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ABSTRACT

In this paper, a novel polynomial-time pricing algorithm based on Hull-White term
structure model_Is introduced for- pricing. ‘snowball. notes. Snowball notes are
sophisticated inversing floating rate- bonds with path-dependent coupons, freeze at
zero and redemption articles. Because of no.proper closed form of Snowball notes, we
must use numerical approach by .trinomial tree structure to price these bonds.
Although there is:another way to solve complex-derivatives via Monte Carlo method,
it is hard for pricing'bonds with both path-dependent coupons and redemption articles.
Compare with the advanced interest rate model, LIBOR market model (BGM model),
its defect is hard to calculate the complexicoupon of interest rate derivatives. Thus, we
take simple interest mode, Hull-White short rate term structure, to be the base for
pricing sophisticated Snowball notes. Furthermore, numerical experiments and
sensitivity analysis are given to show the behaviors of relationship between price and
parameters (spreads, zero curves and parameters of Hull-White term structure model)

according to the contract issued by Bank SinoPac.

Keywords: Snowball Notes; Hull-White Model; Trinomial Tree.
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1. Introduction

1.1 Setting the Ground

Snowball notes are such complicated interest rate swaps, not only for the
property of path-dependent, but also for the property of redeemable style bond. About
models of evaluating bond prices, there are many kinds of interest rate models which
could be classified as equilibrium models of short rate models, no-arbitrage models of
short rate models, and forward rate models. These would be explained in the next
chapter.

This thesis purpose’ Is using uncomplicated “interest. rate model, Hull-White
model, constructing a general method; modeling-and pricing complicated Snowball
notes. Compare with LIBOR market model.(BGM model), it.can price interest rate
derivatives by observation of market forward rates; and use Least-Square approach
provided by Longstaff and Schwartz to solve American style options. Nevertheless,
the weakness of BGM model is_hard to calculate the complex coupon of interest rate
derivatives and the shortcoming ' of Least-Square approach 'is need for many
regression variables.-Thus, we. take simple interest short rate.model to solve complex
swaps.

Because of no proper closed form of Snowball notes, this study uses numerical
approach by tree models combined with state variables. Although there is another way
to solve complex derivatives via Monte Carlo method, it is hard for pricing options
with both path-depend and American style options. A systematic approach is
constructing data structures and algorithms for pricing; the idea would be showed by
illustrations; the parameters of Hull-White model would be calibrated by observable
market value of interest rate caps. Moreover, the thesis would demonstrate efficient of

pricing date.



1.2 Structures of the Thesis

This study divides from five segments: To begin with chapter one, it is
introduction of this thesis. In the second place, it introduces common financial
knowledge about derivatives and reviews some interest rate models; description of
Snowball notes is also among the interest rate swaps of this chapter. Then, we will
talk about how to implement a computer program for pricing Snowball notes and next

chapter will put into practice, simulation and analysis. Finally, we will discuss results,

make conclusion and sugge



2. Fundamental Concepts
This chapter introduces common financial knowledge about derivatives and
review of some interest rate models, especially focusing on interest rate derivatives

and models and Snowball is also described among them.

2.1 Reviews of Interest Rate Models

This segment is introduction of interest rate models which class as standard
market models, equilibrium models of short rate models, no-arbitrage models of short
rate models, and forward rate models.
2.1.1 Standard Market Models

The significaht assumption is that the underlying such as intérest rate derivatives
are following log-normal, for examples, Black’s model assumes that the underlying
bond price islog-normal at the option’s maturity in the case of a European bond
option. Therefore we can use Black’s.model to evaluate commaodities such as caps or
floors introduced in section 2.2:2.
2.1.2 Equilibrium Models

Equilibrium models withrassumptions about economic variables derive a process
for the short rate r which follows like geometric Brownian motion but has the
character of mean reversion. That is to say, interest rates appear to be pulled back to
some long-run average level and this phenomenon is known as mean reversion. This

segment will introduce subsection of these kind models.



Interest
A rate

\HIGH interest rate has negative trend

________________ Reversion

Level
/

Figure 2.1: Mean Reversion.

ow interest rate has positive trend

.
>

Time

When interest rate r is high, mean reversion tends to cause it have negative trend down to
reversion level; When r is low, mean reversion tends to"cause it have positive trend up to reversion
level.
Vasicek Model

In Vasicek’s model, interest rate r 1S supposed to follew

dr=a(b-r)dt+odz (2.1)

where mean reversiona, reversion levelb, and volatility o are constants. But its
weakness is that.interest rate.could be“negative. In this model, Vasicek shows that the

general pricing form of zero-eoupen bond which pays $1 at time T.can be shown:

P(t,T)=A(t,T)e ®"® (2.2)
where
Ta-a(T-t)
B(t,T) =1QT (2.3)
2 2 2 2
A(LT):eXp[(B(t,T)—T +t2(a b-o’/2) o’B(t.T) ] 2.4)
a 4a
CIR Model

To improve Vasicek’s model, Cox, Ingersoll, and Ross have proposed CIR model

where r is always non-negative. This model is
dr =a(b—r)dt + o+/rdz (2.5)

and it has the same general form of bond prices in Vasicek’s model. But its A(t, T) and



B(t, T) are different:

y(T-t)
B(t,T)=— & =1 (2.6)
(7+a)(e7( )—1)+2;/
2 e(a+7)(T—t)/2 ab/o?
AT) =[ Y 2 (2.7)

(y+a)e ™V -1 +2y
where y=+a’+20° .

2.1.3 No-arbitrage Models

Although equilibrium models have mean-reverting properties, their disadvantage
is that they can not fit today’s term structure of interest rate. Thus, no-arbitrage
models come into being. No-arbitrage models not only contain the property of
equilibrium models but also can be consistent with. today’s. observation of market
interest rate because of today’s termsstructure as an input.
Ho-Lee Model

The first model of no-arbitrage models is:Ho-Lee model which is shown

dr =6(t)dt + odz (2.8)

where @(t) is a'function of time chesen-to-ensuresthaisthe model fits the initial term
structure and it Isrelative tor the instantaneous forward rate. The relevance to

instantaneous forward rate Is
a(t) = F (0,t)+ ot (2.9)
where F, (0,t) is the instantaneous forward rate for maturity t as seen at time zero

and subscript t denotes a partial derivative with respect to t.

Moreover, the price of zero-coupon bond at time t can be expressed as

P(t,T) = A(t,T)e " (2.10)
where
. POT) — . 0InPOt) 1 , . .
InA(t’T)_In—P(O,t) (T t)—6t 20 (T -t) (2.11)

Hull-White Model



The other no-arbitrage model is Hull-White model which is extension of the

Vasicek model that provide an exact fit to the initial term structure. The model is

following
dr =[4(t) —ar]dt + odz (2.12)
or
dr = a(?— r)dt+odz

where a and o are constants and the function of 4(t) can be calculated from the

initial term structure:
2
g(t)=F (0,t)+aF (0,1) +‘2’—a(1—e*2a‘) (2.13)

Moreover, it hasithe same general form of bond prices in Vasicek’s model, but it's

B(t,T) is different:

P(t,T) = A(t, T)e B¢r® (2.14)
where
_ aa(T-t)
BET) =% (2.15)
a
and
P(O'T) 8P(Olt) 1 2 r~—al —at\2 s42at
INA{X,T)=In—""22B(t,T)—~>———g°(e ~¢ e” -1 2.16
t.T) P(O) ()6t 4a30( ) ( ) (2.16)

Furthermore, at time zero, the ‘price 'of ‘a call option that matures at time T on a

zero-coupon bond maturing at time s can be expressed as
LP(0,s)N(h)-KP(0,T)N(h-0o,) (2.17)
where L is the principal of the bond, K is its strike price,

1. LP©Os) o,
S e
o, KPOT) 2

p

(2.18)

and



_ -2aT
o, = Z[l-eCT] e (2.19)
a 2a

The price of a put option on the bond is

KP(0,T)N(~h+0,)~LP(0,5)N(~h) (2.20)

This thesis would take the Hull-White model as the basis of pricing structure
because of its adaption of today’s term structure of interest rate and more flexible than
the Ho-Lee model. The volatility structure in the Hull-White model is determined by
both a and o, so it represents a wider range of volatility structure than Ho-Lee

model. The volatility at time t of the'price of a Zere-coupon bond maturing at time T is
E(l—e_a(T_t))
a

and the instantanéous Standard deviation at time t of the zero=Coupon interest rate

maturing at time'T is

(o2
a(T -t)

(1_ e—a(T —t) )

and the instantaneous standard deviation of the T-maturity instantaneous forward rate

is oe @Y,

2.1.4 Forward Rate Models

There are two typical forward rate models: one.is HIM 'model which develops in
terms of instantaneous forward rates; the other one is BGM model or LIBOR market
model which expresses in terms of the forward rates. Both of them have the properties
of variable volatility and non-Markov processes, therefore they cannot presented as
recombining tree but be implemented by Monte Carlo simulation.

2.2 Derivatives Basics

There are some popular financial derivatives and the detailed description of
Snowball notes within this segment. In this section, it includes payoff of bond option
and interest rate derivatives, closed form of some popular commodities and

expression of some complex interest rate swaps.
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2.2.1 Bond Basics

Most bonds provide coupons periodically and at maturity the owner receives the
principal or face value of the bond. The theoretical price of a bond can be calculated
at the present value of all cash flows using zero rates as discount rates. The zero rate
(zero-coupon rate) at year n means that the rate of interest earned on an investment
that start today and lasts for n years. Thus, the expression of present value of the
zero-coupon bond for maturity t years is

P(0,t) =g "

where r, means the zero rate at.t years.

Therefore, considering the bond which has coupon ci .at time t(i) in Figure

2.2 is following:

F
Payment C]_ Cz C3 Cn—2 Cn—1 Cn

A
Time: 0 t(1) [i(2) (8 ... tn-2) tin-1l), t.)

Figure 2.2 An Example of Coupon Bond.

The coupon bond is that paying coupon Ci at time t(i)s and. notional principal F at

maturity.

And the bond value is expressing
B= Zn:c(i)P(O,t(i)) + FP(0,t(n)) (2.21)
i1
2.2.2 Interest Rate Derivatives Basics
In this section, only focus on valuation of popular interest rate derivatives which
we need in this thesis and explain to their properties.

An interest rate cap or floor is a floating-rate note where the interest rate reset

periodically equal to LIBOR; the time between resets is known as the tenor; the



payoff does not occur on the reset date but occurs at the days of tenor later, for
instance, if the life of cap or floor is one year, the reset dates are at times 0.25, 0.50,
0.75 years and payment dates are at times 0.50, 0.75, 1.00 years. In other words, they
have the property of delayed payoff. Cap and floor are designed to provide insurance
against the rate of interest on the floating-rate note; cap is insurance for note rising
above a certain level and floor is insurance for note falling down a certain level.
Define:

T. : Total life of cap and floor
Ke cp : Cap rate
Kz oo - FlOOITatE
i Interest rate for period between time t,and t, ,
AK @ Period time,Ak = t, ., — t,

L Principal

The payoff-of capletat time ¢, Is

Caplet = LAkmax(r —Kg ..,,0)
and the payoff of floorlet at time™ t gmis
Floorlet = LAk max(Kg o0 —1,:0)

In one hand, both of.them can be assumed asa partfolio of interest rate options.
Therefore, each payoff of caplets or floorlet'can be priced by Black’s formulas form.

The value of caplet is given as
LAkP(O’tku)[Fk N (d1) - KR_Cap N (dz)] (2-22)
where F, isthe forward rate for the period timet, andt, ,, and

4 - IN[F, /Ky el + 0t 12
1 O'k\/a
d, =d1—0k\/5

The value of the corresponding floorlet is




LAkP(Ovtk+1)[KR_ floor N (_dZ) - Fk N (_dl)]

_In[F/ KR_roor]+O-k2tk /2 (2.23)
O'k\/a
d, =d1—0k\/a

In the other hand, both of them can be assumed as a portfolio of bond options.

d,

Caplet is a put option of zero-coupon bond which the strike price is K and the

underlying value is S as following:

1+K, o AK)Lmax(K_ —S,0) (2.24)

R_cap cap

And floorlet is a call option of zero-coupon bond which thestrike price is K, and
the underlying value 1s S as following:
1+ Ky oo AK)LMaX(S — Koo, 0) (2.25)
where
S= .
1+ 1 AK
1
Kcap S E————
1+ Ky Ak
1
Kﬂoor =
1+ KR_floorAk

and the derivation of equations (2.24) and (2.25) would be provided in Appendix.
2.2.3 Complex Interest Rate Swaps

Some interest rate swaps containing embedded options cause difficult pricing of
these complex derivatives, so it is hard to find closed forms of them. In this issue, we
consider some commonly encountered these kinds of swaps.
Quanto IRS

Quanto IRS is an interest rate swap which two different interest rates are

involved on the same notional principal, ex. fixed rate vs. floating rate, floating rate vs.

10



floating rate or change of two different maturity LIBOR rates. At maturity, the parties
of Quanto IRS would pay the value of the appointed coupon rate multiplied by the
principal to each other and do not involve in notional principal. This Swap has the
character that currency of coupon rates can differ from currency of principal.
Redeemable Range Accrual Notes

Redeemable range accrual note is a swap that’s the property of American style
option which issuer can call back the notes; its interest on one side accrues only when
the floating reference rate is within a certain range. Sometimes the range remains
fixed during the entire life,of the. contract; sometimes it is reset periodically. At
maturity date, the payoff-is that the proportion of accumulated days to range life of
contract multiplies the reference rate and principal. Thus, the more times of interest
rate dropping in‘the range, the more profit.
Snowball Notes

Snowball is*a Kind of inverse floating rate bond which the present payment of

coupon rate is relevant of last coupensratermtdsually=itshas constant coupon rate in first
year; begin to the second year, the current coupon is given by,the previous coupon
plus a spread minus a‘reference-index, floored at 0%. So Snowball notes have the
character of path-dependent payment of coupon such as Asian style option; the lower
reference indexes, the more coupons over time, just like snowball rolls more and
bigger. Oppositely, if the higher reference indexes, the fewer coupons over time, the
Snowball will “melt away”. This thesis’ purpose is to solve this problem and the
example of Snowball contract will be given at chapter four.
2.3 Pricing Methods
2.3.1 A General Tree Building Procedure for Hull-White Model

This tree structure is a good approach for constructing no-arbitrage short rate

models of Hull-White model. This approach, making use of the trinomial tree, is

11



appropriate for models where there is some function x of the short rate r that
follows a mean-reverting arithmetic process. The key element of this process is that
it produces a tree that is symmetrical about the expected value of x . There are three

types of sub-trees, illustrated at Figure 2.3, for the tree building procedure.

Figure 2.3: Alternative Branching for Hull-White Tree.
Assume the length for each time stepiis At  and the variance for ‘each:time step is o . We can

set the size of the interest rate step, Al at spacing between interest rates on'the tree, AR = o+/3At.

Then the tree can be built by the following two steps.

First stage: building a preliminary tree

Setting €(t) “1n (2.13) and the initial value of r at.zero suggest the following
equation:

dR" =—aR'dt +odz (2.26)

Building an interest rate tree for (2.26) is the goal for first stage. This can be
illustrated an example. Define (i, j) as the node where t=iAt and R = jAR;
denote probabilities of three branches as P,, P, and P, which must be positive
and less than one; summation of them is one. The calculated probabilities depend on
types of sub-trees.
Figure 2.3(a)

The probabilities must satisfy the following equations: first is expected value

equation; second is about variance equation; finally, it is a basic equation of

12



probability.

P, AR — pyAR = —ajARAt
P, AR® + p,AR? = 6’ At +a’ j*AR*At?
P, + P, + Py =1

Therefore, solution to these equations is

P, =%+%(a2 j?AL — ajAt)

Figure 2.3(b)

Three equa

and the solution

1 2.2 2 -
=—4+—(a"|J°At” +ajAt
-6 2( .J

7

_ 1/ 20,00 .
P, _E+§(a j*At” +3ajAt)

Figure 2.3(c)

Three equations of type-(c) are

-p,AR—-2p, AR = -ajARAt
P, AR? +4p,AR? = ¢°At +a’ j*AR*At?
Pyt Pnt+ Py =1

and the solution of these equations is

13



AR YRR .
pu_€+5(a jPAt* - 3ajAt)

P, = —%—azjzAt2 +2ajAt

P, :%+%(a2 j°At” — ajAt)

To make sure that probabilities are always positive, the restrain of j must

satisfies:

-0.184 <j< 0.184
aAt aAt

A sample tree constructed by this step is illustrated in Figure 2.4.

Node. A B C D E F G H 1

R 0.000% 1.732% 0.000% -1.732% 3.464% 1.732% 0.000% -1.732% -3.464%
pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667.0.2217 "0.0867
pm_r 0.6666 0:6566 0.6666 0.6566 0.0266 0.6566-0.6666 0.6566 0.0266
pd 0.16670.2217:0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Figure 2.4: A Simple Trinomial Tree for the Hull-White Model.

Parameters set as follows,a = 0.1, o =0.01and At =one year.

Second stage: calibration with the real term structure
Fitting today's term structure is the main goal of this stage. The exact method for
this problem can be provided by Hull and White. Assume the term structure function

today is

14



0.08—0.05¢ (2.27)
and the interest rate tree being calibrated is illustrated in Figure 2.3. Obviously, the

average interest rate for the first period can be obtained by taking t =iAt in equation

(2.27). Denote ¢; is a moving up adjustment of period at time iAt; Q,; means that

the value of paying $1 at node (i, j), and otherwise paying nothing; the price of a

zero-coupon bond maturing at time iAt us given by P known by today’s term

structure function (2.27) and bond basic in chapter 2.2.1. Thus, ¢, can be calculated

by recursive formulas:

Ny ~jARAt
H Inzj}nm Q, €~ b i,

(04
4 At

Because of

Pra=2 10 Qn; XP[ (e + IAR) AL]

where n_ is the number of-nodes oneach side of the-central node at time mAt. And

then Q,; could bedetermined as

Quirii= 2eQuia(k, j)exp[ - (ap +kAR) At |
where q(k, j) is the probability of moving from node (m, k) to node (m+1, j) and the
summation is taken over all values of k for which this is nonzero. After two stages,

the complete Hull-White tree model is built as Figure 2.5.
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Node A B C D E F G H |

R 3.824% 6.937% 5.205% 3.473% 9.716% 7.984% 6.252% 4.520% 2.788%
pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm 06666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Figure 2.5: Calibration with Today’s Term Structure for the Hull-White Tree.
The basic tree structure is not changed; the node in;the same period would push up the same

increment, but the increments of each period are different.

2.3.2 Calibration

Up to know, the mean reversion and volatility in Hull-White maodel are constants.
The goal of this section is-described how to estimate the parameters of this model.
This is known as.calibrating the modet.

As we knowginterest rate cap,could be-characterized as a portfolio of put options
on zero-coupon bond from equation (2.24), so it can bepriced by Hull-White (2.20).
Moreover, cap can be assumed as a portfolio of interest rate options from equation
(2.22). Thus, we can compare the cap value of the market observation data and
formula (2.22) with the estimated value by Hull-White model, to find the suitable

mean reversion and volatility. A popular goodness-of-fit measure is
min SSE =min > (U, -V,)’
a,o a,o i

where U, isthe market price and V; is the price given by the Hull-White model.
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3. Combine of Pricing Tree with State Variables of Snowball Notes

In this chapter, a novel polynomial-time pricing algorithm based on the
Hull-White term structure model is introduced for pricing snowball notes. First, we
will describe snowball price and coupons variables, and then analysis these variables
at different nodes in Hull-White trinomial tree. Next, we construct the state variables
for non-negative coupons, and furthermore the redeemable snowball is then priced by
a numerical approach and linear interpolation method for freeze on zero coupons
article. Finally, we would introduce a proper recursive steps for pricing snowball
notes.
3.1 Discuss State Variables of'Snowball Price and Coupons
3.1.1 Forward-Tracking Method on Snowball Notes

Consider a'snowball contract illustrated ‘in figure'3.1: The coupon of i-th period
paid in next period is following:

Coupon(i) =[Coupon(i-1) +-Spread (i) - Floating rate(i)]

At maturity, issuers would pay-the couponsfixed=inslast:period and notional principal F.
Significantly, consider the freeze on zero coupons article; the-coupon rate must be

non-negative.

F
Payment C, C C, C3 C., C.4
Spread s s, 5 Sn2 Sha '
Time 0 t1) t2 t3) .. tn2) tn1) tn)
Float rate "0)r(1) r@2) r@) rn-2) r(n-1) r(n)

Figure 3.1 Snowball Notes.
The spread rate at time t(i) is S; and the coupon Ci determined at time t(i) is paid at t(i+1); the
floating interest rate from time t(i) to time t(i+1)is denoted r(i), and the face value is paid at maturity

date t(n).
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The coupons of snowball notes can be showed by the following recursive

formula:

c_ C, ifi=0
' |max(C,_, +S, —r(i),0) ow.

Consider floating rate r(i) as short rate based on Hull-White tree in figures 2.4
and 2.5 ,and then r(i) can be divided into the rate of node (i, j) of the preliminary tree
in figure 3.2 and the moving up adjustment of the i-th period «;, both of them

defined in chapter 2.3.

st 1)) node(4,0)
O G
node(4,-1)
node(4,-2)
node(2,-2) /
&N
node(3,-3) node(4,-3)

Figure 3.2 States of Rate Variables in Hull-White Preliminary Tree.
The node (i, j) is the state of rate variables in Hull-White preliminary tree from figure 2.4. The

node (i, j) means that at time iAt , the rate is JAR , where AR = o+/3At .

Define the node is child of node (i, j) if it connects to node (i, j) in i+1 period and

the node is parent of node (i, j) if it join to node (i, j) in i-1 period. For example, in
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figure 3.2, nodes A ~ B ~ D are the parents of node C and nodes E ~ F ~ G are children
of node C. Therefore, the recursive formula for coupon rates at node (i, j) in figure 3.2

can be expressed as

max(} (S, ~ &)~ f, AR 0)if Yk<m<i, C,, >0;j = jif k=i
C = K i X | (3.1)
max(C, + > (S, —a) - f; AR 0) if Vl<m<i, C,, 20;j, = jif k=i
k=1 k=1

m,jn
where C,; is all kinds of coupon rates at node (i, j) and f, ; AR is the rate at node

(k, j) which is the child of node (k-1, jk.1) and the parent of node (k+1, jk+1).
Example 3.1 Given a path { node (0, 0)-> node (1, 1) -> node (2, 0) -> node (3, 1)}
which is a kind of coupon sequence in C3; and suppose in the path, the coupons of

C11 and C, o are non-negative, thenithe coupon at node (3, 1)'in this case is

3 3 3
max(C, + > (S, =) — > . AR ,0)=max(C,+ > (S, ) {1+ 0+1)AR ,0)
k=1 k=1 k=1
&
=max(C, + > (S; — o) —2AR ,0)
k=1

3.1.2 Backward-Tracking Methed
Combine bond basic from eguation. (2.21) and-figure 2.2 with Hull-White tree,

we can get the snowball price at node (i, j) following:

B, 1) ={FIB(+1 J O e AlR)* A RAALTATs )

where Ci.1j« is the set of coupon in node (i-1, j*) which is the parent of node (i, j), B
(i+1, jk, C) is the set of snowball price at node (i+1, jx) which is the child of node (i, j)
with coupon C in i-1 period and coupon max(C +S, —¢, — JAR,0) in i period.
Because of lattices method to price Snowball, so we take discrete time method of
discount factor, for instance, in equation (3.2), the discount factor from time i to time

i+1 at node (i, j) is:

1 1
Lr()*(t, —t) 1+ (e + f, AR)*(t,,, —t,)

(3.3)

i+1
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Example 3.2 Following the path in example 3.1, the bond value at node C with its
children nodesE ~ F ~ G is

1
+C
1+ (e, +1*AR)(t, —t;)
2
where C=C,+ > (S, - )-1*AR , j, €{0,1,2}
k=1

E[B(4, },,C)I*

where C is the coupon at node (2, 0) in this path and the coupon at node (3, 1) is
3
max(C, + Y (S, — ) —2AR ,0)
k=1

In order to solve redemption article of snowball notes, assume redemptive cost is
constant in the contract, redeem Snowball notes if thefellowing condition is satisfied:

B> (C,... +C), BeB(i, j) with some-Ce Ci—l,j* (3.4)

bacl

where C,. is the cost of redeeming Snowball bond and B is the, Snowball value at
node (i, j) with,eoupon C in i-1 period and Ci:1 j~ denoted in equation(3.2).

Usually, forsholders, the early exercise time-to call back is when:the bond value is
less than callable value. However, redeemable bond. is that issuerean buy back the
bond. Thus, in an issuer position, the early. redemption time with coupon payment
delayed is when bond value is more than the value of redemptive cost plus coupon
fixed in i-1 period.

3.2 Numerical Approach to Snowball'Notes

Here we will discuss a numerical approach to Snowball notes, provide an
algorithm of forward and backward-tracking method, and create proper recursive
general steps to pricing Snowball notes in the cause of the implement in next chapter.
We simply suppose Co equals zero in examples of this section.
3.2.1 Construct States Variables of Snowball Price and Coupon

In this segment, there are three stages to construct the state variables of coupon

rates in each node (i, j). To start with, in order to evaluate coupons from equation (3.1),
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we compute negative summation of number of spacing between interest rate without

freeze at zero article,fz f.,» in the Hull-White preliminary tree. Next, consider the

freeze at zero coupon article, the negative coupons should be eliminated and adjust
the states of coupon variables with previous zero coupons. Lastly, for articles of
redemptive and freeze on zero coupon, we introduced back-ward tracking and linear
interpolation method to price snowball notes.
First stage: building the maximum and minimum of negative summation of
number of spacing rate in the Hull-White preliminary tree without freeze at zero
article

Sum (i, j) is depoted as the negative summation. of number.of spacing rate which
final rate is the rate at node (i, J) without.the article of freeze at zero in the Hull-White
preliminary tree:

sum(i, j) ={y-=j 1y € Sum(i=1, j') at node(i =L, j:) which is the parents of node(i, )|
Sum(0,0) =0

(3.5)

and equation (3.5) satisfies the following formulas:
c=> (S, —a,)+¥AR, x.& Sum(i, j)
k=1

X = —kz_l: foir :—kz_; foir = T =¥ fig; | forsomey e Sum(i-1 i) (3.6)

Min(Sum(i-1,j)) - f,, <y-f; <Max(Sum(i-1,j)) - f,,

Ly

S Min(Sum(i-1, j)) - f, ; < x<Max(Sum(i-1, j)) - f, |

S
where ¢ is one case of coupons at node (i, j) without the article of freeze at zero and
node (i, j) is the child of node (i, j’).

Therefore, focus on the maximum and minimum of negative summation of
number of spacing rate at each node, the all possible negative summation of number
of spacing rate at node could be known. Nevertheless, determinate maximum and

minimum of Sum (i, j) at node (i, j) is considered the previous nodes by different types
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of branches.

Example 3.3 In figure 3.2, Sum (i, j) of nodes A ~ B ~ D are:

A node : Sum(2,2) ={-3}
B node : Sum(2,1) ={-1,-2}
D node : Sum(2,0) ={1,0,-1}

Node C is the child of these nodes, so Sum (3, 1) calculated by equation (3.6) is

following:
Min(Sum(2, j))-1< x < Max(Sum(2, j)) -1, xe Sum(3,1) j €{0,1,2}
= Min(Sum(2,2))—1< x < Max(Sum(2,0)) -1
= -4<x<0
-.Sum(3,1) ={0,-1,-2,=3,-4}
Follow equation (3:6), we can get the Max(Sum(l, j)) and Min(Sum(i, j)) at each

node from figure 3.3:

(10°10) (10,14

-4 1 | Maximum and minimum l
(-6,-6 (-61-9) 5,-13)
wn -3+
©
8 (-3.-9/(—3?%,-8) Mi2)
S o —
«Q
(o
@
: -
3
S (0,
5 0
<
@
® 1
5
[0}
o 2
aQ
8 3 -
o
= a4

i
2
Period of interest rate (i)

Figure 3.3 An Example of the Maximum and Minimum Summation of Each
Node. The unit of x-axis is period time and unit of y-axis is the spacing between interest rate on the

preliminary tree; ( M, m) represents that M is the maximum and m is the minimum summation number

of spacing rate.

When the maximum and minimum summation of each node is determinated, the
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number of possible path in each node is also known. For instance, ( M, m) at node (3,
2) where at time 3At and inverse rate —2AR is (-3,-5) which means that the node (3,
2) has three kinds of negative summation of number of spacing rate. It is following:
Sum(3,2) ={-3,-4,-5}

Consequently, as the summations of node, Sum (i, j), and adjustments of Hull-White
tree ¢; calculated, the coupons without the article of freeze at zero in each node
could be given and the next stage will solve the problem of non-negative coupons.
Second stage: Check that the coupons at each node are non-negatives

Continuously, the problem. of non-negative coupons would be solved by the
following two steps. There are two situations we must adjust the states of coupons.
One phenomenondis.that the previous coupon IS positive but' presént coupon becomes
negative. Therefore, the first Step is to eliminate the states with negative coupons for
the article of ‘freeze on zero coupons. The.other phenomenon is how to find the
maximum and‘minimum of Sum (i, |).at present nodes when the precious coupons are
reset to zero ‘coupons. The+s secondwstepmwouldbe introduced to solve this
circumstance.
The First Step: Eliminate the states with negative.coupons.

We define the lower bond of integers of eachiperiod such that the maximum and
minimum summations which are larger than those integers would enable positive

coupons of each node. The mathematical description is

Ik eZ st. Y (S,—a)+kAR=0

k=1

Then solution of the lower bond of integers in each period is

where k; is to eliminate the states with negative coupons in i-th period. If the elements
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in Sum (i, j) less than or equal to that integer in the period, it means that resetting
coupon rate to zero is in node (i, j).

Take the example from figure 3.3 with the condition for non-negative coupons, if
the node has a situation of resetting coupon rate to zero, there is a symbol of 0* in
(M, m) of that node. Supposing the node is (0*,0%), it means that the maximum
summation is less the lower bond. That is to say, there is only one case of coupon rate
in that node and the coupon rate is zero.

(@) (b)

4 T ‘ Maximum and minimum ‘ -4

— | Maximum and minimum ‘

-3 +— 3 -

o
o

([) are1 1s8181UI BSIBAUI UBBMIB] Buloeds
- .
|
|
Ji/<) |
([-) 1Rl 1S8I181UI 8SI9AUI USaMIa Buloeds

Period of interest rate (i) Period of interest rate (i)
Figure 3.4 Adjust the Maximum-and Minimum 'Summation of Each Node in the

First Step of Second Stage.

Assume the estimation of K, =—2 from equation (3.7), the maximum and minimum
summations of node (2, 2) is (-3,-3) where touch the lower bond of integer, so as (-1,-2) at node (2, 1).
Thus, (-3,-3) changes to N(0*,0*) where 0* is a symbol of a reset coupon rate in that node.

From figure 3.4, the coupons of node (2, 2) and node (2, 1) are

Coi ={k22;, (S —) - AR, kZZ;,(Sk —a,)—2AR}
C,. ={0}

where C,; is the set of all kinds of coupon rates at node (i, j). Moreover, there
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are M-m+1 kinds of coupon rates in (M, m) and M-m+2 kinds of coupon rates in (M,
m, 0*) which can be seen in figure 3.4 and figure 3.6.
The Second Step: Adjust the sates with previous zero coupons

We define the reset integers of each period, 65, such that change the present
coupon value to the form of maximum and minimum summations at this time where
the previous coupon is reset to zero. The mathematical description is

36,;€Z st. Zi:(Sk - )+, AR~ 7
k=1
where z,; =5, — (o +f ;) =(S;— ) - JAR

where z ; is the coupon atnode (i, J) before freeze at zero article and its previous

coupon is zero. Then solution of the reset integers of.each node is

- - l;_(Zkl(sk -, )+ jAR)J (3.8)

i AR

Take the same example from figure 3:4 and do the first stagesmethod to create
the maximum and minimum of negative summation of number of spacing rate in the
Hull-White preliminary tree in 1=3 period. After that, change present coupon which
the previous coupon s reset t0 zero to the form of -maximum and minimum of

summation in figure 3.5 by the equation (3.8).
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(0*.0*)/(-;-6)

([-) ayel 158J481UI BSIBAUI UBBMIB( Bulords
o
Q
I/

B L L3

2<
C

=)

1 -
, 3
, L )
6.6
| \O)
4__ Il } 1 Il il
I I [ | [
1 2 3 4 5

Period of interest rate (i)

Figure 3.5 Adjust.the Maximum and Minimum Summation.of Each Node in the

Second Step of'Second Stage.

From equation (3.7), assume the estimations of 955 =7, 03, = 6,037 =-5. The maximum
and minimum summations of node (3, 3) is calculated by type-(A) in first stage,‘so it has only reset
coupon in the node and change summationrintos(=7;=7)=Aboutmnode (3, 2) calculated by type-(B), the
maximum summation”is: from the maximum one of node (2, 1) and the minimum summation is from

the minimum one of node (2,°2) which has zero coupon rate,-in.this case, its minimum at node (3, 2) is

3., - Hence we can analogize the all'node in third period,

After the first and second stages are completed, the determination of Sum (i, j) is

built in figure 3.6 and the formula for coupons at node (i, j) is following:

C,; ={0 if0*esum(i, j), > (S, — &) — XAR Vx e Z A Sum(i, j)}
k=1
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Figure 3.6 Maximum ;and —Minimum Summation. of’ Each Node in

Forward-Tracking Method.

The maturityis i=5, the example is the same from figure 3.3 to figure 3.5. Assume the value of
principal and the ‘cost of redeeming snowball notes-are $1. The numbers of coupon rates is -2-(-5) +2=5

according to (-2, -5, 0%) at node (4, 2)rand;the'setof'couponrratesratnode (4, 2) is following:

C.. =10, iZ(Sk_ak)_ZARl Zi:(sk—ak)—BAR, Zi:(sk—ak)—4AR, Zi:(sk—ak)_5AR}

Furthermore, the next stage is to evaluate the Snowball bonds from formula (3.2) and
early redemptive time is considered in equation (3.4).
Third stage: Pricing the value by backward-tracking method

In this segment, the third stage is divided from two parts. One is how to discount
the bond value with redemptive article; the other one is to use linear interpolation
method when the discounted node has the situation of resetting zero coupons.
The First Step: Price the bond value of snowball notes

Suppose coupons at node (i, j) are built in figure 3.6, the equation (3.2) and (3.4)
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for pricing snowball value can be rewritten as:

1 . .
C . face value) * f DAt = matur
. Cuasmin BT ARy, | ey
D(i, j,Sum(a)) = ) (3.9)
PB(i+1 j.,Sum(a ))* O.W.
k:{uz,m:,d} “ o UM, 1+ (o5 + T AR * (L, )

B, j, Sum(a)) ={min(D(, j, Sum(a)), 1) +C; VCe{C,, .- Sum(i-1, j*)— j=a}}
where D, j,Sum(a)) is the discounted snowball note value and Cijsum@ IS the
coupon fixed at node (i, j) and its summation situation is a times spacing between
interest rate in Hull-White tree; B(i, j,Sum(a)) is the snowball value at node (i, j)
with redemptive article and B(i +1, j,,Sum(a,)) is the snowball value at node (i+1, ji)
which is the child of node(i,;J) ; C is the coupon paid at node(i, j) and fixed at
node(i-1, j) which is the parent of node(i, j) with Sum(i-1,j*)-j equal to a.

Choice of the following probabtlity B, and discounted nodes of up, median and

down are according to the styles-of branch! in figure:2.3 and its following:
sum(a,) = Sum(a) - j,
Sum(a,,) =Sum(a)— j,,
sum(a,) = Sum(a) - j,

However, there isa problem when discounted hond value with'its summation
situation 0" in pricifig snowball process. Thus, we will give'examples to price
snowball note value by equation (3:9) and linear interpalation method in next step.
The Second Step: Interpolation of'couponsin discounted process

In corroding to simplify algorithm, we take the integer value to approach the
reset coupon in second stage, thus we use linear interpolation method to find actual
the discounted coupons. Given two examples from figure 3.6 which one must use
interpolation method in figure 3.7(b) and the other one is without this character in

figure 3.7(a).
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(@) | Summation in node(i,j) | (b) | Summation in node(i,j) |

i=1 =2
o* j=2 o* i=3
4 -5 =1 o* o* =2
-4 =0 (-5,0% |j=1
i=3 i=4 i=3 i=4

Figure 3.7 Two Examples for Discounted Process.

One case is the discounted process of D(3,1, Sum(—4)) and the other case is the discounted
process of D(3,2,Sum(0*)) which the coupon rate is reset toszero at node (3, 2). Moreover, assume

the lower bond of “integers is k,=-5 by  .eqguation. 3.7 and the reset

integers 6, 3 < -5, 0, 9< =5, 9,1 < -5 byequation 3.8.

On one hand, in the case of D(3,1,Sum(-4)) at node (3, 1), its tree is a type-(a) in
figure 2.3. Henee its'according discounted-nodes are from node (4, 2), node (4, 1), and

node (4, 0), and'corresponding summations-are
Sum(a,) = Sum(=4)—1j; ==4=2=-6 <Kk,
Sum(a,,) =Sum(-4)—j,=-4-1=+5
Sum(a,) =Sum(—4)— j, =-4=0=-4
the solution is rewritten by
Sum(a,) = Sum(0*)
Sum(a,) = Sum(-5)
Sum(a,) = Sum(-4)
From equation (3.9), the bond value of D(3,1,Sum(-4)) at node (3, 1) which its

parents are node (2, 0), node (2, 1), and node (2, 2) is following:
D(3,1, Sum(-4))
1
1+ (g +1*AR) * (t, —t5)
B(3,1, Sum(-4)) ={min(D(3,1,Sum(-4)), 1)+ C; VC {C, .: Sum(2, j*) ~1=-4,|"=0,1,2} }

= (P,B(4,2,5um(0%)) + P, B(4,1, Sum(=5)) + P, B(4,0, Sum(~4))) *

and the solution of probabilities is type-(a) solution in Hull-White tree.
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On the other hand, in the case of D(3,2,Sum(0*))at node (3, 2), its tree is also
type-(a) in figure 2.3. Hence the children of node (3, 2) are node (4, 3), node (4, 2),
and node (4, 1). Because of its zero coupons in node (3, 2), the coupons of these

discounted nodes are following the equation (3.1):
Zi; =max(S; — (¢ + £, ;AR) ,0) (3.10)

where  ijis actual coupon at node (i, j) with the previous coupon reset to zero.
Hence, we must check the actual coupons in these nodes for formula (3.10).
Assume at node (4, 3) and node (4, 2), the actual coupons are also reset to zero with
previous coupon reset to.zero; nevertheless, the actual coupon at node (4, 1) is
positive. We must use interpolation method to find the actual discounted value in node

(4, 1) because its;actual coupon is positive. It is following

C,15um(s) - Actual reset coupon at node(4,1)
=[B(4,1, Sum(-5)) — B(4,1, Sum(0*))] : [Actual bondvalue at node(4,1) - B(4,1, Sum(0*))]
The solution of actual discounted value is

Actual bond value at node(4,1)
_Actual reset coupon at node(4,1)*[B(4,1, Sum(-5)) = B(4,1, Sum(0*))]

C4,l, Sum(-5)

(3.11)

+B(4,1, Sum(0*))

where C,;¢mcs IS the.coupon rate of Sum (-5) at node (4, 1), and the illustration to

explain this method is in figure 3.8.
.
P

0*

0.0003664

Actual coupon rate

Coupon Rate at
Sum(-5), node=(4,1)

Figure 3.8 The Example of Interpolation Process from Figure 3.7 (b).
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Assume actual coupon rate is 0.0003664, the coupon rate at Sum (-5) is 0.00125, and as we
known 0* means that coupon rate is 0. Therefore, the actual discounted value from node (4, 1) could be

calculated by equation (3.11).From equation (3.9), the discounted value of D(3,2,Sum(0%)) is

following:

D(3,2,Sum(0%))
1

= (P,B(4,3,Sum(0%)) + P, B(4,2,Sum(0*)) + P,*Actual bond value(4,1)) *
(P,B(4,3,5um(0%)) + P, B(4,2, Sum(04)) + P, e P T Ve
B(3,2,Sum(0%)) ={min(D(3,2,Sum(0*)), 1) +C; VC e{C, i sum(2, j*)-2=0* j=1,2}}

and the solution of probabilities is type-(a) solution in HUH-White tree.

We can use thisilinear interpolation method,to find the actual bond value at the
reset node (4, 1), and 'so on. After the procedure of;third stage, the determination of
variables in backward-tracking is built and snowball.value at all nodes are known.
3.2.2 Creating Proper Recursive Steps for.Pricing Snowball Based on Hull-White

Trinomial Tree

General programs will be introduced-in this:segment and the proper recursive
steps would be provided for-pricing snowball based on Hull-White trinomial tree.

1. Determine the nodes of Hull-White tree described in chapter 2.3.1, and then the
preliminary tree is build and becomes the foundation stone of constructing
Snowball state variables.

2. Determine the states of coupon variable in Snowball contract by first and second
stages in chapter 3.2.1. The technological process is that do the first stage for a
start and then do first way of second stage in the first period of the tree; in the
second period, do the first stage again, continuously do second way of second
stage, and final do first way of second stage to check the variables in this period;

moreover, the nodes in forward period, do recursive steps like the second period
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and so on.

. Determine the states of bond value variable by third stage in chapter 3.2.1. Pricing
the discounted bonds usually use the method in first part of third stage, and using
second part of third stage only when the node has reset coupon.

. Implement the programming of three steps above.

. Evaluating snowball notes on i-th period could be reduced to original general

programs.

32



4. Numerical Experience of Pricing Snowball Notes

The algorithm for pricing snowball notes is discussed in last chapter. Firstly, give
the example of snowball contract from Bank SinoPac. Moreover, following this
contract, the results in simulation and sensitivity analysis of pricing would be
explained the associations between parameters in Hull-White term structure model
and price, and influence of redemptive article, tendency of zero rate curves and
spreads designed on snowball price. Finally, we will estimate parameters about mean
reversion, volatility of Hull-White model, and coefficients of zero rates function from

equation (2.24) to price snewball contract which Bank SinoPac issues.

4.1 An Examplegof Snowball Contract
Given a contract of snowball note issued by Bank SinoPacswhich par value
equals $ 10,000,000, and the contract could:be.redeemed with par value after the third
year. The coupon Is paid quarterly and the general form for i-th quarter coupon is
Caupon(i) = (Coupon(i -1)+ Spread(i) - Floating rate(i))"
where the floating rate in this contract is fixing rate of 90 days CP and each coupon

rate is illustrated in table 4.1.
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Table 4.1 Coupons of Ten Years Snowball Bond.

Cp, j means that coupon rate at i quarter of n year. Notes that the floating interest rate (FR) is the

fixing rate of 90 days CP; if i-1=0, Cp, j.1= Cp1 4 forn=1...10, i=1..4.

Year Coupon rate (Cp j )
1 C1,i=3%, i=1,2,3,4
2 C2,i=C2j-1+1.40%-FRy
3 C3,i=C3,j-1+1.65%-FR3
4 C4i=C4j-1+1.90%-FRy4 j
5 C5,i=Cs j-1+2:15%-FRs j
6 Ce,i=Ceg,i-1+2.40%-FRg i
7 C7,i=C7,i_1+2.65%-FR7,i
8 C8,i:C8,i-1+2-90%'FR8,i
0 C9,5=C9’i_1+3.15%-FRg,i
10 C10,i=C10,i-1+3-40%-FR10;i

4.2 Simulation and Analysis of Pricing

We will continuously analysis influence of the parameters of Hull-White model,
spreads designed and zerg rates-on snowball price.with contract in section 4.1. There
are many figures in this section to 'particularly “explain the associations between
sensitivity of parameters and snowball price.
4.2.1 Sensitivity to mean reversion of Hull-White model

We will discuss how mean reversion parameter influence snowball price. In
Figure 4.1, we can observe that if mean reversion increases, the price of snowball

notes decreases as volatility equals 0.006, especially with non-redeemable contract.
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Snowball Price vs. Mean Reversion

—callable contract - - -noncallable contract

1.4

1.2 r

Price

06 t

04 r

02 r

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Mean reversion
Figure 4.1 Snowball Pricevs. Mean Reversion.
The volatilityis 0.006, par valtueis $I-and zero'rate function isirate (t) =0.02363-0.007314*exp
(-1.316*t). There"is negative association of price and mean reversion. Because issuers of snowball
notes with non-redeemable contract can not call' back the bond to hedge loss when its price move up,

the price with non-redeemable contract is morethanwith-redeemable contract.

There is negative relationship between mean reversion and price in figure 4.1. At
low mean reversion, that is tosay, the higher and the lower interest rates would not
quickly back to long-run average level, so it is possible to maintain low interest rates
at low market short rates and get more profit because of inverse rate property on the
coupons of snowball contract. Moreover, the discounted factor also rises at low
interest rate, so the bond value would increase. Although it is possible to maintain
high interest rates at low mean reversion, non-negative coupon contract would protect
against price of snowball failing down violently. Only decrement of bond price results
from low discounted factor at high interest rate. Hence, there is a negative association

between mean reversion and price.
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4.2.2 Sensitivity to volatility of short rate

Next, we discuss relationship between volatility of short rate and snowball price.
In figure 4.2, we can observe that if volatility increases as mean reversion equals

0.005, the price of snowball notes increases, especially with non-redeemable contract.

Snowball Price vs. Volatility of Hull-White Model

—callable contract = - -noncallable contract

2
18 |
16 |
14 | e

12 t
b

08 |
06 f
0.4 f
02 f

0 1 1 1 1 1 1 1
0.0001 0.0011 0.0021 0.0031 00041 0.0051 0.0061 00071 00081 0.0091 0.0101

Volatility

Price

Figure 4.2 Snowball Price vs. Volatility of Short Rate.

The mean reyersion. is '0.005,: par value -is- $1;-and zero' rates function is rate (t)
=0.02363-0.007314*exp #(-1.316*t).. There is positive association' of price and volatility. Because
issuers of snowball notes with non-redeemable contract can not call back the bond to hedge loss when

its price move up, the price with non-redeemable contract is more than with redeemable contract.

There is positive relationship between volatilty and price in figure 4.2.At high
volatility of Hull-White model, that is to say, the change of interest rate is violent, so
it is possible to become high interest rates at low market short rates or low interest
rates at high market short rates. Thus, non-negative coupon contract would protect
against price of snowball failing down violently at previous high market rates and get

profit of coupons at present low market rates because of high volatility. Figure 4.3
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shows this phenomenon and could explain the detail clearly.

Snowball Price without Redemption Article
Face Value= $1, Mean Reversion(a)={0.1,0.15,0.2)

—*¥—a=0.1 ——a=0.15 --@- a=0.2

215 r

195 r

L7 r

1.5 r

Price

1.35 r

095 r

0-?5 1 1 1 1 1 1 1 1
0005 0006 0007 0008 0009 001 0011 0012 0013 0.014 0.015

Volatility of Hull-White Model

Figure 4.3 Snowball Price/without Redemption Article.

The par value is $1 and zero rate function is rate (t)»=0.02363-0.007314*exp (-1.316*t). In all
different lines, they could obviously display therpositive association between price and volatility.
Resulting from the negative relation: between=pricerand=mean=reversion, the line with bigger mean

reversion moves up slowly, oppositelysthe line with smaller mean reversion moves up rapidly.

Combine the influence "ofimean reversion and volatility of short rate on
non-redeemable snowball price in figure 4.3, the relation between these parameters
and price consists with results in figure 4.1 and 4.2. With regard to price with
redeemable snowball contract, most profit of coupons bond holder get is in the first
three year because of issuer redeeming contract to protect the loss from more coupon
payments on low market rates. Therefore, the price of redeemable Snowball notes
would not move up rapidly than non-redeemable snowball price even volatility

increasing and this phenomenon is showed in Figure 4.4,
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Snowball Price with Redemption Article
Face Value= $1, Mean Reversion (a)={0.1,0.15,0.2}

—x—a=0.1  —k—a=0.15 = —® -a=02

0.92
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0.88 |

087 r

0.86 |

0.85
0005 0.006 0007 0.008 0.009 0.01 0011 0012 0013 0014 0015

Volatility of Hull-White Model

Figure 4.4 Snowhall Pricejwith Redemption Article.

The par value is $1 and Zzero rate -function ‘is' rate"(t)' =0.02363:0.007314*exp (-1.316*t).
Tendencies of all"different lines are the same as Figure 4.3. If the price too higher, the issuer would
redeem the contract and'this snowball note would-be concealed. Therefore, price dose not reach $1 or

more.

Hence, there is a positive association between volatility and price without redemptive
article but not obvious in iredeemable snowball contract. Furthermore, in
non-redeemable condition, if mean reversion is big enough, the negative association
of mean reversion and price would eliminate some positive association of volatility
and price.

4.2.3 Sensitivity to spread of snowball contract

Moreover, we would discuss how spreads influence snowball price in Figure 4.5.
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Snowball with Redemption Article vs. Spread
Face Value = §1

—— Twice spread —B- - Half spread --#--One spread
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Figure 4.5(a) Snowball Price with Redemptive Article vs.'Spreads.
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Figure 4.5(b) Snowball Price without Redemption Article vs. Spreads.

The par value is $1 and zero rate function is rate (t) =0.02363-0.007314*exp (-1.316*t). In graph
(@), the price with twice spreads of snowball contract issued by Bank SinoPac in chapter 4.1 is larger
than with one and half. However, it is not very distinct than graph (b) because redemptive article could
make issuers to hedge loss. Moreover, in graph (b), even the price of non-redeemable snowball contract
with half spreads is more than the price of redeemable snowball contract with origin spreads (shot
dotted line).
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Issuers may lose a lot for higher spreads of snowball contracts. However, the
change of price in figure 4.5(a) is not more conspicuous than figure 4.5(b) even the
price of non-redeemable snowball contract with half spreads of snowball contract
from section 4.1 is more than the price of redemptive article with origin spreads. That
is to say, the effective way to hedge snowball price is redemptive article, not how to

contract spreads.

Snowball price vs mean reversion with vol. =0.006

—4—redeemable snowball (balf spread) —&— non-redeemable snowball (balf spread)
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4
4
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S:)
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0.05 0.1 0.15 02 0.25 0.3 0.35 0.4
mean reversion

Figure 4.6 Snowball Price with Half Spreads vs.-Mean Reversion.

The par value is $1 and zero ‘rate function is rate (t).=0.02363-0.007314*exp (-1.316*t). With
half spreads of snowball contract issued by Bank SinoPac, the redeemable price in situation of high
mean reversion is low enough for not redeeming the contract, thus non-redeemable price would

converges to redeemable price when mean reversion increases.

In figure 4.6, the negative relationship between price and mean reversion would
influence on redeeming contract. In high mean reversion, the snowball price with
redemption article may be low enough for not redeeming the contract. Thus,

non-redeemable price would converges to redeemable price when mean reversion
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increases. If mean reversion is large enough, the snowball price with redemption
article maybe equal to non-redeemable price.
4.2.4 Sensitivity to interest rates of zero curves

In this section, we will compare the snowball contract in chapter 4.1 in situations
of different zero rates. Figure 4.7 is showed the high zero rate and the low zero rate

which we take different parameters in equation (2.27).

Zero Curves

Low zero rate  — — High zero rate

0.08
007 F e
0.06 | _
0.05 t -

0.04 r -~

Zero Rate
\
\

0.03

0.02 ,/

0.01 r

Time (year)

Figure 4.7 Zero Curves.

Pic. The

The two lines come from the same.equation (2.27)-which is.zero rate(t) =a*e
parameters of high rate curve (dotted line)“is a=-0.05, b=0.18, ¢=0.08 and low rate curve (real line) is

a=-0.007314, b=1.316, ¢=0.02363.

As we known, the interest rates would take great effect on coupons because of
inverse interest rate property of snowball notes. Figure 4.8 explains that under the
same spreads, non-redeemable snowball price at low market rates is more than at high
market rates. Moreover, even without redemptive article, price at high market rates is

less than with redeemable contract at low rates.
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Snowball Notes with Mean Reversion 0.1 vs. Zero Curve

Noncallable with high rate ~-#~-Noncallable with low rate
=— = (Callable with low rate - -A- Callable with high rate

25 1

Price

0.005 0.006 0.007 0.006 0.009 0.01 0.011 0012 0013 0.014 0.015
Volatility of Hull-White Model

Figure 4.8 Snowball Prices vs. Different Zero Rates.
The prices withidifferent zero rate curvestare according to.the figure 4.7:7Real lines are the price

with non-redeemable snowball contract and dotted line is with redeemable snowball contract.

Price vs Vol. with Mean Reversion 0.01
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Figure 4.9 Snowball Prices with High Zero Rates vs. Volatility of Short Rate.
The prices in both lines are very low because in high zero rates, most coupons may be reset to
zero and decrement of discounted factor makes bond value diminish. The prices don’t increase unless

volatility of Hull-White model is big enough.
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In Figure 4.9, because in high zero rates, most coupons may be reset to zero and
decrement of discounted factor make bond value diminish, the redeemable and
non-redeemable snowball price are very low and the price would increase unless
volatility is big enough. To conclusion, if the issuers forecast the wrong tendency of
interest rate and contract unsuitable spreads, they may be subjected to loss.

4.3 Estimation of parameters

There are two steps for estimating parameters: one is to find the coefficients of
zero rate function; the other is to calibrate the mean reversion and volatility in
Hull-White model.

4.3.1 Zero rate function

We take Hull®White zero rate-equation (2.27) and use curvefitting tool of Matlab

toolbox to find the coefficients of term structure function
a*e™ +c
where t means time' of year. The observation of zero rates today Is'in table 4.2 and

illustration figure 4.10 shows fittingscoefficients:
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Table 4.2 An Example of Zero Rates.
The zero rates for ten years from 2006/3/1 could be observed.

Maturity Maturity Maturity Maturity

Zero rates Zero rates Zero rates Zero rates

(vear) (vear) (year) (vear)
025 |15160% ] 275 |1.9420% ] 525 |21466% | 7.75 |2.3572%
0.5 1.5900% 3 1.9678% 5.5 2.1691% 8 2.3744%
0.75 |1.6505% ] 3.25 |1.9898% ] 5.75 |21918% | 825 |2.3917%
1 1.7115% 3.5 2.0118% 6 2.2145% 8.5 2.4090%
1.25 | 1.7497% | 3.75 |2.0339%| .6.25 |22372% | 8.75 |2.4264%
1.5 1.7880% 4 2.0561% 6.5 2.2601% 9 2.4439%
1.75 | 1.8264%|. 4.25 | 2.0730%jy}sn6:75 5| 2.2830%7| 9.25 | 2.4614%
2 1.8649% 4.5 2.0900% { 2.3059% 9.5 2.4790%
225 | 1.8905% | 4.75 |[2.1070% | /.25 |2.3230% | 9.75 | 2.4966%
2.5 1.9162% 5 2.1241% 7.5 2.3401% 10 2.5143%

0.028

Analysis of fit "zero rate functioin” for zero rate at 2006/3/1

0.026 -

0.024 -

0.022 -

=
[}
[}

Fit Zero rate with 25% pred bounds

0.018 -

0016 Ly

zero rate functioin

95% prediction bounds

zero_rate vs. time

4
0.014
0

53

Tirne (year)

8 10

Figure 4.10 A Curve Fitting of Zero Rate Function.

The fitting coefficients are a=-0.01269, b=0.1475, ¢=0.02761 with 95% confidence bounds
where SSE= 3.418e-006, R-square=0.9916.
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In order to decrease errors, we use directly the observable zero rate from
Table 4.2 to calibrate parameters of Hull-White model in section 4.3.2.
4.3.2 Calibration of mean reversion and volatility
In the first place, as zero rates known in Table 4.2, the forward rate could be

calculated by
eriqt(O,iq) _ eriq_lt(o,iq_l)eF(iq_l,iq)t(iq_l,iq)
ot (0,,) — iy it (0, )
t(ig1.1,)

= F(i i) =

where 1. is g-th quarter zero rate of i-th year, t(0,i;) is time from present to g-th

quarter of i-th year, and to q quarter of i-th year.

In the second different strike rate
observed in the market like table 4 o ‘ ch cap price in table 4.4 by

Black’s formula

45



Table 4.3 Market caplet volatilities.

Each value is percentage of volatilities with different strike rates from 2006/3/1 to 2009/11/27.

Strike rate 1.5% 2.5% 3.5% 4.5%
2006/6/1 8 8 8 8
2006/8/31 8 8 8 8

2006/11/29 8 8 8 8

2007/3/5 8.538594 8.360483 8.321068 8.314355

2007/6/1 9.065219 8.712955 8.635001 8.621724

2007/8/30 | 9.603813 9.073438 8.956069 8.936078

2007/11/29 1 +10.14839 9.437926 9.280704 9.253926

2008/3/4 11,1357 10.14639 9.837004 9.778085

2008/6/2 12.12301 10.85486 10.3933 10.30224

2008/8/29 | “13.08838 11.54759 10.93724 10:81475

2008/11/27 | 14.07569 12.25605 11.49354 11.33891

2009/314 14.81617 12.97623 12.06952 11.85515

2009/6/2 15.55665 13.69641 12.6455 12.37139

2009/8/31 | 16.29713 14.41659 13:22149 12.88762

2009/11/27 | 17.02116 15.12076 13.78467 13.39239
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Table 4.4 (a) Caplet Price from 2006/6/1 to 2009/11/27.

The caplet price from Black’s formula is shown below.

Strike rate 1.5% 2.5% 3.5% 4.5%
2006/6/1 0.000416 0 0 0
2006/8/31 | 0.000683 3.58E-14 0 0
2006/11/29 | 0.000989 3.41E-09 0 0
2007/3/5 0.000993 6.95E-08 9.18E-18 0
2007/6/1 0.001176 1.53E-06 1.97E-13 0
2007/8/30 | 0.001364 1.04E-05 9.90E-11 5.62E-17
2007/11/29 | 07001545 3.58E-05 5.69E-09 9.22E-14
2008/3/4 0.001441 4.27E-05 2.61E-08 3.05E-12
2008/6/2 0.00156 8.68E-05 2.53E-07 1.99E-10
2008/8/29 , | 0.001687 0.000149 1.34E-06 4.30E-09
2008/11/27 | 0.001814 0.000228 4.78E:06 4.38E-08
2009/3/4 0.001802 0.000265 8.96E-06 1.55E-07
2009/6/2 0.001904 0.00035 1.96E-05 6.28E-07
2009/8/31 " 0.002014 0.000446 3.73E-05 1.97E-06
2009/11/27 | 0.002124 0.000549 6.33E-05 4.96E-06

Table 4.4 (b) Cap Price of maturities 1,2,3,4 years.

The cap price could be calculated by table 4.4(a); for example, the one year cap of strike rate
1.5% is summation of caplets from 2006/6/1 to 2006/11/29, namely, one year cap of strike rate
1.5%={0.000416+0.000683+0.000989}=0.0020879. All caps are computed by the same way.

Strike rate 1.5% 2.5% 3.5% 4.5%
1 year 0.0020879 | 3.41E-09 0 0
2 year 0.00716633 | 4.79E-05 5.79E-09 9.23E-14
3 year 0.0136686 | 0.000555042 | 6.41E-06 4.83E-08
4 year 0.0215128 | 0.00216609 | 0.000135513 | 7.76E-06
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Nevertheless, we can sum up cap price of different maturity and compare with
cap price which pricing caplet as a put option on a zero coupon bond (2.24) by
Hull-White equation (2.20).

In order to find adapted mean reversion and volatility of Hull-White model, we

Use summation of square error (SSE) method to find the coefficient

min SSE = min Zi(uki -V,)?
o ao 44
k €{1.5%, 2.5%,3.5%,4.5%}
where K is strike rate, n is maturity date, U, is the market cap price from Black’s
formulaand V, is the pricé of cap given by the Hull-White model.
The optimal parameters of mean reversion _and volatility are 0.014485 and
0.004596. The cap price from-Hull-\White model with optimal parameters is showed
in table 4.5.

Table 4.5 CapsPrices of maturities 1,2,3,4:years from Hull-White-Model.

The caplet iss€alculated by Hull-White equation and the way to compute cap price is the same as

table 4.4(b).
Strike rate 1.5% 2.5% 3.5% 4.5%
1 year 0.002331 3.20E-05 6.50E-09 4.96E-15
2 year 0.007852 0.000599 8.94E-06 1.79E-08
3 year 0.01489 0.002012 9.27E-05 1.24E-06
4 year 0.023215 0.00435 0.000373 1.32E-05

Moreover, the total fitting consequence of cap price is in figure 4.11. There are

caps of 1, 2,3,4,5,7,10 years’ maturities and four kinds of strike rates.

48



Estimate mean reversion and Hull-Whit vol. with dofferent strike price (k)
( a, sigma)=( 0.014485, 0.004596 )

- - - Black cap value k=0.015 - -= - Black cap value k=0.025 - -& - Black cap value k=0.035 - -3 - Black cap value k=0.045
—#— Hull White k=0.015 —®— Hull White k=0.025 —#— Hull White k=0.035 Hull White k=0.045

0.1
0.09 |
0.08 r
007
0.06 r
0.05 r
0.04 r
003 r
0.02
0.01

0

Cap valoe

Maturity (ycar)

Figure 4.11 Conséquence of Calibration for Parameters of Hull-\White Model.

The optimal‘estimated parameters are that mean reversion equals 0.014485 and volatility of
Hull-White model equals 0.004596. The minimum summation of square error (SSE) is 7.80133e-005.
The dotted lines‘above ‘are cap price of different Strike rates calculated by Hull-White model with

optimal parameters-and real lines are-calculated-by Black-formula:
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5. Conclusions and Future Work

We provide a numerical approach method to price sophisticated snowball notes.
Firstly, take Hull-White short rate model as a basic of term structure combined with
trinomial tree. Secondly, construct the state variables of coupons and price in
snowball notes. Finally, snowball price can be calculated by backward induction and
linear interpolation method.

In the sensitivity analysis, we find that the parameters of Hull-White model have
significant influence on snowball price. On the one hand, there is negative association
between price and mean reversion of Hull-White model, and on the other hand, price
and volatility of Hull:White model have positive relation. It.is also important about
contracting spreads.of Snowball -notes because of its. positive. relation to Snowball
price. Moreover, the effective way-to hedge snowball price!is redemptive article
which could protect issuers from losing a lot by using lower price to redeem contracts.

In the future, we maybe use different interest rate models to pricing snowball
notes and compare with Hull-Whitestreesmodelinsthisithesis. Moreover, we also could
extend the algorithm of this thesis to price other sophisticated interest rate derivatives

by the same term structure.
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Appendix A

Derive caplet as a put option of zero-coupon bond
At timet, , Caplet value which is paid at time t,,, is following:

LAK
1+ Ak

max(r, —K 0)

R_cap?
where

Kr cap - Cap rate
r. . Interest rate for period between time t, and t, ,
Ak : Period time,Ak = t,, — t,
L : Principal

Because Akand K are constants, we:.can change the formula of caplet into

R_cap
following equation:

LAk max(f, =K, . ,0) =L max(Ak(rk = K ,0)
1+r Ak -F 1+r Ak
14415 ~8KK ey -1
1+, Ak ’
(1+AkT ) — (AKK
1+r1 Ak
1+ AkKg )

1+ r Ak

= L max(

R.cap +1) 0)

= L max

=L max(l ,0)

1 1
14-AKK 1+ Ak’

)L max(K

=(1+AkK )L max(

0)

R_cap
R_cap

= (1+ AKK —'5,0)

R_cap cap

where
S= 1
1+r Ak
Kca :;
1+ K, Ak

R_cap

Consider S is the underlying value at time t,and K, is a strike price of a put

option where the underlying is a zero-coupon bond which maturity is t, ;.
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Appendix B
Derive floorlet as a call option of zero-coupon bond
At timet, , floorlet value which is paid at time t,, is following:
LAk
1+ rkAk R _ floor

_rk’o)

where

K . Floor rate

R _ floor
r. . Interest rate for period between time t, and t, .,
Ak : Period time, Ak = t, , — t,

L : Principal

Because Akand Kg ,, are constants, we.can change the formula of floorlet into

following equation:

LAK
1+ Ak

k(KR_ floof rk)
1+ Ak
1+ AKK

A
maX(KR_ floor — i O) =L maX( ’0)

R_ floor Ak -1
1+, Ak
(d+ AKKg figor) = (1+ Akr,) 0)
1+r, Ak ’
1+ AkKg fi00r)
1+r Ak

= L max(

= L max(

— . max( —1,0)

1 1
14 ARy 1+ AKKg o0

)L max(S -K_ . ,0)

=1+ AKK ,0)

)L max(

R _ floor

=(1+AkK

R_ floor floor ?

where
S 1
1+, Ak
1

K

flor =9 K . AK

R_ floor

Consider S is the underlying value at time t and K is a strike price of a call

floor

option where the underlying is a zero-coupon bond which maturity is t,,;.
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