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ABSTRACT

In this dissertation, the exploitation of fuzzy. logic control (FLC) mechanism in the
fields of speaker adaptation (SA) and audio_event detection is thoroughly investigated,
specifically in the reliable determination‘of HMM.acoustic parameters and in decision
window regulation for enhancing: the ‘'system recognition. performance, given ordinary
or adverse conditions in both training and operating stages.

For speaker adaptation against data scarcity, the author managed to engineer the
FLC mechanism into the MAP and VFS estimate of HMM parameters for
Bayesian-based adaptation; also into the MLLR estimate for transformation-based
adaptation.

For the detection of singular audio event detection, the author developed an
efficacious measure by varying the length of the decision window (DW) under the
framework of FLC operation such that, depending on audio-tension in the context, the
rate of decision making would adapt accordingly.

To the author’s knowledge, the use of FLC mechanism in estimating HMM



acoustic parameters for speaker adaptation and audio event detection has been rarely
attempted. Experiment results showed that the adaptation with the support of FLC do
have several edges on those without.

(1) better performance in ordinary case,

(2) robustness against the scarcity of training data,

(3) less computation in parameter estimation as compared to other propositions on

MLLR-enhancement.

And the detection with FLC support also demonstrates the capacity of
self-adjustment in DW size depending on the context while achieving better
recognition performance as compared to those running with fixed DW whose sizes are
inappropriately selected.
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Chapter 1

Introduction

Intelligent human-machine interaction stresses the use of vocal and visual
information as the communicating media such that the machines could interact with
people just the same as people do with one another. For the visual part, the
information process is afferent and the machine needs such device as CCD camera for
taking pictures or video sequences as the visual input from which the configuration of
the surroundings and even the status/situation reflected by the context have to be
figured out such that the machine is claimed to be able to SEE. Computer vision is the
discipline taking care of this portion-of the job [1, 2].

However, the process of auditory information is both afferent and efferent. The
machine would require the microphone and recorder as; the input devices for
collecting audio streams.on which analysis ‘is to-be performed so that speech can be
recognized, speaker can befidentified and types of.audio events can be categorized,
etc; the machine also needs the synthesizer and speaker as the output devices for vocal
reactions to the people. Interestingly enough, as a counterpart of computer vision,
there is no such discipline as of “computer audition” in the realm of audio processing.

From the standpoint of signal processing, a comparison between the two media is

listed in Table 1.1.



Table 1.1. A comparison between audio and visual media.

audio visual
nature 1D 2D or above
acquisition limitation background noises camera orientation-dependent

lighting condition

acquisition devices microphone ccd camera
audio-recorder image capturer
transmission bandwidth low high
regeneration synthesizer/speaker LCD display/printer
semantics lingual or higher, geometrical or higher
metaphor metaphor

Note that as far as the' social interactions among people are concerned, the
exchange of vocal information (i.e.,shearing form and speaking to others) plays a far
more important role than anything else, since the only way of instantly expressing
one’s and knowing other’s desire or intension-in an‘exact and precise manner without
ambiguity is through the exercise of conversation. This is true for the kids in the
preschool, as well as for various professionals in their serious careers.

The subjects in this dissertation concerns the computing techniques involved in
the process of vocal information rather than visual one, specifically speaker
adaptation schemes associated with MAP, VFS and MLLR, and audio event detection

with variable decision window, which are to be briefed in the following sections.

1.1 Scope of the Dissertation

The researches pertaining to audio information processing covers a myriad of



branches including, but not limited to, those shown in Fig. 1.1.

Speech/Audio Processing

Encoding/Decoding Recognition Analysis/Synthesis

| Audio Event Recognition | | Speech Recognition 1 Speaker Recognition Language Identification
. p— -

o —_——— —_——

(" Fuzzy Logic Control )
N == -

Fig. 1.1. Speech/Audio information-processing represented by a myriad of branches.

In the area of speech recognition, .the author proposed a framework of fuzzy
mechanism that is applicable to some major-speaker adaptation schemes for resolving
the unreliable adaptation due to-insufficient training samples; the implementation of
which, a series of fuzzy logic controllers embedded in MAP, VFS and MLLR
adaptations, has proven themselves by achieving far superior recognition rate at
extreme adverse conditions.

The same framework is also applied to the detection of female screaming against
different degree of background interferences, where the width of decision window
scanning through the input audio stream was adjusted by a context-driven fuzzy logic

controller.

1.2 Speaker Adaptation

Computing techniques for automatic speech recognition have existed for years [3]



and, with the ever growing maturity, have found more and more applications in
current daily life [4]. Nevertheless, the recognition performance of all speech
recognition systems ever built is undeniably inferior to a human listener as already

pointed out in [5].

Training

\/»V

Reference

Pre-processing

-Framing
Signal input -Pre-emphasis

-Hamming window

Feature templates

extraction

Testing

template

Template
Recognized result matching

Fig. 1.2. The operating structure of a.typical speech.recognition system.

Fig. 1.2 depicts the operating structure of a typical speech recognition system for
capturing specific short phrases or primitive statements only. Note that during the
operation any disturbances causing a mismatch between the pre-established reference
templates and the testing template would compromise the recognition performance
and the sources of disturbances may include

e speech from speakers strange to the system
e speech from speaker known to the system, only in poor “vocal shape”
e various interferences in the background
e channel distortion induced in the acquisition process
and so forth.

Countermeasures can be taken in two aspects:



(1) Signal filtering and normalization are deployed so that the operating condition is
in as much alignment with the referential condition as could be done.
(2) Internal tuning of the referential settings is undertaken so that the system adapts
toward the actual operating environment when new speakers appear.
Techniques in the first category work at the level of signal processing, and are
referred to as speech enhancement or feature-based adaptation through which noises
adhered to the signals are removed to make the speech signals as clean and thus
resemble to reference templates as possible. The cepstral mean normalization (CMN,
or cepstral mean subtraction CMS) [6] and signal bias removal (SBR) [7] fall into this
category too and are popular for their. simplieity.and effectiveness.
Approaches in the second eategory use sample utterances collected from the new
speaker (the end-user of the system) for adapting the system internal parameter
settings of the pre-established speech model: Consequently; they are referred to as

model-based adaptation.or speaker adaptation.

Speech Recognition

Speaker Adaptation
Fuzzy Logic Control

Bayesian-based
Adaptation
(ex: MAP, VFS) S

~ ~
S

FLC-MLLR

FLC-VFS

Transformation-based [w< =
Adaptation ~~d
(ex: MLLR) S~s

~
~

Eigenvoice-based
Adaptation

Fig. 1.3. Three categories of speaker adaptation techniques in speech recognition.
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Fig. 1.3 reveals the chronological development of the three major speaker
adaptation schemes. MAP adaptation, appearing around 1991 and the representative
of Bayesian-based adaptation, works better than the ML (maximum likelihood)
estimate of the adaptation by taking into account the information of prior means of the
model. By the nature of MAP computation, in the speech model only the portions
associated with the adaptation samples get updated, for which case VFS scheme came
into the play as a supplement to MAP by extending the coverage of adaptation in the
model space. The MAP-VFS adaptation in general offers more satisfaction in
recognition performance than MAP alone given the same adaptation data. MLLR
adaptation first appeared in 1995: :and. became the representative of
transformation-based adaptation, where linear regression was employed to derive the
transformation matrix using- ML-estimate. Note that through the transformation by
matrix multiplication, the entire model space-is-adapted at one time despite the fact
that the sample utterances might convey very limited information for adaptation. In a
sense, MLLR adaptation provides.with an-overall-but somewhat coarser speech model
adaptation, in contrast to MAP; adaptation which-brings about a local and yet specific
effects of adaptation, given the same adaptation samples.

One thing that is common to both MAP and MLLR is that the quality of
adaptation depends on the amount and adequacy of the adaptation samples: the more
the samples, the better the adaptation quality which in turn determines the recognition
performance. When the adaptation utterances from a new speaker are insufficient, the
effects of either MAP or MLLR adaptation would be questionable: the recognition
rate of which would fall below the baseline, i.e., worse than no adaptation at all as
shown by the author’s experiments [8, 9].

Eigenvoice-based adaptation [10-20] is a relatively young member in the speaker

adaptation family, first appearing around 2000, and is also known as

6



speaker-clustering-based adaptation where a speaker dependent (SD) speech model is
established for every member in a group of speakers, from which feature vectors
called as eigenvoices are extracted through PCA for building the eigenvoice speech
model. The adaptation to the speech model (an eigenvoice vector space) then can be

undertaken when adaptation data is available, as shown in Fig. 1.4.

Hy Adaptation Data

iy S—

Speaker
#a Adapted Model

Speaker 1
Hlelerlehe
: |

L v
1

@

v

¢

i |Estimate|| | @
W

O

|
Ly
|

— PCA

i

\' weilghts

unused

S
11 1

SD models SA model

Fig. 1.4. Eigenvoice-based adaptation.
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To summarize, speaker adaptation is a process that turn speaker-independent (SI)

speech models into speaker-adapted (SA) ones, as is clearly seen in Fig. 1.5.

speech recognition system speech recognition system

adaptation data
from end users

SI shipping
models

SI
models

SA
models

adaptation
process

from manufacturer to end user

Fig. 1.5. Speaker.adaptation scheme.

To ensure the quality of the adaptation-at-the scarcity' ofi adaptation samples, the
author proposes a general framework for enhancing MAP; VIS and MLLR adaptation,
and the resultant implementations are named as FCMAP,*FLC-VFS and FLC-MLLR
respectively where FLC stands for fuzzy-legic control, indicating the underlying fuzzy

mechanism incorporated in the general system architecture.

1.3 Audio Event Detection

Conventional security, surveillance or remote homecare systems rely heavily, if
not exclusively, on the visual information (i.e. data captured by video camera) for
detecting specific events in considerations [21-24] through the use of motion tracking-
analysis techniques. The similar development is also seen in the field of multimedia
retrieval and indexing applications, where video information is the major concern and

it is not until recently that audio cues are involved only as an auxiliary role for



detecting certain specific shot in a video sequence [25-27]. Depending solely on
visual data as the basis for capturing status/situation development in the context
inevitably would be confronted by the limitations inherent in the image acquiring
process:

e Video camera is an oriented-sighting device and views lying beyond the
camera’s visual angle are therefore “unseen”.

e When the scene is in the darkness or over exposure, activities taking place
wherein would become “unseen”.

e The scenario like two gangsters threatening of killing each other right in front of
the video camera, both with smiling on the faces, is in fact “unaware of” through
“clearly seen”.

Note that in all these cireumstances, acoustic data.can act as a complementary source
of information for reflecting the auditory aspect of the reality:in the context. A further
thought in that almost.all living icreatures that move around in their habitats are
equipped with organs for:both visual ‘and aural‘perception-would remind us that any
security, surveillance or remote -homecare system. dismissing the use of audio
information is effectively a crippled one. And in fact species that can “hear” much
better that they can “see” are more than one would have expected; scotopic animals,
oceanic mammals and, of course, the moles are only a small group of examples of all.
As a result, audio event detection has been getting a lot more attentions in recent years,
and fundamental issues include
(1) Categorization of various kinds of sounds that are to be encountered in daily life,
of which the sources may be
e artificial: gun shots [28], door opening/closing and glass breaking [29].
e human activities: coughing [30], voices under different emotions [31], crying,

talking, walking and running [32], female screaming to be addressed in this

9



dissertation (Chap. 7).

e nature: wildlife activities [33] and ordinary or catastrophic phenomena [34].

Note that the entities of the categorization are not limited to the above three and in

each category good and interesting subjects to be explored are virtually unlimited;

“detecting a tiny mouse blowing wind one mile away”, for instance, borrowing

from the dialog in an old movie in the early 80’s “Blue Thunder” is just one if the

author is allowed.

(2) Internal representation and modeling of a designated type of sound, in order to be
differentiated from other sounds and the background acoustics as were done in [32]
and [28], where multi-level or hierarehical_tree are utilized for more elaborated
audio representation of several human activities and different types of gunshots,
respectively.

(3) Representation and-modeling of the background acoustics against which the
compasison can be«done for audio-event detection, as was done in [35] for
background noise analysis, “and,"in [36]-for online sadaptation in background
modeling where the idea of acoustic backgreund: modeling is translated from a
precedent counterpart in video background modeling [37].

A typical audio event detection process starts with receiving a stream of audio
frames coming in the system at regular time intervals, on which analysis is to be
performed every time a fixed number of frames are collected (or equivalently an
elapse of a pre-determined time span called decision window, DW) so as to decide if
the designated audio event has occurred or not. The author proposes a variable-length
decision window of which the window length is governed by a fuzzy mechanism for
eliminating the deficiency suffered by the fixed-length DW approaches, as to be
detailed in Chap. 7.

The rest of the dissertation is organized as follows. In Chap. 2, an overview of

10



automatic speech recognition based on hidden Markov models for Mandarin is given,
together with the mathematic backgrounds for the two speaker adaptation techniques
in popular use: MAP-VFS composite and MLLR. Also described in Chap. 2 is audio
event detection based on Gaussian mixture models. In Chap. 3, a general framework
of fuzzy logic control is described, where the problem formulation by fuzzification,
the establishment of fuzzy rule base and inference mechanism, and the defuzzification
for final quantitative outputs are provided.

The main theme of this dissertation concerns the enhancement of extant speaker
adaptation schemes by additional tuning according to the availability of adaptation
data and of audio event detection by, scanning the audio stream with a variable-sized
decision window, both being'govern by a general-fuzzy. mechanism; the formulation
and implementations of awhich are explained respectively-in chapters 4, 5, 6 and 7.

And the concluding remarks of the research by the author are-given in Chap. 8.

11



Chapter 2
Overview on Speech Recognition and Audio

Event Detection

In the realm of man-machine interactions, audio processing no doubt receives far
less attention than it deserves when compared to the resources/efforts invested in its
counterpart of video processing. It has been so for over decades despite the fact that
for thousands of years in human history instant and precise communications among
individuals were mostly realized.via the auditory channels: speak and listen (imagine
the age before the creation.of characters.in,ancient civilization).

Though the ability te-understand-what others are talking:about is indispensable in
social interactions, thesauditory perceptual.skill of differentiating one kind of sound
from others that may be.heard in.one’s Tiving surroundings:is far more important and
crucial; for instance, being able to tell other’s “HELLO?” from the noises due to a
vehicle’s hard break, a gunshot from an-explosion, a duck’s quack from a goose’s
honk and the Spanish from the Italian without really understanding both languages etc.
could be live-saving or at least useful or even amusing in one’s daily life.
Paradoxically enough, the development in audio process evolved in the opposite order:
speech recognition was addressed far ahead of audio event detection which was not
until recent years did it become visible on the stage.

Before the analysis on the audio information could commence, a pre-processing
on the input audio signals is generally required for extracting acoustic features in
preparation of any particular application under consideration, and in the case of this

dissertation, speech recognition and audio event detection. As illustrated in Fig. 2.1,
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several major steps in the front-end processing is briefly explained as follows [38,

39]:

Speech signals

input
A
Analog to digital _
conversion Hamming
(A/D conversion) windowing
Pre-emphasis Feature extraction
Framing J
processing Feature vector
output

Fig. 2.1. The front-end: processing procedure in preparation of subsequent audio

analysis.

(1) A/D conversion:
The analog input data is converted into digital forms by sampling and A/D
conversion.

(2) Pre-emphasis:
Components in the high-frequency band are enhanced.

(3) Framing:
Samples of audio data are divided into frames, each consisting of a
pre-determined and same number of samples.

(4) Hamming windowing:
Discontinuity at the boundary of two consecutive frames is smoothed.
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(5) Feature extraction:

From each frame, various parameters are extracted and a feature vector

representing acoustic characteristics of the audio input in the associated time

period is thus derived.

For the purpose of speech recognition and human voice related application, linear
predictive coefficient (LPC) parameters, LPC cepstrum (LPCC) parameters and mel
frequency cepstral coefficient (MFCC) parameters are the three most frequently seen
in practice, and are employed in the author’s research.

In this chapter, theoretical backgrounds for two fundamental technical issues in
speech recognition, namely HMM speech medeling and speaker adaptation, will be
given; also given in the final-are certain primary issues pertaining to audio event

detection.

2.1 HMM Speech Maodeling

The modeling of speech- patterns can-be-‘implemented in the form of neural
networks (NN, [40-42]), by using support vector.machine (SVM, [43, 44]) or by using
hidden Markov models (HMM) which to the author’s knowledge is by far the most

popular and widely used one.

2.1.1 HMM and Mandarin Syllable Modeling

HMM is basically a stochastic process operating on an underlying Markov chain
of a finite number of states and the same number of random functions: at any given
instance of time, the process stays at a certain state and the random function
associated with the current state determines what the next state will be. Such issues as
how an HMM is to be cast into a model for certain specific applications and how the

model parameters are to be estimated are addressed in [45-47] and in practice a state
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probability transition matrix is used to describe the probability of going from one state
to the other states, which in effect defines the Markov chain at work. The applications
of HMM to speech recognition can be found in many references. [48-51] are some of
the examples. The work by C. H. Lin et al. [50] is particularly note worthy, where a
framework for the recognition of syllables was established and later became a widely
accepted standard in the modeling of Mandarin syllables with tones. According to
which each Mandarin syllable consists of an initial part and a final ending part, each
being called as a sub-syllable. The HMM modeling of Mandarin syllables assumes
that the initial part is right dependent on the beginning phone of the following final
part and the final part is context independent.»A Mandarin utterance may contain one
to several syllables; the HMM of an utterance thus includes HMMs of the constituent
syllables. In the actual implementation of the author’s work, the HMM of a syllable
consists of an HMM of. 3 states for the initial part and an HMM of 6 states for the
final part, and in total there are 440 states for all Mandarin-sub-syllables. The HMM
modeling of the initial sub=-sylable in'3 staieés-and the final:sub-syllable in 6 states are

respectively depicted in Fig. 2,2 and Fig. 2.3, where each circle represents a state and

P, represents the probability density function concerning the transition from state i to

state j. The HMM model employed in the author’s research is referred to as
left-to-right model since only left-to-right transitions are allowed; i.e. the transition
from each state is limited to only two alternatives: either moving toward the

right-hand side neighbor or staying at the current state.
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Fig. 2.3. 6-statesHMM model for the final sub-syllable (i = 1 ~ 6).

2.1.2 Estimation and Decoding of HMM
Mathematically, a hidden Markov model can be represented by the parameter set
A=(x, A, B). The underlying Markov chain of ‘N ‘“states S,,S,,..,S, can be

specified by an initial state distabution vector = =(z,,7,,.,7,) and a state

transition probability matrix A= {aij |[1<i, ) < N}, in which 7, is the probability of
S; attime t=0 and a; is the state transition probability of going from state S,

to state S;. Moreover, if the observations composed of M discrete symbols
0,,0,,.,0, are considered, the finite set of probability distributions
B=1{b,(q)|1< j<N,1<q<M/ with b,(q) being the probability of observing o
given the state S;, represents the random processes associated with the states.

Usually, to characterize an HMM the decision of the number of states N and the
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number of observation symbols M also should be taken into account besides

specifying the parameters =, A and B.

In order to acquire an efficient estimation of HMM model during the training
phase and an optimal decoding procedure of the estimated HMM model during the
recognition phase, three problems need to be taken care of [51]:

(1) If the observation sequence O={ol,02,...,oT} is given, how the probability
p(O| A) is to be evaluated then?

(2) If an HMM model and an observation sequence are known, how the optimal (the
most likely) state sequence in the model that produces the observation is to be
decide?

(3) If a model and a set of ebservations are given, how the model parameter set
A= (mz, A B) tomaximize | p(O]4) |is.to be estimated?

For the first problem, some methods such-as-the forward: recursive algorithm and
backward recursive algerithm have been proven to be efficient [52]. For the third
problem, the Baum-Weleh method:{45-47]-is-'proposed to offer a local maximum
solution although the computation for an explicit: solution of the model A is
difficult.

For the second problem, the Viterbi algorithm proposed in [53] has been proven to
be an effective one for acquiring an optimal state sequence. The score function &, (i)
is defined as in Eq. (2-1), given the observation sequence O = {01,02,..., oT}

o,(1)= max P(s;,s,,....S, =S;,0,,0,,..,0; | 4), (2-1)

51,5255t
where ¢o,(i) has the largest probability at time t and at state S, .

0,.,(1) is computed as follows using ¢, (i) by induction,
5t+1(j) :[miaXé‘t(i)aij]bj (0t+1)' (2'2)
This iterative procedure is essentially a dynamic programming and the state sequence
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that has the maximum likelihood of generating the given observation sequence will be
searched if one keep track of all the states which maximize Eq. (2-1). An array v, (])
is used to store the predecessor state of the state j at t. The steps of the Viterbi
algorithm are as follows

(1) Initialization

5,(1) = 7b,(0,), 1<i <N, (2-3)
w,(j)=0, 1<j<N, (2-4)
(2) Recursion
6 (1) = max[s , ()a;b; (0,), 1< j<N, (2-5)
v () = agoiMay]. (1%, < N, (2-6)
(3) End
p" = max[5; ()], (2-7)
Sy = ag[s; (], (2-8)
(4) Back-tracing
s, = (S =T =L T2,...1. (2-9)

During the recursive step of this algorithm, the optimal sequence of states is obtained

eventually.

2.2 Speaker Adaptation

Automatic speech recognition systems generally can be classified either as
speaker-independent type (S1) or speaker-dependent type (SD), depending on how
speech samples are colleted during system construction. An Sl system typically
collects speech samples from an as large population of speakers as possible, whereas a

SD system collects a large amount of sample data from possibly just one designated
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speaker. In general, a well-trained SD model achieves better performance than an Sl
model on recognizing the speech of a specific speaker. However, when the amount of
training data available to acquire the SD model is not sufficient, such superiority
would no longer exist. This is where speaker-adaptive techniques (SA), sometimes
referred to as model-based adaptation techniques, get in to play, which would adapt a
full SI model into an SD one and achieves SD-like performance, requiring only a
small fraction of the speaker-specific training data. When a new speaker uses such an
adaptive system, the parameters of the HMMs are updated by speech data obtained
from this speaker. By speaker adaptation, the recognition performance can be
significantly improved for outlier speakers such as non-native speakers or others not
well represented in the SI training Set.

Generally speaking, sthe -operation fer speaker adaptation can be carried out in
either supervised mode-or: in unsupervised mode respectively, depending on if the
transcription of the speaker-specific adaptation data has been known or not before
performing the adaptation‘procedure,[54]; the-speaker adaptation is said to operate in
batch mode if all adaptation data acquired from.anew speaker is fed into the system
before the final adapted system is produced and then put to work, or incremental
mode if the adaptation data is continually fed for adaptation while the system is
already at work [54].

Currently there mainly three categories of speaker adaptation techniques:

(1) Maximum a posteriori (MAP) adaptation, representative of Bayesian-based
adaptation.

(2) Maximum likelihood linear regression (MLLR) adaptation, representative of
transformation-based adaptation.

(3) Eigenvoice adaptation.

Before the advent of eigenvoice approach in 2000, MAP and MLLR adaptation
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are the most commonly used techniques for speaker adaptation, and practically are
still seen working in almost all speech recognition systems nowadays. The
schemes of the three speaker adaptation will be described in the following

subsections.

2.2.1 Bayesian-based Adaptation

In early 90s, Lee, Lin and Juang reported speaker adaptation for an HMM with
parameters of continuous density (CDHMM) [55], in which the parameter estimation
was accomplished by segmental k-means algorithm which was developed in their
earlier researches for HMM parameter jestimation/training [56, 57]. In these works,
speaker adaptation of CDHMM -parameters is formulated as a Bayesian learning
procedure, where prior=information were 4nvolved in the computation of Bayes
theorem P(4|0O) where A is the model parameters ands O is the sequence of
observations. On this basis, Gauvain and-Lee then released in 94 the MAP adaptation
by maximum a posterioriestimate of the 'HMM:parameters [58]. MAP adaptation is
thus Bayesian-based and offers=a framework-=of :incorporating newly acquired
speaker-specific data into the existing models.

Assume that the CDHMM parameters are characterized by the parameter vector
A= {wik,yik,zik}, where w, , x4, and X, are the mixture gain, mean vector and
covariance matrix of the k-th mixture component from the i-th state, respectively. The
parameter vector A is a random vector. A prior knowledge about the random vector
is available and characterized by a prior probability density function p(1) where A
is to be determined as the input sequence is observed. Let Y =(y,,.., y;) beagiven
set of T observations. The MAP estimate for A is defined as

/1MAP =arg max[ p(/1 |Y)] (2'10)
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Then the MAP estimate for A is obtained by solving

0
ap(ﬁJ Yiir Yo yT)=O- (2-11)

By using Bayes theorem,

p(ﬂ*lY) = p(il Yir Yo 'yT)
_ PO ey [A)P(A) (2-12)
P(Y1sYar - Yr)

Then Eq. (2-10) can be rewritten as follows:

Auar=arn akp(Y [4)p(4) ] (2-13)

To accomplish the estimation of the model parameter vector A, the well-established

segmental k-means algorithm can be used, and the execution is done in an iterative

process as follows:

(1) Obtain the optimal state segmentation of a given observation sequence Y, based on
a given model 4, i.e;

s=argmax'P(Y,s| A)P(1), (2-14)

where s=(S,,S, ..., S sii-s S7.) IS @ State sequence.
(2) Based on the optimal state sequence $, find the MAP estimate

Z=argna@®,§| HPL). (2-15)

(3) Iterates from (1) until some predefined equilibrium is reached.
Assume that the mean x is random with a prior distribution P,(x) and the

variance o is known and fixed, then the conjugate prior [59, 60] for x is also a
Gaussian distribution with mean y and variance 72, as already shown in [61]. And
if the conjugate prior for the mean g is substituted into Eq. (2-13), the MAP
estimate for the adapted parameter x as derived in [61] would appear as a weighted

average of the prior mean y and the mean of the adaptation observation data Y, :

. N‘~2 B 2
b=t gy, (2-16)

o?+N 727 P +N, T
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where N, is the total number of training samples observed for the corresponding
recognition unit with the k-th Gaussian and y, is the sample mean with the k-th
Gaussian.

Let 7=0°/7% and the prior mean » be replaced by the mean parameter of the

initial model with the k-th Gaussian, g, , Eq. (2-16) could be reformed as

N, T
I, = ¥, + , 2-17
Hy TN, Yy TN, Hy ( )

where 7 is a parameter which gives the bias between the maximum likelihood
estimate of the mean from the data and the prior mean. That is, z is a prior density
parameter that controls the balance between the prior knowledge and the adaptation
data.

Note that, however, the data available for adaptation is often quite limited and
most likely could cover-a small portion=of speechpatterns-in HMMs, which implies
that many HMM parameters will not be adjusted by the nature of Bayesian-based
adaptation. As a result, vector field:smoothing (VFS) was proposed as a supplement
for broadening the extent @f adaptation in the HMM parameter vector space [62-65].
The rationale behind VFS adaptation is-that, by exploiting the spatial coherence of
vector distributions in HMM, the unadapted HMM parameter vector might be

“purposely” adjusted in accordance with the MAP adapted vectors nearby.

To be specific, consider an unadjusted parameter vector x; and k of MAP

adapted vectors /z ’s with initial counterparts z, ’s lying in the vicinity of x; inthe

HMM vector space. The amount of MAP adaptation to g, is referred to as the

transfer vector v, ,
Vie = My = My (2-18)

Given the adapted vectors around, how much adaptation to x; should be
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expected? A weighted average of v, ’s as shown in Eqg. (2-19) would be a quite

natural choice.

Z’Ij,k Vi
~ _keN()

L= + Ui
/ul zlj'k ’uJ
)

keN(j

_d.
Aj = exp( f"k J (2-19)

where 1, is the estimate of the untrained mean vector with the j-th Gaussian 4 ;
N(Jj) indicates the set of K-nearest neighbor mean vectors, ,’s,to u;;
A;« represents the weighting coefficient determined by the distance d;,

between ; and g4, and

f denotes the weight control-parameter’

Atypical VFS adaptation thus comprises three steps:
(1) transfer vectors calculation for. all'MAP adapted parameter vectors by Eg. (2-18),
(2) interpolation of transfervectors for adapting the unadjusted vector by Eq. (2-19),
(3) smoothing.

The composite of MAP-VFS adaptation has been proven to be more robust than
MAP adaptation in recognition performance when given the same limited amount of
adaptation data. Still there are rooms for MAP-VFS enhancement when the quality of

MAP adaptation is in question, which is an issue to be addressed in Chap. 5.

2.2.2 Transformation-based Adaptation
In the transformation-based model adaptation, certain appropriate transformations
have to be derived from a set of adaptation utterances acquired from a new speaker

and then applied to clusters of HMM parameters. A bias transformation by adding a
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cepstral bias for model adaptation is the simplest form of transformation, which is
easy to estimate and perform, as was done in [66]. Usually, adding a bias alone could
not take care of the variations in test environments or among different speakers. An
affine transformation (linear transformation) over HMM parameters in general offers
a more appropriate model and there have been numerous adaptation schemes using
affine transformations. In the work by Leggetter et al. [67], MLLR adaptation was
firstly proposed under the framework of affine transformation, which has become
quite popular and successful for its rapid adaptation. However, it is necessary to have
sufficient adaptation data to ensure the estimate of the MLLR transformation, and
various solutions have been suggestedfor:further reinforcement. For instance, instead
of using the maximum likelihood (ML) estimate 1nthe' MLLR scheme, the maximum
a posteriori estimate is used to estimate the transformation-parameters by maximizing
the posterior density [68,'69]. In addition, .it is suggested=in [70, 71] that a prior
distribution for calculating the mean transformation matrix parameters is used, which
is generally dubbed as the MAPLR, technique.-Besides using the estimate of MAP
style for acquiring transformation-parameters, an alternative using a variant of the
Expectation-Maximization (E-M) algorithm [72] to optimize a discounted likelihood
criterion, the so-called discounted likelihood estimation, was proposed in [73].
Theoretical formulations of classic transformation-based adaptation schemes, MLLR
and MAPLR, are briefly described as follows.

Under the framework of the transformation-based speaker adaptation, it generally

starts with a set of SI HMMs, A ,to which certain transformation F, with
parameters 7 derived from adaptation data, Y, of a new speaker is to be applied such

that the transformed model F, (A) would recognize the incoming speech better than

A did. The transformation parameters 7, called linear regression parameters, are
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usually assumed to be fixed and then be estimated via statistical measures under
specific criteria such as ML or MAP, as were done in [67] and [70] respectively.

MLLR makes use of the simplicity of ML criterion, which states that the
transformed model 7,, should maximize the likelihood of the adaptation data
p(Y | A, 7)), i.e.

M =argnaxp(Y A, 7). (2-20)
n

Consider the Gaussian mean vector of the model at state s, x., and the associated
affine transformation action as follows
f1, = A+, (2-21)
which sometimes is written as
i1, =W &, (2-22)

and & is the extended;mean vector-in the form

Ee=lo, pe St 1 (2-23)

where o is the offset term.of the regression, usually being:set as 1.
The transformation matrix«Wg..is to be estimated.such that the likelihood of the
adaptation data is maximized, for which a closed form solution is available in [67] by

solving the following equation,

T R

227, M08, =2 >y, OZJWE &, (2-24)

=1 r=1 =1 r=1
where y (t) is the total occupation probability for the state s, attime t given the
observation vectors of adaptation data o, attimet;
Z;rl is the covariance matrix of the output probability distribution, and
R is the number of states.

Apart from MLLR, Chesta et al. [70] suggests that the prior density can be taken

into account in the estimation process of transformation parameters by using a
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maximum a posteriori criterion:

e =argmax p(71Y, A), (2-25)
n
which is proportional to argmax p(Y |7, A)p(7). According to this criterion, the
n

maximum a posterior linear regression (MAPLR) technique for adaptation is thus

derived, where the transformation matrix W, appears in the form of px(p+1)

linear equations as follows [70]

p_p+l N M /T o 1 1

Z Wy ZZ(Z}/t(nlm)jrik/ulluj+_Gki¢jl+_0ik¢lj =

k=1 1=1 n=l m=1\ t=1 2 2

SR SI R _ 1 1 1<i<p

;%[;mz_l ;}/t(nlm)ok(t)]rikluj +Eakimkl¢jl +Egikmkl¢lj] 1<j<p+l
(2-26)

where w, eW,, 7, e Ry M; €M, o€, ¢ e@;

nm?

y.(n,m) is the.probability of the mixture m-in state n at time t, given the

observation o(t), and
z, isthe i™ component of the mean vector .«

Note that R,, is the precision“matrix and M", ¥ and @& are hyperparameter

matrices associated with the prior density. Solving the system of equations in Eqg.

(2-26) for W, is obviously much more time-consuming than standard MLLR due to
the use of additional hyperparameters {M, 2, ®} of the prior distribution. Details for
the estimation of {M, =, ®} can be found in [74].

A fuzzy control mechanism reinforced MLLR, called FLC-MLLR, will be
presented in this dissertation to perform at a much lower computing cost than
MAPLR and still be able to ensure the quality of MLLR adaptation when

encountering data insufficiency.
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2.2.3 Speaker-clustering-based Adaptation

The basic idea of the speaker-clustering-based adaptation is that a number of
speaker clusters can be built up in advance, and the model of the current speaker is
then represented as an interpolated form of the weighted sum of the speaker clusters.
Such a speaker-clustering-based adaptation is also called as speaker-space-based
adaptation. Mathematically, the estimated parameters of the sets of cluster models
form the axes of speaker spaces and by estimating an appropriate point for the speaker
in the speaker space, the mean vectors for the speaker is then determined. The
eigenvoice approach can be regarded as the generalization of speaker-clustering
adaptation techniques.

R. Kuhn, et al. [10] firstly proposed the eigenvoice adaptation where a priori
knowledge concerning the variations ameng-all training speakers was represented as
the set of SD model parameters in the form of €igenvectors named eigenvoices; a new
speaker model was then.expressed as the linear combination:of the set of eigenvoices.
By the eigenvoice approagh, the number of parameters required to be estimated would
be reduced greatly but still capable of retaining.the overall system characteristics to
capture the variance between speakers.

Typically, the eigenvoice approach needs to take care of two things, namely
eigenvoice construction and coefficient estimation. In the eigenvoice construction
phase, referring to Fig. 1.4, a set of N well-trained SD models must be established
first. Then, the model parameters of each SD model are “vectorized”, forming a set of
N “supervectors”. Space dimension reduction techniques, such as principal
components analysis (PCA), are then applied to the set of N supervectors to obtain N
eigenvectors with dimension D, also called as “eigenvoices”. In general, only the first
K eigenvoices are kept which are significant as they possess most information from

speech data and thus are capable of representing all the variations in considerations.
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Finally, by these K eigenvoices, an accurate speaker space “K-space” will be spanned
and acquired. In the coefficient estimation phase, adaptation is then performed using
the maximum likelihood eigen-decomposition (MLED) algorithm proposed in [10],
which estimates a set of weights to find a weighted combination of eigenvoices.
Following the eigenvoice representation, the eigenvoice-versioned MLLR and
MAPLR adaptation have been reported in [11] and [12] respectively where effective
hybrids of MLLR-/MAPLR-eigenvoice adaptation are conceived. For the time being,
the eigenvoice-based approach has received intensive attentions and various

extensions of eigenvoice adaptation have been developed [13-20].

2.3 Audio Event Detection

The audio event detection system is designed for. picking up a designated acoustic
phenomenon when it appears in a certain acoustic background, and consequently the
operations basically involve the comparison of the input audio signals against two
acoustic models (the singular and ‘the norimal)-and the decision about whether an
audio event has occurred or‘not. Fig. 2.4 showsrthe architecture of a typical audio
event detection system associated with two sound models where the input audio
stream is segmented into the frame sequence, from which acoustic features are to be
extracted for estimating the likelihood scores of both the normal and the singular
situation via the classifier operation. When collecting the likelihood estimates to the

degree that a decision can be made, the classifier then makes its call.
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Fig. 2.4. Audio event detection system.

For constructing such a system as in Fig. 2.4, several issues have to be resolved.
e acoustic features to be extracted:
LPC, LPCC and MFCC, for example, are good candidates to be considered.
e acoustic/sound models:
In what kind of representations and how the model parameters are to be
determined are the primary concerns. For the representation, alternatives like GMM
[75], HMM [76] or Bayesian network [77] are available. GMM is in relatively

extensive use for its approximation with ease of arbitrary forms of probability

29



density distributions [78]; GMM is also frequently seen employed in the field of
speaker identification for its capacity in categorizing voice patterns.
e the criteria for decision making:
How the likelihood estimates are to be calculated and accumulated, how
frequently the decision should be made, and the possibility of making decision not
at regular time intervals but being situation driven are all interesting subjects to be

explored.

2.3.1 GMM Models and Classifiers

In this dissertation, GMM models are iadopted in the development of an audio
event detection system for fémale screaming in the conhtexts of office space, parking
lot and living room. The setting up of-models during the training phase and the
operation of the GMM-classifier during the recognition ‘phase are described in the

following.

2.3.1.1 GMMs Establishment

Mathematically, a GMM is a weighted sum of M Gaussians, denoted as
A={w,u, 2}, 1=12,., M, iwi =1, (2-27)
i=1

where w; isthe weight, g isthe meanand X, isthe covariance.

To determine the GMM model parameters for a certain sound class, the E-M

algorithm as suggested in [72] is readily applicable. It is noted that before running the

E-M algorithm, a crucial job is to initialize the model first, i.e., to assign starting

values to the parameters, which can be realized by a binary splitting vector

quantization algorithm [79]. With the initial model parameter settings, the E-M

process starts iteratively maximizing the likelihood estimate of the training data by
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adjusting the initial model parameters; specifically, the expectation and the

maximization steps in the E-M process are repeated so that the parameter set

A={w, 1,%,}, 1=12,..,M of the GMM converges to an equilibrium state. The

E-M algorithm implemented in the system to establish a GMM model, given a set of

acoustic feature vectors X ={x, |n=1,2,..., N}, is detailed below:

(1) A initialization is performed by a binary splitting vector quantization algorithm
[79]; X, is in diagonal form for computational consideration; M is determined
by the Bayesian Information Criterion as suggested in [80].

(2) The computation for GMM parameters is, as suggested by the name E-M,
basically an iterative process through-which GMM parameters are progressively
updated for maximizing.the expectation value of the.acoustic data.

REPEAT

{Expectation computation:

£ () = o) (2-28)
Zwkbk (Xn)
where
i (Xn) = W ’ exp{_%(xn - /us)T (Zs)il(xn - /us)} . (2_29)

A -update for f(-) maximization:

wi:%if(ﬂxn,i). (2-30)
Y 1%, )-%,
p =2 . (2-31)

S (%)
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2 F% A) (% = 1) (% = 1)
3 = n=1

. (2-32)
> £(i1%,.2)

JUNTIL (A convergence achieved)

The number of iterations typically goes as high as several thousands. In the
dissertation, three GMM models for the auditory contexts “office space”, “parking
lot” and “living room” are established, respectively; also built are three GMMs for
“female screaming” in each of the three auditory contexts with recordings collected
from a group of females. And by the end of the training phase, six sets of A

parameters (6 GMM models, that is) are determined.

2.3.1.2 GMM Classifier
After the training, the recognition procedure:can then'besexecuted based on these
trained GMM models.:Note that the classifier deployed here is basically a GMM
classifier consisting of two separate GMM models, one for background sound, and the
other for singular sound. Coensider. the classifier operating with a decision window (or
equivalently, over a time interval) covering n acoustic feature vectors of D dimensions,
X={x|1=12,..,n}, together with two sound models, A, for normal events and
A, for singular events.
During the recognition phase, the class of X is determined by maximizing a

posteriori probability P(4,| X),

§=max P(4, | X) = max X 14) P(4,). (2-33)
s={1,2} =12} f (X)
Note that
M
f(Xi |ﬁ’s):zwj'bj(xi)v (2'34)
j=1
and
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b, (%) =%-exp{—1(xi 1) ()% —us)}. (2-35)
(272') '|Zs| 2

However, in real implementation, Eq. (2-33) is replaced by
S§=max » logf(x |A.), 2-36
max > log f (x | 4) (2-36)
for simplicity.
And at the end of the recognition procedure, the signal X is then classified as one of

the two sound classes indicated by §.

2.3.2 Decision Window of the Classifier

The so-called decision window (DW) used for classification is in fact a time
period covering a predetermined number, of .audio frames, within which successive
analysis is conducted and then the-decisionas to'whether an audio event is detected
over the associated time.span‘is made. For each audio frame,two likelihood scores are
computed, the normal and the singular, using Eq. (2-34)-based on the two GMM
models. Within the decision. window, all normal and singular estimates are
respectively taken in log-valuesiand accumulated, and whichever greater determines
the class of the DW as the normal or the singular, as indicated by Eq. (2-36). In
conventional processing, a fixed-length DW (e.g., 0.5 sec., 1 sec., 2 sec., etc.) is set to
accumulate the log-likelihood scores of each audio frame [28, 30, 32], as shown in
Fig. 2.5 where the number of frames covered in DW time span is thus held constant,

n.

DWW bW _DW-

Fig. 2.5. The conventional fixed-length decision window (DW).
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Audio event detection systems using fixed-length decision window are
ubiquitously seen, for instance, to detect gun shots [28] or coughing in an office [30].
The use of fixed-length DW, however, is plagued by the problem of window sizing.
The setting of a relatively narrow DW may potentially increase the rate of false
alarms in the case of sudden and abrupt fluctuations in the background acoustic
condition, and that of a too wide DW may not suffice the need of the real-time
response as decisions are made at a long periodicity. An audio event detection system
with a variable-sized DW governed by a fuzzy logic controller is proposed in this
dissertation to regulate the length of DW according to the recent situation
development in the background acousties:so that the system will be always aware of
the occurrence of the specific audio event even in. presence of a complicated

background environment:
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Chapter 3
Fuzzy Set Theory and Logic Control

Fuzzy set theory, since its inception in 1965 by Lofti A. Zadeh [81-86], has
evolved with tremendous success in depth and breadth on both its theoretical
development and applications to practical and difficult problems of various natures.
Fuzzy set theory has embraced (or conversely been embraced by) many
well-established mathematic disciplines such as logic/inference, probability/statistics,
graph/relation and algebra etc. and, resulted=in a whole new series of theoretical
establishment due to the injection of a new ingredient: fuzziness, by which the gate to
a new dimension is opened and associated issues are.explored. Because of its capacity
of dealing with fuzziness, for which Zadeh had a-perhaps the-best interpretation of all:
“everything is a matter.of degree’, large-scaled applications with inherent nature of
uncertainty/ambiguity/imprecision then could-be-handled with systematic engineering
approaches on a rigid theoretic.ground. How successful fuzzy set theory has been and
will be? Perhaps that decision making in many domains where strategic or operational
decisions were used to be made by human domain experts in their professional careers
are now given by fuzzy systems of all kinds with confidence says it all. A fine
reference by Zimmermann [87] is highly recommended for gaining an overall picture
covering the theoretical/technical/application aspects of the development in details or
in a grand view.

Strangely enough, despite its original conception in Europe for over four decades,
the western academic circle didn’t seem to realize its value until the end of 1980s
when the Japanese started, in overnight, advocating “Everything is of Fuzzy and by

Fuzzy” in their products of home appliances and industrial controllers. Fuzzy logic
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control is in fact merely one among the innumerable applications of fuzzy theory,
referring to the use of fuzzy logic operations for the automation of an
engineering/technical  process, usually small-scaled and man-maneuvered;
temperature control or audio information processing in the author’s case, for instance.
In the following, the intuition behind the fuzzy theory, including the constituent
entities, will be introduced. The major components comprising the operational space
are as follows [87]:
(1) Fuzzy Set A:

A ={X 1z (X) | x e X} where

e X refers to a set of entities of certain attribute like AGE or LOOKING with
certain degree of ambiguity in nature;for instance,« X may concern the matter
of AGE and contains 8 elements VERY YOUNG, QUITE YOUNG, YOUNG,
MORE OR LESS: YOUNG, MORE OR LESS ‘OLD,.OLD, QUITE OLD and
VERY OLD, or the matter of LOOKING_ from 'UNBEARABLY UGLY to

ASTONISHINGLY PRETTYetc.
e u;(x) are measures, called membership functions of A for giving the degree

of the specific attribute for x (i.e. how old/young in terms of a value),defined
by

4;(x):D > [0,1],

and D, an interval of scalars or a vector space associated with X. D, may
be [0, 130] as far as human lifespan is concerned or [1, 10] when talking about
one’s LOOKING.
(2) Operators on Fuzzy Sets:
Operations for conventional crisp sets are extended in a way so that the

aggregation, differentiation and other desired operations upon two or more fuzzy
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sets could be meaningful or meet the requirements of the applications. For

example, the union and intersection of two fuzzy sets A and B defined

respectively as
Hon (A, B) = max{us;, 115}
and
fao (A B) =min{uz, 115}
are quite common and the negation of A is very often defined as
Hnor (R) =1— 15,
The fuzzy operators for generic operations:on fuzzy sets are usually referred to as
fuzzy connectives, based on which higher levels of.logic analysis, inference and

reasoning can be realized:

(3) Measure of Fuzziness:
A measure for the fuzzinessof the fuzzy set in consideration, Fuzz(z\), is often
required, the formulation. of “which is of course function of u;() and
application-oriented and preferably possesses properties like
J Fuzz(ﬂ) =0 if A is acrispsetin X

o Fuzz(,&) reaches a unique maximum if z; (x) :% vx e X

~

J Fuzz(ﬂ)zFuzz(,&') if A is crisper than A

o Fuzz(,&):Fuzz(—,&) when —A is the complement of A

The issues of applying the fuzzy set to logic control will be briefed in Section 3.2.

3.1 Fuzzy Schemes and Speech Recognition

Fuzzy approaches have been widely applied to the field of speech recognition for
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many years, playing a variety of roles from data clustering, logic reasoning, to neural
network configuration for speech recognition.
(1) Fuzzy data clustering:

In [88], Bezdek developed a clustering algorithm for improving the weakness
of K-Means clustering algorithm, in which fuzzy scheme was exploited to
consider the relationship in data attributes. Bezdek’s method later became quite
popular and widely known as FCM (Fuzzy C-Means) algorithm. In [89], a revised
version of FCM algorithm was used to generate phonetic tied-mixture HMM
(FPTM) for reducing the parameter size and improving the robustness of
parameter training. In the work -by iLi et al. [90], the FCM was applied to
Mandarin four-tone recognition, where the tone value can be determined by the
maximum memberships. Tran et al.-presented a generalized fuzzy manipulation
using FCM and fuzzy entropy in statistical'modeling for speech recognition [91].

Another line of fuzzy data|clustering concerns the use of vector quantization
(VQ). VQ is a standard technique for-quantizing a set:of scalars (mathematically
the vector components) among-which statistical dependencies are to be exploited,
if ever exist, for optimal reconstruction levels or steps in coding process; the result
of VQ is effectively as data clustering from the perspective of data classification
and has been widely employed in high-dimensioned data applications, including
speech recognition [92-94]. VQ variants with fuzzy ingredients introduced into
the quantization process have been seen for the purpose of speech recognition. In
[95], a minimum FVQ error criterion was devised for unsupervised speaker
adaptation, which showed that the same recognition accuracy as a supervised
speaker adaptation could be achieved by minimizing the overall FVQ errors.
Based on the concept of FVQ, Shikano et al., proposed a fuzzy codebook mapping

algorithm to speaker adaptation for mapping from a speaker to a standard speaker
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[96]. In addition, in the work by Lin et al., the FVQ technique is embedded in
neural network for isolated word speech recognition [97, 98]. In [99], a composite
of Multi-Layer Perceptron (MLP) neural network and FVQ was presented.
Compared with MLP-VQ, MLP-FVQ will provide richer information about
recognition results, an output vector whose components indicating the relative
closeness of each label to the input.

(2) Fuzzy logic and reasoning applications:

Fuzzy logic and reasoning has also been applied to speech recognition recently.
In [100, 101], Zhao and Woo proposed a fuzzy speech recognition approach based
on the power distribution pattern: of a speech segment using fuzzy logic.
Compared to speech recognition using typical hidden Markov models, the work
using fuzzy logic was simpler to implement in real-time recognition systems. In
the work by Halavati et al. [102], speech-spectrogram was conversed into a
linguistic description based on arbitrary colors and' lengths, following which,
fuzzy measures, fuzzy reasoning and-'a-genetic algorithm were used to describe
phonemes, perform the recognition procedurerand optimize phoneme definitions,
respectively.

(3) Fuzzy neural network applications:

Fuzzy neural network (FNN) that combines both the fuzzy logic and the neural
network is frequently seen in speech recognition lately. In contrast to the
conventional HMM-based recognition, FNN has the advantages of efficient
learning, adaptation and connectionist structure when carrying out speech
recognition [103]. In [104], a neuro-fuzzy classifier is designed to perform Sl
model speech recognition, where the classifier is an MLP model incorporated with
fuzzy operations and therefore inherits the strength of both neural networks and

fuzzy systems. The work by Kasabov et al. applied FNN to model a
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phoneme-based speech recognition system, which acquired quite satisfactory
recognition performance [105]. In the study of [106], a variant of FNN, called
modular general fuzzy min-max (MGFMM) neural network, was proposed to
modify the transfer function of the output layer of general fuzzy min-max neural
network (GFMM) for improving the recognition accuracy of speech recognition.
Other related works of speech recognition by FNN can be seen in [107-109]. In
the specific area of speaker adaptation, however, the use of fuzzy
scheme/mechanism is rarely seen. Lin et al. proposed a speaker adaptation scheme
in a perceptron-NN for speech recognition [110], where the fuzzy perceptron
approach is applied to generate,hyperplanes which separate speech patterns of
each class from the others. In particular, speaker adaptation is considered as a
procedure of tuning the trained hyperplanes when there-is recognition error caused
by a new speaker. The work by Lin et al. is thus essentially more of a fuzzy-neural
classification of speech patterns.in the perceptron neural space, instead of an
adaptation scheme as' being=proeclaimed.-in-addition; Gales applied the fuzzy
scheme to MLLR speaker adaptation (Fuzzy-MLLR) to further enhance the
classification of regression matrices of MLLR [111], which in nature belongs to
fuzzy clustering applications.

Although many fuzzy approaches have been widely used in various sub-areas of

speech recognition as mentioned hereinbefore, it has not been seen for the use of FLC

in HMM speaker adaptation, or even in speech recognition. Based on the

methodology of FLC, a series of speaker adaptation computations under FLC

regulation are designed in the dissertation. Basic concepts and architectures of the

FLC underlying the main theme of the dissertation are to be introduced in the

following sections.
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3.2 Fuzzy Logic Controller (FLC)

As mentioned earlier fuzzy logic control concerns the automation of a control
process for which the operator’s knowledge/expertise/experience regarding the
process control imparted in oral or written form has to be translated so as to fit in the
framework of fuzzy logic control, together with other accommodation or extension in
the fuzzy set theory specific to this particular application. An excellent book on this

subject by Zadeh et al. [112] is highly recommended.

Fuzzifier

e e

Inference Fuzzy
Engine Rule Base

Y [ -

Defuzzfier

I

Process

(If required)

Closed loop
control?

Yes

Output

Fig. 3.1. Architecture of a typical FLC.
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Fig. 3.1 shows the architecture of a typical FLC and the role of each constituent

module and the input/output are described as follows.

(1) Input:
usually signals or quantities of certain attribute in precise magnitudes (e.g.,
temperature measured in Celsius)

(2) Fuzzifier:
the precise and exact values of the input have to be transformed by the fuzzifier
through the use of membership functions such that fuzzy implications like
MODERATE, VERY LOW or HIGH could be attached so as to be processed by
the next module.

(3) Inference Engine:
performing analysis. or reasoning on the input information for making control
decision like “PUT. ON A LIGHT JACKET”, “TURN OGN THE HEATER ABIT
MORE” or a conclusion like “THE AUTUMN  HAS COME” under the
constraints from the:Fuzzy 'Rule Base.

(4) Fuzzy Rule Base:
a representation of the domain knowledge in fuzzy terms, typically in either of
the two forms:

Rulei:IFx'isa' ®---®y'isb’',

o (state evaluation rules)
THEN z' =c',

Rule j:IFz! =c,

o o (object evaluation rules)
THEN x’ism’ ®---®y’isn’,

where,

e @ and ® are fuzzy connectives.

e a', b', m! and n' areelements in associated fuzzy sets A, B,
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M and N respectively.
(5) Defuzzification:
the decision of control action made in the fuzzy context has to be transformed so
that a corresponding exact value such as “open the valve of the heat outlet by 10
%" would be available for sending to the physical world of the process
In designing an FLC, various issues regarding the structure or operation of each
module in Fig. 3.1 have to be considered, the mastery of which determines the success
of the FLC operation, as are addressed in the following:
(@) Input x:
e how many input signals being required
e scaling of each signal, ete.
(b) Fuzzification:
the number and types of membership functions required
(c) Rule base:
e the number of rules
e the number of antecedents, weights and membership functions of the antecedent/
consequence associated with each rule
e the structure of the rule base
(d) Inference engine:
e connectives for aggregating antecedents
e inference /reasoning schemes to be employed
e operators for aggregating the consequence of individual rules for generating a
decision
Various types of FLCs have been proposed with variations in the module design
considerations. The renowned Mamdani and Sugeno FLC are, for instance, different

in consequence design in every individual rules; the former generates the consequence
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as a member in the fuzzy set associated with linguistic variables pertaining to, say,
control action, whereas the latter produces a consequence in crisp form (e.g., as a
scalar function of inputs in the antecedent).

Another issue for FLC design has to do with taking into account from the
temporal perspective the potential variations in the process itself, for which the use of
time-variant parameters in the FLC design becomes unavoidable; i.e. the FLC is
preferable to be adaptive in accordance with the time-varying process. Basically the
adaptation can be done by modifying the rule sets or the fuzzy set, resulting in two

classes of FLCs, respectively the self-organizing and self-tuning FLC.

3.3 Takagi-Sugeno (T-S) FLC

The Takagi-Sugeno fuzzy model propased by Takagi and Sugeno has been widely
in use since it is conceptually simple and straightforward [113]. This type of fuzzy
system was early used in a famous parking control of a model car [114] where an FLC
is designed for the task of-driving.a model car-to-a designated parking space as shown

in Fig. 3.2.

Side Wall

<
Garage
Garage
Garage

Front Wall

A
x
k

Fig. 3.2. Sugeno’s FLC for car parking.
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The parking FLC by Sugeno was designed with the following specifications.

(1) Three inputs:

e (x, y) for the car position,

e @ for the car orientation.

Two outputs:

e f for the front wheels angle while driving forward,
e b for the front wheels angle while driving backward.

(2) Arule base:

e 18 rules for driving forward in which the antecedents involved x, y and &,

the consequence f isa functionof X, y and & too,

e 18 rules for driving backward withrsimilar.rtle forms,

e 6 rules for speed control.

Based on which, the=control goal Is .to-construct a successive alternation of
forward-backward driving actions with-appropriate-speed and turning such that the car
can be properly parked in position. Fig. 3.2 shows two'parking trajectories by the FLC
which is amazingly similar to those done by human drivers. The performance is of
coarse quite encouraging and thus it paves the road for subsequent applications to lots
of general control problems with successfulness up to present days.

For a complex system, the T-S fuzzy design procedure presents a systematic
framework of fuzzy modeling design for this system. Fig. 3.3 illustrates the design
methodology. The system is decomposed into a set of subsystems for which local
behaviors are identified by expressing the inputs-out mapping in terms of a fuzzy
implication (or rule) where the inputs are specified in the antecedent part and the
output as the linear combination of the associated inputs. The overall system output is

then a function of the subsystem outputs which could be as simple as of a “linear”
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combination, where fuzziness of the system behaviors is to be taken care of in the

coefficient handling, or of other more elaborated forms.

( Complex System )

[ ‘ i

Local/Subsystem Input- _
C Output Identification ) C Physical Model )

| |
v

Takagi-Sugeno
Fuzzy Model

Fig. 3.3. Designs of Takagi-Sugeno (T-S) fuzzy model.

Through the systemsdecompositions the system dynamics, which is generally
complicated and nonlinear; ‘Is captured in a set'of linear system models and fuzzy
mechanisms are incorporated wherever ‘necessary. The application of T-S fuzzy
modeling is thus quite straightforward.

Under the framework of T-S fuzzy model, a generic system can be formulated as a
set of fuzzy implications (or rules) together with a system output determined by
consequences in the set of implications. And the system representation would be of

the form

Rule 1: IF x(1) is A’ and...and x(n) is A}

THEN y'=a; +a;x(1) +...+a:x(n),

Rulei: IF x(1) is A and...and x(n) is Al

THEN y' =a] +a;x() +...+a' x(n), (3-1)
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Rule l: IF x() is Al and...and x(n) is Al
THEN y' =a) +a/x(1) +...+a!x(n),

|
Wi yi )
System output: y =-=——, giventhat w' =] ] A, (x(p)), (3-2)

|
w' p=l
i=1

for a system of n inputs and | implications. Note that A:), p=01..,n, arefuzzy sets
and Aip(x(n)) denotes the fuzzy values of the membership function associated with

A, for the input x(n); a,, p=04/%In; are eonsequent parameters through which

the i-th consequence y' isexpressed as.a linear.combination of n inputs.
The output of thisssystem is-a weighted sum of Tfunctions. In Eg. (3-2), an
interpolation procedure.is performed among different {inear-functions (local models).

Fig. 3.4 depicts the phenemenoniof.the Smooth interpolation-of the local models.

AL(x) AZ(X) A*(x)

XN

Fig. 3.4. System output of T-S fuzzy model in an interpolation form.

<V
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T-S fuzzy model has been seen in the control of the system as complicated as an
electric power plant with success [115, 116], and is employed in the author’s research
in speaker adaptation schemes and audio event detection, as will be detailed in the

next four chapters.
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Chapter 4
Speaker Adaptation Based on MAP Estimation

Using Fuzzy Controller

As mentioned in Section 2.2.1, MAP adaptation is a kind of direct model
adaptation, which attempts to directly re-estimate the model parameters [58].
However, it is noted that MAP adaptation re-estimates only the portion of model
parameter units associated the adaptation data, and therefore, MAP adaptation usually
needs a large amount of data for.adaptation and the.performance will be improved as
adaptation data increases and gets covering,the medel space. When the amount of data
is sufficiently large, thesMAP estimation-yields ‘as:good recognition performances as

that obtained using maximum-likelihood estimation [55]. As.shown in Eq. (2-17),

NSt T
N + , 2-17
My TN, Yk T+Nkluk ( )

the MAP estimate of the mean is.essentially a weighted.average of the prior mean and
the sample mean, and the weights are functions ‘of the number of adaptation samples,
given that r being fixed. When N, is equal to zero (i.e., no additional training data
are available for adapting the k-th Gaussian), the estimate is simply the prior mean of
the k-th Gaussian alone. Conversely, when a large number of training samples are
used for the k-th Gaussian (N, — o, to be exaggerative), the MAP estimate in Eq.
(2-17) then converges asymptotically to the maximum likelihood estimate, i.e., the
sample mean parameter with the k-th Gaussian, Y, .

Now consider the other way round with N, being fixed, the parameter r
controls the balance in the interpolation between the Yy, -term and the g, -term, (as

N, does). It is referred to as the “adaptation speed parameter” in [65, 117] in that the
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speed of adaptation can be increased or held-back by choosing a small or a large value
of z. The parameter z is also known as a “prior density parameter” since it
determines, to which side of, and for how close to y, or g, , the MAP-estimate of
£, would be.

As a general remark, that the recognition performance of adaptation, regardless of
whatever adaptation schemes in consideration, would not be as good as desired given
insufficient training samples N is a consensus among all. The robustness of MAP
adaptation against relatively small N should not be overlooked either, and as yet in
conventional schemes for MAP adaptation ([54, 117, 118], e.g.), a common value of
7 was used for all the Gaussians of .agiven:state, or for all states of an HMM, or
even for all HMMs.

With all the aforementioned thoughts-in mind-and looking at Eq. (2-17), it would
be quite natural for one.to come out with the idea that 'z, should stay in the vicinity
of x4, when N is somewhat small (by the choice of a, large ) to avoid the
performance degrading Caused by the potentially poor estimate of y,, and on the
other hand when N is large enough; the adaptation Should move toward Yy, speedily.
Putting such notion in terms of simple rules in plain words leads to statements as
follows

(1) When N is small, z should be large such that z, sticks moreto g, .

(2) When N is medium, z should be medium such that 4, locates between Yy,

and g, accordingly.

(3) When N is large, 7 should be small such that z, adaptstoward Y, .

This is where fuzzy methodology comes into play, and how the statements of
linguistic terms with uncertainty to some degree can be formulated in quantized forms

for subsequent computations will be explained in the next subsection.
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4.1 FCMAP Adaptation

Within the framework of fuzzy process, the formulation of the problem at hand is

given as a set of three fuzzy IF-THEN rules and the system output z(-) [8].
Rule1: If N is M,(N),then 7, = f,(N),
Rule2:If N is M,(N), then z,, = f,(N),

Rule3:If N is M;(N),then 75 = f,(N),

where M (N) ,M,(N) and M,(N) are the membership functions representing the

degree of how much N is involved in the classes of linguistically “small”, “medium”

and “large” respectively, and are defined as

1 N<N,,
-N
M, (N) = AP N;<N< N,
N, =Ny
0 N=N,,
0 N <N, orN>N,,
N —N
M,(N) = ! N; <N=N,,
N2_Nl
N, N N, <N < N,,
N; =N,
0 N <N,,
N —-N
M,(N) = £ N, <N <N,
N, —N,
1 N > Nj,.

(4-1)

f.(N),i=1,2,3 are output functions in each rule for regulating the 7 value and are

defined as
b
f.(N) =——F,
() log(N) +a
N
f,(N)=—,
c

) =195
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Note that the definitions in Eq. (4-2) is an empirical choice among many possibilities.

For the system output, z(-) is defined as [113]

3
M;(N) f;(N)
=12 : (4-3)
2 Mi(N)
i=1
M (N) M, (N) M3(N)
1
0 >
N, No N4 N

Fig. 4.1. Membership functionsof fuzzy.contrallers for FCMAP adaptation.

By the formulation, the system now has six hyperparameters (a, b, ¢, N;, N,,

and N;) to be fixed, which will be done below:

STEP 1:Let N,:N,:N,=1:2:3 and N, =500. Also let i=0, a= initialvalue,
and b = initialvalue.

STEP 2: Estimate the parameters a and b under the condition N < N;,.

Since M;(N)=1, M,(N)=0, M;(N) =0, then

_MNEN) g b
M,(N) log(N)+a
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P'= baseline_recognition_rate;
a+=Aa;i++;
P' = speech_recognition(z =
if (P'>P'™)
Repeat
{a+=Aa;i++

P'= speech_recognition(z =

log(N)+a

, tunning_utterances);

, tunning_utterances);

log(N)+a
} while (P' > P'™);
else
Repeat
{a— = Aa; i ++;
P' = speech_recognition(z = m, tunning_utterances);
} while (P' > P'1);
b+=Ab; i ++;
P'= speech_recognition(z = m, tunning_utterances);
if (P'>P™)
Repeat
{b+=Ab;i++;

P'= speech_recognition(z =

} while (P' > P'™);
else
Repeat

{b—=Ab;i++;
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P'= speech_recognition(r = L tunning_utterances);
log(N)+a

} while (P' > P'™?);
return P';
STEP 3: Adjust the parameter N, under the condition N > N,.
Since M;(N)=0, M,(N)=0, M,(N) =1, then
MR o Too(N)

M3 (N) N

Based on the initial value of N, in step 2, the parameter N, is to be
adjusted under the condition N >N, for maximizing the recognition
performance by a procedure similar to the one for fixing parameter a (or b)
in STEP 2. Once the_suitable value of N, uis selected, the parameters N,
and N, will be further updated such that the ratio.of 1:2:3 is maintained.

STEP 4: Estimate the parameter’ ¢ under the condition. N;< N <N, .

Since M,(N) = NZ_N, M, (N)= N‘Nl, and* M, (N) =0,
Nz_ 1 g | N
then
T=M1(N)f1(N)+M2(N)f2(N)
M, (N)+M,(N)
N, —N b N-N, N
. _|_ PR
=N2—N1 log(N)+a N,-N, c
N, —N N —N,
+
NZ_Nl NZ_Nl
b N
N, —-N)———+(N-=N,)—
_( 2 )Iog(N)+a ( 1)c
N2_N1

Since the values of a, b, N, and N, are already determined in previous
steps, the value of ¢ can be properly selected by utilizing the parameter fixing

procedure in STEP 2.

STEP 5: Re-estimate the parameter N, under the condition N, <N < N,.
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N.-—N -
2 , and M,(N)= N-N,

i)
3 N2 3_N2

Since M,(N)=0, M,(N)=

then

- Mo (N)f,(N) + My (N) fo(N)
M, (N)+M;(N)
N,-N .EJF N-N, log(N)
~ N;=N, ¢ N;—N, N
N,-N N-N,
Ns_N2+N3_N2
log(N)
N

N
(N3 - N)?"‘(N - Nz)
N3 - Nz

Again, as the values of ¢, N, and N, have been fixed by now, a new
suitable value of N, can+be obtained in:a.similar way. As soon as the new

value of N, is seleCted, the parameters .N, and. N, will be further updated

again.

RV | ~
STEP 6: Let 6 =‘ R where R .denotes the desired recognition rate and

R® = RY. Repeatfrom STEP 2 until-o-is-less than a'predefined threshold.

The FLC mechanism herein proposed.for regulating the value of z as a function

of the number of adaptation samples during MAP adaptation is thus called as FCMAP.

4.2 Experiments
The experimental settings and results of the proposed FCMAP adaptation

algorithm are respectively reported in the following subsections.

4.2.1 Database and Experiment Design
The speech signal was sampled at 8 kHz. The analysis frames were 30-ms wide

with a 20-ms overlap. For each frame, a 24-dimensional feature vector was extracted.
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The feature vector for each frame was composed of a 12-dimensional mel-cepstral
vector and a 12-dimensional delta-mel-cepstral vector.

Before conducting comparative experiments to illustrate the effectiveness of the
FCMAP adaptation method proposed in Section 4.1, initial SI models have to be
established first. The database MAT400 sub-database DB3 [119], which consists of
4800 utterances from native Mandarin speakers, was used to build up the initial Sl
models in the form of a set of HMM parameters. In Mandarin, a Mandarin utterance
may contain one to several syllables, and each syllable consists, in terms of HMM
states, of a 3-state initial part and a 6-state final part; thus the HMM of a Mandarin
utterance includes the HMMs of the, constituent syllables, which in turn includes an
HMM of 3 states for the initial part (if exists) and-an HMM of 6 states for the final
part [50]. Together there.are 440 states in-the-SI'models.

A group of 10 speakers ‘was summoned for. utterance recording. 30 utterances of
city names (one utteranee for each of 30 cities) as adaptation data for setting up SA
models and 60 utterances-of: city=names (two-utterances for each of the 30 cities) as
tuning data for the FLC were‘colleeted from each-of the 10 speakers. The pseudo-code
sequence for tuning the hyperparameters of the fuzzy controller in the system training
phase is given as follows
training_phase (SI_models, hyperparameters)

{ k=0;
P = Baseline recognition performance;
Repeat
{k++;
P, =speaker_training (SI_models, tuning_data;, hyperparameters,

adaptation_utterances;);
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F_>jk =speaker_training (SI_models, tuning_data; hyperparameters,

adaptation_utterances;);

P =speaker_training (SI_models, tuning_data;o hyperparameters,

adaptation_utterancesso);

10
>R
pk — i=1 .
10

AP =[P —P;

}until AP < threshold;

return P*;
b
speaker_training (SI_models, tuning_data;, hyperparameters; adaptation_utterances;)
Ij=1,..., 10.
{
I3j = lterative_process + (SI_models; . tuning_data;, hyperparameters,

adaptation_utterances;);

Il as described in Section 4.1 for maximizing the recognition rate P;.

return Pj ;

b
where adaptation_utterances; and tuning_data; denote the adaptation utterances and
the tuning utterances from the j-th speaker, 1< j<10.

It is notable that during the execution of training_phase() procedure, the
hyperparameter set of the FLC (a, b, ¢, N;, N,, and N,) is continuously

adapted through successive feeding of tuning_data collected from the 10 speakers; to
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be more specific, the state of the hyperparameter set tuned by the j-th
speaker_training(-) is to be used as the initial state of the hyperparameters for the
(J*+1)-th speaker_training(-).

In the recognition experiments, adaptation and testing data were gathered from a
new group of five speakers. All the uttered data were recorded by a close-talking
microphone. Two designs were conceived for the recognition experiments:

(1) Adaptation and testing data being identical in contents:

The adaptation data consisted of 30 utterances from each speaker (one
utterance for each of 30 cities). The testing data consisted of 60 utterances from
the speakers, each uttering twice_for:30 eity names. For each speaker, 2, 6, 10, 14,
18, 22, 26, and 30 utterances were picked out from his/her 30-utterance adaptation
data for SI model adaptation, and 8 sets of SA models are established per speaker.
A total of 40 SA models are thus set upsand used for performance comparison
between MAP- and FCMAP-adaptation.

(2) Adaptation and testing-data being, different-in-contents:

The adaptation data“consisted of 15 utterances from each speaker (one
utterance for each of the first 15 cities of 30 cities). The testing data consisted of
30 utterances from the speakers, each uttering twice for the last 15 cities of 30 city
names. For each speaker, 1, 3, 5, 7, 9, 11, 13, and 15 utterances were picked out
from his/her 15-utterance adaptation data for SI model adaptation, and 8 sets of
SA models are established per speaker. A total of 40 SA models are thus set up and

used for performance comparison between MAP- and FCMAP-adaptation.

4.2.2 Experiment Results
The averaged recognition performance by 5 speakers of the conventional MAP
with various settings of T can be seen in Table 4.1. According to Table 4.1, the
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conventional MAP has better results when 1 s fixed to 25 or 30. Thus, these two
values of T are chosen in the conventional MAP for comparison. FCMAP
adaptation experiments were carried out for each of the 5 speakers, using the
associated SA models of eight, and the recognition performances are given in Table
4.2, of which in the bottom row shows the averaged recognition rate by the 5 speakers
at all eight test cases. Fig. 4.2 demonstrates the average recognition rate of the
proposed FCMAP with adaptive T against the conventional MAP with a fixed 1

using identical adaptation and testing data as in the first design of the recognition
experiment. It is clearly seen that the proposed FCMAP as well as MAP25 and
MAP30 has an adaptive learning curve. Forthe conventional MAP, when the amount
of training data is insufficient, the recognition rate s low, even lower than the baseline.
In contrast, the recognition rate of the FCEMAP Is.as or'even better than the baseline
when the amount of training data is not sufficient. Furthermore, when the amount of
training data is increasing, the recognition performance of the conventional MAP
becomes better than the baselinexbut, still-a-little-worse, than that of the FCMAP. It is
concluded that the FCMAP ‘performs better than the ‘conventional MAP especially
when the amount of adaptation data is very limited. Fig. 4.3 demonstrates the average
recognition rate of the proposed FCMAP with adaptive T against the conventional
MAP with a fixed T , using testing data different from the adaptation ones as in the
second design of the recognition experiment. It is clearly observed in the two
recognition tests that, using identical or different data in training and testing, FCMAP
behaves consistently and outperforms MAP adaptation. However, it is noted that both
FCMAP and MAP adaptations have better performances in the second recognition
experiment when adaptation utterances are below 15; the causes behind such behavior
may be attributed to that the HMM components to be matched in the recognition

phase are not adapted (or so to speak, “polluted”) by insufficient utterances during the
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training phase in the second experiment.

Table 4.1. Average recognition rates (%) of the conventional MAP with various T .

Value Average recognition rate (%0)
of 7 Numbers:of utteranees for adaptation
0 2 6 10 14 18 22 26 30

5} 91.00 70.10 [70.70 @ 71.20 _ 7467 7530 77.60 78.67 80.20
10 (91.00 70.80 7110 7210 7500 76.20 79.30 80.10 80.30
15 |91.00 73.20 ©74.80 ,75.00--77.60 - 78.70 8280 85.00 85.80
20 |91.00 75.80 76.10 "76.30 7820 79.80. 83.30 85.80 86.00
25 |91.00 84.67 84.6/¢ 8500 85000 86.67 88.67 90.00 93.33
30 |91.00 83.67 84.00 84.67 84.67 88.67 89.00 9133 96.00
35 |91.00 8167 8167 81.67 8330 8500 86.67 89.20 92.00
40 |91.00 7520 7330 74.00 76.90 78.00 8330 85.00 85.60
45 191.00 7290 7310 73.60 7520 7750 80.00 82.10 84.00
50 |91.00 7130 72.00 72.60 74.00 7520 78.10 80.90 82.40
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Table 4.2. Recognition rates (%) of FCMAP and MAP (with a fixed T of 25 or 30).
Speaker| Adapt. Recognition rate (%)
method Number of adaptation utterances
0 2 6 10 14 18 22 26 30
No.1 |FCMAP| 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 93.33 | 95.00 | 96.67 | 98.33
MAP25 83.30 | 82.50 | 83.60 | 83.70 | 85.85 | 88.67 | 88.90 | 93.33
MAP30 82.10 | 82.30 | 83.00 | 83.00 | 88.33 | 88.83 | 90.30 | 96.67
No.2 |FCMAP| 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 91.67 | 95.00 100
MAP25 82.10 | 82.60 | 83.00 | 83.00 | 84.33 | 85.00 | 86.67 | 91.67
MAP30 81.50 | ,82.00. | 82.50 | 82.60 | 86.67 | 87.00 | 90.00 | 96.67
No.3 |FCMAP| 91.67 | 9L67 |- 91.67 29467+ 9167 | 98.33 | 91.67 | 93.33 | 95.00
MAP25 84.67 |/ 8500 {/85.00/| 85.10+| 86.67 | 88.67 | 90.00 | 93.33
MAP30 83.67| 84.67 | 85007 85.00 | 88.33"| 88.50 | 91.67 | 95.00
No.4 |FCMAP| 93.33 |793.33 | 195:00+m95:00(»95:00 | 93.33 | 95.00 | 96.67 100
MAP25 85.00 | 85.00 | 85.20 | 85.20+| 87.50 | 90.00 | 91.67 | 95.00
MAP30 84.00 | 84.00 [85.10 | 8510 | 88.33 | 89.00 | 91.67 | 96.67
No.5 |FCMAP| 90.00 | 90.00 | 91.67 | 91.67 | 91.67 | 93.33 | 91.67 | 93.33 | 96.67
MAP25 88.30 | 88.30 | 88.20 | 88.10 | 89.00 | 91.00 | 92.80 | 93.33
MAP30 87.10 | 87.10 | 87.70 | 87.70 | 91.67 | 91.67 | 93.00 | 95.00
Average|FCMAP| 91.00 | 91.00 | 91.67 | 91.67 | 91.67 | 92.66 | 93.00 | 95.00 | 98.00
MAP25 84.67 | 84.67 | 85.00 | 85.00 | 86.67 | 88.67 | 90.00 | 93.33
MAP30 83.67 | 84.00 | 84.67 | 84.67 | 88.67 | 89.00 | 91.33 | 96.00
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Fig. 4.3. Average recognition rates by 5 speakers using MAP with/without a fuzzy

controller, using different adaptation and testing data.
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When using a small number of utterances, say two utterances, for adaptation, the
performance of MAP adaptation with various T is shown in Fig. 4.4. It is seen that
increasingt tends to improve the performance. Fig. 4.5 shows the performance of
MAP adaptation with various T for a big number of adaptation utterances (thirty
utterances), where the tendency that increasing the value of T will cause the
declining of recognition rate is observed. These further justify the rationale behind the

design of FCMAP adaptation.
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Fig. 4.4. The number of adaptation utterances = 2 (MAP testing experiments).
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Compared with the iconventional MAP estimate, .the: computing overhead of the
FCMAP adaptation in.calculating a proper value of T is.regarded as trivial, as is

explained below.

For N <N, r="NEM) iy b
log(N)+a

, Which requires a division and
M, (N)

a logarithm operation.

For the case when N > N, r:w: f3(N):w, which requires
M, (N) N

the same one division and one logarithm operation.

For the cases N, <N<N, and N, <N<N,, the calculation of 1T are

respectively as follows:

ML (N)£,(N) + M, (N) £, (N)
TTTTMLU(N)+ M, (N)
b N
(N, - N)m+(N —Nl)?
Nz _Nl

requiring two multiplications, three divisions and one logarithm operation;
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and

M, (N)f,(N) + M (N) f,(N)
T ML)+ ML (N)

(N, —N) N (N =N ) o)
_ C N

Ns_Nz

again requiring the same amount of computation as in the former case.
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Chapter 5
Enhancement of VFS Speaker Adaptation by
Fuzzy Logic Control

As mentioned in Section 2.2.1, VFS adaptation is a post-processing after
MAP-adaptation. MAP-adaptation, as aforementioned, adapts the portion of an SI
speech model associated with the adaptation samples, whereas the rest remains intact.
And VFS is more or less a patching-up measure based on the idea of “collateral
adaptation” for propagating the effect of MAP-adaptation around the adapted spots.
Based on the idea that, in.the model space;. forsthose speech parameter vectors not
altered during MAP-adaptation and-yet lying in the vicinity-of MAP adapted ones, an
expectation of collateral.adaptation in terms of near by vector adaptations would seem
plausible. As a consequence, it camerout with the MAP-VES adaptation which proved
to be in general better tham MAP alone given the same limited amount of adaptation
data.

As has been noted, the quality of MAP-adaptation depends largely upon the
number of utterances acquired from adapting speakers, i.e., insufficient or inadequate
amounts of adaptation data would most likely lead to an unreliable speech model
adaptation, which inevitably jeopardizes the recognition performance. VFS adaptation,
as a complementary measure to the local-adaptation nature of MAP, shares the same
weakness. The scheme for VFS adaptation proposed in this chapter works in the same
line of thought by regulating the adaptation according to the amount of adaptation
data.

As shown in Eq. (2-17), MAP adaptation is essentially a weighted average of the
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prior mean and the sample mean,

N, T
/] = vV + . 2'17
Hy TN, Yy Z'-I-NkIUk ( )

And the idea of “collateral adaptation” behind VFS adaptation is best illustrated by

Fig. 5.1, where the mean vector that isn’t adapted, x;, has three MAP-adapted
neighbors ,, u, and u, inits vicinity of radius R denoted by N (j). As shown
in Egs. (2-18) and (2-19), setting the collateral adaptation v; as a weighted sum of

k-nearest adaptations, v, ’s, occurring around was adopted in the original VFS.

Vie = =M (2-18)
K
/Ij-,k Vk
| _ keN()
j K
D,
keN(j)
_d.
AixE exp[ fJ'k )
. (2-19)

where v, ’s are referred to'as the transfer vectors for u;mand the weighting 4,

was determined solely<by the distance d =Hyj —,uk” together with a tuning

parameter f.

HMM subjected to
MAP-adaptation

HMM prior to
MAP-adaptation

Fig. 5.1. Rationale behind VVFS adaptation.
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The K-nearest adapted neighbors 4, ’s participating the estimation of v; can be
selected purely geometrically by Euclidean distance d,; in the mean vector space or

more elaborated by choosing from a cluster-structure in which acoustic relations

among parameter vectors are established.
Nevertheless, one key issue has been neglected in precedent VFS schemes [62-65]
from the point of view regarding the quality of the transfer vectors v, ’s. Considering

a specific mean vector , adapted by very little adaptation samples N, and yet

very close to 4, in which case the associated v, very likely would be unreliable
and accompanied by a significant weighting 4;,, and thus degrades the estimate of

v;, as can be readily seen in Eqs, (2:18) and (2-19),
Therefore, the effect oftVFS scheme in MAP-VFS adaptation can be further
enhanced by adjusting the weighting |4, ~according to-the quality of v, in the

following way:

(1) When the transfer- vector v, Is _reliable as a'resultwof abundant adaptation
samples (i.e., N, is;large inMAP-adaptation), A, /should be large.

(2) When the quality of v, isin.doubt as a result of a little adaptation samples (i.e.,
N, is small in MAP-adaptation), ' 4;, should'be lowered.

Referring to Egs. (2-18) and (2-19), the two requirements above can be fulfilled by
the tuning of f under the following rules.

Rule 1: If N, issmall, thenfis to be small,
Rule 2: If N, is large, then fis to be large.

This is where fuzzy methodology comes into play, and how the statements of
linguistic terms with uncertainty to some degree can be formulated in quantized forms

for subsequent computations will be explained in the next subsection.
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5.1 FLC-VFS Adaptation
For the specific problem in this work of VFS speaker adaptation, the

aforementioned simple rule governing f regulation, given N, adaptation samples
observed for the kth Gaussian mean vector, can be formulated as the following
implications

Rule 1: If N, issmall, then fis small,

Rule 2: If N, is large, then fis large.
Let M,(N,) and M,(N,) be membership functions associated respectively with

small and large amounts of adaptation data available, as shown in Fig. 5.2.

M, (N, ) M, (N,)

\/

(N (Ny), N,

Fig. 5.2. Membership functions of the FLC for FLC-VFS adaptation.

Also let functions g,(N,) and g,(N,) set small and large values of f
respectively in each of the two cases. The previous set of rules can then be further
clarified as:

Rule 1: If N, is M,;(N,),then f =g,(N,),
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Rule2: If N, is M,(N,),then f=g,(N,),

where
1 Ny < (Ny)y,
_ (Nk)Z_Nk
M;(N,) = —(Nk)z_(Nk)l (N ) N <(Ny),,
0 Ny, > (N,),,
0 N <(Ny)u,
_ Nk_(Nk)l
M,(N,) = —(Nk)z_(Nk)l (N ) N <(Ny),,
1 N, >(N,),,

along with the implication functions
gl(Nk) =a, - N, +b1'
g,(N)=a, N, +b,,

and the final system output as follows [113]

ZMi(Nk)'gi(Nk)
§ =K : (5-1)

>TM ()

Eqg. (5-1) shows that for N, <(N,),,«f -issolely'determined by g,(N,), while for
N, >(N,),, f is determined by g,(N,) alone. If N, is between (N,), and
(N,),, then f denotes the weighted average of g,(N,) and g,(N,) with the
weights M;(N,) and M,(N,).

The system now has six hyperparameters (a,, a,, b, b,, (N,); and (N,),)
to be fixed. The following iterative process is developed to set these hyperparameters.
STEP 1: Let (N,),:(N,), =1:3, and initialize (N,),. In this work, a dataset with

fewer than 10 utterances, and a dataset with more than 30 adaptation
utterances, are empirically regarded as SMALL and LARGE, respectively.

As ten adaptation utterances take approximately 500 frames, the initiation
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starts with (N, ), =500 and (N,),:(N,), =1:3.
a, = initial value; b, =0;q=0;
[* The symbol g denotes the iterative index while fixing a, and b,.*/
R°= baseline_recognition_rate;
STEP 2: Estimate the parameters a, and b, under the condition N, <(N,),,

where M,(N,)=1, M,(N,)=0,and

f = Ml(Nk)'gl(Nk)
Ml(Nk)

= gl(Nk):al’Nk +b1-

The procedure for fixing a, and b, is explained in the following
pseudo-code sequence:
a+=Aa; q++
/* The symbol Aa, denotesan incrementof a,.*/
R = speech_recagnition( f =m@zrNyg+b;, testing_utterances);
[* The functien speech—recognition(-).\is ‘used to return the recognition
performance of the proposed FLC-"V/FS adaptation with the parameter f
controlled by 'selecting .~#a;7 and .b, for wthe testing data set
testing_utterances. */
if (RY > R%™") /* Increasing a, */

Repeat

{a,+=Aa; q++

R = speech_recognition( f =&, - N, +b, , testing_utterances);

} while (R? > R"™);
else /* Decreasing a, */

Repeat

{a,—=Aa;q++

R = speech_recognition( f = a, - N, +b,, testing_utterances);

} while (R? > R"™);
b,+=Ab; q++;

[* The symbol Ab, denotes an increment of b, . */
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R = speech_recognition( f = a, - N, +b,, testing_utterances);
if (RY > R"™") /* Increasing b, */
Repeat
{b,+=Ab,; q++;
R = speech_recognition( f = a, - N, +b,, testing_utterances);
} while (R* > R%?);
else /* Decreasing b, */
Repeat
{b,—=Ab;; q++;
R = speech_recognition( f = a, - N, +b,, testing_utterances);
} while (R* > R%™);
return RY;

STEP 3: Estimate the parameters ajywandwbsunderthe condition N, >(N,),,
where M,;(NJ=0, M,(N,) =1, and

M,(N,)-9,(N,)
ol 28 o ailenielr N,)=a, N b,.
NS (N ) 95(Ny)=a,-N, +b,

The values of 7@, \and.b,. are fixed-using the same process as for a, and
b, with the initial’condition R° = R" from STEP 2.

STEP 4: Re-estimate the parameter "(N,), under the condition (N,), <N, <(N,),,
(Nk)z_Nk Nk_(Nk)l
(Nk)z _(Nk)l (Nk)z _(Nk)l

f = Ml(Nk)'gl(Nk)+M2(Nk)'gz(Nk)
M, (N)+M,(N,)

and

where M, (N,)= M,(N,)=

(Nk)z—_Nk.(al.Nk+bl)+Nk_—(Nk)1.(a2.Nk+b2)
— (Nk)z _(Nk)l (Nk)z _(Nk)l
(Nk)Z_Nk + Nk_(Nk)l
(Nk)z_(Nk)l (Nk)z_(Nk)l
:((Nk)z_Nk)'(al'Nk+b1)+(Nk_(Nk)l)'(az'Nk"'bz)
(N, = (N, |

Since a, and b, together with a, and b,, have already been determined

at STEP 2 and STEP 3 respectively, a new value for (N,), can now be
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obtained by tuning for a higher R® value than in STEP 3.
STEP 5: Update (N,), suchthat (N,),:(N,),=1:3,
R -R"

* H

0= /*R": desired recognition rate */

R® =R".
Repeat from STEP 2 until ¢ is less than a predefined threshold.

Note that while fixing a, and b, in STEP 2, the process is designed in such
way that if a better recognition rate can be attained by increasing a,, then a, will
keep increasing until the recognition rate reaches a local peak, otherwise a, will
keep decreasing until a local peak of the recognition rate is reached. Thus a, can
only be increasing or decreasing-monotonically in STEP 2, allowing no chance of
oscillation; b, is treated inthe same way afterward. Likewise, a, and b, in STEP

3 are taken care of.

5.2 Experiments

Experiments with MAP<FLCVFS adaptation were conducted in order to compare
the recognition performance with"MAP-VFS adaptation when encountering different
amounts of adaptation data, from scarce to ample. In addition, MAP adaptation was
also carried out alone in the comparative experiment to be a baseline of MAP-VFS

and MAP-FLCVFS adaptations.

5.2.1 Database and Experiment Design

The experiments concern the recognition of 100 worldwide renowned city names
in Mandarin and were run in three parts: (1) establishing the initial SI models, (2) the
training phase for fixing FLC hyperparameters, and (3) the recognition phase, to

evaluate the performance of the proposed FLC-VFS.
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The MAT-2000 database [120] collected Mandarin utterances from 2000 native
Mandarin speakers in Taiwan, and was used to setup the initial SI models as a set of
HMM parameters. The details of the establishment of the initial SI models as a set of
HMM parameters are entirely the same as the aforementioned adaptation experiments
in Section 4.2.1.

The training data were collected from 30 speakers in the training phase, where
each of the 30 speakers was asked to offer one utterance for each of the 100 cities as
the adaptation data, and another two utterances for each city to be used in
following-up observations. Specifically, from the 3000 adaptation utterances were
taken 5, 10, 20, 30 and 100 utterances ;for adapting the SI models through
conventional MAP-VFS adaptation to acquire 5°SA ‘models respectively. In all 5
MAP-VFES adaptations, sthe - settings. z=30 for MAP, tegether with K =10 and

f =20 for VFS were. taken. Each of the 5 SA models were then fed with 200
utterances under various:f settings ranging from 5 to 50 at a.step of 5; please refer to
Table 5.1 in Section 5.2.2.for.the"performance.

The same 5 lots of adaptation data were usedfor.adapting the SI models through
the proposed MAP-FLCVFS adaptation to acquire 5 SAr_c models respectively, and
again 7 =30 together with K =10 is taken, leaving f to be determined by the FLC
mechanism during the process.

As a supplement, all utterances were recorded using a close-talking microphone,
and the speech signals were sampled at 8 KHz. The analysis frames were 30 ms wide
with a 15 ms overlap. A 24-dimentional feature vector consisting of 12 mel-cepstral

and 12 delta-mel-cepstral components was extracted for each frame.
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Table 5.1. Average recognition rates (%) by conventional MAP-VFS adaptation with
various f.

Average recognition rates (%)

f Numbers of utterances for adaptation

0 5 10 20 30 100
5 93.2 92.3 93.6 95.3 96.3 97.0
10 93.2 92.2 93.7 95.6 96.8 97.6
15 93.2 92.2 94.1 96.1 97.3 98.0
20 93.2 92.7 94.8 96.6 97.9 98.5
25 93.2 92.3 94.2 96.3 97.4 98.3
30 93.2 92.0 93.8 95.8 96.9 98.3
35 93.2 91.7 93.6 95.5 96.5 98.4
40 93.2 91.9 93.8 95.5 96.6 98.2
45 93.2 91.8 93.6 95.2 96.2 98.4
50 93.2 91.6 93.6 95.0 96.8 98.5

In the recognition phase; a new group of 30 speakers.was recruited, each again
being asked for one utterance for each city to-be used for MAP adaptation alone
(=30 again) and 5 SAuap models were built with 5, 10, 20, 30 and 100 adaptation
utterances respectively. Two.more: utterances for-each city.were requested from each
of the 30 subjects as the testing data for comparing the recognition performance by
the three adaptation schemes

e MAP with 5 SAyap models
e MAP-VFS with 5 SA models built in the training phase

e MAP-FLCVFS with 5 SAg c models built in the training phase

5.2.2 Experiment Results

The recognition performances of the conventional VFS with various f were
recorded in Table 5.1, from which it can be seen that the best choice of f for
VFS-adaptation would be 20 in all cases. The experiment records of MAP, MAP-VFS
and MAP-FLCVFS adaptation were shown in Fig. 5.3, from which several

75



observations are readily made:

(1) The recognition rate gets improved as the number of adaptation utterances
increases, which is true for all three adaptations,

(2) In the case of limited adaptation utterances, the performance of MAP and
MAP-VFS adaptation fall below the baseline recognition rate of 93.2 by using the
SI models, which is an indication exposing the potential incorrectness or
unreliability lurking in the inadequately adapted SAwap and SA models due to
insufficient adaptation samples.

In all testing cases, it is noted that the proposed MAP-FLCVFS adaptation leads to the

best recognition, followed by MAP-VES: adaptation and then by MAP-adaptation,

which indicating the effect of VFS by propagating the.adaptation in SAuap through

the estimate of collateral-adaptation, as well-as the effect of the FLC-VFS that takes

into account of N,, by.which the quality of collateral adaptation is ensured to push

the performance one more step forward:
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Fig. 5.3. Average recognition rates of MAP, MAP-VFS and MAP-FLCVFS with

f =20 for VFSand =30 for MAP.



The experiments of two extreme cases of adaptation data available, 10 utterances
and 100 utterances, are also done for observing the variation of f on the recognition
performance of VFS. In the case 10 utterances for adaptation, the performance of the
VFS with various values of f is shown in Fig. 5.4. It is seen from Fig. 5.4 that the
increasing f value tends to degrade the recognition performance when the training
data are rare. On the other hand, when the training data are abundant, 100 utterances
for instance, the increasing f tends to increase the recognition rate. As depicted in
Fig. 5.5, the recognition rate is gradually increased when f is increased from 5 to

80, and approaches to a saturated value around 98.5 % when f is more than 80.

95

94.5

94

93.5

93

Recognition rates (%)

92.5 —— 10 adapt. utternaces ||
' —-—-- Baseline

92 1 1 1 1 1 1
5 10 20 40 80 160 320

!

Fig. 5.4. Numbers of adaptation utterances = 10 (VFS testing experiments).
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90 1 1 1 1 1 1
5 10 20 40 80 160 320

Fig. 5.5. Numbers of adaptation-utterances = 100.(VES testing experiments).

As the final observatign, the computation overhead of FLC-VFS adaptation for
calculating f compared to conventional VVES is practically minor, considering that at
most 4 extra multiplications are required. The analysis is straightforward below:

For N, <(N,),, f=a,-N, +b, which takes only 1 multiplication, as is for the
case when N, >(N,),, f=a,-N, +b,.

And for the case (N, ), <N, <(N,),,

f = Ml(Nk)'gl(Nk)"' Mz(Nk)'gz(Nk)
M (N )+ M, (Ny)

=p-(c,-N, 2 +c,-N, +c,),
which involves 4 multiplications.
Thus the computation of FLC-VFS adaptation is of the same order as that of
conventional VFS adaptation.
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Chapter 6
Incremental MLLR Speaker Adaptation by
Fuzzy Logic Control

The transformation-based adaptation techniques have been described in Section
2.2.2, where Gaussians in an HMM system can be adapted rapidly by using the
transformation matrix W,. The MLLR speaker adaptation scheme proposed by
Leggetter et al. [67] is the key role of such category of adaptation techniques and has
been proven to be quite effective.in. many speech recognition applications. A series of
variants of the MLLR scheme subsequently.arise, aiming at the problem concerning
the quality of the estimated transfermation resulting from insufficient adaptation data.
However, all those approaches for enhancing-the robustness.of MLLR are essentially
complicated and time consuming.in.computation [68, 69,70, 71, 73, 121], an adverse
factor against on-line adaptation applications. The MAPLR adaptation scheme, for
example, is a classic variant of ‘MLLR adaptation, ‘but it spends much more time in
estimating the transformation matrix W, than the MLLR adaptation scheme. In order
to tackle the issue of unreliable MLLR model transformation due to the scantiness of
training data without the daunting cost of MAPLR-like adaptation, a fuzzy control
mechanism is proposed in this chapter so that, based on the amount of adaptation
utterances available, MLLR transformation could be regulated in the way that the
rapidness of MLLR adaptation could be fully exploited as much as the amount of
training data allows, while the undesired effect of poor MLLR adaptation would be

alleviated.
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6.1 Incremental MLLR Adaptation (MAP-Like Adaptation)

As already mentioned, when the amount of adaptation data is sufficient (though
may be small), the model-transformed adaptation scheme would be quite effective and
the performance improvement saturates quickly as the amount of adaptation data
increases. However, when only a limited and insufficient amount of adaptation data is
available, the quality of the acquired transformation matrix W, especially derived by
the MLLR approach, would be in doubt; poor estimation of W, could lead to the
corruption of underlying structure of the acoustic space. The problem due to the
scarcity of adaptation data can be alleviated by utilizing the MAPLR scheme instead,
if one disregards the heavy computation invelved.

With insufficient training data, one would naturally tend to be more
“conservative” while using the transformation matrix thus:derived, i.e., the effect of
the adaptation should be restricted in this case'so that the adapted mean vector would
not vary too much from the state prior-to adaptation. Accordingly, an incremental
approach to MLLR modeltransformation is-proposed as‘follows [9]

g =a U Fl-a) W, - & 0<a<], (6-1)
where g, is the initial mean vector, & "is the extended mean vector as defined in
Eq. (2-23) and W; is the transformation matrix derived from Eq. (2-24). The form of
incremental MLLR adaptation in Eq. (6-1) is very similar to the one in Eq. (2-17),
essentially an MAP-like adaptation. A weight parameter « is devised to govern the
balance of the maximum likelihood estimate of the mean from the adaptation data and
the prior mean, as is the role of z in MAP estimate. By using a weighted sum of the
initial mean vector and the MLLR adapted mean vector, it is expected that a
satisfactory performance will also be achieved even when only a little amount of
training data is available for adaptation. Note that the weight « is to vary in a way
depending on how much confidence one has in W, . A possibly not so well estimated
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W; due to insufficient adaptation data would preferably goes with « approaching 1
so that sz, stays closer to s, instead of drifting away drastically. On the opposite,
0-approaching o« should be taken for full advantage of fast adaptation by W;.

Fig. 6.1 depicts the training procedure of the incremental MLLR adaptation. The
transformation matrix W, from observed adaptation data can be obtained by using
the standard MLLR method as described in Section 2.2.2. At the same time, according
to the amount of data available for adaptation, the most proper « value for the
incremental MLLR adaptation is to be determined by an FLC mechanism proposed in
the subsequent sections.

Following the idea of incrementalp MLLR adaptation under « regulation, as
formulated in Eq. (6-1), a precursory experiment was conducted to investigate the role
of « against various amounts of adaptation data. A group of 15 speakers was
recruited and every subject 'was asked to make 10 utterances, from which 1, 2, 4, 7
and 10 utterances were.used to build.5 MLLR-adapted models for each speaker. For
each speaker, the associated 5+MLLR-adapted HMM models were then put to
recognition test with « varying from 0.1 to 0.9.at the interval of 0.1 respectively. Fig.
6.2 shows the procedure of the «-investigating experiment and the recognition rate
for 15 speakers with various amounts of adaptation data (1, 2, 4, 7 and 10 utterances)
and « settings (0.1 to 0.9) were tabulated in Table 6.1, where information regarding
speaker 1 and 2 are explicitly stipulated. For a particular number of adaptation

utterances (1, 2, 4, 7 or 10), the overall ¢~ for the 15 subjects is defined as [122]

a =ZZW(K N-alk,j), (6-2)
w(k, j) = KF‘;(A’ (6-3)
S SR, J)
k=1 j=1

where k is the speaker index and j is the index of « -setting, as explained in Fig. 6.2.
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Table 6.1. « inclination w.r.t. the variation in the quantity of adaptation data in

pursuit of recognition rate above baseline.

Speaker ID | Utter. for Recognition rates with various « settings
MLLR | 01|02 |03 |04 |05|06 |07 08|09

1 825|843 |86.0|87.8|91.5|91.5|915|91.0|90.5
2 83.9184.8|87.1|885|91.7|91.5|915|91.3|90.5
Speaker 1 4 9111911923932 |93.1|92.1|91.190.9|90.5
7 915191.7|927]935|935|923|925|91.1|90.5
10 93.3193.3|93.3]938|93.6|925|91.3|91.1|90.5

83.084.5|86.3|88.0(91.3|91.3|91.1|90.9|90.6
84.2185.0(86.8|88.9|91.7]91.7|91.3|91.0|90.5
Speaker 2 4 91.3]191.3|925|93.3|93.3]923|91.3|91.0|90.6
91.7 1918|928 |93.6 |935|92.6|91.7|91.2 | 90.5
10 93.04.93.3193.394.0[93.6 928|915 |91.1|90.6

------------------------------------------

Speaker 15 . R 200 A AN S
Existing
HMM
parameters
A
Calculating the transformation WS
Adaptation 7 matrix using MLLR
utterances Combination

s =0 g +(1—a) W - &

Deciding the proper weight for

combination a

Fig. 6.1. MLLR-adaptation under incremental « control (MAP-like adaptation).
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MLLR estimate
for transformation
matrix A

Speaker S, :
adapt. utterances Existing HMM

parameters

A

s =a(k, j)- s +(L-a(k, )W - &
(a(k, j)= 0.1,0.2,......,0.9)

k : speaker index

j:1~9, index of &
settings

Adapted HMM

parameters, SA, R, (k) : baseline

recognition
rate by Sl

Speaker S, -
testing data

Recognition rates on a set of
famous city names: R(Kk, j)

R(k, j)> R, (k)? a(K, j) neglected

no (setas 0)

a(k, j) accepted for
estimating the overall

k++ All speakers aré
tested over ?

no

Output: ¢~

Fig. 6.2. An investigating procedure on the role of « in incremental MLLR

adaptation given a specific amount of adaptation data.
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It is noted in this preliminary investigation that in order to exceed the base-line
recognition rate achieved by using SI models alone, the overall " value decreases
from 0.6048 to 0.4515 when the number of adaptation utterances increases from 1 to
10, as shown in Fig. 6.3; specifically when the number of adaptation data is less than
4, the associated o is greater than 0.5, reflecting the potential inadequacy in the
MLLR-estimated W;.

In all, the investigation reveals that the key notion behind incremental
MLLR-adaptation is intrinsically correct, which simply tells that in some way the

effect of Wy estimate due to insufficient adaptation data should be held back such
that the adapted HMM vectors do not.drift away from the prior mean x, too much.
Visualization of such a notion-is ilustrated in Fig. 6.4:. which way to move and for
how much.

The answer to the “Where to for x> question is conceptually plain: the more the
adaptation data are, the smaller & will'be. A formulation of the solution in the

framework of fuzzy logic.control:is to be given-in-the following section.

0.65
+0.6048

0.6 \
055 0.5438
& \
0.5
Wsw 0.4515
0.45 .

0.4

1 2 4 7 10

Numbers of adaptaion utterances
Fig. 6.3. « required for holding back W, transformation effect under various
numbers of adaptation utterances.
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/ “Large-sized” \

adaptation data
=7 MLLR Adapted Mean Vector (W, -&,)

“Small-sized”
adaptation data

2 Incremental-MLLR Adapted Mean Vector ( z,)

.

\ Initial Mean Vector ( ,) /

Fig. 6.4. Moving toward x, or W, -& ? And for how much?

6.2 FLC-MLLR Adaptation’ (FCMAP-Like in Form)

The FLC-MLLR approach: that performs incremental MLLR adaptation using
fuzzy logic control will be presented =herein. Formally speaking, FLC-MLLR is
indeed an FCMAP-like.adaptation in essence..-The weight e, in FLC-MLLR and the
weight 7 in FCMAP .play the. Same role in_respective: adaptations, both being
handled under associated #/LC mechanisms according te the amount of adaptation
data. According to the adaptation data-size, each approach will adjust its weight
parameter by the regulating FLC to move the adapted vector closer to the side of the
maximum likelihood estimate of the mean vector or to the side of the initial mean
vector.

A rule base with three fuzzy implications is given to govern « regulation under
the circumstance of N training samples (in terms of acoustic frames) observed for
all Gaussian mixture components [9] as follows.

Rule 1: If N is small,

Then « islarge,
Rule 2: If N is medium,
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Then « is medium,
Rule 3: If N is large,
Then « issmall.
With Takagi-Sugeno FLC (T-S FLC) in consideration, let M,(N), M,(N) and
M,(N) be membership functions associated respectively with small, medium and

large amounts of training data available for adaptation, as shown in Fig. 6.5, and «,

ay and ag be the o values determined respectively by functions f (N),

f,(N) and f,(N) in each of the three cases. Then the previous set of rules can be
further clarified as
Rule 1: If ;N "is "M, (N),
Then o .= f3(N),
Rule 2: Iff N—is: M, (N);
Then ap = f5(N),
Rule 3: If uN_sis “M, (N,

Thenta, = 1,(N),

where

1 N <N,,
N, —N

M,(N) = 2 N, <N<N,,
NZ_Nl
0 N>N,,
0 N <N, orN>N,,
N —-N

M,(N)= L N, <N <N,,
NZ_Nl
N; =N N, <N <N,
Ns_Nz
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0 N<N,,
N —N,
N, - N,
1 N > N,,

M3(N):

N, <N <N,

together with the implication functions
f,(N)=a,-N+b,
f,(N)=a,-N+b,,
f;(N) =a,-N +b;,

and the final system output [113]

3

levl i(N) fi (N)

(DA . . (6-4)
> M;(N)
i=1

By Eq. (6-4), it is observed that for N < N, . is solely determined by f,(N), i.e.
a =«a,, Whereas for N> N,, e is determined by f,(N), alone. In the case that

N isaround N,, o isdetermined by f,(N)7Since M,(N) is much greater than

M,(N) and M,(N).

M, (N) M, (N) M3(N)

Ny N, N3 N

Fig. 6.5. Membership functions of the FLC for FLC-MLLR adaptation.
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The system now has nine hyperparameters (a,, a,, a,, b, b,, b;, N;, N,
and N,) to be fixed, for which an iterative process is developed as follows:
STEP1:Let N,:N,:N,;=1:2:3 and take 500 as the initial value of N,.

a, = initial value; b, = initial value; k = 0;
F °= baseline_recognition_rate;
STEP 2: Estimate the parameters a, and b, under the condition N < N,, wherein

M, (N)=1, M,(N)=M,(N)=0,and

_MUNEM) _ ¢ (Ny=a, N +b
ML) T

The procedure for fixing a, and b, is explained in the following
pseudo-code sequence:
a+=Aa;; k++;
F* = speech_recegnition(.e-= a, =N + b, , testing_ utterances);
if (F“>F*")
Repeat
{a,+=Aaj k++,
F* = speech_recognition(e=1a, - N +b,, testing_utterances);
} while (F* > F*™);
else
Repeat
{a,—=Aa;; k++;
F* = speech_recognition(a = a, - N +b,, testing_utterances);
} while (F* > F*™);
b,+=Ab; k ++;
F* = speech_recognition(a = a, - N +b,, testing_utterances);

if (F“>F*?)
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Repeat
{b,+=Ab; k++;
F* = speech_recognition(a = a, - N +b,, testing_utterances);
} while (F* > F*™);
else
Repeat
{b,—=Ab,; k++
F* = speech_recognition(a = a, - N +b,, testing_utterances);
} while (F* > F*?):
return F*;
STEP 3: Estimate the parameters -a, and b, underthe condition N > N,, wherein
M,(N)=M,(N)=0, M,(N)=1 and

f
a=%= fs(N)=a3'N+b3.

The determination of a,rand b, is done by the same process as for a, and
b, .

STEP 4: Estimate the parameters a, and-b, under the condition N, <N <N,,

N, — N N-N,

herein M, (N) = , M_(N)= , M.(N)=0, and
wherein My (N) =21 Ma(N)=— Ms(N)
_ My (N) i (N)+ M, (N) f,(N)
M,(N)+M,(N)
r\|\||2_N (a,-N+b)+ N =N, (@, -N +b,)
2 1 2 ™1

N,-N  N-N,

NZ_Nl N2_N1
=(Nz_N)(al'N+b1)+(N_N1)(a2'N+b2)
NZ_Nl .

With a, and b, already obtained at STEP 2, the parameters a, and b, is
determined through the same tuning process as in STEP 2 for best recognition

rate too.
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STEP 5: Re-estimate the parameter N, under the condition N, <N < N,, wherein

N, —N N—N,

M,(N)=0, M,(N)= , My(N)= , and
1(N) 2(N) N, N, s(N) N, N, an
o = M2 (N) 5 (N) + M, (N) 5 (N)
M, (N)+M;(N)
N, =N (a,-N+b,) + N-N, -(a;-N +b,)
Ns_ 2 3 "V2

N,-N _N-N,

Ny =N, N;-=N,
:(Ns_N)(az'N+b2)+(N_N2)(a3'N+b3)
N, — N, '

With a, and b, together with a, and b, already obtained at STEP 4 and
STEP 3 respectively, a new value for N, can be found through a similar
process for increasing recognition rates too:

STEP 6: Given the new,estimate of N, from STEP 5,;update N, and N, such
that N, : N, :Ng=1:2:3. Repeat from.STEP 2 until the settings of a,, a,,
a;, b, b,, byy N;, N, and N, can not further.improve the recognition

rate over the training data set:

6.3 Experiments

Experiments with FLC-MLLR adaptation were conducted in order to compare the
recognition performance with MLLR- and MAPLR-adaptations when encountering

different amounts of adaptation data, from scarce to ample.

6.3.1 Database and Experiment Design

The experiments involve (1) the establishment of initial SI models, (2) the training
phase for fixing hyperparameters of the FLC and (3) the recognition phase for
performance evaluation on the tuning of « weight by the FLC (FLC-MLLR) in

Section 6.2.
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An 8 kHz sampling rate was set for speech signal acquisition. The analysis frames
were 30-ms wide with a 20-ms overlap. For each frame, a 24-dimensional feature
vector was extracted, which was made up of a 12-dimensional mel-cepstral vector and
a 12-dimensional delta-mel-cepstral vector.

The initial models which were used as the speaker independent models were
constructed using the database, MAT400 sub-database DB3 [119]. The details of the
establishment of the initial SI models as a set of HMM parameters are entirely the
same as the aforementioned adaptation experiments in Section 4.2.1.

The training data used for tuning the hyperparameters of the FLC were collected
from 15 speakers in the training phases From each of the 15 speakers, 10 utterances of
city names (picked among 30 cities) were requested-as.adaptation data, and then 60
utterances for all 30 cities (two utterances for each) as FLCsparameter tuning data; all
utterances were recorded by an ordinary microphone. For readability and clearness,
the training phase experiment procedure ‘is described in the pseudo-code sequence
below.

F° = baseline recognition rate; t = O;

Repeat

{t++;
F, = 2_utterances_training (SI_models, hyperparameters);

F, = 4_utterances_training (SI_models, hyperparameters);

F. = 6_utterances_training (SI_models, hyperparameters);
F = 8_utterances_training (SI_models, hyperparameters);

F. = 10_utterances_training (SI_models, hyperparameters);
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SE
i=1

5 )

t

AE! = ‘Ift _ Ift—l‘ :

}until AF' < threshold:;
where 2-i _utterances_training( - ), i= 1, 2, 3, 4, 5 is the procedure using 2-i
adaptation utterances from 15 speakers for fixing the 9 hyperparameters of FLC

defined in Section 6.2 and thus returning a better-than-baseline overall recognition
rate F,. for the 15 training speakers, as is explained in the code-like sequence

below.
2-1_utterances_training (Sk.models, hyperparameters) // i= 1, 2,3, 4,5.

{k=0;
F,) =baseline recognition rate;

Repeat

{k++;
If(;i)l: speaker_training._ (SI_models, * test_data;, hyperparameters,

2-1_utterances;);

If(;i)j = speaker_training (SI_models, test_data; hyperparameters,

2-1_utterances;);

If(‘;i)lsz speaker_training (SI_models, test data;s, hyperparameters,

2-1_utterances;s);
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}until AF,, < threshold 1;

return F);

h
where 2-i _utterances; and test_data; denote respectively the adaptation
utterances in the number of 2, 4, 6, 8 and 10 for MLLR estimate of W, and the
60 test utterances from the jth speaker, 1< j<15, for the tuning of the 9
hyperparameters in the proposed FLC mechanism:
And speaker_training( -») IS the procedure-that would incrementally adapt the Sl
models by appropriate:settings of the hyperparameters of the T-S FLC, as already
described in Section 6.2;:such that the adaptation would not jeopardize the recognition
rate, given 2-i utterances.
speaker_training (SI_models, test_data;, hyperparameters, 2-i _utterances;)
Ij=1,...,15.
{

Estimation_of_Wg (2-i_utterances;);

F.i); = Iterative_process (SI_models, test_data;, W, hyperparameters);

Il'as described in Section 6.2 for maximizing the recognition rate F,;,;.

return Fpu 5
b
As a result, a set of FLC hyperparameters {a,, a,, a,, b, b,, b, N;, N, and

N, } was determined.
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In the recognition phase, a group of 15 speakers that are entirely different from the
previous group was recruited and again each being requested 10 and 60 utterances for
adaptation and recognition respectively. The weight « is calculated by using the
hyperparameters acquired in the training stage for adaptation. For comparison, full
transformation matrices were used for standard MLLR, MAPLR and the proposed
FLC-MLLR. Since the amount of adaptation data was very small, only one common
regression matrix tying all states was used for MLLR to make the most efficient use
of the data available for adaptation, and MAPLR and FLC-MLLR used one single
regression matrix of their own too. The prior densities required by MAPLR were
derived directly from the SI models; alones For the recognition experiment with
FLC-MLLR adaptation, five adapted models were-constructed using 2, 4, 6, 8 and 10
adaptation utterances frem each of the-15 speakers, and.the o for each of the 5
adaptation will be calculated by Eq. (6-4) with'Niiterances = 2,4, 6, 8 or 10 and the FLC
hyperparameters were already determined in the training phase. 5 MLLR-adapted and
5 MAPLR-adapted models respectively using-2;4, 6, 8 and 10 adaptation utterances
were also constructed for performance comparison. Then 60 utterances from each of
the 15 speakers were fed into the five adapted models for respective recognition rate

evaluation.

6.3.2 Experiment Results

During the training phase, some experiment results and observations were
acquired. It is observed that the weight « decreases as the number of adaptation
utterances increases. As depicted in Fig. 6.6, « drops by a noticeable step when the
number of utterances increases from 2 to 4, and then declines gradually, somewhat
stabilized, as the number of utterances increases further.

It is seen that the tendency of the curve of « in FLC-MLLR is very similar to
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the one derived from the precursory investigation (Fig. 6.3). Both decrease quickly
before the number of adaptation utterances reaches 4 and then fall progressively to a

stable value around 0.47 when more and more adaptation utterances are available.

0.6
.\0.5658
0.55
&
0> \ 0.4788
v' 9'4756 0.4741 0.4731
0.45 : :
2 4 6 8 10

Numbers of adaptation utterances

Fig. 6.6. The curve of the training values of _« in FELE-MLLR adaptation.

In addition, recognition performance-comparisons with various numbers of
adaptation utterances were made among the proposed FLC-MLLR utilizing a T-S
FLC, the conventional MLLR without exploiting prior knowledge of the initial SI
model, and the MAPLR with the prior density derived directly from the initial Sl
model alone. As shown in Fig. 6.7, it is observed that FLC-MLLR is better than
MAPLR and MLLR for all cases, especially when training data are quite limited. It is
also worth noting that the performance of MLLR falls below the baseline when 2
utterances were available for adaptation, indicating an improper adaptation may be
worse than none at all. All three methods demonstrate improved recognition rate, and

MAPLR tends to catch up FLC-MLLR, when the amount of training data increases.
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Recognition rate (%)

82

2 4 6 8 10
Numbers of utterances for adaptation

Fig. 6.7. The performance curves-of FLC-MLLR,;"MARLR and conventional MLLR

in the recognition testingsexperiments with different amount.of adaptation data.

Finally, the effects of «- variation on-the-recognition performance of MLLR
under extreme cases of training data availability.are also observed, as shown in Fig.
6.8 and Fig. 6.9 respectively. The former shows that while the training data are scarce,
2 utterances say, the performance would go below the baseline if, for « being a bit
less than 0.5, the model adaptation is to be largely determined by the transformation
matrix W which is very much likely poorly estimated. With increasing o, the
influence of W, on the adaptation will be reduced and the recognition rate is
improved as expected. However, when « goes beyond 0.5 and further the
performance degrades as if the system in a sense ceases to adapt. On the other hand,
when the training data are sufficient, 10 utterances for instance, full advantage of
adaptation by W should be exploited, by using a small « value, for good
performance, as depicted in Fig. 6.9.
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Fig. 6.8. Numbers of adaptation utterances = 2 (MLLR testing experiments).

_____________________________________________ ~

290 ! —— 10 adapt. utterances ------ Baseline ‘_
88 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

& variations

Recognition rate (%)
o)

Fig. 6.9. Numbers of adaptation utterances = 10 (MLLR testing experiments).

As the final observation, the computing cost for FLC-MLLR involves the
computation of o and W;. Computing W, is the same as in standard MLLR
estimate.

The overhead of finding « in terms of the number of multiplications can be

analyzed through its computation defined by Eq. (6-4).
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For N, <N <N,,

o= M, (N) f,(N)+M,(N)f,(N)
M;(N)+M,(N)
_ N?*(a,—a,)+N(a,N,-a,N, +b, —b,) +b,N, —b,N,
- NZ_Nl

=p-(c,N*+c,N +c,),

the computation of which involves 4 multiplications, as is for the case when

N, <N <N,

o= M, (N)f,(N)+M,(N) f;(N)
M, (N)+M;(N)
_ N*(a; —a,)+N(a,N; —a;N, +b; —b,) +b,N, —b;N,
- Ns_Nz

=q-(d,N*+d,N+d,).
For N <N,, a=a,-Nsb ‘which requires.1 multiplication, as is for the case when
N>N,, a=a,-N+h,.
Thus the computation of:Eq. (6-1) is of the same order as.computing Eq. (2-22), given

that W, being estimated.by MLLR.

6.4 Fuzzy Mechanisms for the Context of Multiple Regression Classes

Whenever appropriate, the acoustic model space can be partitioned into a number
of subspaces, each being a base class as referred in related works. In such a context, a
transformation matrix is to be derived for each base class if in-class adaptation data

are available such that a component in the class can be adapted accordingly.

Gales proposed a fuzzy clustering scheme [111] for determining the weight y

in the adaptation below, which is essentially a linear combination of MLLR

transformation by matrices associated with every regression class
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P
1[[5 =|: yp 'Ws(p):| 'és ’ (6_5)
p=1

where y  represents the degree of how much & belongs to the regression class p.

Note that the role and purpose of the fuzzy techniques in Gales’s work is completely
different from the FLC mechanism for tuning « in FLC-MLLR herein.

Interestingly enough, Eq. (6-5) could be extended as
P
/'73 :a'ﬂs"'(l—a)'[Z?/p 'Ws(p):|'§s’ (6_6)
p=1

which could reduce to the form of Eq. (6-1) in the context of one regression class

adaptation (i.e., p = 1), as is the case considered im'the dissertation.
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Chapter 7
Audio Event Detection Using Variable-Length

Decision Windows

Detecting female screaming in three environments of different acoustic
backgrounds was exploited in the research to examine the behavior of an
FLC-regulating mechanism embedded in an audio event detection system for decision
window length control.

A typical process for audio event detection would feed the stream of audio frames
(vectors of extracted acoustic features;.that.is)sinto the event classifier by which
successive analysis on a pre-determined number of .audio-frames is conducted and
then the decision as to whether an audio event-being detected.over the associated time
span, so called the decision window/DW as mentioned in'Section 2.3.2, is made. Fig.
7.1 depicts a stream of fixed-length*decision windows; eaech of which covers the same

number of audio frames and is thus of the same time span.

Stream of acoustic frames

............... f f

ML)l wovevrmmnrenees N(i+0)] Tne(ia)l eemmessmeenn] covmnnenneennns

‘ Ti -1 > T, > Ti +1 ’

Fig. 7.1. DW with fixed-length, each covering the same number of audio frames, n,

over the time span.
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As is clearly seen in Fig. 7.1, for a fixed-length DW covering n audio frames of
At ms time interval, the process makes a decision of event detection every n-At ms,
regardless of the auditory situation in the context, which may be calm or tense. A
too-long DW might face the concern of real-time response, which is essential to all
surveillance and security applications, whereas a too-short one would instead
encounter the problem of false alarms against sudden/intermittent acoustic changes in

the background, which is equally undesired either.

7.1 Concepts of Short Timeslot Likelihood Difference (STLD)

The idea of variable-sized DW thus arises and is the core of the proposed audio
event detection system in this dissertation. The length of the decision window should
be small when encountering a somewhat “aurally- hot’” situation so that decision of
event detection could be.undertaken at a higher rate and be stretched at “aurally calm”
moments for collecting.mare audio frames to ensure the reliability and correctness of
the detection results. Such a situation-dependent-behavior: is essential to application
where reliable and real-time response is the majorconcern, for which the fixed-length
decision window may not suffice. An FLC mechanism is conceived for this purpose.
The control of the decision window size is governed by an FLC, adjusting the window
size by estimating the difference of likelihood scores between targeted audio event
and normal acoustic background models over a short time-span. The design of the
proposed variable-sized DW in audio event detection will be described in detail in the
following sections.

An index STLD (Short Timeslot Likelihood Difference) for governing the

length of the decision window in the case of two sound models is devised as follows:

STLD = Zmllog f(x|4) —ilog f(x | 4,), (7-1)

i=1 i=1
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where A4, and A, are the sound models in consideration, f(x;|4,) and
f(x;|4,) aregiven by Eq. (2-34), representing the likelihood of A, and A, model
classification, respectively, for frame ;.

The rationale behind Eq. (7-1) is that at the beginning stage covering m frames,
say, of a decision window, if the class inclination of the frames has clearly exhibited,
one term in Eq. (7-1) will be substantially greater than the other. As a consequence, a
salient STLD value is acquired, indicating that a narrow decision window would
suffice. If the class of the m frames can not be resolved, both terms in Eq. (7-1) would
be trivial and lead to an insignificant STLD implying the need of a wider DW in
order to collect more frames for classification: Fig. 7.2 illustrates the “phenomenon”

implicated by Eq. (7-1).

DW,_, DW, DW,,,
o 0o o o 0 o
t»STLDi_1 t»STLDi STLD,,,
(large) (small) (medium)

Fig. 7.2. DWs with variable length governed by STLD (Short Timeslot Likelihood

Difference) indices.

7.2 Decision Windows Governed by an STLD-Driven FLC

As already explained, the STLD index can be used as the key to DW size
control and, as a result, an FLC dictated by two IF-THEN fuzzy rules is designed
accordingly:

Rule 1: If STLD is small,
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Then WL is big,
Rule 2: If STLD is big,
Then WL is small,
where STLD is the input for the FLC and WL, the window length, is the output of
the FLC.
Quantitatively, the FLC rule set is transformed into
Rule 1: If STLD is M,(STLD),
Then WL, = f,(STLD),
Rule 2: If STLD is M, (STLD),
Then WLg.= f, (STLD), (7-2)

where

22: M, (STED)- f,(STLD)
WL =1=— , (7-3)
Z M, (STLD)

1 STLD < STLD,
TLD, - STLD
M, (STLD) = ST STLD,< STLD < STLD,, (7-4)
STLD,+ STLD,
0 STLD > STLD,,
0 STLD < STLD;,,
TLD — STLD
M, (STLD) = > STLD, STLD, < STLD < STLD,, (7-5)
STLD, - STLD,
1 STLD > STLD,,
f (STLD) =a, -STLD +b,, (7-6)
f,(STLP=a,-STLBb,. (7-7)

In the formulation, M, () and M,() are membership functions of STLD, as

shown in Fig. 7.3, and WL , the DW length to be determined by the

STLD -controlled FLC, is a weighted sum of f () and f,(-). It is observed from
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Egs. (7-3), (7-4) and (7-5) that for STLD < STLD,, WL is solely determined by
f,(-), simply the case of Rule 1; whereas for STLD > STLD,, WL is determined by

f,(-) alone, as is the case of Rule 2.

M, (STLD) M, (STLD)

v

STLD, STLD, STLD

Fig. 7.3:' Membership functions of the STLD-driven FLC.

The FLC now has six hyper-parameters(a,, a,, b,, b,, STLD, and STLD,)
to be fixed, for which an iterative process is devised as follows
STEP 1: Let STLD,:STLD, =1:3 and give an initial value to STLD, in the
experiment.
a, = initial value; b,=0;k=0;
F °=event_detection_ rate(WL = a, - STLD +b,, training_database);
STEP 2: Estimate the parameters a, and b, under the condition STLD < STLD,,

wherein M, (STLD) =1, M,(STLD)=0, and

_ M, (STLD)- f,(STLD)
- M, (STLD)

WL

= f,(STLD) =a, -STLD +h,
by using the following pseudo-code sequence:
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a,+=Aa,; k++
F*=event_detection_ rate(WL = a, - STLD +b,, training_database);
if (F*>F")
Repeat
{a,+=Aa; k++;
F*=event_detection_ rate(WL = a, - STLD +b,, training_database);
} while (F* >F*?):
else
Repeat
{a,—=Aa,; k++;
F* = event_detection_ rate(WL = a,-STLD +b,, training_database);
} while (B >F§H);
b,+=Ab;; k ++;
F*=event_detection_ rate(WLs=4, - STLD +b,, training_database);
if (F*>F"")
Repeat
{b,+=Ab;; k ++;
F*=event_detection_ rate(WL = a, - STLD +b,, training_database);
} while (F* >F*?):
else
Repeat
{b,—=Ab,; k ++;
F* = event_detection_ rate(WL = a, - STLD +b,, training_database);
} while (F* > F*?):
return F*;

In the pseudo-code sequence, the rate of correct detection returned by
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event_detection_ rate(WL, X)) is defined as

detectionrate
numbers of ision win with correctdetection
_hu bers of decisio dov\./s_ _co ectdetectio <100 (%).
numbers of all decision windows

(7-8)

STEP 3: Estimate the parameters a, and b, under the condition STLD > STLD,,

wherein M, (STLD) =0, M,(STLD)=1, and

M, (STLD)- f,(STLD)

= f,(STLD)=a, - STLD +b,,
M, (STLD) 2 )=2 2

WL

by the same process as for a, and b, .

STEP 4: Re-estimate the parameter STLD, for STLD, <STLD <STLD,,

wherein
TLD, —ST
M, (STLD) = > 2 ~S13 3
STLD, = STLD,
TLD~=STLD
M, (STLD) = STR> -

STLD, —STLD,

_ M, (STLDYf, (STLD) + M, (STLD) f, (STLD)
- M, (STLD) + M, (STLD)
STLD, —STLD (- STLD -+ b ) STLD —'STLD, (a, -STLD +b,)
STLD, — STLD, STLD,—STLD,
- STLD, -STLD _ STLD,~STLD,
STLD, — STLD, .STLD, — STLD,
_ (STLD, —STLD)(a, - STLD +b,)4(STLD - STLD, )(a, - STLD +b,)
- STLD, — STLD, ’

WL

with a,, b, a, and b, already fixed in STEP 2 and STEP 3, a new value

for STLD, can be found through a similar tuning process as in STEP 3 for

best recognition rate too.
STEP 5: Update STLD, such that STLD, :STLD, =1:3. Repeat from STEP 2 until

the settings of &, a,, b, b,, STLD, and STLD, can not further

maximize the system performance over the training dataset.
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7.3 Experiments
The experiments were to detect female screaming in three environments of

different acoustic backgrounds: the office space, the parking lot and the living room.

7.3.1 Experiment Designs

In the training phase, three GMM models for “office space”, “parking lot” and
“living room” were built as backgrounds using 10-minute recording in each
environment. The recording was undertaken at 8K Hz sampling rate, from which LPC,
LPCC and MFCC were extracted for each 20 ms frame (consisting of 160 samples,
i.e.). Note that a 12-D LPC, a 12-D LPC/mel cepstrum and a 12-D delta cepstrum
were utilized. Three GMM "models for “female screaming” in each of the three
environments were also=built using 'twe-thirds of.a 180-second (60 sec. for each
environment) recording-from each of a group 0f-15 female subjects for extracting the
same set of 3 acoustic: features; thesSubjects were requested to scream in every
possible way they could during the recording:

The rest one-third of the sereaming data. (20 sec. for each environment and
totally 900 sec. for all 15 females in all the three environments) was used for FLC
parameter-tuning as previously described.

In the event detection testing phase, an entirely new group of 15 females was
recruited for the screaming recording of 60 sec. each (20 sec. for each of the three

environments).

7.3.2 Experiment Results
During the testing phase, the GMM classifier with the proposed FLC-regulated
DW was put to detect audio events occurring in a background audio stream of 15

minutes in length. Three experiments were conducted in “office space”, “parking lot”
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and “living room” respectively, and several observations on the effectiveness of the

proposed approach are presented in tabulation for comparison, as are briefed below.

(1) Table 7.1 shows that, using LPC alone, the approach exploiting variable-sized DW
governed by FLC achieves an average of 95%, 93.5% and 92% accuracy for event

detection in the three testing contexts respectively, where the window size varies

between W, .. and W, , with an average of W, . With LPC alone, Table 7.2

max ?

shows the performance of the fixed-length DW scheme with a variety of fixed DW

settings, from 0.5 sec. to 5 sec. at an increment of 0.5 sec., and in all cases the

accuracy is inferior to the scores in Table 7.1. It is further noted that, against the
variable-sized DW, the fixed DW reaches competitive scores of 91% at 3-sec. WL,

93.33% at 2.5-sec. WLsand 95% at,1.5-sec. WL, respectively in the three testing

contexts: the settings:of DW fall-within the corresponding ranges of DW variation

[W...., W, ] associated with the FLC-regulated DW operation.

(2) Similar observations.from the.case of using L PCC alone are also made, as shown
in Table 7.3 and 7.4.

(3) Table 7.5 and 7.6 present the:experiment results in the case of using MFCC feature
with the same observations.

(4) In the experiment, auditively the noisiest background is the living room (where
family members exchanged conversation while children chasing/playing around,
with TV set turned on aloud), followed by the parking lot, and then the office space.
Such a phenomenon seems to be reflected by the range of WL variation,
WR=[W,,,,W,.], when the STLD -driven FLC operated in the three contexts. To
be specific,

WR (office space) < WR (parking lot) < WR (living room),

regardless of whichever of the three acoustic features used.
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(5) For all the testing in the 3 backgrounds, MFCC leads to the best performance in
audio event detection, LPCC the second and LPC the third, regardless of
whichever control scheme on DW size being taken, as shown in Figs. 7.4, 7.5 and

7.6.

Table 7.1. Event detection by an FLC-regulated DW, using only LPC feature.

Variable-sized Living room Parking lot Office space
DW
Wnin. 3.12 sec. 2.23 sec. 1.12 sec.
Winax. 396 sec. 2.88 sec. 1.58 sec.
Woayg. 3.55 sec. 2.56 sec. 1.33 sec.
Accuracyayg. 92.00% 93.50% 95.00%

Table 7.2. Event detection by fixed-length. DW, using only LPC feature.

DW length Living room Parking lot Office space
0.5 sec. 80.83% 83.33% 91.67%
1 sec. 81.67% 86.00% 93.33%
1.5 sec. 84.00% 87.00% 95.00%
2 sec. 86.00% 91.33% 94.67%
2.5 sec. 89.33% 93.33% 95.00%
3 sec. 91.00% 93.00% 95.00%
5 sec. 91.67% 93.33% 95.00%
Average 86.36% 89.62% 94.24%
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Table 7.3. Event detection by an FLC-regulated DW, using only LPCC feature.

Variable-sized Living room Parking lot Office space
DW
Wnin. 3.18 sec. 2.31 sec. 1.15 sec.
Winax. 3.98 sec. 2.92 sec. 1.63 sec.
Woayg. 3.57 sec. 2.61 sec. 1.36 sec.
Accuracyayg. 93.50% 95.00% 97.00%

Table 7.4. Event detection by fixed-length DW, using only LPCC feature.

DW length Living room Parking lot Office space
0.5 sec. 83.67% 87.50% 92.50%
1 sec. 87.67% 90.00% 94.67%
1.5 sec. 89.00% 90.50% 96.50%
2 sec. 90.67% 93.33% 96.67%
2.5 sec. 91.67% 95.00% 96.67%
3 sec. 93.00% 95.00% 96.00%
5 sec. 93.33% 95.00% 96.67%
Average 89.86% 92.33% 95.67%

Table 7.5. Event detection by an FLC-regulated DW, using only MFCC feature.

Variable-sized Living room Parking lot Office space
DW
Wnin. 3.15 sec. 2.18 sec. 1.17 sec.
Winax. 3.92 sec. 2.91 sec. 1.68 sec.
Woayg. 3.52 sec. 2.55 sec. 1.41 sec.
AcCuracyayg. 95.00% 98.50% 98.50%
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Table 7.6. Event detection by fixed-length DW, using only MFCC feature.

DW length Living room Parking lot Office space
0.5 sec. 84.50% 88.33% 93.33%
1 sec. 88.33% 90.67% 95.33%
1.5 sec. 90.50% 91.50% 98.00%
2 sec. 91.33% 94.67% 98.00%
2.5 sec. 92.50% 98.33% 98.33%
3 sec. 94.00% 98.00% 98.00%
5 sec. 95.00% 98.33% 98.33%
Average 90.88% 94.26% 97.05%
100
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Fig. 7.4. Living room audio event detection.
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Fig. 7.6. Office space audio event detection.
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Chapter 8

Conclusions and Future Works

In the following, the major contributions of the author’s work and some findings
and observations of experiment results with FLC mechanisms are briefly summarized.
In addition, some plausible developments in the future along the line of current

researches are also mentioned.

8.1 HMM Speaker Adaptation with:~L.C

The quality of HMM speaker adaptation relies greatly on the amount of adaptation
data acquired from the new speaker, be it an.MAP or MLLR adaptation. It would be
desired that the adaptation from either MAP or MLLR estimate to the prior
distributions of HMM should be restricted when. the adaptation data is limited, and
adapts fully when the oppesite occurs.

During the MAP estimate, and-the associated VES process that follows up, the

adaptation is governed by

R N, _
fi =——Y, + d s (2-17)

and

Vi = B = M (2-18)

A :exp(_ "'kj, (2-19)
respectively in their original forms.
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The author thus introduces FLC mechanism for the tuning of r and f based
on the following considerations.

r and f' should be depressed in a certain way when ample adaptation data is
at hand, and be enhanced otherwise, which is expected to adapt the HMM model
without deteriorating the recognition performance even when the acquired data from
the speaker is scarce.

The experiment records show that the proposed FLC design, FCMAP and
FLC-VFS, meet the requirement quite well in two aspects:

1. As far as the speech recognition rate is concerned, FCMAP, FLC-VFS and
FCMAP-FLCVFS respectively surpass the eonventional MAP, VFS and MAP-VFS
adaptation, regardless of the -number of adaptation utterances, acquired from a new
speaker.

2. The behaviors of r..and f " against adaptation data act as planned in the FLC
mechanism design.

During the MLLR process in its'original-form,-the adaptation in each iteration is

governed by

f, =W, &, (2-22)

The author thus proposed, again based on the same notion that adaptation should
not deviate too much from the original means with little adaptation data at hands, a
MAP-like MLLR adaptation, the FLC-MLLR adaptation as follows,

do=a-pu,+Ql-a)-W,-&, 0<a<] (6-1)
for which a T-S FLC mechanism is conceived for regulating « value in such a way
that o« would decrease when the W, estimate is trust-worthy (as a result of
sufficient training data) and increase otherwise to cope with the potential

incorrectness lurking in W, .

The experiment results reflect the success of FLC-MLLR design in two ways:
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1. FLC-MLLR outruns MLLR and even MAPLR in the recognition performance,
regardless of the amount of adaptation data at hands.
2. The behaviors of a with respect to the variation in adaptation data available do

follow the requirement in the FLC design.

8.2 DW and GMM Adaptation with FLC

An STLD-driven FLC mechanism is devised for regulating the size of decision
window (DW) in the application of audio event detection, and the performance of
female screaming detection is examined in three operation backgrounds (office space,
in-door parking lot and living room).with three individual acoustic features where the
adaptation of GMM-based Jbackground models and screaming models are done by
associated T-S FLC meehanism.- The records show thatsthe proposed scheme of
variable-sized DW surpassed the one with fixed-length DW. Moreover, it is noted that
the performance of the fixed-length DW reaches the score competitive against
FLC-regulated DW at a DW setting:that falls within the'range of DW variation of the
latter during the entire operation, which manifests the effectiveness of the proposed

FLC-regulating design.

8.3 Future Developments

As a concluding remark, the author would like to point out some possible
extensions to the use of FLC mechanism in the future study.

In the realm of speaker adaptation, there are many other techniques available for
parameter tuning and not covered in the scope of the dissertation.
Eigenvoice-adaptation, a younger cousin of eigenface methodology for face
detection/recognition in image process, has been a new focus in recent years for

instance. How FLC mechanism could be incorporated in the framework of eigenvoice
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process is an open issue and an FLC-eigen-MLLR or FLC-eigen-MAPLR would
seem to be a promising subject for the next research.

Speaker adaptation by neural networks (NN), support vector machines (SVM) and
genetic algorithm (GA) may also be considered for the bringing in of FLC
mechanisms whenever plausible.

As for the matter of audio event detection, any audio events requiring the attention
of a real surveillance application should be good research targets. The author starts
with female screaming and there are many more to go on with: gunshot, explosion,
noises arising from fiery quarrel or fighting or even the arson, just to list a few. Of
course, surveillance applications do_net;always_have to be that “serious” when it has
nothing to do with public/private safety. Just imagine how to detect the singing of a
specific kind of birds insthe forest, the-howling.or roaring of a certain species of
creatures in the grass land, 'and a duck quacking among a flock of honking geese, etc,
which would make a lot.more fun out of the research.

And as one final remark to end the writing-of-the dissertation, the use of T-S FLC
mechanism is one choice from many fuzzy formulations in control by computation;
Mamdani (linguistic) type fuzzy model [123], for instances, is an alternative that can
be used in place of T-S FLC in the dissertation, of which the behaviors and

performance can be examined if one wishes.
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