
國立交通大學
資訊科學與工程研究所

博 士 論 文

在串流資料中高效率頻繁樣式探勘演算法之研究

A Study of Efficient Mining Algorithms of Frequent

Patterns on Data Streams

研 究 生：李華富

指導教授：李素瑛 博士

中華民國 九十五 年 六 月

在串流資料中高效率頻繁樣式探勘演算法之研究

A Study of Efficient Mining Algorithms of Frequent

Patterns on Data Streams

 研 究 生：李華富 Student：Hua-Fu Li

 指導教授：李素瑛博士 Advisor：Dr. Suh-Yin Lee

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

在串流資料中高效率頻繁樣式探勘演算法之研究在串流資料中高效率頻繁樣式探勘演算法之研究在串流資料中高效率頻繁樣式探勘演算法之研究在串流資料中高效率頻繁樣式探勘演算法之研究

學生：李華富 指導教授：李素瑛博士

國立交通大學 資訊科學與工程研究所

摘要 資料串流探勘是一個快速成長的新興研究領域，但同時也帶來了新的挑戰。在眾多資料串流探勘的研究中，頻繁樣式探勘與變化探勘一直是資料串流探勘中重要的研究焦點。本論文主旨在於研發高效率的頻繁項目集合、路徑瀏覽樣式，以及項目變化樣式的單次線上掃描探勘方法。

 頻繁項目集合是本論文所探討的第一個研究主題。首先，針對串流資料的標的物模型，我們提出一個可快速地探勘出所有頻繁項目集合的單次掃描演算法 DSM-FI。為了避免將每一筆新進交易中所有項目集組合都窮舉出來，我們設計了一個有效的交易投影機制，並提出一個新的摘要字首樹狀結構來儲存必要的集合項目資訊。此演算法在探勘出頻繁項目集合的同時，也可找出最大頻繁項目集合。

 我們也針對串流資料的滑動窗模型提出了兩個單次頻繁項目集合探勘演算法
MFI-TransSW 與 MFI-TimeSW，可有效地在交易感知滑動窗模型以及時間感知滑動窗模型中探勘出目前存在的頻繁項目集合。MFI-TransSW 與 MFI-TimeSW 演算法主要是利用位元向量的特性來儲存單一項目在目前滑動窗中的出現位置，並利用位元向量的特性來達到快速滑動的效果。

 ii

 路徑瀏覽樣式是本論文所探討的第二個主題。我們提出可快速探勘出路徑瀏覽樣式的單次掃描演算法 DSM-PLW，此演算法沿用 DSM-FI 的精神，利用快速拆解使用者瀏覽路徑，以及字首樹狀結構的特性，來達到串流資料探勘的效能要求。此外，我們進一步提出一個不需要使用者輸入最小支持度門檻值，就可以進行的 Top-K 路徑瀏覽樣式的單次掃描探勘演算法。

 串流資料變化探勘是本論文的第三個研究主題。我們提出 MFC-append 演算法來找出在兩條線上交易資料串流中，穩定分布的交易項目、常常變動的項目，或無一定分佈的變化樣式。此外，針對可執行刪除運算的動態資料串流，我們提出一個以 MFC-append 為基礎的演算法 MFC-dynamic，來探勘動態資料串流中的項目變化。

 我們進行了相關的實驗以評估所提方法的效能。在我們的實驗範圍中的結果顯示，對於各個不同探勘參數以及不同特性的資料集，我們的方法都優於許多著名的方法。此外，針對資料量擴充的實驗也顯示出我們所提出的探勘頻繁樣式的方法具有線性的擴充能力。

 iii

A Study of Efficient Mining Algorithms of Frequent

Patterns on Data Streams

Student：Hua-Fu Li Advisor：Dr. Suh-Yin Lee

Department of Computer Science

National Chiao Tung University

Abstract

Online mining of data streams is an important data mining problem with broad applications.

However, it is a difficult problem since the streaming data possess some specific characteristics,

such as unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over

previously arrived transactions, and a lack of system control over the order in which data arrives.

Among various objectives of data stream mining, the mining of frequent patterns in data streams

has been the focus of knowledge discovery. In this dissertation, the design of several core

technologies for mining frequent patterns and changes of data streams is investigated.

 For mining of frequent itemsets over data streams with a landmark window, we propose the

DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm to find the set of all frequent

itemsets over the entire history of the data streams. An effective projection method is used in the

proposed algorithm to extract the essential information from each incoming transaction of the

data streams. A data structure based on prefix tree is constructed to store data summary. DSM-FI

utilizes a top-down pattern selection approach to find the complete set of frequent itemsets.

Experiments show that DSM-FI outperforms BTS (Buffer-Trie-SetGen), a state-of-the-art

 iv

single-pass algorithm, by one order of magnitude for discovering the set of all frequent itemsets

over a landmark window of data streams.

 For mining of frequent itemsets in data streams with a sliding window, efficient bit vector

based algorithms are proposed. Two kinds of sliding windows, i.e., transaction-sensitive sliding

window and time-sensitive sliding window, are discussed. MFI-TransSW (Mining Frequent

Itemsets over a Transaction-sensitive Sliding Window) is developed to mine the set frequent

itemsets over data streams with a transaction-sensitive sliding window. A single-pass algorithm,

called MFI-TimeSW (Mining Frequent Itemsets over a Time-sensitive Sliding Window), based

on MFI-TransSW algorithm and a dynamic encoding method is proposed to mine the set of

frequent itemsets in a time-sensitive sliding window. An effective bit-sequence representation of

items is used in the proposed algorithms to reduce the time and memory needed to slide the

windows. Experiments show that the proposed algorithms not only attain highly accurate mining

results, but also run significantly faster and consume less memory than existing algorithms for

mining recent frequent itemsets over data streams.

 For mining changes of items across two data streams, we propose two one-pass algorithms,

called MFC-append (Mining Frequency Changes of append-only data streams) and

MFC-dynamic (Mining Frequency Changes of dynamic data streams), to mine the set of frequent

frequency changed items, vibrated frequency changed items, and stable frequency changed items

across two continuous append-only and dynamic data streams, respectively. A new summary data

structure, called Change-Sketch, is developed to compute the frequency changes between two

data streams as fast as possible. Theoretical analysis and experimental results show that our

algorithms meet the major performance requirements, namely single-pass, bounded space

requirement, and real-time computing, in mining data streams.

 v

 Mining path traversal patterns from Web click streams is important in Web usage mining and

Web user profiling. One of the most important We proposed two single-pass algorithms, called

DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark Window) and

DSM-TKP (Data Stream Mining for Top-K Path traversal patterns), to discover the path traversal

patterns over Web click-streams with and without a user-defined minimum support constraint.

Experiments of real data show that both algorithms successfully mine maximal reference

sequences with linear scalability.

 Comprehensive experiments have been conducted to assess the performance of the proposed

algorithms. The empirical results show that these algorithms outperform the state-of-the-art

algorithms with respect to various mining parameters and datasets of different characteristics.

The scale-up experiments also verify that our algorithms successfully mine frequent patterns with

good linear scalability.

 vi

Acknowledgement

（（（（誌謝誌謝誌謝誌謝））））

 首先，我最感謝的是我的指導教授李素瑛老師，感謝她在這五年的研究所生涯中啟發我對學術研究的興趣，並且指導我論文的寫作上的技巧，以及生活上的幫助。在跟隨李老師研究的過程中，李老師對研究的執著及熱忱，一直是我學習的榜樣。此外，還要感謝孫春在教授和彭文志教授在計劃書口試、校內口試以及校外口試時提供許多寶貴的意見。
 感謝口試委員：台大電機系陳銘憲教授、成大資工曾新穆教授、中央資工系張嘉惠教授、政大資科系沈錳坤教授在口試過程中提供許多寶貴的建議，讓我的論文能更趨完善。諸位口試委員都是我在學術研究的道路上的最佳學習典範。 資訊系統實驗室的學長與學弟妹是我博士班研究生涯的好伙伴，謝謝大家也祝福學弟妹們早日收穫豐富的研究成果。再次謝謝你們在這段過程中對我的幫忙及鼓勵。 一直陪伴在我身旁、沒有怨言、只給我鼓勵的，就是我的太太佑青。能夠順利完成博士學位，對於佑青，我有無盡的感謝。 要感謝的人太多，僅在此對所有曾經幫助過我的朋友，致上我真切的謝意。 僅以此論文，獻給我摯愛的太太佑青。

 vii

Table of Contents

Abstract in Chinses... i

Abstract in English ... iii

Acknowledgement... vi

List of Figures ... ix

Chapter 1 Introduction .. 1

1.1 Background.. 1

1.2 Research Objectives and Contributions... 3

1.3 Organization of this Thesis.. 4

Chapter 2 Online Mining of Frequent Itemsets in Data Streams .. 6

2.1 Introduction ... 7

2.2 Problem Definition ...11

2.3 The Proposed Algorithm: DSM-FI .. 13

2.3.1 Construction and Maintenance of Summary Data structure 13

2.3.2 Pruning Infrequent Information from SFI-forest ... 19

2.3.3 Determining Frequent Itemsets from Current SFI-forest 22

2.4 Theoretical Analysis .. 25

2.4.1 Maximum Estimated Support Error Analysis .. 25

2.4.2 Space Requirement Analysis.. 26

2.5 Performance Evaluation .. 27

2.5.1 Scalability Study of DSM-FI Algorithm... 28

2.5.2 Comparison with BTS algorithm ... 30

2.6 Conclusions ... 30

Chapter 3 Online Mining of Frequent Itemsets over Stream Sliding Windows 32

3.1 Introduction ... 33

3.2 Problem Definition: Mining Frequent Itemsets in a TransSW.............................. 34

3.3 The Proposed Algorithm: MFI-TransSW.. 36

3.3.1 Bit-Sequence Representation ... 36

3.3.2 The MFI-TransSW Algorithm .. 37

3.3.2.1 Window Initialization Phase.. 37

3.3.2.2 Window Sliding Phase... 38

3.3.2.3 Frequent Itemsets Generation Phase.. 40

3.4 Problem Definition: Mining Frequent Itemsets in a TimeSW............................... 41

3.5 The Proposed Algorithm: MFI-TimeSW... 43

3.5.1 Time Unit List and Bit-Sequences of Items.. 43

3.5.2 The MFI-TimeSW Algorithm.. 44

3.5.2.1 Window Initialization Phase.. 44

3.5.2.2 Window Sliding Phase... 45

3.5.2.3 Frequent Itemsets Generation Phase.. 45

3.6 Performance Evaluation .. 49

3.6.1 Experiments of MFI-TransSW Algorithm .. 50

3.6.2 Experiments of MFI-TimeSW Algorithm ... 54

3.7 Conclusions ... 55

Chapter 4 Online Mining of Changes of Items across Two Data Streams 56

 viii

4.1 Introduction ... 56

4.2 Related Work ... 58

4.3 Problem Definition: Mining of Changes of Items across Two Data Streams........ 58

4.4 Online Mining Changes of Items over Distributed ADSs 61

4.4.1 A New Summary Data Structure: Change-Sketch ... 61

4.4.2 The MFC-append Algorithm ... 62

4.4.3 Space Analysis of Change-Sketch.. 66

4.5 Online Mining Changes of Items over Distributed DDSs..................................... 67

4.6 Performance Evaluation .. 68

4.6.1 Synthetic Data Generation .. 68

4.6.2 Experimental Results ... 70

4.7 Conclusions ... 72

Chapter 5 Online Mining of Path Traversal Patterns over Web Click-Streams................. 74

5.1 Introduction ... 74

5.2 Problem Definition: Online Mining of Path Traversal Patterns 78

5.3 The Proposed Algorithm: DSM-PLW ... 79

5.3.1 Construction of the In-memory Summary Data Structure 80

5.3.2 Pruning Mechanism of the Summary Data Structure 86

5.3.3 Determination of Path Traversal Patterns from SP-forest 88

5.4 Performance Evaluation .. 89

5.4.1 Experimental Results of Synthetic Data .. 90

5.4.2 Experimental Results of Real Data.. 96

5.5 Conclusions ... 96

Chapter 6 Online Mining of Top-K Path Traversal Patterns over Web Click-Streams..... 98

6.1 Introduction ... 98

6.2 Problem Definition .. 99

6.3 The Proposed Algorithm: DSM-TKP.. 100

6.3.1 Effective Construction of the Summary Data Structure............................... 101

6.3.2 Effective Pruning of the Summary Data Structure 105

6.3.3 Determination of the Top-K Path Traversal Patterns.................................. 106

6.4 Performance Evaluation .. 106

6.5 Conclusions ... 107

Chapter 7 Conclusions and Future Work .. 109

7.1 Conclusions ... 109

7.1.1 Summary of Mining of Frequent Itemsets in Data Streams 109

7.1.2 Summary of Mining of Frequent Itemsets over Stream Sliding Windows.....110

7.1.3 Summary of Mining of Changes of Items across Two Data Streams110

7.1.4 Summary of Mining of Path Traversal Patterns over Web Click-Streams....111

7.1.5 Summary of Mining of Top-K Path Traversal Patterns111

7.2 Future Work ..111

References..113

Publication List .. 120

Vita .. 124

 ix

List of Figures

Figure 2- 1. Typical processing model of data streams ... 7

Figure 2- 2. Algorithm SFI-forest Construction .. 16

Figure 2- 3. Subroutines of SFI-forest construction algorithm ... 18

Figure 2- 4. SFI-forest construction after processing the first transaction < acdf >...................... 18

Figure 2- 5. SFI-forest construction after processing the second transaction < abe > 19

Figure 2- 6. SFI-forest construction after processing the window Wj ... 20

Figure 2- 7. SFI-forest after pruning all infrequent items ... 21

Figure 2- 8. Algorithm todoFIS ... 24

Figure 2- 9. Resource requirements of DSM-FI algorithm for IBM synthetic datasets: (a)

execution time, (b) memory usage .. 29

Figure 2- 10. Comparison of DSM-FI and BTS: (a) Execution time, (b) Memory Usage............ 30

Figure 3- 1. Transaction-sensitive sliding window and time-sensitive sliding window [51] 32

Figure 3- 2. An example transaction data stream and the frequent itemsets over two consecutive

TransSWs... 35

Figure 3- 3. Bit-sequences of items in window initialization phase of TransSW 37

Figure 3- 4. Bit-sequences of items after sliding TransSW1 to TransSW2 37

Figure 3- 5. Algorithm MFI-TransSW... 39

Figure 3- 6. Steps of frequent itemsets generation in TransSW2 ... 40

Figure 3- 7. An example transaction data stream and the frequent itemsets over two time-sensitive

sliding windows... 43

Figure 3- 8. Bit-sequences of items in window initialization phase of TimeSW1 46

Figure 3- 9. Bit-sequences of items after sliding TimeSW1 to TimeSW2.. 47

Figure 3- 10. Algorithm MFI-TimeSW ... 48

Figure 3- 11. Steps of frequent itemsets generation of MFI-TimeSW in TimeSW1....................... 49

Figure 3- 12. Memory usages in window initialization phases of algorithms SWFI-stream and

MFI-TransSW (s = 0.1% and w = 20,000) .. 51

Figure 3- 13. Memory usages in window sliding phases of algorithms SWFI-stream and

MFI-TransSW (s = 0.1% and w = 20,000) .. 51

 x

Figure 3- 14. Memory usages in frequent itemset generation phases of algorithms SWFI-stream

and MFI-TransSW (s = 0.1% and w = 20,000) ... 52

Figure 3- 15. Processing time in window initialization phases of algorithms SWFI-stream and

MFI-TransSW under different window sizes (s = 0.1%) .. 52

Figure 3- 16. Processing time including window sliding time and pattern generation time of

algorithms SWFI-stream and MFI-TransSW under window size 200K transactions (s = 0.1%)

... 53

Figure 3- 17. Memory usages of MFI-TimeSW algorithm in different phases (s = 0.1%) 53

Figure 3- 18. Processing time of MFI-TimeSW algorithm in different phases (s = 0.1%) 54

Figure 4- 1. Processing model of distributed data streams.. 57

Figure 4- 2. Examples of VFCIs and SFCIs .. 60

Figure 4- 3. Notations and conventions used in the proposed algorithms..................................... 63

Figure 4- 4. Algorithm MFC-append .. 64

Figure 4- 5. Algorithm MFC-dynamic .. 69

Figure 4- 6. Experiments on synthetic data (104 transactions) for MFC-append. Left: recall

(proportion of the frequent change patterns reported). Right: precision (proportion of the

output frequency change patterns which are frequent).. 70

Figure 4- 7. Experiments on synthetic data (10
5
 transactions) for MFC-append. Left: recall. Right:

precision .. 71

Figure 4- 8. Experiments on synthetic data (106 transactions) for MFC-append. Left: recall. Right:

precision .. 71

Figure 4- 9. Experiments on synthetic data (10
6
 transactions) for MFC-dynamic. Left: recall.

Right: precision ... 72

Figure 5- 1. Process of online mining of path traversal patterns in Web click streams................. 79

Figure 5- 2. Algorithm SP-forest construction .. 82

Figure 5- 3. Subroutines of SP-forest construction algorithm... 83

Figure 5- 4. SP-forest after processing the first maximal forward reference <acdef> 84

Figure 5- 5. SP-forest after processing the second maximal forward reference <abe> 84

Figure 5- 6. SP-forest after processing the first six maximal forward references 85

Figure 5- 7. SP-forest after pruning the infrequent reference b... 87

Figure 5- 8. Algorithm MRS-mining... 89

 xi

Figure 5- 9. Performance comparisons of total execution time over various minimum support

thresholds... 91

Figure 5- 10. Performance comparisons of memory usage over various minimum support

thresholds... 92

Figure 5- 11. Accuracy of mining results .. 93

Figure 5- 12. Linear scalability of the streaming data size.. 93

Figure 5- 13. Memory usage of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over

various minimum support thresholds .. 94

Figure 5- 14. Execution time of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over

various minimum support thresholds .. 95

Figure 6- 1. Algorithm of TKP-forest Construction .. 103

Figure 6- 2. TKP-forest construction after processing the first maximal forward reference

<abcde> ... 104

Figure 6- 3. TKP-forest construction after processing the second maximal forward reference

<acd>... 104

Figure 6- 4. Algorithm of TKP-forest pruning .. 105

Figure 6- 5. Example of TKP-forest .. 106

Figure 6- 6. Execution time and memory usage of DSM-TKP on BMS-WebView-1 and

BMS-WebView-2 under various k values.. 108

 1

Chapter 1 Introduction

1.1 Background

Data mining, which is also referred to as knowledge discovery in databases, has been

recognized as the process of extracting non-trivial, implicit, previously unknown and

potentially useful information or knowledge from large amounts of data. The typical data

mining tasks include association mining, sequential pattern mining, classification, and

clustering. The tasks help us to finding interesting patterns and regularities from the data.

Traditional data mining techniques assume the targeting databases are disk resident or could

be fit into the main memory. Hence, due to the complexity of mining tasks, almost all data

mining algorithms require scanning the data several times.

 Recently, database and knowledge discovery communities have focused on a new model

of data processing, where data arrive in the form of continuous streams. It is often referred to

as data streams or streaming data. The new data model addresses the data explosion from two

new perspectives. First, the arrival of data streams and the volume of data are beyond our

capability to store them. For example, the network traffic information of a router, though

extremely important, is often impossible to record. Second, data streams processing requires

real-time constraint. Generally, the need to process the data timely prohibits rescanning the

data from secondary storage. For example, detecting network intrusion in real-time is the

necessary condition to prevent the damage. The new model has captured a large class of

important applications in current world, such as discovering the patterns of sensor data

generated from sensor networks, analyzing the transactional behaviors of transaction flows in

retail chains, mining user traversal behaviors from the Web record and click-streams,

protecting network securities, timely finding terrorist activities, monitoring call records in

 2

telecommunications, analyzing stock and business data, and so on [6, 33].

 In order to facilitate the following discussions, we will first introduce the streaming data

model in more detail. Data streams assume the data elements arrive in some order. Moreover,

the amount of data is often huge and can not be held in the main memory or even disks. This

means that once a new data element arrives, it must be processed quickly. In general, the

period for a data element staying in the main memory is quite short. Once a data element is

removed from the main memory, it is not available to be accessed again. In other words, we

can only have one look at the data.

 Data mining over streaming data brings many new challenges [6]. The first challenge is

how to perform data mining tasks on data streams. Most of existing data mining algorithms

require scanning datasets multiple times, such as Apriori algorithm of association rule mining,

k-means of clustering, and C4.5 of decision tree construction. The new data model limits us to

have only one look at the data, or at most to scan it once. Further, the relatively small memory

compared with the large amount of streaming data results in the fact that we can only store a

concise summary or partial data of the data stream. Therefore, getting precise results from

data streams is commonly impossible or very difficult. The challenge is how to design

efficient algorithms to get approximate results with high accuracy and confidence. The second

challenge is how to understand the changes of data streams. The data streams bring us much

new useful information to explore, such as the knowledge that if and when the underlying

distribution has changed for continuous data streams. An example is to find such products in

the retail chains that have become very popular recently in certain regions, but relatively

unpopular for quite a long time before. In conclusions, how to perform data mining tasks, how

to discover new knowledge, and how to mine changes of data streams make stream mining

very challenging.

 3

1.2 Research Objectives and Contributions

The research objective of this dissertation is to investigate efficient and scalable algorithms

for mining frequent itemsets, path traversal patterns, and the changes of items over continuous

data streams.

 The first research issue of this dissertation is the online mining of frequent itemset over

data streams. We propose the DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm

to find the set of all frequent itemsets over the entire history of the data streams. An effective

projection method is used in the proposed algorithm to extract the essential information from

each incoming transaction of data streams. A summary data structure based on the prefix tree

is constructed. DSM-FI utilizes a top-down pattern selection approach to find the complete set

of frequent itemsets. Experiments show that DSM-FI outperforms BTS (Buffer-Trie-SetGen),

a state-of-the-art single-pass algorithm, by one order of magnitude for discovering the set of

all frequent itemsets over a landmark window of data streams. For mining of frequent itemsets

in data streams with a sliding window, we propose an online algorithm, called MFI-TransSW

(Mining Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of

frequent itemsets in streaming data with a transaction-sensitive sliding window. Moreover,

another single-pass algorithm called MFI-TimeSW (Mining Frequent Itemsets over a

Time-sensitive Sliding Window) based on the proposed MFI-TransSW algorithm, is proposed

to mine the set of frequent itemsets in a time-sensitive sliding window. An effective

bit-sequence representation of items is used in the proposed algorithms to reduce the time and

memory needed to slide the windows. Experiments show that the proposed algorithms not

only attain highly accurate mining results, but also run significantly faster and consume less

memory than do existing algorithms for mining recent frequent itemsets over data streams.

 The second research issue of the thesis is change mining of data streams. We define a

new problem of the online mining of changes of items across two data streams, and propose

 4

an one-pass algorithm, called MFC-append (Mining Frequency Changes of append-only data

streams), to mine the set of frequent frequency changed items, vibrated frequency changed

items, and stable frequency changed items across two continuous append-only data streams.

Furthermore, a single-pass algorithm, called MFC-dynamic (Mining Frequency Changes of

dynamic data streams) based on MFC-append, is proposed to mine the changes across two

dynamic data streams. A new summary data structure, called Change-Sketch, is developed to

compute the frequency changes between two data streams as fast as possible. Theoretical

analysis and experimental results show that our algorithms meet the major performance

requirements, namely single-pass, bounded space requirement, and real-time computing, in

mining streaming data.

 The third issue of the work is the online mining of all path traversal patterns over Web

click-streams. We proposed the first single-pass algorithm, called DSM-PLW (Data Stream

Mining for Path traversal patterns in a Landmark Window), to discover the path traversal

patterns over Web click-streams with a user-defined minimum support constraint. Moreover,

we proposed the first online algorithm, called DSM-TKP (Data Stream Mining for Top-K

Path traversal patterns), to mine the set of top-K path traversal patterns without a

user-specified minimum support threshold. Experiments of real click-streams show that both

algorithms successfully mine maximal reference sequences with linear scalability.

 All the proposed algorithms are verified by experiments of mining continuous streams of

various characteristics. In the experiments comprising comprehensive comparisons, the

proposed algorithms outperforms several related algorithms, and they all show excellent

linear scalability with respect to the size of the streaming data.

1.3 Organization of this Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we describe efficient

 5

one-pass algorithms for mining frequent itemsets and maximal frequent itemsets in a

landmark window of data streams. Efficient single-pass algorithms for mining frequent

itemsets over stream sliding windows are delineated in Chapter 3. Chapter 4 addresses the

problem of mining of changes of items over append-only and dynamic data streams. Efficient

algorithms for mining path traversal patterns with a user-specified minimum support

constraint over Web click-streams are introduced in Chapter 5. The problem of mining top-K

path traversal patterns is discussed in Chapter 6. Finally, the conclusions and future work are

given in Chapter 7.

 6

Chapter 2 Online Mining of Frequent Itemsets in Data Streams

In recent years, database and knowledge discovery communities have focused on a new data

model, where data arrive in the form of continuous streams. It is often referred to as data

streams or streaming data. Data streams possess some computational characteristics, such as

unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over

previously-arrived data elements (only one sequential pass over the data is permitted), and a

lack of system control over the order in which the data arrive [6]. Many applications generate

data streams in real time, such as sensor data generated from sensor networks, transaction

flows in retail chains, Web record and click-streams in Web applications, performance

measurement in network monitoring and traffic management, and call records in

telecommunications.

Online mining of data streams differs from traditional mining of static datasets in the

following aspects [6]. First, each data element in streaming data should be examined at most

once. Second, the memory usage for mining data streams should be bounded even though new

data elements are continuously generated from the stream. Third, each data element in the

stream should be processed as fast as possible. Fourth, the analytical results generated by the

online mining algorithms should be instantly available when requested by the users. Finally,

the frequency errors of outputs generated by the online algorithms should be as small as

possible. The online processing model of data streams is shown in Figure 2-1.

As described above, the continuous nature of streaming data makes it essential to use the

online algorithms which require only one scan over the data streams for knowledge discovery.

The unbounded characteristic makes it impossible to store all the data into the main memory

or even in secondary storage. This motivates the design of summary data structure with small

 7

footprints that can support both one-time and continuous queries of streaming data. In other

words, one-pass algorithms for mining data streams have to sacrifice the exactness of its

analytical results by allowing some tolerable counting errors. Hence, traditional multiple-pass

techniques studied for mining static datasets are not feasible to mine patterns over streaming

data.

Figure 2- 1. Typical processing model of data streams

2.1 Introduction

Frequent itemsets mining is one of the most important research issues in data mining. The

problem of frequent itemsets mining of static datasets (not streaming data) was first

introduced by Agrawal et al. [2] described as follows. Let Ψ = {i1, i2, …, in} be a set of

literals, called items. Let database DB be a set of transactions, where each transaction T

contains a set of items, such that T ⊆ Ψ. The size of database DB is the total number of

transactions in DB and is denoted by |DB|. A set of items is referred to as an itemset. An

itemset X with l items is denoted by X = (x1x2… xl), such that X ⊆ Ψ. The support of an

itemset X is the number of transactions in DB containing the itemset X as a subset, and

denoted by sup(X). An itemset X is frequent if sup(X) ≥ minsup⋅|DB|, where minsup is a

user-specified minimum support threshold in the range of [0, 1]. Consequently, given a

database DB and a user-defined minimum support threshold minsup, the problem of mining

Stream

Mining

Processor

Synopsis

in Memory

Buffer

(Approximate)

Results

Data Streams

 8

frequent itemsets in static datasets is to find the set of all itemsets whose support is no less

than minsup⋅|DB|. In this paper, we will focus on the problem of mining frequent itemsets

over the entire history of data streams.

Many previous studies contributed to the efficient mining of frequent itemsets in

streaming data. According to the stream processing model [70], the research of mining

frequent itemsets in data streams can be divided into three categories: landmark windows,

sliding windows, and damped windows, as described briefly as follows. In the landmark

windows model, knowledge discovery is performed based on the values between a specific

timestamp called landmark and the present time. In the sliding windows model, knowledge

discovery is performed over a fixed number of recently generated data elements as the target

of data mining. In the damped windows model, recent sliding windows are more important

than previous ones.

In [53], Manku and Motmani developed two single-pass algorithms, Sticky-Sampling

and Lossy Counting, to mine frequent items over a landmark window. Moreover, Manku and

Motwani proposed the first single-pass algorithm BTS (Buffer-Trie-SetGen) based on the

Lossy-Counting [53] to mine the set of frequent itemsets (FI) from streaming data. Chang and

Lee [11] proposed a BTS-based algorithm for mining frequent itemsets in sliding windows

model. Moreover, Chang and Lee [10] also developed another algorithm, called estDec, for

mining frequent itemsets in streaming data in which each transaction has a weight decreasing

with age. In other words, older transactions contribute less toward itemset frequencies, and it

is a kind of damped windows model. Teng et al. [63] proposed a regression-based algorithm,

called FTP-DS, to find frequent itemsets across multiple data streams in a sliding window. Lin

et al. [51] proposed an incremental mining algorithm to find the set of frequent itemsets in a

time-sensitive sliding window. Giannella et al. [31] proposed a frequent pattern tree

(abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine frequent itemsets at

 9

multiple time granularities by a novel tilted-time windows technique. Yu et al. [68] discussed

the issues of false negative or false positive in mining frequent itemsets from high speed

transactional data streams. Jin and Agrawal [39] proposed an algorithm, called StreamMining,

for in-core frequent itemset mining over data streams. Chi et al. [18] proposed an algorithm,

called MOMENT, that might be the first to find frequent closed itemsets (FCI) from data

streams. A summary data structure called CET is used in the MOMENT algorithm to maintain

the information of closed frequent itemsets.

Because the focus of the chapter is on frequent itemses mining over data streams with a

landmark window, we mainly address this issue by comparison with the BTS algorithm

proposed by Manku and Motwani [53]. In the following, we describe the BTS algorithm in

detail. In the BTS algorithm, two estimated parameters: minimum support threshold s, and

maximum support error threshold ε, are used, where 0 < ε ≤ s < 1. The incoming data stream

is conceptually divided into buckets of width w = 1/ε transactions each, and the current

length of the stream is denoted by N transactions.

The BTS algorithm is composed of three steps. In the first step, BTS repeatedly reads a

batch of buckets into main memory. In the second step, it decomposes each transaction within

the current bucket into a set of itemsets, and stores these itemsets into a summary data

structure D which contains a set of entries of the form (e, e.freq, e.∆), where e is an itemset,

e.freq is an approximate frequency of the itemset e, and e.∆ is the maximum possible error in

e.freq.

For each itemset e extracted from the incoming transaction T, BTS performs two

operations to maintain the summary data structure D. First, it counts the occurrences of e in

the current batch, and updates the value e.freq if the itemset e already exists in the structure D.

Second, BTS creates a new entry (e, e.freq, e.∆) in D, if the itemset e does not occur in D, but

its estimated frequency e.freq in the batch is greater than or equal to |batch|⋅ε, where the value

 10

of maximal possible error e.∆ is set to |batch|⋅ε, and |batch| denotes the total number of

transactions in the current batch. To bound the space requirement of D, BTS algorithm deletes

the updated entry e if e.freq + e.∆ ≤ |batch|⋅ε. Finally, BTS outputs those entries ei in D, where

ei.freq ≥ (s−ε)⋅N, when a user requests a list of itemsets with the minimum support threshold s

and the support error threshold ε.

The motivation of the proposed work is to develop a method that utilizes some

space-effective summary data structures to reduce the cost in mining frequent itemsets over

data streams. In this paper an efficient, single-pass algorithm, referred to as Data Stream

Mining for Frequent Itemsets (abbreviated as DSM-FI), is proposed to improve the efficiency

of frequent itemset mining in data streams. A new summary data structure called summary

frequent itemset forest (abbreviated as SFI-forest) is developed for online incremental

maintaining of the essential information about the set of all frequent itemsets of data streams

generated so far.

The proposed algorithm DSM-FI has three important features: a single pass of streaming

data for counting the support of significant itemsets; an extended prefix tree-based, compact

pattern representation of summary data structure; and an effective and efficient search and

determination mechanism of frequent itemsets. Moreover, the frequency error guarantees

provided by DSM-FI algorithm is the same as that of BTS algorithm. The error guarantees are

stated as follows. First, all itemsets whose true support exceeds s⋅N are output. Second, no

itemsets whose true support is less than (s − ε)⋅N is output. Finally, estimated supports of

itemsets are less than the true support by at most ε⋅N.

The comprehensive experiments show that our algorithm is efficient on both sparse and

dense data, and scalable to the continuous data streams. Furthermore, DSM-FI algorithm

outperforms BTS, a state-of-the-art single-pass algorithm, by one order of magnitude for

discovering the set of all frequent itemsets over the entire history of the data streams.

 11

 The remainder of the chapter is organized as follows. Section 2.2 defines the problem of

single-pass mining frequent itemsets in a landmark window over data streams. The proposed

DSM-FI algorithm is described in Section 2.3. The extended prefix tree-based summary data

structure SFI-forest is introduced to maintain the essential information about the set of all

frequent itemsets of the stream generated so far. Theoretical analysis and experiments are

presented in Section 2.4. We conclude the chapter in Section 2.5.

2.2 Problem Definition

Based on the estimation mechanism of the BTS algorithm, we propose a new, single-pass

algorithm to improve the efficiency of mining frequent itemsets over the entire history of data

streams when a user-specified minimum support threshold s ∈ (0, 1), and a maximum support

error threshold ε ∈ (0, s) are given.

 Let Ψ = {i1, i2, …, im} be a set of literals, called items. An itemset is a nonempty set of

items. A l-itemset, denoted by (x1x2… xl), is an itemset with l items. A transaction T consists

of a unique transaction identifier (tid) and a set of items, and denoted by <tid, (x1x2… xq)>,

where xi ∈ Ψ, ∀i =1, 2, …, q. A basic window W consists of k transactions. The basic

windows are labeled with window identifier wid, starting from 1.

Definition 2-1 A data stream, DS = [W1, W2, …, WN), is an infinite sequence of basic

windows, where N is the window identifier of the “latest” basic window. The current length

of DS, written as DS.CL, is k⋅N, i.e., |W1| + |W2| + … + |WN|. The windows arrive in some

order (implicitly by arrival time or explicitly by timestamp), and may be seen only once.

Mining frequent itemsets in landmark windows over data streams is to mine the set of all

frequent itemsets from the transactions between a specified window identifier called landmark

and the current window identifier N. Note that the value of landmark is set to 1.

 12

 To ensure the completeness of frequent itemsets for data streams, it is necessary to store

not only the information related to frequent itemsets, but also the information related to

infrequent ones. If the information about the currently infrequent itemsets were not stored,

such information would be lost. If these itemsets become frequent later on, it would be

impossible to figure out their correct support and their relationship with other itemsets. The

data stream mining algorithms have to sacrifice the exactness of the analytical results by

allowing some tolerable support errors since it is unrealistic to store all the streaming data into

the limited main memory. Hence, we define two types of support of an itemset, and divide the

itemsets embedded in the stream into three categories: frequent itemsets, significant itemsets,

and infrequent itemsets.

Definition 2-2 The true support of an itemset X, denoted by X.tsup, is the number of

transactions in the data stream containing the itemset X as a subset. The estimated support of

an itemset X, denoted by X.esup, is the estimated true support of X stored in the summary data

structure, where 0 < X.esup ≤ X.tsup.

Definition 2-3 The current length (CL) of data stream with respect to an itemset X stored in

the summary data structure, denoted by X.CL, is (N−j+1)⋅k, i.e., |Wj| + |Wj+1| + … + |WN|,

where Wj is the first basic window with the window identifier j stored in the current summary

data structure containing the itemset X, and N is the window identifier of current window.

Definition 2-4 An itemset X is frequent if X.tsup ≥ s⋅X.CL. An itemset X is significant if

s⋅X.CL > X.tsup ≥ ε⋅X.CL. An itemset X is infrequent if ε⋅X.CL > X.tsup.

Definition 2-5 A frequent itemset is maximal if it is not a subset of any other frequent

itemsets generated so far.

Therefore, given a data stream DS = [B1, B2, …, BN), a user-defined minimum support

 13

threshold s in the range of [0, 1], and a user-specified maximum support error threshold ε in

the range of [0, s], the problem of mining frequent itemsets in landmark windows over data

streams is to find the set of all frequent itemsets in single scan of the data stream.

2.3 The Proposed Algorithm: DSM-FI

The proposed DSM-FI (Data Stream Mining for Frequent Itemsets) algorithm consists of four

steps.

(a) Read a basic window of transactions from the buffer in main memory, and sort

the items of transaction in the lexicographical order (Step 1).

(b) Construct and maintain the in-memory summary data structure (Step 2).

(c) Prune the infrequent information from the summary data structure (Step 3).

(d) Find the frequent itemsets from the summary data structure (Step 4).

 Steps 1 and 2 are performed in sequence for a new incoming basic window. Step 3 is

performed after every basic window has been processed. Finally, step 4 is usually performed

periodically or when it is needed. Since the reading of a basic window of transactions from

the buffer is straightforward, we shall henceforth focus on Steps 2, 3, and 4, and devise

algorithms for effective construction and maintenance of summary data structure, and

efficient determination of frequent itemsets.

2.3.1 Construction and Maintenance of Summary Data structure

In this section, we describe the algorithm which constructs and maintains the in-memory

summary data structure called SFI-forest (Summary Frequent Itemset forest).

Definition 2-6 A summary frequent itemset forest (SFI-forest) is a summary data structure

and is defined as follows.

 14

1. SFI-forest consists of a frequent item list (FI-list), and a set of summary frequent

itemset trees (SFI-trees) of item-prefixes, denoted by item-prefix.SFI-trees.

2. Each node in the item-prefix.SFI-tree consists of four fields: item-id, item-id.esup,

item-id.window-id, and item-id.node-link. The first field item-id is the item identifier

of the inserting item. The second field item-id.esup registers the number of

transactions represented by a portion of the path reaching the node with the item-id.

The value of the third field item-id.window-id assigned to a new node is the window

identifier of the current window. The final field item-id.node-link links up a node with

the next node with the same item-id in the same SFI-tree or null if there is none.

3. Each entry in the FI-list consists of four fields: item-id, item-id.esup,

item-id.window-id, and item-id.head-link. The item-id registers which item identifier

the entry represents, item-id.esup records the number of transactions containing the

item carrying the item-id, the value of item-id.window-id assigned to a new entry is the

window identifier of current window, and item-id.head-link points to the root node of

the item-id.SFI-tree. Note that each entry with item-id in the FI-list is an item-prefix

and it is also the root node of the item-id.SFI-tree.

4. Each item-prefix.SFI-tree has a specific opposite frequent item list (OFI-list) with

respect to the item-prefix, denoted by item-prefix.OFI-list. The item-prefix.OFI-list is

composed of four fields: item-id, item-id.esup, item-id.window-id, and

item-id.head-link. The item-prefix.OFI-list operates the same as the FI-list except that

the field head-link links to the first node with the same item-id in the

item-prefix.SFI-tree. Note that |item-prefix.OFI-list| = |FI-list| in the worst case,

where |FI-list| denotes the total number of entries in the FI-list.

Figure 2-2 outlines the SFI-forest construction of the proposed DSM-FI algorithm. First

of all, DSM-FI algorithm reads a transaction T from the current window BN. Then, DSM-FI

 15

projects this transaction T into many sub-transactions, and inserts these sub-transactions into

the SFI-forest. The details of this projection are described as follows. A transaction T with m

items, such as (x1x2… xm), in the current window should be projected by inserting m

item-prefix sub-transactions into the SFI-forest. In other words, the transaction T = (x1x2… xm)

is converted into m sub-transactions; that is, (x1x2… xm), (x2x3… xm), …, (xm-1xm), and (xm).

These m sub-transactions are called item-prefix transactions, since the first item of each

sub-transaction is an item-prefix of the original transaction T. This step, called transaction

projection, is denoted by TP(T) = {x1|T, x2|T, …, xi|T, …, xm|T}, where xi|T = (xixi+1… xm), ∀i

= 1, 2, …, m. The projecting cost of a transaction of length m for constructing the summary

data structure SFI-forest is (m
2
+m)/2, i.e., m + (m−1) + … + 2 + 1. Recall that the

decomposing cost of a transaction with m items of BTS algorithm for constructing the

summary data structure is (2
m
−2). In general, the constructing cost of summary data structure

of our algorithm is extremely less than that of BTS algorithm.

After performing the transaction projection of the incoming transaction T, DSM-FI

algorithm inserts T into the FI-list, and then removes T from the current window in the main

memory. Then, the items of these item-prefix transactions are inserted into the

item-prefixes.SFI-trees as branches, and the estimated support of the corresponding

item-prefixes.OFI-lists are updated. If an itemset shares a prefix of an itemset already in the

SFI-tree, the new itemset will share a prefix of the branch representing that itemset. In

addition, an estimated support counter is associated with each node in the tree. The counter is

updated when an item-prefix transaction causes the insertion of a new branch. Figure 2-3

shows the subroutines of SFI-forest construction and maintenance.

Example 2-1. Let the Wj be a window with the landmark identifier j, and it contains six

transactions: < acdf >, < abe >, < df >, < cef >, < acdef > and < cef >, where a, b, c, d, e and f

are items in the data stream. The SFI-forest with respect to the first two transactions, < acdf >

 16

and < abe >, constructed by DSM-FI algorithm is described as follows. Note that each node of

the form (id: id.esup: id.wid) is composed of three fields: item-id, estimated support, and

window-id. For example, (a: 2: j) indicates that, from basic window Wj to current basic

window WN (1 ≤ j ≤ N), item a appeared twice.

Algorithm SFI-forest construction

Input: A data stream, DS = [B1, B2, …, BN) with landmark 1, a user-specified minimum

support threshold s∈(0, 1), and a maximum support error threshold ε ∈ (0, s).

Output: A SFI-forest generated so far.

1: FI-list = {}; /*initialize the FI-list to empty.*/

2: foreach window Bj do /* j = 1, 2, …, N */

3: foreach transaction T = (x1x2… xm) ∈ Bj (j = 1, 2, …, N) do

/* m ≥ 1 and j is the current window identifier */

4: foreach item xi ∈ T do /* the maintenance of FI-list */

5: if xi ∉ FI-list then

6: create a new entry of form (xi, 1, j, head-link) into the FI-list;

/* the entry form is (item-id, item-id.esup, window-id, head-link)*/

7: else /* the entry already exists in the FI-list*/

8: xi.esup = xi.esup + 1;

/* increment the estimated support of item-id xi by one*/

9: end if

10: end for

11: call TP(T, j);

/* project the transaction with each item-prefix xi for constructing the xi.SFI-tree */

12: end for

13: call SFI-forest-pruning(SFI-forest, ε, N); /* Step 3 of DSM-FI algorithm */

14: end for

Figure 2- 2. Algorithm SFI-forest Construction

Subroutine TP /* Step 2 of DSM-FI algorithm: construct and maintain the SFI-forest */

 17

Input: A transaction T = (x1x2… xm) and the current window-id j;

Output: xi.SFI-tree, ∀i = 1, 2, …, m;

1: foreach item xi, ∀i = 1, 2, …, m, do

2: SFI-tree-maintenance([xi|X], xi.SFI-tree, j);

/* X = x1, x2, …, xm is the original incoming transaction T */

/* [xi|X] is an item-prefix transaction with the item-prefix xi*/

3: end for

Subroutine SFI-tree-maintenance /* Step 2 of DSM-FI algorithm */

Input: An item-prefix transaction (xixi+1… xm), the current window-id j, and xi.SFI-tree, where

i=1, 2, …, m;

Output: A modified xi.SFI-tree, where i=1, 2, ..., m;

1: foreach item xl do /* l = i+1, i+2, …, m */

2: if xl ∉ xi.OFI-list then /* xi.OFI-list maintenance */

3: create a new entry of form (xl, 1, j, head-link) into the xi.OFI-list;

/* the entry form is (item-id, item-id.esup, item-id.window-id,

item-id.head-link)*/

4: else /* the entry already exists in the xi.OFI-list */

5: xl.esup = xl.esup + 1;

/* increment the estimated support of item-id xl by one*/

6: end if

7: endfor

8: foreach item xi, ∀i = 1, 2, …, m, do /* xi.SFI-tree maintenance */

9: if SFI-tree has a child node with item-id y such that y.item-id = xi.item-id then

10: y.esup = y.esup +1; /*increment y’s estimated support by one*/

11: else create a new node of the form (xi, 1, j, node-link);

/* initialize the estimated support of the new node to one, and link its parent link to

SFI-tree, and its node-link linked to the nodes with same item-id via the node-link structure.

*/

12: end if

13: end for

 18

Subroutine SFI-forest-pruning /* Step 3 of DSM-FI algorithm: prune the infrequent

information from the SFI-forest */

Input: A SFI-forest, a user-specified maximum support error threshold ε, and the current

window identifier N;

Output: A SFI-forest which contains the set of all significant and frequent itemsets.

1: foreach entry xi (i=1, 2, …, d) ∈ FI-list, where d =|FI-list| do

2: if xi .esup < ε⋅⋅⋅⋅xi.CL then /* if xi is an infrequent item */

3: delete xi.SFI-tree;

4: delete the entry xi from the FI-list;

5: delete xi from other xj.OFI-list if it exists in xj.OFI-list (j = 1, 2, …, d; j ≠ i);

6: delete those nodes (item-id = xi) in other SFI-trees via node-link structures and

 merge the fragmented sub-trees;

 /* a simple way is to reinsert or to join the remainder sub-trees into the SFI-tree */;

7: end if

8: end for

Figure 2- 3. Subroutines of SFI-forest construction algorithm

a:1:j

c:1:j

f:1:j

d:1:j

c:1:j

f:1:j

d:1:j f:1:j

d:1:j
f:1:j

a:1:j c:1:j d:1:j
f:1:j

a.SFI-tree

c. SFI-tree

d. SFI-tree

f.SFI-tree

a.OFI-list
f.OFI-list

d.OFI-listc.OFI-list

FI-list

j1f

j1d

j1c

j1f

j1d j1f

Figure 2- 4. SFI-forest construction after processing the first transaction < acdf >

 19

a:2:j

c:1:j

f:1:j

d:1:j

c:1:j

f:1:j

d:1:j f:1:j

d:1:j f:1:j e:1:j

a:2:j c:1:j d:1:j e:1:jf:1:j

a.SFI-tree
c.SFI-tree

d.SFI-tree

e.SFI-tree
f.SFI-tree

a.OFI-list

f.OFI-liste.OFI-list d.OFI-listc.OFI-list

FI-list

j1b

j1e

j1f

j1d

j1c

j1f

j1d j1f

b:1:j

e:1:j

b:1:j

b.SFI-tree

j1e

b.OFI-list

b:1:j

e:1:j

Figure 2- 5. SFI-forest construction after processing the second transaction < abe >

(a) First transaction < acdf >: First of all, DSM-FI algorithm reads the first transaction and

calls the Transaction-Projection(< acdf >). Then, DSM-FI inserts four item-prefix

transactions: <acdf>, <cdf>, <df>, and <f> into the FI-list, [a.SFI-tree, a.OFI-list],

[c.SFI-tree, c.OFI-list], [d.SFI-tree, d.OFI-list], and [f.SFI-tree, f.OFI-list], respectively.

The result is shown in Figure 2-4. In the following steps, the head-links of each

item-prefix.OFI-list are omitted for concise presentation.

(b) Second transaction <abe>: DSM-FI algorithm reads the second transaction and calls the

Transaction-Projection(<abe>). Next, DSM-FI inserts three item-prefix transactions:

<abe>, <be>, and <e> into the FI-list, [a.SFI-tree, a.OFI-list], [b.SFI-tree, b.OFI-list], and

[e.SFI-tree, e.OFI-list], respectively. The result is shown in Figure 2-5. After processing

all the transactions of window Wj, the SFI-forest generated so far is shown in Figure 2-6.

2.3.2 Pruning Infrequent Information from SFI-forest

According to the Apriori principle, only the frequent 1-itemsets are used to construct

candidate k-itemsets, where k ≥ 2. Thus, the set of candidate itemsets containing the

 20

infrequent items stored in the summary data structure is pruned. The pruning is usually

performed periodically or when it is needed.

Let the maximum support error threshold be ε in the range of [0, s], where s is a

user-defined minimum support threshold in the range of [0, 1]. The space pruning method of

DSM-FI is that the item x and its supersets are deleted from SFI-forest if x.esup < ε⋅x.CL. For

each entry (x, x.esup, x.window-id, x.head-link) in the FI-list, if its x.esup is less than ε⋅x.CL, it

can be regarded as an infrequent item. In this case, three operations are performed in sequence.

First, DSM-FI deletes the x.OFI-list, x.SFI-tree, and the infrequent entry x from the FI-list.

Second, DSM-FI removes the infrequent item x of other OFI-lists by traversing the FI-list.

Third, DSM-FI deletes the infrequent item x from other SFI-trees, and reconstructs these

SFI-trees. After pruning all infrequent items from SFI-forest, SFI-forest contains the set of all

frequent itemsets and significant itemsets of the data stream generated so far.

a:3:j

c:2:j

e:1:j

d:2:j

f:1:j

c:4:j

e:1:j

d:2:j

f:1:j

e:1:j

d:3:j

f:1:j

f:5:j e:4:j

f:3:j

a:3:j c:4:j d:3:j e:4:jf:5:j

a.SFI-tree
c.SFI-tree

d.SFI-tree

e.SFI-tree

f.SFI-tree

f.OFI-list e.OFI-list

d.OFI-listc.OFI-list

FI-list

j1b

j2e

j2f

j2d

j2c

j3e

j4f

j2d

j1e

j3f

j3f

b:1:j

e:1:j

b:1:j

b.SFI-tree

j1e

b.OFI-list

b:1:j

e:1:j

e:2:j

f:2:j

f:1:j

f:1:j

f:2:j

a.OFI-list

Figure 2- 6. SFI-forest construction after processing the window Wj

 21

a:3:j

c:2:j

e:1:j

d:2:j

f:1:j

c:4:j

e:1:j

d:2:j

f:1:j

e:1:j

d:3:j

f:1:j

f:5:j e:4:j

f:3:j

a:3:j c:4:j d:3:j e:4:jf:5:j

a.SFI-tree
c.SFI-tree

d.SFI-tree

e.SFI-tree

f.SFI-tree

a.OFI-list f.OFI-list e.OFI-listd.OFI-listc.OFI-list

FI-list

j2f

j2e

j2d

j2c

j4f

j3e

j2d

j3f

j1e j3f

e:1:j

e:2:j

f:2:j

f:1:j

f:1:j

f:2:j

Figure 2- 7. SFI-forest after pruning all infrequent items

Example 2-2: Let the maximum support error threshold ε be 0.2. Hence, an itemset X is

infrequent in Figure 2-6 if X.esup < ε⋅X.CL. Note that ε⋅X.CL = 0.2⋅6 = 1.2. After computing

the current window Wj, the next step of DSM-FI is to prune all the infrequent items from the

current SFI-forest. At this time, DSM-FI deletes the b.SFI-tree, b.OFI-list, and item b itself

from the FI-list, since item b is an infrequent item; that is, b.esup = 1 < 1.2. Then, DSM-FI

updates the a.OFI-list and reconstructs a.SFI-tree, because a.OFI-list and a.SFI-tree contains

the infrequent item b. The result is shown in Figure 2-7.

The next step of DSM-FI is to determine the set of all frequent itemsets from SFI-forest

constructed so far. The step is performed only when the current results of the data stream is

requested. Note that the number of candidate 2-itemsets is a performance bottleneck in the

Apriori-based frequent itemset mining algorithms [3, 35]. DSM-FI algorithm can avoid this

performance problem. This is because DSM-FI can generate all frequent 2-itemsets

immediately by combining the frequent items in the FI-list with the frequent items in the

corresponding OFI-list.

 22

2.3.3 Determining Frequent Itemsets from Current SFI-forest

Once SFI-forest containing all the frequent items of the data stream generated so far is

constructed, we can derive all the frequent itemsets by traversing the SFI-forest according to

the Apriori principle. Therefore, we propose an efficient mechanism called top-down frequent

itemset selection (todoFIS), as shown in Figure 2-8, for mining frequent itemsets. It is

especially useful in mining long frequent itemsets. The method is described as follows.

Assume that there are k frequent items, namely e1, e2, …, ek, in the current FI-list, and

each item ei, ∀i = 1, 2, …, k, has an associated ei.OFI-list, where the size of ei.OFI-list is

denoted by |ei.OFI-list|. Note that the items, namely o1, o2, …, oj, within the ei.OFI-list are

denoted by ei.o1, ei.o2, …, ei.oj, respectively, where the value j equals to |ei.OFI-list|. For each

entry ei, ∀i = 1, 2, …, k, in the current FI-list, DSM-FI algorithm first generates a maximal

candidate itemset with (j+1) items, i.e., (eiei.o1ei.o2 …ei.oj) by combining the item-prefix ei

with all frequent items in ei.OFI-list. Then, DSM-FI uses the following scheme to count its

estimated support.

First, we start with a specific frequent item ei.ol (1 ≤ l ≤ j), whose estimated support is

smallest, and traverse the paths containing ei.ol via node-links of ei.SFI-tree to count the

estimated support of the candidate (eiei.o1ei.o2 …ei.oj). If the estimated support of the

candidate is greater than or equal to (s−ε)⋅ ei.CL, then it is a frequent itemset. All subsets of

this frequent itemset are also frequent itemsets according to the Apriori principle. Hence, the

complete set of the frequent itemsets stored in the ei.SFI-tree can be generated by enumeration

of all the combinations of the subsets of frequent (j+1)-itemset, (eiei.o1ei.o2 …ei.oj). On the

other hand, if the estimated support of the candidate (j+1)-itemset is less than the threshold

(s−ε)⋅ ei.CL, then it is not a frequent itemset. Now, we need to use the same mechanism to test

all the subsets of the (j+1)-itemset until the candidate 3-itemsets. This is because all frequent

2-itemsets can be generated by combining the item ei and the frequent items of the ei.OFI-list.

 23

Note that a (j+1)-itemset can be decomposed into C(j+1, j) j-itemsets. We decompose one

candidate j-itemset from the (j+1)-itemset at a time, and use the same scheme described above

to count the estimated support of this candidate j-itemset. Finally, all the maximal frequent

itemsets are maintained in a temporal MFI-list, called MFItemp-list, for efficient generation of

the set of all frequent itemsets. If such a MFItemp-list is obtained, all the frequent itemsets can

be generated efficiently by enumerating the set of all maximal frequent itemsets in the current

MFItemp-list without any candidate generation and support counting. Note that if the user

request is just to find the set of all maximal frequent itemsets so far, DSM-FI algorithm can

output all maximal frequent itemsets efficiently by scanning the MFItemp-list.

Example 2-3. Let the minimum support threshold s be 0.5. Therefore, an itemset X is frequent

in Figure 2-7 if X.esup ≥ s⋅X.CL. Note that s⋅X.CL = 0.5⋅6 = 3 in this case. The online mining

steps of DSM-FI algorithm are described as follows.

(1) First of all, DSM-FI starts the frequent itemset mining scheme from the first frequent item

a (from left to right). At this moment, only item a is a frequent itemset, since the estimated

support of items c, d, e, and f in the a.OFI-list are less than s⋅a.CL, where s⋅a.CL = 3. Now,

DSM-FI stores the maximal frequent 1-itemset (a) into the MFItemp-list.

(2) Next, DSM-FI starts on the second entry c for frequent itemset mining. DSM-FI generates

a candidate maximal 3-itemset (cef), and traverses the c.SFI-tree to count its estimated

support. As a result, the candidate (cef) is a maximal frequent itemset, since its estimated

support is 3 and it is not a subset of any other frequent itemsets in the MFItemp-list. Now,

DSM-FI stores the maximal frequent itemset (cef) into the MFItemp-list.

(3) Next, DSM-FI starts on the third entry d and generates a candidate maximal 2-itemset (df).

DSM-FI stores the itemset (df) into the MFItemp-list without traversing d.SFI-tree because

(df) is a frequent 2-itemset and is not a subset of any other maximal frequent itemsets

stored in the MFItemp-list.

 24

(4) On the fourth entry f, DSM-FI algorithm generates one frequent 1-itemset (f) directly,

since the f.OFI-list is empty. DSM-FI does not store it into the MFItemp-list, because (f) is a

subset of a generated maximal frequent itemset (cef).

Finally, on the fifth entry e, DSM-FI generates a frequent 2-itemset (ef) directly. However, the

frequent 2-itemset (ef) is a subset of a maximal frequent itemset (cef) stored in the MFItemp-list.

DSM-FI algorithm does not store it into the MFItemp-list.

Algorithm todoFIS

Input: A current SFI-forest, the current window identifier N, a minimum support threshold s,

and a maximum support error threshold ε.

Output: A set of all frequent itemsets.

1: MFItemp-list = ∅;

/* MFItemp-list is a temporary list used to store the set of maximal frequent itemsets */

2: foreach entry e in the current FI-list do

3: construct a maximal candidate itemset E with size |E| /* |E| = 1+|e.OFI-list| */

4: count E.esup by traversing the e.SFI-tree;

5: if E.esup ≥ (s−ε) ⋅⋅⋅⋅E.CL then

6: if E ⊄ MFItemp-list and E is not a subset of any other patterns in the

MFItemp-list

then

7: add E into the MFItemp-list;

8: remove E’s subsets from the MFItemp-list;

9: end if

10: else /* if E is not a frequent itemset */

11: enumerate E into itemsets with size |E|−1;

12: end if

13: until todoFIS finds the set of all frequent itemsets with respect to entry e;

14: end for

Figure 2- 8. Algorithm todoFIS

 25

After processing all the entries in the FI-list, the MFItemp-list generated by DSM-FI

algorithm contains the set of current maximal frequent iemsets: {(a), (cef), (df)}. Therefore,

the set of all frequent itemsets can be generated by enumerating the set: {(a), (cef), (df)}.

Consequently, the set of all frequent itemsets in Figure 2-7 are {(a), (cef), (ce), (cf), (ef), (c),

(e), (f), (df), (d)}.

2.4 Theoretical Analysis

In this section, we discuss the upper bound of estimated support error of frequent itemsets

generated by DSM-FI algorithm, and the space upper bound of prefix-tree-based summary

data structure.

2.4.1 Maximum Estimated Support Error Analysis

In this section, we discuss the maximum estimated support error of all frequent itemsets

generated by DSM-FI algorithm. Let X.wid be the window-id of itemset X stored in the

current SFI-forest. Assume that the window contains k transactions. Let the maximum support

error threshold be ε. Let the current window-id of the incoming stream be wid(N). Now, we

have the following theorem of maximum estimated support error guarantee of frequent

itemsets generated by the proposed algorithm.

Theorem 2-1 X.tsup − X.esup ≤ ε⋅(X.wid −1)⋅k.

Proof: We prove by induction. Base case (X.wid = 1): X.tsup = X.esup. Thus, X.tsup − X.esup

≤ ε⋅(X.wid −1)⋅k.

Induction step: Consider an itemset of the form (X, X.esup, X.wid) that gets deleted for

some wid(N) > 1. The itemset is inserted in the SFI-forest when wid(N+1) is being processed.

The itemset X whose window-id is wid(N+1) in the FI-list could possibly have been deleted as

 26

late as the time when X.esup ≤ ε⋅(wid(N+1)−X.wid+1)⋅k. Therefore, X.tsup of X when that

deletion occurred is no more than ε⋅(wid(N+1)−X.wid+1)⋅k. Furthermore, X.esup is the

estimated true support of the itemset X since it is inserted. It follows that X.tsup, which is the

true support of X in the first window containing X though the current window, is at most

X.esup + ε⋅(wid(N) −1)⋅k. Thus, we have X.tsup − X.esup ≤ ε⋅(X.wid−1)⋅k. As a result, DSM-FI

generates no false negative.



 Because our algorithm is a false-positive algorithm, the answers produced by DSM-FI

will have the following guarantees the same as those of BTS algorithm [53]:

(a) All itemsets whose true frequency exceeds s⋅N are output. There are no false

negatives.

(b) No itemsets whose true frequency is less than (s−ε)⋅N is output.

(c) Estimated frequencies are less than the true frequencies by at most ε⋅N.

If it is desired that the error dose not increase linearly with the value of window id, we can

modify the line 5 of algorithm todoFIS from “if E.esup ≥ (s−ε)⋅N then” to “if E.esup ≥ s⋅N

then”. After that DSM-FI algorithm becomes a false-negative algorithm.

 Note that a false-positive approach returns a set of itemsets that includes all frequent

itemsets but also some infrequent itemsets. A false-negative algorithm returns a set of itemsets

that does not include any infrequent itemsets but misses some frequent itemsets.

2.4.2 Space Requirement Analysis

In this section, we discuss the space upper bound of any single-pass algorithm for

constructing a summary data structure based on a prefix tree structure.

Theorem 2-2. A prefix tree-based summary data structure has at most 2
m
 nodes for storing the

set of all frequent itemsets of data streams, when m frequent items are given.

 27

Proof: Let m be the number of frequent items, i.e., 1-itemsets, in the data stream generated so

far. Hence, the number of potential frequent itemsets is C(m, 1) regarding one item, C(m, 2)

regarding two items, …, C(m, i) regarding i items, …, and C(m, m) regarding m items

according to the Apriori heuristic. In a prefix tree-based summary data structure, an itemset is

represented by a path and its appearance support is maintained in the last node of the path.

Thus, there are C(m, 1) nodes in the first level, C(m, 2) nodes in the second level, …, C(m, i)

nodes in the i-th level, …, and C(m, m) nodes in the m-th level. There are totally C(m, 1) +

C(m, 2) + … + C(m, i) + … + C(m, m) nodes in the prefix tree-based summary data

structure. Consequently, the space upper bound of a prefix-tree based summary data structure

is O(2
m
).



 The construction cost of summary data structure of DSM-FI algorithm is extremely less

than that of BTS algorithm although theoretically, their worst case space complexities are

same, i.e., O(2
m
), when m frequent items are given.

2.5 Performance Evaluation

All the experiments are performed on a 1GHz IBM X24 with 384MB, and the program is

written in Microsoft Visual C++ 6.0. To evaluate the performance of algorithm DSM-FI, we

conduct the empirical studies based on the synthetic datasets. In Section 2.6.1, we report the

scalability study of algorithm DSM-FI. In Section 2.6.2, we compare the memory and

execution time requested by DSM-FI with BTS algorithm. The parameters of synthetic data

generated by IBM synthetic data generator [3] are described as follows.

IBM Synthetic Dataset: T10.I5.D1M and T30.I20.D1M. The first synthetic dataset T10.I5

has average transaction size T of 10 items and the average size of maximal frequent itemset I

is 5-items. It is a sparse dataset. In the second dataset T30.I20, the average transaction size T

 28

and average size of maximal frequent itemset I are set to 30 and 20, respectively. It is a dense

dataset. Both synthetic datasets have 1,000,000 transactions. Items were drawn from a

universe of 10K distinct items. In the experiments, the synthetic data stream is broken into

basic windows of size 50K (i.e., 50,000 transactions) for simulating the continuous

characteristic of streaming data. Hence, there are total 20 windows in these experiments.

2.5.1 Scalability Study of DSM-FI Algorithm

In this experiment, we examine the two primary factors, execution time and memory usage, to

discover frequent itemsets in a data stream environment, since both should be bounded online

as time advances. Therefore, in Figure 2-9(a), the execution time grows smoothly as the

dataset size increases from 2,000K to 10,000K. The default value of minimum support

threshold s is 0.01%. The memory usage in Figure 2-9(b) for both synthetic datasets is stable

as time progresses, indicating the scalability and feasibility of algorithm DSM-FI. Notice that,

the synthetic data stream used in Figure 2-9(b) is divided into 20 basic windows each of 50K.

0

300

600

900

1200

1500

1800

2000K 4000K 6000K 8000K 10000K

Number of Incoming Transactions

E
x

ec
u

ti
o

n
 T

im
e

(S
ec

.)

T10.I5

T30.I20

(a) Linear scalability of DSM-FI algorithm (s = 0.01%)

 29

0102030405060

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Incoming Basic Windows
Memory Usage
 (MB) T30I20T10I5

(b) Space requirement of DSM-FI algorithm (s = 0.01%)

Figure 2- 9. Resource requirements of DSM-FI algorithm for IBM synthetic datasets: (a)

execution time, (b) memory usage

1

10

100

1000

10000

100000

2000K 4000K 6000K 8000K 10000K

Incoming Transactions

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

.)

DSM-FIBTS

(a) Execution time compared with DSM-FI and BTS (s = 0.01%)

 30

01020304050607080

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Incoming Basic Windows
Memory Usage (
MB) DSM-FIBTS

(b) Space requirement compared with DSM-FI and BTS (s = 0.01%)

Figure 2- 10. Comparison of DSM-FI and BTS: (a) Execution time, (b) Memory Usage

2.5.2 Comparison with BTS algorithm

In this experiment, we examine the execution time and memory usage between DSM-FI and

BTS by dataset T30.I20.D1M. In Figure 2-10 (a), we can see that the execution time incurred

by DSM-FI is quite steady and is less than that of BTS. The experiment shows that DSM-FI

performs more efficiently than BTS algorithm. In Figure 2-10 (b), the memory usage of

DSM-FI is more stable and extremely less than that of BTS. It also shows that DSM-FI

algorithm is more suitable for mining frequent itemsets in large-scale data streams.

2.6 Conclusions

In this chapter, we proposed a new, single-pass algorithm, called DSM-FI (Data Stream

Mining for Frequent Itemsets), which mines the set of all frequent itemsets in the landmark

 31

model of data streams. In the DSM-FI algorithm, a new in-memory summary data structure,

called SFI-forest (Summary Frequent Itemset forest), is constructed for storing the frequent

and significant itemsets of the streaming data generated so far. An efficient frequent itemset

search mechanism, called todoFIS (top-down Frequent Itemset Selection), is developed to

find the set of all frequent itemsets from the current SFI-forest. Experiments tested on

synthetic data streams show that DSM-FI is efficient on both sparse and dense datasets, and

demonstrates linear scalability to very long data streams. Moreover, DSM-FI outperforms the

well-known, single-pass algorithm - BTS - for mining frequent itemsets over the entire history

of the streaming data.

 32

Chapter 3 Online Mining of Frequent Itemsets over Stream

Sliding Windows

Many previous studies contributed to the efficient mining of frequent items [12, 20, 22, 39, 40,

54] and frequent itemsets (FI) in streaming data [10, 11, 18, 21, 31, 51, 53, 63, 64, 68].

According to the stream processing model [70], the research of mining frequent itemsets in

data streams can be divided into three categories: landmark windows, sliding windows, and

damped windows, as described briefly as follows. In the landmark window model, knowledge

discovery is performed based on the values between a specific timestamp called landmark and

the present. In the sliding window model, knowledge discovery is performed over a fixed

number of recently generated data elements which is the target of data mining. Two types of

sliding widow, i.e., transaction- sensitive sliding window (TransSW) and time-sensitive

sliding window (TimeSW), are used in mining data streams. The basic processing unit of

window sliding of first type is an expired transaction while the basic unit of window sliding of

second type is a time unit, such as a minute or an hour. The sliding windows are shown in

Figure 3-1. In the damped window model, recent sliding windows are more important than

previous ones.

Figure 3- 1. Transaction-sensitive sliding window and time-sensitive sliding window [51]

TransSW: Mining frequent itemsets from only the latest w transactions

TimeSW: Mining frequent itemsets from only the latest w time units

 33

3.1 Introduction

In [53], Manku and Motwani developed two single-pass algorithms, Sticky-Sampling and

Lossy Counting, to mine frequent items over offline data streams with a landmark window.

Moreover, Manku and Motwani proposed the BTS (Buffer- Trie-SetGen) algorithm based on

Lossy Counting for mining the set of frequent itemsets from offline data streams. Jin and

Agrawal [39] proposed an algorithm, called StreamMining, for in-core frequent itemset

mining over online data streams. Yu et al. [68] discussed the issues of false negative or false

positive in mining frequent itemsets from high speed offline transactional data streams.

Chang and Lee [11] proposed a BTS-based algorithm, called SWFI-stream, for mining

frequent itemsets in online data streams with a transaction-sensitive sliding windows model.

Teng et al. [63] proposed a regression-based algorithm, called FTP-DS, to find temporal

patterns (frequent inter-transaction itemsets) across multiple online data streams in a

time-sensitive sliding window. Teng et al. [64] proposed a resource-aware algorithm called

RAM-DS, to mine temporal patterns in multiple online data streams with a time-sensitive

sliding window. Lin et al. [14] proposed an incremental mining algorithm to find the set of

frequent itemsets in offline data streams with a time-sensitive sliding window. Chi et al. [18]

proposed a transaction-sensitive sliding window based algorithm, called MOMENT, which

might be the first to find frequent closed itemsets (FCI) from online data streams with a

transaction- sensitive sliding window. A summary data structure, called CET, is used in the

MOMENT algorithm to maintain the information of closed frequent itemsets.

Chang and Lee [10] developed a damped window based algorithm, called estDec, for

mining frequent itemsets in online streaming data in which each transaction has a weight

decreasing with age. In other words, older transactions contribute less toward itemset

frequencies, and it is a kind of damped windows model. Giannella et al. [31] proposed a

frequent pattern tree (abbreviated as FP-tree) [35] based algorithm, called FP-stream, to mine

 34

frequent itemsets at multiple time granularities by a novel tilted-time windows technique.

FP-stream focuses on offline data streams.

The first target of this chapter is on frequent itemsets mining over online data streams

with a transaction-sensitive sliding window. An efficient algorithm, called MFI-TransSW

(Mining Frequent Itemsets over Transaction-sensitive Sliding Windows), is proposed to mine

frequent itemsets over online data streams with a transaction-sensitive sliding window. The

experiments show that the MFI-TransSW algorithm not only attain highly accurate mining

results, but also run significant faster and consume less memory than that of SWFI-stream

algorithm [11] for mining frequent itemsets over recent data streams. The second purpose of

the chapter is to mine frequent itemsets over online data streams with a time-sensitive sliding

window. A MFI-TransSW based algorithm, called MFI-TimeSW (Mining Frequent Itemsets

over Time-sensitive Sliding Windows), is developed for mining frequent itemsets over online

data streams with a time-sensitive sliding window.

 The remainder of this chapter is organized as follows. The problem of frequent itemsets

mining in a transaction-sensitive sliding window is defined in Section 3.2. The algorithm

MFI-TransSW is proposed in Section 3.3. Experiments of MFI-TransSW algorithm are

discussed in Section 3.4. The issue of mining in a time-sensitive sliding window is defined

and algorithm MFI-TimeSW is proposed in Section 3.5 and Section 3.6, respectively. Finally,

we conclude this chapter in Section 3.7.

3.2 Problem Definition: Mining Frequent Itemsets in a TransSW

Let Ψ = {i1, i2, …, im} be a set of items. A transaction T = (tid, x1x2…xn), xi ∈ Ψ, for 1 ≤ i ≤ n,

is a set of items, while n is called the size of the transaction, and tid is the unique identifier of

the transaction. An itemset is a non-empty set of items. An itemset with size k is called a

k-itemset. A transaction data stream TDS = T1, T2, …, TN is a continuous sequence of

 35

transactions, where N is the tid of latest incoming transaction TN.

 A transaction-sensitive sliding window (TransSW) in the transaction data stream is a

window that slides forward for every transaction. The window at each slide has a fixed

number, w, of transactions, and w is called the size of the window. Hence, the current

transaction-sensitive sliding window is TransSWN－w+1 = [TN−w+1, TN−w+2, …, TN], where

N−w+1 is the window id of current TransSW. The support of an itemset X over TransSW,

denoted as sup(X)
TransSW

, is the number of transactions in TransSW containing X as a subset.

An itemset X is called a frequent itemset (FI) if sup(X)
TransSW

 ≥ s⋅w, where s is a user-defined

minimum support threshold (MST) in the range of [0, 1]. The value s⋅w is called the frequent

threshold of TransSW (FT
TransSW

).

 Given a transaction-sensitive sliding window TransSW, and a MST s, the problem of

online mining of frequent itemsets in recent transaction data streams is to mine the set of all

frequent itemsets by one scan of the TransSW.

Transaction Data Stream FIs in TransSW1 FIs in TransSW2

 <T1, (acd) >

 <T2, (bce) >

 <T3, (abce) >

 <T4, (be) >

(a), (b), (c), (e), (ac),

(bc), (be), (ce), (bce)

(b), (c), (e), (bc), (be),

(ce), (bce)

A transaction data stream is formed by transactions arriving in series

Figure 3- 2. An example transaction data stream and the frequent itemsets over two

consecutive TransSWs

Example 3-1 Let the first four transactions in a transaction data stream be <T1, (acd)>, <T2,

(bce)>, <T3, (abce)>, and <T4, (be)>, where T1, T2, T3, and T4 are transactions and a, b, c, d,

and e are items. Let the size of sliding window w be 3 and the user-defined minimum support

threshold s be 0.6. Hence, the transaction data stream consists of two transaction-sensitive

sliding windows, i.e., TransSW1 = [T1, T2, T3] and TransSW2 = [T2, T3, T4], where first

 36

window TransSW1 contains the transactions T1, T2, and T3, and the second window TransSW2

contains the transactions T2, T3, and T4. The example is shown in Figure 3-2.

 In Figure 3-2, the frequent itemsets in TransSW1 are (a), (b), (c), (e), (ac), (bc), (be), (ce),

and (bce), and the frequent itemsets in TransSW2 are (b), (c), (e), (d), (bc), (be), (ce), and (bce).

In this instance, we can find that itemsets (a) and (ac) are frequent itemsets in TransSW1, but

not frequent ones in TransSW2.

3.3 The Proposed Algorithm: MFI-TransSW

In this section, we proposed an efficient single-pass algorithm, called MFI-TransSW (Mining

Frequent Itemsets over a Transaction-sensitive Sliding Window), to mine the set of all

frequent itemsets in data streams with a transaction-sensitive sliding window. An effective

bit-sequence representation of items is used in the proposed algorithm to reduce the time and

memory needed to slide the windows.

3.3.1 Bit-Sequence Representation

In the proposed MFI-TransSW algorithm, for each item X in the current transaction-sensitive

sliding window TransSW, a bit-sequence with w bits, denoted as Bit(X), is constructed. If an

item X is in the i-th transaction of current TransSW, the i-th bit of Bit(X) is set to be 1;

otherwise, it is set to be 0. The process is called bit-sequence transform.

 For example, in Figure 3-2, the first sliding window TransSW1 consists of three

transactions: <T1, (acd) >, <T2, (bce) >, and <T3, (abce) >, but the TransSW2 consists of

transactions: <T2, (bce) >, <T3, (abce) >, and <T4, (be) >. Because item a appears in the 1st

and 3rd transactions of TransSW1, the bit-sequence of a, Bit(a), is 101. Similarly, Bit(b) =

011, Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011.

 37

3.3.2 The MFI-TransSW Algorithm

MFI-TransSW algorithm consists of three phases, window initialization phase, window sliding

phase, and frequent itemsets generation phase.

3.3.2.1 Window Initialization Phase

The phase is activated while the number of transactions generated so far in a transaction data

stream is less than or equal to a user-predefined sliding window size w. In this phase, each

item in the new incoming transaction is transformed into its bit-sequence representation.

For instance, in Figure 3-3, the first sliding window TransSW1 contains three transactions:

T1, T2, and T3. The bit-sequences of items of TransSW1 in the window initialization phase are

shown in Figure 3-4.

Figure 3- 3. Bit-sequences of items in window initialization phase of TransSW

Figure 3- 4. Bit-sequences of items after sliding TransSW1 to TransSW2

Window-id Transactions Bit-Sequences of items

TransSW1 <T1, (acd) >

<T2, (bce) >

<T3, (abce) >

Bit(a) = 101, Bit(c) = 111, Bit(d) = 100,

Bit(b) = 011, Bit(e) = 011

TransSW2 <T2, (bce) >

<T3, (abce) >

<T4, (be) >

Bit(a) = 010, Bit(c) = 110, Bit(d) = 000,

Bit(b) = 111, Bit(e) = 111

tid Items Bit-Sequences in current TransSW1

T1 (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100

T2 (bce) Bit(a)=100,Bit(c)=110,Bit(d)=100,Bit(b)=010,

Bit(e)=010

T3 (abce) Bit(a)=101,Bit(c)=111,Bit(d)=100, Bit(b)=011,

Bit(e)=011

 38

3.3.2.2 Window Sliding Phase

The phase is activated after the sliding window TransSW becomes full. A new incoming

transaction is appended to the sliding window, and the oldest transaction is removed from the

window.

For removing oldest information, an efficient method is used in the proposed algorithm.

Based on the bit-sequence representation, MFI-TransSW algorithm uses the bitwise left shift

operation to remove the aged transaction from the set of items in the current sliding window.

After sliding the window, an effective pruning method, called Item-Prune, is used to improve

the memory usage. The pruning approach is that an item X in the current transaction-sensitive

sliding window is dropped if sup(X)
TransSW

 = 0.

 For example, in Figure 3-2, before the fourth transaction <T4, (be)> is processed, the first

transaction T1 must be removed from the current window using bitwise left shift on the set of

items. Hence, Bit(a) is modified from 101 to 010. Similarly, Bit(c)=110, Bit(d)=000,

Bit(b)=110, and Bit(e)=110. Then, the new transaction <T4, (be)> is processed by

bit-sequence transform. The result is shown in Figure 3-4. Note that item d is dropped since

Bit(d)=000, i.e., sup(d)
TransSW

 = 0.

Algorithm MFI-TransSW

Input: TDS (a transaction data stream), s (a user-defined minimum support threshold in the

range of [0, 1]), and w (the user-specified sliding window size).

Output: a set of frequent itemsets, FI-Output.

Begin

 TransSW = NULL; /* TransSW consists of w transactions */

 Repeat:

 for each incoming transaction Ti in TransSW do

 39

 if TransSW = FULL then

 Do bitwise-shift on bit-sequences of all items in TransSW;

 else

 for each item X in Ti do

 Do bit-sequence transform(X);

 end for

 end if

 end for

 for each bit-sequence Bit(X) in TransSW do

 if sup(X) = 0 then

 Drop X from TransSW;

 end if

 end for

/* The following is the frequent itemsets generation phase. The phase is performed only when

requested by users. */

 FI1 = {frequent 1-itemsets};

 for (k=2; FIk−1≠ NULL; k++) do

 CIk = CIGA(FIk−1);

 Do bitwise AND to find the supports of CIk;

 for each candidate ck ∈ CIk do

 if sup(ck)
TransSW

 ≥ w⋅s then

 FIk = {ck ∈ CIk | sup(ck)
TransSW

 ≥ w⋅s};

 end if

 end for

 end for

 FI-Output = ∪kFIk;

End

Figure 3- 5. Algorithm MFI-TransSW

 40

 Transactions in

TransSW2

Bit-Sequences in

TransSW2

FI1 in TransSW2 (s = 0.6) sup

 <T2, (bce) >

 <T3, (abce) >

 <T4, (be) >

Bit(a) = 010

Bit(c) = 110

Bit(b) = 111

Bit(e) = 111

{(b) | Bit(b) = 111}

{(c) | Bit(c) = 110}

{(e) | Bit(e) = 111}

3

2

3

CI2 in SW2 FI2 in TransSW2 sup

{(bc) | Bit(b) = 111 AND Bit(c) = 110}

{(be) | Bit(b) = 111 AND Bit(e) = 111}

{(ce) | Bit(c) = 110 AND Bit(e) = 111}

{(bc) | Bit(bc) = 110}

{(be) | Bit(be) = 111}

{(ce) | Bit(ce) = 110}

2

3

2

CI3 in TransSW2 FI3 in TransSW2 sup

{(bce) | Bit(bc) = 110 AND Bit(be) =

111 AND Bit(ce) = 110}

{(bce) | Bit(bce) = 110} 2

Figure 3- 6. Steps of frequent itemsets generation in TransSW2

3.3.2.3 Frequent Itemsets Generation Phase

The phase is performed only when the up-to-date set of frequent itemsets is requested. In this

phase, MFI-TransSW algorithm uses a level-wise method to generate the set of candidate

itemsets CIk (candidate itemsets with k items) from the pre-known frequent itemsets FIk−1

(frequent itemsets with k-1 items) according to the Apriori property [3]
1
. The step is called

CIGA (Candidate Itemset Generation using Apriori property). Then, the proposed algorithm

uses the bitwise AND operation to compute the support (the number of bit 1) of these

candidates in order to find the frequent k-itemsets FIk. The candidate-generation-then-testing

process stops when no new candidates with k+1 items (CIk+1) are generated. The

MFI-TransSW algorithm is shown in Figure 3-5.

 For instance, consider the bit-sequences of TransSW2 in Figure 3-4, and let the minimum

1
 It is a downward closure property, i.e., if a pattern is frequent, all of its sub-patterns will

also be frequent.

 41

support threshold s be 0.6. Hence, an itemset X is frequent if sup(X)
TransSW

 ≥ 0.6⋅3 = 1.8. In the

following, we discuss the step of frequent itemset mining of TransSW2. The generated patterns

are shown in Figure 3-2.

 First, MFI-TransSW algorithm generates three candidate 2-itemsets, (bc), (be) and (ce),

by combining frequent 1-itemsets: (b), (c) and (e), where Bit(b) = 111, i.e., sup(b) = 3, Bit(c)

= 110, i.e., sup(c) = 2, and Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an infrequent

itemset, since its Bit(a) = 010, i.e., sup(a) = 1. All other candidates are frequent itemsets after

using bitwise AND operations to count the supports of these candidates. Because the Bit(bc)

is 110, the support of candidate 2-itemset bc are 2, i.e., sup(bc) = 2. Similarity, sup(be) = 3,

and sup(ce) = 2. Second, MFI-TransSW generates one candidate 3-itemset (bce) according to

Apriori property and uses bitwise AND operation to count the sup(bce) = 2, i.e., Bit(bc) AND

Bit(be) AND Bit(ce) = 110. Because no new candidates are generated, the

generation-then-test process stops. Hence, there are six frequent itemsets, (b), (c), (bc), (be),

(ce), (bce), generated by MFI-TransSW algorithm in TransSW2. The process is shown in

Figure 3-6.

3.4 Problem Definition: Mining Frequent Itemsets in a TimeSW

Let Ψ = {i1, i2, …, im} be a set of items. An itemset is a non-empty set of items. An itemset

with size k is called a k-itemset. A transaction data stream TDS = T1, T2, …, TN is a

continuous sequence of transactions, where N is the transaction identifier of latest incoming

transaction TN. A transaction T = (TUid, Tid, itemset), where TUid is the identifier of the time

unit, and Tid is the identifier of the transaction.

 A time-sensitive sliding window (TimeSW) in the transaction data stream is a window

that slides forward for every time unit (TU). Each time unit TUi consists of a variable number,

|TUi|, of transactions, and |TUi| is also called the size of the time unit. Hence, the current

 42

time-sensitive sliding window with w time units is TimeSWN－w+1 = [TUN−w+1, TUN−w+2, …,

TUN], where N−w+1 is the id of time unit of current TimeSW, and N is the TUid of latest time

unit TUN. The window at each slide has a fixed number, w, of time units. The value w =

|TUN−w+1| + |TUN−w+2| + … + |TUN| is called the size of the time-sensitive sliding window and

denoted as |TimeSW|.

 The support of an itemset X over TimeSW, denoted as sup(X)
TimeSW

, is the number of

transactions in TimeSW containing X as a subset. An itemset X is called a frequent itemset

(FI) if sup(X)
TimeSW

 ≥ s⋅|TimeSW|, where s is a user-defined minimum support threshold (MST)

in the range of [0, 1]. The value s⋅|TimeSW| is called the frequent threshold of TimeSW

(FT
TimeSW

).

 Given a time-sensitive sliding window TimeSW, and a MST s, the problem of online

mining of frequent itemsets in recent transaction data streams is to mine the set of all frequent

itemsets by one scan of the TimeSW.

Example 3-2 Let the size of the time-sensitive sliding window w be 3 and the user-defined

minimum support threshold s be 0.5. Figure 3-7 records the transactions that arrive in the

stream in two successive windows, TimeSW1 = [T1, T2, T3, T4, T5, T6, T7] and TimeSW2 = [T4,

T5, T6, T7, T8, T9]. The first window TimeSW1 contains seven transactions and the frequent

threshold FT = 0.6⋅7 = 3.5. The second window TimeSW2 contains six transactions and the FT

= 0.5⋅6 = 3.

 In Figure 3-7, the frequent itemsets in TimeSW1 are (b), (c), (e), (bc), (be) and (ce), and

the frequent itemsets in TimeSW2 are (a), (c), (d), (e), (ac), (ae) and (ce).

 43

Transaction Data Stream FIs in TimeSW1 FIs in TimeSW2

 <TU1, T1, (be) >

 <TU1, T2, (bce) >

 <TU1, T3, (bce)>

 <TU2, T4, (acd)>

 <TU2, T5, (abce)>

 <TU3, T6, (abce)>

 <TU3, T7, (ace)>

 <TU4, T8, (bcde)>

 <TU4, T9, (cde)>

(a), (b), (c), (e), (ac),

(bc), (be), (ce), (bce)

(a), (b), (c), (d),

(e), (ac), (ae), (ce)

Figure 3- 7. An example transaction data stream and the frequent itemsets over two

time-sensitive sliding windows

3.5 The Proposed Algorithm: MFI-TimeSW

Based on the MFI-TransSW algorithm, a time-sensitive sliding window-based algorithm

MFI-TimeSW (Mining Frequent Itemsets in a Time-sensitive Sliding Window) is proposed in

this section.

3.5.1 Time Unit List and Bit-Sequences of Items

For mining frequent itemsets over a time-sensitive sliding window, a time unit list (TU-list) is

developed in the MFI-TimeSW algorithm. A TU-list consists of a list of time unit entries,

where each time unit entry records the size of the time unit, i.e., TU-list = < (TUid, |TUN−w+1|),

(TUid, |TUN−w+2|), …, (TUid, |TUN |)>.

The bit-sequence transform process of MFI-TimeSW algorithm is described as follows.

For each item X in the current time-sensitive stream sliding window TimeSWN−w+1, a

bit-sequence with |TimeSWN−w+1| bits, denoted as Bit(X)
TimeSW

N−w+1, is constructed. If an item

X is in the i-th transaction of TimeSWN−w+1, the i-th bit of Bit(X)
TimeSW

N−w+1 is set to be 1;

otherwise, it is set to be 0.

T
im

eS
W

1

T
im

eS
W

2

 44

 For example, in Figure 3-7, the first sliding window TimeSW1 consists of seven

transactions: <TU1, T1, (be)>, <TU1, T2, (bce)>, <TU1, T3, (bce)>, <TU2, T4, (acd)>, <TU2, T5,

(abce)>, <TU3, T6, (abce)>, and <TU3, T7, (ace)>, but the second window TimeSW2 consists

of six transactions: <TU2, T4, (acd)>, <TU2, T5, (abce)>, <TU3, T6, (abce)>, <TU3, T7, (ace)>,

<TU4, T8, (bce)>, and <TU9, T2, (cde)>. Because item a appears in the fourth, fifth, sixth and

seventh transactions of TimeSW1, the bit-sequence of a, Bit(a)
TimeSW1, is 0001111. Similarly,

Bit(b)
TimeSW1=1110110, Bit(c)

TimeSW1=0111111, Bit(d)
TimeSW1=0001000, and Bit(e)

TimeSW1 =

1110111. After sliding one time unit of TimeSW, the set of bit-sequences of items is changed,

i.e., Bit(a)
TimeSW2 = 111100, Bit(b)

TimeSW2 = 011010, Bit(c)
TimeSW2 = 111111, Bit(d)

TimeSW2 =

100011, and Bit(e)
TimeSW2 = 011111.

3.5.2 The MFI-TimeSW Algorithm

The MFI-TimeSW algorithm is composed of three phases, window initialization phase (phase

1), window sliding phase (phase 2), and frequent itemsets generation phase (phase 3).

3.5.2.1 Window Initialization Phase

The window initialization phase of MFI-TimeSW algorithm is activated while the number of

time units generated so far in a transaction data stream is less than or equal to a

user-predefined time-sensitive sliding window size w (i.e., w time units). In this phase, each

item X of a new incoming transaction is transformed into its bit-sequence representation

Bit(X)
TimeSW

.

 For example, in Figure 3-7, the sliding window TimeSW1 contains seven transactions: T1,

T2, T3, T4, T5, T6, and T7. The bit-sequence transform of items of TimeSW1 are shown in

Figure 3-8.

 45

3.5.2.2 Window Sliding Phase

The window sliding phase of MFI-TimeSW algorithm is activated after the sliding window

TimeSW becomes full, i.e., TimeSW contains w time units. A new time unit TUN+1 is appended

to the time-sensitive sliding window, and the oldest time unit TUN−w+1 is removed from the

window.

For removing oldest information, an efficient method is used in the proposed algorithm.

Based on the bit-sequence representation, MFI-TimeSW algorithm uses the bitwise left shift

operation to remove the aged time unit from current time-sensitive sliding window. If the

aged time unit TUN−w+1 contains d transactions, MFI-TimeSW performs d times of bitwise left

shift operation on the current sliding window. After sliding the window, an effective pruning

method, called Item-Prune, is used to improve the memory usage. The pruning approach is

that an item X in the current time-sensitive sliding window is dropped if sup(X)
TimeSW

 = 0.

 For example, in Figure 3-7, before processing the fourth time unit which consists of two

transactions, <TU4, T8, (bcde)> and <TU4, T9, (cde)>, the first time unit (TU1) which consists

of three transactions (T1, T2, and T3) must be removed from the current TimeSW1 using

bitwise left shift operation on the set of items. Therefore, Bit(a)
TimeSW

changes from 0001111

to 1111. Similarly, Bit(c)
TimeSW

 changes from 0111111 to 1111, Bit(d)
TimeSW

 changes from

0001000 to 1000, Bit(b)
TimeSW

 changes from 1110110 to 0110, and Bit(e)
TimeSW

 changes from

1100111 to 0111. Then, the new time unit (TU4) is processed by bit-sequence transform.

Hence, Bit(a)
TimeSW

changes from 1111 to 111100, Bit(c)
TimeSW

 changes from 1111 to 111111,

Bit(d)
TimeSW

 changes from 1000 to 100011, Bit(b)
TimeSW

 changes from 0110 to 011010, and

Bit(e)
TimeSW

 changes from 0111 to 011111. The result is shown in Figure 3-9.

3.5.2.3 Frequent Itemsets Generation Phase

The frequent itemsets generation phase of MFI-TimeSW algorithm is also performed only

 46

when requested by users. In this phase, MFI-TimeSW uses the same method CIGA as used in

MFI-TransSW algorithm to generate the set of candidate itemsets CIk (candidate itemsets with

k items) from the frequent itemsets FIk−1 (frequent itemsets with k-1 items). Then, the

proposed algorithm uses the bitwise AND operation to compute the support (the number of bit

1) of these candidates in order to find the frequent k-itemsets FIk. The

candidate-generation-then-testing process stops when no new candidates with k+1 items

(CIk+1) are generated. The MFI-TimeSW algorithm is shown in Figure 3-10.

 For example, consider the bit-sequences of TimeSW1 in Figure 3-9, and let the minimum

support threshold s be 0.5. Therefore, an itemset X is frequent in TimeSW1 if sup(X)
TimeSW1 ≥

0.5⋅7 = 3.5. In the following, we discuss the steps of frequent itemsets generation of TimeSW1.

The generated frequent itemsets are shown in Figure 3-7.

TUid tid Items Bit-Sequences of Items in TimeSW1

1 T1 (be) Bit(b)=1000000, Bit(e)=1000000

1 T2 (bce) Bit(b)=1100000, Bit(e)=1100000,

Bit(c)=0100000

1 T3 (bce) Bit(b)=1110000, Bit(e)=1110000,

Bit(c)=0110000

2 T4 (acd) Bit(b)=1110000, Bit(e)=1100000,

Bit(c)=0111000, Bit(a)=0001000,

Bit(d)=0001000

2 T5 (abce) Bit(b)=1110100, Bit(e)=1100100,

Bit(c)=0111100, Bit(a)=0001100,

Bit(d)=0001000

3 T6 (abce) Bit(b)=1110110, Bit(e)=1100110,

Bit(c)=0111110, Bit(a)=0001110,

Bit(d)=0001000

3 T7 (ace) Bit(b)=1110110, Bit(e)=1100111,

Bit(c)=0111111, Bit(a)=0001111,

Bit(d)=0001000

Figure 3- 8. Bit-sequences of items in window initialization phase of TimeSW1

 47

Figure 3- 9. Bit-sequences of items after sliding TimeSW1 to TimeSW2

 First, MFI-TimeSW algorithm generates candidate 2-itemsets, (ab), (ac), (ae), (bc), (be),

and (ce), by combining frequent 1-itemsets, (a), (b), (c) and (e). Only one 1-itemset (d) is an

infrequent itemset, since its Bit(d)
TimeSW

 = 0001000, i.e., sup(d)
TimeSW1 = 1. All these

candidates are frequent itemsets after using bitwise AND operations to count the supports (the

number of 1) of these candidates. Therefore, the support of 2-itemset (ab) is 2, since

Bit(ab)
TimeSW

 is 0000110. Similarity, sup(ac)
TimeSW1 = 4, sup(ae)

TimeSW1 = 3, sup(bc)
TimeSW1 =

4, sup(be)
TimeSW1 = 4 and sup(ce)

TimeSW1 = 4. Hence, four frequent 2-itemsets, (ac), (bc), (be),

and (ce), are found.

Algorithm MFI-TimeSW

Input: TDS (a transaction data stream), TU-list (a time unit list), s (a user-defined minimum

support threshold in the range of [0, 1]), and w (the user-specified sliding window size, i.e., w

time units).

Window-id Transactions Bit-Sequences of items

TimeSW1 <TU1, T1, (be) >

 <TU1, T2, (bce) >

 <TU1, T3, (bce)>

 <TU2, T4, (acd)>

 <TU2, T5, (abce)>

 <TU3, T6, (abce)>

 <TU3, T7, (ace)>

Bit(b) = 1110110

Bit(e) = 1100111

Bit(c) = 0111111

Bit(a) = 0001111

Bit(d) = 0001000

TimeSW2 <TU2, T4, (acd)>

 <TU2, T5, (abce)>

 <TU3, T6, (abce)>

 <TU3, T7, (ace)>

 <TU4, T8, (bcde)>

 <TU4, T9, (cde)>

Bit(b) = 011010

Bit(e) = 011111

Bit(c) = 111111

Bit(a) = 111100

Bit(d) = 100011

 48

Output: a set of frequent itemsets, FI-Output.

Begin

 TimeSW = NULL; /* TimeSW consists of w time units */

 Repeat: /* N is the id of current time unit*/

 for each new time unit TUN from TDS do /* N ≥ 1*/

 if TimeSW = FULL then

 Do |TUN−w+1| times of bitwise-shift operation on bit-

 sequences of all items in TimeSW;

 else

 for each transaction Ti of TUN do

 for each item X in Ti do

 Do bit-sequence transform(X);

 end for

 end for

 end if

 end for

 for each bit-sequence Bit(X) in TimeSW do

 if sup(X) = 0 then

 Drop X from TimeSW;

 end if

 end for

 N = N +1;

/* The following is the frequent itemsets generation phase. The phase is performed only when

requested by users. */

 FI1 = {frequent 1-itemsets};

 for (k=2; FIk−1≠ NULL; k++) do

 CIk = CIGA(FIk−1);

 Do bitwise AND to find the supports of CIk;

 for each candidate ck ∈ CIk do

 if sup(ck)
TimeSW

 ≥ |TimeSW|⋅s then

 FIk = {ck ∈ CIk | sup(ck)
TimeSW

 ≥ |TimeSW|⋅s};

 end if

 end for

 end for

 FI-Output = ∪kFIk;

End

Figure 3- 10. Algorithm MFI-TimeSW

 Next, two candidate 3-itemsets, (ace) and (bce), are generated by MFI-TimeSW

according to Apriori property. After using the bitwise AND operation to count the supports of

(ace) and (bce), respectively, only one 2-itemset (bce) is a frequent itemset. Because no new

 49

candidates are generated, the candidate-generation-then-testing process stops. Consequently,

there are nine frequent itemsets, (a), (b), (c), (e), (ac), (bc), (be), (ce), and (bce), generated by

MFI-TimeSW algorithm in TimeSW1. The process is shown in Figure 3-11.

Transactions in

TimeSW1

Bit-Sequences in

TimeSW1

FI1 in TimeSW1 (s = 0.5

and FT=3.5)

sup

<T1, (be) >

<T2, (bce) >

<T3, (bce)>

<T4, (acd)>

<T5, (abce)>

<T6, (abce)>

<T7, (ace)>

Bit(b)=1100110,

Bit(e)=1100111,

Bit(c)=0111111,

Bit(a)=0001111,

Bit(d)=0001000

{(b)|Bit(b)=1100110}

{(e)|Bit(e)=1100111}

{(c)|Bit(c)=0111111}

{(a)|Bit(a)=0001111}

4

5

6

4

CI2 in TimeSW1 FI2 in TimeSW1 sup

{(ab) | Bit(a) AND Bit(b)}

{(ac) | Bit(a) AND Bit(c)}

{(ae) | Bit(a) AND Bit(e)}

{(bc) | Bit(b) AND Bit(c)}

{(be) | Bit(b) AND Bit(e)}

{(ce) | Bit(c) AND Bit(e)}

{(ac) | Bit(ac) = 0001111}

{(bc) | Bit(bc) = 0100110}

{(be) | Bit(be) = 1100110}

{(ce) | Bit(ce) = 0100111}

4

3

4

4

CI3 in TimeSW1 FI3 in TimeSW1 sup

{(bce) | Bit(bc) AND Bit(be) AND

Bit(ce) }

{(bce) | Bit(bce) =

0100110}

3

Figure 3- 11. Steps of frequent itemsets generation of MFI-TimeSW in TimeSW1

3.6 Performance Evaluation

In this section, we report the experimental results of the proposed algorithm MFI-TransSW.

All the programs are implemented using Microsoft Visual C++ Version 6.0 and performed on

a 1.80 GHz Pentium(R) PC machine with 512 MB memory running on Windows 2000. For

testing frequent itemsets mining over sliding windows, we generate online data streams using

IBM synthetic data generator proposed by Agrawal and Srikant [2, 3]. The synthetic data

stream, denoted by T5.I4.D1000K, of size 1 million transactions (D1000K) has an average

transaction size of 5 items (T5) with average maximal frequent itemset size of 4 items (I4). In

 50

all experiments, the transactions of T5.I4D1000K are looked up in sequence to simulate the

environment of an online data stream.

3.6.1 Experiments of MFI-TransSW Algorithm

In this section, we compare the results of mining by SWFI-stream algorithm [11] and

MFI-TransSW algorithm. The experiments of memory usage are shown in Figures 3-12, 3-13,

and 3-14, and the processing times are shown in Figures 3-15 and 3-16. The minimum

support threshold s and the size of a sliding window w are set to 0.1% and 20,000,

respectively. As shown in these experiments, MFI-TransSW significantly outperforms

SWFI-stream for both memory consumption and CPU cost.

Figure 3-12 shows the memory usage of the window initialization phase. As shown in

Figure 3-12, MFI-TransSW algorithm requires only about 2.1 MB in window initialization

phase, but the memory requirement of SWFI-stream increases linearly from 11.2 MB to 109.7

MB. Figure 3-13 shows the memory usage of the window sliding phase. In this phase, the

memory requirement of MFI-TransSW is also approximately 2.1 MB, but that of

SWFI-stream is between 109.7 MB to 120.3 MB. Figure 3-14 gives the memory usage of the

frequent itemsets generation phase. In this phase, the memory requirement of MFI-TransSW

is between 33.5MB to 39MB. As shown in Figures 3-12 through 3-14, MFI-TransSW

algorithm outperforms SWFI-stream for memory consumption.

Figure 3-15 shows the processing time of window initialization phase under different

window sizes from 20,000 (200K) transactions to 100,000 (1,000K) transactions. Figure 3-16

shows the total time of window sliding time and pattern mining time at each 100K

transactions using various window sizes from 200K transactions to 1000K transactions. As

shown in Figures 3-15 and 3-16, MFI-TransSW algorithm outperforms SWFI-stream for

processing time consumption.

 51

020406080100120

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000Incoming Transactions (window size = 20000)
Memory Usag
e (MB) SWFI-stream

MFI-TransSW

Figure 3- 12. Memory usages in window initialization phases of algorithms SWFI-stream and

MFI-TransSW (s = 0.1% and w = 20,000)

020406080100120140

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10thIncoming Sliding Windows
Memory Usage
 (MB) SWFI-streamMFI-TransSW

Figure 3- 13. Memory usages in window sliding phases of algorithms SWFI-stream and

MFI-TransSW (s = 0.1% and w = 20,000)

 52

020406080100120140

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10thIncoming Sliding Window
Memory Usage
 (MB) SWFI-streamMFI-TransSW

Figure 3- 14. Memory usages in frequent itemset generation phases of algorithms

SWFI-stream and MFI-TransSW (s = 0.1% and w = 20,000)

0100200300400500600

20000 40000 60000 80000 100000Window Size
Processing Tim
e (sec.) SWFI-streamMFI-TransSW

Figure 3- 15. Processing time in window initialization phases of algorithms SWFI-stream and

MFI-TransSW under different window sizes (s = 0.1%)

 53

020040060080010001200

100K 200K 300K 400K 500K 600K 700K 800K 900K 1000KIncoming Transactions (K = 1,000)
Processing Tim
e (sec.)

SWFI-streamMFI-TransSW

Figure 3- 16. Processing time including window sliding time and pattern generation time of

algorithms SWFI-stream and MFI-TransSW under window size 200K transactions (s = 0.1%)

0102030405060708090

TU1 TU2 TU3 TU4 TU5 TU6 TU7 TU8 TU9 TU10Incoming Time Units (window size = 5)
Memory Usag
e (MB) Phases 1-2-3Phases 1-2

Figure 3- 17. Memory usages of MFI-TimeSW algorithm in different phases (s = 0.1%)

 54

050010001500200025003000350040004500

TU1 TU2 TU3 TU4 TU5 TU6 TU7 TU8 TU9 TU10Incoming Time Units
Processing Tim
e (sec.) phases 1+2+3Phases 1+2

Figure 3- 18. Processing time of MFI-TimeSW algorithm in different phases (s = 0.1%)

3.6.2 Experiments of MFI-TimeSW Algorithm

Because the proposed MFI-TimeSW algorithm is the first single-pass approach for mining

frequent itemsets over online data streams with a time-sensitive sliding window, we only

report the experimental results of MFI-TimeSW in the section. The experiments of memory

usage of the proposed algorithm MFI-TimeSW is shown in Figure 3-17, and the processing

time of the algorithm is shown in Figure 3-18. The minimum support threshold s is set to

0.1%. In order to simulate a time-sensitive sliding window over an online data streams, the

size of a time-sensitive sliding window w is set to 5, where |TU1| = 200K, |TU2| = 400K, |TU3|

= 800K, |TU4| = 1,000K, |TU5| = 1,000K, |TU6| = 200K, |TU7| = 500K, |TU8| = 1,000K, |TU9|

= 800K, and |TU10| = 800K. Note that 1K transactions equals to 1,000 transactions.

Figure 3-17 shows the memory usage of phases 1-2 (window initialization phase +

window sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase

 55

+ frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-17,

the memory usage of MFI-TimeSW is increased linearly as the window size increased.

Figure 3-18 shows the processing time of phases 1-2 (window initialization phase + window

sliding phase) and phases 1-2-3 (window initialization phase + window sliding phase +

frequent itemsets generation phase) of MFI-TimeSW algorithm. As shown in Figure 3-18, the

processing time of phases 1 and 2 of MFI-TimeSW is increased linearly as the window size

increased.

3.7 Conclusions

In this chapter, we proposed two efficient one-pass algorithms, called MFI-TransSW and

MFI-TimeSW, for mining frequent itemsets over online data streams with a transaction-

sensitive sliding window and a time-sensitive sliding window, respectively. Experiments show

that the proposed algorithms not only attain highly accurate mining results, but also run

significant faster and consume less memory than existing algorithms for mining frequent

itemsets over recent online data streams.

 56

Chapter 4 Online Mining of Changes of Items across Two Data

Streams

As data streams are gaining prominence in a growing number of emerging applications,

advanced analysis and mining of data streams is becoming increasingly important. While

there are some recent studies on mining data streams, we would like to ask the following

essential question: What are the distinct features of mining data streams compared to mining

other kinds of data? Online mining of the changes in data streams is one of the core issues

[24]. In this chapter, we propose a new interesting research problem and propose efficient

algorithms for this problem.

4.1 Introduction

The motivation of the problem of online mining changes of items between distributed data

streams comes from the context of online transaction flows in large organizations. These

companies generate the millions of records every day. For example, Google handles 70-110

millions searches, AT&T produces 250-300 million call records, and WallMart which consists

of thousands of branch stores, and records 20-40 million transactions in a single day. With the

computation model of distributed data streams presented in Figure 4-1, a data stream

processor and the in-memory summary data structure are two major components in the

distributed data streaming environment. The streams in questions are sequences of transaction

data which is composed of the records in the form of <Store-ID, Timestamp, Transaction-ID,

Items>. In other words, a transaction record is a purchasing log generated by a customer in a

specific time and store. These transaction flows are sent to the server, and we are interested in

finding the frequent frequency changes in items between pairs of data streams purchased by

the most customers in some period of time. Note that the buffer mechanism can be optionally

 57

set for temporary storage of recent transactions from the transaction data streams.

 In this chapter, we study the problem of online mining frequent frequency changes of

items between pairs of continuous, high-volume, open-ended data streams. Three types of

frequency change are defined: frequent changed-item (or FCI in short), vibrated frequent

changed-item (or VFCI in short), and stable frequent changed-item (or SFCI in short). A new

summary data structure, called change-sketch, is developed to store the essential information

over the pairs of data streams. The MFC-append (Mining Frequency Changes of append-only

data streams) algorithm is proposed to find the changes across two append-only data streams.

The MFC-dynamic algorithm based on MFC-append is developed to find the changes over

two dynamic data streams. The best space bound we achieve is Ω(mlog(n/m)), where n is the

size of the union of two data streams, and m is the size of the working bucket for frequent

changed-items mining. Moreover, the proposed algorithms take O(log(n/m)) time in the worst

case to process each new data element, but only O(1) amortized time per data element.

The remainder of the chapter is organized as follows. We review some related work in

Section 4.2 and formulate the problem in Section 4.3. Algorithms MFC-append and

MFC-dynamic are described in Section 4.4. Performance evaluation is presented in Section

4.5. We conclude the work in Section 4.6.

Figure 4- 1. Processing model of distributed data streams

Stream

Mining

Processor

Synopsis

in Memory

Buffer

(Approximate)

Results

Data Streams

 58

4.2 Related Work

Change mining on static datasets has been studied in the last ten years [29, 25, 52]. Ganti et al.

[29] proposed a framework to quantify the deviation in the induced models, such as two

decision tree classifiers, clusters, and frequent itemsets, in the large datasets. The quantitative

measure is the amount of work required to transform one model into the other. Dong et al. [25]

proposed an algorithm to find the emerging patterns, and used these patterns to characterize

the changes from one dataset to the other. Liu et al. [52] proposed a method to discover the

changes in the new data with respect to the old data, and the old decision tree models, and

generate the exact changes that have occurred to the user. These studies are focused on the

effects of data changes of data mining models and algorithms, whereas this chapter is focused

on the problem of measuring and understanding the changes of data directly rather than

measuring the effects of data mining models.

4.3 Problem Definition: Mining of Changes of Items across Two

Data Streams

Let Ψ = {i1, i2, …, im} be a set of literals, called data items (or items in short). A data stream

is an infinite sequence of data items, where the items arrive in some order, and may be seen

only once. It is also referred to as item-stream. In the item-stream model, we focus on two

performance issues: workspace required in main memory, which is measured as a function of

the input union size n of two data streams, and the time to process an incoming data item over

the streams. In this chapter, we assume that the data arrives in the unordered
2
 form, and the

same value can appear multiple times within the streaming data. This is termed the unordered

cash register, unordered aggregated model [6, 33].

2
 The streaming data items from various domains arrive in no particular order and without any pre-processing.

 59

Definition 4-1. A data stream is called an append-only data stream (or ADS in short) if it has

no updates and deletions. A data stream is called a dynamic data stream (or DDS in short) if

there are removal as well as addition of data items.

Definition 4-2. Two parallel item-streams are P = <p1, p2, …, pi, …>, and Q = <q1, q2, …,

qj, …> with time-varying data rates, where pi, qj ∈ Ψ. The frequency of a data item x in an

item-stream S over a time period T is the number of items in T in which x occurs, and is

denoted as frequency(x, S, T). The size of T is n, the total number of data items so far in T.

Definition 4-3. The changed support of a data item x is the difference in frequency between

two data streams P and Q divided by the total data items observed in T, and is denoted as

changeSup(x, T).

Definition 4-4. The changed rate of a data item x is the number of frequency vibration

divided by the total time-points observed in T, and is denoted as changeRate(x, T), where the

time-point is a basic unit of time over which the system collects data, e.g., second or minute.

Frequency vibration is the ratio of frequency change which exceeds a user-specified threshold, vibrate

rate. In this research, we assume that the rate is 100% for simplicity, i.e., frequency vibration is a

frequency change from positive one to negative one, or vice versa.

Definition 4-5. A data item x is called a frequent frequency changed item (or FFCI in short)

if changeSup(x, T) ≥ mcs, where mcs is a user-defined minimum changed support threshold in

the range of [0, 1]. It is a sub-frequent frequency changed item (or SFFCI in short) if ase ≤

changeSup(x, T) < mcs, where ase is a user-defined approximate support error threshold in the

range of [0, mcs]. It is an infrequent frequency changed item (or IFFCI in short) if

changeSup(x, T) < ase.

Definition 4-6. A data item x over a time period T is called a vibrated frequency changed item

(or VFCI in short) if its changed rate and changed support are greater than or equal to a

 60

user-defined minimum changed rate (or mincr in shot) and ase, respectively. It is a stable

frequency changed item (or SFCI in short) if its changed rate is less than a user-specified

maximal changed rate (or maxcr in short), and changeSup(x, T) ≥ mcs, where mincr is a real

number in the range of [0, 1] and maxcr > mincr.

For example, there are ten time-points (T = [t1: t10], where t1 is the starting time-point and

t10 is the current time-point) in Figure 4-2, and we assume that mincr = 0.1, and maxcr = 0.5.

In Figure 4-2, data item a and b are VFCIs, where changeRate(a, T) = 9/10 = 0.9 > 0.5, and

changeRate(b, T) = 6/10 = 0.6 > 0.5, and items c, d, e are SFCIs, where changeRate(c, T) =

0/10 = 0 ≤ 0.1, changeRate(d, T) = 0/10 = 0 ≤ 0.1, and changeRate(e, T) = 1/10 = 0.1 ≤ 0.1.

 The goal of this chapter is to find the changes of items (FFCIs, VFCIs, and SFCIs) over

the pairs of data streams, either in ADS or DDS.

-15

-10

-5

0

5

10

15

Increasing time (timepoints)

fr
eq

u
en

cy
 d

if
fe

re
n

ce

a b c d e

Figure 4- 2. Examples of VFCIs and SFCIs

 61

4.4 Online Mining Changes of Items over Distributed ADSs

In this section, a new summary data structure, called Change-Sketch, is developed to maintain

the essential information about the set of all FFCIs, VFCIs, and SFCIs embedded in data

streams. A deterministic single-pass algorithm MFC-append (Mining Frequency Changes of

append-only data streams) is proposed to find the changes of items over the pairs of data

streams. The proposed algorithm uses at most mlog(n/m) space, where n is the size of the

union of the estimated data streams, and m is the size of working bucket.

4.4.1 A New Summary Data Structure: Change-Sketch

The proposed in-memory summary data structure Change-Sketch is a list of entries of the

form (q, q.count, q.wid, q.rate), where q is a data item in the streams, q.count is an integer

representing its estimated support, the value of q.wid assigned to a new entry q is the window

identifier of current window, and q.rate is the number of frequency vibration of item q. An

item q is stored in the current Change-Sketch if q.count ≥ ase⋅m⋅(wcurrent-id − q.wid), where m is

the window size and m = 1/ase. Note that the parameter ase is an acronym of the

user-specified approximate support error threshold.

Two operations are used to maintain the Change-Sketch:

(1) Update Change: For each entry (q, q.count, q.wid, q.rate) ∈ Change-Sketch,

MFC-append increases q.count by computing the frequency changes of q in the current

window. If the updated entry q takes place a frequency vibration, its q.rate is increased

by one. If the changed support of updated entry q is less than the user-specified

minimum changed support threshold mcs, the entry is deleted from the current

Change-Sketch.

 62

(2) New Change: If an item p ∉ Change-Sketch, and its changed support is larger than or

equal to the threshold ase⋅m⋅(wcurrent-id − p.wid), a new entry of the form (p, 1, p.wcurrent-id,

0) is created into the current Change-Sketch.

4.4.2 The MFC-append Algorithm

Algorithm MFC-append uses the notations and conventions illustrated in Figure 4-3. In the

framework of mining changes of items over data streams, the streaming data is divided into

fixed sized buckets B1, B2, …, Bi, …, BN, where BN is the “latest” bucket with bucket

identifier N, and B1 is the “oldest” one. Note that each bucket contains k items. The bucket

length from Bi to Bj is denoted as B(i, j), where i ≥ j. Let t1, t2, …, tn be the timepoints (the

smallest unit of time) which group the buckets so far in the streams, where tn is the most

recent timepoint, and t1 is the oldest one. The form of bucket Bi is (StreamID, ti, items), where

ti is the timepoint when the items appeared in the stream with identifier StreamID.

The window-id of ti is denoted as wi, and the number of buckets arrived from ti-1 to ti is |wi|,

and the number of items (i.e., size) in wi is denoted as |wi|. The size of buckets arrived in T

equals |wk| + |wk+1| + … + |wn|, ∀k = 1, 2, …, n. As described above, the goal is to find the set

of all FFCIs, VFCIs, and SFCIs in a time period T = tk ∪ tk+1 ∪ … ∪ tn, ∀k = 1, 2, …, n.

Hence, the pair of input data streams P and Q are divided into two sequences of basic

windows, i.e., P = w1[BP1 + BP2 + … + BPi] + w2[BPi+1 + BPi+2 + … + BPj] + … + wm[BPk +

BPk+1 + … + BPcurrentid-1] , and Q = w1[BQ1 + BQ2 + … + BQi] + w2[BQi+1 + BQi+2 + … + BQj]

+ … + wm[BQk + BQk+1 + … + BQcurrentid-1]. The notation wi[BStreamIDj + BStreamIDj+1 + … +

BStreamIDk] denotes that the buckets of data stream with id StreamID arrived at timepoint ti, and

the current bucket id is denoted as BStreamIDcurrent. Note that BStreamIDcurrent = n/m + 1. For

 63

example, there are five buckets in the first window w1 of Figure 4-1, in which two buckets

(BP1and BP2) in stream P, and three buckets (BQ1, BQ2, and BQ3) in stream Q.

t0 t1 t2 … tn-1 tn
Timepoints

Current
timepoint

BQ1 BQ2 BQ3 BQ4 BQ5 BQi

BP1 BP2 BP3 BPi-2 BPi-1 BPi BPcurrentidBatch buckets

Stream P

Stream Q

Data elements
that will be seen
in the future

w1 w2 … wn

Increasing time

Batch Buckets

Figure 4- 3. Notations and conventions used in the proposed algorithms

The algorithm description of MFC-append is shown in Figure 4-4. Four parameters are

used in MFC-append algorithm: mcs, ase, maxcr, and mincr, where mcs is an acronym of the

minimum changed support threshold, ase is an acronym of the approximate error support

threshold, maxcr is an acronym of the maximum changed rate, and mincr is an acronym of the

minimum changed rate. At any moment, a list of FFCIs with their estimated changed supports

and changed rates is generated by the proposed algorithm. These approximate answers (i.e., a

list of FFCIs) have the following guarantees. First, all items whose changed support exceed

mcs⋅n are output, i.e., no false negative. Second, no items whose changed support is less than

(ase−mcs)⋅n are output. Third, estimated changed supports are less than the true changed

 64

supports by at most ase⋅n. Finally, all items whose changed rate exceed mcr⋅n or less than

mcr⋅n are output, respectively.

Algorithm MFC-append

Input: (1) Two continuous append-only data streams, P = <p1, p2, …, pn, …> and Q = <q1,

q2, …, qn, …> with time-varying data rate, (2) A user-defined approximate support

error threshold, ase, i.e., the window size m is 1/ase, (3) A user-defined minimum

changed support threshold, mcs, (4) A user-specified maximum changed rate maxcr, (5)

A user-specified minimum changed rate minicr.

Output: A list of FFCIs, VFCIs, and SFCIs.

Begin

Change-Sketch()←{ };

 Repeat:

for each bucket from the data streams (P and Q) do

for each item q in wi(C, Bi) do /* i = 1, 2, …, n/m+1 */

 Change-Sketch(q, q.count++, q.wid, q.rate);

 for each item q in wi(D, Bi) do

 Change-Sketch(q, q.count--, q.wid, q.rate);

 while Change-Sketch(q, q.count, q.wid, q.rate) ≠ ∅ then

 if |q.count| ≥ mcs⋅m⋅(wcurrent − q.wid) then

 item q is a frequent frequency change pattern in Change-Sketch;

else if |q.q.count |≥ ase⋅m⋅(wcurrent – q.wi) then

 preserve q in Change-Sketch;

 else remove q from Change-Sketch;

if q.wi change its symbol (either from positive frequency to negative one or from

negative one to positive one)

then q.rate++;

End

Figure 4- 4. Algorithm MFC-append

 65

 The maintenance process of Change-Sketch is described as follows. Let the window

identifier of current window be k. Initially, Change-Sketch is empty. For each item q in the

current window of item-stream P, MFC-append first checks Change-Sketch to see whether an

entry with id q already exists or not. If the entry exists in the current Change-Sketch, the

frequency of q (i.e., q.count) is increased by one. Otherwise, a new entry of the form (q, 1, k,

0) is created in the current Change-Sketch. After processing all items in wk of stream P,

MFC-append computes all the items in wk of another stream Q to maintain the changed

information in Change-Sketch. The computation first checks Change-Sketch to see whether

an entry q already exists or not in the Change-Sketch. If the search succeeds, the proposed

algorithm updates the entry with id q by decreasing its frequency q.count by one. Otherwise, a

new entry of the form (q, -1, k, 0) is created in the current Change-Sketch. Now, if the

updated entry q take place frequency vibration, q.rate is increased by one, i.e., from zero to

one.

In order to bound the memory usage in mining changes of items over data streams, a

pruning mechanism of Change-Sketch is proposed. The technique deletes some entries of

Change-Sketch before MFC-append computes the next working window with window-id k+1.

It is a trade-off between the accuracy of the outputs and the memory requirement of

Change-Sketch. The pruning is described as follows. An entry of the form (q, q.count, q.wi,

q.rate) is deleted, if |q.count| < ase⋅m⋅(wcurrent-id − q.wid). After the pruning, MFC-append

computes the next working windows with window-id wk+1 of data streams P and Q in the

same way as described above.

When a user requests the results of the set of all FFCIs, VFCIs, and SFCIs embedded in

the data streams, MFC-append algorithm outputs the entries whose |q.count| ≥

mcs⋅m⋅(wcurrent-id −q.wid), |q.rate| ≥ mincr⋅m⋅(wcurrent-id − q.wid), and |q.rate| ≥ maxcr⋅m⋅(wcurrent-id

− q.wid), respectively, by one scan of the current Change-Sketch.

 66

4.4.3 Space Analysis of Change-Sketch

In this section, we prove that MFC-append algorithm uses at most O(mlog(n/m)) space, where

n denotes the current length of the estimated data streams, and m = 1/ase is the size of

working bucket.

Theorem 4-1: The space requirement of MFC-append algorithm is O(mlog(n/m)).

Proof: Let wcurrent-id be the current window-id, i.e., wcurrent-id = n/m , where m is the size of

working bucket. Let ci denote the number of items in Change-Sketch, whose window id is

wcurrent-id − i+1. Since the size of each working bucket is m, we get the following constraints:

∑
=

k

i 1

ici ≤ km for k = 1, 2, …, wcurrent-id. (1)

We claim that

∑
=

k

i 1

ci ≤ ∑
=

k

i 1
i

m
 for k = 1, 2, …, wcurrent-id. (2)

We prove Inequality (2) by induction on k. If k = 1, then the claim is true because c1 ≤ m,

i.e., we prove it from Inequality (1) directly. We now assume that Inequality (2) is true for k =

1, 2, …, j-1, and prove that this assumption implies that it is true for k = j. We now add

Inequality (1) for k = j to j-1 instances of Inequality (2) and we have

∑
=

j

i 1

ici + ∑
=

1

1i

ci + ∑
=

2

1i

ci + … + ∑
=

1-

1

j

i

ci ≤ jm + ∑
=

1

1i
i

m
 + ∑

=

2

1i
i

m
+ … + ∑

=

1-

1

j

i
i

m
.

⇒ c1 + 2c2 + … + (j-1)cj-1 + jcj + [c1 + (c1 + c2) + … + (c1 + c2 + … + cj-1)] ≤ jm + [m

+ (m + m/2) + … + (m + m/2 + … + m/(j−1))].

⇒ jc1 + jc2 + … + jcj-1 + jcj ≤ jm + [(j−1)m + (j-2)m/2 + … + m/(j−1)]

⇒ j ∑
=

j

i 1

ci ≤ jm + ∑
=

1-

1

j

i
i

mij)(−
.

 67

Upon rearrangement, we get j ∑
=

j

i 1

ci ≤ jm + ∑
=

1-

1

j

i
i

mij)(−
, which can be easily simplified

to Inequality (2) for k = j. Then we can complete the induction.

Since |Change-Sketch|= ∑
=

currentw

i 1

ci, from Inequality (2), we get |Change-Sketch| ≤ ∑
=

currentw

i 1 i

m
≤

m log(wcurrent-id) = m log(n/m).



Note that, if ase ≤ (1/m), the space is effectively Ω(m log(n/m)). If we set ase = (d/m) for

some small d, then it requires time at most O(m log(n/m)). However, this occurs only every

1/m items, and so the total time is O(n log(n/m)).

4.5 Online Mining Changes of Items over Distributed DDSs

In this section, a MFC-append based-algorithm, called MFC-dynamic (Mining Frequency

Changes of dynamic data streams), is proposed to mine the set of all FFCIs, VFCIs, and

SFCIs over dynamic data streams. Note that a data stream is called a dynamic data stream (or

DDS in short) if there are removal as well as addition of data items.

An effective encoding method is used in the proposed algorithm to distinguish the

inserted items and deleted items over DDSs, and is described as follows. If an item q is an

inserted item, MFC-dynamic encodes it to be a “positive” item, denotes as +q. Otherwise, a

deleted items q is encoded as a “negative” item, denotes as −q. After processing the encoding,

MFC-append algorithm is used to find the set of all FFCIs, VFCIs, and SFCIs over dynamic

data streams. Figure 4-5 presents the description of MFC-dynamic algorithm. From the

interpretation of MFC-dynamic, a space usage guarantee, which is similar to Theorem 4-1, is

given as follows.

 68

Claim 4-1. Whenever the deletions of item q occurs, frequency (q)Deleted ≤ frequency(q),

where frequency(q)Deleted is the frequency of item q needed to be drop.

Claim 4-2. An item q ∉ Change-Sketch, if |q.count| < ase⋅m⋅(wcurrent-id − q.wid).

Theorem 4-2. The space requirement of MFC-dynamic algorithm is O(mlog(n/m)).

Proof: According to the pruning rule, only items with frequency f or larger within the last

updated f windows age are not pruned. Thus, at most m/f items could have been survived from

that window which gives m ∑
=

n/m

i i1

1
 as the upper-bound on the number of items we are keeping

track of. Now, using the well know inequality ∑
=

p

i i1

1
 ≤ log(p), the result follows directly.



4.6 Performance Evaluation

4.6.1 Synthetic Data Generation

In the experiments of MFC-append, we generated three datasets |D| of 10,000, 100,000, and

1,000,000 transactions of single-item, and searched for frequent frequency changes while

varying the Zipf parameter from 0 (uniform) to 3 (highly skewed), and the ase from 1% to

0.001%. In order to evaluate algorithm MFC-dynamic, we use the generation approach of

synthetic data from [20]. The generated data consists of three parts: (1) a sequence of

insertions distributed uniformly over a small range; (2) a sequence of insertions was drawn

from a Zipf distribution with varying parameter (from 0 to 3); (3) a sequence of deletions was

distributed uniformly over the same range as the starting sequence. We examine

 69

MFC-dynamic in the fourth dataset of 1,000,000 transactions of single-item, Zipf parameter

from 0 to 3, and ase from 1% to 0.001%.

Algorithm MFC-dynamic

Input: (1) Two dynamic data streams, C={c1, c2, …, cn, …} and D={d1, d2, …, dn, …} with

time-varying data rate, (2) A minimum change support threshold, mcs, (3) An

approximation support error threshold, ase, (4) A maximum change rate threshold,

maxcr, (5) A minimum change rate threshold, minicr.

Output: A list of change patterns { qi, …, qj } over dynamic data streams.

Begin

Dynamic_Encode_Streamming_Items(C, D);

MFC-append(C, D, mcs, ase, maxcr, minicr) ;

End

Procedure Dynamic_Encode_Streamming_Items(C, D);

Begin

for each bucket wCi of stream C and bucket wDi of stream D

if the item q is an inserted item then

Set it to be a positive (+q) item;

 else

Set it to be a negative (-q) item;

end

 endfor

End

Figure 4- 5. Algorithm MFC-dynamic

 70

4.6.2 Experimental Results

In this following experimental testing (results as shown in Figure 4-6 through Figure 4-9), we

use threshold mcs = 0.01, and ase = 0.1⋅mcs. First, we computed recall and precision for

MFC-append, with the results shown in Figure 4-6. In this Figure, we can see that

MFC-append algorithm has excellent precision (0.90-1.00) and recall (0.6-0.81) on the

synthetic data |D|=10,000 transactions, and the recall decreases as the parameter ase increases,

while the precision increases as the ase decreases. An important observation is that the Zipf

parameters (from 0 to 3) do not affect the recall and precision of MFC-append.

In Figure 4-7, we can see that MFC-append has precision (0.93-1.00) and recall (0.57-0.76)

on the synthetic data |D|=100,000 transactions. In Figure 4-8, we can see that MFC-append

has precision (0.92-1.00) and recall (0.51-0.71) on the synthetic data |D|=1,000,000

transactions.

Recall on Synthetic Data (|D|=10,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zipf parameter

R
ec

a
ll

1.0000% 0.1000%
0.0100% 0.0010%

Precision on Synthetic Data (|D|=10,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

Figure 4- 6. Experiments on synthetic data (10
4
 transactions) for MFC-append. Left: recall

(proportion of the frequent change patterns reported). Right: precision (proportion of the

output frequency change patterns which are frequent)

 71

Figure 4- 7. Experiments on synthetic data (10
5
 transactions) for MFC-append. Left: recall.

Right: precision

Figure 4- 8. Experiments on synthetic data (10
6
 transactions) for MFC-append. Left: recall.

Right: precision

Recall on Synthetic Data(|D|=100,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=100,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

Recall on Synthetic Data (|D|=1,000,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=1,000,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

 72

Figure 4- 9. Experiments on synthetic data (10
6
 transactions) for MFC-dynamic. Left: recall.

Right: precision

 In Figure 4-9, we can see that the MFC-dynamic has the similar experimental results as

algorithm MFC-append. The recall increases as the ase decreases while the precision

decreases as the ase increases, and the various Zipf parameters do not influence the recall and

precision of MFC-dynamic.

4.7 Conclusions

In this chapter, we propose two single-pass algorithms, called MFC-append and

MFC-dynamic, for mining frequent frequency changed items, vibrated frequency changed

items, and stable frequency changed items over continuous append-only and dynamic data

streams, respectively. A new summary data structure, called Change-Sketch, is developed to

store the essential changed patterns of data streams. The space complexity of Change-Sketch

is O(mlog(n/m)), and the proposed algorithms take O(log(n/m)) time in the worst case to

compute each newly arrived item, but only O(1) amortized time per item. The experimental

Recall on Synthetic Data (|D|=1,000,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=1,000,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

 73

results show that our algorithms have linear scalability and high accuracy in the analytical

outputs.

 74

Chapter 5 Online Mining of Path Traversal Patterns over Web

Click-Streams

Mining of path traversal patterns is one of the most important research issues of Web usage

mining. The problem of mining of path traversal patterns from a large static Web click

dataset was presented and two multiple-pass algorithms, FS (Full Scan) and SS (Selective

Scan), are proposed by Chen et al. [13]. However, multiple-pass algorithms FS and SS are not

feasible to mine the set of path traversal patterns in a streaming Web click-sequence

environment. Hence, in this chapter, we modified the path traversal pattern mining problem

proposed by Chen et al. [13] into a new research problem of Web usage mining.

5.1 Introduction

Cooley et al. [19] and Srivastava et al. [62] have surveyed the major technical advances and

research problems in Web data mining. In general, Web data mining can be divided into three

categories: Web structure mining, Web content mining and Web usage mining. The goal of

Web structure mining is to generate structural summary about the Web site and Web page. The

goal of Web content mining is to describe the automatic search of information resource

available online, and to discover Web data content. Web usage mining is the process of

automatic discovery of user navigation patterns from Web server logs. In this section, a brief

review of Web user navigation pattern mining is described as follows.

 Chen et al. [13] defined a problem of mining path traversal patterns in a large Web-log

dataset. Two algorithms, FS (Full Scan) and SS (Selective Scan), were proposed. These

algorithms use level-by-level methods, i.e., Apriori-based approach [3], to discover maximal

reference sequences in a static Web click dataset. Although FS and SS mine path traversal

 75

patterns in a static Web log dataset efficiently, they are not feasible in the mining of streaming

Web click-sequences. This is because FS and SS algorithms need to scan the dataset at least

twice.

 Spiliopoulou et al. [61] proposed a navigation pattern discovery miner, called WUM

(Web Utilization Miner), and proposed an algorithm for building an aggregating tree from

static Web logs. Then, WUM mines the Web access patterns by MINT mining language.

Borges and Levene [9] proposed a model of hypertext that captures the user navigation

behavior patterns. The set of user navigation sessions is modeled as a HPG (Hypertext

Probabilistic Grammar), and the set of strings which are generated with higher probability

correspond to the navigation trials preferred by users. Pei et al. [57] proposed a WAP-tree

(Web Access Pattern tree) to store the frequent Web page-sequences of user navigation

behaviors, and proposed an efficient pattern-growth WAP-mine algorithm to mine the Web

access patterns from the WAP-tree. WAP-mine is a two-pass algorithm. Shan and Li [60]

proposed a two-pass algorithm Fast-Walk to mine the Web traversal walks. A Web traversal

walk is a structural sequence of forward and backward traversal paths. In Fast-Walk algorithm,

an extended prefix-tree structure is constructed in main memory from Web logs, and the

frequent Web traversal walks are generated from the in-memory tree structure efficiently.

 Pabarskaite [56] suggested several hypotheses that could help improve the retention of

Web site and proposed decision trees for Web user behaviour analysis. The decision tree

package C4.5 is used in [56], and showed reasonable computational performance and

accuracy. Xing and Shen [67] proposed two efficient algorithms UAM (User Access Matrix)

and PNT (Preferred Navigation Tree) based on the concepts of selection and time preference

for the mining of user preferred navigation patterns. Considering the Web site topology, UAM

algorithm can obtain user preferred access paths by the page-page transition statistics of all

the users’ behaviours. The PNT is similar to WAP-tree. However, each node of PNT records

 76

the support, which is the frequency and the time of user’s visiting the node along the same

route, and the preference represents how users prefer visiting this node to the previous nodes.

 Web prefetching and prediction of HTTP requests are important applications of Web

usage mining [15, 59]. Chen et al. [15] proposed a popularity-based PPM (Prediction by

Partial Match model) for Web prefetching. The popularity-based mode uses grades (grades 3,

2, 1 and 0) to rank URL access patterns and builds these patterns into a predictor tree to aid

Web prefetching. The popularity-based PPM uses only the most popular URLs as root nodes

and makes space optimizations to the completed tree by removing non-root nodes and those

nodes accessed only once. Schechter et al. [59] introduced the use of path profiles for

describing HTTP request behavior and proposed an algorithm for creating these path profiles

efficiently.

 Association rule and sequential pattern mining algorithms are also common for mining

Web visitors behaviours [3, 35, 16, 58, 50]. Agrawal and Srikant [3] proposed the well-known

Apriori property, i.e., all nonempty subsets of a frequent itemset must also be frequent, and

developed three multiple-pass algorithms based on the Aprioir property for mining frequent

itemsets by using candidate-generation-and-testing approaches. Han et al. [35] proposed a

prefix-tree structure FP-tree (Frequent Pattern tree) and a two-pass pattern-growth algorithm

FP-growth to discover the set of frequent itemsets without generating candidate itemsets.

Chenug and Zaïane [16] proposed a data structure called CATS Tree (Compressed and

Arranged Transaction Sequence Tree), an extension of FP-tree, to discover the set of frequent

itemsets. The CATS tree is a prefix tree structure and it contains all elements of FP-tree

including the header, the item links etc.

 Pei et al. [58] proposed a two-pass, pattern-growth algorithm PrefixSpan (Prefix-

projected Sequential pattern mining) to mine sequential patterns. PrefixSpan finds frequent

1-sequences, i.e., length-1 sequential patterns, after scanning the sequence database once.

 77

Then, the database is projected into smaller datasets according to the frequent 1-sequences.

Finally, the set of sequential patterns is found recursively by growing subsequence fragments

in each projected database. Although PrefixSpan discovers sequential patterns efficiently, the

cost of disk I/O might be high due to the creation and processing of the projected

sub-databases. Hence, the two-pass algorithm PrefixSpan is not practical for mining

streaming data. Lin and Lee [50] proposed a memory-indexing algorithm MEMISP (MEMory

Indexing for Sequential Pattern mining) for fast discovery of sequential patterns. MEMISP

reads data sequences into memory in one pass if the memory is enough to store these

sequences. Then MEMISP discovers the sequential patterns by using a recursive

find-then-index technique. Although MEMISP is a single-pass algorithm, it is still not feasible

for mining patterns in a streaming data. This is because the MEMISP is not an incremental

mining algorithm while the data stream is a continuous sequence of data elements.

 In this chapter, an efficient, single-pass algorithm, called DSM-PLW (Data Stream

Mining for Path traversal patterns in a Landmark Window), is proposed to mine the set of

path traversal patterns in the landmark window of a online, continuous stream of Web click

sequences. The purpose of mining patterns in a landmark window of data streams is to

discover patterns over the entire history of the data streams [70]. An effective in-memory

summary data structure, called SP-forest (Summary Path traversal pattern forest), is proposed

for storing the essential information about the frequent reference sequences of the stream so

far. Finally, the set of all maximal reference sequences, i.e., path traversal patterns, is

determined from the SP-forest by a depth-first-search mining mechanism, called MRS-mining

(Maximal Reference Sequence mining). To the best of our knowledge, this is the first study of

online, single-pass mining path traversal patterns over streaming Web click-sequences.

The remainder of the chapter is organized as follows. The problem is defined in Section

5.2. In Section 5.3, we describe the proposed algorithm DSM-PLW. Theoretical analysis and

 78

performance results are presented in Section 5.4. Finally, we conclude the chapter in Section

5.5.

5.2 Problem Definition: Online Mining of Path Traversal Patterns

Let S be an infinite sequence of Web clicks, where a Web click wc consists of a Web user

identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r). In a

steaming environment, a segment of Web click stream arrived at timestamp ti can be divided

into a set of Web click-sequences (or click-sequences in short). For example, a fragment of

stream, S = [ti, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200,

a), (200, e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>,

and <200, abcae>, where 100, 200 are user identifiers of Web users, and a, b, c, d, e are

references accessed by these users. A (Web) click-sequence, CS , consists of a sequence of

forward references and backward references accessed by a Web user. A backward reference

means revisiting a previously visited reference by the same user.

 A maximal forward reference (MFR) is a forward reference path without any backward

references. Hence, a click-sequence with l backward references can be divided into (l+1)

maximal forward references. For example, a click-sequence <abcae> can be divided into two

MFRs: <abc> and <ae>, because the second reference a is a backward reference in this

click-sequence. Therefore, we can map the problem of mining path traversal patterns into the

one of finding frequent occurring consecutive sequences, called reference sequences (RSs),

among all maximal forward references. The estimated support (esup) of a reference

sequence RS, denoted as RS.esup, is the number of maximal forward references in the stream

containing RS as a substring.

 A reference sequence RS is called a frequent reference sequence if RS.esup ≥ s⋅N,

where s is a user-defined minimum support threshold in the range of [0, 1], and N is the

 79

current length of stream, i.e., the number of maximal forward references so far. A reference

sequence s1, s2, …, sn, is called a super-sequence of another reference sequence r1, r2, …, rk

if there exists an i such that si+j = rj, for 1 ≤ j ≤ k . A frequent reference sequence is called

maximal frequent reference sequence (abbreviated as maximal reference sequence in the

context of this chapter) if it is not a substring of any other frequent reference sequences.

 Consequently, the problem of online, single-pass mining path traversal patterns in a

landmark window over Web click-sequence streams is to mine maximal reference sequences

by one scan of a continuous stream of maximal forward references when the value of

minimum support threshold s is given.

Web click

streams buffer1

Single-Pass Path

Traversal Patterns

Mining algorithms

In-Memory Summary

Data Structure

Web Click Sequence

Generator

Click-Sequence

Streams

buffer2

Click Streams

(Approximate) Path

Traversal Patterns

M
R

F
 G

en
e
ra

to
r

Maximal Forward

Reference Generator

Maximal

Forward

Reference

Streams

Figure 5- 1. Process of online mining of path traversal patterns in Web click streams

5.3 The Proposed Algorithm: DSM-PLW

The process of mining path traversal patterns in Web click streams is shown in Figure 5-1.

Algorithm DSM-PLW (Data Stream Mining for Path traversal patterns in a Landmark

 80

Window) is composed of four steps.

(a) Read a basic window which consists of a fixed sized maximal forward references

from the buffer in the main memory (Step 1).

(b) Construct an in-memory summary data structure by processing each incoming basic

window (Step 2).

(c) Prune and maintain the summary data structure (Step 3).

(d) Find the set of path traversal patterns from the current summary data structure (Step

4).

 Steps 1 and 2 are performed in sequence for a new basic window. Steps 3 and 4 are

usually performed periodically or when it is needed. Since the step 1 is straightforward, we

shall henceforth focus on Steps 2, 3, and 4, and devise algorithms for the effective

construction and maintenance of summary data structure, and efficient determination of the

set of path traversal patterns.

5.3.1 Construction of the In-memory Summary Data Structure

In this section, a new in-memory summary data structure, called SP-forest (Summary Path

traversal pattern forest), is proposed to store the essential information about path traversal

patterns of each incoming basic window, and an efficient algorithm is proposed to construct

the summary data structure. Then, we use a running example to illustrate.

Definition 5-1 A Summary Path traversal pattern forest (abbreviated as SP-forest) is a prefix

tree-based summary data structure defined below.

1. SP-forest consists of a list of frequent references (denoted by FR-list), such as r1, r2, …, rk,

where ri.esup ≥ s⋅N, and a set of Path traversal pattern tree (abbreviated as Path-tree) of

references ri, denoted by ri.Path-tree, ∀i = 1, 2, …, k.

2. Each node in the ri.Path-tree, ∀i = 1, 2, …, k, consists of four fields: fr_id, esup, mfr_id,

 81

and node-link, where fr_id is the identifier of the incoming forward reference, esup

registers the number of maximal forward references represented by a portion of the path

reaching the node with the fr_id, the value of mfr_id assigned to a new node is the

identifier of current maximal forward reference, and node-link links up a node with the

next node with the same f_id in the SP-forest or null id if there is none.

3. Each entry ri, ∀i = 1, 2, …, k, in the FR-list consists of four fields: fr_id, esup, mfr_id, and

head-link, where fr_id registers the forward reference identifier the entry represents, esup

records the number of maximal forward references in the stream so far containing the

reference with identifier fr_id, mfr_id assigned to a new entry is the identifier of the

current maximal forward reference, and head-link is a pointer pointing to the root node of

the fr_id.Path-tree.

Figure 5-2 gives the SP-forest construction algorithm. First of all, DSM-PLW algorithm

reads a maximal forward reference MFRi = <r1, r2, …, rj, …, rm> from the buffer and

maintains the SP-forest using the MFR-projection(MFRi). The maintenance process is

described as follows. For each reference rj in MFRi, if the reference rj exists in the current

FR-list, the estimated support of the reference, i.e., rj.esup, is increased by one. Otherwise, a

new entry of the form (rj, 1, i, �rj) is created in the FR-list. Note that the notation �rj

indicates the head-link of rj, and i is the current MFR’s identifier. Next, MFRi is projected into

m reference-suffix maximal forward references (denoted by rs-MFRs) according to the order

of references in the MFRi. The step is called a maximal forward reference projection, and is

denoted by MFR-projection(MFRi) = {r1|MFRi, r2|MFRi, …, rj|MFRi, …, rm|MFRi}, where

rj|MFRi = <rjrj+1…rm>, ∀j = 1, 2, …, m.

 For example, a maximal forward reference <acdef> is projected into five reference-suffix

maximal forward references: <acdef>, <cdef>, <def>, <ef>, and <f>. Note that the cost of

maximal forward reference projection is (m
2
+m)/2, i.e., m + (m−1) + … + 1. Next, these

 82

rs-MFRs with prefix ri, ∀i = 1, 2, …, m, are inserted into the respective ri.Path-tree as

branches. If an rs-MFR shares a prefix with an MFR already in the Path-tree, the new MFR

will share a prefix of the branch representing that MFR. In addition, an estimated support

counter is associated with each node in the Path-tree. The counter is updated when a

reference-suffix maximal forward reference causes the insertion of a new branch. Figure 5-3

shows the subroutines of SP-forest construction and maintenance.

Algorithm SP-forest construction

Input: A stream of maximal forward references, MFR1, MFR2, …, MFRN, and a user-defined

minimum support threshold s ∈ (0, 1).

Output: A SP-forest so far.

1. FR-list = {}; /* initialize the FR-list to empty */

2. foreach MFRi = <r1, r2, …, rk> do /* ∀i = 1, 2, …, N, where N is the identifier of current

MFR*/

3. foreach reference rj ∈ MFRi do /* ∀j = 1, 2, …, k */

4. if rj ∉ FR-list then

5. create a new entry of form (rj, 1, i, �rj) into the FR-list;

6. else

7. rj.esup = rj.esup + 1;

8. end if

9. call MFR-projection(MFRi, rj);

10. end for

11. end for

12. call SP-pruning(SP-forest, N, s);

Figure 5- 2. Algorithm SP-forest construction

 83

Subroutine MFR-projection

Input: A maximal forward reference MFRi = <r1, r2, …, rj, …, rm>.

Output: rj.Path-tree, ∀j = 1, 2, …, m.

1. foreach reference rj, ∀j = 1, 2, …, m, in MFRi do

2. call Path-tree-maintenance(rj|MFRi, rj.Path-tree, i);

3. end for

Subroutine Path-tree-maintenance

Input: A reference-suffix maximal forward reference rj|MFRi = <rjrj+1…rm>, rj.Path-tree, and

the identifier of current maximal forward reference i;

Output: A modified rj.Path-tree, ∀j = 1, 2, …, m.

1. foreach reference rl, ∀l = j, j+1, …, m, in rj|MFRi do

2. if rl.Path-tree has a child node with id y such that y.fr_id = rl.fr_id then

3. y.esup = y.esup+1;

4. else

5. create a new node of form (xl, 1, i) in the rl.Path-tree;

6. end if

7. end for

Subroutine SP-pruning

Input: A SP-forest, a user-defined minimum support threshold s in the range of [0, 1], and the

identifier of current maximal forward reference N.

Output: A SP-forest containing the set of all path traversal patterns.

1. foreach entry rj ∈ FR-list do

2. if rj.esup < s⋅N then

3. delete rj.Path-tree;

4. delete rj from FR-list;

5. delete the sub-trees of a node whose fr_id is j in other rl.Path-tree (l ≠ j) by

 traversing the node-links in the SP-forest;

6. end if

7. end for

Figure 5- 3. Subroutines of SP-forest construction algorithm

 84

a:1:1

c:1:1

d:1:1

e:1:1

f:1:1

a:1:1FR-list

a.Path-tree

c:1:1

d:1:1

e:1:1

f:1:1

c:1:1

d:1:1

e:1:1

f:1:1

d:1:1

e:1:1

f:1:1

e:1:1 f:1:1

f:1:1

e.Path-tree

f.Path-tree

c.Path-tree

d.Path-tree

SP-forest

Figure 5- 4. SP-forest after processing the first maximal forward reference <acdef>

a:2:1

c:1:1

d:1:1

e:1:1

f:1:1

a:2:1FR-list

a.Path-tree

c:1:1

d:1:1

e:1:1

f:1:1

c:1:1

d:1:1

e:1:1

f:1:1

d:1:1

e:2:1

f:1:1

e:2:1 f:1:1

f:1:1

e.Path-tree

f.Path-tree

c.Path-tree

d.Path-tree

SP-forest

b:1:2

e:1:2

b:1:2

e:1:2

b:1:2

b.Path-tree

Figure 5- 5. SP-forest after processing the second maximal forward reference <abe>

 85

a.Path-tree

a:3:1

c:2:1

d:2:1

e:1:1

f:1:1

a:3:1FR-list

c:4:1

d:2:1

e:1:1

f:1:1

c:4:1

d:3:1

e:1:1

f:1:1

d:3:1

e:4:1

f:3:1

e:4:1 f:5:1

f:5:1

e.Path-tree

f.Path-tree

c.Path-tree

d.Path-tree

SP-forest

b:1:2

e:1:2

b:1:2

e:1:2

b:1:2

b.Path-tree

e:2:3

f:2:3

f:1:4 f:1:4

f:2:4

Figure 5- 6. SP-forest after processing the first six maximal forward references

Example 5-1 Let the first six maximal forward references in the stream of Web

click-sequences be <acdef>, <abe>, <cef>, <acdf>, <cef>, and <df>, where a, b, c, d, e, and f

are Web references. The SP-forest with respect to the first two MFRs, <acdef> and <abe>,

constructed by DSM-PLW algorithm is shown in Figure 5-4 and Figure 5-5, respectively.

Note that the dotted-line arrows, node-links, in Figure 5-4 are used to link up a node with the

next node of the same fr_id in the current SP-forest. However, in the following steps, as

demonstrated in Figure 5-5 through Figure 5-7, the node-links are omitted for concise

presentation.

First, DSM-PLW algorithm reads the first maximal forward reference <acdef> from the

buffer, and projects it into five reference-suffix maximal forward references: <acdef>, <cdef>,

<def>, <ef>, and <f>. Next, the algorithm inserts <acdef>, <cdef>, <def>, <ef>, and <f> into

the empty trees, i.e., a.Path-tree, c.Path-tree, d.Path-tree, e.Path-tree, and f.Path-tree,

respectively. The step results in a single path in each Path-tree: root(a:1:1) � (a:1:1) � (c:1:1)

 86

� (d:1:1) � (e:1:1) � (f:1:1), root(c:1:1) � (c:1:1) � (d:1:1) � (e:1:1) � (f:1:1),

root(d:1:1) � (d:1:1) � (e:1:1) � (f:1:1), root(e:1:1) � (e:1:1) � (f:1:1), and root(f:1:1) �

(f:1:1). The projected result is shown in Figure 5-4.

 Then, DSM-PLW inserts the result of MFR-projection(<abe>): <abe>, <be>, and <e>

into a.Path-tree, b.Path-tree, and e.Path-tree, respectively. Hence, <abe> leads to one path

with a being the common prefix: root(a:2:1) � (a:2:1) � (c:1:1) � (d:1:1) � (e:1:1) �

(f:1:1) and root(a:2:1) � (a:2:1) � (b:1:2) � (e:1:2). Then, <be> results in a single path in

b.Path-tree: root(b:1:2) � (b:1:2) � (e:1:2). Finally, DSM-PLW algorithm inserts <e> into

the SP-forest. At this time, no new node is created, but the first path of e.Path-tree is changed

to: root(e:2:1) � (e:2:1) � (f:1:1). After processing the second maximal forward reference

<abe>, the result is shown in Figure 5-5. After processing the six maximal forward references,

the SP-forest is given in Figure 5-6.

5.3.2 Pruning Mechanism of the Summary Data Structure

According to the Apriori principle [3], only the frequent references are used to construct

candidate k-RSs (k-reference-sequences) in the next pass, where k > 1. Thus, the set of

candidates containing the infrequent references stored in SP-forest is pruned. The pruning is

usually performed periodically or when it is needed.

 Let the user-defined minimum support threshold be s in the range of [0, 1], and the length

of Web click-sequence stream be N, i.e., N maximal forward references. In the pruning

mechanism of SP-forest, a reference sequence X and its super-sequences are deleted from

SP-forest if X.esup < s⋅N. For each entry of form (fr_id, esup, mfr_id, �fr_id) in the FR-list,

if its fr_id.esup is less than s⋅(N−mfr_id+1), it can be regarded as an infrequent reference.

Three operations are preformed in sequence. First, DSM-PLW deletes the fr_id.Path-tree.

Second, it deletes the reference with id fr_id from the FR-list. Finally, DSM-PLW deletes the

 87

infrequent reference with id fr_id and its suffix paths from other Path-trees by node-links.

After pruning all infrequent references from SP-forest, SP-forest contains the set of all

frequent path traversal patterns of the stream so far.

Example 5-2 Let the user-specified minimum support threshold be 0.3. Hence, a reference

sequence X is called infrequent in Figure 5-6 if X.esup < 0.3⋅6 = 1.8. At this time, only

reference b (b.esup = 1) is infrequent by searching the current FR-list. Now, in order to

maintain the frequent patterns in the SP-forest, DSM-PLW deletes b.Path-tree, b’s suffix paths

from a.Path-tree, and b from the FR-list. The result is shown in Figure 5-8.

The next step of DSM-PLW algorithm is to determine the set of all path traversal patterns

from SP-forest constructed so far. The step is performed only when the analytical results of

the stream is requested.

FR-list

a.Path-tree

a:3:1

c:2:1

d:2:1

e:1:1

f:1:1

a:3:1

c:4:1

d:2:1

e:1:1

f:1:1

c:4:1

d:3:1

e:1:1

f:1:1

d:3:1

e:4:1

f:3:1

e:4:1 f:5:1

f:5:1

e.Path-tree

f.Path-tree

c.Path-tree

d.Path-tree

SP-forest

e:2:3

f:2:3

f:1:4 f:1:4

f:2:4

Figure 5- 7. SP-forest after pruning the infrequent reference b

 88

5.3.3 Determination of Path Traversal Patterns from SP-forest

Assume that there are k frequent references, namely r1, r2, …, rk, in the current FR-list. Let

the minimum support threshold be s in the range of [0, 1], and the current length of stream be

N. For each entry ri, ∀i = 1, 2, …, k, in the FR-list, DSM-PLW traverses the ri.Path-tree to

find the reference sequences with prefix ri whose estimated support is greater than s⋅N in

depth-first-search (DFS) manner. Then, DSM-PLW stores the maximal reference sequences in

a temporal list, MRS-list. Finally, DSM-PLW outputs the set of path traversal patterns stored

in the temporal list. Figure 5-8 gives the path traversal pattern mining algorithm, called

MRS-mining (Maximal Reference Sequence mining).

Example 5-3 The example illustrates the mining of the path traversal patterns from the

current SP-forest shown in Figure 5-7. Let the minimum support s be 0.3.

First, MRS-mining algorithm starts the path traversal pattern mining scheme from the first

reference a in the FP-list, and generates a frequent reference sequence <acd> by DFS.

MRS-mining adds <acd> into MRS-list because <acd> is not a substring of any other patterns

stored in the current MRS-list. Next, on the second entry c, MRS-mining algorithm finds two

frequent reference sequences: <cd> and <cef>. However, only <cef> is added into the

MRS-list. This is because <cd> is a substring of a generated maximal reference sequence

<acd>. On the third entry d, only one frequent reference sequence <df> is generated by

MRS-mining, and stored into the MRS-list. On the fourth entry e, only one frequent reference

sequence <ef> is generated, but it is not a maximal reference sequence. This is because <ef> is

a substring of <cef>. On the last entry f, only one frequent reference sequence <f> is obtained,

but <f> is not a maximal reference sequence. This is because <f> is a substring of <cef>.

Finally, MRS-list contains the set of maximal reference sequences, i.e., path traversal

patterns: <acd>, <cef>, and <df>.

 89

Algorithm MRS-mining

Input: A SP-forest constructed so far, the current length of maximal forward references N,

and a user-defined minimum support threshold s in the range of [0, 1].

Output: A temporal list of maximal reference sequences, MRS-list,

1. MRS-list = ∅;

2. foreach entry ri in the current FR-list do

3. do Depth-First-Search to find the esup of each reference sequence Y with prefix ri in

the ri.Path-tree;

4. if Y.esup ≥ s.N and Y is not a substring of any other frequent reference sequences

stored in the MRS-list then

5. add Y into the MRS-list;

6. end if

7. end for

8. if MRS-list ≠ ∅ then

9. output patterns form the MRS-list;

10. end if

Figure 5- 8. Algorithm MRS-mining

5.4 Performance Evaluation

To evaluate the performance of DSM-PLW algorithm, two experiments were performed. The

experiments were carried out on the synthetic Web traversal path data generator proposed by

Chen et al. [13]. In these experiments, a traversal tree is constructed to mimic a Web site

structure whose starting position is a root node of the tree. The traversal tree is composed of

internal nodes and leaf nodes. A traversal path consists of nodes accessed by a Web user. The

size of each traversal path is picked from a Poisson distribution with mean equal to | P |,

where | P | is the average size of reference paths. With the first node being the root node, a

 90

traversal path is generated probabilistically within the traversal tree as follows. Each edge

connecting to an internal node is assigned with a weight. The weight corresponds to the

probability that each edge will be accessed next by the Web user. The weight to its parent

node is assigned with p0, which is generally 1/(n+1) where n is the number of child nodes.

The probability of traveling to each child node, pi, is determined from an exponential

distribution with unit mean. Moreover, the probability is normalized that the sum of the

weights for all child nodes is equal to 1−p0. When the path arrives at a leaf node, the next

move would be either to its parent node in backward (with a default probability 0.25) or to

any internal node (with an aggregate probability 0.75). More detail about the generation of

synthetic traversal paths can be found in [13].

 Three synthetic data streams, H10P5.D200K, H10P10.D200K, and H10P15.D200K, of

size 200,000 reference paths are studied. HxPy means that x is the height of a traversal tree,

and y is the average size of the reference paths. D200K means that the number of reference

paths is 200,000. A traversal tree for H10 was obtained when the height of the tree is 10, and

the fanout at each internal node is between 4 and 7. The root node consists of 7 child nodes.

Moreover, the number of internal nodes is 16,200 and the number of leaf nodes is 73,006. In

all experiments, the click-sequences of each datasets are looked up in sequence to simulate the

environment of a data stream. All the experiments are performed on a 1.80 GHz Pentium 4

processor with 512 megabytes main memory, running on Microsoft Windows 2000. In

addition, all the programs are written in Microsoft/Visual C++ 6.0.

5.4.1 Experimental Results of Synthetic Data

We first evaluated the effect of various minimum support threshold s for synthetic data

streams having a typical value of 200,000 (200K) reference paths. In Figure 5-9, we plot total

execution time taken by our algorithm for minimum support threshold s ranging from 0.2% to

 91

1%. The figure shows how decreasing s leads to increase in running time. Figure 5-10 shows

how decreasing s leads to increase in memory usage. The memory usage shown in Figure

5-10 (a) is the memory requirement in Steps 2 and 3 of DSM-PLW algorithm, and Figure 5-10

(b) is the total memory requirement of DSM-PLW algorithm in Steps 2, 3, and 4.

 To measure the relative accuracy of DSM-PLW algorithm, an average support error ASE

proposed in [10] is used. Figure 5-11 shows the average support error of the mining results of

the proposed algorithm with respect to that of the FS algorithm [13] performed on the

synthetic streaming data by varying the user-specified minimum support threshold s.

Generally, the average support error increases as the value of s increases in Figure 5-11.

 To assess the scalability of our algorithm, scale-up experiments were conducted. Figure

5-12 shows that the execution time of DSM-PLW increases linearly as the streaming data size

increases, ranging from 200K to 1000K. Different minimum support thresholds s yield similar

and consistent results. The result of s = 0.2% is shown in Figure 5-12, and it exhibits good

linearity in scale-up.

 D200K

010203040506070

0.2 0.4 0.6 0.8 1Minimum support threshold s (%)
Total execution tim
e (sec.) H10P5H10P10H10P15

Figure 5- 9. Performance comparisons of total execution time over various minimum support

thresholds

 92

 D200K

0102030405060708090100

0.2 0.4 0.6 0.8 1Minimum support threshold s (%)Total memory usag
e (MB) except MR
S-mining H10P5H10P10H10P15

(a) without MRS-mining

 D200K

0102030405060708090100

0.2 0.4 0.6 0.8 1Minimum support threshold s (%)Total memory usa
ge (MB) with MR
S-mining H10P5H10P10H10P15

(b) with MRS-mining

Figure 5- 10. Performance comparisons of memory usage over various minimum support

thresholds

 93

D200K

03
69

1215

1 0.8 0.6 0.4 0.2Minimum support threshold s (%)
ASE (x0.00001
) H10P5H10P10H10P15

Figure 5- 11. Accuracy of mining results

 s = 0.2%

050100150200250300

200K 400K 600K 800K 1,000KNumber of reference paths ('000)
Total executio
n time (sec.)

H10P5H10P10H10P15

Figure 5- 12. Linear scalability of the streaming data size

 94

BMS-WebView-1

2.2

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.3

0.07 0.067 0.063 0.06 0.057 0.053 0.05
Minimum Support Thresholds (%)

T
o
ta

l
M

em
o
ry

 U
sa

g
e

(M
B

)

(a) Memory usage on BMS-WebView-1

 BMS-WebView-2

6

6.5

7

7.5

8

8.5

9

0.1 0.085 0.065 0.05 0.035 0.025 0.01

Minimum Support Thresholds (%)

T
o

ta
l

M
em

o
ry

 U
sa

g
e

(M
B

)

(b) Memory usage on BMS-WebView-2

Figure 5- 13. Memory usage of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over

various minimum support thresholds

 95

BMS-WebView-1

0.6

0.65

0.7

0.75

0.8

0.07 0.067 0.063 0.06 0.057 0.053 0.05

Minimum Support Thresholds (%)

T
o

ta
l

E
x

ec
u

ti
o

n
 T

im
e

(S
ec

.)

(a) Execution time on BMS-WebView-1

 BMS-WebView-2

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

0.1 0.085 0.065 0.05 0.035 0.025 0.01
Minimum Support Thresholds (%)

T
o

ta
l

E
x

ec
u

ti
o

n
 T

im
e

(S
ec

.)

(b) Execution Time on BMS-WebView-2

Figure 5- 14. Execution time of DSM-PLW on BMS-WebView-1 and BMS-WebView-2 over

various minimum support thresholds

 96

5.4.2 Experimental Results of Real Data

Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain

several months worth of click-stream data from two e-commerce web sites, are used to

evaluate the performance of the DSM-PLW algorithm. The real data was provided by Blue

Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The

BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum

transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is

2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512

transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average

transaction size is 5 items. Note that an item is regarded as a reference and a transaction is

regarded as a maximal forward reference in these experiments.

 In the experiments, two major factors, memory and execution time, are examined in the

online, single-pass mining path traversal patterns of streaming Web click-sequences, since

both should be bounded online as time advances. As shown in Figure 5-13, the memory usage

of DSM-PLW algorithm is relatively insensitive to the minimum support thresholds. As the

support decreases, the memory consumption of DSM-PLW increases stably, indicating the

feasibility of the proposed algorithm. In Figure 5-14, the execution time of DSM-PLW grows

smoothly as the support decreases for both real datasets. Hence, the experiments show that

DSM-PLW algorithm is a practical scheme to mine the set of path traversal patterns in real

data.

5.5 Conclusions

In this chapter, a new interesting research problem of Web usage mining, namely, online

single pass mining path traversal patterns in streaming Web click-sequences is presented. A

new single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns

 97

in a Landmark Window), is developed to discover the set of all path traversal patterns over the

entire history of continuous stream of Web click-sequences. In the proposed DSM-PLW

algorithm, an effective in-memory summary data structure, called SP-forest (Summary Path

traversal pattern forest), is developed to maintain the essential information of all maximal

reference sequences in the stream so far. The set of all maximal reference sequences, i.e., path

traversal patterns, is determined from the SP-forest by a depth-first-search mechanism, called

MRS-mining (Maximal Reference Sequence mining). Experimental results show that

DSM-PLW can meet the performance requirements of data stream mining: single-pass,

bounded space, and real time.

 98

Chapter 6 Online Mining of Top-K Path Traversal Patterns over

Web Click-Streams

In this chapter, we study the problem of mining top-k path traversal patterns over Web

click-streams. In the framework of DSM-PLW algorithm as discussed in Chapter 5, it requires

a user-specified minimum support threshold minsup, and then mines path traversal patterns

with estimated support values that are higher than the minimum support threshold.

Unfortunately, the setting of minimum support threshold is quite tricky and it leads to the

following problem that may hinder its popular use.

 If the value of minimum support threshold is too small, the pattern mining algorithm

may lead to the generation of thousands of patterns, whereas a too big one may often generate

a few patterns or even no answers. As it is difficult to predict how many patterns will be

mined with a user-defined minimum support threshold, the top-k pattern mining has been

proposed.

6.1 Introduction

The first top-k pattern mining algorithm Itemset-Loop was proposed by Fu et al. [28].

Itemset-Loop algorithm mines the k most frequent itemsets with lengths shorter than a

user-defined value of m. LOOPBACK and BOMO [17] are top-k pattern mining algorithms

based on a FP-tree structure, and uses the same estimated mechanism of Itemset-Loop.

Moreover, experiments in [17] show that LOOPBACK and BOMO outperform the

Itemset-Loop. TFP algorithm [66] is a FP-tree-based algorithm and mines the top-k closed

frequent itemsets with lengths longer than a user-specified value of min_l. TSP [65] is the first

algorithm to mine the top-k closed sequential patterns of lengths no less than the user-defined

 99

minimum length of mined patterns min_l.

 Recently, Metwally et al. [54] proposed a single-pass algorithm to mine the top-k

elements over data streams. However, the top-k elements are top-k items. In this chapter, we

propose an efficient single-pass algorithm, called DSM-TKP (Data Stream Mining for Top-K

Path traversal patterns), to mine the top-k path traversal patterns over Web click streams. An

effective summary data structure, called TKP-forest (Top-K Path forest), and an efficient

structure pruning mechanism, called KP (K Pruning), are proposed to overcome the data

stream mining issues such as bounded space requirement and approximation. Based on our

knowledge, DSM-TKP is the first single-pass algorithm for mining top-k path traversal

pattern over streaming click-data.

 The remainder of the chapter is organized as follows. The problem definition is

introduced in Section 6.2. In Section 6.3, we describe the design of our proposed algorithm

for mining top-K path traversal patterns over Web click-sequence streams. We discuss the

experiments in Section 6.4. Finally, we conclude this work in Section 6.5.

6.2 Problem Definition

Let S be a continuous steam of Web clicks, where a Web click wc consists of Web user

identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r). In a

steaming environment, a segment of Web click stream arrived at timestamp ti can be divided

into a set of Web click-sequences (or click-sequences in short). For example, a fragment of

stream, S = [ti, (100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200,

a), (200, e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>,

and <200, abcae>, where 100, 200 are identifiers of Web users, and a, b, c, d, e are references

accessed by these users. A (Web) click-sequence CS consists of a sequence of forward

 100

references and backward references accessed by a Web user. A backward reference means

revisiting a previously visited reference by the same user. A maximal forward reference

(MFR) is a forward reference path without any backward references. Hence, a click-sequence

can be divided into several maximal forward references, i.e., CS = MFR1, MFR2, …, MFRi,

where i ≥ 1. For example, a click-sequence <abcae> can be divided into two MFRs: <abc>

and <ae>. Therefore, we can map the problem of mining top-k path traversal patterns into the

problem of finding top-k occurring consecutive sequences, called reference sequences (RSs),

among all maximal forward references. The support of a reference sequence RS, denoted as

sup(RS), is the number of maximal forward references in the stream containing RS as a

substring. A reference sequence is called maximal if it is not a substring of any other

reference sequences. A maximal reference sequence is also called a path traversal pattern. A

reference sequence RS is a top-k maximal reference sequence if there exists no more than

(k-1) maximal reference sequences whose support is higher than that of RS. In this chapter,

our task is to mine the top-k maximal reference sequences by one scan of a continuous stream

of Web clicks when the value of k is given.

6.3 The Proposed Algorithm: DSM-TKP

The proposed algorithm DSM-TKP (Data Stream Mining for Top-K Path traversal patterns) is

composed of four steps.

(a) Read a maximal forward reference from the buffer in the main memory (Step 1).

(b) Construct an in-memory summary data structure (Step 2).

(c) Prune and maintain the summary data structure (Step 3).

(d) Find the path traversal patterns from the summary data structure so far (Step 4).

 Steps 1 and 2 are performed in sequence for a new maximal forward reference. Steps 3

and 4 are usually performed periodically or when it is needed. Since the step 1 is

 101

straightforward, we shall henceforth focus on steps 2, 3, and 4, and devise algorithms for

effective construction and maintenance of summary data structure, and efficient determination

of path traversal patterns.

6.3.1 Effective Construction of the Summary Data Structure

In this section, we describe an algorithm which constructs the in-memory summary data

structure, called Top-K Path forest.

Definition 6-1 A Top-K Path forest (abbreviated as TKP-forest) is a prefix tree-based

summary data structure defined below.

1. TKP-forest consists of a K-References list (abbreviated as KR-list), such as <r1 r2 …

rk>, and a set of Local Path traversal pattern trees (abbreviated as LP-trees) of

references, denoted by ri.LP-tree, ∀i =1, 2, …, k, where ri is the root node of

ri.LP-tree.

2. Each node in the ri.LP-tree, ∀i =1, 2, …, k, consists of four fields: fid, esup, mfr_id,

and node-link, where fid is the identifier of the incoming maximal forward reference,

esup registers the number of maximal forward references represented by a potion of

the path reaching the node with the fid, the value of mfr_id assigned to a new node is

the identifier of current maximal forward reference, and node-link links up a node with

the next node with the same fid in the same LP-tree or null if there is none.

3. Each entry in the KR-list consists of four fields: fid, esup, mfr_id, and head-link, where

fid registers which reference identifier the entry represents, esup records the number of

maximal forward references containing the reference carrying the reference id, the

mfr_id assigned to a new entry is the identifier of current maximal forward reference,

and head-link is a pointer, and points to the root node of the fid.LP-tree.

 102

 The construction algorithm of TKP-forest is shown in Figure 6-1. The scenario of

TKP-forest construction is described as follows. First of all, DSM-TKP reads a maximal

forward reference MFR = <r1r2 …rm>, from the buffer, projects the MFR into m sub-maximal

forward references (abbreviated as sub-MFRs), and inserts these sub-MFRs into the

TKP-forest as branches. Note that m is the number of references in the maximal forward

reference. The projection of each incoming maximal forward reference is described as follows.

Each maximal forward reference, MFR = <r1 r2 … rm>, is converted into m sub-MFRs; that is,

< r1 r2 … rm >, < r2r3 … rm >, …, and < rm >. These m sequences are called reference-suffix

maximal forward references (abbreviated as rs-MFRs), since the first reference of each

sequence is a suffix of the original maximal forward reference. The projection step is called

maximal forward reference projection, and denoted by MFR-projection (MFR) = {r1|MFR,

r2|MFR, …, ri|MFR, … , rm|MFR}, where ri|MFR = <riri+1…rm>, ∀i = 1, 2, …, m. The cost of

this projection is (m
2
+m)/2, i.e., m + (m−1) + … + 2 + 1.

 After performing the MFR-projection, DSM-TKP algorithm inserts the MFR into the

KR-list, and then removes it from the buffer in the main memory. Next, the set of rs-MFRs

are inserted into the ri.LP-trees (∀i =1, 2, …, m) as branches. If a MFR shares a prefix with a

MFR already in the LP-tree, the new MFR will share a prefix of the branch representing that

MFR. Moreover, an estimated support counter is associated with each node in the tree. The

counter is updated when a rs-MFR causes the insertion of a new branch. The step is called the

rs-MFR insertion.

Example 6-1. Let the first six maximal forward references be < abcde >, < acd >, < cef >, <

acdf >, < cef >, and < df >, where a, b, c, d, e and f are references in the stream. The

TKP-forest with respect to the first two MFRs, < abcde > and < acd >, constructed by

DSM-TKP algorithm is shown in Figure 6-2 and Figure 6-3, respectively.

 103

Algorithm TKP-forest construction

Input: A continuous stream of maximal forward references, S = [MFR1, MFR2, …, MFRN), a

user-specified value k.

Output: A TKP-forest generated so far.

1: KR-list = {}; /*initialize the KR-list to empty.*/

2: foreach MFRi, = <x1x2… xm>, do

/* m ≥ 1, i=1, 2, …, N */

3: foreach reference xj ∈ MFRi do

4: if xj ∉ KR-list then

5: create a new entry of form (xj, 1, i, head-link)

into the KR-list;

6: else /* the entry already exists in the KR-list*/

7: xj.esup = xj.esup + 1;

8: end if

9: end for

10: call MFR-Projection(MFRi);

11: call rs-MFR insertion;

12: end for

13: call TKP-forest-pruning(TKP-forest, k);

/* Step 3 of DSM-TKP algorithm: prune and maintain the summary data structure */

14: end for

Figure 6- 1. Algorithm of TKP-forest Construction

 104

a:1:1

b:1:1

c:1:1

d:1:1

e:1:1

a:1:1KR-list

a.LP-tree

b:1:1

c:1:1

d:1:1

e:1:1

b:1:1

c:1:1

d:1:1

e:1:1

c:1:1

d:1:1

e:1:1

d:1:1 e:1:1

e:1:1

d.LP-tree

e.LP-tree

b.LP-tree
c.LP-tree

Figure 6- 2. TKP-forest construction after processing the first maximal forward reference

<abcde>

a:1:1

b:1:1

c:1:1

d:1:1

e:1:1

a:1:1

b:1:1

c:1:1

d:1:1

e:1:1

b:1:1

c:1:1

d:1:1

e:1:1

c:1:1

d:1:1

e:1:1

d:1:1 e:1:1

c:1:1

d:1:1

a:2:1

a:2:1 c:2:1

c:2:1

d:2:1

d:2:1

d:2:1 e:1:1

KR-list

a.LP-tee

d.LP-tee

e.LP-tee

b.LP-tee

c.LP-tee

Figure 6- 3. TKP-forest construction after processing the second maximal forward reference

<acd>

 105

6.3.2 Effective Pruning of the Summary Data Structure

The TKP-forest pruning mechanism used in DSM-TKP is performed when the number of

references in the KR-list is greater than the value k. The pruning mechanism used in

DSM-TKP algorithm is shown in Figure 6-4.

The next step of DSM-TKP algorithm is to determine the top-k path traversal patterns

from the current TKP-forest. The step is performed only when the analytical results of the

stream is requested.

Subroutine TKP-forest-pruning(TKP-forest, k)

1: sort the references, r1, r2, …, rk’, in the KR-list and reorder the references in an estimated

support decreasing order, i.e., r1’, r2’, …, rk’’, where sup(r1’) ≥ sup(r2’) ≥ … ≥ sup(rk’);

2: find rKL’ in the reordered KR-list;

/* rKL’ be a reference whose estimated support is the k-th largest one in the KR-list; */

3: foreach ri’∈ KR-list, ∀i = 1, 2, …, KL do

4: esup(ri’) = esup(ri’) − esup(rKL-1’);

5: endfor

6: foreach rj’∈ KR-list, ∀j = KL+1, KL+2, …, k’ do

7: delete rj’ from the current KR-list;

8: delete rj’.LP-tree;

9: endfor

Figure 6- 4. Algorithm of TKP-forest pruning

 106

a:4:1

c:3:1

d:3:1

e:1:1

f:1:1

a:1:1

e:1:1

a:2:1

f:1:1

a.LP-tree

e:4:1

f:3:1

e:2:1

f:1:1

c:4:1

d:2:1

e:1:1

f:1:1

c:3:1

e:2:1

f:2:1

c.LP-tree

f:4:3

f:5:3

f.LP-tree

e.LP-tree

d:3:1

e:1:1

f:1:1

d:2:1

f:2:1

d.LP-tree

KR-list

Figure 6- 5. Example of TKP-forest

6.3.3 Determination of the Top-K Path Traversal Patterns

Assume that there are k references, namely r1, r2, …, rk, in the current KR-list. For each entry

ri, ∀i =1, 2, …, k, in the KR-list, DSM-TKP algorithm traverses the ri.LP-tree to find the

estimated support of each reference sequence with a prefix ri in a depth-first-search (DFS)

manner. Then, DSM-TKP stores these reference sequences into a temporal list of candidate

maximal reference sequences, i.e., path traversal patterns, in a support decreasing order.

Finally, DSM-TKP outputs the first k maximal reference sequences from the temporal list. For

example, in Figure 6-5, the top-3 path traversal patterns are <acd: 3>, <cef: 2>, and <df: 2>,

where the 3-th largest estimated support in the reordered KR-list is 2.

6.4 Performance Evaluation

All the experiments are performed on a 1.80 GHz Pentium 4 processor with 512 megabytes

main memory, running on Microsoft Windows 2000. In addition, all the programs are written

 107

in Microsoft/Visual C++ 6.0.

 Two real click-stream datasets, BMS-WebView-1 and BMS-WebView-2, which contain

several months worth of click-stream data from two e-commerce web sites, are used to

evaluate the performance of the DSM-TKP algorithm. The real data was provided by Blue

Martini Software [69], and is available from the KDD Cup 2000 home page [71]. The

BMS-WebView-1 dataset consists of 497 items and 59,602 transactions. The maximum

transaction size of BMS-WebView-1 is 267 distinct items and the average transaction size is

2.5 items. The BMS-WebView-2 dataset consists of 3,340 distinct items and 77,512

transactions. The maximum transaction size of BMS-WebView-2 is 161 items and the average

transaction size is 5 items.

 We evaluate the effect of various k values for BMS-WebView-1 and BMS-WebView-2.

Figure 6-6 (a) plots the total execution time taken by our algorithm for values of k ranging

from 1000 to 200. The figure shows how decreasing k leads to decrease in running time.

Figure 6-6 (b) shows how decreasing k leads to decrease in memory usages of DSM-TKP in

BMS-WebView-1 and BMS-WebView-2, respectively.

6.5 Conclusions

In this chapter, we proposed an online single-pass algorithm, DSM-TKP, for mining top-k

maximal reference sequences in an infinite sequence of Web click-sequences. An effective

summary data structure TKP-forest is developed to store the essential information about the

set of top-k path traversal patterns of the Web click-stream so far. An efficient pruning

mechanism of TKP-forest is presented to guarantee that the upper bound of the summary data

structure is predictable. Experiments show that DSM-TKP is efficient and exhibits good

scalability.

 108

0

1

2

3

4

5

6

7

8

1000 800 600 400 200

value k

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

.)
BMS-WebView-2

BMS-WebView-1

(a) Execution Time under various k values

0

5

10

15

20

25

1000 800 600 400 200

value k

M
em

o
ry

 U
sa

g
e

(M
B

)

BMS-WebView-1

BMS-WebView-2

(b) Memory usage under various k values

Figure 6- 6. Execution time and memory usage of DSM-TKP on BMS-WebView-1 and

BMS-WebView-2 under various k values

 109

Chapter 7 Conclusions and Future Work

In this chapter, summaries of our works are given. Some possible future works are also

discussed. For mining of frequent itemsets from data streams, we study the problems

involving landmark window-base mining of frequent itemsets and sliding window-base

mining of frequent itemsets. For mining of path traversal patterns from Web click streams, we

focus on single-pass mining of path traversal patterns and online mining of top-k path

traversal patterns without minimum support threshold. For mining of changes of items across

two data streams, two one-pass mining algorithms are proposed. All the proposed algorithms

are verified by experiments of mining continuous streams of various characteristics. In the

experiments comprising comprehensive comparisons, the proposed algorithms outperforms

several related algorithms, and they all show excellent linear scalability with respect to the

size of the streaming data.

7.1 Conclusions

7.1.1 Summary of Mining of Frequent Itemsets in Data Streams

For the mining of frequent itemsets over the entire history of data streams, we propose an

efficient single-pass algorithm, called DSM-FI (Data Stream Mining for Frequent Itemsets),

to discover the set of all frequent itemsets over data streams. An effective projection scheme

is developed to extract the essential information of frequent itemsets from data streams.

Experiments show that DSM-FI outperforms BTS [53], a state-of-the-art single-pass

algorithm, by one order of magnitude for discovering the set of all frequent itemsets over data

streams with a landmark window.

 110

7.1.2 Summary of Mining of Frequent Itemsets over Stream Sliding

Windows

For the mining of frequent itemsets over data streams with a transaction-sensitive sliding

window, we develop an efficient one-pass algorithm, called MFI-TransSW (Mining Frequent

Itemsets over a Transaction-sensitive Sliding Window) based on bit-vectors, to mine the set of

frequent itemsets from only the latest w transactions. Experiments show that MFI-TransSW

outperforms SWFI-stream [11] for discovering the set of frequent itemsets in data streams

with a transaction-sensitive sliding window.

 For the mining of frequent itemsets over data streams with a time-sensitive sliding

window, we proposed the first one-pass algorithm, called MFI-TimeSW (Mining Frequent

Itemsets over a Time-sensitive Sliding Window), based on the MFI-TransSW to mine the set

of frequent itemsets from only the latest w time units. Experiments show that MFI-TimeSW id

efficient and exhibits good scalability.

7.1.3 Summary of Mining of Changes of Items across Two Data Streams

We define a new interesting research problem of mining changes of items from data streams

in data mining. For the mining of two append-only data streams, we propose a single-pass

algorithm, called MFC-append (Mining Frequency Changes of append-only data streams), to

find the set of changes of items across two append-only data streams. A new summary data

structure, called Change-Sketch, is developed to store the essential changed patterns of data

streams. The space complexity of Change-Sketch is O(mlog(n/m)). For mining of two

dynamic data streams, an one-pass algorithm, called MFC-dynamic (Mining Frequency

Changes of dynamic data streams), is developed to mine the changes of items across two

dynamic data stream. The proposed algorithms take O(log(n/m)) time in the worst case to

compute each newly arrived item, but only O(1) amortized time per item.

 111

7.1.4 Summary of Mining of Path Traversal Patterns over Web Click-

Streams

For the mining of path traversal patterns over Web click-streams, we propose the first

single-pass algorithm, called DSM-PLW (Data Stream Mining for Path traversal patterns in a

Landmark Window), to discover the set of all path traversal patterns over streaming maximal

forward references. The comprehensive experiments demonstrate that DSM-PLW is efficient

and exhibits good scalability.

7.1.5 Summary of Mining of Top-K Path Traversal Patterns

We define a new interesting research problem of mining of top-k path traversal patterns over

Web click streams, and propose the first one-pass algorithm, called DSM-TKP (Data Stream

Mining for Top-K Path traversal patterns), for mining of top-k path traversal patterns without

the user-defined minimum support threshold. An efficient pruning mechanism of the proposed

summary data structure is presented to guarantee that the upper bound of the summary data

structure is predictable. Experiments show that DSM-TKP is efficient and exhibits good

scalability.

7.2 Future Work

With the mining capabilities of the proposed algorithms, there are several interesting

extensions on frequent pattern mining and change mining, as listed below.

� Resource-aware mining of frequent patterns over data streams.

Resource such as CPU, memory space, and sometimes energy, are very precious in

a stream mining environment. They are very likely to be used up when processing

data streams which arrive with rapid speed and a huge amount. How to use these

resources when we use the proposed algorithms for mining frequent itemsets and

changes is an important research issue in our future work.

 112

� Online mining of sequential patterns over data streams with a sliding window.

Online mining of sequential patterns in data streams is more complicated than

mining of frequent itemset. There are several challenges of mining of sequential

patterns from data streams, such as how to define the meaning of sequential patterns

in a stream environment, how to define the model of sliding window for mining

sequential patterns of data streams, and how to design an efficient single-pass

algorithm for mining the set of sequential patterns from data streams.

� Online mining of high utility itemsets over data streams with a sliding window.

Although mining itemsets correlations is important in some applications, in many

applications people are more interested in finding out how a set of items that is useful by

some measure, such as utility. The frequent itemsets do not reflect the impact of any other

factor except frequency of the presence or absence of an item. Frequent itemsets may only

contribute a small portion of the overall profit, whereas infrequent itemsets may contribute

a large portion of the profit. Hence, utility mining is likely to be useful in a wide range of

practical application. There are several challenges on mining high utility itemsets over data

streams, such as how to define the model of sliding window for mining high utility

itemsets of data streams, how to define the meaning of high utility itemsets in a

stream environment, and how to design an efficient one-pass algorithm for

discovering the set of high utility itemsets from data streams with a sliding window.

 113

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A framework for clustering evolving data

streams, in: Proc. VLDB, 2003, pp.81-92.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items

in large databases, in: Proc. SIGMOD, 1994, pp. 207-216.

[3] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in: Proc. VLDB,

1994, pp. 487-499.

[4] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy, Tracking join and self-join sizes in

limited storage, in: Proc. PODS, 1999, pp. 10-20.

[5] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the

frequency moments, in: Proc. STOC, 1996, pp. 20-29.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and issues in data

stream systems, in: Proc. PODS, 2002, pp.1-16.

[7] B. Babcock and C. Olston, Distributed top-k monitoring, in: Proc. ACM SIGMOD, 2003,

pp. 28-39.

[8] S. Babu and J. Widom, Continuous queries over data streams, SIGMOD Record, 30(3)

(2001) 109-120.

[9] J. Borges and M. Levene, Data mining of user navigation patterns, in: Proc. WEBKDD,

1999, pp. 92-111.

[10] J. H. Chang & W. S. Lee. Finding recent frequent itemsets adaptively over online data

streams, in: Proc. ACM SIGKDD, 2003, pp. 487-492.

[11] J. Chang and W. Lee. A sliding window method for finding recently frequent itemsets

over online data streams, Journal of Information Science and Engineering (JISE) 20 (4)

(2004).

[12] M. Charilar, K. Chen, and M. Farach-Colton, Finding frequent items in data streams, in:

 114

Proc. ICALP, 2002, pp. 693-703.

[13] M.-S. Chen, J.-S. Park and P. S. Yu, Efficient data mining for path traversal patterns,

IEEE TKDE, 10 (2) (1998) 209-221.

[14] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-dimensional regression

analysis of time-series data streams, in: Proc. VLDB, 2002, pp. 323-334.

[15] X. Chen and X. Zhang, A popularity-based prediction model for web prefetching, IEEE

Computer 36 (3) (2003) 63-70.

[16] W. Cheung and O. R. Zaïane, Incremental mining of frequent patterns without candidate

generation or support constraint, in: Proc. IDEAS, 2003, pp 111-116.

[17] Y.L. Cheung, A. W.-C. Fu, Mining association rules without support threshold: with and

without item constraints, IEEE TKDE, 16(9), 2004, pp 1052-1069.

[18] Y. Chi, H. Wang, P. Yu, and R. Muntz. MOMENT: Maintaining closed frequent itemsets

over a stream sliding window, in: Proc. ICDM, 2004, pp. 59-66.

[19] R. Cooley, B. Mobasher, and J. Srivastava, Web mining: information and pattern

discovery on the World Wide Web, in: Proc. ICTAI, 1997, pp. 558-567.

[20] G. Cormode and S. Muthukrishnan, What’s hot and what’s not: tracking most frequent

items dynamically, ACM Trans. Database Syst. 30(1) (2005) 249-278.

[21] M. Datar, A. Ginois, P. Indyk, and R. Motwani, Maintaining stream statistics over sliding

windows, in: Proc. SODA, 2002, pp. 635-644.

[22] E. Demaine, A. López-Ortiz, and J. I. Munro, Frequent estimation of internet packet

streams with limited space, in: Proc. ESA, 2002, pp. 348-360.

[23] P. Domingos and G. Hulten, Mining high-speed data streams, in: Proc. ACM SIGKDD,

2000, pp. 71-80.

[24] G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang and P.S. Yu, Online mining of

changes from data streams: Research problems and preliminary results, in: Proc. ACM

 115

SIGMOD MPDS, 2003.

[25] G. Dong and J. Li, Efficient mining of emerging patterns: discovering trends and

differences, in: Proc. ACM SIGKDD, 1999, pp. 43-52.

[26] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Moteani, and J. D. Ullman, Computing

iceberg queries efficiently, in: Proc. VLDB, 1998, pp. 299-310.

[27] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, An approximate

L1-difference algorithm for massive data streams (extended abstract), in: Proc. IEEE

FOCS, 1999, pp. 501-511.

[28] A. W.-C. Fu, R. W.-W. Kwong, and J. Tang, Mining n-most interesting itemsets, in: Proc.

ISMIS, 2000.

[29] V. Ganti., J. Gehrke, and R. Ramakrishnan, A framework for measuring changes in data

characteristics, in: Proc. PODS, 1999, pp. 126-137.

[30] V. Ganti., J. Gehrke, and R. Ramakrishnan, Mining data streams under block evolution,

SIGKDD Explorations, 3(2), 2002, pp. 1-10.

[31] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining frequent patterns in data

streams at multiple time granularities, in: Data Mining: Next Generation Challenges and

Future Directions, AAAI/MIT, H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.),

2003.

[32] P. B. Gibbons and Y. Matias, Synopsis data structures for massive data sets, in: Proc.

SODA, 1999, pp. 909-910.

[33] L. Golab and M. T. Ozsu, Issues in data stream management, SIGMOD Record 32 (2)

(2003) 5-14.

[34] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, Clustering data streams, in: Proc.

FOCS, 2000, pp. 359-366.

[35] J. Han, J. Pei, Y. Yin and R. Mao, Mining frequent patterns without candidate generation:

 116

a frequent-pattern tree approach, Data Mining and Knowledge Discovery, 8 (1) (2004)

53-87.

[36] J. M. Hellerstein, P. J. Haas, and H. Wang, Online aggregation, in: Proc. ACM SIGMOD,

1997, pp. 171-182.

[37] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing data streams, Technical

Report 1998-011, Digital Eqipment Corporation, Systems Research Center, May, 1998.

[38] G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, in: Proc.

ACM SIGKDD, 2001, pp. 97-106.

[39] R. Jin and G. Agrawal. An algorithm for in-core frequent itemset mining on streaming

data. In: Proc. IEEE ICDM, 2005.

[40] R. Karp, C. Paradimitriou, and S. Shenker, A simple algorithm for finding elements in

sets and bags, ACM TODS, 28 (1) (2003) 51-55.

[41] H.-F. Li and S.-Y. Lee, Single-pass algorithms for mining frequency change patterns with

limited space in evolving append-only and dynamic transaction data streams, in: Proc EEE,

2004.

[42] H.-F. Li, C.-C. Ho, M.-K. Shan, and S.-Y. Lee, Efficient Maintenance and Mining of

Frequent Itemsets over Online Data Streams with a Sliding Window, in: Proc. IEEE SMC,

2006.

[43] H.-F. Li, S.-Y. Lee, and M.-K. Shan, An efficient algorithm for mining frequent itemsets

over the entire history of data streams, in: Proc. IWKDDS, 2004.

[44] H.-F. Li, S.-Y. Lee, and M.-K. Shan, Online mining maximal frequent structures in

continuous landmark melody streams, Pattern Recognition Letters, 26(11), August 2005,

pp. 1658-1674.

[45] H.-F. Li, S.-Y. Lee, and M.-K. Shan, On mining webclick streams for path traversal

patterns, in: Proc. WWW, 2004, pp. 404-405.

 117

[46] H.-F. Li, S.-Y. Lee, and M.-K. Shan, Online mining (recently) maximal frequent itemsets

over data streams, in: Proc. RIDE, 2005.

[47] H.-F. Li, S.-Y. Lee, and M.-K. Shan, DSM-TKP: mining top-k path traversal patterns

over web click-streams, in: Proc. WI, 2005.

[48] H.-F. Li, S.-Y. Lee, and M.-K. Shan, DSM-PLW: Single-pass mining of path traversal

patterns over streaming web click-sequences, Computer Networks: Special Issue on Web

Dynamics, accepted, to appear.

[49] H.-F. Li, S.-Y. Lee, and M.-K. Shan, Online mining changes of items over continuous

append-only and dynamic data streams, Journal of Universal Computer Science: Special

Issue on Knowledge Discovery in Data Streams, 11(8), 2005, pp. 1411-1425.

[50] M.-Y. Lin and S.-Y. Lee, Fast discovery of sequential patterns through memory indexing

and database partitioning, Journal of Information Sciences and Engineering (JISE), 21 (1)

(2005) 109-128.

[51] C.H. Lin, D.Y. Chiu, Y.H. Wu and A.L.P. Chen, Mining frequent itemsets from data

streams with a time-sensitive sliding window, in: Proc. SIAM SDM, 2005.

[52] B. Liu, W. Hsu, H.-S. Han, and Y. Xia, Mining changes for real-life applications, in: Proc.

DaWaK, 2000, pp. 337-346.

[53] G. S. Manku and R. Motwani. Approximate frequency counts over data streams, in: Proc.

VLDB, 2002, pp. 346-357.

[54] A. Metwally, D. Agrawal, A. E. Abbadi, Efficient computation of frequent and top-k

elements in data streams, in: Proc. ICDT, 2005, pp. 398-412.

[55] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, Streaming-data

algorithms for high-quality clustering, in: Proc. ICDE, 2002, pp. 685-.

[56] Z. Pabarskaite, Decision trees for web log mining, Intelligent Data Analysis, 7 (2) (2003)

141-154.

 118

[57] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, Mining access patterns efficiently from

Web logs, in: Proc. PAKDD, 2000, pp. 396-407.

[58] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,

Mining sequential patterns by pattern-growth: the PrefixSpan approach, IEEE Trans.

Knowl. Data Eng. 16 (10) (2004) 1424-1440.

[59] S. Schechter, M. Krishnan, and M. D. Smith, Using path profiles to predict HTTP

requests, Computer Networks, 30 (1-7) (1998).

[60] M.-K. Shan and H.-F. Li, Fast discovery of structure navigation patterns from web user

traversals, in: Proc. SPIE DMKD, 2002, pp. 272-283.

[61] M. Spiliopoulou, L. C. Faulstich, and K. Winkler, A data miner analyzing the

navigational behaviour of web users, in: Proc. ACAI, 1999, pp. 588-589.

[62] J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining: discovery and

applications of usage patterns from web data, SIGKDD Explorations, 1 (2) (2000) 12-23.

[63] W.G. Teng, M.-S. Chen, and P. S. Yu. A regression-based temporal pattern mining

scheme for data streams, in: Proc. VLDB, 2003, pp. 93-104.

[64] W.-G. Teng, M.-S. Chen, and P. S. Yu. Using wavelet-based resource-aware mining to

explore temporal and support count granularities in data streams, in Proc: SIAM SDM,

2004.

[65] P. Tzvetkov, X. Yan, J. Han, TSP: Mining top-k closed sequential patterns, in: Proc.

ICDM, 2003, pp. 347-354.

[66] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, TFP: An efficient algorithm for mining top-k

frequent closed itemsets, IEEE TKDE, 17(5), 2005, pp. 652-664.

[67] D. Xing and J. Shen, Efficient data mining for web navigation patterns, Information and

Software Technology, 46 (1) (2004) 55-63.

[68] J.-X. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative: Mining

 119

frequent itemsets from high speed transactional data streams, in: Proc. VLDB, 2004, pp.

204-215.

[69] Z. Zheng, R. Kohavi, and L. Mason, Real world performance of association rule

algorithms, in: Proc. ACM SIGKDD, 2001, pp.401-406.

[70] Y. Zhu and D. Shasha, StatStream: statistical monitoring of thousands of data streams in

real time, in: Proc.VLDB, 2002, pp. 358-369.

[71] http://www.ecn.purdue.edu/KDDCUP/

 120

Publication List

Journal Papers

1. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan (2006), "DSM-PLW: Single-Pass

Mining of Path Traversal Patterns over Streaming Web Click-Sequences," Computer

Networks: Special Issue on Web Dynamics, Volume 50, Issue 10, July 2006, pp.

1474-1487. (SCI-E, JCR 2004 IF = 1.226)

2. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan (2005), "Online Mining Changes of

Items over Continuous Append-only and Dynamic Data Streams," Journal of

Universal Computer Science: Special Issue on Knowledge Discovery in Data

Streams, Volume 11, No. 8, 2005, pp. 1411-1425. (SCI-E, JCR 2004 IF=0.456)

3. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan (2005), "Online Mining Maximal

Frequent Structures in Continuous Landmark Melody Streams," Pattern Recognition

Letters, Volume 26, Issue 11, August 2005, pp. 1658-1674 (SCI-E, JCR 2004

IF=0.576)

4. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee (2006), “DSM-FI: An Efficient

Algorithm for Mining Frequent Itemsets in Data Streams, “Knowledge and

Information Systems: An International Journal, under revision. (SCI-E & EI)

5. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee (2006), “DSM-TKP: Mining Top-K

Path Traversal Patterns over Web Click-Streams,” in preparation.

6. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee (2006), “Efficient Maintenance and

Mining of Frequent Itemsets over Stream Sliding Windows, “in preparation.

7. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee, Online Mining of Frequent Query

Trees over Data Streams, in preparation.

8. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee, Mining and Detecting Changes in

 121

User-Centered Music Query Streams, in preparation.

Conference Papers

1. Hua-Fu Li, Chin-Chuan Ho, Man-Kwan Shan, and Suh-Yin Lee, " Efficient

Maintenance and Mining of Frequent Itemsets over Stream Sliding Windows," in

Proc. of IEEE International Conference on Systems, Man, and Cybernetic (IEEE

SMC-2006), Taipei, Taiwan, October 8-10, 2006. (EI)

2. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee, "Detecting Changes in

User-Centered Music Query Streams," in Proc. of IEEE International Conference

on Multimedia and Expo (ICME-2006), Toronto, Ontario, Canada, July 9-12, 2006.

(EI)

3. Hua-Fu Li, Chin-Chuan Ho, Man-Kwan Shan, and Suh-Yin Lee, "Online Mining

of Recent Music Query Streams," in Proc. of IEEE International Conference on

Multimedia and Expo (ICME-2006), Toronto, Ontario, Canada, July 9-12, 2006.

(EI)

4. Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee, "Online Mining of Frequent Query

Trees over Data Streams," in Proc. of the 15th World Wide Web Conference

(WWW-2006), Edinburgh, Scotland, May 23-26, 2006. (EI) (poster)

5. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "DSM-TKP: Mining Top-K Path

Traversal Patterns over Web Click-Streams," in Proc. of the 2005 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 2005), France, September 19-22,

2005. (EI)

6. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "Online Mining (Recently)

Maximal Frequent Itemsets over Data Streams," in Proc. of the 15th IEEE

International Workshop on Research Issues on Data Engineering (RIDE2005),

 122

Tokyo, Japan, April 3-4, 2005. (EI)

7. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "Mining Maximal Frequent

Itmesets in Data Streams," in Proc. of 2004 International Computer Symposium

(ICS2004), Taipei, Taiwan, December 15-17, 2004. (Best Paper Award)

8. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "An Efficient Algorithm for

Mining Frequent Itemsets over the Entire History of Data Streams," in the Proc. of

First International Workshop on Knowledge Discovery in Data Streams, to be held

in conjunction with the 15th European Conference on Machine Learning (ECML

2004) and the 8th European Conference on the Principals and Practice of

Knowledge Discovery in Databases (PKDD 2004), Pisa, Italy, September 20-24,

2004.

9. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "On Mining Webclick Streams for

Path Traversal Patterns," in Proc. of the 13th World Wide Web Conference

(WWW2004), New York, May 17-22, 2004. (EI)

10. Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan, "Mining Frequent Closed

Structures in Streaming Melody Sequences," in Proc. of IEEE International

Conference on Multimedia and Expo (ICME 2004), Taipei, Taiwan, 2004.(EI)

11. Hua-Fu Li and Suh-Yin Lee, "Single-Pass Algorithms for Mining Frequency

Change Patterns with Limited Space in Evolving Append-only and Dynamic

Transaction Data Streams", in the Proc. of the 2004 IEEE International Conference

on e-Technology, e-Commerce and e-Service (EEE-04), Taipei, Taiwan, 2004.

12. Man-Kwan Shan and Hua-Fu Li, "Fast Discovery of Structure Navigation Patterns

from Web User Traversals," in Proc. of SPIE Conference on Data Mining and

Knowledge Discovery: Theory, Tools, and Technology IV, Orlando, Florida, USA,

2002. (EI)

 123

13. Hua-Fu Li and Man-Kwan Shan, "PNP: Mining of Profile Navigational Patterns,"

in Proc. of SPIE Conference on Data Mining and Knowledge Discovery: Theory,

Tools, and Technology IV, Orlando, Florida, USA, 2002. (EI)

14. Hua-Fu Li and Man-Kwan Shan, "Mining Non-Simple Traversal Paths from Web

Access Logs," in Proc. of 2000 Workshop on Internet and Distributed Systems,

Tainan, Taiwan, 2000.

 124

Vita

Hua-Fu Li (李華富) was born on February

24, 1976 in Taoyuan, Taiwan, Republic of

China. He received the BS degree in

Computer Science and Engineering from

Tatung Institute of Technology and the MS

degree in Computer Science from National

Chengchi University, in 1998 and 2000,

respectively. He is currently working towards

the Ph.D. degree in National Chiao-Tung

University. He coauthored with his advisor

Dr. Suh-Yin Lee for their works which

received the 2004 ICS (International

Computer Symposium) Best Paper Award.

His research interests include data mining,

data stream management, multimedia

information systems and bioinformatics.

