Contents

Chinese Abstract	i
English Abstract	iv
Acknowledgement	vii
Contents	viii
List of Tables	xi
List of Illustrations	xii

Chapter 1 Introduction	
1.1 Overview of Thin Film Transistor Liquid Crystal Display (TFT-LCD)	1
1.2 A Historical Perspective of Thin Film Transistors	4
1.3 Physical Properties of ZnO	6
1.4 Motivation	8
1.5 Thesis Organization	10

Chapter 2 Experiment

2.1 The Fabrication of the Thin Films	25
2.1.1 The Sol-Gel Method	25
2.1.1.1 Introduction to Sol-Gel Method	25
2.1.1.2 Synthesis of the Precursors	27
2.1.2 The Radio Frequency (RF) Sputtering	27
2.2 The Fabrication of the Thin Film Transistors	29
2.3 Analysis of Material Characteristics	29

2.3.1 X-ray Diffraction (XRD)	29
2.3.2 Scanning Electron Microscope (SEM)	29
2.3.3 Atomic Force Microscopy (AFM)	30
2.3.4 Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES	5) 30
2.3.5 X-ray photoelectron spectroscopy (XPS)	30
2.4 Analysis of Electrical Properties	31
2.4.1 Current-Voltage (I-V) Measurements	31
2.4.2 Capacitance-Voltage (C-V) Measurements	31

Chapter 3 Sol-Gel-Derived $Zn_{(1-x)}Mg_xO$ Thin Films Used as Active Channel

Layer of	Thin-Film	Transistors
• •		

	J.S. Contraction	
3.0 Preface		38
3.1 Introduction		38
3.2 Experiment	1896 IV	40
3.3 Results and Discussion	1 Martin	42
3.3.1 Film properties		42
3.3.2 TFT characteristics		53
3.4 Conclusion		55

Chapter 4 Chemical Solution Deposition of $Zn_{(1-x)}Zr_xO$ Thin Films as Active Channel Layers of Thin Film Transistors

4.0	Preface	84
4.1	Introduction	84
4.2	Experiment	86
4.3	Results and discussion	87

Chapter 5	Electrical	Performance	Improvements	of S	Sol-Gel-Derived
	Zn _{0.97} Zr _{0.03} O	Thin-Film Tro	insistors by Usin	g (Ba,	Sr)TiO ₃ High-k
	Gate Insulat	tors			
5.0 Preface					112
5.1 Introdu	ction				112
5.2 Experir	nental				114
5.3 Results	and discussion	on			116
5.4 Conclu	sion				123

Chapter 6 Conclusions and Further Recommendations

6.1 Conclusions	141
6.2 Further Recommendations	143
Publication List	144

Publication List

4.4 Conclusion

List of Tables

Table 1-1	The fabrication sizes and cutting efficiency of all generation factories.	21
Table 1-2	Comparison of large size LCD TVs by several makers.	21
Table 1-3	Major TFT/AMLCD Design Factors.	22
Table 1-4	Physical properties of wurtzite ZnO.	23
Table 1-5	Comparison of several printing techniques.	24
Table 2-1	Specifications of rf magnetron sputtering system.	37
Table 3-1	Dielectric constant ε s, carrier concentration at room temperature n_{RT} , Fermi energy level E_F , donor energy level E_d , the value of $rm_e^{3/2}$ and rN_d , the normalized ratios of $r(R_r)$ and $N_d(R_d)$ of $\text{Zn}_{(1-x)}\text{Mg}_x\text{O}$ thin films.	82
Table 3-2	Electrical characteristics (saturation mobility μ_{sat} , threshold voltage V_{th} , off-state current I_{off} and current modulation) of $Zn_{(1-x)}Mg_xO$ thin film transistors.	83
Table 4-1	Electrical performance (field-effect mobility μ_{FE} , threshold voltage V_{th} , minimum off-current I_{off} and on/off current ratio) of $Zn_{(1-x)}Zr_xO$ thin-film transistors.	111
Table 5-1	Electrical characteristics of $Zn_{0.97}Zr_{0.03}O$ -TFTs — including mobility (μ_{sat}), threshold voltage (V_{th}), subthreshold slope (S), and current modulation (I_{ON}/I_{OFF}) —incorporating SiO ₂ and BST as gate insulators of various dielectric constants (ε_r) and interface trap densities (D_{it}); BST was deposited at various temperatures. The characteristics of the SiO ₂ -based devices were extracted using a value of V_D of 100 V; the characteristics of the devices incorporating the BST gate insulators were estimated at a value of V_D of 10 V.	140

List of Illustrations

Chapter 1 Introduction

Figure 1-1	Electrical schematic of three-subpixel cross-section (bottom) of an active-matrix LCD.	18
Figure 1-2	TFT switching devices at the cross point with the row and column lines.	18
Figure 1-3	The TFT-LCD (a) cross-sectional view of panel, (b) storage capacitor-on-gate pixel.	19
Figure 1-4	The hexagonal (wurtzite) crystal structure of ZnO.	20

Chapter 2 Experiment

Figure 2-1	Flow chart of the sol-gel precursor preparation.	32
Figure 2-2	Photography of the rf magnetron sputtering system.	33
Figure 2-3	Process flow of the thin film transistors.	34
Figure 2-4	Block diagram of current-voltage $(I-V)$ and capacitance-voltage $(C-V)$ measurement.	35
Figure 2-5	Experimental flow charts by using various analyses.	36

Chapter 3 Sol-Gel-Derived $Zn_{(1-x)}Mg_xO$ Thin Films Used as Active Channel Layer of Thin-Film Transistors

Figure 3-1	Schematic diagram of TFT using $Zn_{(1-x)}Mg_xO$ as active channel layer.	59
Figure 3-2	XRD patterns of $Zn_{(1-x)}Mg_xO$ films after annealing at 500°C for 2 hr.	60

Figure 3-3	Transmittance spectra of $Zn_{(1-x)}Mg_xO$ films deposited on glass substrates	61
Figure 3-4	Relative absorption coefficients of the $Zn_{(1-x)}Mg_xO$ thin films, where <i>x</i> ranged form 0.00 to 0.30.	62
Figure 3-5	<i>c</i> -axis length and band gap energies of $Zn_{(1-x)}Mg_xO$ thin films, where <i>x</i> ranged form 0 to 0.30.	63
Figure 3-6	SEM images of un-doped ZnO thin films annealed at (a) $400 ^{\circ}$ C, (b) $450 ^{\circ}$ C, (c) $500 ^{\circ}$ C, (d) $550 ^{\circ}$ C, and (e) $600 ^{\circ}$ C.	64
Figure 3-7	AFM surface observations of un-doped ZnO thin films annealed at (a) $400 ^{\circ}$ C, (b) $450 ^{\circ}$ C, (c) $500 ^{\circ}$ C, (d) $550 ^{\circ}$ C, and (e) $600 ^{\circ}$ C.	65
Figure 3-8	SEM images of $Zn_{(1-x)}Mg_xO$ thin films of (a) $x = 0.00$, (b) $x = 0.10$, (c) $x = 0.20$, (d) $x = 0.30$, and (e) $x = 0.40$.	66
Figure 3-9	AFM surface observations of $Zn_{(1-x)}Mg_xO$ thin films of (a) $x = 0.00$, (b) $x = 0.10$, (c) $x = 0.20$, (d) $x = 0.30$, and (e) $x = 0.40$.	67
Figure 3-10	(a) Roughness of un-doped ZnO films annealed at various temperatures. (b) Roughness of $Zn_{(1-x)}Mg_xO$ films as a function of Mg content.	68
Figure 3-11	XPS survey scan analysis of un-doped ZnO thin film annealed at 500 °C under air atmosphere for 2 hr.	69
Figure 3-12	X-ray photoelectron spectroscopy survey scan analysis of $Zn_{(1-x)}Mg_xO$ thin films of (a) $x = 0.10$, (b) $x = 0.20$, (c) $x = 0.30$, and (d) $x = 0.40$.	70
Figure 3-13	X-ray photoelectron spectroscopy spectra of O 1s of $Zn_{(1-x)}Mg_xO$ thin films, where <i>x</i> ranged from 0.00 to 0.40.	71
Figure 3-14	Dependence of relative intensity of the O 1s peak of the $Zn_{(1-x)}Mg_xO$ thin films, on the values of <i>x</i> .	72
Figure 3-15	X-ray photoelectron spectroscopy spectra of Zn $2p_{3/2}$ of $Zn_{(1-x)}Mg_xO$ thin films, where <i>x</i> ranged from 0.00 to 0.40.	73
Figure 3-16	X-ray photoelectron spectroscopy spectra of Mg 2s and Zn $3p_{1/2}$ of $Zn_{(1-x)}Mg_xO$ thin films, where <i>x</i> ranged from 0.10 to 0.40.	74
Figure 3-17	<i>C-V</i> curves obtained for MOS structure Al/SiO ₂ /ZnO (25°C). The charge carrier density <i>n</i> of the ZnO films was evaluated from the slope of C^{-2} vs <i>V</i> .	75
Figure 3-18	Energy band diagram of the double Schottky barrier of the $Zn_{(1-x)}Mg_xO$ thin films. All energy levels are referenced to the	76

minimum energy level $E_v = 0$ and the maximum E_{vac} .

- *Figure 3-19* Plot of $\ln(n/T^{3/2})$ vs. 1/kT, where *n* is the measured electron 77 concentration in the $Zn_{(1-x)}Mg_xO$ films, showing a constant Fermi level within the temperature range 25~125 °C.
- *Figure 3-20* Plot of $\ln\{2/[f n/rN_d] 2\}$ vs 1/kT. The constant slope 78 $(=E_d E_F)$ shows a definite donor level below the Fermi level in the $Zn_{(1-x)}Mg_xO$ films.
- *Figure 3-21* (a) Output and (b) transfer characteristics of the un-doped ZnO 79 thin film transistor, recorded at a value of V_D of 100 V.
- *Figure 3-22* (a) Output and (b) transfer characteristics of $Zn_{(1-x)}Mg_xO$ thin film 80 transistor, where x = 0.20, recorded at a value of V_D of 100 V.
- *Figure 3-23* Output characteristics of $Zn_{(1-x)}Mg_xO$ TFTs of x = 0.25. 81

Chapter 4 Chemical Solution Deposition of $Zn_{(1-x)}Zr_xO$ Thin Films as Active Channel Layers of Thin Film Transistors

Figure 4-1	Schematic diagram	n of TFT	utilized	$Zn_{(1-x)}Zr_xO$	films as	active	96
	channel layer.	200	() () ()	P*			

- *Figure 4-2* XRD spectra of $Zn_{(1-x)}Zr_xO$ thin films annealed at 500 °C for 4h. 97
- Figure 4-3 SEM surface images of $Zn_{(1-x)}Zr_xO$ thin films of (a) x = 0.00, (b) x = 98= 0.01, (c) x = 0.03, (d) x = 0.05, and (e) x = 0.10.
- *Figure 4-4* AFM surface morphologies of $Zn_{(1-x)}Zr_xO$ thin films of (a) x = 990.00, (b) x = 0.01, (c) x = 0.03, (d) x = 0.05, and (e) x = 0.10.
- *Figure 4-5* Roughness of $Zn_{(1-x)}Zr_xO$ films as a function of the Zr content. 100
- *Figure 4-6* XPS survey scan analysis of un-doped ZnO thin film annealed at 101 500 °C under oxygen atmosphere for 2 hr.
- *Figure 4-7* X-ray photoelectron spectroscopy survey scan analysis of 102 $Zn_{(1-x)}Zr_xO$ thin films of (a) x = 0.01, (b) x = 0.03, (c) x = 0.05, and (d) x = 0.10.
- *Figure 4-8* X-ray photoelectron spectroscopy spectra of O 1s of $Zn_{(1-x)}Zr_xO$ 103 thin films, where x ranged from 0.00 to 0.10.

Figure 4-9	Dependence of relative intensity of the O 1s peak of the	104
	$Zn_{(1-x)}Zr_xO$ thin films, on the values of x.	
Figure 4-10	X-ray photoelectron spectroscopy spectra of Zn 2p _{3/2} of	105
	$Zn_{(1-x)}Zr_xO$ thin films, where x ranged from 0.00 to 0.10.	

- *Figure 4-11* X-ray photoelectron spectroscopy spectra of Zr $3d_{3/2}$ and Zr $3d_{5/2}$ 106 of $Zn_{(1-x)}Zr_xO$ thin films, where x ranged from 0.10 to 0.10.
- Figure 4-12 Output characteristics of $Zn_{(1-x)}Zr_xO$ -TFTs of (a) x = 0.00 and (b) x = 107= 0.03.
- *Figure 4-13* Transfer characteristics of $Zn_{(1-x)}Zr_xO$ -TFTs with various Zr 108 content.
- *Figure 4-14* The capacitance-voltage characteristics and a plot of $1/C^2$ as a 109 function of voltage of $Zn_{(1-x)}Zr_xO$ MOS structure where x = 0.03.
- *Figure 4-15* Carrier concentration (*n*) of $Zn_{(1-x)}Zr_xO$ thin films as a function of 110 the Zr content.

and the second

Chapter 5 Electrical Performance Improvements of Sol-Gel-Derived Zn_{0.97}Zr_{0.03}O Thin-Film Transistors by Using (Ba,Sr)TiO₃ High-k Gate Insulators

- *Figure 5-1* Schematic diagram the $Zn_{0.97}Zr_{0.03}O$ thin-film transistor. 127
- *Figure 5-2* XRD spectra of BST films grown on BaRuO₃ at various 128 deposition temperatures.
- *Figure 5-3* Dielectric constant of BST as a function of deposition 129 temperatures.
- *Figure 5-4* Leakage current density variation as a function of electric field for 130 BST capacitors (Al/BST/BRO) with various deposition temperatures.
- *Figure 5-5* AFM surface observations of BST deposited at (a) 100 (b) 300 131 and (c) 500 °C.
- *Figure 5-6* Roughness of BST films as a function of various deposition 132 temperatures.
- *Figure 5-7* SEM surface images of $Zn_{0.97}Zr_{0.03}O$ films deposited on (a) SiO₂ 133 (b) BST ($T_d=100$ °C) and (c) BST ($T_d=300$ °C).

- *Figure 5-8* Output characteristics of $Zn_{0.97}Zr_{0.03}O$ -TFTs by using SiO₂ as gate 134 insulator at $V_D = 100V$.
- *Figure 5-9* Transfer characteristics of $Zn_{0.97}Zr_{0.03}O$ -TFTs by using SiO₂ as 135 gate insulator at $V_D = 100V$.
- *Figure 5-10* Drain current drain voltage characteristics of the 136 $Zn_{0.97}Zr_{0.03}O$ -TFTs incorporating the BST gate insulator deposited at room temperature.
- *Figure 5-11* Log and square root of drain current as a function of gate voltage 137 of the devices incorporating BST gate insulators, prepared at various values of T_d , recorded at a value of V_D of 10 V.
- *Figure 5-12* Frequency effects on the capacitance-voltage curves of the ZnO 138 MISM structure.
- *Figure 5-13* Dependence of interface trap density (D_{it}) on various gate 139 insulators. Open and solid squares refer to SiO₂ and BST deposited at different T_d , respectively.

