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Abstract

Efficiency and effectiveness for non-storable commodities such as transport
services represent two distinct measurements. When such commodities are produced
and a portion of which are not consumed instantaneously, the technical effectiveness
(a combined effect of technical efficiency and service effectiveness) would be likely
less than the technical efficieney.-Based on-this, this thesis attempts to develop an
integrated data envelopment analysis| (IDEA). model that can jointly determine the
overall efficiency from the aspects: of technical-efficiency, service-effectiveness, and
technical-effectiveness. The core“logic..for ‘the proposed IDEA model is to
simultaneously determine the virtual multipliers associated with the variables of
factor production and consumption. The underlying properties of reasonability and
uniqueness of the proposed IDEA model are proven. The applicability of the proposed
model is also demonstrated with a case study. It shows that our proposed IDEA model

has higher discrimination power than the conventional separated DEA models.

Key Words: integrated DEA model, non-storable commodities, technical efficiency,

technical effectiveness.
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1. Introduction

1.1. Background

Data Envelopment Analysis (DEA) is a technique that provides a comprehensive
insight into how comparatively well an organization performs. It can be used to rank
quality level and analyze the performance with multiple inputs and outputs
simultaneously. DEA imposes neither a specific functional relationship between
production output and input, nor any assumptions on the specific statistical
distribution of the error terms. DEA can be defined as a nonparametric method of

measuring the efficiency of a Decision Making Unit (DMU).

DEA can be directly applied to evaluate the relative performance of the
companies producing storable products, since these products can be stored for re-sell
in the future even they cannot be sold instantly. The operating performance of such
organization can be represented by its technical efficiency which is equivalent to
technical effectiveness. However, in evaluating the industry producing non-storable
products, such as transportation industry, technical efficiency only represent one
aspect of the performance. The managetiof-a transport company might even more
concern about technical -effectiveness, .which’. measures how many revenue
passenger-miles or ton-miles are generated. Accordingly, Fielding (1985) proposed an
analytical framework to evaluate the performance of a transportation industry by three
aspects: cost-efficiency, service-effectivenessand cost-effectiveness, as depicted in
Fig.1. In order to completely ahd fairly evaluate the relative performance of a
transport organization, many studies employed DEA to evaluate the efficiency and
effectiveness under respective aspect independently. For instance, Chiou and Chen
(2006) employed DEA to evaluate the relative performance of domestic air routes
operated by one airline under these three aspects respectively. However, some
contradictory improvement suggestions were proposed based on the evaluating results
of three independent DEA model. Lan and Lin (2003) employed a two-stage DEA
model to evaluate the relative efficiency of various rail companies. They first use
input-oriented DEA model to evaluate the cost-efficiency of these companies, then
employ output-oriented DEA model to evaluate the service-effectiveness of these
companies. The efficiency scores of cost-effectiveness aspect can be obtained as the
product of the scores of cost-efficiency and service-effectiveness. Although this
approach (two-stage DEA model) will not generate conflicting improvement
suggestions, an unrealistic assumption have been made that the organization can be
clearly divided into two departments: production and sales and be evaluated

separately without any integration or coordination.



These unrealistic evaluation results of abovementioned studies are mainly rooted
from their separate evaluation procedure. Therefore, a one-stage evaluation procedure
is extremely essential to evaluate the performance of transportation industry for
avoiding these problems. This study aims to develop an integrated DEA model to
simultaneously evaluate the performance of transportation industry under three

various aspects within one stage.

Service Input
(Labor, Capital, Fuel)

Cost efficiency Cost effectiveness

Service Output Service Consumption

Service effectiveness

Vehicle Hours Passengers
Vehicle Miles Passenger Miles
Capacity Miles Operating Revenue

Source: Fielding, G.J., Babitsky, T.T. and Brenner, M.E. (1985)-Performance evaluation for bus transit. Transportation Research,
19A, 73-82.

Fig 1 The relationship between cost €fficiency,-cost effectiveness and service

effectiveness



1.2. Purpose

Based on the abovementioned background and motivation, the main purposes of
this study are listed as follows:
1. Review and summarize the related studies in evaluating the performance of

transportation industry by applying DEA model.

2. Develop and validate a one-stage DEA model for simultaneously evaluating the
relative performances of transportation organizations under three aspects of
cost-efficiency, service-effectiveness and cost-effectiveness.

3. Propose an effective and efficient solution algorithm for the one-stage DEA model.

4. Apply the proposed one-stage DEA model to evaluate the relative performances of

domestic air routes and compare the results with those of Chiou and Chen(2006).



1.3. Framework and organization

The flowchart of this study is shown in Figure 2. Following this chapter, the
thesis is organized as follows. Chapter 2 reviews some relevant literature on DEA.
Chapter 3 introduces our proposed integrated DEA models. The essential
properties of the proposed models are proven in Chapter 4. A case study with the
proposed IDEA models is conducted in Chapter 5. Final conclusions and future

study are addressed in Chapter 6.

Problem identification

Literature review

!
' '

Theoretical models rand Performance evaluation
applications of ~DEA in transportation

y

Model fermulation

l

Solution algoithm

'

Case study

l

Discussion

l

Conclusion and suggestion

Y

Lingo

Data collection
and analysis

\

Fig 2 Research flowchart



2. Literature review
2.1. Applications of DEA in transportation

DEA model has been widely applied to evaluate the relative performance of
transportation industries, such as air transportation, maritime transportation,

transit, railway, etc. The related studies are reviewed and summarized as follows.

2.1.1. Air transportation

Adler and Berechman (2001) use DEA to determine the relative
efficiency or quality ranking of various West-European and other airports. The
main source of data for this study was a questionnaire whose objective was to

evaluate the quality level of 26 airports.

Chiou and Chen (2006) employ DEA approach to evaluate the
performance of domestic air routes from the perspectives of cost efficiency,
cost effectiveness and service effectiveness. The cost efficiency indicates the
relative efficiency in the production; while the service effectiveness stands for
the relative efficiency in the sale..The costeffectiveness therefore represents a
combined effect of the relative efficicncy in both production and sale. This

paper adopts this framework to evaluate air route performance.

There are three input variables: fuel cost (FC), personnel cost (PC),
including the salaries of cabin and ground-handling crews, and aircraft cost
(AC), including maintenance costs, depreciation costs and interest payments.
The production variables include number of flights (FL) and seat-mile (SM).
The service variables include passenger-mile (PM) and embarkation
passengers (EP), as shown in Fig. 3. This study also uses Tobit regression to

identify variables are significant or not.

Input Production .
FC Cost FL Service Service
PC y effi ciency ! SM effectiveness PM
AC | | — | | FP

Fig 3 The analysis framework



Peck et al. (1998) focus on discretionary maintenance strategies and their
relationship to aircraft reliability, as measured by the percentage of scheduled
flights delayed because of mechanical problems. The methodology of data
envelopment analysis employed to identify the various strategies employed by
the major airlines over the time period 1990-1994. The output variable was
defined to be the percentage of all scheduled flights arrivals delayed for
mechanical reasons not including weather or scheduling problems. The input
variables represent all of the reported non-overlapping categories of

maintenance expenses.

Tzeng and Chiang (2000) propose a new efficiency measure in data
envelopment analysis: the efficiency achievement measure. Comparing with
the traditional radial measure and distance measure proposed by Chang and
Guh (1995) using different sets of multipliers to compute the efficiency ratio,
the efficiency achievement measure does so by using the common multipliers

that obtained easily by solving fuzzy multiple objectives programming.

2.1.2. Maritime transportation

Tongzon (2001) applies DEA to provide an efficiency measurement for
four Australian and twelve other international:container ports. This study uses
two output and six input-measuresrof port performance. The output measures
are cargo throughput and ship working rate. Based on the production
framework, port inputs can be generalized as land, labor and capital. The
major capital inputs in port operations are the number of berths, cranes and
tugs. This study has shown the suitability of DEA for port efficiency

evaluation.

2.1.3. Transit

Karlaftis (2003) uncovers production characteristics of transit firms by
relating efficiency with production in a less constraining environment. In this
study uses data envelopment analysis to rank efficient subsets of transit
systems and then based on the results of the DEA analysis, build globally
efficient frontier production functions. The results indicate that when jointly
considered, there is an improvement on both the theoretical and empirical

aspects of examining efficiency and production in transit systems.

Fielding et al. (1984) use three categories of statistics-service inputs,

service outputs and service consumption-provided the framework to organize



the much larger set of data. Cost-efficiency indicators measure service inputs
(labor, capital, fuel) to the amount of service produced (service outputs:
vehicle hours, vehicle miles, capacity miles, service reliability).
Cost-effectiveness indicators measure the level of service consumption
(passengers, passenger miles, operating revenue) against service inputs.
Finally, service-effectiveness indicators measure the extent to which service

outputs are consumed. Fig. 1 portrays the organizing framework.

Odeck and Alkadi (2001) focus on the performance of Norwegian bus
companies subsidized by the government. The performance is evaluated from
a productive efficiency point of view. The framework is DEA approach to
efficiency measurement. In this study, the output variables are seat kilometers,
vehicle kilometers, passenger kilometers, and passengers and the input
variables are the total number of seats (TS) offered by the company, fuel
consumption in liters (FC) and equipment (EQ) such as oil and tires. The
average bus company is found to be exhibiting increasing return to scale. This

means that the average company is/smaller than the optimal size.

Viton (1998) examines the claim that US bus transit productivity has
declined in recent years. These systems: operated either conventional
motor-bus (MB) or demand-responsiver(DR) services (or both), but no other
form of public transit. This paper uses a piecewise-linear best-practice DEA
production frontier, computed for multi-modal bus transit between 1988 and

1992. The outputs are vehicle-miles, vehicle hours and passenger trips.

The inputs come from three sources. First is a set of variables describing
the situation in which the system finds itself. These include the average fleet
age and the number of directional miles provided by the MB. Second, we use a
number of conventional inputs: the fleet sizes, and the number of gallons of
fuel. It distinguishes four kinds of labor inputs: the number of person-hours of
transportation, maintenance, administrative, capital and labor used by each
mode in providing service. The final inputs are those for which there is no
obvious summary physical measure. For these we use a cost measure. In this
category we have the cost of tires and other materials and supplies, of services,

of utilities, and of insurance.

The results do not support the pessimistic view of changes in the industry

because both the efficiency and productivity approaches suggest an



improvement.

Cowie and Asenova (1999) claim that the ideal output measure is
passenger kilometers, unfortunately due to commercial sensitivity such figures
are unavailable. Nevertheless, clearly related to passenger kilometers is
operating revenue. The inputs for each company reflect capital and labor
elements. Labor is simply the total staff employed, both management and
operational. This study shows strong evidence of increasing returns for smaller
companies. This study uses technical, managerial and organizational
efficiency. The technical efficiency of each company is assessed by a
comparison of all companies in the data set. The level of managerial efficiency
however, can be further isolated from overall technical efficiency by
separating DMUs into the different sets of interest. The difference between
technical and managerial efficiency represents the level of inefficiency

attributed to the organizational structure.

Karlaftis (2004) uses dataenvelopment analysis and globally efficient
frontier production functions to.investigate two important issues in transit
operations: first, the relationship “between: the two basic dimensions of
performance, namely efficiency and effectiveness; second, the relationship

between performance and scalé economies.

This study found that systems performing well in one dimension (e.g.
efficiency) generally perform well in the other dimensions (e.g. effectiveness).
This is important since the performance scores can be useful in describing

transit system performance both for internal and external purposes.

This study uses two outputs: vehicle-miles (often referred to as
“‘produced output type’’) and passenger-miles (often referred to as
““‘consumed output type’’). Transit systems most frequently use three input

quantities, namely labor, fuel, and capital to produce output.

As many authors have suggested (for example Fielding, 1987),
vehicle-miles are related to service efficiency while ridership (and
passenger-miles) are related to effectiveness; a combined vehicle-miles and
ridership output is related to a ‘‘combined’ or ‘‘overall’” performance
measure. As such, in this paper we estimate three separate sets of models, each

of them utilizing the same inputs but different outputs: the first is an efficiency



model, using total annual vehicle-miles as output; the second is an
effectiveness model, using total annual ridership as the measure of output; the
third is a multi-output model using both annual vehicle-miles and annual

ridership as outputs to capture the combined performance.

2.1.4. Railway

Lan and Lin (2003) adopt various DEA approaches to investigate the
technical efficiency and service effectiveness for some selected 76 railways.
This paper attempts to estimate both of the technical efficiency and service
effectiveness for worldwide rail systems by employing two-stage DEA. At the
technical efficiency analysis stage, we use input orientation DEA by selecting
length of lines, number of locomotives and cars, and number of employees as
inputs and train-kilometer as output. At the service effectiveness analysis stage,
we use output orientation DEA by selecting train-kilometer as input and
passenger-kilometer and ton-kilometer as outputs. In addition, we perform a
technical effectiveness analysis with one-stage DEA by choosing the same

input factors and outputs.

Conventional DEA " approaches -neither consider the environmental
differences across the DMUs nor account for the statistical error (data noise)
and slack effects. Thus, the comparison can be seriously biased because all
DMUs are not brought into a common platform. Fried et al. (2002) proposed a
three-stage DEA approach with consideration of the environmental effects and
statistical noise, but they still did not adjust the slack effects. Lan and Lin
(2005) propose a four-stage DEA approach with further adjustment of slack
effects. The empirical results show that proposed four-stage DEA approach
has slightly more reasonable efficiency and effectiveness scores than those

measured by Fried’s three-stage DEA approach.

This paper measures the technical efficiency by selecting number of
passenger cars per kilometer of lines, number of freight cars per kilometer of
lines, and number of employees per kilometer of lines as input factors and
passenger train-kilometer per kilometer of lines and freight-train-kilometer per
kilometer of lines as output variables. In measuring the service effectiveness,
on the other hand, we choose passenger-kilometers and ton-kilometers as two
consumptions and passenger train kilometers and freight train-kilometers as

two outputs.



2.2. DEA modeling
Yun et al. (2004) suggest a model called generalized DEA (GDEA) model,
which can treat the basic DEA models (CCR model, BCC model and FDH model)
in a unified way. GDEA model can make a quantitative analysis for inefficiency

on the basis of surplus of inputs and slack of outputs.

DEA was suggested by Charnes, Cooper and Rhodes (CCR) which is
concerned with the estimation of technical efficiency and efficient frontiers. The
CCR model generalized the single output/single input ratio efficiency measure
for each decision making unit to multiple outputs/multiple inputs situations by
forming the ratio of a weighted sum of outputs to a weighted sum of inputs.
Tulkens introduced a relative efficiency to non-convex free disposable hull (FDH)
of the observed data, and formulated a mixed integer programming to calculate

the relative efficiency for each DMU.

Gautam and Paul (2006) provide ansalternative framework for solving DEA
models which, in comparisont with the standérd linear programming (LP) based
approach that solves one LP fori each DMU. The method of projection, which we
use, is Fourier—Motzkin (E=M) elimination. It i shown that the output from the
F—M method improves on existing fmethods of (1) establishing the returns to scale
status of each DMU, (ii) caleulating cross-cfficiencies and (iii) dealing with

weight flexibility.

El-Mahgary and Lahdlma (1995) examine various two-dimensional charts
for illustrating the DEA efficiency results. The identification of reference units
provides a general framework that can be used to define guideline for the
inefficient units. Visualizing such results should help decision-maker to better

understand the result of a DEA assessment.

Cooper et al. (2001) examine two approaches that are presently available in
the DEA literature for use in identifying and analyzing congestion. These two
approaches are due to Fire et al. (Fare, R., Grosskopf, S., Lovell, C.A.K., 1985,
The measurement of efficiency of production, Kluwer-Nijhoff Publishing,
Boston, MA) and Cooper et al. (Cooper, W.W., Thompson, R.G., Thrall, R.M.,
1996, Introduction: extensions and new developments in DEA, Annals of
Operations research 66, 3-45). This study shows that FGL model might fail to

give correct result.

10



Cherchye et al. (2001) respond the problem that FGL model fails to identify
congestion in Cooper et al. examples. Because FGL model was originally

proposed for measuring structural efficiency rather than detecting congestion.

2.3. Comparisons of DEA with other methods

Cullinane et al. (2006) apply the two leading approaches to efficiency
measurement, DEA and SFA, to the same data set for the container port industry.
This study suggests that a dynamic application of these frontier techniques,
utilizing panel data approaches, may be more germane to ascertaining the
relative efficiency levels of the international ports industry. In a dynamic context,
technical efficiency can be separated not only from scale efficiency, but also
from technological take-up. This paper rank order of the technical efficiency
derived from applying the alternative DEA and SFA approaches ranges from
0.63 to 1.00, indicating that these approaches yield similar efficiency rankings.
The hypothesis of constant returns to scale in the production frontier for the
industry could not be rejected when' applying the stochastic frontier model. The
application of the same sort of hypothesis ‘test to the results yielded by the
application of the DEA medel is not appropriate, however, as the mathematical
programming nature of DEA means.that the underlying model does not possess
any statistical assumptions or ptopertiesTper se. Applying the DEA approach
does, however, yield the restlts:that the terminals in the sample were found to
exhibit a mix of decreasing, increasing and constant returns to scale at current
levels of output. Compared with the stochastic parametric frontier approach,
DEA imposes neither a specific functional relationship between production
output and input, nor any assumptions on the specific statistical distribution of
the error terms. In so doing, the data are believed to be able to “speak for
themselves” and the DEA approach has the advantage of minimal specification
error. However, the DEA model does not allow for measurement error or random
shocks. Instead, all these factors are attributed to efficiency, a characteristic that
inevitably leads to potential estimation errors. In this paper, the main objective of
a port is assumed to be the minimization of the use of input(s) and maximization
of the output(s). The inputs of this paper are terminal length (m), terminal area
(ha), quayside gantry (number), yard gantry (number) and straddle carrier

(number) and the output of this paper is container throughput (TEU).

Pels et al. (2001) use data envelopment analysis and stochastic production
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frontier analysis to determine efficiency rations for European airports. The SFA
might be more flexible then DEA as SFA includes a noise term. However, this
study suggests that more attention has to be paid to the “explaining” inefficiency,
either using a stochastic frontier model or DEA output because the inputs used
are not “standard” variable inputs. That means in the short run, they cannot be
fully flexible. The estimation result of SFA is similar to DEA result. It appears

that most airports are operating under increase returns to scale.

Coelli and Perelman (1999) discuss and compare a number of the different
methods that have been used to estimate multi-output distance functions. This

study focus upon the three most commonly used estimation methods:

(1) A parametric frontier using linear programming methods;
(2) A non-parametric piece-wise linear frontier using the linear
programming method known as data envelopment analysis (DEA); and

(3) A parametric frontier using corrected ordinary least squares (COLS).

The three different estimation methods provide similar information on the
relative productive performance. The'correlations between the various sets of
technical efficiency predictions are all positive-and significant. Furthermore, the
parameter estimates obtained using the two parametric estimates are also quite
similar in many respects. Given these observations, it appears that a researcher
can safely select one of these methods without too much concern for their choice

having a large influence upon results.

2.4. Summary

Table 1 summarizes of the literature review, from which, one can notice
several points. First, some papers only use technical efficiency to evaluate the
performance of transportation. That means these papers do not consider
non-storable characteristic of transportation industries. Second, some papers use
two stages (technical efficiency and service effectiveness) to evaluate the
performance for transportation industries, however, these papers calculate the
efficiency and effectiveness scores independently. One shall calculate the
efficiency scores and effectiveness at the same time because one is evaluating
two different departments in one company. One should treat these two

departments dependently. Third, from these papers, one could discover that most
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of them use labor, capital and fuel as input variable and use vehicle miles and

passenger miles as output and service variables.

In this study, we will use cost efficiency, service effectiveness and cost
effectiveness to evaluate the performance for transportation industry. In order to
treat these three parts as an interactively dependent group, we try to formulate an

integrated model to measure these three performance scores at the same time.
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Table 1 Summary of literature review

No| Author | Year |[Industry|Approach|Evaluating aspect Input variables Output variables Service variables Model IDMU
terminal length
) ) terminal area
{ Cullinane et 2006 | Port DEA Technical ” . tainer throughout CCR Count
0 container thro - oun
al. SFA efficiency quays1co sy Henpy BCC oy
yard gantry
straddle carrier
Terminal size Air transport movement
aircraft parking positions
) Passenger movement
. at the terminal
) DEA Technical - - .
2 | Pelsetal | 2001 | Airport ) remote aircraft parking - BCC |City
SFA efficiency s
positions
number. of check-in desks
number ‘of baggage claim
Operating cost Vehicle-miles travelled
) ) Technical Number of vehicles Passengers )
3 | Karlaftis | 2003 | Transit DEA . - CCR |US City
efficiency Gallons of fuel
Total employees
Questionnaire Service satisfacting
Adler and . Technical Haul charge )
4 2001 | Airport DEA . — - BCC |City
Berechman efficiency Connection times -

Average delay time
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Number of terminals

Number of runways

Distance to the nearest

major city-center

number of berths, cranes

cargo throughput
. and tugs
Technical - )
Tongzon | 2001 | Port DEA ) number of port authority i ) - CCR |City
efficiency ship working rate
employees
terminal area of the ports -
Cost efficiency fuel cost number of flights passenger-mile
Chiou and ) Service personnel cost seat-mile embarkation passengers | CCR | .
2006 | Airport DEA . Airline
Chen effectiveness aircraft-cost BCC
Cost effectiveness -
Technical labor vehicle hours passengers
efficiency capital vehicle miles passenger miles
Fielding et . Service fuel capacity miles operating revenue )
1984 | Transit DEA . - — CCR |US City
al. effectiveness service reliability
Technical - -
effectiveness
. Non-interes expense Deposits CCR
DEA Technical -
Yunetal | 2004 | Bank ) Interest income plus - BCC |[Bank
GDEA efficiency - - -
non-interest income FDH
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labor expenses on

airframes

flights arrivals delayed

labor expenses on aircraft

engines

for mechanical reasons

expenditures on airframe

) Technical repairs o
9 | Peck etal. | 1998 | Airport DEA . - - BCC |Airlines
efficiency expenditures on engine
repairs
material ,expenditutes on
airframes
material expenditures on
engines
total number-of seats seat kilometers
Odeck and ) Technical fuel consumption vehicle kilometers Bus
10 . 12001 | Transit DEA . - - - BCC
Alkadi efficiency consumption equipment| passenger kilometers company
- passengers
fleet sizes vehicle-miles
. . number of gallons of fuel passenger trips .
Philip A. _ Technical Transit
11 , 1998 | Transit | DEA , number of person-hours , BCC |
Viton efficiency vehicle hours industry

of transportation

number of person-hours
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of maintenance

number of person-hours

of administrative

capital

the cost of tires and other

materials

the cost of services

the cost of utilities

the cest of insurance

Technical total staff employed operating revenue
efficiency fleet size
Cowie and M ial Bus
12 1999 | Transit | DEA anageria i BCC
Asenova efficiency - company
Organisational
efficiency
. length of lines train-kilometer passenger-kilometer
Technical - CCR
. number of locomotives )
) ) efficiency ton-kilometer BCC .
13 |Lan and Lin| 2003 | Railway | DEA and cars EXO Railway
Servi ber of empl )
er.V1ce number of employees ] CAT
effectiveness -
i ) Technical Lines passenger train-kilometer| passenger-kilometers BCC )
14 |Lan and Lin| 2005 | Railway | DEA . - —— - Railway
efficiency Passenger cars freight-train-kilometer ton-kilometers (Four
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coach transport capacities

in seats

total length of lines

Service Freight cars Stage)
effectiveness Employees
] total capital net operation revenue o
Tzeng and . Technical - CCR |Airline
15 | 2000 | Airport DEA ) number of employees passenger-kilometers -
Chiang efficiency BCC |company
total number of seats
Technical Number of vehicles vehicle-miles passenger-miles
efficiency gallons of fuel
) ) Service Total employees )
16| Karlaftis | 2004 | Transit DEA . BCC |City
effectiveness - -
Technical 1
effectiveness
annual mean-of monthly )
passenger services
data on staffE levels
DEA available freight wagons freight services
Coelli and . Technical coach transport capacities
17 1999 | Railway SFA . ] - BCC [Company
Perelman COLS efficiency in tones

EXO DEA: exogenously fixed inputs model

CAT DEA: To compare the performance measurements in a homogeneous environment can be formulated according to appropriate categorical variables.

COLS: A parametric frontier using corrected ordinary least squares
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3. Methodology

3.1. Conventional DEA models

DEA was initially developed as a method for assessing the comparative
efficiencies of organizational units. The key feature which makes the units
comparable is that they perform the same function in terms of the kinds of inputs

they use and the types of outputs they produce.

DEA was first developed by Charnes et al. (1978), who generalized the
single-output/single-input ratio efficiency measure for each DMU. The CCR
model generalized the single output/single input ratio efficiency measure for
DMU to multiple outputs/multiple inputs situations by forming the ratio of a
weighted sum of outputs to a weighted sum of inputs. Based on the CCR model,
Banker et al. (1984) suggested a model for estimating technical efficiency and
scale inefficiency in DEA by adding convexity constrain. The BCC model
relaxed the constant returns toiscale assumption of the CCR model and made it
possible to investigate whether therperformance of each DMU was conducted in
region of increasing, constant or decreasing teturns to scale in multiple outputs

and multiple inputs situations.

The main characteristics of DEAare that (i) it can be applied to analyze
multiple outputs and multiple inputs without pre-assigned weights, (ii) it can be
used for measuring a relative efficiency based on the observed data without

knowing information on the production function.

Two basic DEA models are CCR model and BCC model. These two basic forms

are illustrated as following.

3.1.1. CCR
DMU k is assumed to be evaluated. And there are i DMUs, each

utilizes j kinds of inputs, (X;,X,,...,X;), and purchases r kinds of

outputs, (Y, Y,i»---»Y,). The efficiency of DMU k can be estimated by

following programming.
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st = <1, i=L2,---,n (1-1)

The model (1-1) is an input oriented programming problem, which can
be formulated as output oriented problem by following programming.

m
ijxkj
=]

w,u S
z Hy ykr
r=1

I S PR (1-2)

Then, one can transform above model (1-1) into an ordinary linear

problem, show as following.

MU?X hy :iur Ye

r=1

s.t. Zuryir—Z:,V,-XuSOa i=12,--,n (1-3)
j=

=1

m
Dovixg =1,

=

20



u =0, r=12,---,s

Because model (1-3) is a linear problem, one can transform it into dual

problem as follows.

Min z

7,4

st Xy — D X4 20, j=12--m (1-4)
i=1

Vi T YA 20, =125

i=1

4,20, i=12,---,n
z is a scalar, which is the efficiency of kth firm, and it ranges from zero
to unity. If z equals to one, the firm is efficient. And if z is less then

one, the firm is inefficient.

One also can transform output oriented model (1-2) into linear problem

(1-5) and then one can find its dual problem (1-6), show as follows.
Min g, =Y ;%
w,u =
St =Y Y+ Y X 20, i=12-n (1-5)
r=1 j=1

z,ur ykr =1 >
r=1

Dual problem,
wex ¢

St = Ve + 2 Yk 20, =128
i=1

X —;xijzi >0, j=12,---,m (1-6)
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3.1.2. BCC
Model (1-4) and model (1-6) are input and output oriented DEA
models under the assumption of constant returns to scale (CRS) production
technology. Then Banker, Charnes and Cooper (1984) relaxed this CRS
constrain to variable returns to scale (VRS) technology by adding
convexity constraint, as following models. Then one can get BCC input
(1-7) and output oriented model (1-8) as following.

Min 2z

7,4

st Xy — D X4 20, j=12--m (1-7)
i=1

~ Y +ZYir/1i 20, r=L2,---,s
=

A 20, 1=1L2,p30

A =1

1
n
i=1

Max ¢

2,4

St = Ve + 2 Yk 20, =128

i=1
X, —;xijzi >0, j=12,--,m (1-8)

%20, i=12-.n
>4 =1
i=1

Once one knows the basic models for DEA, one can use these
models to evaluate relative efficiency for each DMU. One usually uses
two stages DEA to evaluate non-storable commodities. That means one
uses input oriented DEA model to evaluate technical efficiency and use

output oriented DEA model to evaluate service effectiveness.

From these two stages DEA, one would know how to improve the

efficiency in each department. If one uses two stages DEA to calculate

22



the value of technical efficiency and service effectiveness respectively,
it means one treats these two departments as independent. However,
these two departments are dependent; namely, one cannot calculate the
efficiency value independently. One should calculate the technical
efficiency and service effectiveness at the same time for non-storable
commodities. The main purpose of this research is to formulate an
integrated model which can determine the efficiency value for

non-storable commodities at the same time.

3.2. Proposed IDEA models

DEA is a useful method to evaluate the performance for firms. If we want to
evaluate the performance of a transportation industry, we need to pay attention to
the main characteristics of transportation, which provides non-storable
commodities. That means we should not use cost efficiency only. We can use the
framework proposed by Fielding et al. (1978) to evaluate the performance of
transportation. This framework indicates that one needs to evaluate cost
efficiency, service effectiveness and cost effectiveness jointly. Figure 1 portrays
this framework.

3.2.1. Proposed models
3.2.1.1. Cost efficiency

We use the following input-oriented DEA model to evaluate the
performance of DMU, between inputs and outputs. From h,°, we would

know the proportion of inputs we should decrease.

Zur ykr

Max hl®=rL (2-1)

LR A - — |
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The symbols are assigned the following means:
DMU,, i=12,---,n

X;; » observed amount of input j=12,---,m used by DMU,.

Y, , observed amount of input r =1,2,---,s used by DMU,

X,; » observed amount of input j=L2,---,m used by DMU, .

Y, » Observed amount of input r =1,2,---,s used by DMU,.

V., u,, DEA weight on the j th input and r th output.

j°

Then, we transform above model to a dual problem and we can get the
following input-oriented DEA model. We can use this model to get the

value of cost efficiency.

Min z'" (2-2)

7,4

n
st 2% =) Xk, = Em
i=l

Yir S zyir/?’i s I gl2es
i=1

A >0, i=1L2,%+n

1
3.2.1.2. Service effectiveness
We use an input-oriented DEA model to evaluate the performance of

DMU, between outputs and services. From this result, we would know

the proportion of outputs we should reduce.
p
D Woliq
Max ho® ==

u,w

z u r ykr

r=1

> Wl
9=l

(2-3)

S.t.
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The symbols are assigned the following means:

l.,, observed amount of input q=12,---,p used by DMU,.

iq >

l,,, observed amount of input q=12,---,p used by DMU,.

kq »

w, , DEA weight on the g th service.

We also can transform this model into dual problem. Then we can get

the following input-oriented DEA model.

Min  z® (2-4)

7,4

st 2%y 2D ypd, r=12,8
i=1

Lo <D lgd > 9=12,p

3.2.1.3. Integrated maodel
3.2.1.3.1. Constant returns toscale

In this part, we use individual model to develop an integrated
CCR model (ICCR). We let each model decide its multiplier in the
integrated model at the same time. Technical efficiency stands for
production sector and service effectiveness represents sale sector;
however, technical effectiveness doesn’t stand for any sector as
non-storable commodities are produced. That’s why this study doesn’t

employ technical effectiveness to evaluate the performance.

Max r=l + = (2-7)
_ ViXy zurykr

S m
s.t. Zuryir < ZVinj Ci=12,--n
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Once we proposed the original model, we can add slack analysis
in this model. In order to do slack analysis, we add slack variables in
each variable. The ICCR model shows as following and ICCR model

assumes production and sale sector is equal weight.

Max |- +| & (2-8)

m
o Zvjxkj zur ykr

S m
st DUy, <DV bgmsy), =120

In the revised model, we hold production variable (Y, )
unchanged. That means we only have to minimize the input and
maximize the service value. In other words, there wouldn’t be slack
value of production variable. Through this model, we can get the

performance value and slack variable.

Then we can rewrite this model as following:

R P LA RO )

u,v,w
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S.t.

We can use this integrated model to calculate the value of cost
efficiency and service effectiveness for each DMU. Then we would
know which DMU has,the best.performance and how does it improve
its performance. This IDEA imodel cannot transfer to dual form,

because IDEA model isn’t'the linear programming problem.

In eg. 2-8, h'stands for the overall efficiency score, which is the
efficiency of kth firm,‘anditranges from zero to two. If h equals to two,
the firm is efficient. And if h is less two, the firm is inefficient. If firm
is inefficiency, one can check the efficiency scores, which respectively
calculated from the integrated model (cost efficiency, service

effectiveness and cost effectiveness) to see which part need to improve.

3.2.1.3.2. Variable returns to scale

In order to fit the true production behavior, we are going to
change CRS production technique into VRS production technique.

Because our model form is a nonlinear problem, we can not use

conventional way to add VRS variable (2/1 =1) in dual problem. We

add our VRS variable in following BCC model (IBCC).
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Max =l +| =

o Zvjxkj zurykr —U

S m )
st 2 U Yy Uy < Zvj(xkj _Skj)’ I=12,--,n

(2-10)

We can use this model to get the performance value of each DMU

under VRS technique. From this proposed model we can get efficiency
value, slack value and,weralso. can know each DMU is in increase,

decrease or constant returns, to scale:
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4. Properties of the proposed IDEA Models

In this chapter, we prove that the proposed IDEA models exhibits two essential
properties: rationality and uniqueness.

4.1. Rationality
4.1.1. Rationality for ICCR model
According to Charnes, et al. (1978), their proposed measure of the
efficiency of any DMU is obtained as the maximum of a ratio of weighted
outputs, subject to the condition that the similar ratio for every DMU be less
than or equal to unity. Since the proposed integrated DEA model is to
maximize two aspects of efficiency values, the overall efficiency value should

be less than or equal to two. Our proposed measure of the efficiency of any
DMU can also be obtained in a similar way. Mathematically,

R S
Zur ykr Zwslks
s=1

[ICCR’]  Max i +

u,v,W J R
Zvj ij z u r ykr
j=l r=1
R
Z u r yir
L=t

st, ST N =12,
ZVinj
i3
S
zwslis
= <1, i=12,---1
zurylr
r=1
v; 20, ]=12,---,J
w, >0, s=L2,--,S
u, =0, r=,2,---,R
Let E/ =—F and E/ =I—r respectively represent the technical
X R

efficiency (ratios of inputs at a given output) and service effectiveness (ratios
of consumptions at a given output), where X is the minimum input that can
produce the given output and X, is the actual input being rated from the
same output. Likewise, |, is the maximum yield that can be generated from
the given output and |, is the actual yield being rated from the same output.

. Xg |
Then, the overall efficiency can be calculated as E, =E; +E/ =—R+I—r.
r R
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Essentially, 0<E, <2.

Alternately, we can also derive the overall efficiency, E,, from our
proposal integrated DEA model as follows. For any given output Yy,
uy, wi

r

VX, Uy,

r

Max h, =
uv

u
ﬁgl’
VXq

s.t.

u
We o,
VX

wl, <1
- 2

uyr
wi

r

L<1,
uy,
u,v,w=0

Let U,V | W represent the optimal pair of corresponding values. Since

Xe <X e 2l g Yo = Yo =V St dmplies Y Yr =U YR =V Xr gpnq

b

Uy, =U¥g =Wls wethen have the following results and relationship:

: . Uy, Uy, VX
Technical efficiency= *yr 5 *yR = R=F/
VX, VX VEX,

. . wlo wl wil
Service effectiveness= ———=——=—TL=E/
u yr u yR w IR

" wl
Thus, h, ="t Wl g g oE .

°v'x, uly,
In conclusion, the efficiency scores determined by the proposed
integrated DEA model are proven with an essential property of reasonability
because the optimal values of the proposed model have satisfied the definition

of efficiency.

4.1.2. Rationality for IBCC model
The proposed IBCC model is presented as follows:
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R S
zurykr — U, zwslks —Uu,
s=1

[IBCC’] Max = +

J

R
u,v,w
Zvjxkj ZUrYkr_uo
j=1 r=1
R

Zur Yir = U
r=1

s.t. 3 <1, 1=12,---,1
Zvjxii
j=1
S
zwslis_ul
= <1, i=12,1

U Yir —Ug
r=1
209 j:1,2,"',J
>0, s=12,---,S
>0, r=12,---,R

£ £ =

The definition of efficiency is the same as in ICCR model. We can derive

the overall efficiency from our’proposalintegrated DEA model as follows.

uy. —u, “wl —u
Max hr e yl’ 0 + r 1
] VXr uyr _UO

st T

—

values. Since Xz<X, , I;>l and vyz=y,=y , it implies
uy, —U,=U"ys—U,=V'X; and Uy, —U,=U"y, —U, =W, —u,. We then

have the following results and relationship:

u yr_u():u yR_uO:VXR

VX e VX,

r

Technical efficiency =

:Er’
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, , wl —u wil —u, wl —u
Service effectiveness = r_1— r L r 1

*

uy,—u, uyg-U WIR_UI

3 u
W (II’ - 1* ) II’ - 1*
_ woo_ W
* u u
wilg—=%) lg——%
w w
u
I ——%
0 <Service effectiveness= Vl\J' =E <1,
I, ——%
w
Where u, is a scale variable.
u
When u, >0, we can get the result: |, >1, ——-. That means DMU r needs
w
to downsize. Then it can reach optimal scale.
ul

r r ® e

That means DMU r reaches

When u, =0, we can get the result: |

optimal scale.

u
When u, <0, we can get thexesult: 1. ] ——-. That means DMU r needs to
w

upsize. Then it can reach.optimal scale.

In conclusion, the efficiency scoresdetermined by the proposed
integrated DEA model are proven-with an.essential property of rationality.

Furthermore, IBBC model ¢an determine the optimal scale of each DMU.

4.2. Uniqueness

To show the uniqueness of joint efficiency measurement of the proposed
model, we have to prove that the virtual multipliers of u, v, and w determined by
the proposed model are a global optimal solution, not a local one. For a nonlinear
programming problem, only for the model with a convex or concave objective
function under a convex feasible region (i.e. sufficient conditions) would the
solutions, obtained via the Karush-Kuhn-Tucker (KKT) conditions (i.e.
necessary conditions), guarantee a global optimum. In other words, the convexity
or concavity of objective function together with the convexity of feasible region
must be examined. For simplicity, without loss of generality, the mathematical
model of [ICCR-S] and [IBCC-S] are examined and only the case of single input,

output and service variable is presented.

Since all the constraints in [ICCR-S] and [IBCC-S] are linear, the feasible

set defined by these constraints is convex. Then the bordered Hessian matrix of
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objective function of [I[CCR-S] can be computed as:

0 0 —y'lu
H=| 0 2x'ywlu = xT'y?
—y'lu? —x'yw? 2y Tluw

The signs of the first, second and third leading principal minors of H are

H|<o0,

H2| >0and |H3| <0 indicating that the bordered Hessian is negative

semi-definite and the objective function is a concave function. In other words,

the sufficient conditions for a global maximum are proven.

The bordered Hessian matrix of objective function of [IBCC-S] can be

computed as:

H =
0 0 I(uy -u, )" ~ylluy-u,)”
0 2x7'v> (uy —ug) 0 x(vx)? — xy(vx)
0 0 0 ~(uy-u,)” y(uy —u,)”
I(uy —u,)” () * o S(yETT 2wl v Nuy—ug )T = 2y(wl-u, Nuy —ug )

~yluy—u,)”  —xy(vx)? Uy —ug )Pt 2y(wl—u Nuy —u, )T 2y (wl—u, Nuy —u, )

H,[>0,

The signs of principal minors of H are |H1|S0, H3|£0,

|H 4| >0 and |H5|£ 0. This indicating that the bordered Hessian is negative

semi-definite and the objective function is a concave function. In other words,

the sufficient conditions for a global maximum are proven.
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5. Case study

5.1. Data
A total of 15 domestic air routes operated by a Taiwanese airline are
evaluated in this study. The basic characteristics of these routes are summarized

in Table 2. Because each route has its own properties, it’s worthy to evaluate the

performance of each route.

Table 2 Basic characteristics of the 15 domestic routes operated by Airline U

No Route Terminal Major market Inland/offshore
) Origin  Destination Business Recreation Inland  Offshore

1 TSA-KHH Taipei ~ Kaohsiung 4 v

2  TSA-TNN Taipei Tainan v v

3 TSA-TXG Taipei Taichung 4 v

4 TSA-CYI Taipei Chiayi v v

5 TSA-TTT Taipei Taitung v v

6 TSA-MZG Taipei Makung v v

7 TXG-MZG Taichung  Makung v 4

8 CYI-MZG Chiayi Makung v v

9 TNN-MZG  Tainan Makung v 4
10 KHH-MZG Kaohsiung Makung v v
11 TSA-KNH Taipei Kinmen v 4
12 TXG-KNH Taichung <Kinmen v v
13 CYI-KNH Chiayi Kinmen v 4
14 TNN-KNH  Tainan Kinnen v v
15 KHH-KNH Kaohsiung Kinmen v v

Source: Chiou and Chen (2006)

To preserve confidentiality, the airline is referred percentages, not in real

values. In complying with the rule of thumb that the number of DMUs must
exceed twice of the total number of input and output variables, the number of
variables in each perspective is limited. Thus, in the input perspective, the
original twelve items of attributed costs are aggregated into three variables: fuel
cost (FC), personnel cost (PC),

ground-handling crews, and aircraft cost (AC), including maintenance costs,

including the salaries of cabin and
depreciation costs and interest payments. The production variables include
number of flights (FL) and seat-mile (SM). The service variables include
passenger-mile (PM) and embarkation passengers (EP), as demonstration in

Table 3.Tthe relationship between these three variables are shown in Fig. 3.
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Table 3 Data of 15 domestic routes operated by Airline U (in %)

Route Factor variable Production variable Consumption variable
FC PC AC FL SM PM EP

1 32.53 26.14 26.58 16.02 33.41 32.06 25.18
2 14.31 9.72 11.42 7.49 14.00 11.70 10.25
3 5.61 10.91 8.75 15.50 4.94 5.17 9.66
4 7.32 11.07 10.45 15.16 8.05 8.14 9.14
5 10.49 7.04 9.18 5.52 10.13 8.98 8.01
6 6.77 5.00 5.96 4.06 6.66 7.03 6.47
7 2.06 4.61 3.47 6.65 2.26 2.27 3.99
8 0.64 1.74 1.27 2.45 0.53 0.57 1.57
9 1.35 3.66 2.37 5.13 1.21 1.42 3.65
10 3.79 7.87 5.63 8.92 3.72 4.25 7.19
11 9.61 5.09 7.05 3.99 8.06 9.78 7.17
12 2.34 3.11 3.55 4.46 2.70 3.50 3.44
13 0.5 0.75 0.83 1.05 0.63 0.69 0.69
14 0.51 0.76 0.83 1.05 0.67 0.81 0.75
15 2.15 2.53 2.67 2:54 3.03 3.62 2.84

Total 100 100 100 100 100 100 100

Source: Chiou and Chen (2006)

5.2. Efficiency scores

The optimal virtual multipliers corresponding to all variables are first
determined by the integrated DEA models. The joint and separate efficiency
scores of each route under CRS and VRS are then computed, respectively,
as shown in Table 4 and Table 5. Note from Table 4 that only two routes
(TNN-MZG and TSA-KNH) are evaluated as overall efficiency by the
integrated CCR model and that three routes (TNN-MZG, TSA-KNH, and
TXG-KNH) were evaluated as overall efficiency by separated CCR model
(Chiou and Chen, 2006). Namely, the proposed integrated CCR model has
higher discriminating power over the separated CCR models. By definition,
the efficiency score of technical effectiveness of our integrated CCR model
is equal to the product of scores of technical efficiency and service
effectiveness. In contrast, the separated CCR models proposed by Chiou

and Chen (2006) fail to possess this property.
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Table 4 Scores of overall and separate efficiencies of each route under CRS

Integrated CCR model Separated CCR model
Route Overall Technical Service Technical Technical Service Technical
efficiency efficiency  effectiveness effectiveness  efficiency  effectiveness effectiveness

1 1.8214 1.0000 0.8214 0.8214 1.000 0.875 0.889
2 1.7810 0.9927 0.7884 0.7826 1.000 0.797 0.817
3 1.7573 0.9411 0.8162 0.7681 0.996 0.855 0.860
4 1.6678 0.8970 0.7708 0.6914 0.984 0.854 0.851
5 1.8127 0.9675 0.8452 0.8177 0.991 0.787 0.766
6 1.9500 0.9500 1.0000 0.9500 0.958 1.000 1.000
7 1.8102 1.0000 0.8102 0.8102 1.000 0.815 0.866
8 1.9065 0.9900 0.9165 0.9073 1.000 0.977 0.905
9 2.0000* 1.0000* 1.0000* 1.0000* 1.000* 1.000* 1.000*
10 1.8788 0.9026 0.9761 0.8810 0.901 0.978 0.913

11 2.0000*  1.0000* 1.0000* 1.0000* 1.000* 1.000* 1.000*
12 1.8920 0.8920 1.0000 0.8920 1.000* 1.000* 1.000*

13 1.8168 0.9695 0.8473 0.8215 1.000 0.844 0.874
14 1.9302 1.0000 0.9302 0.9302 1.000 0.929 0.978
15 1.9650 1.0000 0:9650 0.9567 1.000 0.963 1.000

Note: “*” is indicated the efficient DMUSs:

From Table 5, we netice that there are four routes evaluated as overall
efficiency by the proposed ‘integrated BCC model, whereas eight routes
have been evaluated as overall efficiency by the separated BCC model
(Chiou and Chen, 2006). Once again, it shows a superior discrimination
power of the proposed integrated DEA model over the separated DEA

models.

Using the proposed integrated BCC model, we further examine the signs
of u, (u,) to identify the scale property for technical efficiency (service

effectiveness). The DMU is increasing returns to scale (IRS), if u; <0
(u; <0). If u,>0 (u; >0), the DMU is decreasing returns to scale (DRS).

If u;=0 (u; =0), the DMU is constant returns to scale (CRS). The results

are summarized in Table 6. Note that most DMUs are characterized with
DRS in their production sector or sale sector, implying that downsizing the

scale may be needed.

36



Table 5 Scores of overall and separate efficiencies of each route under VRS

Integrated BCC model Separated BCC model

Route Overall Technical Service Technical Technical Service Technical
efficiency efficiency  effectiveness effectiveness  efficiency  effectiveness effectiveness

1 2.0000*  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
2 1.8590 1.0000 0.8590 0.8590 1.0000 0.8600 0.9120
3 2.0000*  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
4 1.8919 1.0000 0.8919 0.8919 1.0000 0.9090 1.0000
5 1.8667 0.9891 0.8776 0.8680 0.9960 0.8340 0.9180
6 1.9568 0.9568 1.0000 0.9568 0.9590 1.0000 1.0000
7 1.8128 1.0000 0.8128 0.8128 1.0000 0.8290 0.9030
8 1.9073 0.9073 1.0000 0.9073 1.0000* 1.0000* 1.0000*
9 2.0000*  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
10 1.9382 0.9382 1.0000 0.9382 0.9380 1.0000 1.0000
11 2.0000*  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
12 1.9074 0.9090 0.9984 0.9075 1.0000* 1.0000* 1.0000*
13 1.8321 0.9692 0.8629 0.8363 1.0000* 1.0000* 1.0000*

14 1.9488 0.9488 1.0000 0.9488 1.0000* 1.0000* 1.0000%*
15 1.9725 1.0000 0.9725 0.9725 1.0000 0.9730 1.0000

Note: “*” is indicated the efficient DMUS:

Table 6 Returns to'scale of‘each route

Technical efficiency: Service effectiveness
Route " *
Uy, RTS u, RTS
1 0.0045 DRS 0.1427 DRS
2 0.0088 DRS 0.1427 DRS
3 0.1053 DRS 0.5397 DRS
4 0.1226 DRS 0.5041 DRS
5 0.0522 DRS 0.2432 DRS
6 0.0263 DRS 0.0552 DRS
7 0.0079 DRS 0.0000 CRS
8 0.1656 DRS 0.0000 CRS
9 0.0000 CRS 0.0000 CRS
10 0.1180 DRS 0.1741 DRS
11 0.0000 CRS 0.0000 CRS
12 0.0229 DRS 0.0356 DRS
13 0.0313 DRS 0.0000 CRS
14 0.1027 DRS 0.0000 CRS
15 0.0191 DRS 0.0000 CRS
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5.3. Slack analysis

To develop improvement strategies for the inefficient routes, slack
values for each of the factor and consumption variables are computed
according to [ICCR-S] models. The results are reported in Table 7. Except
for two efficient routes (No. 9 and No. 11), the remaining 13 inefficient
routes require either reducing factor amount or increasing consumption
amount. Taking Route No. 8 as an example, decreasing FC by 0.0593%, PC
by 0.0749%, and AC by 0.0806%, or increasing PM by 0.1501% alone
would achieve efficiency. Consequently, the contradictory improvement
suggestions based on separated DEA models by Chiou and Chen (2006)

would be avoided.

Table 7 Slack values of factor and consumption variables under CRS

Factor variable Consumption variable
FC PC AC PM EP

1 0.0000 0.0000 0.0000 0.0000 0.0000
2 -0.2448 0.0000 0.0000 0.2500 0.2500
3 0.0000 0.0000 0.0000 0.1709 0.0000
4 -0.2500 -0.2500 -0.2500 0.2500 0.2500
5 -0.1852 -0.0687 -0.1552 0.2500 0.2500
6
7
8
9

Route

-0.0025 -0.0025 -0.0025 0.0000 0.0000
0.0000 10.2500 0:0000 0.2500 0.2500
-0.0593 -0.0749 -0.0806 0.1501 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

10 -0.2500 -0.2500 -0.2500 0.2464 0.0000
11 0.0000 0.0000 0.0000 0.0000 0.0000
12 -0.2129 -0.2500 -0.2500 0.0024 0.0030
13 0.0000 0.0000 -0.2500 0.1615 0.0676
14 -0.0261 -0.2500 -0.0144 0.0000 0.0000
15 0.0000 0.0000 0.0000 0.1737 0.2500

5.4. Weight analysis for generalized IDEA model
The above IDEA model has adopted an additive form of technical
efficiency and service effectiveness, which implicitly assumes equal weights
for both terms. A more generalized IDEA model with various weights can be

expressed as follows:
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If the weights of production and marketing department are allowed to be
endogenous, some DMUs might reach efficiency by totally ignoring the
performance of production department or marketing department, which might
not be very reasonable in practicé.:;Thus, this study set the weights as

exogenous parameter (& )

Where, o is the weight of téchnical efficiency, which is subjectively
given by the decision maker. (1=@)7is the weight of service effectiveness. If
the decision maker concerns.more about the technical efficiency than the
service effectiveness, then o can be set lager than 0.5, vice versa. Taking
DMU 5 as an example, the technical efficiency and service effectiveness with
various weight combinations are computed and the technical efficiency will
increase and the service effectiveness will decrease as o gets larger.
Obviously, the generalized IDEA model can provide the decision-maker with

wider spectrum of information than only the equal-weight information.

In this section, we will discuss influence of weight change for each DMU.
First, we will demonstrate the result of DMU 1. From Table 8 and Figure 4,
we could realize that only when « equal to 0.1 and 0.2 weight change will
change efficiency score. When « larger than 0.3 weight change would no
effect on efficiency score no matter for technical efficiency or service
effectiveness. That’s because technical efficiency is reach optimal value when
a equal to 0.3. No matter how the weight changes technical efficiency will

adjust by itself in order to reach optimal value.
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For relative efficient DMU such DMU 1, weight changes wouldn’t increase
efficiency score by large scale. For this kind DMUs, they need to improve
their efficiency by adjust their input, output and/or consumption variables
rather than change their weight only. We could know that weight changing
isn’t so important for efficient DMUs than for inefficient DMUs.

Table 8 The technical efficiency and service effectiveness of DMU 1 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.88245 0.85085
0.2 0.91033 0.84733
0.3 1.00000 0.82141
0.4 1.00000 0.82141
0.5 1.00000 0.82141
0.6 1.00000 0.82141
0.7 1.00000 0.82141
0.8 1.00000 0.82141
0.9 1.00000 0.82141
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Fig 4 The shapes of technical efficiency and service effectiveness of DMU 1 with

various weight combinations

The result of DMU 2 is showing in Table 9 and Figure 5. DMU 2 is relative
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efficiency in technical efficiency. When « get larger, technical efficiency
will increase slowly. However the score change cause by weight change isn’t

significant. The reason cause this result is the same as DMU 1.

If DMU 2 wishes to increase its efficiency score, it needs to adjust is input,

output and/or consumption variables rather than change its weight only.

Table 9 The technical efficiency and service effectiveness of DMU 2 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.98480 0.79051
0.2 0.98480 0.79051
0.3 0.99268 0.78836
0.4 0.99268 0.78836
0.5 0.99268 0.78836
0.6 1.00000 0.77920
0.7 1.00000 0.77920
0.8 1.00000 0.77920
0.9 1.00000 0.77920
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Fig 5 The shapes of technical efficiency and service effectiveness of DMU 2 with

various weight combinations

The result for DMU 3 is displaying in Table 10 and Figure 6. They show
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that weight changing causes significant improvement in performance. That’s
because DMU 3 is a relative inefficiency DMU. When the weight changes, the
efficiency scores will have apparent change. If DMU 3 wants to improve its
efficiency score, it can either modify weight combinations or adjust input,

output and/or consumption variables.

From this example, we could know that weight change is more useful for
relative inefficiency DMU. However once efficiency score of technical
efficiency or service effectiveness is close to unity under certain weight
combination, the weight change is no more useful in improving efficiency
score. In this case, when o =0.4, no matter how the weight change the
efficiency score isn’t change at all. Unless the weight combination become
extreme such as «a =0.9. Then the sector which gets most source will have

higher efficiency score such as technical efficiency.

Table 10 The technical efficiency and service effectiveness of DMU 3 with various

weight.combinations

a Technical efficiency. Service effectiveness
0.1 0.78654 0.85611
0.2 0.83382 0.84874
0.3 0.93082 0.82127
0.4 0.94107 0.81624
0.5 0.94107 0.81624
0.6 0.94107 0.81624
0.7 0.94107 0.81624
0.8 0.94107 0.81624
0.9 0.94355 0.80406
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Table 11 The technical efficiency and service effectiveness of DMU 4 with various

6 The shapes of technical efficiency and service effectiveness of DMU 3 with

Table 11 and Figure 7-are/demonstrated the result of DMU 4. DMU 4 is a
relative inefficient DMU a§ well. Its efficiency score in sensitive about weight

change. It can improve it efficiency-performance through weight change

various weight combinations

and/or adjusting input, output and/or consumption variables.

The result of DMU 5 is demonstrating in Table 12 and Figure 10. DMU 5
will have the same pattern as DMU 4 because DMU 5 is an inefficient DMU

as well.

weight combinations

o Technical efficiency  Service effectiveness
0.1 0.87147 0.78877
0.2 0.87147 0.78877
0.3 0.87147 0.78877
0.4 0.87147 0.78877
0.5 0.89702 0.77083
0.6 0.97748 0.68851
0.7 0.98773 0.67224
0.8 0.99026 0.66504
0.9 0.99026 0.66504
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Fig 7 The shapes of technical efficiency and service effectiveness of DMU 4 with
various'weight combinations
Table 12 The technical efficiency and service effectiveness of DMU 5 with various

weight combinations

o Technical efficiency - Service effectiveness
0.1 0.940981 0.85118
0.2 0.967532 0.84522
0.3 0.967532 0.84522
0.4 0.967532 0.84522
0.5 0.967532 0.84522
0.6 0.972326 0.83987
0.7 0.972327 0.83987
0.8 0.995025 0.75819
0.9 0.996021 0.75031
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Fig 8 The shapes of technical efficiency and service effectiveness of DMU 5 with

various weight combinations

The result of weight change.of DMU. 6 is showing in Table 13 and Figure 9.
DMU 6 is a relative efficient DMU. Its Service effectiveness reaches unity
which means its sale department is' benchmark. No matter how the weight
changes it will adjust by itself unless the weight is in extreme position such as
a =0.9. In this situation; productionrdepartment get most source so technical
efficiency will perform better-and service effectiveness will become worse. If
DMU 6 wants to improve its performance, it better focus on adjusting its input,

output and/or consumption variables.

Table 13 The technical efficiency and service effectiveness of DMU 6 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.95003 1.00000
0.2 0.95003 1.00000
0.3 0.95003 1.00000
0.4 0.95003 1.00000
0.5 0.95003 1.00000
0.6 0.95003 1.00000
0.7 0.95003 1.00000
0.8 0.95003 1.00000
0.9 0.95276 0.98852
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Fig 9 The shapes of technical efficiency and service effectiveness of DMU 6 with

various weight combinations

Table 14 and Figure 10 demonstrate the outcomes of DMU 7. Like DMU 6,
DMU 7 is a relative efficient DMU."However it performs better in technical
efficiency. Only when weight combination, become extreme such as « =0.1,
service effectiveness will-perform better..Otherwise technical efficiency will
always be benchmark. Talking about performance improvement about DMU 7,
it could focus on modify its input, output and/or consumption variables rather

than find optimal weight combination.

Table 14 The technical efficiency and service effectiveness of DMU 7 with various

weight combinations

o Technical efficiency  Service effectiveness
0.1 0.96007 0.81723
0.2 1.00000 0.81024
0.3 1.00000 0.81024
0.4 1.00000 0.81024
0.5 1.00000 0.81024
0.6 1.00000 0.81024
0.7 1.00000 0.81024
0.8 1.00000 0.81024
0.9 1.00000 0.81024
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Fig

10 The shapes of technical efficiency and service effectiveness of DMU 7 with

various'weight combinations

Both the scores of technical efficiency and service effectiveness of different
weight combination for'DMU '8“and DMU 10 are demonstrating in Table 15,
Table 16, Figure 11 and Figure 12. Although DMU 8 and DMU 9 looks like
relative efficient DMUs in the‘efficient score, they are not benchmarks in both

production and sale department.

They are still sensitive about weight change especially at some extreme
weight combination such as a=0.1 or 0.2. When weight combination is in
extreme level, weight change will have certain influence on scores. If the
weight combination is in average level such as « =0.5 or 0.6, efficiency score

will has little response about weight change.

For this kind DMUs, they can improve their performance scores both
through weight change and adjusting their input, output and/or consumption
variables. However the main improvement approach of this kind should focus

on adjusting their variables.
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Table 15 The technical efficiency and service effectiveness of DMU 8 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.90691 0.94448
0.2 0.97387 0.93167
0.3 0.97387 0.93167
0.4 0.97387 0.93167
0.5 0.99002 0.91646
0.6 0.99002 0.91646
0.7 0.99002 0.91646
0.8 0.99002 0.91646
0.9 0.99002 0.91646
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Fig 11 The shapes of technical efficiency and service effectiveness of DMU 8 with

various weight combinations
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Table 16 The technical efficiency and service effectiveness of DMU 10 with various

weight combinations

Score

096

094

092

090 r

088

a Technical efficiency  Service effectiveness
0.1 0.87781 0.97950
0.2 0.90262 0.97615
0.3 0.90262 0.97615
0.4 0.90262 0.97615
0.5 0.90262 0.97615
0.6 0.90262 0.97615
0.7 0.90262 0.97615
0.8 0.90262 0.97615
0.9 0.90262 0.97615
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Fig 12 The shapes of technical efficiency and service effectiveness of DMU 10 with

various weight combinations

The result of DMU 9 and DMU 11 is shown in Table 17, Table 18, Figure
13, and Figure 14. Both DMU 9 and DMU 11 reach overall efficiency. Their
efficiency score no matter technical efficiency or service effectiveness are all
equal to unit. For these kinds DMU, different weight combinations have

insignificant effect.
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Because both produce and sale sector of these kinds DMUs will adjust by
themselves, weight change will have no power in improving efficiency scores.
Once DMU reaches overall efficiency, weight change is not an important issue

it should concern.

Table 17 The technical efficiency and service effectiveness of DMU 9 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 1.00000 1.00000
0.2 1.00000 1.00000
0.3 1.00000 1.00000
0.4 1.00000 1.00000
0.5 1.00000 1.00000
0.6 1.00000 1.00000
0.7 1.00000 1.00000
0.8 1.00000 1.00000
0.9 1.00000 1.00000
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Fig 13 The shapes of technical efficiency and service effectiveness of DMU 9 with

various weight combinations
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Table

18 The technical efficiency and service effectiveness of DMU 11 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 1.00000 1.00000
0.2 1.00000 1.00000
0.3 1.00000 1.00000
0.4 1.00000 1.00000
0.5 1.00000 1.00000
0.6 1.00000 1.00000
0.7 1.00000 1.00000
0.8 1.00000 1.00000
0.9 1.00000 1.00000
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Fig 14 The shapes of technical efficiency and service effectiveness of DMU 11 with

various weight combinations

Table 19 and Figure 15 are displaying the result of different weight
combinations for DMU 12. There is an interesting shape on Figure 15. The
efficiency scores is fixed in two value. When « is lying between 0.1 and 0.5
and between 0.6 and 0.9.

First, when « is between 0.1 and 0.5, service effectiveness is unity. Sale
department will adjust by itself until the source become less and less. Which

means production department get most source such as « is lying 0.5 and
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between 0.6 and 0.9. When « is large enough, the technical efficiency will

be performance better.

The DMU like DMU 12, which is relative inefficiency in one department
and efficiency in another department, can improve its performance by finding
optimal weight combinations and modifying its variable values. Both these

method can help to better its performance.

Table 19 The technical efficiency and service effectiveness of DMU 12 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.89205 1.00000
0.2 0.89205 1.00000
0.3 0.89205 1.00000
0.4 0.89205 1.00000
0.5 0.89205 1.00000
0.6 1.00000 0.85259
0.7 1.00000 0.85259
0.8 1.00000 0.85259
0.9 1.00000 0.85259
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Fig

15 The shapes of technical efficiency and service effectiveness of DMU 12 with

various weight combinations

52



Result of DMU 13, DMU 14 and DMU 15 are demonstrating in Table 20,
Table 21 and Table 22. The shapes of these results are displaying in Figure 16,
Figure 17 and Figure 18. From these results, we could know that all these
DMU are relative efficiency. Only weight combinations are in extreme level,
the efficiency scores will be different and the difference is only in a small

scale.

If these kinds DMUs hope to raise its efficiency scores, they better to

concentrate on adjusting their variable values.

Table 20 The technical efficiency and service effectiveness of DMU 13 with various

weight combinations

Score

a Technical efficiency  Service effectiveness
0.1 0.96949 0.84731
0.2 0.96949 0.84731
0.3 0.96949 0.84731
0.4 0.96949 0.84731
0.5 0:96949 0.84731
0.6 0.96949 0.84731
0.7 0.96949 0.84731
0.8 0.96949 0.84731
0.9 0.98929 0.72021
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Fig

16 The shapes of technical efficiency and service effectiveness of DMU 13 with

various weight combinations
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Table 21 The technical efficiency and service effectiveness of DMU 14 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 0.97151 0.93701
0.2 1.00000 0.93016
0.3 1.00000 0.93016
0.4 1.00000 0.93016
0.5 1.00000 0.93016
0.6 1.00000 0.93016
0.7 1.00000 0.93016
0.8 1.00000 0.93016
0.9 1.00000 0.93016
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Fig 17 The shapes of technical efficiency and service effectiveness of DMU 14 with

various weight combinations
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Table 22 The technical efficiency and service effectiveness of DMU 15 with various

weight combinations

a Technical efficiency  Service effectiveness
0.1 1.00000 0.96504
0.2 1.00000 0.96504
0.3 1.00000 0.96504
0.4 1.00000 0.96504
0.5 1.00000 0.96504
0.6 1.00000 0.96504
0.7 1.00000 0.96504
0.8 1.00000 0.96504
0.9 1.00000 0.96504
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Fig 18 The shapes of technical efficiency and service effectiveness of DMU 15 with

various weight combinations

5.5. Overall weight analysis

From above analysis, we could know that change weight will influence
the performance of DMU. Then, Table 23 and Figure 19 will demonstrate the
technical efficiency of each DMU with various weight combinations and
Table 24 and Figure 20 is the result of service effectiveness. Obviously, the
generalized integrated DEA model can provide the decision-maker with

wider spectrum of information than only the equal-weight information.
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Table 23 Technical efficiency of each DMU with various weight combinations

Efficiency value

a (Weight)
Route 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.8824 09103 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.9848 09848 0.9927 0.9927 0.9927 1.0000 1.0000 1.0000 1.0000
3 0.7865 0.8338 0.9308 0.9411 0.9411 0.9411 0.9411 0.9411 0.9436
4 0.8715 0.8715 0.8715 0.8715 0.8970 0.9775 0.9877 0.9903 0.9903
5 0.9410 0.9675 0.9675 0.9675 0.9675 0.9723 0.9723 0.9950 0.9960
6 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9528
7 0.9601 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9069 0.9739 0.9739 0.9739 0.9900 0.9900 0.9900 0.9900 0.9900
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.8778 09026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
12 0.8920 0.8920 0.8920 0.8920 0.8920 1.0000 1.0000 1.0000 1.0000
13 0.9695 0.9695 0.9695 0.9695...0.9695 0.9695 0.9695 0.9695 0.9893
14 09715 1.0000 1.0000 ,+1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000  1.0000 :1.0000- 1.0000 1.0000 1.0000 1.0000
Cost efficiency
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0.9500 . . . R +2
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Fig 19 The shapes of technical efficiency of Each DMU with various weight
combinations
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Table 24 Service effectiveness of each DMU with various weight combinations

a (Weight)
Route 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.8508 0.8473 0.8214 0.8214 0.8214 0.8214 0.8214 0.8214 0.8214
2 0.7905 0.7905 0.7884 0.7884 0.7884 0.7792 0.7792 0.7792 0.7792
3 0.8561 0.8487 0.8213 0.8162 0.8162 0.8162 0.8162 0.8162 0.8041
4 0.7888 0.7888 0.7888 0.7888 0.7708 0.6885 0.6722 0.6650 0.6650
5 0.8512 0.8452 0.8452 0.8452 0.8452 0.8399 0.8399 0.7582 0.7503
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9885
7 0.8172 0.8102 0.8102 0.8102 0.8102 0.8102 0.8102 0.8102 0.8102
8 0.9445 09317 09317 0.9317 0.9165 09165 09165 09165 0.9165
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9795 0.9761 0.9761 0.9761 0.9761 09761 09761 0.9761 0.9761
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.8526 0.8526 0.8526 0.8526
13 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473 0.7202
14 0.9370 0.9302 0.9302 0.9302 0:9302 0.9302 0.9302 0.9302 0.9302
15 0.9650 0.9650 0.9650 0.9650".0.9650 0.9650 0.9650 0.9650 0.9650
Service Effectiveness
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——1
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.
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Fig 20 The shapes of Service effectiveness of Each DMU with various weight

combinations
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From Table 23, Table 24, Figure 19 and Figure 20, we can realize that
efficient DMUs, such DMU 9 and DMU 11, has low sensitivity about weight
change because no matter how the weight change the efficient DMU will
adjust by itself. Only the inefficient DMUs, such as DMU 5, will have high
sensitivity about weight change.

Through weight analysis, each DMU would have its own suggestion on
improvement approach. Different DMU would have different features, and
weight analysis provides another way in analyzing each DMU. Each DMU

can find best method in improving its performance.

From above two figures, we could know that the changes of the
efficiency score no matter technical efficiency or service effectiveness are not
very huge. If DMUs try to improve its performance, they better focus on
adjusting the variable.
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6. Conclusions and suggestions

6.1. Conclusions
This paper develops integrated DEA (IDEA) models, under
constant-returns-to-scale (ICCR model) and variable-returns-to-scale (IBCC
model) technologies, to measure the overall efficiency and separate
efficiencies for non-storable commodities, from various aspects of technical
efficiency, service effectiveness, and technical effectiveness. Some major

findings can be concluded as follows:

(1) The proposed IDEA model, either ICCR or IBCC, is proven with
rationality and uniqueness properties. The property of rationality suggests
that the scores obtained from this integrated model are efficient values
rather than meaningless figures. The property of uniqueness guarantees
that the efficiency scores obtained from this model are global maximum

rather than local maximum.

(2) Our proposed IDEA.models.can.be ‘employed to measure the overall
efficiency of non-storable commodities such as transportation services.
The applicability of the proposed IDEA tmodel has been demonstrated by
a case study, from whichTthe WIDEA model has revealed higher

discrimination power than the conventional separated DEA models.

(3) Compared with conventional separated DEA model, the proposed IDEA
model can explain for non-storable commodities more explicitly. Because
the IDEA model can jointly account for the production and sale
departments of non-storable commodities, it is superior to conventional
DEA models.
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6.2. Suggestions

Some directions for future studies can be identified as follows.

(1) The weight analysis of the proposed IDEA model is worthy to make a
further study because the weight in this study is an exogenous variable,
not an endogenous variable. One could add the weight variable into the
integrated DEA model and let the model decide the optimal weight for

each department.

(2) An additive form of proposed IDEA model is derived in this paper, other
forms of IDEA models or even multi-objective IDEA models deserve

further exploration.

(3) The present paper only demonstrates the overall efficiency measure for
two departments -- production (technical efficiency) and sale (service
effectiveness). The proposed IDEA model can easily be extended to
evaluate the overall performance of an organization with more than two
departments that are’vertically.and/ot-horizontally coordinated, e.g., the
supply chain managing of a‘firm, the mails processing of the post office,

among others.
(4) More applications to-other non-storable cases with the proposed IDEA

model and more comparisons with other types of DEA models are also
worthy of further study.
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