

國 立 交 通 大 學

資訊工程系

博 士 論 文

在無線感測網路中的覆蓋及連結問題

The Coverage and Connectivity Problems in Wireless Sensor Networks

研 究 生：黃啟富

指導教授：曾煜棋 教授

中 華 民 國 九 十 三 年 十 月

在無線感測網路中的覆蓋及連結問題

The Coverage and Connectivity Problems in Wireless Sensor
Networks

研 究 生：黃啟富 Student：Chi-Fu Huang

指導教授：曾煜棋 Advisor：Yu-Chee Tseng

國 立 交 通 大 學
資 訊 工 程 系
博 士 論 文

A Dissertation

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science and Information Engineering

October 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年十月

 I

在 無 線 感 測 網 路 中 的 覆 蓋 及 連 結 問 題

學生：黃啟富

指導教授：曾煜棋

國立交通大學資訊工學系博士班

摘 要

無線感測網路的新興技術，將使得我們的生活更加便利，它的環境之中

包含了許多便宜的無線感測器，每一個感測器都具有收集、儲存、以及處

理環境資訊的能力，此外，感測器和感測器之間還能透過無線的方式互相

通訊。要使得一個感測網路可以成功的運行，感測器必須要能夠同時保持

感測的覆蓋程度、網路的連結性、以及長時間運行的能力。在本論文之中，

我們首先探討在二維及三維空間之中的覆蓋問題，接著，我們研究在一個

感測網路中，感測的覆蓋程度和通訊的連結性之間的關係，然後，為了延

長網路的運行時間，我們提出了分散式的能源節省暨覆蓋維持協定。

覆蓋問題是無線感測網路的基礎問題之一，它反應了一個無線感測網路

是如何地被感測器所監看或追蹤。在本論文之中，我們把這個問題定義成

一個判定問題：給定一個參數 k，我們的目標是要去判定，是不是在一個感
測網路所服務的區域上的每一位置，都能被最少 k個感測器所偵測到。在
二維的平面上，每一個感測器的感測範圍可以是相同或不同半徑的圓形，

而在三維的立體空間之中，我們將感測器的感測區域假設成圓球(不必是相
同的半徑)，我們首先提出這個問題在二維空間之中多項式時間的演算法，
接著，我們更進一步的証明這個問題在三維空間之中，也可以在多項式的

時間之內解答，而我們所提出來的解法，都可以很容易地轉換成分散式的

協定。

要讓一個感測網路可以順利的運行，感測器必須要能夠同時兼顧感測的

覆蓋程度以及網路的連結性，這個問題己經在[35, 43]之中被探討，這兩篇

 II

文獻都提出了一個類似的結論，那就是，當通訊的半徑大於等於兩倍的感

測半徑時，覆蓋的程度可保証網路的連結性。在本論文中，我們從另外一

個角度來探討這個問題，並提出了不依賴上面假設的解決方案，這也暗示

著，[35, 43]所提出的方法，可以被歸類成我們所提出的方法之中的一個特
別情況。

此外，保持足夠的覆蓋程度和達成系統長時間的存活，是在設計網路的

拓樸時兩個互相衝突的因素，在本論文中，我們提出分散式的協定來安排

感測器工作及休眠時間，可以有效率的提升網路的存活時間，並同時維持

被偵測區域足夠的覆蓋，所提出的協定類似[40]所提的模型，然而，我們的
方法可以大量的減少計算複雜度，以及平衡感測器之間電能的消耗。

 III

The Coverage and Connectivity Problems in Wireless Sensor Networks

student：Chi-Fu Huang

Advisors：Dr. Yu-Chee Tseng

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

The wireless sensor network is an emerging technology that may greatly
facilitate our life. Such environments may have many inexpensive wireless
nodes, each capable of collecting, storing, and processing environmental
information, and communicating with neighboring nodes. For a sensor network
to operate successfully, sensors must maintain sensing coverage, network
connectivity, and long lifetime. In this dissertation, we first study the coverage
problems both in 2D and 3D spaces. Next, we investigate the relationship
between sensing coverage and communication connectivity of a sensor network.
Then, decentralized energy-conserving and coverage-preserving protocols are
proposed to prolong the network lifetime.

One of the fundamental issues in sensor networks is the coverage problem,
which reflects how well a sensor network is monitored or tracked by sensors. In
this dissertation, we formulate this problem as a decision problem, whose goal is
to determine whether every point in the service area of the sensor network is
covered by at least k sensors, where k is a given parameter. The sensing ranges
of sensors in a 2D space can be unit disks or non-unit disks while in a 3D space
the sensing regions of sensors are modeled by balls (not necessarily of the same
radius). We first present polynomial-time algorithms, in terms of the number of
sensors, to solve this problem in a 2D space. Next, we show that tackling this
problem in a 3D space is still feasible within polynomial time. The proposed

 IV

solutions can be easily translated into efficient polynomial-time distributed
protocols.

For a sensor network to operate successfully, sensors must maintain both
sensing coverage and network connectivity. This issue has been studied in [35,
43], both of which reach a similar conclusion that coverage can imply
connectivity as long as sensors' communication ranges are no less than twice
their sensing ranges. In this dissertation, we investigate this issue from a
different angle and propose more general decentralized solutions that do not rely
on the above assumption. Hence, the results in [35, 43] can be regarded as
special cases of what proposed in this dissertation.

Besides, to maintain sufficient coverage and to achieve long system lifetime
are two contradicting factors in designing the topology of a network. In this
dissertation, we propose decentralized protocols that schedule sensors' active
and sleeping periods to prolong the network lifetime while maintain the sensing
field sufficiently covered. The proposed protocols are similar to the model in
[40]. However, our approach can significantly reduce the computational
complexity incurred, and balance the energy expenditure among sensors.

誌 謝

感謝我所擁有的一切

感謝我的指導教授 曾煜棋 教授授辛勤的指導，感謝家人的支持，感謝實驗室中的

每一個成員，感謝所有和我共事過的學長姐和學弟妹。

Contents

1 Introduction 1

2 Related Works 5

2.1 Related Geometric Problems . 5

2.2 The Breach and Support Paths . 7

2.3 Exposure to Sensors . 10

2.4 Coverage and Connectivity . 12

2.5 Coverage-Preserving and Energy-Conserving Protocols 14

3 The Coverage Problem in a Two-Dimensional Space 19

3.1 Problem Statement . 19

3.2 The Proposed Solutions . 20

3.2.1 The �-UC Problem . 20

3.2.2 The �-NC Problem . 24

3.2.3 Complexity Analysis . 26

3.3 Simulation Results and a Sensor Coverage Toolkit 26

3.4 Applications and Extensions of the Coverage Problem 28

3.4.1 Discovering Insufficiently Covered Regions 28

3.4.2 Power Saving in Sensor Networks . 31

3.4.3 Hot Spots . 31

3.4.4 Extension to Irregular Sensing Regions 32

4 The Coverage Problem in a Three-Dimensional Space 33

4.1 Preliminaries and Problem Statement . 33

4.2 The Proposed Solution . 34

4.2.1 Theoretical Fundamentals . 35

V

4.2.2 Determining the Intersection of Spherical Caps 36

4.2.3 The Complete Algorithm . 38

5 Ensuring Both Coverage and Connectivity 41

5.1 Preliminaries and Problem Statement . 41

5.2 The Proposed Solutions . 42

5.2.1 Theoretical Fundamentals . 42

5.2.2 Looser Connectivity Conditions . 45

5.2.3 Protocols to Determine Coverage and Connectivity 48

6 Decentralized Energy-Conserving and Coverage-Preserving Protocols 49

6.1 Preliminaries and Problem Definition . 49

6.2 A Basic Coverage-Preserving Protocol . 50

6.2.1 Protocol Structure . 50

6.2.2 Energy-Based Scheduling . 52

6.2.3 Complexity Analysis and Discussion 54

6.3 Simulation Results . 55

7 Conclusions and Future Works 58

VI

List of Tables

2.1 The minimum radius �� to cover a unit square by � circles. 7

VII

List of Figures

2.1 An example of triangulating a polygon and a possible deployment of cameras.

Circles represent positions of cameras. 5

2.2 An example of an optimal covering with 7 circles. The radius of each circle is

about ���������. 6

2.3 Examples of (a) the Voronoi diagram and the maximal breach path, and (b) the

Delaunay triangulation and the maximal support path. I and F are the source

and destination points . 8

2.4 A RNG example. 9

2.5 An example of exposure. 10

2.6 Moving direction of an object with respect to a sensor at the origin. 11

2.7 An example of the OGDC algorithm. 13

2.8 An example of the progress of the algorithm in [9]. Dotted lines show the

connectivity between sensors. 15

2.9 An example of the blind point if both sensors � and � are put into sleeping at

the same time. 15

2.10 Examples that (a) sensor � satisfies the off-duty eligibility rule of [32] and (b)

sensor � does not satisfy the off-duty eligibility rule of [32]. 16

3.1 Examples of the coverage problem: (a) the sensing ranges are unit disks, and

(b) the sensing ranges are non-unit disks. The number in each sub-region is its

coverage. 20

3.2 (a) Determining the segment of ��’s perimeter covered by ��, and (b) determin-

ing the perimeter-coverage of ��’s perimeter. 21

3.3 Some examples to utilize the result in Theorem 1. 23

VIII

3.4 Some special cases: (a) two sensors falling in the same location (the number in

each sub-region is its level of coverage), and (b) the sensing range of a sensor

exceeding the network area 	. 24

3.5 The coverage relation of two sensors with different sensing ranges: (a) �� not in

the range of ��, and (b) �� in the range of ��. 25

3.6 Number of sensors v.s. coverage level for sensor fields of sizes: (a) ���� ���

and (b) ����� ����. 27

3.7 Sensing range v.s. coverage level for sensor fields of sizes: (a) ��� � ��� and

(b) ����� ����. 27

3.8 Functional descriptions of the toolkit. 29

3.9 Execution results of the toolkit: (a) coverage level and (b) painting results. . . . 29

3.10 Insufficiently 4-perimeter-covered segments for the example in Fig. 3.9. 30

3.11 The coverage problem with irregular sensing regions: (a) coverage levels of

irregular sub-regions, (b) polygon approximation of sensor ��’s sensing region,

and (c) covered segments of ��. 32

4.1 Illustration of terminologies. 34

4.2 The relationship between
��	
� �
 and
��	
� �
: case 1. 37

4.3 The relationship between
��	
� �
 and
��	
� �
: case 2. 37

4.4 An example to determine the coverage of a circle. 39

5.1 Proof of Lemma 4: (a) the path construction, and (b) possible cases of ��. . . . 43

5.2 Observations of Theorem 4 and Theorem 5: (a) The network is 2-covered and

1-connected. The removal of sensor � will disconnect the network, and (b)

The network is 2-covered and 2-connected but no sensor is 2-DPC. Note that

the sensing and communication ranges of each sensor are the same and are

represented by circles. 44

5.3 An example to compare Theorem 5 with results in [35, 43]. Solid circles and

dotted circles are sensors’ sensing ranges and communications ranges, respec-

tively. 45

5.4 Proof of the Lemma 5. 46

5.5 An example of two connected components each of which 1-covers 47

6.1 One working schedule of a sensor node. 51

IX

6.2 (a) a 4-sensor example, (b) schedules of �� and �� for intersection �, and (c) the

integrated schedule of ��. 53

6.3 The ratio of covered area achieved by our basic scheme and the scheme in [40]

with different grid size. 55

6.4 The ratio of alive nodes. 56

6.5 The ratio of covered area. 56

X

Chapter 1

Introduction

The rapid progress of wireless communication and embedded micro-sensing MEMS technolo-

gies has made wireless sensor networks possible. Such environments may have many inex-

pensive wireless nodes, each capable of collecting, storing, and processing environmental in-

formation, and communicating with neighboring nodes. In the past, sensors are connected by

wire lines. Today, this environment is combined with the novel ad hoc networking technology

to facilitate inter-sensor communication [26, 31]. The flexibility of installing and configuring

a sensor network is thus greatly improved. Recently, a lot of research activities have been

dedicated to sensor networks, including design issues related to the physical and media access

layers [29, 38, 42] and routing and transport protocols [4, 8, 12]. Localization and positioning

applications of wireless sensor networks are discussed in [3, 5, 22, 27, 33].

Since sensors may be spread in an arbitrary manner, a fundamental issue in a wireless sensor

network is to ensure coverage and connectivity. Given a sensor network, the coverage problem

in general is to determine how well the sensing field is monitored or tracked by sensors. In the

literature, this problem has been formulated in various ways. Even in computational geometry,

some coverage-related solutions can be found [24, 37]. Although solutions to those problems

cannot be directly applied to wireless sensor networks, it is still worth to study those problems

to establish some theoretical backgrounds on the coverage problem. Indeed, a lot of works have

been dedicated to the coverage-related problems in wireless sensor networks in the last few

years. These include the surveillance and exposure of sensor networks [19, 20, 34], and the

concerns of coverage versus connectivity issues when deploying a sensor network [9, 28, 35,

43].

The connectivity issue is concerned with the diversity of communication paths between

1

sensors. This would affect network robustness and communication performance. The GAF

protocol [39] aims to extend the network lifetime by turning off redundant nodes while keep-

ing the same level of routing fidelity, which is defined as uninterrupted connectivity between

communicating nodes. GAF imposes a virtual grid on the network and nodes in the same grid

coordinate with each other to determine who can sleep and how long. Reference [7] presents

a connectivity-maintaining protocol, SPAN, which can turn off unnecessary nodes such that

all active nodes are connected through a communication backbone and all inactive nodes are

directly connected to at least one active node. Maintaining a network connected is also a ba-

sic requirement of works targeted at topology control, which is to adjust sensors’ transmission

power for energy efficiency and collision avoidance [6, 15, 36].

Another concern in a wireless sensor network is the energy issue. Since sensors are usually

powered by batteries, sensors’ on-duty time should be properly scheduled to conserve energy.

If some nodes share the common sensing region and task, we can turn off some of them to

conserve energy and thus extend the lifetime of the network. This issue has been extensively

studied recently. Reference [30] proposes a heuristic to select mutually exclusive sets of sensor

nodes such that each set of sensors can provide a complete coverage of the monitored area.

Also targeted at turning off some redundant nodes, [41] proposes a probe-based density control

algorithm to put some nodes in a sensor-dense area to a doze mode to ensure a long-lived, robust

sensing coverage. A coverage-preserving node scheduling scheme based on an eligibility rule

which allows a node to turn itself off as long as other neighboring nodes can cover its sensing

area is presented in [32]. A coverage-aware self-scheduling scheme based on a probabilistic

sensing model is proposed in [17]. The work [40], which tries to fairly distribute energy con-

sumption among sensors, is proposed. The whole sensing area is divided into grid points which

are used to evaluate whether the area is sufficiently covered or not. Each sensor has to join the

schedule of each grid point covered by itself such that the grid point is covered by at least one

sensor at any moment.

In this dissertation, we first study the coverage problems both in 2D and 3D spaces. Fur-

thermore, the relationship between sensing coverage and communication connectivity of a sen-

sor network is investigated. Finally, to prolong the network lifetime, decentralized coverage-

preserving node-scheduling protocols are proposed.

We consider a more general sensor coverage problem in this dissertation: Given a set of

sensors deployed in a target area, we want to determine if the area is sufficiently �-covered, in

2

the sense that every point in the target area is covered by at least � sensors, where � is a given

parameter. As a result, the aforementioned works [32, 41] can be regarded as a special case of

this problem with � � �. Applications requiring � � � may occur in situations where a stronger

environmental monitoring capability is desired, such as military applications. It also happens

when multiple sensors are required to detect an event. For example, the triangulation-based

positioning protocols [22, 27, 33] require at least three sensors (i.e., � � �) at any moment to

monitor a moving object. Enforcing � � � is also desirable for fault-tolerant purpose. The ar-

rangement issue [2, 11], which is widely studied in combinatorial and computational geometry,

also considers how a finite collection of geometric objects decomposes a space into connected

elements. However, to construct arrangements, only centralized algorithms are proposed in the

literature, whilst what we need for a wireless sensor network is a distributed solution. The solu-

tions proposed in this dissertation can be easily translated to a distributed protocol where each

sensor only needs to collect local information to make its decision.

In a 2D space, the sensing range of each sensor can be a unit disk or a non-unit disk. Rather

than determining the coverage of each location, our approach tries to look at how the perimeter

of each sensor’s sensing range is covered, thus leading to an efficient polynomial-time algo-

rithm. As long as the perimeters of sensors are sufficiently covered, the whole area is sufficiently

covered.

In a 3D space, the sensing region of each sensor is modeled by a 3D ball. At the first

glance, the 3-dimensional coverage problem seems very difficult since even determining the

subspaces divided by the spheres of sensors’ sensing ranges is very complicated. However, in

this dissertation, we show that tackling this problem is still feasible within polynomial time. We

propose a novel solution by reducing the geometric problem from a 3D space to a 2D space, and

further to a 1D space, thus leading to a very efficient solution. In essence, our solution tries to

look at how the sphere of each sensor’s sensing range is covered. As long as the spheres of all

sensors are sufficiently covered, the whole sensing field is sufficiently covered. To determined

whether each sensor’s sphere is sufficiently covered, we in turn look at how each spherical cap

and how each circle of the intersection of two spheres is covered. By stretching each circle on

a 1-dimensional line, the level of coverage can be easily determined.

In this dissertation, we further study the relationship between sensing coverage and com-

munication connectivity of a sensor network. Reference [35] claims that coverage can imply

connectivity as long as sensors’ communication ranges are no less than twice their sensing

3

ranges. A similar result is also drawn in [43]. It is clear that the results in [35, 43] are not

applicable when some sensors’ communication ranges are less than twice their sensing ranges

even though others are not. Also, both [35, 43] assume that all sensors have the same sensing

ranges. In this dissertation, we relax these constrains and show conditions for a sensor network

to be �-covered and �-connected, and to be �-covered and 1-connected. Hence, the results in

[35, 43] can be regarded as special cases of what proposed in this dissertation.

Finally, we propose decentralized energy-conserving and coverage-preserving protocols to

prolong the network lifetime. We adopt the model in [40] to fairly distribute sensors’ energy

expenditure. However, instead of using grid points, we utilize the result in [35] by calculating

sensors’ schedules based on the intersection points among their sensing ranges. The result

can significantly reduce the computational complexity incurred on each sensor. In addition,

the inaccuracy problem caused by gird approximation is completely eliminated. Besides, we

further discuss how to utilize sensors’ remaining energy to adjust parameters in our protocol

to balance the energy consumption among sensors. Simulations are conducted to verify our

results.

This dissertation is organized as follows. Related works are surveyed in Chapter 2. Chap-

ter 3 formally defines the coverage problems in a two-dimensional space and then presents our

solutions while the three dimensional coverage problem is discussed in Chapter 4. Chapter 5

further studies how to ensure both coverage and connectivity. Coverage-preserving and node-

scheduling protocols are presented in Chapter 6. Chapter 7 draws our conclusions and future

works.

4

Chapter 2

Related Works

In this chapter, we first study several relevant computational geometric problems. Then, a num-

ber of papers aimed at solving the coverage problem in wireless sensor networks are discussed.

We will address issues such as surveillance and exposure of sensor networks, coverage and

connectivity in network deployment, and coverage- and energy-preserving protocols for sensor

networks.

2.1 Related Geometric Problems

In this section, we review two computational geometric problems which are related to the cov-

erage problem in a sensor network. The first problem is the Art Gallery Problem [24]. Imagine

that the owner of an art gallery wants to place cameras in the gallery such that the whole gallery

is thief-proof. There are two questions to be answered in this problem: (i) how many cameras

Figure 2.1: An example of triangulating a polygon and a possible deployment of cameras.

Circles represent positions of cameras.

5

Figure 2.2: An example of an optimal covering with 7 circles. The radius of each circle is about

���������.

are needed, and (ii) where these cameras should be deployed. Every point in the gallery should

be monitored by at least one camera. Cameras are assumed to have a viewpoint of 360 degrees

and rotate at an infinite speed. Moreover, a camera can monitor any location as far as nothing

is in the middle, i.e., a line-of-sight exists. The number of cameras used should be minimized.

The gallery is usually modeled as a simple polygon on a 2D plane. A simple solution to this

problem is to divide the polygon into non-overlapping triangles and place one camera in each

of these triangles. By triangulating the polygon, it has been shown that any simple polygon can

be guarded by ����� cameras, where � is the number of triangles in the polygon. This is also

the best result in the worst case [24]. An example of triangulating a simple polygon is shown

in Fig. 2.1 and two cameras are sufficient to cover the gallery. Although this problem can be

solved optimally in a 2D plane, it is shown to be NP-hard when being extended to a 3D space

[25].

Another related problem in computational geometry is the circle covering problem [37],

which is to arrange identical circles on a plane that can fully cover the plane. Given a fixed

number of circles, the goal is to minimize the radius of circles. This issue is discussed in

[13, 21, 23] for the covering of a rectangle. The coverings with less than or equal to five circles

and seven circles can be done optimally [13]. For example, an optimal covering of seven circles

is shown in Fig. 2.2. Reference [21] shows the coverings of six and eight circles and presents

a new covering with eleven circles by an approach based on the simulated annealing. Table 2.1

lists the minimun radius �� to cover a unit square with � identical circles reported in [23] for

6

Table 2.1: The minimum radius �� to cover a unit square by � circles.

� �� � �� � �� � ��

1 0.7071067. . . 2 0.5590169. . . 3 0.5038911. . . 4 0.3535533. . .

5 0.3261605. . . 6 0.2987270. . . 7 0.2742918. . . 8 0.2603001. . .

9 0.2306369. . . 10 0.2182335. . . 11 0.2125160. . . 12 0.2022758. . .

13 0.1943123. . . 14 0.1855105. . . 15 0.1796617. . . 16 0.1694270. . .

17 0.1656809. . . 18 0.1606396. . . 19 0.1578419. . . 20 0.1522468. . .

21 0.1489537. . . 22 0.1436931. . . 23 0.1412448. . . 24 0.1383028. . .

25 0.1335487. . . 26 0.1317468. . . 27 0.1286335. . . 28 0.1273175. . .

29 0.1255535. . . 30 0.1220368. . .

� � � � � � ��.

The above geometrical computation problems are similar to the nature of coverage problems

in wireless sensor networks: we need to know whether an area is sufficiently covered and

monitored. The number of sensors is important in terms of cost. These results also provide some

theoretical backgrounds to the coverage issue. However, there are several reasons which make

solutions of geometric problems not directly applicable to wireless sensor networks. The first

reason is that the assumptions are different. For example, a camera in the Art Gallery Problem

can see infinite distance unless there is an obstacle. On the contrary, sensors in fact have their

maximal sensing ranges. Besides, a sensor network usually has no fixed infrastructure and its

topology may even change at any time. Thus, many decisions have to be made in a distributed

manner. However, most geometric problems are solved in a centralized manner.

2.2 The Breach and Support Paths

In a sensor network, coverage can be regarded as the path between a given pair of points in

the sensing field that is best or worst monitored by sensors when an object traverses along

the path. Reference [18] defines the maximal breach path and the maximal support path as

paths on which the distance from any point to the closest sensor is maximized and minimized,

respectively. Polynomial-time algorithms are proposed to find such paths. The key idea is to

use the Voronoi diagram and the Delaunay triangulation of sensor nodes to limit the search

space. The Voronoi diagram is formed from the perpendicular bisectors of lines that connect

7

(a) (b)

I

F

I

F

Figure 2.3: Examples of (a) the Voronoi diagram and the maximal breach path, and (b) the

Delaunay triangulation and the maximal support path. I and F are the source and destination

points

two neighboring sensors, while the Delaunay triangulation is formed by connecting nodes that

share a common edge in the Voronoi diagram. Examples of the Voronoi diagram and Delaunay

triangulation are shown in Fig. 2.3.

Because line segments in the Voronoi diagram have the maximal distance to the closest sen-

sors, the maximal breach path must lie on the line segments of the Voronoi diagram. To find

the maximal breach path, each line segment is given a weight equal to its minimum distance to

the closest sensor. The proposed algorithm then performs a binary search between the smallest

and largest weights. In each step, a breadth-first-search is used to check the existence of a path

from the source point to the destination point using only line segments with weights that are

larger than the search criterion. If a path exists, the criterion is increased to further restrict the

lines considered in the next search iteration. Otherwise, the criterion is decreased. An example

of the maximal breach path is shown in Fig. 2.3(a). Similarly, since the Delaunay triangula-

tion produces triangles which have minimal edge lengths among all possible triangulations, the

maximal support path must lie on the lines of the Delaunay triangulation. To find the maximal

support path, line segments are assigned weights equal to their lengths . The search part is then

similar to the above case. An example is shown in Fig. 2.3(b).

Reference [16] proposes decentralized algorithms to find the maximal support path by con-

structing the Delaunay triangulation locally. The authors claim that the Delaunay triangulation

8

(a)

A

B

F

C

D E

(b)

A

B

F

C

D E

Figure 2.4: A RNG example.

can be replaced by relative neighborhood graph (RNG) and the maximal support path can still

be found. The key idea is that the RNG can be constructed locally. Given any two sensors � and

�, ����	�� �
 is the intersection of the two disks centered at � and �, both of the same radius

��� ��, where ��� �� is the distance between � and �. If ����	�� �
 does not contain any sensor,

an edge is established to join � and � with a weight of �
�
��� ��. The RNG is constructed by such

weighted edges and all sensors. Note that RNG can be constructed distributedly by all sensors.

Fig. 2.4 shows an example of constructing a RNG. There are six sensors 	, �,
, �, �,

and � . In Fig. 2.4(a), ����		��
 contains node
, so the link 	� should not be built. On the

contrary, ����		�

 and ����	��

 do not contain any other nodes, so the links 	
 and �

should be built. The final RNG is shown in Fig. 2.4(b).

After constructing the RNG, a decentralized algorithm is used to find the maximal support

path. First, the starting and ending points have to connect to the sensors that are closest to them.

Then, the Bellman-Ford algorithm is adopted to find the minimum weight path connecting the

starting and ending points. It is possible that there are several maximal support paths. In this

case, the path that consumes the least energy is selected.

It is proved in [16] that the maximal support path that can be found using the Gabriel graph

can also be found using the RNG. Using both Gabriel and RNG has the same complexity,

�	�
���
, where � is the number of sensor nodes. Thus, this conquers the problem with

9

A

B

s

1

2

3

Figure 2.5: An example of exposure.

Delaunay triangulation that global information needs to be collected.

2.3 Exposure to Sensors

The concept of time should also be included to reflect how much a moving target is exposed to

sensors. The exposure time should be accounted for. Consider the example in Fig. 2.5. Suppose

that � is a sensor and an object moves from point 	 to point � at a constant speed via three

possible paths. Although path 3 is the farthest path from �, it is also the longest exposure time.

In contract, path 2 is the shortest path, but it has the strongest sensing intensity. Path 1 has

neither the longest exposure time, nor the strongest sensing intensity.

How to find the minimal exposure path is addressed in [19]. The exposure for an object in

the sensor field during an interval ���� ��� along a path �	�
 is defined as:

�	�	�
� ��� ��
 �

� ��

��

�	�� �	�

������	�
��

���� ���
where �	�� �	�

 is the sensor field intensity measured at location �	�
 from the closest sensor

or all sensors in the sensor field � , and
����������

��� is the arc length. A numerical approximation is

proposed in [19] to find the minimal exposure path by dividing the sensor network region into

grids and forcing the path to only pass the edges of girds and/or the diagonals of grids. Each

line segment is assigned a weight equal to the exposure of this segment. Then a single-source-

shortest-path algorithm is used to find the minimal exposure path.

Reference [20] further discusses how to compute the exposure of a sensor network in a

distributed manner. The key idea is to use the Voronoi diagram to partition the sensor field and

then each sensor is responsible for the calculation of exposure in its region. Inside each region,

10

�
X

V

Y

(x , y)0 0

Figure 2.6: Moving direction of an object with respect to a sensor at the origin.

the above gird approximation is used. Reference [14] proposes another method to find the

minimal exposure path using variational calculus. This work first studies the sensing field with

a single sensor and then discusses how to extend the result to a more general case. Reference

[34] further proposes a localized algorithm which can reduce the computational complexity

of [20]. It is also proved in [34] that finding the maximal exposure path is NP-hard. Several

heuristics are then provided to find the maximal exposure path.

Another important question in sensor networks is to estimate the number of sensors required

to achieve complete coverage of a desired area. Reference [1] defines the critical density thresh-

olds for complete coverage. The exposure is used to find the critical number of sensor nodes

required to cover an area. For a sensor �, the signal received from a target decreases as the

distance from the target increases. If the signal strength is less than the noise signal, the sensor

can not detect the target. The authors then investigate the influence of sensors and define two

radii: radius of complete influence (��) and radius of no influence (��). Objects within the for-

mer radius are surely detected and objects outside the latter radius are undetectable. If �� � ��,

the decision degenerates to the zero-one model.

Suppose that there is a sensor located at the origin. Without loss of generality, [1] assumes

that the target is initially located at (��� ��
 on the arc at an angle � from the �-axis, as shown in

Fig. 2.6, and moves in a straight line with a constant speed � parallel to the �-axis. At a period

of , the exposure value is

�� �

� 	

�

!

	�� � � � �
� � 	��
�
���

where ! is a constant value depending on the sensor property. The exposure value can be written

11

using polar coordinates as follows:

�� �
!

� ���	�

�����

�
Æ ���	�

� � Æ ���	�

�
�

where Æ is the travelling distance. Let ��
 be the object detection threshold. It is shown in [1]

that �� can be given bye the following equation

��
 �
!

���

�
Æ

Æ � ��

�

and �� can be given by the following eguation

��
 �
�!

���
�����

�
Æ

���

�
�

According to [1], to cover an area 	, the number of nodes required would be of the order

�
�
�
��

�
, where � is the sensing radius lying between �� and ��. Via simulations, it is shown that

using �� is a good estimation for finding the number of sensors required and the probability of

detection is ��� or above.

2.4 Coverage and Connectivity

In this section, we discuss some works that consider the coverage and connectivity of sensor

networks [9, 28, 35, 43]. Each sensor is assumed to have a fixed sensing region and a fixed

communication range, both of which are modeled as disks. The goal is to achieve certain

sensing coverage and/or communication connectivity requirements.

For the sensor network to operate successfully, the active nodes must maintain both sensing

coverage and network connectivity. Reference [35] proposes another solution to determine if a

target area is �-covered and further studies the relationship between coverage and connectivity.

To determine the coverage level, this work looks at how intersection points between sensors’

sensing ranges are covered. It claims that a region is �-covered by a set of sensors if all intersec-

tion points between sensors and between any sensor and the boundary of this region are at least

�-covered. For the network communication connectivity, it claims that if a region is �-covered,

then the sensor network is �-connected as long as those sensors’ communication ranges are no

less than twice their sensing ranges.

Based on the above two properties, a Coverage Configuration Protocol (CCP) that can pro-

vide different degrees of coverage and meanwhile maintain communication connectivity is pre-

sented in [35] when the communication ranges are no less than twice their sensing ranges.

12

A B

D
C

p

i

Figure 2.7: An example of the OGDC algorithm.

Initially, all sensors are in the active state. If an area exceeds the required degree of coverage,

redundant nodes will find themselves unnecessary and switch to the sleep state. A sensor is

unnecessary to stay active if all the intersection points inside its sensing circle are at least �-

covered. A sleeping node also periodically wakes up and enters the listen state. In the listen

state, the sensor evaluates whether it is necessary to return to the active state.

If the communication ranges are less than twice the sensing ranges, reference [35] proposes

to integrate CCP with SPAN [7] to provide both sensing coverage and communication connec-

tivity. SPAN is a connectivity-maintaining protocol which can turn off unnecessary nodes such

that all active nodes are connected through a communication backbone and all inactive nodes

are directly connected to at least one active node. Reference [35] proposes that an inactive node

should become active following rules of SPAN or CCP. An active node will turn to sleep if it

satisfies neither SPAN’s nor CCP’s wakeup rules.

How to maintain the sensing coverage and connectivity is also addressed in [43]. Similar

to [35], the paper also shows that coverage can imply connectivity if the transmission range is

at least twice of the sensing range. If so, we only need to focus on the coverage problem. A

decentralized density control algorithm called Optimal Geographical Density Control (OGDC)

is proposed to choose as few number of working nodes as possible to cover the network. Ini-

tially, all nodes are in the UNDECIDED state. We first find several starting nodes to enter the

ON state. Nodes in the ON state may bring other UNDECIDED-state nodes to the ON state.

The basic idea is to reduce the overlapping areas that are covered by nodes in the ON state.

13

For example, in Fig. 2.7, there are four sensors �	���
��� and 	 is a starting node. Then

	 selects its neighbor � to enter the ON state because �’s distance from 	 is closest to
	
��,

where � is the sensing radius of each sensor. To cover the intersection point
 of 	’s and �’s

circles, we then select the node whose position is closest to the optimal position � which is on

the perpendicular bisector of the line connecting 	 and � and is at a distance of � from
. As

a result,
 is selected and turned to the ON state. This procedure is repeated until the whole

network has been covered. Note that a node in the UNDECIDED state can enter the OFF state

if it finds its sensing range has been fully covered by other ON-state nodes.

Reference [28] investigates three coverage-related issues about a sensor network based on

the grid-based deployment. In a unit square,
	
��	� sensors are deployed in the field. How-

ever, each sensor has a probability of �	�
 to remain functioning, and a probability of �
 �	�

to be dead. The authors show that when �	�
��	�
 � ������
�

, it is very likely that the network

will remain fully covered and connected, where �	�
 is the sensing and communication range of

each sensor. Also, under such a condition, the network diammeter will be of the order
�

�
������

.

Reference [9] investigates the coverage and connectivity issues from another point of view.

When a spatial query is issued to the sensor network to request the data of interest in a geo-

graphical region, we may like to select the smallest subset of sensors which are connected and

are sufficient to cover the region. The proposed solution is a greedy algorithm which recurrently

selects a path of sensors that is connected to an already selected sensor and then adds these sen-

sors into the selected subset until the given query region is completely covered. The greedy

rule of the algorithm is to select a path of sensors who can cover the largest uncovered query

region at each stage. Fig. 2.8 shows an example with two consecutive stages of the algorithm.

Fig. 2.8(b) is resulted from (a) by selecting sensors of path "� since "� consists of sensors
	

and

 who together cover the largest uncovered region.

2.5 Coverage-Preserving and Energy-Conserving Protocols

Since sensors are usually powered by batteries, sensors’ on-duty time should be properly sched-

uled to conserve energy. If some nodes share the common sensing region and task, then we can

turn off some of them to conserve energy and thus extend the lifetime of the network. This is

feasible if turning off such a node still provides the same “coverage” (i.e., the provided coverage

is not affected). An example is shown in Fig. 2.9(a). The sensor � can be put into sleeping mode

14

Query Region

Region covered
by selected nodes

Candidate Sensors: C , C , C , C

Candidate Path: P ={C , C },

P ={C }, P ={C }

2 3 5 7

1 1 2

3 5 4 7

P ={C , C },2 3 4

(a)

Candidate Sensors: C , C

Candidate Path: P ={C }, P ={C },
5 6

3 5 4 7

, C

P ={C }
7

5 6

(b)

C5

C7

C6

C1

C2 C3

C4

C5

C6

C7

Figure 2.8: An example of the progress of the algorithm in [9]. Dotted lines show the connec-

tivity between sensors.

a b

c d

a b

c d

e

f

(a) (b)

Figure 2.9: An example of the blind point if both sensors � and � are put into sleeping at the

same time.

15

a b

c

d

a b

c

d

(a) (b)

Figure 2.10: Examples that (a) sensor � satisfies the off-duty eligibility rule of [32] and (b)

sensor � does not satisfy the off-duty eligibility rule of [32].

since all its sensing area is covered by the other nodes. Sensor � satisfies this condition too and

can go to sleeping mode. However, � and � are not allowed to be turned off at the same time;

otherwise a blind point, which is a region not covered by any sensor, could appear, as shown in

Fig. 2.9(b). As a result, sensors not only need to be check if they satisfy certain eligibility rules

but also need to be carefully scheduled.

Reference [30] proposes a heuristic to select mutually exclusive sets of sensor nodes such

that each set of sensors can provide a complete coverage of the monitored area. They claim that

this problem is a NP-complete problem by it reducing to the minimum cover problem. The key

idea of the proposed heuristic is to find out which sensors cover fields that are less covered by

other sensors and then avoid including those sensors into the same set. Also targeted at turning

off some redundant nodes, [41] proposes a probe-based density control algorithm to put some

nodes in a sensor-dense area to a doze mode to ensure a long-lived, robust sensing coverage.

In this solution, nodes are initially in the sleeping mode. After a sleeping node wakes up, it

broadcasts a probing message within a certain range and then waits for a reply. If no reply is

received within a pre-defined time period, it will keep active until it depletes its energy. The

coverage degree (density) is controlled by sensor’s probing range and wake-up rate. However,

this probing-based approach has no guarantee of sensing coverage and thus blind points could

appear.

A coverage-preserving node scheduling scheme is presented in [32] to determine when a

node can be turned off and when it should be rescheduled to become active again. It is based

16

on an eligibility rule which allows a node to turn itself off as long as other neighboring nodes

can cover its sensing area. After evaluating its eligibility for off-duty, each sensor adopts a

back-off scheme to prevent the appearance of blind points. If a node is eligible for off-duty, it

will delay a random back-off time before actually turning itself off. During this period of time,

if it receives any message from its neighbors requesting to go to sleep, it marks the sender as an

off-duty node and reevaluates its eligibility. If the eligibility still holds after the back-off time,

this node broadcasts a message to inform its neighbors, waits for a short period of time, and

then actually turns itself off. A sleeping node will periodically wake up to check if it is still

eligible for off-duty and then decide to keep sleeping or go back to on-duty.

However, the solution in [32] may lead to excess energy consumption. An example is shown

in Fig. 2.10. Based on the eligibility rule proposed in [32], a sensor only regards a node whose

sensing range can cover the sensor as a neighboring node. In Fig. 2.10(a), sensor � is eligible for

off-duty since its sensing region is covered by its neighboring nodes �, # and �. In contrast to

the above case, in Fig. 2.10(b), sensor � is not eligible for off-duty since sensor # is not regarded

as a neighboring node of �. According to the eligibility rule of [32], � cannot be turned off.

In fact, �’s sensing region is fully covered by sensors �, # and �, thus leading to excess energy

consumption.

Another node scheduling scheme is proposed in [40]. In this scheme, the time axis is divided

into rounds with equal duration. Each sensor node randomly generates a reference time in each

round. In addition, the whole sensing area is divided into grid points which are used to evaluate

whether the area is sufficiently covered or not. Each sensor has to join the schedule of each grid

point covered by itself based on its reference time such that the grid point is covered by at least

one sensor at any moment of a round. Then a sensor’s on-duty time in each round is the union

of schedules of grid points covered by the sensor. However, this scheme may suffer from the

time synchronization problem in a large-scale sensor network.

A coverage-aware self-scheduling scheme based on probabilistic sensing model is proposed

in [17]. Each sensor $� is assumed to be able to detect a nearby event happened at location "�

with a probability

$�	"�
 �
�

	� � %���

�

where ��� is the distance between sensor $� and point "� and constants % and & are device-

depended parameters. Thus, the level of coverage perceived by "� contributed by all sensors

17

can be written as

	"�
 � �

�
���

	�
 $�	"�

�

Now suppose a sensor $� is removed from the network. The loss of coverage at point "� can be

derived by

�	"�
 � $�	"�

�

��� ����

	�
 $�	"�

�

Therefore, sensor $�’s contribution to the network coverage can be defined by summing the

losses over all possible points

$�� �
	

��� within distance ' from $�

�	"�
�

where ' is the largest range that a sensor can detect with a predefined accuracy.

A self-scheduling scheme based on above SD value is then proposed in [17]. Periodically,

each sensor $� calculates its SD value in a distributed manner and decides whether to enter

sleeping state with a hibernating probability defined as follows

"
�������� � 	$�����
 $��
�$������

where $����� is half of the maximum possible SD value. Therefore, a sensor with a higher

SD value has a higher chance to stay active. To prevent an area becoming uncovered due to all

sensors in this area turning themselves off at the same time, a random backoff mechanism as

[32] is used.

18

Chapter 3

The Coverage Problem in a

Two-Dimensional Space

In this chapter, we study the coverage problem in a two-dimensional space. We formulate this

problem as a decision problem, whose goal is to determine whether every point in the service

area of the sensor network is covered by at least � sensors, where � is a given parameter. The

sensing ranges of sensors can be unit disks or non-unit disks. We present polynomial-time algo-

rithms, in terms of the number of sensors, that can be easily translated to distributed protocols.

The result is a generalization of some earlier results where only � � � is assumed. Applications

of the result include determining insufficiently covered areas in a sensor network, enhancing

fault-tolerant capability in hostile regions, and conserving energies of redundant sensors in a

randomly deployed network.

3.1 Problem Statement

We are given a set of sensors, $ � ���� ��� � � � � ���, in a two-dimensional area 	. Each sensor

���
 � ����� is located at coordinate 	��� ��
 inside 	 and has a sensing range of ��, i.e., it can

monitor any point that is within a distance of �� from ��.

Definition 1 A location in 	 is said to be covered by �� if it is within ��’s sensing range. A

location in 	 is said to be �-covered if it is within at least � sensors’ sensing ranges.

Definition 2 A sub-region in 	 is a set of points who are covered by the same set of sensors.

We consider two versions of the coverage problem as follows.

19

(a) (b)

1

2

32

1

2

1

3

2

32

1

2

2

3

1

2

1

2
3

2

1
3

2

1

3

2

2 3

2 1
1

2

1

2

1

2

1
2

1
2

3

2

3
3

2

2

3

2
3

3

2

2

1

2

3

5

4

3
2 3

2

2

3

2

1

2

3

3

3
3

3

3

4
4

4
3

4

3

4

2

5

3

4

4
3

3
4

4 3

4

2

5

4

3
3

5

4
4

3 22

5

2

2

2

1

3

3

5

6

4

3

2

3

3

4

1
2

32

1 3

32

1

2

23

2
2

1

1

2 2 1

2

1

2

1

2

1

2
1

2
3

2

3

2
3

1
2

2
3

2
3

2
3

2

2 1 2

3

4

3

3

2

3

2

2

3

2

1

2
3

3

3

3
2

32

1

3
2

3

4

3

4
3

3

1

4

4

2

3

2

3

42

3
43

4

2

4
5

5
4

4
3

54

5

5

4

6

2

2 2
3

2

3

Figure 3.1: Examples of the coverage problem: (a) the sensing ranges are unit disks, and (b) the

sensing ranges are non-unit disks. The number in each sub-region is its coverage.

Definition 3 Given a natural number �, the �-Non-unit-disk Coverage (�-NC) Problem is a

decision problem whose goal is to determine whether all points in 	 are �-covered or not.

Definition 4 Given a natural number �, the �-Unit-disk Coverage (�-UC) Problem is a decision

problem whose goal is to determine whether all points in 	 are �-covered or not, subject to the

constraint that �� � �� � � � � � ��.

3.2 The Proposed Solutions

At the first glance, the coverage problem seems to be very difficult. One naive solution is to find

out all sub-regions divided by the sensing boundaries of all � sensors (i.e., � circles), and then

check if each sub-region is �-covered or not, as shown in Fig. 3.1. Managing all sub-regions

could be a difficult and computationally expensive job in geometry. There may exit as many as

�	��
 sub-regions divided by the circles. Also, it may be difficult to calculate these sub-regions.

3.2.1 The �-UC Problem

In the section, we propose a solution to the �-UC problem, which has a cost of �	��
���
,

where � is the maximum number of sensors whose sensing ranges may intersect a sensor’s

sensing range. Instead of determining the coverage of each sub-region, our approach tries to

20

� j1,L

� j3,L

� j2,L

� j4,L

� j6,L

� j5,L

� j7,L

� j8,L

� j1,R

� j3,R

� j2,R

� j4,R

� j6,R

� j5,R

� j7,R

� j8,R

�

����

�

���

� j8,L

� j8,R

si

� j3,L

� j4,L

� j7,L

� j6,L

� j5,L

� j3,R

� j4,R

� j7,R

� j6,R

� j5,R

� j1,R

� j1,L

� j2,R

� j2,L

2

3
4

4

3

3

(b)

(a)

0 ����� �	�

r r

�
si

sj
�

Figure 3.2: (a) Determining the segment of ��’s perimeter covered by ��, and (b) determining

the perimeter-coverage of ��’s perimeter.

look at how the perimeter of each sensor’s sensing range is covered. Specifically, our algorithm

tries to determine whether the perimeter of a sensor under consideration is sufficiently covered.

By collecting this information from all sensors, a correct answer can be obtained.

Definition 5 Consider any two sensors �� and �� . A point on the perimeter of �� is perimeter-

covered by �� if this point is within the sensing range of ��.

Definition 6 Consider any sensor ��. We say that �� is �-perimeter-covered if all points on

the perimeter of �� are perimeter-covered by at least � sensors other than �� itself. Similarly,

a segment of ��’s perimeter is �-perimeter-covered if all points on the segment are perimeter-

covered by at least � sensors other than �� itself.

21

Below, we propose an �	�
���
 algorithm to determine whether a sensor is �-perimeter-

covered or not. Consider two sensors �� and �� located in positions 	��� ��
 and 	��� ��
, re-

spectively. Denote by �	��� ��
 �

��
 ��
� �
��
 ��
� the distance between �� and �� .

If �	��� ��
 � ��, then �� does not contribute any coverage to ��’s perimeter. Otherwise, the

range of perimeter of �� covered by �� can be calculated as follows (refer to the illustration in

Fig. 3.2(a)). Without loss of generality, let �� be resident on the west of �� (i.e., �� � �� and

�� � ��). The angle % � ������	
��������

��

. So the arch of �� falling in the angle �(
 %� (� %� is

perimeter-covered by ��.

The algorithm to determine the perimeter coverage of �� works as follows.

1. For each sensor �� such that �	��� ��
 � ��, determine the angle of ���� arch, denoted by

�%���� %����, that is perimeter-covered by �� .

2. For each neighboring sensor �� of �� such that �	��� ��
) ��, place the points %��� and

%��� on the line segment ��� �(�, and then sort all these points in an ascending order into

a list *. Also, properly mark each point as a left or right boundary of a coverage range,

as shown in Fig. 3.2(b).

3. (Sketched) Traverse the line segment ��� �(� by visiting each element in the sorted list *

from left to right and determine the perimeter-coverage of ��.

The above algorithm can determine the coverage of each sensor’s perimeter efficiently. Be-

low, we relate the perimeter-coverage property of sensors to the coverage property of the net-

work area.

Lemma 1 Suppose that no two sensors are located in the same location. Consider any segment

of a sensor �� that divides two sub-regions in the network area 	. If this segment is �-perimeter-

covered, the sub-region that is outside ��’s sensing range is �-covered and the sub-region that

is inside ��’s sensing range is 	� � �
-covered.

Proof. The proof is directly from Definition 6. Since the segment is �-perimeter-covered, the

sub-region outside ��’s sensing range is also �-covered due to the continuity of the sub-region.

The sub-region inside ��’s sensing range is 	�� �
-covered because it is also covered by ��. �

An example is demonstrated in Fig. 3.2(b). The gray areas in Fig. 3.2(b) illustrate how the

above lemma works .

22

(b)

si
si

(a)

Figure 3.3: Some examples to utilize the result in Theorem 1.

Theorem 1 Suppose that no two sensors are located in the same location. The whole network

area 	 is �-covered iff each sensor in the network is �-perimeter-covered.

Proof. For the “if” part, observe that each sub-region inside 	 is bounded by at least one

segment of a sensor ��’s perimeter. Since �� is �-perimeter-covered, by Lemma 1, this sub-

region is either �-covered or 	� � �
-covered, which proves the “if” part.

For the “only if” part, it is clear by definition that for any segment of a sensor ��’s perimeter

that divides two sub-regions, both these sub-regions are at least �-covered. Further, observe

that the sub-region that is inside ��’s sensing range must be covered by one more sensor, ��, and

is thus at least 	� � �
-covered. So excluding �� itself, this segment is perimeter-covered by at

least � sensors other than �� itself, which proves the “only if” part. �

Note that Theorem 1 is true when all sensors are claimed to be �-perimeter-covered. When

a specific sensor �� is �-perimeter-covered, it only guarantees that each point right outside ��’s

perimeter is �-covered, and each point right inside ��’s perimeter is 	� � �
-covered. However,

it does not guarantee that all points inside ��’s perimeter is 	� � �
-covered. An example is

shown in Fig. 3.3. In Fig. 3.3(a), sensor �� is 2-perimeter-covered since each segment of its

perimeter is covered by two sensors. This only implies the coverage levels of the points nearby

the perimeter of ��. The gray area, which is outside the coverage of ��’s neighboring sensors,

is only 1-covered. In fact, the segments that bound the gray area are only 1-perimeter-covered.

If we add another sensor to cover these segments (shown in thick dotted line) as shown in

Fig. 3.3(b), then ��’s sensing region will be 2-covered.

23

Figure 3.4: Some special cases: (a) two sensors falling in the same location (the number in each

sub-region is its level of coverage), and (b) the sensing range of a sensor exceeding the network

area 	.

Below, we comment on several special cases which we leave unaddressed on purpose for

simplicity in the above discussion. When two sensors �� and �� fall in exactly the same location,

Lemma 1 will not work because for any segment of �� and �� that divides two sub-regions in

the network area, a point right inside ��’s and ��’s sensing ranges and a point right outside their

sensing ranges will differ in their coverage levels by two, making Lemma 1 incorrect (refer to

the illustration in Fig. 3.4(a)). Other than this case, all neighboring sub-regions in the network

will differ in their coverage levels by exactly one. Since in most applications we are interested

in areas that are insufficiently covered, one simple remedy to this problem is to just ignore one

of the sensors if both sensors fall in exactly the same location. Another solution is to first run

our algorithm by ignoring one sensor, and then increase the coverage levels of the sub-regions

falling in the ignored sensor’s range by one afterward. The other boundary case is that some

sensors’ sensing ranges may exceed the network area 	. In this case, we can simply assign the

segments falling outside 	 as �-perimeter-covered, as shown in Fig. 3.4(b).

3.2.2 The �-NC Problem

For the non-unit-disk coverage problem, sensors’ sensing ranges could be different. However,

most of the results derived above remain the same. Below, we summarize how the �-NC prob-

lem is solved.

First, we need to define the how the perimeter of a sensor’s sensing range is covered by other

sensors. Consider two sensors �� and �� located in positions 	��� ��
 and 	��� ��
 with sensing

24

�
� �

�

Figure 3.5: The coverage relation of two sensors with different sensing ranges: (a) �� not in the

range of ��, and (b) �� in the range of ��.

ranges �� and ��, respectively. Again, without loss of generality, let �� be resident on the west

of ��. We address how �� is perimeter-covered by ��. There are two cases to be considered.

Case 1: Sensor �� is outside the sensing range of ��, i.e., �	��� ��
 � ��.

(i) If ��) �	��� ��

 ��, then �� is not perimeter-covered by ��.

(ii) If �	��� ��

 �� � �� � �	��� ��
 � ��, then the arch of �� falling in the angle

�(
%� (�%� is perimeter-covered by �� , where % can be derived from the formula:

��� � ��� � �	��� ��

�
 ��� � �	��� ��
 � ���	%
� (3.1)

(iii) If �� � �	��� ��
 � ��, then the whole range ��� �(� of �� is perimeter-covered by �� .

Case 2: Sensor �� is inside the sensing range of ��, i.e., �	��� ��
 � ��.

(i) If ��) ��
 �	��� ��
, then �� is not perimeter-covered by ��.

(ii) If ��
 �	��� ��
 � �� � �� � �	��� ��
, then the arch of �� falling in the angle

�(
 %� (� %� is perimeter-covered by ��, where % is as defined in Eq. (3.1).

(iii) If �� � �	��� ��
 � ��, then the whole range ��� �(� of �� is perimeter-covered by �� .

The above cases are illustrated in Fig. 3.5. Based on such classification, the same algorithm

to determine the perimeter coverage of a sensor can be used. Lemma 1 and Theorem 1 still hold

true (observe that in the corresponding proofs, we do not use any property about the absolute

sensing ranges of sensors).

25

3.2.3 Complexity Analysis

Consider the algorithm in Section 3.2.1. Let � be the maximum number of sensors that are

neighboring to a sensor (� � �). The complexities of steps 1 and 2 are �	�
 and �	�
���
,

respectively. The last step 3, though sketched, can be easily implemented as follows. When-

ever an element %��� is traversed, the level of perimeter-coverage should be increased by one.

Whenever an element %��� is traversed, the level of perimeter-coverage should be decreased by

one. Since the sorted list * will divide the line segment ��� �(� into as many as ���� segments,

the complexity of step 3 is �	�
. So the complexity to determine a sensor’s perimeter coverage

is �	�
���
. The overall complexity for the �-UC problem is thus �	��
�� �
. The �-NC

problem can also be solved with complexity �	��
���
, except that the neighbors of a sensor

need to be redefined. The work [35] also proposes a solution to determine the coverage level of

a sensor network. It looks at how intersection points between sensors’ sensing ranges are cov-

ered. Since there are as many as �	��
 intersection points in the network and the calculation of

the coverage level of each intersection point takes time �	�
, the overall complexity is �	�	
.

3.3 Simulation Results and a Sensor Coverage Toolkit

We have developed a simulator and implemented a toolkit based on the proposed algorithms.

Square sensor fields are simulated with randomly placed nodes. There are two settings of sens-

ing ranges: unit-disc sensing range and non-unit-disc sensing range. All results presented below

are from the average of at least 1000 runs.

First, we investigate the level of coverage (i.e., �) that can be achieved by using different

numbers of sensors. Sensor fields of sizes ��� � ��� and ���� � ���� are simulated with

��� � ���� nodes. The unit-disc sensing range is 100 units and the non-unit-disc sensing

range falling uniformly between �� � ��� units. Both the average and the maximum levels of

coverage are evaluated. The results are in Fig. 3.6. As can be seen, the average value of � grows

about linearly as the number of sensors increases.

Next, we investigate the level of coverage that can be achieved by setting different sensing

ranges of sensors. Sensor fields of sizes ��� � ��� and ���� � ���� are simulated with 500

nodes. For the unit-disc case, the sensing range is fixed from �� to ��� units. For the non-

unit-disc case, we first pick an average sensing range ��+, and the sensors’ sensing ranges are

uniformly distributed between ��+
 �� and ��+ � ��. The results are in Fig. 3.7. The average

26

(a) (b)

Figure 3.6: Number of sensors v.s. coverage level for sensor fields of sizes: (a) ���� ��� and

(b) ����� ����.

(a) (b)

Figure 3.7: Sensing range v.s. coverage level for sensor fields of sizes: (a) ��� � ��� and (b)

����� ����.

27

value of � grows as the average sensing range of sensors increases.

We have also implemented a toolkit based on the proposed algorithms to determine the

coverage level of a given sensing field. Fig. 3.8 shows the user interface of the toolkit. In the

drawing area, one can easily deploy sensors by pointing out their locations and dragging their

sensing ranges. By clicking on the “Deploy” button, the deployment of sensors will be fed into

our program. There are three major functions of this toolkit, as described below.

1. Compute the Level of Coverage: By clicking on the “Compute Coverage” button and then

the “Display Coverage” button, the system will calculate and return the current coverage

level of the whole area, as illustrated in Fig. 3.9(a).

2. Color the Drawing Area: By clicking on the “Paint the drawing area” button, the drawing

area will be colored based on each region’s coverage level. The coloring speed can also be

modified, which will reflect on the coloring quality. An example is shown in Fig. 3.9(b).

3. Display Insufficiently Covered Segments: One can first select the desired value of � fol-

lowed by clicking on the “Commit” button to feed � into the system. Clicking on the “Get

Low Coverage Segments” button will generate an output file which contains all segments

that are insufficiently �-perimeter-covered, as shown in the Fig. 3.10. Each line in the file

is a segment of one sensor’s perimeter that is insufficiently covered. Fields in a line in-

clude: sensor ID, location, sensing range, starting and ending angles of the corresponding

segment, and the levels of coverage inside and outside this segment.

This toolkit is publicly downloadable from http://hscc.csie.nctu.edu.tw/download/coverage.zip.

3.4 Applications and Extensions of the Coverage Problem

The sensor coverage problem, although modeled as a decision problem, can be extended further

in several ways for many interesting applications. The proposed results can also be extended

for more realistic situations. In the following, we suggest several applications of the coverage

problem and possible extensions of our results.

3.4.1 Discovering Insufficiently Covered Regions

For a sensor network, one basic question is whether the network area is fully covered. Our

modeling of the �-UC and �-NC problems can solve the sensor coverage problem in a more

28

Drawing area

Colors of coverage levels

Input the deployment

Clear the drawing area

Compute the
coverage level

Display the
coverage level

Coloring speed

Paint the drawing area

Output the insufficie tly
covered segments

n

Input the k value

Desired Coverage

Figure 3.8: Functional descriptions of the toolkit.

(a) (b)

Figure 3.9: Execution results of the toolkit: (a) coverage level and (b) painting results.

29

Figure 3.10: Insufficiently 4-perimeter-covered segments for the example in Fig. 3.9.

general sense by determining if the network area is �-covered or not. A larger � can support

a more fine-grained sensibility. For example, if � � �, we can only detect in which sensor

an event has happened. Using a larger �, the location of the event can be reduced to a certain

intersection of at least � sensors. Thus, the location of the event can be more precisely defined.

This would support more fine-grained location-based services.

To determine which areas are insufficiently covered, we assume that there is a central con-

troller in the sensor network. The central controller can broadcast the desired value of � to all

sensors. Each sensor can then communicate with its neighboring sensors and then determine

which segments of its perimeter are less than �-perimeter-covered. The results (i.e., insuffi-

ciently covered segments) are then sent back to the central controller. By putting all segments

together, the central controller can precisely determine which areas are less than �-covered.

Note that since Theorem 1 provides a necessary and sufficient condition to determine if an area

in the network is �-covered, false detection would not happen.

Further actions can then be taken if certain areas are insufficiently covered. For example,

the central controller can dispatch more sensors to these regions. An optimization problem is:

how can we patch these insufficiently covered areas with the least number of extra sensors. This

is still an open question and deserves further investigation.

30

3.4.2 Power Saving in Sensor Networks

Contrary to the insufficient coverage issue, a sensor network may be overly covered by too

many sensors in certain areas. For example, as suggested in [32], if there are more sensors

than necessary, we may turn off some redundant nodes to save energy. These sensors may

be turned on later when other sensors run out of energy. Reference [32] proposes a node-

scheduling scheme to guarantee that the level of coverage of the network area after turning off

some redundant sensors remains the same.

Based on our result, we can solve a more general problem as follows. First, those sensor

nodes who can be turned off, called candidates, need to be identified. A sensor �� is a candi-

date if all of its neighbors are still �-perimeter-covered after �� is removed. To do so, �� can

communicate with each of its neighbors and ask them to reevaluate their perimeter coverage by

skipping ��. If the responses from all its neighbors are positive, �� is a candidate. After deter-

mining the candidates, each sensor can compete to enter the doze mode by running a scheduling

scheme, such as that in [32], to decide how long it can go to sleep. However, [32] only considers

a special case of our results with � � �.

3.4.3 Hot Spots

It is possible that some areas in the network are more important than other areas and need to

be covered by more sensors. Those important regions are called hot spots. Our solutions can

be directly applied to check whether a hot spot area is �-covered or not. Given a hot spot,

only those sensors whose perimeters are within or have crossings with the hot spot need to be

checked. So the central controller can issue a request by identifying the hot spot. Each sensor

that is within the hot spot or has crossings with the hot spot needs to reevaluate the coverage of

its perimeter segment that is within the hot spot. The results in Lemma 1 and Theorem 1 are

directly applicable. So a hot spot is �-covered if and only if all perimeter segments within this

hot spot are �-perimeter-covered. Note that a hot spot can be defined in other shapes too.

31

(a)

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

22

2

2 2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

22
2

2

2

2

2

2

2

3

3

3

3 3

3 3

3

3

3

3

33

3
3

3

33

3

3

3

3

3

3

3

3

3

3

4

4

(b)

si
sj

si

(c)

Figure 3.11: The coverage problem with irregular sensing regions: (a) coverage levels of ir-

regular sub-regions, (b) polygon approximation of sensor ��’s sensing region, and (c) covered

segments of ��.

3.4.4 Extension to Irregular Sensing Regions

The sensing region of a sensor is not necessarily a circle. In most cases, it is location-dependent

and likely irregular.1 Fortunately, our results can be directly applied to irregular sensing regions

without problem, assuming that each sensor’s sensing region can be precisely defined. Observe

that the sensing regions of sensors still divide the network area into sub-regions. Through

Lemma 1, we can translate perimeter-covered property of sensors to area-covered property of

the network. Then by Theorem 1, we can decide whether the network is �-covered. Fig. 3.11(a)

shows an example.

Given two sensors’ sensing regions that are irregular, it remains a problem how to determine

the intersections of their perimeters. One possibility is to conduct polygon approximation. The

idea is illustrated in Fig. 3.11(b), which can give the perimeter coverage in Fig. 3.11(c).

1The sensing region of a sensor may even be time-varying, in which case frequent reevaluation of the sensing

region would be necessary. This issue is beyond the scope of this work.

32

Chapter 4

The Coverage Problem in a

Three-Dimensional Space

In this chapter, we study the coverage problem in a three-dimensional space. We also formulate

this problem as a decision problem, whose goal is to determine whether every point in the

service area of the sensor network is covered by at least % sensors, where % is a given parameter

and the sensing regions of sensors are modeled by balls (not necessarily of the same radius).

This problem in a 2D space is solved in Chapter 3 with an efficient polynomial-time algorithm

(in terms of the number of sensors). In this chapter, we show that tackling this problem in a 3D

space is still feasible within polynomial time. The proposed solution can be easily translated

into an efficient polynomial-time distributed protocol.

4.1 Preliminaries and Problem Statement

We are given a set of sensors, $ � ���� ��� � � � � ���, in a three-dimensional cuboid sensing field

	. Each sensor ���
 � � � � � �� is located at coordinate 	��� ��� ,�
 inside 	 and has a sensing

range of ��. So each sensor ��’s sensing area is a ball centered at 	��� ��� ,�
 with radius ��,

denoted as �� � 	��� ��� ,�� ��
. The sphere of �� is the surface of ��, denoted as $�

Consider two sensors �� and �� which have non-empty intersecting sensing regions. The

spherical cap
��	
� �
 is the intersection of sphere $� and ball �� . The circle

�	
� �
 is the

intersection of spheres $� and $�. The center of spherical cap
��	
� �
, denoted by
��	
� �
, is

the intersection of line������ and spherical cap
��	
� �
. Given any two points � and �� on $�, the

geodesic distance between � and ��, denoted by -�	�� ��
, is the minimum great circle distance

33

si

Cen(i, j)

rj

ri

Rad(i, j)

sj

Cir(i, j)

Cap(i, j)

Figure 4.1: Illustration of terminologies.

between � and �� on $�. The radius of
��	
� �
, denoted by '��	
� �
, is -�	
��	
� �
� �
,

where � is any point on

�	
� �
. Examples of these terms are illustrated in Fig. 4.1.

Definition 7 Given a natural number %, the �-Ball-Coverage (�-BC) Problem is a decision prob-

lem whose goal is to determine whether all points in 	 are %-covered or not.

4.2 The Proposed Solution

In the section, we propose an algorithm to solve the %-BC problem with time complexity

�	���
�� �
, where � is the maximum number of sensors whose sensing ranges may inter-

sect a sensor’s sensing range. Our approach does not try to look at how each point (or subspace)

in 	 is covered by sensors because determining how 	 is divided by � spheres is too much

complicated. Instead, our algorithm tries to determine whether the sphere of a sensor under

consideration is sufficiently covered. Further, to determined whether each sensor’s sphere is

sufficiently covered, we look at how the circle of each spherical cap of a sensor intersected by

its neighboring sensors is covered. By collecting this information from all sensors, a correct

answer can be obtained. Intuitively, we reduce the decision problem from a 3D space to one in

a 2D space, and then to one in a 1D space.

34

4.2.1 Theoretical Fundamentals

Observe that the sensing field 	 is divided into a number of subspaces by sensors’ spheres. Each

subspace’s surface consists of a number of spherical segments. Because of the continuity nature,

the level of coverage of a subspace can actually be derived from those of its spherical segments.

Furthermore, each spherical segment must be bounded by a number of circle segments on some

spherical caps. By the continuity nature again, the level of coverage of a spherical segment can

actually be derived from those of its circle segments that bound the spherical segment. This

is how we reduce the problem from a 3D space to a 2D space, and then to a 1D space. In

the following discussion, we will use “subspace”, “spherical segment”, and “circle segment” to

facilitate our presentation.

Definition 8 Consider any two sensors �� and �� . A point on sphere $� is sphere-covered by ��

if it is on or within sphere $�. We say that �� is %-sphere-covered if all points on sphere $� are

sphere-covered by at least % other sensors.

Lemma 2 If a sphere $� is %-sphere-covered, then each subspace that is adjacent to $� is at

least %-covered.

Proof. Since sphere $� is %-sphere-covered, by definition each subspace that is adjacent to $�

but outside $� is also %-covered. The subspaces inside $� are at least 	% � �
-covered because

they are further covered by ��1. �

Theorem 2 If each sphere is %-sphere-covered, then the sensing field 	 is %-covered.

Proof. Observe that each subspace in 	 must be bounded by some spherical segments. Since

each sphere is %-sphere-covered, by Lemma 2 all subspaces are at least %-covered, which proves

this theorem. �

Below, to facilitate our presentation, we translate sphere coverage into cap coverage. This

allows us to look at a single sphere when examining coverage.

Definition 9 Consider any sensor �� and its neighboring sensor �� . A point � on $� is cap-

covered by
��	
� �
 if � is on
��	
� �
. Point � is %-cap-covered if it is cap-covered by at

least % caps on $�.

1In most cases, the subspaces inside �� are �����-covered. However, in the special case that there are � other

sensors colocating with �� and having the same sensing radiuses with ��, these subspaces will be �� � � � ��-

covered.

35

Corollary 1 Consider any sensor ��. If each point on $� is %-cap-covered, then sphere $� is

%-sphere-covered.

Proof. This corollary can be easily proved by observing the equivalence between the definitions

of sphere coverage and cap coverage. �

Definition 10 Consider any sensor �� and two of its neighboring sensors �� and ��. We say that

a point � on

�	
� �
 is circle-covered by
��	
� �
 if � is cap-covered by
��	
� �
. We say

that the spherical circle

�	
� �
 is %-circle-covered if every point on

�	
� �
 is circle-covered

by at least % caps on $� other than
��	
� �
.

Lemma 3 Consider any sensor �� and its neighboring sensor �� . If circle

�	
� �
 is %-circle-

covered, then each spherical segment on $� that is adjacent to

�	
� �
 is at least %-cap-

covered.

Proof. Since circle

�	
� �
 is %-circle-covered, each spherical segment on $� that is adjacent

to

�	
� �
 but outside
��	
� �
 is also %-cap-covered. The spherical segments on $� inside

��	
� �
 are at least 	% � �
-cap-covered because they are further covered by
��	
� �
2. �

Theorem 3 Consider any sensor �� and each of its neighboring sensors �� . If each circle

�	
� �
 is %-circle-covered, then the sphere $� is %-cap-covered.

Proof. Observe that each spherical segment on $� must be bounded by some circle segments.

Since each circle is %-cap-covered, by Lemma 3 all spherical segments on $� are at least %-cap-

covered, which proves this theorem. �

4.2.2 Determining the Intersection of Spherical Caps

The above derivation implies that to determine how 	 is covered, it is sufficient to determine

how each circle is covered. To determine circle coverage, consider any two spherical caps

��	
� �
 and
��	
� �
 on sphere $� of a sensor ��. There are two cases:

2In most cases, these spherical segments are �����-cap-covered. However, in the special case that there are �

other caps colocating with the current �����	
�, these spherical segments will be ��� � � ��-cap-covered. Note

that colocating caps may appear when two spheres intersect with another sphere on the same circle.

36

si
Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

(c)(a)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

(b)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

��

Figure 4.2: The relationship between
��	
� �
 and
��	
� �
: case 1.

(b)(a)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

(c) (d)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

si

Cen(i, k)

Rad(i, j)

Rad(i, k)

Cen(i, j)

��

Figure 4.3: The relationship between
��	
� �
 and
��	
� �
: case 2.

37

1: The center of
��	
� �
,
��	
� �
, is inside
��	
� �
, i.e., ��������� 	�� ������
�� �

��
��� 	�.

(i) If ��
���
� � ��
��� 	� � ��������� 	�� ������
��, then
��	
� �
 is not circle-

covered by
��	
� �
 (refer to Fig. 4.2(a)).

(ii) If ��
��� 	� � ��������� 	�� ������
�� � ��
���
� � ��������� 	�� ������
�� �

��
��� 	�, then the arch of

�	
� �
 falling in the angle �!� ! � �� is circle-covered

by
��	
� �
 (refer to Fig. 4.2(b)).

(iii) If ��
���
� � ��
��� 	� � ��������� 	�� ������
��, then the whole range ��� �(� of

��	
� �
 is circle-covered by
��	
� �
 (refer to Fig. 4.2(c)).

2: The center of
��	
� �
,
��	
� �
, is outside
��	
� �
, i.e., ��������� 	�� ������
��

� ��
��� 	�.

(i) If ��
���
� � ��������� 	�� ������
�� � ��
��� 	�, then
��	
� �
 is not circle-

covered by
��	
� �
 (refer to Fig. 4.3(a)).

(ii) If ��������� 	�� ������
�� � ��
��� 	� � ��
���
� � ��������� 	�� ������
�� �

��
��� 	�, then the arch of

�	
� �
 falling in the angle �!� ! � �� is circle-covered

by
��	
� �
 (refer to Fig. 4.3(b)). Note that it is possible that there is no intersec-

tion between

�	
� �
 and

�	
� �
, but

�	
� �
 is fully covered by
��	
� �
, as

illustrated in Fig. 4.3(c).

(iii) If ��
���
� � ��������� 	�� ������
�� � ��
��� 	�, then the whole range ��� �(� of

�	
� �
 is circle-covered by
��	
� �
 (refer to Fig. 4.3(d)).

4.2.3 The Complete Algorithm

Below, we propose an �	��
�� �
 algorithm to determine whether a sensor is %-sphere-covered

or not. The algorithm can be executed either in a centralized or in a fully distributed manner

independently by each sensor. First, each sensor has to collect how its neighboring sensors

intersect with itself and calculate the corresponding spherical caps. Next, it has to figure out the

relationship between spherical caps, as described above. Then we can determine the level of

circle coverage of each circle. After each cap’s circle coverage level is determined, the sensor’s

sphere coverage level can be found out, which in turn gives the overall coverage of 	. The

detail algorithm to be run by each sensor �� is listed below.

38

����

�

���

0
a

b c

d

e

f

g

h

i

j

k
l

m

n
o

p

Figure 4.4: An example to determine the coverage of a circle.

1) For each neighboring sensor �� of ��, do the following.

a) Calculate the circle

�	
� �
 of
��	
� �
.

b) For each neighbor �� �� �� of ��, we determine how
��	
� �
 intersects with

�	
� �
. Specifically, we calculate the angle of

�	
� �
 that is circle-covered

by
��	
� �
, denoted by ������� �
�
����.

c) For all angles ������� �
�
���� found in step b), place points ����� and ����� on a line seg-

ment ��� �(�, and then sort all these points in an ascending order into a list *� .

d) (sketched) Traverse the line segment ��� �(� by sequentially visiting each point in

the sorted list *� to determine the circle coverage of

�	
� �
, denoted by ��� .

end for.

2) The sphere coverage of �� is the minimum circle coverage of all circles on $�, i.e.,

.
�neighbor �������.

Let � be the maximum number of sensors neighboring to a sensor (� � �). Step 1a, 1b,

1c, and 1d have time complexities of �	�
� �	�
� �	�
���
� and �	�
, respectively. So the

complexity of step 1 is �	��
�� �
, which is also the complexity of the whole algorithm for one

sensor.

The step 1d, though sketched, can be easily implemented as follows. Whenever an element

����� is traversed, the level of coverage should be increased by one. Whenever an element ����� is

traversed, the level of coverage should be decreased by one. An example is shown in Fig. 4.4.

39

The point on angle 0 can be easily determined to be 3. When visiting points �, �, � , /, �, �, �,

and � (resp., points �, #, �, +,
, �, ., and 0), the level of coverage should be increased (resp.,

decreased) by 1.

Below, we comment on several special cases, which we leave not addressed on purpose for

simplicity in the above discussion. First, it is possible that a sensor’s sensing range is fully

covered by another sensor’s, i.e., a sensing ball is entirely inside another sensing ball. These

two spheres do not have any intersection. Alternatively, we can regard the whole sphere of

the smaller one as a special spherical cap. So we can simply increase the sphere coverage

level of the smaller sphere by one after executing our algorithm. Another boundary case is that

some sensors’ sensing ranges may exceed the sensing field 	. If so, we can simply assign the

spherical segments falling outside 	 as �-sphere-covered.

40

Chapter 5

Ensuring Both Coverage and Connectivity

For a sensor network to operate successfully, sensors must maintain both sensing coverage and

network connectivity. This issue has been studied in [35, 43], both of which reach a similar

conclusion that coverage can imply connectivity as long as sensors’ communication ranges

are no less than twice their sensing ranges. In this chapter, we investigate this issue from a

different angle and propose more general decentralized solutions that do not rely on the above

assumption. Hence, the results in [35, 43] can be regarded as special cases of what proposed in

this chapter.

5.1 Preliminaries and Problem Statement

We are given a set of sensors, $ � ���� ��� � � � � ���, in a two-dimensional area 	. Each sensor

��,
 � � � � � �� is located at a known coordinate 	��� ��
 inside 	 and has a sensing distance of ��

and a communication distance of ��. For simplicity, we assume there are no two sensors located

in the same location. So, �� can detect an object/event located within a distance of �� from itself

and talk to another sensor within a distance of ��. Note that we make no assumption about the

relationship of �� and ��. However, unidirectional links are excluded, so packets can only be

sent on bidirectional links.

Definition 11 The sensor network is said to be 1-connected if there is at least one path between

any two sensors. The sensor network is said to be �-connected if there are at least � disjointed

paths between any two sensors.

We formulate the general form of coverage and connectivity problem as follows.

41

Definition 12 Given any two integers �� and ��, the ��-Covered and ��-Connected Problem, or

the 	��� ��
-CC problem, is a decision problem whose goal is to determine whether the sensor

network is ��-covered and ��-connected.

5.2 The Proposed Solutions

In this section, we propose theoretical foundations and a distributed protocol to solve the

	��� ��
-CC problem. We make no assumption on the relationship between communication

distances and sensing distances. Following the model in Chapter 3 and Chapter 4, our approach

also looks at how the perimeter of each sensor’s sensing range is covered by its neighbors, and

whether there is a link/path to each of its neighbors. We show conditions for a sensor network

to be �-covered and �-connected, and to be �-covered and 1-connected. We also show un-

der what conditions a sensor network may provide sufficient coverage by multiple connected

components.

5.2.1 Theoretical Fundamentals

The definition of perimeter coverage has been proved useful to determine the coverage level of

a sensor network in Chapter 3. Below, we define similar notations based on stronger conditions.

Definition 13 Consider any sensor ��. The neighboring set of ��, denoted as 1	

, is the set of

sensors each of whose sensing region intersects with ��’s sensing region.

Definition 14 Consider any sensor ��. We say that �� is �-direct-neighbor-perimeter-covered,

or �-DPC, if �� is �-perimeter-covered and �� has a link to each node in 1	

. Similarly, we say

that �� is �-multihop-neighbor-perimeter-covered, or �-MPC, if �� is �-perimeter-covered and

�� has a (single- or multi-hop) path to each node in 1	

.

Lemma 4 Consider any two sensors �� and ��. If each sensor in $ is 1-MPC, there must exist

a communication path between �� and ��.

Proof. This proof is by construction. If ��’s sensing region intersects with ��, by Definition 14,

there must exist a path between �� and ��, which proves this lemma. Otherwise, draw a line

segment * connecting �� and �� , as illustrated in Fig. 5.1(a). Let * intersect ��’s perimeter at

42

si

sj

sx

sy

sz

p

q

r

(a) (b)

si sj

sx

p q

rx

si sj

sx

p

q
rx

si sj

sx

p rx

Figure 5.1: Proof of Lemma 4: (a) the path construction, and (b) possible cases of ��.

point �. Since �� is 1-MPC, by Definition 14, there must exist a sensor �� in 1	

 which covers

� and has a path to ��. In addition, either �� must cover ��, or ��’s perimeter must intersect * at a

point, namely 2, which is closer to �� than � is. Fig. 5.1(b) shows several possible combinations

of �� and ��. In the former case, by Definition 14, there must exist a path between �� and �� ,

and thus �� and �� , which proves this lemma. In the later case, there must exist another sensor

�� in 1	�
 which covers 2. We can repeat the above argument until a sensor �� is found which

either covers �� or intersect * at a point, say �, inside ��’s sensing range. In either case, there

must exist a path between �� and �� , which proves this lemma. �

Theorem 4 A sensor network is �-covered and 1-connected iff each sensor is �-MPC.

Proof. For the “if” part, we have to guarantee both the coverage and connectivity. The fact that

the network is �-covered has been proved by Theorem 1 because each sensor which is �-MPC is

also �-perimeter-covered. In addition, Lemma 4 can guarantee that the network is 1-connected,

hence proving the “if” part.

For the “only if” part, we have to show that each sensor is �-perimeter-covered and has a

path to each sensor whose sensing region intersects with its region. The first concern can be

ensured by Theorem 1, while the second concern can be ensured by the fact that the network is

1-connected. �

43

a

(a) (b)

Figure 5.2: Observations of Theorem 4 and Theorem 5: (a) The network is 2-covered and

1-connected. The removal of sensor � will disconnect the network, and (b) The network is

2-covered and 2-connected but no sensor is 2-DPC. Note that the sensing and communication

ranges of each sensor are the same and are represented by circles.

Theorem 5 A sensor network is �-covered and �-connected if each sensor is �-DPC.

Proof. Coverage has been guaranteed by Theorem 1 since a sensor which is �-DPC is �-

perimeter-covered by definition. For the connectivity part, if we remove any �
 � nodes from

the network, it is not hard to see that each of the rest of sensors must remain 1-DPC. This

implies that these sensors are also 1-MPC, and by Lemma 4 there must exist a path between

any pair of these sensors. As a result, the network is still connected after the removal of any

�
 � nodes, which proves this theorem. �

Below we make some observations about Theorem 4 and Theorem 5. First, a major differ-

ence is that Theorem 4 can guarantee only 1 connectivity, while Theorem 5 can guarantee �

connectivity. This is because, in a network where each sensor is �-MPC, the removal of any

sensor may disconnect the network. For example, in the network in Fig. 5.2(a), each sensor is

2-MPC. By Theorem 4, the network is 2-covered and 1-connected. However, if we remove sen-

sor �, the network will be partitioned into two components. Interestingly, although the network

remains 2-covered, it is no longer connected.

Second, the reverse direction of Theorem 5 may not be true. That is, if a network is �-

covered and �-connected, sensors in this network may not be �-DPC. Fig. 5.2(b) shows an

44

a

r ca a=

c

cc=2rc

rc

b
rb

cb=1.5rb

Figure 5.3: An example to compare Theorem 5 with results in [35, 43]. Solid circles and dotted

circles are sensors’ sensing ranges and communications ranges, respectively.

example in which the network is 2-covered and 2-connected. However, each node has a neigh-

bor (with overlapping sensing range) to which there is no direct communication link.

Third, Theorem 5 is stronger than the results in [35, 43]. It is clear that when two sensors

have overlapping sensing range, there is a direct communication link between these two sensors

if the communication distance is at least twice the sensing distance. So what can be determined

by [35, 43] can also be determined by Theorem 5. Furthermore, when the above assumption

does not exist, Theorem 5 may still work while [35, 43] do not. For example, Theorem 5

can determine that the network in Fig. 5.3 is 1-covered and 1-connected, when some sensors’

communication ranges are less than twice their sensing ranges.

5.2.2 Looser Connectivity Conditions

Definition 15 The direct neighboring set of ��, denoted as �1	

, is the set of sensors each

of which has a communication link to �� and whose sensing region intersects with ��’s sensing

region. Similarly, the multi-hop neighboring set of ��, denoted as 31	

, is the set of sensors

each of which has a (single- or multi-hop) path to �� and whose sensing region interests with

��’s.

45

si

Figure 5.4: Proof of the Lemma 5.

Definition 16 Consider any sensor ��. We say that �� is �-loose-direct-neighbor-perimeter-

covered, or �-LDPC, if �� is �-perimeter-covered by and only by nodes in �1	

. Similarly, we

say that �� is �-loose-multihop-neighbor-perimeter-covered, or �-LMPC, if �� is �-perimeter-

covered by and only by nodes in 31	

.

We comment that for any sensor ��, �1	

 � 31	

 � 1	

. So the definition that ��

is �-LDPC is looser than that �� is �-DPC in the sense that �-DPC guarantees that there is a

link from �� to each of 1	

, but �-LDPC only guarantees that there is a link from �� to each of

�1	

. The definition of �-LMPC is looser than that of �-MPC in a similar sense.

Lemma 5 If each sensor in $ is 1-LMPC, then the network can be decomposed into a number

of connected components each of which 1-covers the sensing field 	.

Proof. This proof is by construction. For any sensor ��, we try to construct a connected com-

ponent which fully covers 	. (However, the proof does not guarantee that �� has a path to every

sensor.) If ��’s sensing region can fully cover 	, the construction is completed. Otherwise, by

Definition 16, nodes in 31	

 must perimeter-cover ��’s perimeter and each has a path to ��,

as illustrated in Fig. 5.4. In addition, nodes in 31	

 together with �� form a larger coverage

region which is bounded by perimeters of nodes in 31	

. If 	 is already fully covered by this

region, the construction is completed. Otherwise, since each sensor is 1-LMPC, we can repeat

similar arguments by extending the coverage region, until the whole field 	 is covered. �

46

Figure 5.5: An example of two connected components each of which 1-covers 	.

Theorem 6 A sensor network can be decomposed into a number of connected components each

of which �-covers 	 iff each sensor is �-LMPC.

Theorem 7 A sensor network can be decomposed into a number of �-connected components

each of which �-covers 	 if each sensor is �-LDPC.

The proof of Theorem 6 (respectively, Theorem 7) is similar to Theorem 4 (respectively,

Theorem 5) by replacing Lemma 4 with Lemma 5. An example of Theorem 6 is shown in

Fig. 5.5. Due to relatively small communication ranges compared to sensing ranges, the net-

work is partitioned into two connected components. However, each component still provides

sufficient 1-coverage.

To summarize, Theorem 6 and Theorem 7 only guarantee that the network can be sufficiently

covered by each connected component, while Theorem 4 and Theorem 5 can guarantee both

coverage and connectivity of the whole network. When �1	

 � 1	

 or 31	

 � 1	

for each sensor ��, these theorems converge. Also observe that Theorem 6 and Theorem 7 are

more practical because each sensor only needs to collect its reachable neighbors’ information to

make its decision. Most applications can be satisfied if a subset of sensors is connected and can

provide sufficient coverage. The redundancy caused by multiple components may be eliminated

by a higher level coordinator, such as the base station, to properly schedule each component’s

working time such that no two components of the network are active at the same time.

47

5.2.3 Protocols to Determine Coverage and Connectivity

The above results imply that to determine how a sensor network is covered and connected, it is

sufficient to determine how each sensor’s perimeter is covered by its neighbors. The decision

procedure can be executed in a fully distributed manner independently by each sensor.

For a sensor to determine how its perimeter is covered, first it has to collect how its one-

hop neighboring sensors’ sensing regions intersect with its and calculate the level of perimeter

coverage. Periodical BEACON messages can be sent to carry sensors’ location and sensing

range information. After receiving such BEACON messages, a sensor can determine who are

its direct neighbors and how its perimeter is covered by them. The detail algorithm to determine

a sensor’s perimeter coverage can be found in Chapter 3. If the level of perimeter coverage is at

least � in this step, we can determine that this sensor is �-LDPC.

If a sensor’s perimeter is not sufficiently covered by its one-hop neighbors, a QUERY mes-

sage is flooded to find out more sensors whose sensing regions interest with its region. The

flooding can be a localized flooding by limiting its range within some hop count. Each sensor

who receives the QUERY message has to check if its sensing region intersects with the source

node’s. If so, a REPLY message is sent to the source node. After a predefined timeout period,

the source can calculate its level of perimeter coverage based on received REPLY messages. If

the level of perimeter coverage is at least � in this step, we can determine that this sensor is

�-LMPC. Otherwise, we can take an incremental approach by flooding another QUERY with a

larger hop limit, until the desired � is reached or the whole network is flooded.

After the above steps, each sensor can report its exploring result to the base station or a

centralized sensor (note that aggregation mechanisms may be used in the reporting, but we

omit the details). Then the base station can determine the coverage and connectivity of the

network. There are three possible cases. If each sensor is �-LDPC, the network is �-covered

and �-connected. If some sensors are �-LMPC while others are �-LDPC, the network is �-

covered and 1-connected. If there exist sensors that are neither �-LDPC nor �-LMPC, the result

is undecided. In this case, it is possible that the network is still sufficiently covered but is

partitioned. For example, if we remove sensor � in Fig. 5.2(a), the network is 2-covered, but the

proposed theorems can not detect such case.

48

Chapter 6

Decentralized Energy-Conserving and

Coverage-Preserving Protocols

Since sensors are usually powered by batteries, sensors’ on-duty time should be properly sched-

uled to conserve energy. If some nodes share the common sensing region and task, then we can

turn off some of them to conserve energy and thus extend the lifetime of the network. In this

chapter, we propose decentralized protocols that schedule sensors’ active and sleeping peri-

ods to prolong the network lifetime while maintain the sensing field sufficiently covered. The

proposed protocols are similar to the model in [40]. However, our approach can significantly

reduce the computational complexity incurred on each sensor. In addition, our approach can

relieve the inaccuracy caused by using gird points to calculate each sensor’s working schedules

in [40].

6.1 Preliminaries and Problem Definition

We are given a set of sensors, $ � ���� ��� � � � � ���, in a two-dimensional area 	. Each sensor

��,
 � �� � � � � �� knows its own location 	��� ��
 inside 	 and has a sensing range of ��, i.e.,

it can monitor any point that is within a distance of �� from it. Each sensor is able to switch

between the active mode and the sleeping mode. While active, a sensor can conduct sensing

tasks and communicate with neighbors. While sleeping, a sensor turns off both its sensing and

communication devices to conserve energy. In addition, each sensor �� is aware of its own

remaining energy, denoted as ��, all the time.

49

Definition 17 Given a threshold value 4, �) 4 � �, the lifetime(4) of a sensor network is the

duration from the network being started until the first moment when the ratio of area over 	

that is covered is below the threshold 4.

For example, �
���
.�	�
 is the duration until the first location in 	 is no longer covered.

Our goal is to develop an energy-efficient coverage-preserving protocol for the wireless sensor

network by scheduling sensors’ active and sleeping periods such that the lifetime of the network

is as long as possible.

6.2 A Basic Coverage-Preserving Protocol

In this section, we first give an overview of the our protocol. Further parameter-setting criteria

will be discussed afterwards, followed by the complexity analysis.

6.2.1 Protocol Structure

The proposed protocol is similar to the model in [40]. However, our approach can significantly

reduce the computational complexity incurred on each sensor. The time axis of each node is

divided into a sequence of working cycles, each of the same length � �����. The working cycles

of sensors are assumed to be roughly synchronous. (As will be seen later, global time syn-

chronization is unnecessary in our protocol.) Each working cycle consists of two phases, an

initialization phase of length ���� and a sensing phase of length ���. The initialization phase

is for sensors to exchange information and use the information to calculate their working sched-

ules for energy conservation purpose. Then in the sensing phase sensors will switch between

active and sleeping modes according to their working schedules.

Fig. 6.1 illustrates one working cycle. During the initialization phase, each �� has to wake

up and broadcast a HELLO packet containing the following information: 	��� ��
, ��, and '���,

where '��� is generated from some random process. Based on the HELLO packets received

from neighbors, �� can calculate it own working schedule in the sensing phase. Note that to

avoid possible collisions, a random backoff should be taken before HELLO. The sensing phase

is divided into � rounds with equal duration ���, i.e., ��� � �� ���. In each round, the active

period of �� is from '���
 ��0��� until '��� � ���� after the round begins. The details to

generate '���, ��0���, and ���� will be addressed later. Note that after each working cycle,

'��� should be regenerated so as to fairly distribute energy consumption among sensors. Also

50

Initialization
Phase

Sensing Phase

Round 1 Round 2 ... Round i ...

Trnd

Refi

endifronti

Tw cycle_

Tinit Tsen

Round r

Tinit

HELLO

back

off

-

active period

sleeping period

Tw cycle_
... ...

Tw cycle_

Figure 6.1: One working schedule of a sensor node.

note that the above schedule only reflects the behavior of sensors when only monitoring job is

needed and no action is taken by the network. When actions need to be taken (such as events

being detected), sensors may wake up each other, but this is beyond the scope of this paper.

Next, we present a basic method for sensor �� to select '���, ��0���, and ����. The

method is a modification of what discussed in [40]. First, �� generates a reference time '���

which is uniformly distributed in ��� ���
. Then, from HELLO packets received, �� should

maintain a neighbor table which contains all its neighbors’ locations, sensing ranges, and ref-

erence times. The parameters ��0��� and ���� should be carefully calculated to ensure that

the sensing area is sufficiently covered. To achieve this goal, we utilize a theorem which is

first stated in [10]. This theorem claims that, if all intersection points between any two sensors’

sensing ranges and between any sensor’s sensing range and the boundary of 	 are sufficiently

covered, the target area is sufficiently covered. This result is also used in [35] and [43] to guar-

antee the coverage of a sensor network. More specifically, for each intersection point, we have

to schedule at least one sensor to be on-duty at any moment among all sensors which cover the

point. This leads to an efficient distributed protocol.

Consider any sensor ��. Let the set of intersection points inside ��’s sensing range be " .

For each point � � " , �� has to calculate a ��0���� and a ����� as follows. First, from ��’s

neighbor table, �� can find all sensors that also covers point �. Then �� sorts these sensors

(including itself) into a list *� in ascending order of their reference times. We then define:

��0���� � �	'���
 ����	'���

 mod ������ (6.1)

����� � �	����	'���

'���
 mod ������ (6.2)

51

where ����	'���
 and ����	'���
 are the reference times before and after '��� in the list *�,

respectively. Note that here we consider *� as a circular list, i.e., the one next to the last item

in *� is the first item in *�, and vice versa. For ease of presentation, the time period in a round

 ��� is also treated in a circular manner. For example, when a negative time � is referred, we

actually mean � mod ���. Intuitively, Eq. (6.1) and Eq. (6.2) are designed to have sensors in

*� cooperatively cover point � in a time-division manner. For two consecutive reference times

in *�, the corresponding two sensors will divide their responsibility at the middle point of their

reference times, such that one covers � before the middle point, and the other does after the

middle point. This is formally stated in the following lemma.

Lemma 6 If each sensor �� � *� is active in the duration �'���
 ��0����� '��� ������� (in

the circular sense), then � is covered by exactly one sensor in each round.

Fig. 6.2(a) shows an example. Intersection point � is covered by sensors �� and ��. Let

 ��� � ��, and the reference times of ��, ��, �	, and �
 be 2, 9, 11, and 16, respectively. So we

have ��0���� � �	�
�
 ��� ����� � ���, and ����� � �	�
�
 ��� ����� � ���. Similarly,

��0���� � ��� and ����� � ���. The result is shown in Fig. 6.2(b). As can be seen, � is covered

by exactly one sensor at any moment.

It is not hard to see that the above scheduling may result in inconsistent active times, con-

sidering the existence of multiple intersection points in a network. To ensure each intersection

point is covered, the active period of a sensor should be the union of schedules obtained from

all intersection points under its coverage. So we define:

��0��� � ���
����

���0����� (6.3)

���� � ���
����

�������� (6.4)

Theorem 8 If each sensor �� is active in the duration �'���
 ��0���� '��� � ����� (in the

circular sense), then the whole sensor network is covered in each round.

For example, the integrated schedule of sensor �� in Fig. 6.2(a) is shown in Fig. 6.2(c).

6.2.2 Energy-Based Scheduling

The above basic scheduling does not consider status of sensors – reference times are randomly

selected, and sensors equally divide their responsibility to cover the sensing field. In this sub-

section, we try to utilize sensors’ remaining energy to balance their energy consumption and

52

s
1

s2

s3 s4

p

qr

a

0

10

Ref1

Ref2

515

20

Front =3.52

p

End =3.51

p

Front =6.51

p

End =6.52

p

s p1's active period for

s p2's active period for

Trnd 20

b

0

Reference
Times

Trnd 20

Ref1

9 15 5 20

92 11 16

Ref2 Ref3 Ref4

Schedule for p

Schedule for q

Schedule for r

Integrated Scheduleof s1

Schedule for r

c

Figure 6.2: (a) a 4-sensor example, (b) schedules of �� and �� for intersection �, and (c) the

integrated schedule of ��.

53

prolong network lifetime. Note that this require each sensor to broadcast its remaining energy

in the HELLO packet.

We first discuss how to choose reference times. For any intersection point �, the interval

between two adjacent reference times in *� will affect the corresponding sensors’ on-duty times

in a round. Therefore, the reference times of sensors with more energy should be placed more

sparsely on the time line than those with less energy. To achieve this goal, each round is logically

separated into two zones with different lengths, ��� 		���

 and �		���

� ���
. Sensors with more

energy should randomly choose their reference times from the larger zone , while sensors with

less remaining energy should choose from the smaller zone. The criteria to determine sensors’

remaining energy may be based on some agreement, such as a threshold. Alternatively, if a

node finds its remaining energy ranked top 50% among its neighbors, it chooses from ��� 		���

.

Otherwise, it chooses from � 		���

� ���
.

Parameters ��0��� and ���� of sensor �� can also be tuned according to the remaining

energies. For any point �, we can modify Eq. (6.1) and Eq. (6.2) according to the ratio of

remaining energies of two nodes as follows:

��0���� � �	'���
 ����	'���

 mod ����� ��

�� � ����

(6.5)

����� � �	����	'���

 '���

 mod ����� ��

�� � ����
(6.6)

6.2.3 Complexity Analysis and Discussion

The computational complexity of the proposed protocol is analyzed below. To calculate its

working schedule, a sensor first looks at its neighbor table and extracts reference times of its

neighbors. Suppose that a node has at most � neighbors. Then sorting these reference times

takes time �	�
���
. The maximum number of intersection points covered by sensor is �	��
.

For each intersection point, a sensor has to find out which nodes covering the point, which takes

time �	�
. So, the calculation of working schedule for all intersection points takes time �	�	
.

Finally, calculating Eq. (6.3) and Eq. (6.4) takes time �	��
. Therefore, a complexity of �	�	

is incurred on each node to decide its working schedule. Note that the energy-based scheduling

does not incur higher cost than the basic scheme.

Next, we compare our scheme with that in [40]. The complexity of [40] is related to the grid

size of the entire region (while our protocol is independent of the grid size). Suppose that each

grid has a width of + and each sensor’s sensing range is �. Then there are approximately ���

��

54

Figure 6.3: The ratio of covered area achieved by our basic scheme and the scheme in [40] with

different grid size.

grids to be taken care of by a sensor. As a result, it takes time �	� ���

��

 for a sensor to decide its

working schedule. In addition, grid approximation is sometimes inaccurate.

Next, we discuss the effect of loss of HELLO messages. HELLO messages carry important

information to neighboring hosts. If a sensor misses a neighbor’s HELLO, it may compile

an incomplete list *�. However, the correctness of our protocol is not affected, because this

only results in longer on-duty time (observe that the functions ����	
 and ����	
 may return

reference times that are farther away than they should be). As a result, the coverage is still

guaranteed even in loss of HELLOs.

6.3 Simulation Results

We have developed a simulator to compare the performance of the proposed energy-conserving

protocols. The simulation environment is a ��� � ��� square area, on which 150 sensors are

randomly generated. Each sensor has a sensing range of 25. In addition, each sensor will

reschedule again every 5 rounds, i.e., a cycle includes 5 rounds. The initial energy settings of

sensors are uniformly distributed between � � �� ���, i.e., if a sensor keep active all the time,

it will run out it energy after � � �� rounds.

First, we compare our scheme with the scheme in [40]. The result is shown in Fig. 6.3. We

look at the ratios of covered area achieved by different schemes when time goes by. Those three

55

Figure 6.4: The ratio of alive nodes.

Figure 6.5: The ratio of covered area.

56

curves “grid 1”, “ grid 5”, and “grid 10” indicate the performances of the scheme in [40] with

different grid sizes, ���, ���, and �����, respectively. The curve “none” is the result of that

all sensors keep awake all the time and our basic scheme presented in Section 6.2.1 is labeled

by “basic protocol”. As aforementioned, grid approximation may cause inaccuracy. So, as can

be seen in the figure, only relatively smaller grid size, ���, can achieve almost 100% coverage.

By contrast, our basic scheme can easily achieve the similar coverage. Note that the vibrations

in the figure are resulted from some sensors may run out its energy during a cycle.

Next, we compare our basic scheme with the energy-based scheduling. There are two kinds

of performances evaluated, the ratio of alive nodes and the ratio of covered area. The results

are shown in Fig. 6.4 and Fig. 6.5. As can be seen in Fig. 6.4, adopting our basic scheme

can keep all sensors alive much longer than turning each sensor always on. In addition, our

energy-based scheme further outperform the basic scheme. Similar results can also be seen on

the ratio of covered area, as shown in Fig. 6.5. The energy-based scheduling can keep almost

100% coverage until about 60 rounds while the curve of the basic scheme vibrates from about

10 rounds.

57

Chapter 7

Conclusions and Future Works

In this dissertation, we have defined and proposed solutions to the coverage problems both in

2D and 3D spaces for wireless sensor networks. We model the coverage problem as a deci-

sion problem, whose goal is to determine whether each location of the target sensing area is

sufficiently covered or not. Furthermore, we have studied the relationship between coverage

and connectivity, and proposed more general solutions. In addition, we have presented de-

centralized coverage-preserving node-scheduling protocols to prolong network time, which can

significantly reduce the computational complexity incurred on each sensor.

For the two-dimensional coverage problem, rather than determining the level of coverage

of each location, our solutions are based on checking the perimeter of each sensor’s sens-

ing range. Although the problem seems to be very difficult at the first glance, our scheme

can give an exact answer in �	��
�� �
 time. With the proposed techniques, we also dis-

cuss several applications (such as discovering insufficiently covered regions and saving en-

ergies) and extensions (such as scenarios with hot spots and irregular sensing ranges) of our

results. A software tool that implements the proposed algorithms is available on the web

(http://hscc.csie.nctu.edu.tw/download/coverage.zip) for free download.

We have also proposed a solution to the three-dimensional coverage problem for wireless

sensor networks. We have shown that tackling this problem in a 3D space can be done at

polynomial time. Our solution reduces the geometric problem from a 3D space to a 2D space,

and further to a 1D space, thus leading to a very efficient solution.

Next, the relationship between sensing coverage and communication connectivity of a sen-

sor network is studied. Solutions are proposed to determine whether a network is sufficiently

covered and connected. Contrary to existing works, we make no assumption on the relation-

58

ship between communication distances and sensing distances. Our approach looks at how the

perimeter of each sensor’s sensing range is covered by its neighbors, and whether there exists a

link/path to each of its neighbors, thus leading to very efficient solutions. We show conditions

for a sensor network to be �-covered and �-connected, and to be �-covered and 1-connected. We

also show under what conditions a sensor network may be decomposed into multiple connected

components each of which provides sufficient coverage. Distributed protocols to determine

coverage and connectivity of a network is then discussed.

Finally, decentralized energy-conserving and coverage-preserving protocols targeted at ex-

tending the network lifetime are presented. The proposed protocol is similar to the model in

[40]. However, intersection points between sensors’ sensing ranges are used to ensure the net-

work coverage, which can significantly reduce the computational complexity incurred on each

sensor and completely eliminate the inaccuracy problem caused by gird approximation. Be-

sides, we further discuss how to utilize sensors’ remaining energy to adjust parameters in our

protocols to balance the energy consumption among sensors. Through simulation studies, the

energy-based parameter settings are shown to outperform the basic scheme.

For the future, we try to utilize the result of the 3D coverage problem in deploying sensors

in 3D space and in reducing on-duty time of wireless sensors. Besides, we are currently investi-

gating the possibility of applying our result to control the level of coverage and connectivity of

a network. Since sensors may be deployed in an arbitrary manner, redundant nodes may exist.

If the level of coverage is more than needed, we can properly schedule nodes’ on-duty time to

reduce the level of coverage, and thus prolong the network lifetime. This is the same for net-

work connectivity. Further, transmission power control can be integrated into the mechanism.

Next, we intend to extend the energy-conserving and coverage-preserving protocols to ensure

the network to be �-covered. We will report the related results in our future papers.

59

Bibliography

[1] S. Adlakha and M. Srivastava. Critical density thresholds for coverage in wireless sensor

networks. In IEEE Wireless Communications and Networking Conf. (WCNC), pages 1615

– 1620, 2003.

[2] P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R. Sack and

J. Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier, North-

Holland, New York, 2000.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location and

tracking system. In IEEE INFOCOM, pages 775–784, 2000.

[4] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In ACM Int’l

Workshop on Wireless Sensor Networks and Applications (WSNA), pages 22–31, 2002.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very

small devices. IEEE Personal Commun., 7(5):28–34, Oct. 2000.

[6] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does topology control

reduce interference? In ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing

(MobiHOC), pages 9 – 19, 2004.

[7] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient coor-

dination algorithm for topology maintenance in ad hoc wireless networks. ACM/Kluwer

Wireless Networks, 8(5):481–494, Sep. 2002.

[8] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly resilient, energy efficient

multipath routing in wireless sensor networks. ACM Mobile Comput. and Commun. Re-

view, 5(4):11–25, Oct. 2001.

60

[9] H. Gupta, S. R. Das, and Q. Gu. Connected sensor cover: Self-organization of sensor

networks for efficient query execution. In ACM Int’l Symp. on Mobile Ad Hoc Networking

and Computing (MobiHOC), pages 189–200, 2003.

[10] P. Hall. Introduction to the Theory of Coverage Processes. Wiley, New York, 1988.

[11] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of

Discrete and Computational Geometry, chapter 21, pages 389–412. CRC Press LLC, Boca

Raton, FL, 1997.

[12] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-

cation protocols for wireless microsensor networks. In Hawaii Int’l Conf. on Systems

Science (HICSS), pages 3005–3014, 2000.

[13] A. Heppes and J. B. M. Melissen. Covering a rectangle with equal circles. Period. Math.

Hung., 34:65–81, 1996.

[14] Q. Huang. Solving an open sensor exposure problem using variational calculus. Tech-

nical Report WUCS-03-1, Washington University, Department of Computer Science and

Engineering, St. Louis, Missouri, 2003.

[15] N. Li and J. C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless net-

works. In ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), 2004.

[16] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in wireless ad hoc sensor networks. IEEE

Trans. Comput., 52(6):753–763, June 2003.

[17] J. Lu and T. Suda. Coverage-aware self-scheduling in sensor networks. In IEEE Computer

Communications Workshop (CCW), pages 117 – 123, 2003.

[18] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage problems

in wireless ad-hoc sensor networks. In IEEE INFOCOM, pages 1380–1387, 2001.

[19] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak. Exposure in wireless ad-hoc

sensor networks. In ACM Int’l Conf. on Mobile Computing and Networking (MobiCom),

pages 139–150, 2001.

61

[20] S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak. Localized algorithms in

wireless ad-hoc networks: location discovery and sensor exposure. In ACM Int’l Symp. on

Mobile Ad Hoc Networking and Computing (MobiHOC), pages 106–116, 2001.

[21] J. B. M. Melissen and P. C. Schuur. Improved coverings of a square with six and eight

equal circles. Electronic Journal of Combinatorics, 3(1), 1996.

[22] D. Nicules and B. Nath. Ad-hoc positioning system (APS) using AoA. In IEEE INFO-

COM, pages 1734–1743, 2003.

[23] K. J. Nurmela and P. R. J. Östergård. Covering a square with up to 30 equal circles. Re-

search Report A62, Helsinki University of Technology, Laboratory for Theoretical Com-

puter Science, Espoo, Finland, June 2000.

[24] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, Aug. 1987.

[25] J. O’Rourke. Computational geometry column 15. Int’l Journal of Computational Geom-

etry and Applications, 2(2):215–217, 1992.

[26] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun. ACM,

43(5):51–58, May 2000.

[27] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in

ad-hoc networks of sensors. In ACM Int’l Conf. on Mobile Computing and Networking

(MobiCom), pages 166–179, 2001.

[28] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: coverage, connectivity

and diameter. In IEEE INFOCOM, pages 1073 – 1083, 2003.

[29] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical

layer driven protocol and algorithm design for energy-efficient wireless sensor networks.

In ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), pages 272–287,

2001.

[30] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless sensor networks.

In IEEE Int’l Conf. on Communications (ICC), pages 472–476, 2001.

[31] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of a

wireless sensor network. IEEE Personal Commun., 7(5):16–27, Oct. 2000.

62

[32] D. Tian and N. D. Georganas. A node scheduling scheme for energy conservation in large

wireless sensor networks. Wireless Commun. and Mobile Comput. (WCMC), 3:271–290,

2003.

[33] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking in a wireless sensor

network by mobile agents and its data fusion strategies. In Int’l Workshop on Information

Processing in Sensor Networks (IPSN), 2003.

[34] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak. Minimal and maximal exposure path

algorithms for wireless embedded sensor networks. In ACM Int’l Conf. on Embedded

Networked Sensor Systems (SenSys), pages 40–50, 2003.

[35] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and con-

nectivity configuration in wireless sensor networks. In ACM Int’l Conf. on Embedded

Networked Sensor Systems (SenSys), pages 28–39, 2003.

[36] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology control for power

efficient operation in multihop wireless ad hoc networks. In IEEE INFOCOM, pages 1388

– 1397, 2001.

[37] R. Williams. The Geometrical Foundation of Natural Structure: A Source Book of Design,

pages 51–52. Dover, New York, 1979.

[38] A. Woo and D. E. Culler. A transmission control scheme for media access in sensor

networks. In ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), pages

221–235, 2001.

[39] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc

routing. In ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), pages

70–84, 2001.

[40] T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor networks. In

ACM Int’l Conf. on Embedded Networked Sensor Systems (SenSys), pages 51–62, 2003.

[41] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A robust energy conserving protocol for

long-lived sensor networks. In Int’l Conf. on Distributed Computing Systems (ICDCS),

pages 28 – 37, 2003.

63

[42] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor

networks. In IEEE INFOCOM, pages 1567–1576, 2002.

[43] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor

networks. In NSF International Workshop on Theoretical and Algorithmic Aspects of

Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.

64

Publication List

Journal Paper

1. C.-F. Huang and Y.-C. Tseng, “On Topology Improvement of a Packet Radio Network by
Power Control”, IEEE Transactions on Vehicular Technology, Vol. 52, No. 4, July 2003,
pp. 985-998.

2. C.-F. Huang, H.-W. Lee, and Y.-C. Tseng, "A Two-Tier Heterogeneous Mobile Ad Hoc
Network Architecture and Its Load-Balance Routing Problem", ACM/Kluwer Mobile
Networking and Applications (MONET), Vol. 9, No. 4, Aug. 2004, pp. 379-391, Special
Issue on Integration of Heterogeneous Wireless Technologies.

3. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location Tracking in a Wireless
Sensor Network by Mobile Agents and Its Data Fusion Strategies”, The Computer
Journal (to appear).

4. C.-F. Huang and Y.-C. Tseng, “The Coverage Problem in a Wireless Sensor Network”,
ACM/Kluwer Mobile Networking and Applications (MONET), Special Issue on
Wireless Sensor Networks (accepted).

5. C.-F. Huang and Y.-C. Tseng, “A Survey of Solutions to the Coverage Problems in
Wireless Sensor Networks”, Journal of Internet Technology, Special Issue on Wireless
Ad Hoc and Sensor Networks, Mar. 2004 (accepted).

Conference Paper

1. C.-F. Huang, Y.-C. Tseng, S.-L. Wu, and J.-P. Sheu, “Increasing the Throughput of
Multihop Packet Radio Networks with Power Adjustment”, Int'l Conf. on Computer
Communication and Networks (ICCCN), 2001.

2. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “A Mobile-Agent Approach for
Location Tracking in a Wireless Sensor Network”, Int’l Computer Symp. (ICS), 2002.

3. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location Tracking in a Wireless
Sensor Network by Mobile Agents and Its Data Fusion Strategies”, Int’l Workshop on
Information Processing in Sensor Networks (IPSN), 2003.

4. C.-F. Huang, H.-W. Lee, and Y.-C. Tseng, “A Two-Tier Heterogeneous Mobile Ad Hoc
Network Architecture and Its Load-Balance Routing Problem”, IEEE Semiannual
Vehicular Technology Conference (VTC) Fall, 2003.

5. C.-F. Huang and Y.-C. Tseng, “The Coverage Problem in a Wireless Sensor Network”,
ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA) (in
conjunction with ACM MobiCom), 2003.

6. C.-F. Huang, Y.-C. Tseng, and Li-Chu Lo, “The Coverage Problem in Three-Dimensional
Wireless Sensor Networks”, IEEE GLOBECOM, 2004.

7. Y.-Y. Hsu, Y.-C. Tseng, C.-C. Tseng, C.-F. Huang, J.-H. Fan, and H.-L. Wu, “Design and
Implementation of Two-tier Mobile Ad Hoc Networks with Seamless Roaming and
Load-balancing Routing Capacity”, Int’l Conf. on Quality of Service in Heterogeneous
Wired/Wireless Networks (QShine), 2004

Book Chapters

1. Y.-C. Tseng, C.-F. Huang and, S.-P. Kuo, “Positioning and Tracking in Wireless Sensor
Networks” (a book chapter in Handbook of Sensor Networks, CRC Press)

2. C.-F. Huang, P.-Y. Chen, Y.-C. Tseng, and W.-T. Chen, "Models and Algorithms for
Coverage Problems in Wireless Sensor Networks" (a book chapter in Theoretical and
Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, CRC
Press, edited by J. Wu, expected 2004).

Submitted Paper

1. Chi-Fu Huang, Yu-Chee Tseng, and Hsiao-Lu Wu, “Ensuring Both Coverage and
Connectivity of a Wireless Sensor Network”, IEEE Int’l Conf. on Pervasive Computing
and Communications (PerCom’05), submitted, Aug., 2004.

