,Bit(d)=100, Bit(b)=011, 

Bit(e)=011 
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3.3.2.2 Window Sliding Phase 

The phase is activated after the sliding window TransSW becomes full. A new incoming 

transaction is appended to the sliding window, and the oldest transaction is removed from the 

window. 

For removing oldest information, an efficient method is used in the proposed algorithm. 

Based on the bit-sequence representation, MFI-TransSW algorithm uses the bitwise left shift 

operation to remove the aged transaction from the set of items in the current sliding window. 

After sliding the window, an effective pruning method, called Item-Prune, is used to improve 

the memory usage. The pruning approach is that an item X in the current transaction-sensitive 

sliding window is dropped if sup(X)
TransSW

 = 0. 

    For example, in Figure 3-2, before the fourth transaction <T4, (be)> is processed, the first 

transaction T1 must be removed from the current window using bitwise left shift on the set of 

items. Hence, Bit(a) is modified from 101 to 010. Similarly, Bit(c)=110, Bit(d)=000, 

Bit(b)=110, and Bit(e)=110. Then, the new transaction <T4, (be)> is processed by 

bit-sequence transform. The result is shown in Figure 3-4. Note that item d is dropped since 

Bit(d)=000, i.e., sup(d)
TransSW

 = 0.  

 

 

                                                                                   

Algorithm MFI-TransSW 

Input: TDS (a transaction data stream), s (a user-defined minimum support threshold in the 

range of [0, 1]), and w (the user-specified sliding window size). 

Output: a set of frequent itemsets, FI-Output. 

Begin 

    TransSW = NULL;  /* TransSW consists of w transactions */ 

    Repeat: 

         for each incoming transaction Ti in TransSW do 
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             if TransSW = FULL then 

                  Do bitwise-shift on bit-sequences of all items in TransSW; 

             else 

                      for each item X in Ti do 

                            Do bit-sequence transform(X); 

                       end for 

             end if 

         end for 

         for each bit-sequence Bit(X) in TransSW do 

               if sup(X) = 0 then 

                   Drop X from TransSW; 

               end if 

          end for 

/* The following is the frequent itemsets generation phase. The phase is performed only when 

requested by users. */ 

          FI1 = {frequent 1-itemsets}; 

          for (k=2; FIk−1≠ NULL; k++) do 

              CIk = CIGA(FIk−1); 

              Do bitwise AND to find the supports of CIk; 

              for each candidate ck ∈ CIk do 

                  if sup(ck)
TransSW

 ≥ w⋅s then 

                      FIk = {ck ∈ CIk | sup(ck)
TransSW

 ≥ w⋅s}; 

                  end if 

              end for 

           end for 

    FI-Output = ∪kFIk; 

End 

                                                                              

Figure 3- 5. Algorithm MFI-TransSW 
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  Transactions in 

TransSW2 

Bit-Sequences in 

TransSW2 

FI1 in TransSW2 (s = 0.6) sup 

    <T2, (bce) > 

    <T3, (abce) >         

    <T4, (be) > 

Bit(a) = 010 

Bit(c) = 110 

Bit(b) = 111 

Bit(e) = 111 

{(b) | Bit(b) = 111} 

{(c) | Bit(c) = 110} 

{(e) | Bit(e) = 111} 

3 

2 

3 

 

CI2 in SW2 FI2 in TransSW2 sup 

{(bc) | Bit(b) = 111 AND Bit(c) = 110} 

{(be) | Bit(b) = 111 AND Bit(e) = 111} 

{(ce) | Bit(c) = 110 AND Bit(e) = 111} 

{(bc) | Bit(bc) = 110} 

{(be) | Bit(be) = 111} 

{(ce) | Bit(ce) = 110} 

2 

3 

2 

 

CI3 in TransSW2 FI3 in TransSW2 sup 

{(bce) | Bit(bc) = 110 AND Bit(be) = 

111 AND Bit(ce) = 110} 

{(bce) | Bit(bce) = 110} 2 

 

Figure 3- 6. Steps of frequent itemsets generation in TransSW2 

 

 

3.3.2.3 Frequent Itemsets Generation Phase 

The phase is performed only when the up-to-date set of frequent itemsets is requested. In this 

phase, MFI-TransSW algorithm uses a level-wise method to generate the set of candidate 

itemsets CIk (candidate itemsets with k items) from the pre-known frequent itemsets FIk−1 

(frequent itemsets with k-1 items) according to the Apriori property [3]
1
. The step is called 

CIGA (Candidate Itemset Generation using Apriori property). Then, the proposed algorithm 

uses the bitwise AND operation to compute the support (the number of bit 1) of these 

candidates in order to find the frequent k-itemsets FIk. The candidate-generation-then-testing 

process stops when no new candidates with k+1 items (CIk+1) are generated. The 

MFI-TransSW algorithm is shown in Figure 3-5. 

    For instance, consider the bit-sequences of TransSW2 in Figure 3-4, and let the minimum 

                                                 
1
 It is a downward closure property, i.e., if a pattern is frequent, all of its sub-patterns will 

also be frequent. 
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support threshold s be 0.6. Hence, an itemset X is frequent if sup(X)
TransSW

 ≥ 0.6⋅3 = 1.8. In the 

following, we discuss the step of frequent itemset mining of TransSW2. The generated patterns 

are shown in Figure 3-2.  

    First, MFI-TransSW algorithm generates three candidate 2-itemsets, (bc), (be) and (ce), 

by combining frequent 1-itemsets: (b), (c) and (e), where Bit(b) = 111, i.e., sup(b) = 3, Bit(c) 

= 110, i.e., sup(c) = 2, and  Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an infrequent 

itemset, since its Bit(a) = 010, i.e., sup(a) = 1. All other candidates are frequent itemsets after 

using bitwise AND operations to count the supports of these candidates. Because the Bit(bc) 

is 110, the support of candidate 2-itemset bc are 2, i.e., sup(bc) = 2. Similarity, sup(be) = 3, 

and sup(ce) = 2. Second, MFI-TransSW generates one candidate 3-itemset (bce) according to 

Apriori property and uses bitwise AND operation to count the sup(bce) = 2, i.e., Bit(bc) AND 

Bit(be) AND Bit(ce) = 110. Because no new candidates are generated, the 

generation-then-test process stops. Hence, there are six frequent itemsets, (b), (c), (bc), (be), 

(ce), (bce), generated by MFI-TransSW algorithm in TransSW2. The process is shown in 

Figure 3-6. 

 

3.4 Problem Definition: Mining Frequent Itemsets in a TimeSW 

Let Ψ = {i1, i2, …, im} be a set of items. An itemset is a non-empty set of items. An itemset 

with size k is called a k-itemset. A transaction data stream TDS = T1, T2, …, TN is a 

continuous sequence of transactions, where N is the transaction identifier of latest incoming 

transaction TN. A transaction T = (TUid, Tid, itemset), where TUid is the identifier of the time 

unit, and Tid is the identifier of the transaction. 

    A time-sensitive sliding window (TimeSW) in the transaction data stream is a window 

that slides forward for every time unit (TU). Each time unit TUi consists of a variable number, 

|TUi|, of transactions, and |TUi| is also called the size of the time unit. Hence, the current 
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time-sensitive sliding window with w time units is TimeSWN－w+1 = [TUN−w+1, TUN−w+2, …, 

TUN], where N−w+1 is the id of time unit of current TimeSW, and N is the TUid of latest time 

unit TUN. The window at each slide has a fixed number, w, of time units. The value w = 

|TUN−w+1| + |TUN−w+2| + … + |TUN| is called the size of the time-sensitive sliding window and 

denoted as |TimeSW|. 

    The support of an itemset X over TimeSW, denoted as sup(X)
TimeSW

, is the number of 

transactions in TimeSW containing X as a subset. An itemset X is called a frequent itemset 

(FI) if sup(X)
TimeSW

 ≥ s⋅|TimeSW|, where s is a user-defined minimum support threshold (MST) 

in the range of [0, 1]. The value s⋅|TimeSW| is called the frequent threshold of TimeSW 

(FT
TimeSW

). 

    Given a time-sensitive sliding window TimeSW, and a MST s, the problem of online 

mining of frequent itemsets in recent transaction data streams is to mine the set of all frequent 

itemsets by one scan of the TimeSW. 

Example 3-2 Let the size of the time-sensitive sliding window w be 3 and the user-defined 

minimum support threshold s be 0.5. Figure 3-7 records the transactions that arrive in the 

stream in two successive windows, TimeSW1 = [T1, T2, T3, T4, T5, T6, T7] and TimeSW2 = [T4, 

T5, T6, T7, T8, T9]. The first window TimeSW1 contains seven transactions and the frequent 

threshold FT = 0.6⋅7 = 3.5. The second window TimeSW2 contains six transactions and the FT 

= 0.5⋅6 = 3. 

    In Figure 3-7, the frequent itemsets in TimeSW1 are (b), (c), (e), (bc), (be) and (ce), and 

the frequent itemsets in TimeSW2 are (a), (c), (d), (e), (ac), (ae) and (ce). 
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Transaction Data Stream FIs in TimeSW1  FIs in TimeSW2  

    <TU1, T1, (be) > 

    <TU1, T2, (bce) > 

    <TU1, T3, (bce)> 

    <TU2, T4, (acd)> 

    <TU2, T5, (abce)> 

    <TU3, T6, (abce)> 

    <TU3, T7, (ace)> 

    <TU4, T8, (bcde)> 

    <TU4, T9, (cde)> 

(a), (b), (c), (e), (ac), 

(bc), (be), (ce), (bce)  

(a), (b), (c), (d), 

(e), (ac), (ae), (ce) 

Figure 3- 7. An example transaction data stream and the frequent itemsets over two 

time-sensitive sliding windows 

 

3.5 The Proposed Algorithm: MFI-TimeSW 

Based on the MFI-TransSW algorithm, a time-sensitive sliding window-based algorithm 

MFI-TimeSW (Mining Frequent Itemsets in a Time-sensitive Sliding Window) is proposed in 

this section. 

3.5.1 Time Unit List and Bit-Sequences of Items 

For mining frequent itemsets over a time-sensitive sliding window, a time unit list (TU-list) is 

developed in the MFI-TimeSW algorithm. A TU-list consists of a list of time unit entries, 

where each time unit entry records the size of the time unit, i.e., TU-list = < (TUid, |TUN−w+1|), 

(TUid, |TUN−w+2|), …, (TUid, |TUN |)>. 

The bit-sequence transform process of MFI-TimeSW algorithm is described as follows. 

For each item X in the current time-sensitive stream sliding window TimeSWN−w+1, a 

bit-sequence with |TimeSWN−w+1| bits, denoted as Bit(X)
TimeSW

 
N−w+1, is constructed. If an item 

X is in the i-th transaction of TimeSWN−w+1, the i-th bit of Bit(X)
TimeSW

 
N−w+1 is set to be 1; 

otherwise, it is set to be 0.  

T
im

eS
W

1  

T
im

eS
W

2  
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    For example, in Figure 3-7, the first sliding window TimeSW1 consists of seven 

transactions: <TU1, T1, (be)>, <TU1, T2, (bce)>, <TU1, T3, (bce)>, <TU2, T4, (acd)>, <TU2, T5, 

(abce)>, <TU3, T6, (abce)>, and <TU3, T7, (ace)>, but the second window TimeSW2 consists 

of six transactions: <TU2, T4, (acd)>, <TU2, T5, (abce)>, <TU3, T6, (abce)>, <TU3, T7, (ace)>, 

<TU4, T8, (bce)>, and <TU9, T2, (cde)>. Because item a appears in the fourth, fifth, sixth and 

seventh transactions of TimeSW1, the bit-sequence of a, Bit(a)
TimeSW1, is 0001111. Similarly, 

Bit(b)
TimeSW1=1110110, Bit(c)

TimeSW1=0111111, Bit(d)
TimeSW1=0001000, and Bit(e)

TimeSW1  = 

1110111. After sliding one time unit of TimeSW, the set of bit-sequences of items is changed, 

i.e., Bit(a)
TimeSW2 = 111100, Bit(b)

TimeSW2 = 011010, Bit(c)
TimeSW2 = 111111, Bit(d)

TimeSW2 = 

100011, and Bit(e)
TimeSW2 = 011111. 

3.5.2 The MFI-TimeSW Algorithm 

The MFI-TimeSW algorithm is composed of three phases, window initialization phase (phase 

1), window sliding phase (phase 2), and frequent itemsets generation phase (phase 3). 

3.5.2.1 Window Initialization Phase 

The window initialization phase of MFI-TimeSW algorithm is activated while the number of 

time units generated so far in a transaction data stream is less than or equal to a 

user-predefined time-sensitive sliding window size w (i.e., w time units). In this phase, each 

item X of a new incoming transaction is transformed into its bit-sequence representation 

Bit(X)
TimeSW

. 

    For example, in Figure 3-7, the sliding window TimeSW1 contains seven transactions: T1, 

T2, T3, T4, T5, T6, and T7. The bit-sequence transform of items of TimeSW1 are shown in 

Figure 3-8. 
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3.5.2.2 Window Sliding Phase 

The window sliding phase of MFI-TimeSW algorithm is activated after the sliding window 

TimeSW becomes full, i.e., TimeSW contains w time units. A new time unit TUN+1 is appended 

to the time-sensitive sliding window, and the oldest time unit TUN−w+1 is removed from the 

window. 

For removing oldest information, an efficient method is used in the proposed algorithm. 

Based on the bit-sequence representation, MFI-TimeSW algorithm uses the bitwise left shift 

operation to remove the aged time unit from current time-sensitive sliding window. If the 

aged time unit TUN−w+1 contains d transactions, MFI-TimeSW performs d times of bitwise left 

shift operation on the current sliding window. After sliding the window, an effective pruning 

method, called Item-Prune, is used to improve the memory usage. The pruning approach is 

that an item X in the current time-sensitive sliding window is dropped if sup(X)
TimeSW

 = 0. 

    For example, in Figure 3-7, before processing the fourth time unit which consists of two 

transactions, <TU4, T8, (bcde)> and <TU4, T9, (cde)>, the first time unit (TU1) which consists 

of three transactions (T1, T2, and T3) must be removed from the current TimeSW1 using 

bitwise left shift operation on the set of items. Therefore, Bit(a)
TimeSW 

changes from 0001111 

to 1111. Similarly, Bit(c)
TimeSW

 changes from 0111111 to 1111, Bit(d)
TimeSW

 changes from 

0001000 to 1000, Bit(b)
TimeSW

 changes from 1110110 to 0110, and Bit(e)
TimeSW

 changes from 

1100111 to 0111. Then, the new time unit (TU4) is processed by bit-sequence transform. 

Hence, Bit(a)
TimeSW 

changes from 1111 to 111100, Bit(c)
TimeSW

 changes from 1111 to 111111, 

Bit(d)
TimeSW

 changes from 1000 to 100011, Bit(b)
TimeSW

 changes from 0110 to 011010, and 

Bit(e)
TimeSW

 changes from 0111 to 011111. The result is shown in Figure 3-9. 

3.5.2.3 Frequent Itemsets Generation Phase 

The frequent itemsets generation phase of MFI-TimeSW algorithm is also performed only 
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when requested by users. In this phase, MFI-TimeSW uses the same method CIGA as used in 

MFI-TransSW algorithm to generate the set of candidate itemsets CIk (candidate itemsets with 

k items) from the frequent itemsets FIk−1 (frequent itemsets with k-1 items). Then, the 

proposed algorithm uses the bitwise AND operation to compute the support (the number of bit 

1) of these candidates in order to find the frequent k-itemsets FIk. The 

candidate-generation-then-testing process stops when no new candidates with k+1 items 

(CIk+1) are generated. The MFI-TimeSW algorithm is shown in Figure 3-10.    

    For example, consider the bit-sequences of TimeSW1 in Figure 3-9, and let the minimum 

support threshold s be 0.5. Therefore, an itemset X is frequent in TimeSW1 if sup(X)
TimeSW1 ≥ 

0.5⋅7 = 3.5. In the following, we discuss the steps of frequent itemsets generation of TimeSW1. 

The generated frequent itemsets are shown in Figure 3-7.  

         

 

TUid tid Items Bit-Sequences of Items in TimeSW1 

1 T1 (be) Bit(b)=1000000, Bit(e)=1000000 

1 T2 (bce) Bit(b)=1100000, Bit(e)=1100000, 

Bit(c)=0100000 

1 T3 (bce) Bit(b)=1110000, Bit(e)=1110000, 

Bit(c)=0110000 

2 T4 (acd) Bit(b)=1110000, Bit(e)=1100000, 

Bit(c)=0111000, Bit(a)=0001000, 

Bit(d)=0001000 

2 T5 (abce) Bit(b)=1110100, Bit(e)=1100100, 

Bit(c)=0111100, Bit(a)=0001100, 

Bit(d)=0001000 

3 T6 (abce) Bit(b)=1110110, Bit(e)=1100110, 

Bit(c)=0111110, Bit(a)=0001110, 

Bit(d)=0001000 

3 T7 (ace) Bit(b)=1110110, Bit(e)=1100111, 

Bit(c)=0111111, Bit(a)=0001111, 

Bit(d)=0001000 

Figure 3- 8. Bit-sequences of items in window initialization phase of TimeSW1 
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Figure 3- 9. Bit-sequences of items after sliding TimeSW1 to TimeSW2 

 

 

 First, MFI-TimeSW algorithm generates candidate 2-itemsets, (ab), (ac), (ae), (bc), (be), 

and (ce), by combining frequent 1-itemsets, (a), (b), (c) and (e). Only one 1-itemset (d) is an 

infrequent itemset, since its Bit(d)
TimeSW

 = 0001000, i.e., sup(d)
TimeSW1 = 1. All these 

candidates are frequent itemsets after using bitwise AND operations to count the supports (the 

number of 1) of these candidates. Therefore, the support of 2-itemset (ab) is 2, since 

Bit(ab)
TimeSW

 is 0000110. Similarity, sup(ac)
TimeSW1 = 4, sup(ae)

TimeSW1 = 3, sup(bc)
TimeSW1 = 

4, sup(be)
TimeSW1 = 4 and sup(ce)

TimeSW1 = 4. Hence, four frequent 2-itemsets, (ac), (bc), (be), 

and (ce), are found. 

 

                                                                             

Algorithm MFI-TimeSW 

Input: TDS (a transaction data stream), TU-list (a time unit list), s (a user-defined minimum 

support threshold in the range of [0, 1]), and w (the user-specified sliding window size, i.e., w 

time units). 

Window-id Transactions Bit-Sequences of items 

TimeSW1    <TU1, T1, (be) > 

   <TU1, T2, (bce) > 

   <TU1, T3, (bce)> 

   <TU2, T4, (acd)> 

   <TU2, T5, (abce)> 

   <TU3, T6, (abce)> 

   <TU3, T7, (ace)> 

Bit(b) = 1110110 

Bit(e) = 1100111 

Bit(c) = 0111111 

Bit(a) = 0001111 

Bit(d) = 0001000 

TimeSW2    <TU2, T4, (acd)> 

   <TU2, T5, (abce)> 

   <TU3, T6, (abce)> 

   <TU3, T7, (ace)> 

   <TU4, T8, (bcde)> 

   <TU4, T9, (cde)> 

Bit(b) = 011010 

Bit(e) = 011111 

Bit(c) = 111111 

Bit(a) = 111100 

Bit(d) = 100011 
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Output: a set of frequent itemsets, FI-Output. 

Begin 

    TimeSW = NULL;  /* TimeSW consists of w time units */ 

    Repeat:                 /*  N is the id of current time unit*/ 

       for each new time unit TUN from TDS do   /*  N  ≥ 1*/      

             if TimeSW = FULL then 

                  Do |TUN−w+1| times of bitwise-shift operation on bit- 

                  sequences of all items in TimeSW; 

             else 

                    for each transaction Ti of TUN do 

                            for each item X in Ti do 

                                  Do bit-sequence transform(X); 

                            end for 

                    end for 

             end if 

      end for 

       for each bit-sequence Bit(X) in TimeSW do 

               if sup(X) = 0 then 

                   Drop X from TimeSW; 

               end if 

       end for 

      N = N +1; 

/* The following is the frequent itemsets generation phase. The phase is performed only when 

requested by users. */ 

          FI1 = {frequent 1-itemsets}; 

          for (k=2; FIk−1≠ NULL; k++) do 

              CIk = CIGA(FIk−1); 

              Do bitwise AND to find the supports of CIk; 

              for each candidate ck ∈ CIk do 

                  if sup(ck)
TimeSW

 ≥ |TimeSW|⋅s then 

                      FIk = {ck ∈ CIk | sup(ck)
TimeSW

 ≥ |TimeSW|⋅s}; 

                  end if 

              end for 

           end for 

    FI-Output = ∪kFIk; 

End 

                                                                            

Figure 3- 10. Algorithm MFI-TimeSW 

 

 

    Next, two candidate 3-itemsets, (ace) and (bce), are generated by MFI-TimeSW 

according to Apriori property. After using the bitwise AND operation to count the supports of 

(ace) and (bce), respectively, only one 2-itemset (bce) is a frequent itemset. Because no new 
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candidates are generated, the candidate-generation-then-testing process stops. Consequently, 

there are nine frequent itemsets, (a), (b), (c), (e), (ac), (bc), (be), (ce), and (bce), generated by 

MFI-TimeSW algorithm in TimeSW1. The process is shown in Figure 3-11. 

 

Transactions in 

TimeSW1 

Bit-Sequences in 

TimeSW1 

FI1 in TimeSW1 (s = 0.5 

and FT=3.5) 

sup 

<T1, (be) > 

<T2, (bce) > 

<T3, (bce)> 

<T4, (acd)> 

<T5, (abce)> 

<T6, (abce)> 

<T7, (ace)> 

Bit(b)=1100110, 

Bit(e)=1100111, 

Bit(c)=0111111, 

Bit(a)=0001111, 

Bit(d)=0001000 

{(b)|Bit(b)=1100110} 

{(e)|Bit(e)=1100111} 

{(c)|Bit(c)=0111111} 

{(a)|Bit(a)=0001111} 

4 

5 

6 

4 

 
CI2 in TimeSW1 FI2 in TimeSW1 sup 
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Figure 3- 11. Steps of frequent itemsets generation of MFI-TimeSW in TimeSW1 

    

3.6 Performance Evaluation 

In this section, we report the experimental results of the proposed algorithm MFI-TransSW. 

All the programs are implemented using Microsoft Visual C++ Version 6.0 and performed on 

a 1.80 GHz Pentium(R) PC machine with 512 MB memory running on Windows 2000. For 

testing frequent itemsets mining over sliding windows, we generate online data streams using 

IBM synthetic data generator proposed by Agrawal and Srikant [2, 3]. The synthetic data 

stream, denoted by T5.I4.D1000K, of size 1 million transactions (D1000K) has an average 

transaction size of 5 items (T5) with average maximal frequent itemset size of 4 items (I4). In 
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all experiments, the transactions of T5.I4D1000K are looked up in sequence to simulate the 

environment of an online data stream. 

3.6.1 Experiments of MFI-TransSW Algorithm 

In this section, we compare the results of mining by SWFI-stream algorithm [11] and 

MFI-TransSW algorithm. The experiments of memory usage are shown in Figures 3-12, 3-13, 

and 3-14, and the processing times are shown in Figures 3-15 and 3-16. The minimum 

support threshold s and the size of a sliding window w are set to 0.1% and 20,000, 

respectively. As shown in these experiments, MFI-TransSW significantly outperforms 

SWFI-stream for both memory consumption and CPU cost. 

Figure 3-12 shows the memory usage of the window initialization phase. As shown in 

Figure 3-12, MFI-TransSW algorithm requires only about 2.1 MB in window initialization 

phase, but the memory requirement of SWFI-stream increases linearly from 11.2 MB to 109.7 

MB. Figure 3-13 shows the memory usage of the window sliding phase. In this phase, the 

memory requirement of MFI-TransSW is also approximately 2.1 MB, but that of 

SWFI-stream is between 109.7 MB to 120.3 MB. Figure 3-14 gives the memory usage of the 

frequent itemsets generation phase. In this phase, the memory requirement of MFI-TransSW 

is between 33.5MB to 39MB. As shown in Figures 3-12 through 3-14, MFI-TransSW 

algorithm outperforms SWFI-stream for memory consumption.  

Figure 3-15 shows the processing time of window initialization phase under different 

window sizes from 20,000 (200K) transactions to 100,000 (1,000K) transactions. Figure 3-16 

shows the total time of window sliding time and pattern mining time at each 100K 

transactions using various window sizes from 200K transactions to 1000K transactions. As 

shown in Figures 3-15 and 3-16, MFI-TransSW algorithm outperforms SWFI-stream for 

processing time consumption. 
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Figure 3- 12. Memory usages in window initialization phases of algorithms SWFI-stream and 

MFI-TransSW (s = 0.1% and w = 20,000) 
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Figure 3- 13. Memory usages in window sliding phases of algorithms SWFI-stream and 

MFI-TransSW (s = 0.1% and w = 20,000) 
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Figure 3- 14. Memory usages in frequent itemset generation phases of algorithms 

SWFI-stream and MFI-TransSW (s = 0.1% and w = 20,000) 
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Figure 3- 15. Processing time in window initialization phases of algorithms SWFI-stream and 

MFI-TransSW under different window sizes (s = 0.1%) 
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Figure 3- 16. Processing time including window sliding time and pattern generation time of 

algorithms SWFI-stream and MFI-TransSW under window size 200K transactions (s = 0.1%) 

 

 

0102030405060708090

TU1 TU2 TU3 TU4 TU5 TU6 TU7 TU8 TU9 TU10Incoming Time Units (window size = 5)
Memory Usag
e (MB) Phases 1-2-3Phases 1-2

 

Figure 3- 17. Memory usages of MFI-TimeSW algorithm in different phases (s = 0.1%) 
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Figure 3- 18. Processing time of MFI-TimeSW algorithm in different phases (s = 0.1%) 

 

 

3.6.2 Experiments of MFI-TimeSW Algorithm 

Because the proposed MFI-TimeSW algorithm is the first single-pass approach for mining 

frequent itemsets over online data streams with a time-sensitive sliding window, we only 

report the experimental results of MFI-TimeSW in the section. The experiments of memory 

usage of the proposed algorithm MFI-TimeSW is shown in Figure 3-17, and the processing 

time of the algorithm is shown in Figure 3-18. The minimum support threshold s is set to 

0.1%. In order to simulate a time-sensitive sliding window over an online data streams, the 

size of a time-sensitive sliding window w is set to 5, where |TU1| = 200K, |TU2| = 400K, |TU3| 

= 800K, |TU4| = 1,000K, |TU5| = 1,000K, |TU6| = 200K, |TU7| = 500K, |TU8| = 1,000K, |TU9| 

= 800K, and |TU10| = 800K. Note that 1K transactions equals to 1,000 transactions. 

Figure 3-17 shows the memory usage of phases 1-2 (window initialization phase + 

window sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase 
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+ frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-17, 

the memory usage of MFI-TimeSW is increased linearly as the window size increased.  

Figure 3-18 shows the processing time of phases 1-2 (window initialization phase + window 

sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase + 

frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-18, the 

processing time of phases 1 and 2 of MFI-TimeSW is increased linearly as the window size 

increased.  

3.7 Conclusions 

In this chapter, we proposed two efficient one-pass algorithms, called MFI-TransSW and 

MFI-TimeSW, for mining frequent itemsets over online data streams with a transaction- 

sensitive sliding window and a time-sensitive sliding window, respectively. Experiments show 

that the proposed algorithms not only attain highly accurate mining results, but also run 

significant faster and consume less memory than existing algorithms for mining frequent 

itemsets over recent online data streams. 



 56 

 

Chapter 4 Online Mining of Changes of Items across Two Data 

Streams 

 

As data streams are gaining prominence in a growing number of emerging applications, 

advanced analysis and mining of data streams is becoming increasingly important. While 

there are some recent studies on mining data streams, we would like to ask the following 

essential question: What are the distinct features of mining data streams compared to mining 

other kinds of data? Online mining of the changes in data streams is one of the core issues 

[24]. In this chapter, we propose a new interesting research problem and propose efficient 

algorithms for this problem. 

4.1 Introduction 

The motivation of the problem of online mining changes of items between distributed data 

streams comes from the context of online transaction flows in large organizations. These 

companies generate the millions of records every day. For example, Google handles 70-110 

millions searches, AT&T produces 250-300 million call records, and WallMart which consists 

of thousands of branch stores, and records 20-40 million transactions in a single day. With the 

computation model of distributed data streams presented in Figure 4-1, a data stream 

processor and the in-memory summary data structure are two major components in the 

distributed data streaming environment. The streams in questions are sequences of transaction 

data which is composed of the records in the form of <Store-ID, Timestamp, Transaction-ID, 

Items>. In other words, a transaction record is a purchasing log generated by a customer in a 

specific time and store. These transaction flows are sent to the server, and we are interested in 

finding the frequent frequency changes in items between pairs of data streams purchased by 

the most customers in some period of time. Note that the buffer mechanism can be optionally 
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set for temporary storage of recent transactions from the transaction data streams. 

    In this chapter, we study the problem of online mining frequent frequency changes of 

items between pairs of continuous, high-volume, open-ended data streams. Three types of 

frequency change are defined: frequent changed-item (or FCI in short), vibrated frequent 

changed-item (or VFCI in short), and stable frequent changed-item (or SFCI in short). A new 

summary data structure, called change-sketch, is developed to store the essential information 

over the pairs of data streams. The MFC-append (Mining Frequency Changes of append-only 

data streams) algorithm is proposed to find the changes across two append-only data streams. 

The MFC-dynamic algorithm based on MFC-append is developed to find the changes over 

two dynamic data streams. The best space bound we achieve is Ω(mlog(n/m)), where n is the 

size of the union of two data streams, and m is the size of the working bucket for frequent 

changed-items mining. Moreover, the proposed algorithms take O(log(n/m)) time in the worst 

case to process each new data element, but only O(1) amortized time per data element. 

The remainder of the chapter is organized as follows. We review some related work in 

Section 4.2 and formulate the problem in Section 4.3. Algorithms MFC-append and 

MFC-dynamic are described in Section 4.4. Performance evaluation is presented in Section 

4.5. We conclude the work in Section 4.6. 

 

 

 

 

 

 

 

 

 

  

Figure 4- 1. Processing model of distributed data streams 
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4.2 Related Work 

Change mining on static datasets has been studied in the last ten years [29, 25, 52]. Ganti et al. 

[29] proposed a framework to quantify the deviation in the induced models, such as two 

decision tree classifiers, clusters, and frequent itemsets, in the large datasets. The quantitative 

measure is the amount of work required to transform one model into the other. Dong et al. [25] 

proposed an algorithm to find the emerging patterns, and used these patterns to characterize 

the changes from one dataset to the other. Liu et al. [52] proposed a method to discover the 

changes in the new data with respect to the old data, and the old decision tree models, and 

generate the exact changes that have occurred to the user. These studies are focused on the 

effects of data changes of data mining models and algorithms, whereas this chapter is focused 

on the problem of measuring and understanding the changes of data directly rather than 

measuring the effects of data mining models.  

 

4.3 Problem Definition: Mining of Changes of Items across Two 

Data Streams 

Let Ψ = {i1, i2, …, im} be a set of literals, called data items (or items in short). A data stream 

is an infinite sequence of data items, where the items arrive in some order, and may be seen 

only once. It is also referred to as item-stream. In the item-stream model, we focus on two 

performance issues: workspace required in main memory, which is measured as a function of 

the input union size n of two data streams, and the time to process an incoming data item over 

the streams. In this chapter, we assume that the data arrives in the unordered
2
 form, and the 

same value can appear multiple times within the streaming data. This is termed the unordered 

cash register, unordered aggregated model [6, 33]. 

                                                 
2
 The streaming data items from various domains arrive in no particular order and without any pre-processing. 
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Definition 4-1. A data stream is called an append-only data stream (or ADS in short) if it has 

no updates and deletions. A data stream is called a dynamic data stream (or DDS in short) if 

there are removal as well as addition of data items. 

Definition 4-2. Two parallel item-streams are P = <p1, p2, …, pi, …>, and Q = <q1, q2, …, 

qj, …> with time-varying data rates, where pi, qj ∈ Ψ. The frequency of a data item x in an 

item-stream S over a time period T is the number of items in T in which x occurs, and is 

denoted as frequency(x, S, T). The size of T is n, the total number of data items so far in T.  

Definition 4-3. The changed support of a data item x is the difference in frequency between 

two data streams P and Q divided by the total data items observed in T, and is denoted as 

changeSup(x, T).  

Definition 4-4. The changed rate of a data item x is the number of frequency vibration 

divided by the total time-points observed in T, and is denoted as changeRate(x, T), where the 

time-point is a basic unit of time over which the system collects data, e.g., second or minute. 

Frequency vibration is the ratio of frequency change which exceeds a user-specified threshold, vibrate 

rate. In this research, we assume that the rate is 100% for simplicity, i.e., frequency vibration is a 

frequency change from positive one to negative one, or vice versa. 

Definition 4-5. A data item x is called a frequent frequency changed item (or FFCI in short) 

if changeSup(x, T) ≥ mcs, where mcs is a user-defined minimum changed support threshold in 

the range of [0, 1]. It is a sub-frequent frequency changed item (or SFFCI in short) if ase ≤ 

changeSup(x, T) < mcs, where ase is a user-defined approximate support error threshold in the 

range of [0, mcs]. It is an infrequent frequency changed item (or IFFCI in short) if 

changeSup(x, T) < ase. 

Definition 4-6. A data item x over a time period T is called a vibrated frequency changed item 

(or VFCI in short) if its changed rate and changed support are greater than or equal to a 
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user-defined minimum changed rate (or mincr in shot) and ase, respectively. It is a stable 

frequency changed item (or SFCI in short) if its changed rate is less than a user-specified 

maximal changed rate (or maxcr in short), and changeSup(x, T) ≥ mcs, where mincr is a real 

number in the range of [0, 1] and maxcr > mincr. 

For example, there are ten time-points (T = [t1: t10], where t1 is the starting time-point and 

t10 is the current time-point) in Figure 4-2, and we assume that mincr = 0.1, and maxcr = 0.5. 

In Figure 4-2, data item a and b are VFCIs, where changeRate(a, T) = 9/10 = 0.9 > 0.5, and 

changeRate(b, T) = 6/10 = 0.6 > 0.5, and items c, d, e are SFCIs, where changeRate(c, T) = 

0/10 = 0 ≤ 0.1, changeRate(d, T) = 0/10 = 0 ≤ 0.1, and changeRate(e, T) = 1/10 = 0.1 ≤ 0.1. 

    The goal of this chapter is to find the changes of items (FFCIs, VFCIs, and SFCIs) over 

the pairs of data streams, either in ADS or DDS. 
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Figure 4- 2. Examples of VFCIs and SFCIs 
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4.4 Online Mining Changes of Items over Distributed ADSs  

In this section, a new summary data structure, called Change-Sketch, is developed to maintain 

the essential information about the set of all FFCIs, VFCIs, and SFCIs embedded in data 

streams. A deterministic single-pass algorithm MFC-append (Mining Frequency Changes of 

append-only data streams) is proposed to find the changes of items over the pairs of data 

streams. The proposed algorithm uses at most mlog(n/m) space, where n is the size of the 

union of the estimated data streams, and m is the size of working bucket. 

4.4.1 A New Summary Data Structure: Change-Sketch 

The proposed in-memory summary data structure Change-Sketch is a list of entries of the 

form (q, q.count, q.wid, q.rate), where q is a data item in the streams, q.count is an integer 

representing its estimated support, the value of q.wid assigned to a new entry q is the window 

identifier of current window, and q.rate is the number of frequency vibration of item q. An 

item q is stored in the current Change-Sketch if q.count ≥ ase⋅m⋅(wcurrent-id − q.wid), where m is 

the window size and m = 1/ase. Note that the parameter ase is an acronym of the 

user-specified approximate support error threshold. 

Two operations are used to maintain the Change-Sketch:  

(1) Update Change: For each entry (q, q.count, q.wid, q.rate) ∈ Change-Sketch, 

MFC-append increases q.count by computing the frequency changes of q in the current 

window. If the updated entry q takes place a frequency vibration, its q.rate is increased 

by one. If the changed support of updated entry q is less than the user-specified 

minimum changed support threshold mcs, the entry is deleted from the current 

Change-Sketch. 
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(2) New Change: If an item p ∉ Change-Sketch, and its changed support is larger than or 

equal to the threshold ase⋅m⋅(wcurrent-id − p.wid), a new entry of the form (p, 1, p.wcurrent-id, 

0) is created into the current Change-Sketch. 

4.4.2 The MFC-append Algorithm 

Algorithm MFC-append uses the notations and conventions illustrated in Figure 4-3. In the 

framework of mining changes of items over data streams, the streaming data is divided into 

fixed sized buckets B1, B2, …, Bi, …, BN, where BN is the “latest” bucket with bucket 

identifier N, and B1 is the “oldest” one. Note that each bucket contains k items. The bucket 

length from Bi to Bj is denoted as B(i, j), where i ≥ j. Let t1, t2, …, tn be the timepoints (the 

smallest unit of time) which group the buckets so far in the streams, where tn is the most 

recent timepoint, and t1 is the oldest one. The form of bucket Bi is (StreamID, ti, items), where 

ti is the timepoint when the items appeared in the stream with identifier StreamID. 

The window-id of ti is denoted as wi, and the number of buckets arrived from ti-1 to ti is |wi|, 

and the number of items (i.e., size) in wi is denoted as |wi|. The size of buckets arrived in T 

equals |wk| + |wk+1| + … + |wn|, ∀k = 1, 2, …, n. As described above, the goal is to find the set 

of all FFCIs, VFCIs, and SFCIs in a time period T = tk ∪ tk+1 ∪ … ∪ tn, ∀k = 1, 2, …, n. 

Hence, the pair of input data streams P and Q are divided into two sequences of basic 

windows, i.e., P = w1[BP1 + BP2 + … + BPi] + w2[BPi+1 + BPi+2 + … + BPj] + … + wm[BPk + 

BPk+1 + … + BPcurrentid-1] , and Q = w1[BQ1 + BQ2 + … + BQi] + w2[BQi+1 + BQi+2 + … + BQj] 

+ … + wm[BQk + BQk+1 + … + BQcurrentid-1]. The notation wi[BStreamIDj + BStreamIDj+1 + … + 

BStreamIDk] denotes that the buckets of data stream with id StreamID arrived at timepoint ti, and 

the current bucket id is denoted as BStreamIDcurrent. Note that BStreamIDcurrent = n/m + 1. For 
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example, there are five buckets in the first window w1 of Figure 4-1, in which two buckets 

(BP1and BP2) in stream P, and three buckets (BQ1, BQ2, and BQ3) in stream Q. 
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Figure 4- 3. Notations and conventions used in the proposed algorithms 

 

 

The algorithm description of MFC-append is shown in Figure 4-4. Four parameters are 

used in MFC-append algorithm: mcs, ase, maxcr, and mincr, where mcs is an acronym of the 

minimum changed support threshold, ase is an acronym of the approximate error support 

threshold, maxcr is an acronym of the maximum changed rate, and mincr is an acronym of the 

minimum changed rate. At any moment, a list of FFCIs with their estimated changed supports 

and changed rates is generated by the proposed algorithm. These approximate answers (i.e., a 

list of FFCIs) have the following guarantees. First, all items whose changed support exceed 

mcs⋅n are output, i.e., no false negative. Second, no items whose changed support is less than 

(ase−mcs)⋅n are output. Third, estimated changed supports are less than the true changed 
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supports by at most ase⋅n. Finally, all items whose changed rate exceed mcr⋅n or less than 

mcr⋅n are output, respectively. 

 

                                                                                   

Algorithm MFC-append  

Input: (1) Two continuous append-only data streams, P = <p1, p2, …, pn, …> and Q = <q1, 

q2, …, qn, …> with time-varying data rate, (2) A user-defined approximate support 

error threshold, ase, i.e., the window size m is 1/ase, (3) A user-defined minimum 

changed support threshold, mcs, (4) A user-specified maximum changed rate maxcr, (5) 

A user-specified minimum changed rate minicr. 

Output: A list of FFCIs, VFCIs, and SFCIs. 

Begin 

Change-Sketch( )←{ }; 

  Repeat: 

for each bucket from the data streams (P and Q) do 

for each item q in wi(C, Bi) do  /* i = 1, 2, …, n/m+1 */ 

      Change-Sketch(q, q.count++, q.wid, q.rate); 

      for each item q in wi(D, Bi) do 

           Change-Sketch(q, q.count--, q.wid, q.rate); 

      while Change-Sketch(q, q.count, q.wid, q.rate) ≠ ∅ then  

          if |q.count| ≥ mcs⋅m⋅(wcurrent − q.wid) then 

               item q is a frequent frequency change pattern in Change-Sketch; 

else if |q.q.count |≥ ase⋅m⋅(wcurrent – q.wi) then   

        preserve q in Change-Sketch; 

     else remove q from Change-Sketch; 

if q.wi change its symbol (either from positive frequency to negative one or from 

negative one to positive one)  

then q.rate++; 

End 

                                                                           

Figure 4- 4. Algorithm MFC-append 
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    The maintenance process of Change-Sketch is described as follows. Let the window 

identifier of current window be k. Initially, Change-Sketch is empty. For each item q in the 

current window of item-stream P, MFC-append first checks Change-Sketch to see whether an 

entry with id q already exists or not. If the entry exists in the current Change-Sketch, the 

frequency of q (i.e., q.count) is increased by one. Otherwise, a new entry of the form (q, 1, k, 

0) is created in the current Change-Sketch. After processing all items in wk of stream P, 

MFC-append computes all the items in wk of another stream Q to maintain the changed 

information in Change-Sketch. The computation first checks Change-Sketch to see whether 

an entry q already exists or not in the Change-Sketch. If the search succeeds, the proposed 

algorithm updates the entry with id q by decreasing its frequency q.count by one. Otherwise, a 

new entry of the form (q, -1, k, 0) is created in the current Change-Sketch. Now, if the 

updated entry q take place frequency vibration, q.rate is increased by one, i.e., from zero to 

one.  

In order to bound the memory usage in mining changes of items over data streams, a 

pruning mechanism of Change-Sketch is proposed. The technique deletes some entries of 

Change-Sketch before MFC-append computes the next working window with window-id k+1. 

It is a trade-off between the accuracy of the outputs and the memory requirement of 

Change-Sketch. The pruning is described as follows. An entry of the form (q, q.count, q.wi, 

q.rate) is deleted, if |q.count| < ase⋅m⋅(wcurrent-id − q.wid). After the pruning, MFC-append 

computes the next working windows with window-id wk+1 of data streams P and Q in the 

same way as described above.  

When a user requests the results of the set of all FFCIs, VFCIs, and SFCIs embedded in 

the data streams, MFC-append algorithm outputs the entries whose |q.count| ≥ 

mcs⋅m⋅(wcurrent-id −q.wid), |q.rate| ≥ mincr⋅m⋅(wcurrent-id − q.wid), and |q.rate| ≥ maxcr⋅m⋅(wcurrent-id 

− q.wid), respectively, by one scan of the current Change-Sketch. 
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4.4.3 Space Analysis of Change-Sketch 

In this section, we prove that MFC-append algorithm uses at most O(mlog(n/m)) space, where 

n denotes the current length of the estimated data streams, and m = 1/ase is the size of 

working bucket. 

Theorem 4-1: The space requirement of MFC-append algorithm is O(mlog(n/m)). 

Proof: Let wcurrent-id be the current window-id, i.e., wcurrent-id = n/m , where m is the size of 

working bucket. Let ci denote the number of items in Change-Sketch, whose window id is 

wcurrent-id − i+1. Since the size of each working bucket is m, we get the following constraints: 

∑
=

k

i 1

ici ≤ km for k = 1, 2, …, wcurrent-id. (1) 

We claim that 

∑
=

k

i 1

ci ≤ ∑
=

k

i 1
i

m
  for k = 1, 2, …, wcurrent-id. (2) 

We prove Inequality (2) by induction on k. If k = 1, then the claim is true because c1 ≤ m, 

i.e., we prove it from Inequality (1) directly. We now assume that Inequality (2) is true for k = 

1, 2, …, j-1, and prove that this assumption implies that it is true for k = j. We now add 

Inequality (1) for k = j to j-1 instances of Inequality (2) and we have 
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⇒ c1 + 2c2 + … + (j-1)cj-1 + jcj + [c1 + (c1 + c2) + … + (c1 + c2 + … + cj-1)] ≤ jm + [m 

+ (m + m/2) + … + (m + m/2 + … +  m/(j−1))]. 

⇒ jc1 + jc2 + … + jcj-1 + jcj ≤ jm + [(j−1)m + (j-2)m/2 + … + m/(j−1)] 

⇒ j ∑
=
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mij )( −
. 
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Upon rearrangement, we get j ∑
=

j

i 1

ci ≤ jm + ∑
=

1-

1

j

i
i

mij )( −
, which can be easily simplified 

to Inequality (2) for k = j. Then we can complete the induction. 

Since |Change-Sketch|= ∑
=

currentw

i 1

ci, from Inequality (2), we get |Change-Sketch| ≤ ∑
=

currentw

i 1 i

m
≤ 

m log(wcurrent-id) = m log(n/m).       

 

Note that, if ase ≤ (1/m), the space is effectively Ω(m log(n/m)). If we set ase = (d/m) for 

some small d, then it requires time at most O(m log(n/m)). However, this occurs only every 

1/m items, and so the total time is O(n log(n/m)). 

4.5 Online Mining Changes of Items over Distributed DDSs 

In this section, a MFC-append based-algorithm, called MFC-dynamic (Mining Frequency 

Changes of dynamic data streams), is proposed to mine the set of all FFCIs, VFCIs, and 

SFCIs over dynamic data streams. Note that a data stream is called a dynamic data stream (or 

DDS in short) if there are removal as well as addition of data items.  

An effective encoding method is used in the proposed algorithm to distinguish the 

inserted items and deleted items over DDSs, and is described as follows. If an item q is an 

inserted item, MFC-dynamic encodes it to be a “positive” item, denotes as +q. Otherwise, a 

deleted items q is encoded as a “negative” item, denotes as −q. After processing the encoding, 

MFC-append algorithm is used to find the set of all FFCIs, VFCIs, and SFCIs over dynamic 

data streams. Figure 4-5 presents the description of MFC-dynamic algorithm. From the 

interpretation of MFC-dynamic, a space usage guarantee, which is similar to Theorem 4-1, is 

given as follows. 
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Claim 4-1. Whenever the deletions of item q occurs, frequency (q)Deleted ≤ frequency(q), 

where frequency(q)Deleted is the frequency of item q needed to be drop. 

Claim 4-2. An item q ∉ Change-Sketch, if |q.count| < ase⋅m⋅(wcurrent-id − q.wid). 

Theorem 4-2. The space requirement of MFC-dynamic algorithm is O(mlog(n/m)). 

Proof: According to the pruning rule, only items with frequency f or larger within the last 

updated f windows age are not pruned. Thus, at most m/f items could have been survived from 

that window which gives m ∑
=

n/m

i i1

1
 as the upper-bound on the number of items we are keeping 

track of. Now, using the well know inequality ∑
=

p

i i1

1
 ≤ log(p), the result follows directly. 

 

 

4.6 Performance Evaluation 

4.6.1 Synthetic Data Generation 

In the experiments of MFC-append, we generated three datasets |D| of 10,000, 100,000, and 

1,000,000 transactions of single-item, and searched for frequent frequency changes while 

varying the Zipf parameter from 0 (uniform) to 3 (highly skewed), and the ase from 1% to 

0.001%. In order to evaluate algorithm MFC-dynamic, we use the generation approach of 

synthetic data from [20]. The generated data consists of three parts: (1) a sequence of 

insertions distributed uniformly over a small range; (2) a sequence of insertions was drawn 

from a Zipf distribution with varying parameter (from 0 to 3); (3) a sequence of deletions was 

distributed uniformly over the same range as the starting sequence. We examine 
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MFC-dynamic in the fourth dataset of 1,000,000 transactions of single-item, Zipf parameter 

from 0 to 3, and ase from 1% to 0.001%.  

 

 

                                                                             

Algorithm MFC-dynamic  

Input: (1) Two dynamic data streams, C={c1, c2, …, cn, …} and D={d1, d2, …, dn, …} with 

time-varying data rate, (2) A minimum change support threshold, mcs, (3) An 

approximation support error threshold, ase, (4) A maximum change rate threshold, 

maxcr, (5) A minimum change rate threshold, minicr. 

Output: A list of change patterns { qi, …, qj } over dynamic data streams. 

Begin 

Dynamic_Encode_Streamming_Items(C, D); 

MFC-append(C, D, mcs, ase, maxcr, minicr) ; 

End 

Procedure Dynamic_Encode_Streamming_Items(C, D); 

Begin 

for each bucket wCi of stream C and bucket wDi of stream D  

if the item q is an inserted item then 

Set it to be a positive (+q) item; 

        else 

Set it to be a negative (-q) item; 

end 

   endfor 

End 

                                                                             

Figure 4- 5. Algorithm MFC-dynamic 
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4.6.2 Experimental Results 

In this following experimental testing (results as shown in Figure 4-6 through Figure 4-9), we 

use threshold mcs = 0.01, and ase = 0.1⋅mcs. First, we computed recall and precision for 

MFC-append, with the results shown in Figure 4-6. In this Figure, we can see that 

MFC-append algorithm has excellent precision (0.90-1.00) and recall (0.6-0.81) on the 

synthetic data |D|=10,000 transactions, and the recall decreases as the parameter ase increases, 

while the precision increases as the ase decreases. An important observation is that the Zipf 

parameters (from 0 to 3) do not affect the recall and precision of MFC-append.  

In Figure 4-7, we can see that MFC-append has precision (0.93-1.00) and recall (0.57-0.76) 

on the synthetic data |D|=100,000 transactions. In Figure 4-8, we can see that MFC-append 

has precision (0.92-1.00) and recall (0.51-0.71) on the synthetic data |D|=1,000,000 

transactions. 
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Figure 4- 6. Experiments on synthetic data (10
4
 transactions) for MFC-append. Left: recall 

(proportion of the frequent change patterns reported). Right: precision (proportion of the 

output frequency change patterns which are frequent) 
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Figure 4- 7. Experiments on synthetic data (10
5
 transactions) for MFC-append. Left: recall. 

Right: precision 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 8. Experiments on synthetic data (10
6
 transactions) for MFC-append. Left: recall. 

Right: precision 
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Figure 4- 9. Experiments on synthetic data (10
6
 transactions) for MFC-dynamic. Left: recall. 

Right: precision 

 

    In Figure 4-9, we can see that the MFC-dynamic has the similar experimental results as 

algorithm MFC-append. The recall increases as the ase decreases while the precision 

decreases as the ase increases, and the various Zipf parameters do not influence the recall and 

precision of MFC-dynamic. 

 

4.7 Conclusions 

In this chapter, we propose two single-pass algorithms, called MFC-append and 

MFC-dynamic, for mining frequent frequency changed items, vibrated frequency changed 

items, and stable frequency changed items over continuous append-only and dynamic data 

streams, respectively. A new summary data structure, called Change-Sketch, is developed to 

store the essential changed patterns of data streams. The space complexity of Change-Sketch 

is O(mlog(n/m)), and the proposed algorithms take O(log(n/m)) time in the worst case to 

compute each newly arrived item, but only O(1) amortized time per item. The experimental 

Recall on Synthetic Data (|D|=1,000,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=1,000,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%



 73 

 

results show that our algorithms have linear scalability and high accuracy in the analytical 

outputs. 
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Chapter 5 Online Mining of Path Traversal Patterns over Web 

Click-Streams 

 

Mining of path traversal patterns is one of the most important research issues of Web usage 

mining. The problem of mining of path traversal patterns from a large static Web click 

dataset was presented and two multiple-pass algorithms, FS (Full Scan) and SS (Selective 

Scan), are proposed by Chen et al. [13]. However, multiple-pass algorithms FS and SS are not 

feasible to mine the set of path traversal patterns in a streaming Web click-sequence 

environment. Hence, in this chapter, we modified the path traversal pattern mining problem 

proposed by Chen et al. [13] into a new research problem of Web usage mining. 

 

5.1 Introduction 

Cooley et al. [19] and Srivastava et al. [62] have surveyed the major technical advances and 

research problems in Web data mining. In general, Web data mining can be divided into three 

categories: Web structure mining, Web content mining and Web usage mining. The goal of 

Web structure mining is to generate structural summary about the Web site and Web page. The 

goal of Web content mining is to describe the automatic search of information resource 

available online, and to discover Web data content. Web usage mining is the process of 

automatic discovery of user navigation patterns from Web server logs. In this section, a brief 

review of Web user navigation pattern mining is described as follows. 

    Chen et al. [13] defined a problem of mining path traversal patterns in a large Web-log 

dataset. Two algorithms, FS (Full Scan) and SS (Selective Scan), were proposed. These 

algorithms use level-by-level methods, i.e., Apriori-based approach [3], to discover maximal 

reference sequences in a static Web click dataset. Although FS and SS mine path traversal 
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patterns in a static Web log dataset efficiently, they are not feasible in the mining of streaming 

Web click-sequences. This is because FS and SS algorithms need to scan the dataset at least 

twice.  

    Spiliopoulou et al. [61] proposed a navigation pattern discovery miner, called WUM 

(Web Utilization Miner), and proposed an algorithm for building an aggregating tree from 

static Web logs. Then, WUM mines the Web access patterns by MINT mining language. 

Borges and Levene [9] proposed a model of hypertext that captures the user navigation 

behavior patterns. The set of user navigation sessions is modeled as a HPG (Hypertext 

Probabilistic Grammar), and the set of strings which are generated with higher probability 

correspond to the navigation trials preferred by users. Pei et al. [57] proposed a WAP-tree 

(Web Access Pattern tree) to store the frequent Web page-sequences of user navigation 

behaviors, and proposed an efficient pattern-growth WAP-mine algorithm to mine the Web 

access patterns from the WAP-tree. WAP-mine is a two-pass algorithm. Shan and Li [60] 

proposed a two-pass algorithm Fast-Walk to mine the Web traversal walks. A Web traversal 

walk is a structural sequence of forward and backward traversal paths. In Fast-Walk algorithm, 

an extended prefix-tree structure is constructed in main memory from Web logs, and the 

frequent Web traversal walks are generated from the in-memory tree structure efficiently.  

    Pabarskaite [56] suggested several hypotheses that could help improve the retention of 

Web site and proposed decision trees for Web user behaviour analysis. The decision tree 

package C4.5 is used in [56], and showed reasonable computational performance and 

accuracy. Xing and Shen [67] proposed two efficient algorithms UAM (User Access Matrix) 

and PNT (Preferred Navigation Tree) based on the concepts of selection and time preference 

for the mining of user preferred navigation patterns. Considering the Web site topology, UAM 

algorithm can obtain user preferred access paths by the page-page transition statistics of all 

the users’ behaviours. The PNT is similar to WAP-tree. However, each node of PNT records 
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the support, which is the frequency and the time of user’s visiting the node along the same 

route, and the preference represents how users prefer visiting this node to the previous nodes. 

    Web prefetching and prediction of HTTP requests are important applications of Web 

usage mining [15, 59]. Chen et al. [15] proposed a popularity-based PPM (Prediction by 

Partial Match model) for Web prefetching. The popularity-based mode uses grades (grades 3, 

2, 1 and 0) to rank URL access patterns and builds these patterns into a predictor tree to aid 

Web prefetching. The popularity-based PPM uses only the most popular URLs as root nodes 

and makes space optimizations to the completed tree by removing non-root nodes and those 

nodes accessed only once. Schechter et al. [59] introduced the use of path profiles for 

describing HTTP request behavior and proposed an algorithm for creating these path profiles 

efficiently.  

    Association rule and sequential pattern mining algorithms are also common for mining 

Web visitors behaviours [3, 35, 16, 58, 50]. Agrawal and Srikant [3] proposed the well-known 

Apriori property, i.e., all nonempty subsets of a frequent itemset must also be frequent, and 

developed three multiple-pass algorithms based on the Aprioir property for mining frequent 

itemsets by using candidate-generation-and-testing approaches. Han et al. [35] proposed a 

prefix-tree structure FP-tree (Frequent Pattern tree) and a two-pass pattern-growth algorithm 

FP-growth to discover the set of frequent itemsets without generating candidate itemsets. 

Chenug and Zaïane [16] proposed a data structure called CATS Tree (Compressed and 

Arranged Transaction Sequence Tree), an extension of FP-tree, to discover the set of frequent 

itemsets. The CATS tree is a prefix tree structure and it contains all elements of FP-tree 

including the header, the item links etc.  

    Pei et al. [58] proposed a two-pass, pattern-growth algorithm PrefixSpan (Prefix- 

projected Sequential pattern mining) to mine sequential patterns. PrefixSpan finds frequent 

1-sequences, i.e., length-1 sequential patterns, after scanning the sequence database once. 
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Then, the database is projected into smaller datasets according to the frequent 1-sequences. 

Finally, the set of sequential patterns is found recursively by growing subsequence fragments 

in each projected database. Although PrefixSpan discovers sequential patterns efficiently, the 

cost of disk I/O might be high due to the creation and processing of the projected 

sub-databases. Hence, the two-pass algorithm PrefixSpan is not practical for mining 

streaming data. Lin and Lee [50] proposed a memory-indexing algorithm MEMISP (MEMory 

Indexing for Sequential Pattern mining) for fast discovery of sequential patterns. MEMISP 

reads data sequences into memory in one pass if the memory is enough to store these 

sequences. Then MEMISP discovers the sequential patterns by using a recursive 

find-then-index technique. Although MEMISP is a single-pass algorithm, it is still not feasible 

for mining patterns in a streaming data. This is because the MEMISP is not an incremental 

mining algorithm while the data stream is a continuous sequence of data elements. 

    In this chapter, an efficient, single-pass algorithm, called DSM-PLW (Data Stream 

Mining for Path traversal patterns in a Landmark Window), is proposed to mine the set of 

path traversal patterns in the landmark window of a online, continuous stream of Web click 

sequences. The purpose of mining patterns in a landmark window of data streams is to 

discover patterns over the entire history of the data streams [70]. An effective in-memory 

summary data structure, called SP-forest (Summary Path traversal pattern forest), is proposed 

for storing the essential information about the frequent reference sequences of the stream so 

far. Finally, the set of all maximal reference sequences, i.e., path traversal patterns, is 

determined from the SP-forest by a depth-first-search mining mechanism, called MRS-mining 

(Maximal Reference Sequence mining). To the best of our knowledge, this is the first study of 

online, single-pass mining path traversal patterns over streaming Web click-sequences. 

The remainder of the chapter is organized as follows. The problem is defined in Section 

5.2. In Section 5.3, we describe the proposed algorithm DSM-PLW. Theoretical analysis and 
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performance results are presented in Section 5.4. Finally, we conclude the chapter in Section 

5.5. 

5.2 Problem Definition: Online Mining of Path Traversal Patterns 

Let S be an infinite sequence of Web clicks, where a Web click wc consists of a Web user 

identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r). In a 

steaming environment, a segment of Web click stream arrived at timestamp ti can be divided 

into a set of Web click-sequences (or click-sequences in short). For example, a fragment of 

stream, S = [ti, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200, 

a), (200, e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>, 

and <200, abcae>, where 100, 200 are user identifiers of Web users, and a, b, c, d, e are 

references accessed by these users. A (Web) click-sequence, CS , consists of a sequence of 

forward references and backward references accessed by a Web user. A backward reference 

means revisiting a previously visited reference by the same user.  

    A maximal forward reference (MFR) is a forward reference path without any backward 

references. Hence, a click-sequence with l backward references can be divided into (l+1) 

maximal forward references. For example, a click-sequence <abcae> can be divided into two 

MFRs: <abc> and <ae>, because the second reference a is a backward reference in this 

click-sequence. Therefore, we can map the problem of mining path traversal patterns into the 

one of finding frequent occurring consecutive sequences, called reference sequences (RSs), 

among all maximal forward references. The estimated support (esup) of a reference 

sequence RS, denoted as RS.esup, is the number of maximal forward references in the stream 

containing RS as a substring.  

    A reference sequence RS is called a frequent reference sequence if RS.esup ≥ s⋅N, 

where s is a user-defined minimum support threshold in the range of [0, 1], and N is the 
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current length of stream, i.e., the number of maximal forward references so far. A reference 

sequence s1, s2, …, sn, is called a super-sequence of another reference sequence r1, r2, …, rk 

if there exists an i such that si+j = rj, for 1 ≤ j ≤ k . A frequent reference sequence is called 

maximal frequent reference sequence (abbreviated as maximal reference sequence in the 

context of this chapter) if it is not a substring of any other frequent reference sequences.  

    Consequently, the problem of online, single-pass mining path traversal patterns in a 

landmark window over Web click-sequence streams is to mine maximal reference sequences 

by one scan of a continuous stream of maximal forward references when the value of 

minimum support threshold s is given.  
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Figure 5- 1. Process of online mining of path traversal patterns in Web click streams 

 

 

5.3 The Proposed Algorithm: DSM-PLW 

The process of mining path traversal patterns in Web click streams is shown in Figure 5-1. 

Algorithm DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark 



 80 

 

Window) is composed of four steps.  

(a) Read a basic window which consists of a fixed sized maximal forward references 

from the buffer in the main memory (Step 1).  

(b) Construct an in-memory summary data structure by processing each incoming basic 

window (Step 2). 

(c) Prune and maintain the summary data structure (Step 3). 

(d) Find the set of path traversal patterns from the current summary data structure (Step 

4).  

    Steps 1 and 2 are performed in sequence for a new basic window. Steps 3 and 4 are 

usually performed periodically or when it is needed. Since the step 1 is straightforward, we 

shall henceforth focus on Steps 2, 3, and 4, and devise algorithms for the effective 

construction and maintenance of summary data structure, and efficient determination of the 

set of path traversal patterns.  

5.3.1 Construction of the In-memory Summary Data Structure  

In this section, a new in-memory summary data structure, called SP-forest (Summary Path 

traversal pattern forest), is proposed to store the essential information about path traversal 

patterns of each incoming basic window, and an efficient algorithm is proposed to construct 

the summary data structure. Then, we use a running example to illustrate. 

Definition 5-1 A Summary Path traversal pattern forest (abbreviated as SP-forest) is a prefix 

tree-based summary data structure defined below. 

1. SP-forest consists of a list of frequent references (denoted by FR-list), such as r1, r2, …, rk, 

where ri.esup ≥ s⋅N, and a set of Path traversal pattern tree (abbreviated as Path-tree) of 

references ri, denoted by ri.Path-tree, ∀i = 1, 2, …, k. 

2. Each node in the ri.Path-tree, ∀i = 1, 2, …, k, consists of four fields: fr_id, esup, mfr_id, 
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and node-link, where fr_id is the identifier of the incoming forward reference, esup 

registers the number of maximal forward references represented by a portion of the path 

reaching the node with the fr_id, the value of mfr_id assigned to a new node is the 

identifier of current maximal forward reference, and node-link links up a node with the 

next node with the same f_id in the SP-forest or null id if there is none.  

3. Each entry ri, ∀i = 1, 2, …, k, in the FR-list consists of four fields: fr_id, esup, mfr_id, and 

head-link, where fr_id registers the forward reference identifier the entry represents, esup 

records the number of maximal forward references in the stream so far containing the 

reference with identifier fr_id, mfr_id assigned to a new entry is the identifier of the 

current maximal forward reference, and head-link is a pointer pointing to the root node of 

the fr_id.Path-tree. 

Figure 5-2 gives the SP-forest construction algorithm. First of all, DSM-PLW algorithm 

reads a maximal forward reference MFRi = <r1, r2, …, rj, …, rm> from the buffer and 

maintains the SP-forest using the MFR-projection(MFRi). The maintenance process is 

described as follows. For each reference rj in MFRi, if the reference rj exists in the current 

FR-list, the estimated support of the reference, i.e., rj.esup, is increased by one. Otherwise, a 

new entry of the form (rj, 1, i, �rj) is created in the FR-list. Note that the notation �rj 

indicates the head-link of rj, and i is the current MFR’s identifier. Next, MFRi is projected into 

m reference-suffix maximal forward references (denoted by rs-MFRs) according to the order 

of references in the MFRi. The step is called a maximal forward reference projection, and is 

denoted by MFR-projection(MFRi) = {r1|MFRi, r2|MFRi, …, rj|MFRi, …, rm|MFRi}, where 

rj|MFRi = <rjrj+1…rm>, ∀j = 1, 2, …, m.  

    For example, a maximal forward reference <acdef> is projected into five reference-suffix 

maximal forward references: <acdef>, <cdef>, <def>, <ef>, and <f>. Note that the cost of 

maximal forward reference projection is (m
2
+m)/2, i.e., m + (m−1) + … + 1. Next, these 
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rs-MFRs with prefix ri, ∀i = 1, 2, …, m, are inserted into the respective ri.Path-tree as 

branches. If an rs-MFR shares a prefix with an MFR already in the Path-tree, the new MFR 

will share a prefix of the branch representing that MFR. In addition, an estimated support 

counter is associated with each node in the Path-tree. The counter is updated when a 

reference-suffix maximal forward reference causes the insertion of a new branch. Figure 5-3 

shows the subroutines of SP-forest construction and maintenance.  

 

 

                                                                             

Algorithm SP-forest construction 

Input: A stream of maximal forward references, MFR1, MFR2, …, MFRN, and a user-defined 

minimum support threshold s ∈ (0, 1). 

Output: A SP-forest so far. 

1. FR-list = {}; /* initialize the FR-list to empty */ 

2. foreach MFRi = <r1, r2, …, rk> do /* ∀i = 1, 2, …, N, where N is the identifier of current 

MFR*/ 

3.    foreach reference rj ∈ MFRi do /* ∀j = 1, 2, …, k */ 

4.      if rj ∉ FR-list then 

5.         create a new entry of form (rj, 1, i, �rj) into the FR-list; 

6.      else  

7.           rj.esup = rj.esup + 1; 

8.      end if 

9.      call MFR-projection(MFRi, rj); 

10.    end for 

11.  end for 

12.  call SP-pruning(SP-forest, N, s); 

                                                                            

Figure 5- 2. Algorithm SP-forest construction 
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Subroutine MFR-projection 

Input: A maximal forward reference MFRi = <r1, r2, …, rj, …, rm>. 

Output: rj.Path-tree, ∀j = 1, 2, …, m. 

1. foreach reference rj, ∀j = 1, 2, …, m, in MFRi do 

2.    call Path-tree-maintenance(rj|MFRi, rj.Path-tree, i); 

3. end for 

Subroutine Path-tree-maintenance 

Input: A reference-suffix maximal forward reference rj|MFRi = <rjrj+1…rm>, rj.Path-tree, and 

the identifier of current maximal forward reference i; 

Output: A modified rj.Path-tree, ∀j = 1, 2, …, m. 

1. foreach reference rl, ∀l = j, j+1, …, m, in rj|MFRi do 

2.   if rl.Path-tree has a child node with id y such that y.fr_id = rl.fr_id then 

3.      y.esup = y.esup+1; 

4.   else 

5.      create a new node of form (xl, 1, i) in the rl.Path-tree; 

6.   end if 

7. end for 

Subroutine SP-pruning 

Input: A SP-forest, a user-defined minimum support threshold s in the range of [0, 1], and the 

identifier of current maximal forward reference N. 

Output: A SP-forest containing the set of all path traversal patterns. 

1. foreach entry rj ∈ FR-list do 

2.    if rj.esup < s⋅N then 

3.      delete rj.Path-tree; 

4.      delete rj from FR-list; 

5.      delete the sub-trees of a node whose fr_id is j in other rl.Path-tree (l ≠ j) by   

        traversing the node-links in the SP-forest;      

6.    end if 

7. end for 

                                                                             

Figure 5- 3. Subroutines of SP-forest construction algorithm 
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Figure 5- 4. SP-forest after processing the first maximal forward reference <acdef> 
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Figure 5- 5. SP-forest after processing the second maximal forward reference <abe> 
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Figure 5- 6. SP-forest after processing the first six maximal forward references 

 

 

Example 5-1 Let the first six maximal forward references in the stream of Web 

click-sequences be <acdef>, <abe>, <cef>, <acdf>, <cef>, and <df>, where a, b, c, d, e, and f 

are Web references. The SP-forest with respect to the first two MFRs, <acdef> and <abe>, 

constructed by DSM-PLW algorithm is shown in Figure 5-4 and Figure 5-5, respectively. 

Note that the dotted-line arrows, node-links, in Figure 5-4 are used to link up a node with the 

next node of the same fr_id in the current SP-forest. However, in the following steps, as 

demonstrated in Figure 5-5 through Figure 5-7, the node-links are omitted for concise 

presentation. 

First, DSM-PLW algorithm reads the first maximal forward reference <acdef> from the 

buffer, and projects it into five reference-suffix maximal forward references: <acdef>, <cdef>, 

<def>, <ef>, and <f>. Next, the algorithm inserts <acdef>, <cdef>, <def>, <ef>, and <f> into 

the empty trees, i.e., a.Path-tree, c.Path-tree, d.Path-tree, e.Path-tree, and f.Path-tree, 

respectively. The step results in a single path in each Path-tree: root(a:1:1) � (a:1:1) � (c:1:1) 
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� (d:1:1) � (e:1:1) � (f:1:1), root(c:1:1) � (c:1:1) � (d:1:1) � (e:1:1) � (f:1:1), 

root(d:1:1) � (d:1:1) � (e:1:1) � (f:1:1), root(e:1:1) � (e:1:1) � (f:1:1), and root(f:1:1) � 

(f:1:1). The projected result is shown in Figure 5-4.  

    Then, DSM-PLW inserts the result of MFR-projection(<abe>): <abe>, <be>, and <e> 

into a.Path-tree, b.Path-tree, and e.Path-tree, respectively. Hence, <abe> leads to one path 

with a being the common prefix: root(a:2:1) � (a:2:1) � (c:1:1) � (d:1:1) � (e:1:1) � 

(f:1:1) and root(a:2:1) � (a:2:1) � (b:1:2) � (e:1:2). Then, <be> results in a single path in 

b.Path-tree: root(b:1:2) � (b:1:2) � (e:1:2). Finally, DSM-PLW algorithm inserts <e> into 

the SP-forest. At this time, no new node is created, but the first path of e.Path-tree is changed 

to: root(e:2:1) � (e:2:1) � (f:1:1). After processing the second maximal forward reference 

<abe>, the result is shown in Figure 5-5. After processing the six maximal forward references, 

the SP-forest is given in Figure 5-6. 

5.3.2 Pruning Mechanism of the Summary Data Structure 

According to the Apriori principle [3], only the frequent references are used to construct 

candidate k-RSs (k-reference-sequences) in the next pass, where k > 1. Thus, the set of 

candidates containing the infrequent references stored in SP-forest is pruned. The pruning is 

usually performed periodically or when it is needed. 

   Let the user-defined minimum support threshold be s in the range of [0, 1], and the length 

of Web click-sequence stream be N, i.e., N maximal forward references. In the pruning 

mechanism of SP-forest, a reference sequence X and its super-sequences are deleted from 

SP-forest if X.esup < s⋅N. For each entry of form (fr_id, esup, mfr_id, �fr_id) in the FR-list, 

if its fr_id.esup is less than s⋅(N−mfr_id+1), it can be regarded as an infrequent reference. 

Three operations are preformed in sequence. First, DSM-PLW deletes the fr_id.Path-tree. 

Second, it deletes the reference with id fr_id from the FR-list. Finally, DSM-PLW deletes the 
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infrequent reference with id fr_id and its suffix paths from other Path-trees by node-links. 

After pruning all infrequent references from SP-forest, SP-forest contains the set of all 

frequent path traversal patterns of the stream so far. 

Example 5-2 Let the user-specified minimum support threshold be 0.3. Hence, a reference 

sequence X is called infrequent in Figure 5-6 if X.esup < 0.3⋅6 = 1.8. At this time, only 

reference b (b.esup = 1) is infrequent by searching the current FR-list. Now, in order to 

maintain the frequent patterns in the SP-forest, DSM-PLW deletes b.Path-tree, b’s suffix paths 

from a.Path-tree, and b from the FR-list. The result is shown in Figure 5-8. 

The next step of DSM-PLW algorithm is to determine the set of all path traversal patterns 

from SP-forest constructed so far. The step is performed only when the analytical results of 

the stream is requested. 
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Figure 5- 7. SP-forest after pruning the infrequent reference b 
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5.3.3 Determination of Path Traversal Patterns from SP-forest 

Assume that there are k frequent references, namely r1, r2, …, rk, in the current FR-list. Let 

the minimum support threshold be s in the range of [0, 1], and the current length of stream be 

N. For each entry ri, ∀i = 1, 2, …, k, in the FR-list, DSM-PLW traverses the ri.Path-tree to 

find the reference sequences with prefix ri whose estimated support is greater than s⋅N in 

depth-first-search (DFS) manner. Then, DSM-PLW stores the maximal reference sequences in 

a temporal list, MRS-list. Finally, DSM-PLW outputs the set of path traversal patterns stored 

in the temporal list. Figure 5-8 gives the path traversal pattern mining algorithm, called 

MRS-mining (Maximal Reference Sequence mining). 

Example 5-3 The example illustrates the mining of the path traversal patterns from the 

current SP-forest shown in Figure 5-7. Let the minimum support s be 0.3.  

First, MRS-mining algorithm starts the path traversal pattern mining scheme from the first 

reference a in the FP-list, and generates a frequent reference sequence <acd> by DFS. 

MRS-mining adds <acd> into MRS-list because <acd> is not a substring of any other patterns 

stored in the current MRS-list. Next, on the second entry c, MRS-mining algorithm finds two 

frequent reference sequences: <cd> and <cef>. However, only <cef> is added into the 

MRS-list. This is because <cd> is a substring of a generated maximal reference sequence 

<acd>. On the third entry d, only one frequent reference sequence <df> is generated by 

MRS-mining, and stored into the MRS-list. On the fourth entry e, only one frequent reference 

sequence <ef> is generated, but it is not a maximal reference sequence. This is because <ef> is 

a substring of <cef>. On the last entry f, only one frequent reference sequence <f> is obtained, 

but <f> is not a maximal reference sequence. This is because <f> is a substring of <cef>. 

Finally, MRS-list contains the set of maximal reference sequences, i.e., path traversal 

patterns: <acd>, <cef>, and <df>. 
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Algorithm MRS-mining  

Input: A SP-forest constructed so far, the current length of maximal forward references N, 

and a user-defined minimum support threshold s in the range of [0, 1]. 

Output: A temporal list of maximal reference sequences, MRS-list, 

1. MRS-list = ∅; 

2. foreach entry ri in the current FR-list do 

3.    do Depth-First-Search to find the esup of each reference sequence Y with prefix ri in  

the ri.Path-tree; 

4.    if Y.esup ≥ s.N and Y is not a substring of any other frequent reference sequences 

stored in the MRS-list then 

5.        add Y into the MRS-list; 

6.    end if 

7. end for 

8. if MRS-list ≠ ∅ then 

9.   output patterns form the MRS-list; 

10. end if 

                                                                            

Figure 5- 8. Algorithm MRS-mining 

 

5.4 Performance Evaluation 

To evaluate the performance of DSM-PLW algorithm, two experiments were performed. The 

experiments were carried out on the synthetic Web traversal path data generator proposed by 

Chen et al. [13]. In these experiments, a traversal tree is constructed to mimic a Web site 

structure whose starting position is a root node of the tree. The traversal tree is composed of 

internal nodes and leaf nodes. A traversal path consists of nodes accessed by a Web user. The 

size of each traversal path is picked from a Poisson distribution with mean equal to | P |, 

where | P | is the average size of reference paths. With the first node being the root node, a 
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traversal path is generated probabilistically within the traversal tree as follows. Each edge 

connecting to an internal node is assigned with a weight. The weight corresponds to the 

probability that each edge will be accessed next by the Web user. The weight to its parent 

node is assigned with p0, which is generally 1/(n+1) where n is the number of child nodes. 

The probability of traveling to each child node, pi, is determined from an exponential 

distribution with unit mean. Moreover, the probability is normalized that the sum of the 

weights for all child nodes is equal to 1−p0. When the path arrives at a leaf node, the next 

move would be either to its parent node in backward (with a default probability 0.25) or to 

any internal node (with an aggregate probability 0.75). More detail about the generation of 

synthetic traversal paths can be found in [13].  

   Three synthetic data streams, H10P5.D200K, H10P10.D200K, and H10P15.D200K, of 

size 200,000 reference paths are studied. HxPy means that x is the height of a traversal tree, 

and y is the average size of the reference paths. D200K means that the number of reference 

paths is 200,000. A traversal tree for H10 was obtained when the height of the tree is 10, and 

the fanout at each internal node is between 4 and 7. The root node consists of 7 child nodes. 

Moreover, the number of internal nodes is 16,200 and the number of leaf nodes is 73,006. In 

all experiments, the click-sequences of each datasets are looked up in sequence to simulate the 

environment of a data stream. All the experiments are performed on a 1.80 GHz Pentium 4 

processor with 512 megabytes main memory, running on Microsoft Windows 2000. In 

addition, all the programs are written in Microsoft/Visual C++ 6.0.  

5.4.1 Experimental Results of Synthetic Data 

We first evaluated the effect of various minimum support threshold s for synthetic data 

streams having a typical value of 200,000 (200K) reference paths. In Figure 5-9, we plot total 

execution time taken by our algorithm for minimum support threshold s ranging from 0.2% to 
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1%. The figure shows how decreasing s leads to increase in running time. Figure 5-10 shows 

how decreasing s leads to increase in memory usage. The memory usage shown in Figure 

5-10 (a) is the memory requirement in Steps 2 and 3 of DSM-PLW algorithm, and Figure 5-10 

(b) is the total memory requirement of DSM-PLW algorithm in Steps 2, 3, and 4.     

    To measure the relative accuracy of DSM-PLW algorithm, an average support error ASE 

proposed in [10] is used. Figure 5-11 shows the average support error of the mining results of 

the proposed algorithm with respect to that of the FS algorithm [13] performed on the 

synthetic streaming data by varying the user-specified minimum support threshold s. 

Generally, the average support error increases as the value of s increases in Figure 5-11. 

    To assess the scalability of our algorithm, scale-up experiments were conducted. Figure 

5-12 shows that the execution time of DSM-PLW increases linearly as the streaming data size 

increases, ranging from 200K to 1000K. Different minimum support thresholds s yield similar 

and consistent results. The result of s = 0.2% is shown in Figure 5-12, and it exhibits good 

linearity in scale-up. 
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Figure 5- 9. Performance comparisons of total execution time over various minimum support 

thresholds 
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(a) without MRS-mining 
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(b) with MRS-mining 

 

Figure 5- 10. Performance comparisons of memory usage over various minimum support 

thresholds 
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Figure 5- 11. Accuracy of mining results 
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Figure 5- 12. Linear scalability of the streaming data size 
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(a) Memory usage on BMS-WebView-1 
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(b) Memory usage on BMS-WebView-2  

 

Figure 5- 13. Memory usage of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over 

various minimum support thresholds 
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(a) Execution time on BMS-WebView-1 
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(b) Execution Time on BMS-WebView-2 

Figure 5- 14. Execution time of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over 

various minimum support thresholds 
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5.4.2 Experimental Results of Real Data 

Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain 

several months worth of click-stream data from two e-commerce web sites, are used to 

evaluate the performance of the DSM-PLW algorithm. The real data was provided by Blue 

Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The 

BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum 

transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is 

2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512 

transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average 

transaction size is 5 items. Note that an item is regarded as a reference and a transaction is 

regarded as a maximal forward reference in these experiments.    

    In the experiments, two major factors, memory and execution time, are examined in the 

online, single-pass mining path traversal patterns of streaming Web click-sequences, since 

both should be bounded online as time advances. As shown in Figure 5-13, the memory usage 

of DSM-PLW algorithm is relatively insensitive to the minimum support thresholds. As the 

support decreases, the memory consumption of DSM-PLW increases stably, indicating the 

feasibility of the proposed algorithm. In Figure 5-14, the execution time of DSM-PLW grows 

smoothly as the support decreases for both real datasets. Hence, the experiments show that 

DSM-PLW algorithm is a practical scheme to mine the set of path traversal patterns in real 

data.  

5.5 Conclusions 

In this chapter, a new interesting research problem of Web usage mining, namely, online 

single pass mining path traversal patterns in streaming Web click-sequences is presented. A 

new single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns 
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in a Landmark Window), is developed to discover the set of all path traversal patterns over the 

entire history of continuous stream of Web click-sequences. In the proposed DSM-PLW 

algorithm, an effective in-memory summary data structure, called SP-forest (Summary Path 

traversal pattern forest), is developed to maintain the essential information of all maximal 

reference sequences in the stream so far. The set of all maximal reference sequences, i.e., path 

traversal patterns, is determined from the SP-forest by a depth-first-search mechanism, called 

MRS-mining (Maximal Reference Sequence mining). Experimental results show that 

DSM-PLW can meet the performance requirements of data stream mining: single-pass, 

bounded space, and real time. 
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Chapter 6 Online Mining of Top-K Path Traversal Patterns over 

Web Click-Streams 

 

In this chapter, we study the problem of mining top-k path traversal patterns over Web 

click-streams. In the framework of DSM-PLW algorithm as discussed in Chapter 5, it requires 

a user-specified minimum support threshold minsup, and then mines path traversal patterns 

with estimated support values that are higher than the minimum support threshold. 

Unfortunately, the setting of minimum support threshold is quite tricky and it leads to the 

following problem that may hinder its popular use.   

    If the value of minimum support threshold is too small, the pattern mining algorithm 

may lead to the generation of thousands of patterns, whereas a too big one may often generate 

a few patterns or even no answers. As it is difficult to predict how many patterns will be 

mined with a user-defined minimum support threshold, the top-k pattern mining has been 

proposed. 

 

6.1 Introduction  

The first top-k pattern mining algorithm Itemset-Loop was proposed by Fu et al. [28]. 

Itemset-Loop algorithm mines the k most frequent itemsets with lengths shorter than a 

user-defined value of m. LOOPBACK and BOMO [17] are top-k pattern mining algorithms 

based on a FP-tree structure, and uses the same estimated mechanism of Itemset-Loop. 

Moreover, experiments in [17] show that LOOPBACK and BOMO outperform the 

Itemset-Loop. TFP algorithm [66] is a FP-tree-based algorithm and mines the top-k closed 

frequent itemsets with lengths longer than a user-specified value of min_l. TSP [65] is the first 

algorithm to mine the top-k closed sequential patterns of lengths no less than the user-defined 
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minimum length of mined patterns min_l.   

  Recently, Metwally et al. [54] proposed a single-pass algorithm to mine the top-k 

elements over data streams. However, the top-k elements are top-k items. In this chapter, we 

propose an efficient single-pass algorithm, called DSM-TKP (Data Stream Mining for Top-K 

Path traversal patterns), to mine the top-k path traversal patterns over Web click streams. An 

effective summary data structure, called TKP-forest (Top-K Path forest), and an efficient 

structure pruning mechanism, called KP (K Pruning), are proposed to overcome the data 

stream mining issues such as bounded space requirement and approximation. Based on our 

knowledge, DSM-TKP is the first single-pass algorithm for mining top-k path traversal 

pattern over streaming click-data. 

    The remainder of the chapter is organized as follows. The problem definition is 

introduced in Section 6.2. In Section 6.3, we describe the design of our proposed algorithm 

for mining top-K path traversal patterns over Web click-sequence streams. We discuss the 

experiments in Section 6.4. Finally, we conclude this work in Section 6.5. 

 

6.2 Problem Definition 

Let S be a continuous steam of Web clicks, where a Web click wc consists of Web user 

identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r). In a 

steaming environment, a segment of Web click stream arrived at timestamp ti can be divided 

into a set of Web click-sequences (or click-sequences in short). For example, a fragment of 

stream, S = [ti, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200, 

a), (200, e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>, 

and <200, abcae>, where 100, 200 are identifiers of Web users, and a, b, c, d, e are references 

accessed by these users. A (Web) click-sequence CS consists of a sequence of forward 
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references and backward references accessed by a Web user. A backward reference means 

revisiting a previously visited reference by the same user. A maximal forward reference 

(MFR) is a forward reference path without any backward references. Hence, a click-sequence 

can be divided into several maximal forward references, i.e., CS = MFR1, MFR2, …, MFRi, 

where i ≥ 1. For example, a click-sequence <abcae> can be divided into two MFRs: <abc> 

and <ae>. Therefore, we can map the problem of mining top-k path traversal patterns into the 

problem of finding top-k occurring consecutive sequences, called reference sequences (RSs), 

among all maximal forward references. The support of a reference sequence RS, denoted as 

sup(RS), is the number of maximal forward references in the stream containing RS as a 

substring. A reference sequence is called maximal if it is not a substring of any other 

reference sequences. A maximal reference sequence is also called a path traversal pattern. A 

reference sequence RS is a top-k maximal reference sequence if there exists no more than 

(k-1) maximal reference sequences whose support is higher than that of RS. In this chapter, 

our task is to mine the top-k maximal reference sequences by one scan of a continuous stream 

of Web clicks when the value of k is given. 

6.3 The Proposed Algorithm: DSM-TKP 

The proposed algorithm DSM-TKP (Data Stream Mining for Top-K Path traversal patterns) is 

composed of four steps. 

(a) Read a maximal forward reference from the buffer in the main memory (Step 1). 

(b) Construct an in-memory summary data structure (Step 2).  

(c) Prune and maintain the summary data structure (Step 3). 

(d) Find the path traversal patterns from the summary data structure so far (Step 4).  

    Steps 1 and 2 are performed in sequence for a new maximal forward reference. Steps 3 

and 4 are usually performed periodically or when it is needed. Since the step 1 is 
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straightforward, we shall henceforth focus on steps 2, 3, and 4, and devise algorithms for 

effective construction and maintenance of summary data structure, and efficient determination 

of path traversal patterns. 

6.3.1 Effective Construction of the Summary Data Structure 

In this section, we describe an algorithm which constructs the in-memory summary data 

structure, called Top-K Path forest. 

Definition 6-1 A Top-K Path forest (abbreviated as TKP-forest) is a prefix tree-based 

summary data structure defined below. 

1. TKP-forest consists of a K-References list (abbreviated as KR-list), such as <r1 r2 … 

rk>, and a set of Local Path traversal pattern trees (abbreviated as LP-trees) of 

references, denoted by ri.LP-tree, ∀i =1, 2, …, k, where ri is the root node of 

ri.LP-tree. 

2. Each node in the ri.LP-tree, ∀i =1, 2, …, k, consists of four fields: fid, esup, mfr_id, 

and node-link, where fid is the identifier of the incoming maximal forward reference, 

esup registers the number of maximal forward references represented by a potion of 

the path reaching the node with the fid, the value of mfr_id assigned to a new node is 

the identifier of current maximal forward reference, and node-link links up a node with 

the next node with the same fid in the same LP-tree or null if there is none. 

3. Each entry in the KR-list consists of four fields: fid, esup, mfr_id, and head-link, where 

fid registers which reference identifier the entry represents, esup records the number of 

maximal forward references containing the reference carrying the reference id, the 

mfr_id assigned to a new entry is the identifier of current maximal forward reference, 

and head-link is a pointer, and points to the root node of the fid.LP-tree. 
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 The construction algorithm of TKP-forest is shown in Figure 6-1. The scenario of 

TKP-forest construction is described as follows. First of all, DSM-TKP reads a maximal 

forward reference MFR = <r1r2 …rm>, from the buffer, projects the MFR into m sub-maximal 

forward references (abbreviated as sub-MFRs), and inserts these sub-MFRs into the 

TKP-forest as branches. Note that m is the number of references in the maximal forward 

reference. The projection of each incoming maximal forward reference is described as follows. 

Each maximal forward reference, MFR = <r1 r2 … rm>, is converted into m sub-MFRs; that is, 

< r1 r2 … rm >, < r2r3 … rm >, …, and < rm >. These m sequences are called reference-suffix 

maximal forward references (abbreviated as rs-MFRs), since the first reference of each 

sequence is a suffix of the original maximal forward reference. The projection step is called 

maximal forward reference projection, and denoted by MFR-projection (MFR) = {r1|MFR, 

r2|MFR, …, ri|MFR, … , rm|MFR}, where ri|MFR = <riri+1…rm>, ∀i = 1, 2, …, m. The cost of 

this projection is (m
2
+m)/2, i.e., m + (m−1) + … + 2 + 1. 

    After performing the MFR-projection, DSM-TKP algorithm inserts the MFR into the 

KR-list, and then removes it from the buffer in the main memory. Next, the set of rs-MFRs 

are inserted into the ri.LP-trees (∀i =1, 2, …, m) as branches. If a MFR shares a prefix with a 

MFR already in the LP-tree, the new MFR will share a prefix of the branch representing that 

MFR. Moreover, an estimated support counter is associated with each node in the tree. The 

counter is updated when a rs-MFR causes the insertion of a new branch. The step is called the 

rs-MFR insertion. 

Example 6-1. Let the first six maximal forward references be < abcde >, < acd >, < cef >, < 

acdf >, < cef >, and < df >, where a, b, c, d, e and f are references in the stream. The 

TKP-forest with respect to the first two MFRs, < abcde > and < acd >, constructed by 

DSM-TKP algorithm is shown in Figure 6-2 and Figure 6-3, respectively. 
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Algorithm TKP-forest construction 

Input: A continuous stream of maximal forward references, S = [MFR1, MFR2, …, MFRN), a 

user-specified value k. 

Output: A TKP-forest generated so far. 

1:  KR-list = {};  /*initialize the KR-list to empty.*/ 

2:  foreach MFRi, = <x1x2… xm>, do  

/* m ≥ 1, i=1, 2, …, N */  

3:     foreach reference xj ∈ MFRi do   

4:        if xj ∉ KR-list then 

5:           create a new entry of form (xj, 1, i, head-link) 

into the KR-list;  

6:        else /* the entry already exists in the KR-list*/ 

7:               xj.esup = xj.esup + 1;  

8:        end if 

9:     end for 

10:   call MFR-Projection(MFRi);  

11:   call rs-MFR insertion; 

12: end for 

13: call TKP-forest-pruning(TKP-forest, k);   

/* Step 3 of DSM-TKP algorithm: prune and maintain the summary data structure */ 

14: end for 

                                                                           

Figure 6- 1. Algorithm of TKP-forest Construction 
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Figure 6- 2. TKP-forest construction after processing the first maximal forward reference 

<abcde> 
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Figure 6- 3. TKP-forest construction after processing the second maximal forward reference 

<acd> 
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6.3.2 Effective Pruning of the Summary Data Structure  

The TKP-forest pruning mechanism used in DSM-TKP is performed when the number of 

references in the KR-list is greater than the value k. The pruning mechanism used in 

DSM-TKP algorithm is shown in Figure 6-4. 

The next step of DSM-TKP algorithm is to determine the top-k path traversal patterns 

from the current TKP-forest. The step is performed only when the analytical results of the 

stream is requested. 

 

                                                                            

Subroutine TKP-forest-pruning(TKP-forest, k) 

1: sort the references, r1, r2, …, rk’, in the KR-list and reorder the references in an estimated 

support decreasing order, i.e., r1’, r2’, …, rk’’, where sup(r1’) ≥ sup(r2’) ≥ … ≥ sup(rk’); 

2:  find rKL’ in the reordered KR-list;  

/* rKL’ be a reference whose estimated support is the k-th largest one in the KR-list; */ 

3:  foreach ri’∈ KR-list, ∀i = 1, 2, …, KL do  

4:           esup(ri’) = esup(ri’) − esup(rKL-1’); 

5:  endfor 

6:  foreach rj’∈ KR-list, ∀j = KL+1, KL+2, …, k’ do 

7:           delete rj’ from the current KR-list; 

8:           delete rj’.LP-tree; 

9:   endfor 

                                                                            

Figure 6- 4. Algorithm of TKP-forest pruning 
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Figure 6- 5. Example of TKP-forest 

 

 

6.3.3 Determination of the Top-K Path Traversal Patterns 

Assume that there are k references, namely r1, r2, …, rk, in the current KR-list. For each entry 

ri, ∀i =1, 2, …, k, in the KR-list, DSM-TKP algorithm traverses the ri.LP-tree to find the 

estimated support of each reference sequence with a prefix ri in a depth-first-search (DFS) 

manner. Then, DSM-TKP stores these reference sequences into a temporal list of candidate 

maximal reference sequences, i.e., path traversal patterns, in a support decreasing order. 

Finally, DSM-TKP outputs the first k maximal reference sequences from the temporal list. For 

example, in Figure 6-5, the top-3 path traversal patterns are <acd: 3>, <cef: 2>, and <df: 2>, 

where the 3-th largest estimated support in the reordered KR-list is 2. 

6.4 Performance Evaluation 

All the experiments are performed on a 1.80 GHz Pentium 4 processor with 512 megabytes 

main memory, running on Microsoft Windows 2000. In addition, all the programs are written 
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in Microsoft/Visual C++ 6.0. 

    Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain 

several months worth of click-stream data from two e-commerce web sites, are used to 

evaluate the performance of the DSM-TKP algorithm. The real data was provided by Blue 

Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The 

BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum 

transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is 

2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512 

transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average 

transaction size is 5 items. 

   We evaluate the effect of various k values for BMS-WebView-1 and BMS-WebView-2. 

Figure 6-6 (a) plots the total execution time taken by our algorithm for values of k ranging 

from 1000 to 200. The figure shows how decreasing k leads to decrease in running time. 

Figure 6-6 (b) shows how decreasing k leads to decrease in memory usages of DSM-TKP in 

BMS-WebView-1 and BMS-WebView-2, respectively.  

 

6.5 Conclusions 

In this chapter, we proposed an online single-pass algorithm, DSM-TKP, for mining top-k 

maximal reference sequences in an infinite sequence of Web click-sequences. An effective 

summary data structure TKP-forest is developed to store the essential information about the 

set of top-k path traversal patterns of the Web click-stream so far. An efficient pruning 

mechanism of TKP-forest is presented to guarantee that the upper bound of the summary data 

structure is predictable. Experiments show that DSM-TKP is efficient and exhibits good 

scalability. 
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Figure 6- 6. Execution time and memory usage of DSM-TKP on BMS-WebView-1 and 

BMS-WebView-2 under various k values 
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Chapter 7 Conclusions and Future Work 

 

In this chapter, summaries of our works are given. Some possible future works are also 

discussed. For mining of frequent itemsets from data streams, we study the problems 

involving landmark window-base mining of frequent itemsets and sliding window-base 

mining of frequent itemsets. For mining of path traversal patterns from Web click streams, we 

focus on single-pass mining of path traversal patterns and online mining of top-k path 

traversal patterns without minimum support threshold. For mining of changes of items across 

two data streams, two one-pass mining algorithms are proposed. All the proposed algorithms 

are verified by experiments of mining continuous streams of various characteristics. In the 

experiments comprising comprehensive comparisons, the proposed algorithms outperforms 

several related algorithms, and they all show excellent linear scalability with respect to the 

size of the streaming data.  

7.1 Conclusions 

7.1.1 Summary of Mining of Frequent Itemsets in Data Streams  

For the mining of frequent itemsets over the entire history of data streams, we propose an 

efficient single-pass algorithm, called DSM-FI (Data Stream Mining for Frequent Itemsets), 

to discover the set of all frequent itemsets over data streams. An effective projection scheme 

is developed to extract the essential information of frequent itemsets from data streams. 

Experiments show that DSM-FI outperforms BTS [53], a state-of-the-art single-pass 

algorithm, by one order of magnitude for discovering the set of all frequent itemsets over data 

streams with a landmark window. 
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7.1.2 Summary of Mining of Frequent Itemsets over Stream Sliding 

Windows 

For the mining of frequent itemsets over data streams with a transaction-sensitive sliding 

window, we develop an efficient one-pass algorithm, called MFI-TransSW (Mining Frequent 

Itemsets over a Transaction-sensitive Sliding Window) based on bit-vectors, to mine the set of 

frequent itemsets from only the latest w transactions. Experiments show that MFI-TransSW 

outperforms SWFI-stream [11] for discovering the set of frequent itemsets in data streams 

with a transaction-sensitive sliding window.  

    For the mining of frequent itemsets over data streams with a time-sensitive sliding 

window, we proposed the first one-pass algorithm, called MFI-TimeSW  (Mining Frequent 

Itemsets over a Time-sensitive Sliding Window), based on the MFI-TransSW to mine the set 

of frequent itemsets from only the latest w time units. Experiments show that MFI-TimeSW id 

efficient and exhibits good scalability. 

7.1.3 Summary of Mining of Changes of Items across Two Data Streams  

We define a new interesting research problem of mining changes of items from data streams 

in data mining. For the mining of two append-only data streams, we propose a single-pass 

algorithm, called MFC-append (Mining Frequency Changes of append-only data streams), to 

find the set of changes of items across two append-only data streams. A new summary data 

structure, called Change-Sketch, is developed to store the essential changed patterns of data 

streams. The space complexity of Change-Sketch is O(mlog(n/m)). For mining of two 

dynamic data streams, an one-pass algorithm, called MFC-dynamic (Mining Frequency 

Changes of dynamic data streams), is developed to mine the changes of items across two 

dynamic data stream. The proposed algorithms take O(log(n/m)) time in the worst case to 

compute each newly arrived item, but only O(1) amortized time per item. 
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7.1.4 Summary of Mining of Path Traversal Patterns over Web Click- 

Streams 

For the mining of path traversal patterns over Web click-streams, we propose the first 

single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns in a 

Landmark Window), to discover the set of all path traversal patterns over streaming maximal 

forward references. The comprehensive experiments demonstrate that DSM-PLW is efficient 

and exhibits good scalability.  

7.1.5 Summary of Mining of Top-K Path Traversal Patterns 

We define a new interesting research problem of mining of top-k path traversal patterns over 

Web click streams, and propose the first one-pass algorithm, called DSM-TKP (Data Stream 

Mining for Top-K Path traversal patterns), for mining of top-k path traversal patterns without 

the user-defined minimum support threshold. An efficient pruning mechanism of the proposed 

summary data structure is presented to guarantee that the upper bound of the summary data 

structure is predictable. Experiments show that DSM-TKP is efficient and exhibits good 

scalability. 

7.2 Future Work 

With the mining capabilities of the proposed algorithms, there are several interesting 

extensions on frequent pattern mining and change mining, as listed below. 

� Resource-aware mining of frequent patterns over data streams. 

Resource such as CPU, memory space, and sometimes energy, are very precious in 

a stream mining environment. They are very likely to be used up when processing 

data streams which arrive with rapid speed and a huge amount. How to use these 

resources when we use the proposed algorithms for mining frequent itemsets and 

changes is an important research issue in our future work. 
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� Online mining of sequential patterns over data streams with a sliding window. 

Online mining of sequential patterns in data streams is more complicated than 

mining of frequent itemset. There are several challenges of mining of sequential 

patterns from data streams, such as how to define the meaning of sequential patterns 

in a stream environment, how to define the model of sliding window for mining 

sequential patterns of data streams, and how to design an efficient single-pass 

algorithm for mining the set of sequential patterns from data streams. 

� Online mining of high utility itemsets over data streams with a sliding window. 

Although mining itemsets correlations is important in some applications, in many 

applications people are more interested in finding out how a set of items that is useful by 

some measure, such as utility. The frequent itemsets do not reflect the impact of any other 

factor except frequency of the presence or absence of an item. Frequent itemsets may only 

contribute a small portion of the overall profit, whereas infrequent itemsets may contribute 

a large portion of the profit. Hence, utility mining is likely to be useful in a wide range of 

practical application. There are several challenges on mining high utility itemsets over data 

streams, such as how to define the model of sliding window for mining high utility 

itemsets of data streams, how to define the meaning of high utility itemsets in a 

stream environment, and how to design an efficient one-pass algorithm for 

discovering the set of high utility itemsets from data streams with a sliding window. 
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