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以 Hull-White 短利模型評價雪球型債券 

學生：戴慈                    指導教授：王克陸  博士 

     戴天時  博士 

 

國立交通大學財務金融研究所碩士班 

2007 年 6 月 

 

 

摘    要  

    本研究將以 Hull-White 短利模型為基礎，提出創新的演算法評價雪球型利率

連動商品。雪球型債券為利率衍生性商品，此債券之特色在於其票面利率具有路

徑相關之特性，並且付息利率不可小於零，在加上可以提早贖回債券之條款，因

此複雜不易評價，也無封閉解存在，因此我們將以三元樹之數值方法估算其價

值。雖然蒙地卡羅法也可以評價商品，並利用最小評方法處理提前贖回之條款，

但其演算方法複雜不易處理。若 LIBOR 市場模型 (BGM 利率模型) 作為評價

債券的利率期限結構，其 non-Markov 性質以及參數太多，不適用於樹狀結構以

及複雜的債券付息，因此我們採用簡單的利率模型，Hull-White 短期利率期限結

構。之後，我們將根據永豐銀行所發行的雪球型債券作敏感度分析，探討

Hull-White 模型的參數、利差定價、以及市場利率對其債券價格之影響。  

 

關鍵字：雪球型利率連動商品、Hull-White 模型、三元樹。 
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Pricing Snowball Notes with Hull-White Model 
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            Dr. Tian-Shyr Dai 

 
Institute of Finance 

National Chiao Tung University 
June 2007 

 
ABSTRACT 

  

In this paper, a novel polynomial-time pricing algorithm based on Hull-White term 

structure model is introduced for pricing snowball notes. Snowball notes are 

sophisticated inversing floating rate bonds with path-dependent coupons, freeze at 

zero and redemption articles. Because of no proper closed form of Snowball notes, we 

must use numerical approach by trinomial tree structure to price these bonds. 

Although there is another way to solve complex derivatives via Monte Carlo method, 

it is hard for pricing bonds with both path-dependent coupons and redemption articles. 

Compare with the advanced interest rate model, LIBOR market model (BGM model), 

its defect is hard to calculate the complex coupon of interest rate derivatives. Thus, we 

take simple interest mode, Hull-White short rate term structure, to be the base for 

pricing sophisticated Snowball notes. Furthermore, numerical experiments and 

sensitivity analysis are given to show the behaviors of relationship between price and 

parameters (spreads, zero curves and parameters of Hull-White term structure model) 

according to the contract issued by Bank SinoPac.  

 

Keywords: Snowball Notes; Hull-White Model; Trinomial Tree. 
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1. Introduction 

1.1 Setting the Ground 

    Snowball notes are such complicated interest rate swaps, not only for the 

property of path-dependent, but also for the property of redeemable style bond. About 

models of evaluating bond prices, there are many kinds of interest rate models which 

could be classified as equilibrium models of short rate models, no-arbitrage models of 

short rate models, and forward rate models. These would be explained in the next 

chapter. 

This thesis purpose is using uncomplicated interest rate model, Hull-White 

model, constructing a general method, modeling and pricing complicated Snowball 

notes. Compare with LIBOR market model (BGM model), it can price interest rate 

derivatives by observation of market forward rates, and use Least-Square approach 

provided by Longstaff and Schwartz to solve American style options. Nevertheless, 

the weakness of BGM model is hard to calculate the complex coupon of interest rate 

derivatives and the shortcoming of Least-Square approach is need for many 

regression variables. Thus, we take simple interest short rate model to solve complex 

swaps. 

Because of no proper closed form of Snowball notes, this study uses numerical 

approach by tree models combined with state variables. Although there is another way 

to solve complex derivatives via Monte Carlo method, it is hard for pricing options 

with both path-depend and American style options. A systematic approach is 

constructing data structures and algorithms for pricing; the idea would be showed by 

illustrations; the parameters of Hull-White model would be calibrated by observable 

market value of interest rate caps. Moreover, the thesis would demonstrate efficient of 

pricing date. 
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1.2 Structures of the Thesis 

This study divides from five segments: To begin with chapter one, it is 

introduction of this thesis. In the second place, it introduces common financial 

knowledge about derivatives and reviews some interest rate models; description of 

Snowball notes is also among the interest rate swaps of this chapter. Then, we will 

talk about how to implement a computer program for pricing Snowball notes and next 

chapter will put into practice, simulation and analysis. Finally, we will discuss results, 

make conclusion and suggest what can extend in the future.  
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2. Fundamental Concepts 

    This chapter introduces common financial knowledge about derivatives and 

review of some interest rate models, especially focusing on interest rate derivatives 

and models and Snowball is also described among them.  

 

2.1 Reviews of Interest Rate Models 

This segment is introduction of interest rate models which class as standard 

market models, equilibrium models of short rate models, no-arbitrage models of short 

rate models, and forward rate models. 

2.1.1 Standard Market Models 

    The significant assumption is that the underlying such as interest rate derivatives 

are following log-normal, for examples, Black’s model assumes that the underlying 

bond price is log-normal at the option’s maturity in the case of a European bond 

option. Therefore we can use Black’s model to evaluate commodities such as caps or 

floors introduced in section 2.2.2.  

2.1.2 Equilibrium Models 

    Equilibrium models with assumptions about economic variables derive a process 

for the short rate r which follows like geometric Brownian motion but has the 

character of mean reversion. That is to say, interest rates appear to be pulled back to 

some long-run average level and this phenomenon is known as mean reversion. This 

segment will introduce subsection of these kind models. 
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 Figure 2.1: Mean Reversion. 

    When interest rate r is high, mean reversion tends to cause it have negative trend down to 

reversion level; When r is low, mean reversion tends to cause it have positive trend up to reversion 

level. 

Vasicek Model  

    In Vasicek’s model, interest rate r is supposed to follow  

    ( )dr a b r dt dzσ= − +                       (2.1) 

where mean reversion a , reversion level b , and volatilityσ are constants. But its 

weakness is that interest rate could be negative. In this model, Vasicek shows that the 

general pricing form of zero-coupon bond which pays $1 at time T can be shown: 

( , ) ( )( , ) ( , ) B t T r tP t T A t T e−=                      (2.2) 

where 
( )1( , )

a T teB t T
a

− −−
=                          (2.3) 

2 2 2 2

2

( ( , ) )( / 2) ( , )( , ) exp[ ]
4

B t T T t a b B t TA t T
a a

σ σ− + −
= −          (2.4) 

CIR Model 

    To improve Vasicek’s model, Cox, Ingersoll, and Ross have proposed CIR model 

where r is always non-negative. This model is  

( )dr a b r dt rdzσ= − +                       (2.5) 

and it has the same general form of bond prices in Vasicek’s model. But its A(t, T) and 

Interest 
rate 

HIGH interest rate has negative trend

Low interest rate has positive trend 

Reversion
Level

Time
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B(t, T) are different: 
( )

( )

2( 1)( , )
( )( 1) 2

T t

T t

eB t T
a e

γ

γγ γ

−

−

−
=

+ − +
                   (2.6) 

2
( )( ) / 2

2 /
( )

2( , ) [ ]
( )( 1) 2

a T t
ab

T t

eA t T
a e

γ
σ

γ

γ
γ γ

+ −

−=
+ − +

               (2.7) 

where 2 22aγ σ= + . 

2.1.3 No-arbitrage Models 

    Although equilibrium models have mean-reverting properties, their disadvantage 

is that they can not fit today’s term structure of interest rate. Thus, no-arbitrage 

models come into being. No-arbitrage models not only contain the property of 

equilibrium models but also can be consistent with today’s observation of market 

interest rate because of today’s term structure as an input.  

Ho-Lee Model 

    The first model of no-arbitrage models is Ho-Lee model which is shown 

( )dr t dt dzθ σ= +                        (2.8) 

where ( )tθ is a function of time chosen to ensure that the model fits the initial term 

structure and it is relative to the instantaneous forward rate. The relevance to 

instantaneous forward rate is 

2( ) (0, )tt F t tθ σ= +                       (2.9) 

where (0, )tF t  is the instantaneous forward rate for maturity t as seen at time zero 

and subscript t denotes a partial derivative with respect to t.  

    Moreover, the price of zero-coupon bond at time t can be expressed as 

( )( )( , ) ( , ) r t T tP t T A t T e− −=                    (2.10) 

where 

2 2(0, ) ln (0, ) 1ln ( , ) ln ( ) ( )
(0, ) 2

tP T P tA t T T t T t
P t t

σ∂
= − − − −

∂
      (2.11) 

Hull-White Model 
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    The other no-arbitrage model is Hull-White model which is extension of the 

Vasicek model that provide an exact fit to the initial term structure. The model is 

following  

[ ( ) ]dr t ar dt dzθ σ= − +                   (2.12) 

or 

( )( )tdr a r dt dz
a

θ σ= − +  

where a and σ  are constants and the function of ( )tθ  can be calculated from the 

initial term structure: 
2

2( ) (0, ) (0, ) (1 )
2

at
tt F t aF t e

a
σθ −= + + −             (2.13) 

    Moreover, it has the same general form of bond prices in Vasicek’s model, but it’s 

B(t,T) is different: 

( , ) ( )( , ) ( , ) B t T r tP t T A t T e−=                     (2.14) 

where 
( )1( , )

a T teB t T
a

− −−
=                         (2.15) 

and 

2 2 2
3

(0, ) (0, ) 1ln ( , ) ln ( , ) ( ) ( 1)
(0, ) 4

aT at atP T P tA t T B t T e e e
P t t a

σ − −∂
= − − − −

∂
   (2.16) 

    Furthermore, at time zero, the price of a call option that matures at time T on a 

zero-coupon bond maturing at time s can be expressed as 

(0, ) ( ) (0, ) ( )pLP s N h KP T N h σ− −                (2.17) 

where L is the principal of the bond, K is its strike price, 

1 (0, )ln
(0, ) 2

p

p

LP sh
KP T

σ
σ

= +                     (2.18) 

and 
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2
( ) 1[1 ]

2

aT
a s T

p
ee

a a
σσ

−
− − −

= −                 (2.19) 

The price of a put option on the bond is 

(0, ) ( ) (0, ) ( )pKP T N h LP s N hσ− + − −               (2.20) 

This thesis would take the Hull-White model as the basis of pricing structure 

because of its adaption of today’s term structure of interest rate and more flexible than 

the Ho-Lee model. The volatility structure in the Hull-White model is determined by 

both a  and σ , so it represents a wider range of volatility structure than Ho-Lee 

model. The volatility at time t of the price of a zero-coupon bond maturing at time T is 

 ( )(1 )a T te
a
σ − −−  

and the instantaneous standard deviation at time t of the zero-coupon interest rate 

maturing at time T is 

 ( )(1 )
( )

a T te
a T t

σ − −−
−

 

and the instantaneous standard deviation of the T-maturity instantaneous forward rate 

is ( )a T teσ − − . 

2.1.4 Forward Rate Models 

    There are two typical forward rate models: one is HJM model which develops in 

terms of instantaneous forward rates; the other one is BGM model or LIBOR market 

model which expresses in terms of the forward rates. Both of them have the properties 

of variable volatility and non-Markov processes, therefore they cannot presented as 

recombining tree but be implemented by Monte Carlo simulation.   

2.2 Derivatives Basics 

    There are some popular financial derivatives and the detailed description of 

Snowball notes within this segment. In this section, it includes payoff of bond option 

and interest rate derivatives, closed form of some popular commodities and 

expression of some complex interest rate swaps.  
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2.2.1 Bond Basics 

    Most bonds provide coupons periodically and at maturity the owner receives the 

principal or face value of the bond. The theoretical price of a bond can be calculated 

at the present value of all cash flows using zero rates as discount rates. The zero rate 

(zero-coupon rate) at year n means that the rate of interest earned on an investment 

that start today and lasts for n years. Thus, the expression of present value of the 

zero-coupon bond for maturity t years is  

 ( 0)(0, ) tr tP t e− −=  

where tr  means the zero rate at t years. 

    Therefore, considering the bond which has coupon ci  at time ( )t i  in Figure 

2.2 is following:  

0     t(1)      t(2)       t(3)      … t(n-2)      t(n-1)      t(n)

1c 2c 3c nc1nc −2nc −

F

Time

Payment

0     t(1)      t(2)       t(3)      … t(n-2)      t(n-1)      t(n)

1c 2c 3c nc1nc −2nc −

F

Time

Payment 1c 2c 3c nc1nc −2nc −

F

Time

Payment

 

Figure 2.2 An Example of Coupon Bond.  

    The coupon bond is that paying coupon ci  at time ( )t i  and notional principal F  at 

maturity. 

 

And the bond value is expressing 

 
1

( ) (0, ( )) (0, ( ))
n

i
B c i P t i FP t n

=

= +∑                (2.21) 

2.2.2 Interest Rate Derivatives Basics 

    In this section, only focus on valuation of popular interest rate derivatives which 

we need in this thesis and explain to their properties. 

    An interest rate cap or floor is a floating-rate note where the interest rate reset 

periodically equal to LIBOR; the time between resets is known as the tenor; the 
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payoff does not occur on the reset date but occurs at the days of tenor later, for 

instance, if the life of cap or floor is one year, the reset dates are at times 0.25, 0.50, 

0.75 years and payment dates are at times 0.50, 0.75, 1.00 years. In other words, they 

have the property of delayed payoff. Cap and floor are designed to provide insurance 

against the rate of interest on the floating-rate note; cap is insurance for note rising 

above a certain level and floor is insurance for note falling down a certain level. 

Define:  

 

_

_

1

1

         :  Total life of cap and floor
   :  Cap rate

 :  Floor rate

         :  Interest rate for period between time  and 
       :  Period time,   
         :  Principal 

r

R cap

R floor

k k k

k k

T
K

K

r t t
k k t t
L

+

+Δ Δ = −

 

    The payoff of caplet at time 1kt +  is 

 _max( ,0)k R capCaplet L k r K= Δ −  

and the payoff of floorlet at time 1kt +  is 

 _max( ,0)R floor kFloorlet L k K r= Δ −  

    In one hand, both of them can be assumed as a portfolio of interest rate options. 

Therefore, each payoff of caplets or floorlet can be priced by Black’s formulas form. 

The value of caplet is given as 

 1 1 _ 2(0, )[ ( ) ( )]k k R capL kP t F N d K N d+Δ −                 (2.22) 

where kF  is the forward rate for the period 1time  and k kt t + , and 

 

2
_

1

2 1

ln[ / ] / 2k R cap k k

k k

k k

F K t
d

t

d d t

σ
σ

σ

+
=

= −

 

The value of the corresponding floorlet is  
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1 _ 2 1

2
_

1

2 1

(0, )[ ( ) ( )]

ln[ / ] / 2

k R floor k

k R floor k k

k k

k k

L kP t K N d F N d

F K t
d

t

d d t

σ

σ

σ

+Δ − − −

+
=

= −

              (2.23) 

    In the other hand, both of them can be assumed as a portfolio of bond options. 

Caplet is a put option of zero-coupon bond which the strike price is capK and the 

underlying value is S as following: 

 _(1 ) max( ,0)R cap capK k L K S+ Δ −                 (2.24) 

And floorlet is a call option of zero-coupon bond which the strike price is floorK and 

the underlying value is S as following: 

 _(1 ) max( ,0)R floor floorK k L S K+ Δ −                (2.25) 

where  

 
_

_

1    
1

1
1

1
1

k

cap
R cap

floor
R floor

S
r k

K
K k

K
K k

=
+ Δ

=
+ Δ

=
+ Δ

 

and the derivation of equations (2.24) and (2.25) would be provided in Appendix. 

2.2.3 Complex Interest Rate Swaps  

    Some interest rate swaps containing embedded options cause difficult pricing of 

these complex derivatives, so it is hard to find closed forms of them. In this issue, we 

consider some commonly encountered these kinds of swaps. 

Quanto IRS  

    Quanto IRS is an interest rate swap which two different interest rates are 

involved on the same notional principal, ex. fixed rate vs. floating rate, floating rate vs. 
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floating rate or change of two different maturity LIBOR rates. At maturity, the parties 

of Quanto IRS would pay the value of the appointed coupon rate multiplied by the 

principal to each other and do not involve in notional principal. This Swap has the 

character that currency of coupon rates can differ from currency of principal.  

Redeemable Range Accrual Notes 

    Redeemable range accrual note is a swap that’s the property of American style 

option which issuer can call back the notes; its interest on one side accrues only when 

the floating reference rate is within a certain range. Sometimes the range remains 

fixed during the entire life of the contract; sometimes it is reset periodically. At 

maturity date, the payoff is that the proportion of accumulated days to range life of 

contract multiplies the reference rate and principal. Thus, the more times of interest 

rate dropping in the range, the more profit. 

Snowball Notes 

  Snowball is a kind of inverse floating rate bond which the present payment of 

coupon rate is relevant of last coupon rate. Usually, it has constant coupon rate in first 

year; begin to the second year, the current coupon is given by the previous coupon 

plus a spread minus a reference index, floored at 0%. So Snowball notes have the 

character of path-dependent payment of coupon such as Asian style option; the lower 

reference indexes, the more coupons over time, just like snowball rolls more and 

bigger. Oppositely, if the higher reference indexes, the fewer coupons over time, the 

Snowball will “melt away”. This thesis’ purpose is to solve this problem and the 

example of Snowball contract will be given at chapter four. 
2.3 Pricing Methods 

2.3.1 A General Tree Building Procedure for Hull-White Model 

    This tree structure is a good approach for constructing no-arbitrage short rate 

models of Hull-White model. This approach, making use of the trinomial tree, is 
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appropriate for models where there is some function x  of the short rate r  that 

follows a  mean-reverting arithmetic process. The key element of this process is that 

it produces a tree that is symmetrical about the expected value of x  . There are three 

types of sub-trees, illustrated at Figure 2.3, for the tree building procedure. 

 

Figure 2.3: Alternative Branching for Hull-White Tree.   

    Assume the length for each time step is tΔ  and the variance for each time step is σ . We can 

set the size of the interest rate step, tΔ , at spacing between interest rates on the tree, 3R tσΔ = Δ . 

Then the tree can be built by the following two steps. 

 

First stage: building a preliminary tree  

    Setting ( )tθ  in (2.13) and the initial value of r at zero suggest the following 

equation: 

 * *dR aR dt dzσ= − +                       (2.26) 

Building an interest rate tree for (2.26) is the goal for first stage. This can be 

illustrated an example. Define (i, j) as the node where t i t= Δ  and *R j R= Δ ; 

denote probabilities of three branches as uP , mP  and dP  which must be positive 

and less than one; summation of them is one. The calculated probabilities depend on 

types of sub-trees. 

Figure 2.3(a) 

The probabilities must satisfy the following equations: first is expected value 

equation; second is about variance equation; finally, it is a basic equation of 

mP

dP

uP(b) uP

mP

dP

uP

mP

dP

(a) (c)
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probability. 

 2 2 2 2 2 2 2

1

u d

u d

u m d

p R p R aj R t

p R p R t a j R t
p p p

σ

Δ − Δ = − Δ Δ

Δ + Δ = Δ + Δ Δ
+ + =

 

Therefore, solution to these equations is 

 

( )

( )

2 2 2

2 2 2

2 2 2

1 1
6 2
2
3
1 1
6 2

u

m

d

p a j t aj t

p a j t

p a j t aj t

= + Δ − Δ

= − Δ

= + Δ + Δ

 

    By the same way, the probabilities of type-(b) and type-(c) could be calculated. 

Figure 2.3(b) 

    Three equations of type-(b) are 

 2 2 2 2 2 2 2

2

4
1

u m

u m

u m d

p R p R aj R t

p R p R t a j R t
p p p

σ

Δ + Δ = − Δ Δ

Δ + Δ = Δ + Δ Δ
+ + =

 

and the solution of these equations is 

 

( )

( )

2 2 2

2 2 2

2 2 2

1 1
6 2

1 2
3

7 1 3
6 2

u

m

d

p a j t aj t

p a j t aj t

p a j t aj t

= + Δ + Δ

= − − Δ − Δ

= + Δ + Δ

 

Figure 2.3(c) 

    Three equations of type-(c) are 

 2 2 2 2 2 2 2

2

4
1

m d

m d

u m d

p R p R aj R t

p R p R t a j R t
p p p

σ

− Δ − Δ = − Δ Δ

Δ + Δ = Δ + Δ Δ
+ + =

 

and the solution of these equations is 
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( )

( )

2 2 2

2 2 2

2 2 2

7 1 3
6 2

1 2
3

1 1
6 2

u

m

d

p a j t aj t

p a j t aj t

p a j t aj t

= + Δ − Δ

= − − Δ + Δ

= + Δ − Δ

 

    To make sure that probabilities are always positive, the restrain of j  must 

satisfies: 

0.184 0.184j
a t a t

−
≤ ≤

Δ Δ
 

A sample tree constructed by this step is illustrated in Figure 2.4.  

 

 

Node A B C D E F G H I

R 0.000% 1.732% 0.000% -1.732% 3.464% 1.732% 0.000% -1.732% -3.464%
p u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
p m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
p d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Node A B C D E F G H INode A B C D E F G H I

R 0.000% 1.732% 0.000% -1.732% 3.464% 1.732% 0.000% -1.732% -3.464%
p u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
p m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
p d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867  

Figure 2.4: A Simple Trinomial Tree for the Hull-White Model.  

    Parameters set as follows, 0.1a = , 0.01σ = and tΔ =one year. 

 

 

Second stage: calibration with the real term structure 

    Fitting today's term structure is the main goal of this stage. The exact method for 

this problem can be provided by Hull and White. Assume the term structure function 

today is 
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 0.180.08 0.05 te−−                        (2.27) 

and the interest rate tree being calibrated is illustrated in Figure 2.3. Obviously, the 

average interest rate for the first period can be obtained by taking t i t= Δ  in equation 

(2.27). Denote iα  is a moving up adjustment of period at time i tΔ ; ,i jQ  means that 

the value of paying $1 at node (i, j), and otherwise paying nothing; the price of a 

zero-coupon bond maturing at time i tΔ  us given by iP  known by today’s term 

structure function (2.27) and bond basic in chapter 2.2.1. Thus, iα  can be calculated 

by recursive formulas: 

 
, 1ln ln

 
m

m

n j R t
m j mj n

m

Q e P

t
α

− Δ Δ
+=−

−
=

Δ
∑

 

Because of  

 ( )1 , expm

m

n
m m j mj n

P Q j R tα+ =−
= − + Δ Δ⎡ ⎤⎣ ⎦∑  

 

where mn  is the number of nodes on each side of the central node at time m tΔ . And 

then ,i jQ  could be determined as 

( ) ( )1, , , expm j m k mk
Q Q q k j k R tα+ = − + Δ Δ⎡ ⎤⎣ ⎦∑  

where ( , )q k j  is the probability of moving from node (m, k) to node (m+1, j) and the 

summation is taken over all values of k  for which this is nonzero. After two stages, 

the complete Hull-White tree model is built as Figure 2.5.  
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Node A B C D E F G H I

R 3.824% 6.937% 5.205% 3.473% 9.716% 7.984% 6.252% 4.520% 2.788%

p u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

p m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

p d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Node A B C D E F G H I

R 3.824% 6.937% 5.205% 3.473% 9.716% 7.984% 6.252% 4.520% 2.788%

p u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

p m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

p d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867  

Figure 2.5: Calibration with Today’s Term Structure for the Hull-White Tree. 

    The basic tree structure is not changed; the node in the same period would push up the same 

increment, but the increments of each period are different. 

 

2.3.2 Calibration 

    Up to know, the mean reversion and volatility in Hull-White model are constants. 

The goal of this section is described how to estimate the parameters of this model. 

This is known as calibrating the model.  

    As we know, interest rate cap could be characterized as a portfolio of put options 

on zero-coupon bond from equation (2.24), so it can be priced by Hull-White (2.20). 

Moreover, cap can be assumed as a portfolio of interest rate options from equation 

(2.22). Thus, we can compare the cap value of the market observation data and 

formula (2.22) with the estimated value by Hull-White model, to find the suitable 

mean reversion and volatility. A popular goodness-of-fit measure is 

 2

, , 1

min min ( )
σ σ

=

= −∑
n

i ia a i

SSE U V  

where iU  is the market price and iV  is the price given by the Hull-White model. 

 

A 

B

C 
G

H

I
D 

F 

E
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3. Combine of Pricing Tree with State Variables of Snowball Notes 

In this chapter, a novel polynomial-time pricing algorithm based on the 

Hull-White term structure model is introduced for pricing snowball notes. First, we 

will describe snowball price and coupons variables, and then analysis these variables 

at different nodes in Hull-White trinomial tree. Next, we construct the state variables 

for non-negative coupons, and furthermore the redeemable snowball is then priced by 

a numerical approach and linear interpolation method for freeze on zero coupons 

article. Finally, we would introduce a proper recursive steps for pricing snowball 

notes.    

3.1 Discuss State Variables of Snowball Price and Coupons  

3.1.1 Forward-Tracking Method on Snowball Notes 

    Consider a snowball contract illustrated in figure 3.1. The coupon of i-th period 

paid in next period is following: 

 ( ) [ ( -1) ( ) -  ( )]Coupon i Coupon i Spread i Floating rate i += +  

At maturity, issuers would pay the coupon fixed in last period and notional principal F.  

Significantly, consider the freeze on zero coupons article; the coupon rate must be 

non-negative. 

0     t(1)      t(2)       t(3)      … t(n-2)      t(n-1)      t(n)
r(0) r(1)      r(2)      r(3)               r(n-2)      r(n-1)      r(n)

Spread

Time
Float rate

Payment 1c 2c 3c 1nc −2nc −

F
0c

1s 2s 3s 2ns − 1ns −

0     t(1)      t(2)       t(3)      … t(n-2)      t(n-1)      t(n)
r(0) r(1)      r(2)      r(3)               r(n-2)      r(n-1)      r(n)

Spread

Time
Float rate

Payment 1c 2c 3c 1nc −2nc −

F
0c

1s 2s 3s 2ns − 1ns −

1c 2c 3c 1nc −2nc −

F
0c

1s 2s 3s 2ns − 1ns −

1c 2c 3c 1nc −2nc −

F
0c

1s 2s 3s 2ns − 1ns −

 

Figure 3.1 Snowball Notes.  

    The spread rate at time t(i) is Si, and the coupon Ci determined at time t(i) is paid at t(i+1); the 

floating interest rate from time t(i) to time t(i+1)is denoted r(i), and the face value is paid at maturity 

date t(n). 
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    The coupons of snowball notes can be showed by the following recursive 

formula: 

 0

1

                               if 0
max( ( ),0)     . . i

i i

C i
C

C S r i o w−

=⎧
= ⎨ + −⎩

 

     Consider floating rate r(i) as short rate based on Hull-White tree in figures 2.4 

and 2.5 ,and then r(i) can be divided into the rate of node (i, j) of the preliminary tree 

in figure 3.2 and the moving up adjustment of the i-th period iα , both of them 

defined in chapter 2.3.  
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Figure 3.2 States of Rate Variables in Hull-White Preliminary Tree.  

    The node (i, j) is the state of rate variables in Hull-White preliminary tree from figure 2.4. The 

node (i, j) means that at time i tΔ  , the rate is j RΔ , where 3R tσΔ = Δ . 

 

    Define the node is child of node (i, j) if it connects to node (i, j) in i+1 period and 

the node is parent of node (i, j) if it join to node (i, j) in i-1 period. For example, in 
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figure 3.2, nodes A、B、D are the parents of node C and nodes E、F、G are children 

of node C. Therefore, the recursive formula for coupon rates at node (i, j) in figure 3.2 

can be expressed as 

, ,

,

0 , ,
1 1

max( ( )  ,0)  ,  C 0;   
C

max( ( )  ,0)  1 ,  C 0;   

k m

k m

i i

k k k j m j k
k k

i j i i

k k k j m j k
k k

S f R if k m i j j if k i

C S f R if m i j j if k i

α

α
= =

⎧ ⎫
− − Δ ∀ ≤ < ≥ = =⎪ ⎪⎪ ⎪= ⎨ ⎬

⎪ ⎪+ − − Δ ∀ ≤ < ≥ = =
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑
(3.1) 

where ,i jC  is all kinds of coupon rates at node (i, j) and , kk jf RΔ  is the rate at node 

(k, jk) which is the child of node (k-1, jk-1) and the parent of node (k+1, jk+1). 

Example 3.1 Given a path { node (0, 0)-> node (1, 1) -> node (2, 0) -> node (3, 1)} 

which is a kind of coupon sequence in C3,1 and suppose in the path, the coupons of 

C1,1 and C2,0 are non-negative, then the coupon at node (3, 1) in this case is 

3 3 3

0 , 0
1 1 1

3

0
1

max( ( )  ,0)= max( ( ) (1 0 1)  ,0)

                                                           = max( ( ) 2  ,0)

kk k k j k k
k k k

k k
k

C S f R C S R

C S R

α α

α
= = =

=

+ − − Δ + − − + + Δ

+ − − Δ

∑ ∑ ∑

∑
 

3.1.2 Backward-Tracking Method 

    Combine bond basic from equation (2.21) and figure 2.2 with Hull-White tree, 

we can get the snowball price at node (i, j) following:  

 1, *
, 1

1 ( , ) { [ ( 1, , )]* ;  }
1 ( )*( )k i j

i i j i i

B i j B i j C C C C
f R t tα −

+

= Ε + + ∀ ∈
+ + Δ −

    (3.2) 

where Ci-1,j*  is the set of coupon in node (i-1, j*) which is the parent of node (i, j), B 

(i+1, jk, C) is the set of snowball price at node (i+1, jk) which is the child of node (i, j) 

with coupon C in i-1 period and coupon max( ,0)k kC S j Rα+ − − Δ  in i period. 

Because of lattices method to price Snowball, so we take discrete time method of 

discount factor, for instance, in equation (3.2), the discount factor from time i to time 

i+1 at node (i, j) is: 

 
1 , 1

1 1
1 ( )*( ) 1 ( )*( )i i i i j i ir i t t f R t tα+ +

=
+ − + + Δ −

              (3.3) 
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Example 3.2 Following the path in example 3.1, the bond value at node C with its 

children nodes E、F、G is  

3 4 3
2

0
1

1[ (4, , )]*
1 ( 1* )( )

where ( ) 1*  , {0,1,2}

k

k k k
k

B j C C
R t t

C C S R j

α

α
=

Ε +
+ + Δ −

= + − − Δ ∈∑
 

where C is the coupon at node (2, 0) in this path and the coupon at node (3, 1) is 
3

0
1

max( ( ) 2  ,0)k k
k

C S Rα
=

+ − − Δ∑  

In order to solve redemption article of snowball notes, assume redemptive cost is 

constant in the contract, redeem Snowball notes if the following condition is satisfied:  

 *1,
( ),  ( , ) with some  back i j

B C C B B i j C C
−

> + ∈ ∈              (3.4) 

where backC  is the cost of redeeming Snowball bond and B is the Snowball value at 

node (i, j) with coupon C in i-1 period and Ci-1,j* denoted in equation (3.2). 

   Usually, for holders, the early exercise time to call back is when the bond value is 

less than callable value. However, redeemable bond is that issuer can buy back the 

bond. Thus, in an issuer position, the early redemption time with coupon payment 

delayed is when bond value is more than the value of redemptive cost plus coupon 

fixed in i-1 period. 

3.2 Numerical Approach to Snowball Notes 

    Here we will discuss a numerical approach to Snowball notes, provide an 

algorithm of forward and backward-tracking method, and create proper recursive 

general steps to pricing Snowball notes in the cause of the implement in next chapter. 

We simply suppose C0 equals zero in examples of this section. 

3.2.1 Construct States Variables of Snowball Price and Coupon  

    In this segment, there are three stages to construct the state variables of coupon 

rates in each node (i, j). To start with, in order to evaluate coupons from equation (3.1), 
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we compute negative summation of number of spacing between interest rate without 

freeze at zero article, ,

1

i

k j

k

f
=

−∑ , in the Hull-White preliminary tree. Next, consider the 

freeze at zero coupon article, the negative coupons should be eliminated and adjust 

the states of coupon variables with previous zero coupons. Lastly, for articles of 

redemptive and freeze on zero coupon, we introduced back-ward tracking and linear 

interpolation method to price snowball notes.  

First stage: building the maximum and minimum of negative summation of 

number of spacing rate in the Hull-White preliminary tree without freeze at zero 

article 

    Sum (i, j) is denoted as the negative summation of number of spacing rate which 

final rate is the rate at node (i, j) without the article of freeze at zero in the Hull-White 

preliminary tree: 

{ }'( , )  : ( 1, ) at ( 1, ') which is the parents of ( , )

(0,0) 0

Sum i j y j y Sum i j node i j node i j

Sum

= − ∈ − −

=
(3.5)  

and equation (3.5) satisfies the following formulas: 

 

1

'
1, 1,, ,

1 1
' '

, , ,

' '
, ,

( )  ,  ( , ) 

        ( 1, )

( ( 1, )) ( ( 1, ))

( ( 1, )) ( ( 1, ))

x x
k k

i

k k
k

i i

i j i jk j k j
k k

i j i j i j

i j i j

c S x R x Sum i j

x f f f y f for some y Sum i j

Min Sum i j f y f Max Sum i j f

Min Sum i j f x Max Sum i j f

α
=

− −
= =

= − + Δ ∈

= − = − − = − ∈ −

− − ≤ − ≤ − −

∴ − − ≤ ≤ − −

∑

∑ ∑     (3.6) 

where c is one case of coupons at node (i, j) without the article of freeze at zero and 

node (i, j) is the child of node (i, j’).  

Therefore, focus on the maximum and minimum of negative summation of 

number of spacing rate at each node, the all possible negative summation of number 

of spacing rate at node could be known. Nevertheless, determinate maximum and 

minimum of Sum (i, j) at node (i, j) is considered the previous nodes by different types 



 22 

of branches.  

Example 3.3 In figure 3.2, Sum (i, j) of nodes A、B、D are: 

A node : (2, 2) { 3}
B node : (2,1) { 1, 2}
D node : (2,0) {1,0, 1}

Sum
Sum
Sum

= −
= − −
= −

 

Node C is the child of these nodes, so Sum (3, 1) calculated by equation (3.6) is 

following: 
' ' '( (2, )) 1 ( (2, )) 1,  (3,1) {0,1,2}

( (2,2)) 1 ( (2,0)) 1
4 0

(3,1) {0, 1, 2, 3, 4}

Min Sum j x Max Sum j x Sum j
Min Sum x Max Sum

x
Sum

− ≤ ≤ − ∈ ∈
⇒ − ≤ ≤ −
⇒ − ≤ ≤
∴ = − − − −

 

Follow equation (3.6), we can get the Max(Sum(i, j)) and Min(Sum(i, j)) at each 

node from figure 3.3:  
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Figure 3.3 An Example of the Maximum and Minimum Summation of Each 
Node. The unit of x-axis is period time and unit of y-axis is the spacing between interest rate on the 

preliminary tree; ( M, m ) represents that M is the maximum and m is the minimum summation number 

of spacing rate.  

    When the maximum and minimum summation of each node is determinated, the 
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number of possible path in each node is also known. For instance, ( M, m ) at node (3, 

2) where at time 3 tΔ and inverse rate 2 R− Δ  is (-3,-5) which means that the node (3, 

2) has three kinds of negative summation of number of spacing rate. It is following: 

 (3,2) { 3, 4, 5}Sum = − − −  

Consequently, as the summations of node, Sum (i, j), and adjustments of Hull-White 

tree iα  calculated, the coupons without the article of freeze at zero in each node 

could be given and the next stage will solve the problem of non-negative coupons.  

Second stage: Check that the coupons at each node are non-negatives 

Continuously, the problem of non-negative coupons would be solved by the 

following two steps. There are two situations we must adjust the states of coupons. 

One phenomenon is that the previous coupon is positive but present coupon becomes 

negative. Therefore, the first step is to eliminate the states with negative coupons for 

the article of freeze on zero coupons. The other phenomenon is how to find the 

maximum and minimum of Sum (i, j) at present nodes when the precious coupons are 

reset to zero coupons. The second step would be introduced to solve this 

circumstance.    

The First Step: Eliminate the states with negative coupons.  

    We define the lower bond of integers of each period such that the maximum and 

minimum summations which are larger than those integers would enable positive 

coupons of each node. The mathematical description is 

 
1

  . .   ( ) 0  α
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i
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k
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Then solution of the lower bond of integers in each period is 
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α α
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i i

S S
k k

R R
            (3.7) 

where ki is to eliminate the states with negative coupons in i-th period. If the elements 
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in Sum (i, j) less than or equal to that integer in the period, it means that resetting 

coupon rate to zero is in node (i, j).  

Take the example from figure 3.3 with the condition for non-negative coupons, if 

the node has a situation of resetting coupon rate to zero, there is a symbol of 0* in  

(M, m) of that node. Supposing the node is (0*,0*), it means that the maximum 

summation is less the lower bond. That is to say, there is only one case of coupon rate 

in that node and the coupon rate is zero. 
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Figure 3.4 Adjust the Maximum and Minimum Summation of Each Node in the 

First Step of Second Stage.  

    Assume the estimation of 2 2= −k  from equation (3.7), the maximum and minimum 

summations of node (2, 2) is (-3,-3) where touch the lower bond of integer, so as (-1,-2) at node (2, 1). 

Thus, (-3,-3) changes to N(0*,0*) where 0* is a symbol of a reset coupon rate in that node.  

    From figure 3.4, the coupons of node (2, 2) and node (2, 1) are  
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where ,i jC  is the set of all kinds of coupon rates at node (i, j). Moreover, there 

(a) (b) 
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are M-m+1 kinds of coupon rates in (M, m) and M-m+2 kinds of coupon rates in (M, 

m, 0*) which can be seen in figure 3.4 and figure 3.6. 

The Second Step: Adjust the sates with previous zero coupons 

We define the reset integers of each period,δi,j, such that change the present 

coupon value to the form of maximum and minimum summations at this time where 

the previous coupon is reset to zero. The mathematical description is 

 , , ,
1

, ,

  . .   ( )

  z ( + ) =( S )

δ α δ

α α
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∃ ∈ − + Δ ≈

= − − − Δ
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i

i j k k i j i j
k

i j i i i j i i

Z s t S R z

where S f j R
 

where ,i jz  is the coupon at node (i, j) before freeze at zero article and its previous 

coupon is zero. Then solution of the reset integers of each node is 
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i
k kk

i j

S j R
R
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=
⎢ ⎥− + Δ
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Δ⎢ ⎥⎣ ⎦

∑                  (3.8) 

    Take the same example from figure 3.4 and do the first stage method to create 

the maximum and minimum of negative summation of number of spacing rate in the 

Hull-White preliminary tree in i=3 period. After that, change present coupon which 

the previous coupon is reset to zero to the form of maximum and minimum of 

summation in figure 3.5 by the equation (3.8). 
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Figure 3.5 Adjust the Maximum and Minimum Summation of Each Node in the 

Second Step of Second Stage.  

    From equation (3.7), assume the estimations of 3,3 7δ = − , 3,2 6δ = − , 3,1 5δ = − . The maximum 

and minimum summations of node (3, 3) is calculated by type-(A) in first stage, so it has only reset 

coupon in the node and change summation into (-7,-7). About node (3, 2) calculated by type-(B), the 

maximum summation is from the maximum one of node (2, 1) and the minimum summation is from 

the minimum one of node (2, 2) which has zero coupon rate, in this case, its minimum at node (3, 2) is 

3,2δ . Hence we can analogize the all node in third period. 

  

After the first and second stages are completed, the determination of Sum (i, j) is 

built in figure 3.6 and the formula for coupons at node (i, j) is following: 

,
1
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C Sum i j S x R x Z Sum i j  
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Figure 3.6 Maximum and Minimum Summation of Each Node in 

Forward-Tracking Method.  

    The maturity is i=5, the example is the same from figure 3.3 to figure 3.5. Assume the value of 

principal and the cost of redeeming snowball notes are $1. The numbers of coupon rates is -2-(-5) +2=5 

according to (-2, -5, 0*) at node (4, 2) and the set of coupon rates at node (4, 2) is following: 

4,2
1 1 1 1

{0,  ( ) 2 ,  ( ) 3 ,  ( ) 4 ,  ( ) 5 }
i i i i

k k k k k k k k
k k k k

C S R S R S R S Rα α α α
= = = =

= − − Δ − − Δ − − Δ − − Δ∑ ∑ ∑ ∑

 

Furthermore, the next stage is to evaluate the Snowball bonds from formula (3.2) and 

early redemptive time is considered in equation (3.4). 

Third stage: Pricing the value by backward-tracking method 

    In this segment, the third stage is divided from two parts. One is how to discount 

the bond value with redemptive article; the other one is to use linear interpolation 

method when the discounted node has the situation of resetting zero coupons. 

The First Step: Price the bond value of snowball notes 

    Suppose coupons at node (i, j) are built in figure 3.6, the equation (3.2) and (3.4) 
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for pricing snowball value can be rewritten as:  

, , ( )
, 1

{ , , } , 1
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i j
C C Sum i j j a

−
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(3.9) 

where ( , , ( ))D i j Sum a  is the discounted snowball note value and Ci,j,sum(a) is the 

coupon fixed at node (i, j) and its summation situation is a times spacing between 

interest rate in Hull-White tree; ( , , ( ))B i j Sum a  is the snowball value at node (i, j) 

with redemptive article and ( 1, , ( ))k kB i j Sum a+ is the snowball value at node (i+1, jk) 

which is the child of node (i, j)  ; C is the coupon paid at node(i, j) and fixed at 

node(i-1, j*) which is the parent of node(i, j) with Sum(i-1,j*)-j equal to a. 

    Choice of the following probability kP  and discounted nodes of up, median and 

down are according to the styles of branch in figure 2.3 and its following: 

 
( ) ( )
( ) ( )
( ) ( )

u u

m m

d d

Sum a Sum a j
Sum a Sum a j
Sum a Sum a j

= −
= −
= −

 

However, there is a problem when discounted bond value with its summation 

situation 0* in pricing snowball process. Thus, we will give examples to price 

snowball note value by equation (3.9) and linear interpolation method in next step. 

The Second Step: Interpolation of coupons in discounted process 

    In corroding to simplify algorithm, we take the integer value to approach the 

reset coupon in second stage, thus we use linear interpolation method to find actual 

the discounted coupons. Given two examples from figure 3.6 which one must use 

interpolation method in figure 3.7(b) and the other one is without this character in 

figure 3.7(a). 
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Figure 3.7 Two Examples for Discounted Process.  

    One case is the discounted process of (3,1, ( 4))D Sum −  and the other case is the discounted 

process of (3,2, (0*))D Sum  which the coupon rate is reset to zero at node (3, 2). Moreover, assume 

the lower bond of integers is 4 5k = −  by equation 3.7 and the reset 

integers 4,3 5δ < − , 4,2 5δ < − , 4,1 5δ < −  by equation 3.8.  

 

    On one hand, in the case of (3,1, ( 4))D Sum − at node (3, 1), its tree is a type-(a) in 

figure 2.3. Hence its according discounted nodes are from node (4, 2), node (4, 1), and 

node (4, 0), and corresponding summations are 
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the solution is rewritten by 
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From equation (3.9), the bond value of (3,1, ( 4))D Sum −  at node (3, 1) which its 

parents are node (2, 0), node (2, 1), and node (2, 2) is following: 

*
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and the solution of probabilities is type-(a) solution in Hull-White tree. 

(a) (b) 
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    On the other hand, in the case of (3,2, (0*))D Sum at node (3, 2), its tree is also 

type-(a) in figure 2.3. Hence the children of node (3, 2) are node (4, 3), node (4, 2), 

and node (4, 1). Because of its zero coupons in node (3, 2), the coupons of these 

discounted nodes are following the equation (3.1): 

, ,  max( ( + ) ,0)  i j i i i jS f Rχ α= − Δ                 (3.10) 

where χi,j is actual coupon at node (i, j) with the previous coupon reset to zero. 

    Hence, we must check the actual coupons in these nodes for formula (3.10). 

Assume at node (4, 3) and node (4, 2), the actual coupons are also reset to zero with 

previous coupon reset to zero; nevertheless, the actual coupon at node (4, 1) is 

positive. We must use interpolation method to find the actual discounted value in node 

(4, 1) because its actual coupon is positive. It is following 

4,1, ( 5)                                              C :  Actual reset coupon at node(4,1)

[ (4,1, ( 5)) (4,1, (0*))] :[Actual bond value at node(4,1) (4,1, (0*))]
Sum

B Sum B Sum B Sum
−

= − − −
 

The solution of actual discounted value is 

 
4,1, ( 5)

Actual bond value at node(4,1)
Actual reset coupon at node(4,1)*[ (4,1, ( 5)) (4,1, (0*))] (4,1, (0*))

Sum

B Sum B Sum B Sum
C −

− −
= +

(3.11) 

where 4,1, ( 5)SumC −  is the coupon rate of Sum (-5) at node (4, 1), and the illustration to 

explain this method is in figure 3.8. 
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Figure 3.8 The Example of Interpolation Process from Figure 3.7 (b).  
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    Assume actual coupon rate is 0.0003664, the coupon rate at Sum (-5) is 0.00125, and as we 

known 0* means that coupon rate is 0. Therefore, the actual discounted value from node (4, 1) could be 

calculated by equation (3.11).From equation (3.9), the discounted value of (3,2, (0*))D Sum  is 

following: 
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and the solution of probabilities is type-(a) solution in Hull-White tree. 

 

    We can use this linear interpolation method to find the actual bond value at the 

reset node (4, 1), and so on. After the procedure of third stage, the determination of 

variables in backward-tracking is built and snowball value at all nodes are known. 

3.2.2 Creating Proper Recursive Steps for Pricing Snowball Based on Hull-White 

Trinomial Tree 

    General programs will be introduced in this segment and the proper recursive 

steps would be provided for pricing snowball based on Hull-White trinomial tree. 

1. Determine the nodes of Hull-White tree described in chapter 2.3.1, and then the 

preliminary tree is build and becomes the foundation stone of constructing 

Snowball state variables.  

2. Determine the states of coupon variable in Snowball contract by first and second 

stages in chapter 3.2.1. The technological process is that do the first stage for a 

start and then do first way of second stage in the first period of the tree; in the 

second period, do the first stage again, continuously do second way of second 

stage, and final do first way of second stage to check the variables in this period; 

moreover, the nodes in forward period, do recursive steps like the second period 
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and so on. 

3. Determine the states of bond value variable by third stage in chapter 3.2.1. Pricing 

the discounted bonds usually use the method in first part of third stage, and using 

second part of third stage only when the node has reset coupon.  

4. Implement the programming of three steps above. 

5. Evaluating snowball notes on i-th period could be reduced to original general 

programs. 
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4. Numerical Experience of Pricing Snowball Notes 
 
    The algorithm for pricing snowball notes is discussed in last chapter. Firstly, give 

the example of snowball contract from Bank SinoPac. Moreover, following this 

contract, the results in simulation and sensitivity analysis of pricing would be 

explained the associations between parameters in Hull-White term structure model 

and price, and influence of redemptive article, tendency of zero rate curves and 

spreads designed on snowball price. Finally, we will estimate parameters about mean 

reversion, volatility of Hull-White model, and coefficients of zero rates function from 

equation (2.24) to price snowball contract which Bank SinoPac issues. 

 

4.1 An Example of Snowball Contract 

    Given a contract of snowball note issued by Bank SinoPac which par value 

equals $ 10,000,000, and the contract could be redeemed with par value after the third 

year. The coupon is paid quarterly and the general form for i-th quarter coupon is   

 ( ) ( ( -1) ( ) -  ( ))Coupon i Coupon i Spread i Floating rate i += +  

where the floating rate in this contract is fixing rate of 90 days CP and each coupon 

rate is illustrated in table 4.1. 
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Table 4.1 Coupons of Ten Years Snowball Bond.  

    Cn, i means that coupon rate at i quarter of n year. Notes that the floating interest rate (FR) is the 

fixing rate of 90 days CP; if i-1=0, Cn, i-1= Cn-1, 4 for n=1…10, i=1..4.  

Year Coupon rate (Cn,i ) 

1 C1,i=3%, i=1,2,3,4 

2 C2,i=C2,i-1+1.40%-FR2,i 

3 C3,i=C3,i-1+1.65%-FR3,i 

4 C4,i=C4,i-1+1.90%-FR4,i 

5 C5,i=C5,i-1+2.15%-FR5,i 

6 C6,i=C6,i-1+2.40%-FR6,i 

7 C7,i=C7,i-1+2.65%-FR7,i 

8 C8,i=C8,i-1+2.90%-FR8,i 

9 C9,i=C9,i-1+3.15%-FR9,i 

10 C10,i=C10,i-1+3.40%-FR10,i 

4.2 Simulation and Analysis of Pricing 

    We will continuously analysis influence of the parameters of Hull-White model, 

spreads designed and zero rates on snowball price with contract in section 4.1. There 

are many figures in this section to particularly explain the associations between 

sensitivity of parameters and snowball price. 

4.2.1 Sensitivity to mean reversion of Hull-White model  

    We will discuss how mean reversion parameter influence snowball price. In 

Figure 4.1, we can observe that if mean reversion increases, the price of snowball 

notes decreases as volatility equals 0.006, especially with non-redeemable contract.  
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Figure 4.1 Snowball Price vs. Mean Reversion. 

    The volatility is 0.006, par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp 

(-1.316*t). There is negative association of price and mean reversion. Because issuers of snowball 

notes with non-redeemable contract can not call back the bond to hedge loss when its price move up, 

the price with non-redeemable contract is more than with redeemable contract.  

 

There is negative relationship between mean reversion and price in figure 4.1. At 

low mean reversion, that is to say, the higher and the lower interest rates would not 

quickly back to long-run average level, so it is possible to maintain low interest rates 

at low market short rates and get more profit because of inverse rate property on the 

coupons of snowball contract. Moreover, the discounted factor also rises at low 

interest rate, so the bond value would increase. Although it is possible to maintain 

high interest rates at low mean reversion, non-negative coupon contract would protect 

against price of snowball failing down violently. Only decrement of bond price results 

from low discounted factor at high interest rate. Hence, there is a negative association 

between mean reversion and price.        
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4.2.2 Sensitivity to volatility of short rate  

    Next, we discuss relationship between volatility of short rate and snowball price. 

In figure 4.2, we can observe that if volatility increases as mean reversion equals 

0.005, the price of snowball notes increases, especially with non-redeemable contract. 

 

Figure 4.2 Snowball Price vs. Volatility of Short Rate. 

    The mean reversion is 0.005, par value is $1 and zero rate function is rate (t) 

=0.02363-0.007314*exp (-1.316*t). There is positive association of price and volatility. Because 

issuers of snowball notes with non-redeemable contract can not call back the bond to hedge loss when 

its price move up, the price with non-redeemable contract is more than with redeemable contract.  

 

There is positive relationship between volatilty and price in figure 4.2.At high 

volatility of Hull-White model, that is to say, the change of interest rate is violent, so 

it is possible to become high interest rates at low market short rates or low interest 

rates at high market short rates. Thus, non-negative coupon contract would protect 

against price of snowball failing down violently at previous high market rates and get 

profit of coupons at present low market rates because of high volatility. Figure 4.3 
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shows this phenomenon and could explain the detail clearly. 

 

Figure 4.3 Snowball Price without Redemption Article.  

    The par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp (-1.316*t). In all 

different lines, they could obviously display the positive association between price and volatility. 

Resulting from the negative relation between price and mean reversion, the line with bigger mean 

reversion moves up slowly, oppositely, the line with smaller mean reversion moves up rapidly.   

 

Combine the influence of mean reversion and volatility of short rate on 

non-redeemable snowball price in figure 4.3, the relation between these parameters 

and price consists with results in figure 4.1 and 4.2. With regard to price with 

redeemable snowball contract, most profit of coupons bond holder get is in the first 

three year because of issuer redeeming contract to protect the loss from more coupon 

payments on low market rates. Therefore, the price of redeemable Snowball notes 

would not move up rapidly than non-redeemable snowball price even volatility 

increasing and this phenomenon is showed in Figure 4.4.  
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Figure 4.4 Snowball Price with Redemption Article.  

    The par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp (-1.316*t). 

Tendencies of all different lines are the same as Figure 4.3. If the price too higher, the issuer would 

redeem the contract and this snowball note would be concealed. Therefore, price dose not reach $1 or 

more.  

 

Hence, there is a positive association between volatility and price without redemptive 

article but not obvious in redeemable snowball contract. Furthermore, in 

non-redeemable condition, if mean reversion is big enough, the negative association 

of mean reversion and price would eliminate some positive association of volatility 

and price. 

4.2.3 Sensitivity to spread of snowball contract 

    Moreover, we would discuss how spreads influence snowball price in Figure 4.5.  
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Figure 4.5(a) Snowball Price with Redemptive Article vs. Spreads. 

 

Figure 4.5(b) Snowball Price without Redemption Article vs. Spreads.  

    The par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp (-1.316*t). In graph 

(a), the price with twice spreads of snowball contract issued by Bank SinoPac in chapter 4.1 is larger 

than with one and half. However, it is not very distinct than graph (b) because redemptive article could 

make issuers to hedge loss. Moreover, in graph (b), even the price of non-redeemable snowball contract 

with half spreads is more than the price of redeemable snowball contract with origin spreads (shot 

dotted line).  
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Issuers may lose a lot for higher spreads of snowball contracts. However, the 

change of price in figure 4.5(a) is not more conspicuous than figure 4.5(b) even the 

price of non-redeemable snowball contract with half spreads of snowball contract 

from section 4.1 is more than the price of redemptive article with origin spreads. That 

is to say, the effective way to hedge snowball price is redemptive article, not how to 

contract spreads.  

 

Figure 4.6 Snowball Price with Half Spreads vs. Mean Reversion.  

    The par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp (-1.316*t). With 

half spreads of snowball contract issued by Bank SinoPac, the redeemable price in situation of high 

mean reversion is low enough for not redeeming the contract, thus non-redeemable price would 

converges to redeemable price when mean reversion increases.   

 

    In figure 4.6, the negative relationship between price and mean reversion would 

influence on redeeming contract. In high mean reversion, the snowball price with 

redemption article may be low enough for not redeeming the contract. Thus, 

non-redeemable price would converges to redeemable price when mean reversion 
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increases. If mean reversion is large enough, the snowball price with redemption 

article maybe equal to non-redeemable price.     

4.2.4 Sensitivity to interest rates of zero curves  

    In this section, we will compare the snowball contract in chapter 4.1 in situations 

of different zero rates. Figure 4.7 is showed the high zero rate and the low zero rate 

which we take different parameters in equation (2.27).  

 

Figure 4.7 Zero Curves.  

    The two lines come from the same equation (2.27) which is  ( ) * btzero rate t a e c−= + . The 

parameters of high rate curve (dotted line) is a=-0.05, b=0.18, c=0.08 and low rate curve (real line) is 

a=-0.007314, b=1.316, c=0.02363. 

 

As we known, the interest rates would take great effect on coupons because of 

inverse interest rate property of snowball notes. Figure 4.8 explains that under the 

same spreads, non-redeemable snowball price at low market rates is more than at high 

market rates. Moreover, even without redemptive article, price at high market rates is 

less than with redeemable contract at low rates.  
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Figure 4.8 Snowball Prices vs. Different Zero Rates.  
    The prices with different zero rate curves are according to the figure 4.7. Real lines are the price 

with non-redeemable snowball contract and dotted line is with redeemable snowball contract. 

 

Figure 4.9 Snowball Prices with High Zero Rates vs. Volatility of Short Rate.  
    The prices in both lines are very low because in high zero rates, most coupons may be reset to 

zero and decrement of discounted factor makes bond value diminish. The prices don’t increase unless 

volatility of Hull-White model is big enough. 

 



 43 

In Figure 4.9, because in high zero rates, most coupons may be reset to zero and 

decrement of discounted factor make bond value diminish, the redeemable and 

non-redeemable snowball price are very low and the price would increase unless 

volatility is big enough. To conclusion, if the issuers forecast the wrong tendency of 

interest rate and contract unsuitable spreads, they may be subjected to loss.   

4.3 Estimation of parameters 

    There are two steps for estimating parameters: one is to find the coefficients of 

zero rate function; the other is to calibrate the mean reversion and volatility in 

Hull-White model. 

4.3.1 Zero rate function 

    We take Hull-White zero rate equation (2.27) and use curve fitting tool of Matlab 

toolbox to find the coefficients of term structure function  

 * bta e c− +  

where t means time of year. The observation of zero rates today is in table 4.2 and 

illustration figure 4.10 shows fitting coefficients.  



 44 

Table 4.2 An Example of Zero Rates.  
    The zero rates for ten years from 2006/3/1 could be observed.   

Maturity 

(year) 
Zero rates 

Maturity 

(year) 
Zero rates

Maturity

(year) 
Zero rates

Maturity 

(year) 
Zero rates

0.25 1.5160% 2.75 1.9420% 5.25 2.1466% 7.75 2.3572%

0.5 1.5900% 3 1.9678% 5.5 2.1691% 8 2.3744%

0.75 1.6505% 3.25 1.9898% 5.75 2.1918% 8.25 2.3917%

1 1.7115% 3.5 2.0118% 6 2.2145% 8.5 2.4090%

1.25 1.7497% 3.75 2.0339% 6.25 2.2372% 8.75 2.4264%

1.5 1.7880% 4 2.0561% 6.5 2.2601% 9 2.4439%

1.75 1.8264% 4.25 2.0730% 6.75 2.2830% 9.25 2.4614%

2 1.8649% 4.5 2.0900% 7 2.3059% 9.5 2.4790%

2.25 1.8905% 4.75 2.1070% 7.25 2.3230% 9.75 2.4966%

2.5 1.9162% 5 2.1241% 7.5 2.3401% 10 2.5143%

 

 

Figure 4.10 A Curve Fitting of Zero Rate Function.  

    The fitting coefficients are a=-0.01269, b=0.1475, c=0.02761 with 95% confidence bounds 

where SSE= 3.418e-006, R-square=0.9916. 
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In order to decrease errors, we use directly the observable zero rate from 

Table 4.2 to calibrate parameters of Hull-White model in section 4.3.2.  

4.3.2 Calibration of mean reversion and volatility 

    In the first place, as zero rates known in Table 4.2, the forward rate could be 

calculated by  

 
1 1 1 1

1 1
1

1

(0, ) ( , ) ( , )(0, )

(0, ) (0, )
( , )

( , )

q qiq q iq q q q

iq q iq q
q q

q q

r t i F i i t i ir t i

r t i r t i
F i i

t i i

e e e− − − −

− −
−

−

−
⇒ =

=
 

where i qr  is q-th quarter zero rate of i-th year, (0, )qt i  is time from present to q-th 

quarter of i-th year, and 1( , )q qF i i−  is forward rate from q-1 to q quarter of i-th year. 

    In the second place, with variable volatilities of caplet on different strike rate 

observed in the market like table 4.3, we can compute each cap price in table 4.4 by 

Black’s formulas (2.22)  
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Table 4.3 Market caplet volatilities.  

    Each value is percentage of volatilities with different strike rates from 2006/3/1 to 2009/11/27. 

Strike rate 1.5% 2.5% 3.5% 4.5% 

2006/6/1 8 8 8 8 

2006/8/31 8 8 8 8 

2006/11/29 8 8 8 8 

2007/3/5 8.538594 8.360483 8.321068 8.314355 

2007/6/1 9.065219 8.712955 8.635001 8.621724 

2007/8/30 9.603813 9.073438 8.956069 8.936078 

2007/11/29 10.14839 9.437926 9.280704 9.253926 

2008/3/4 11.1357 10.14639 9.837004 9.778085 

2008/6/2 12.12301 10.85486 10.3933 10.30224 

2008/8/29 13.08838 11.54759 10.93724 10.81475 

2008/11/27 14.07569 12.25605 11.49354 11.33891 

2009/3/4 14.81617 12.97623 12.06952 11.85515 

2009/6/2 15.55665 13.69641 12.6455 12.37139 

2009/8/31 16.29713 14.41659 13.22149 12.88762 

2009/11/27 17.02116 15.12076 13.78467 13.39239 
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Table 4.4 (a) Caplet Price from 2006/6/1 to 2009/11/27.  
    The caplet price from Black’s formula is shown below.  

Strike rate 1.5% 2.5% 3.5% 4.5% 

2006/6/1 0.000416 0 0 0 

2006/8/31 0.000683 3.58E-14 0 0 

2006/11/29 0.000989 3.41E-09 0 0 

2007/3/5 0.000993 6.95E-08 9.18E-18 0 

2007/6/1 0.001176 1.53E-06 1.97E-13 0 

2007/8/30 0.001364 1.04E-05 9.90E-11 5.62E-17 

2007/11/29 0.001545 3.58E-05 5.69E-09 9.22E-14 

2008/3/4 0.001441 4.27E-05 2.61E-08 3.05E-12 

2008/6/2 0.00156 8.68E-05 2.53E-07 1.99E-10 

2008/8/29 0.001687 0.000149 1.34E-06 4.30E-09 

2008/11/27 0.001814 0.000228 4.78E-06 4.38E-08 

2009/3/4 0.001802 0.000265 8.96E-06 1.55E-07 

2009/6/2 0.001904 0.00035 1.96E-05 6.28E-07 

2009/8/31 0.002014 0.000446 3.73E-05 1.97E-06 

2009/11/27 0.002124 0.000549 6.33E-05 4.96E-06 

Table 4.4 (b) Cap Price of maturities 1,2,3,4 years.  

    The cap price could be calculated by table 4.4(a); for example, the one year cap of strike rate 

1.5% is summation of caplets from 2006/6/1 to 2006/11/29, namely, one year cap of strike rate 

1.5%={0.000416+0.000683+0.000989}=0.0020879. All caps are computed by the same way. 

Strike rate 1.5% 2.5% 3.5% 4.5% 

1 year 0.0020879 3.41E-09 0 0 

2 year 0.00716633 4.79E-05 5.79E-09 9.23E-14 

3 year 0.0136686 0.000555042 6.41E-06 4.83E-08 

4 year 0.0215128 0.00216609 0.000135513 7.76E-06 
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Nevertheless, we can sum up cap price of different maturity and compare with 

cap price which pricing caplet as a put option on a zero coupon bond (2.24) by 

Hull-White equation (2.20).  

In order to find adapted mean reversion and volatility of Hull-White model, we 

Use summation of square error (SSE) method to find the coefficient  

2

, , 1
min min ( )

σ σ
=

= −∑∑
n

ki kia a k i
SSE U V  

 {1.5%,2.5%,3.5%,4.5%}k∈  

where k is strike rate, n is maturity date, ikU  is the market cap price from Black’s 

formula and ikV  is the price of cap given by the Hull-White model. 

    The optimal parameters of mean reversion and volatility are 0.014485 and 

0.004596. The cap price from Hull-White model with optimal parameters is showed 

in table 4.5.  

Table 4.5 Cap Prices of maturities 1,2,3,4 years from Hull-White Model. 

    The caplet is calculated by Hull-White equation and the way to compute cap price is the same as 

table 4.4(b). 

Strike rate 1.5% 2.5% 3.5% 4.5% 

1 year 0.002331 3.20E-05 6.50E-09 4.96E-15 

2 year 0.007852 0.000599 8.94E-06 1.79E-08 

3 year 0.01489 0.002012 9.27E-05 1.24E-06 

4 year 0.023215 0.00435 0.000373 1.32E-05 

    Moreover, the total fitting consequence of cap price is in figure 4.11. There are 

caps of 1, 2,3,4,5,7,10 years’ maturities and four kinds of strike rates. 
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Figure 4.11 Consequence of Calibration for Parameters of Hull-White Model. 

    The optimal estimated parameters are that mean reversion equals 0.014485 and volatility of 

Hull-White model equals 0.004596. The minimum summation of square error (SSE) is 7.80133e-005. 

The dotted lines above are cap price of different strike rates calculated by Hull-White model with 

optimal parameters and real lines are calculated by Black formula.  
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5. Conclusions and Future Work 

    We provide a numerical approach method to price sophisticated snowball notes. 

Firstly, take Hull-White short rate model as a basic of term structure combined with 

trinomial tree. Secondly, construct the state variables of coupons and price in 

snowball notes. Finally, snowball price can be calculated by backward induction and 

linear interpolation method. 

    In the sensitivity analysis, we find that the parameters of Hull-White model have 

significant influence on snowball price. On the one hand, there is negative association 

between price and mean reversion of Hull-White model, and on the other hand, price 

and volatility of Hull-White model have positive relation. It is also important about 

contracting spreads of Snowball notes because of its positive relation to Snowball 

price. Moreover, the effective way to hedge snowball price is redemptive article 

which could protect issuers from losing a lot by using lower price to redeem contracts. 

    In the future, we maybe use different interest rate models to pricing snowball 

notes and compare with Hull-White tree model in this thesis. Moreover, we also could 

extend the algorithm of this thesis to price other sophisticated interest rate derivatives 

by the same term structure.   

 

    

 

 
 
 
 
 
 
 



 51 

References 
Bender, C., A. Kolodko, and J. Schoenmakers, 2005, “Iterating Snowballs and related 

path dependent callables in a multi-factor Libor model.” Working Paper 

Black, F., 1976, “The Pricing of Commodity Contracts.” Journal of Financial 

Economics, 3, 167-179 

Black, F., and P. Karasinski, 1991, “Bond and Option Pricing When Short Rates Are 

Lognormal.” Financial Analysts Journal, 52-59 

Brace, A., D. Gatarek, and M. Musiela, 1997, “The Market Model of Interest Rate 

Dynamics.” Mathematical Finance, 7, no. 2, 127-155 

Brennan, M. J., and E. S. Schwartz, 1982, “An Equilibrium Model of Bond Pricing 

and a Test of Market Efficiency.” Journal of Financial and Quantitative Analysis, 

17, no. 3, 301-329  

Cox, J. C., J. E. Ingersoll, and S. A. Ross, 1982, “A Theory of the Term Structure of 

Interest Rates.” Econometrica, 53, 385-407 

Health, D., R. Jarrow, and A. Morton, 1990, “Bond Pricing and the Term Structure of 

Interest Rates: A Discrete Time Approximation.” Journal of Financial and 

Quantitative Analysis, 25, no. 4, 419-440  

Health, D., R. Jarrow, and A. Morton, 1990, “Bond Pricing and the Term Structure of 

Interest Rates: A New Methodology.” Econometrica, 60, no. 1, 77-105   

Ho, T. S. Y., and S.-B. Lee, 1986, “Term Structure Movements and Pricing Interest 

Rate Contingent Claims.” Journal of Finance, 41, 1011-1029 

Hull, J. and A. White, 1990, “Pricing Interest Rate Derivative Securities.” Review of 

Financial Studies, 3, no. 4, 573-592 

Hull, J. and A. White, 1993, “Bond Option Pricing Based on a Model for the 

Evolution of Bond Prices.” Advances in Futures and Options Research, 6, 1-13 

Hull, J. and A. White, 1993, “The Pricing of Options on Interest Rate Caps and Floors 



 52 

Using the Hull-White Model.” Journal of Financial Engineering, 2, no. 3, 

287-296 

Hull, J. and A. White, 1994, “Numerical Procedures for Implementing Term Structure 

Model I：Single Factor Models.” Journal of Derivatives, 2, 7-16 

Hull, J. and A. White, 1996, “Using Hull-White Interest Rate Trees.” Journal of 

Derivatives, 26-36 

Hull, J. and A. White, 2000, “Forward Rate Volatilities, Swap Rate Volatilities, and 

the Implementation of the LIBOR Market Model.” Journal of Fixed Income, 10, 

no. 2, 46-62 

Jamshidian, F., 1977, “LIBOR and Swap Market Models and Measures.” Finance and 

Stochastics, 1, 293-330 

Kijima, M. and I. Nagayama, 1994, “Efficient Numerical Procedures for the 

Hull-White Extended Vasicek Model.” Journal of Financial Engineering, 3, 

275-292  

Miltersen, K., K. Sandmann, and D. Sondermann, 1997, “Closed Form Solutions for 

Term Structure Derivatives with Lognormal Interest Rates.” Journal of Finance, 

52, no. 1, 409-430  

Vasicek, O. A., 1977, “An Equilibrium Characterization of the Term Structure.” 

Journal of Financial Economics, 5, 177-188 

 
 



 53 

Appendix A 
Derive caplet as a put option of zero-coupon bond  
    At time kt , Caplet value which is paid at time 1kt +  is following:  
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Because kΔ and _R capK  are constants, we can change the formula of caplet into 

following equation: 
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Consider S is the underlying value at time kt and capK  is a strike price of a put 

option where the underlying is a zero-coupon bond which maturity is 1kt + .  
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Appendix B 
Derive floorlet as a call option of zero-coupon bond  
    At time kt , floorlet value which is paid at time 1kt +  is following:  
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1 R floor k
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where 
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Because kΔ and _R floorK  are constants, we can change the formula of floorlet into 

following equation: 
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where  
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Consider S is the underlying value at time kt and floorK  is a strike price of a call 

option where the underlying is a zero-coupon bond which maturity is 1kt + .  
 
 


