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ABSTRACT

Mean reversion exists in many different forms within financial markets, and none of
these forms is necessarily inconsistent with efficient markets. However, there is a lack
of precision in what many investment practitioners and scholars mean by the term
“mean reversion”. In this paper, we propose a formal definition of what most
investment practitioners and scholars seem to mean by “mean reversion”. In this paper,
we recognize the potential significance of time variation in price reversion, and
propose a time-dependent definition of mean reversion, which is based on the
Ornstein-Uhlenbeck (O-U) process and the Geometric Brownian Motion (GBM).
Using weekly data of VIX (Volatility Index) traded in CBOE from 1990 to 2007,
interest rate of the United States Treasury Benchmark Bond 10-year from 1984 to
2007 and the spread between Brent crude oil and West Texas Intermediate crude oil
traded in NYMEX from 1997 to 2007 to estimate the level and speed of mean
reversion, and we show that the mean reversion phenomenon is not persistent but

recurring, and there are inconsistent results by using different time scales.

Keywords: Autocorrelation, Chi-Square test, EWMA, GBM, Maximum Likelihood

Estimation, Mean reversion, O-U process, Stationary.
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L Introduction

The theoretical significance of mean reversion of asset prices or returns in financial
markets has long been recognized as crucial in discussions of predictive ability,
arbitrage, hedging behavior, and derivative valuation. Many authors have examined
the presence of mean reversion for the price spread between spot and future under
arbitrage free condition. Negative correlation between the futures risk premium and
spot prices is generally assumed. Many studies have also shown that the processes of
financial asset prices can be characterized as mean-reverting. For example,
Bessembinder, Coughenour, Seguin, and Smoller (1995) investigated serial
correlations in agricultural, financial, and precious metal prices. MacKinlay and
Ramaswamy (1988) found the mean reversion existed in the changes of the stock
index futures basis. Significant mean-reverting behaviors are also found by Fama and
French (1988b), who examine first-order autocorrelation coefficients of long-horizon
real stock returns. More evidence can also be found in Lo and MacKinlay (1988);
Poterba and Summers (1988); and Bonomo and Garcia (1994).

Mean reversion is generally cited as a property of a stochastic process that tends to
revert back to some normal level over long time when it is away from the level. This
normal level is often called the mean or trend of the variable underlying the stochastic
process. However, there is indeed lack of precision in what the “mean reversion” is.
Furthermore, empirical investigations concerning mean reversion to date almost focus
on static examinations. Actually, mean reversion of a process might be
time-dependent with different scales. In fact, Ahmet, Norman, and Tian (2001)
recognize the potential significance of time variation in price reversion, and propose a
time-dependent definition of mean reversion, which is based on the term-structure of
prices.

Generally, many mean-reverting behaviors are measured over long horizons or
infinite time. But investment practitioners are often interested in how the prices

change over short time horizons, not long horizons. And they are also interested in the



speed of mean reversion. A serious obstacle in detecting mean reversion is the absence
of reliable long time series, especially because mean reversion, if it exists, is thought
to be slow and can only picked up over long horizons. For example, Fama and French
(1988a), and Poterba and Summers (1988) provide direct empirical evidence that
mean reversion occurs in U.S. stock prices over long horizons. But Lo and MacKinlay
(1988) find evidence against mean reversion in U.S. stock prices using weekly data.
Richardson (1989) also shows that by ignoring the interdependence among measures
of mean reversion at different time horizons, interpretations that focus on individual
horizon statistics can be misleading. Thus, we will give a new definition of mean
reversion, and infer the desired properties of mean reversion with different time
scales.

This paper is organized as follows. In Section II, we first review commonly used
definitions for mean reversion. As we shall see, there is no existing universal measure
of “mean reversion” and the definition that we believe investment professionals often
struggle towards is not like some other standard definition of time series analysis
(namely “stationary”). In Section III, three examples are used to illustrate if these
definitions are compliant with the common intuition about mean reversion. In Section
IV, from a statistical view of point, we try to propose a definition for mean reversion
and illustrate how it works. Concluding remarks and extensions for future researches

are presented in Section V.

1L Definitions and Models
2.1 Commonly Used Definitions

As discussed in the introduction, there are many possible definitions of mean
reversion, which seems to mean different things to different people. Scholars discuss
mean reversion by assuming that prices return to a fixed level or a trend path over

infinite time. The most common definition is probably as follows:



Definition 1: An asset model is mean reverting if the prices tend to some constant in

long-horizon time given information available now.

Many scholars used this property of mean reversion to propose more stochastic
models. For example, the GARCH model proposed by Bollerslev (1986) also
assumed that there is a long-term average variance rate. Using this definition, many
analysts can convince themselves that volatilities obviously mean revert without
violating the trivial market efficient and arbitrage free conditions. The problem with
this definition is that the level of mean reversion may be time-varying. There can be
found enormous number of examples for which a trend can be viewed as the target of
mean reversion, for instance, the nondurable goods index discussed in Ramsay and
Silverman (2002).

Under finite time horizon and discrete observations, autocorrelation of prices or
returns is a well-known attribute commonly referred to as “mean reverting”. This

gives the second definition of mean reversion:

Definition 2: An asset model is mean reverting if the returns or prices are negatively

auto-correlated.

The general autoregressive process of order p in discrete time can be expressed as
follows:

R =u+¢R_  +PR ,++9,R_ +E€ (1)
where ¢, ’s are autocorrelation coefficients on the i-th lagged term and & ’s are
standard normal innovations. However, with different values of ¢,’s, the process (1)
does not necessarily converge. This means that a process can be negatively
auto-correlated but diverges in long-horizon time, and so Definition 2 may be contrary
to Definition 1. Therefore, the first-order autoregressive process AR(1) is popularly

used in financial markets or academic researches.



Then there comes to the sort of process discussed in Lee (1991):
“Under this model, which has wide intuitive appeal, a below average price in one
period is likely to be followed by “compensatory” above average prices in subsequent
periods.”
R, =p+¢(u—R,)+0e, )

where R, is the return price in period ¢, u is the unconditional mean return in a
single period, & ’s are standard normal innovations, o is volatility, and ¢ is
positive coefficient that also means the negative autocorrelation coefficient. The
middle term on the right-hand side, the mean reversion term, measures the deviation
of this process from the mean in the previous period and adds the correction with
weight ¢ . If the process was below the mean in the previous period, the process gets a
¢ -kick upward; if it was above the mean, downward. That is, equation (2) captures a
concept of mean reversion that explicitly models negative autocorrelations. It has
frequently been said for example that the fantastic returns achieved in the 1980s were
really a catching up exercise to make up for the poor returns in the 1970s. Jegadeesh
(1991) also found the evidence that the monthly returns on the equally weighted index
of stocks traded on the NYSE exhibits mean reversion over the period 1926-1988,
according as the series of returns is found to exhibits significant negative serial
correlation.

In order to assess the informal evidence for this form of mean reversion in equity
markets, Exley, Mehta, and Smith (2004) looked at 100 years of equity return data in
16 countries (the decennial Dimson, Marsh, and Staunton (2003) data set, split
according to returns in each decade of the last century) and found no evidence that
poor (good) returns in one decade are followed by good (poor) returns in the next.
However, when the authors looked at the UK annual equity return data, they found
that returns in a year are negatively correlated (-0.2) in the data set with returns in the
subsequent two years. Lee’s definition refers to the 1980s “catching up” with the
1970s, so the returns in these decades were negatively auto-correlated if we looked at

discrete decades. But presumably if we had just looked at annual periods we would



have found that the returns in the 1980s were generally above average and all returns
in the 1970s generally below average. This would seem to maybe suggest an element
of positive autocorrelation if we change the time scales. So it seems that there is also
some uncertainty as to whether mean reversion is a positive or negative auto-
correlated phenomenon.

Equation (2) for the asset price process is in fact an example of a called stationary
process. It is sometimes confusing about the difference between stationary process
and mean reversion. In fact, stationary indeed provides another view to the concept of

mean reversion.

Definition 3: An asset model is mean reverting if growth rates or volatilities are

stationary.

A stationary process has identical distributions over time, unconditional on the
immediate past. Under suitable conditions, the sample distribution of observations
over a very long time period will converge to the stationary distribution. If an
observation falls high up in the tail of the stationary distribution, it is likely that the
following observation will be nearer to the long term average. This can give the
appearance of a force driving observations over time towards a long term mean. This
mean reverting force is countered by the influence of random noise which pushes the
process away from its current value. Stationary series have proved fruitful for
analyzing economic quantities such as interest rate, or dividend yields because at first
sight it is plausible that these have a natural long term mean level. Exley, Mehta, and
Smith (2004) mentioned that there exists mean reversion phenomenon in equity risk
premium by using a stationary drift (or growth rate) process. They found that the
evidence for mean reversion in equity market return volatility is also strong by using
the data for 3-month and 5-year implied volatilities on the FTSE 100 (approximately
the last 10 years) and DJ Euro-Stoxx Indices (approximately the last 5 years).

However the corresponding asset prices can already reflect either deterministic or



stochastic mean reversion in volatility so that we do not observe any associated mean
reversion in prices. Asset prices may continue to describe a random walk despite the
stationary of these associated processes. Another problem with this definition is that a
stationary process has the same distribution at every point in time which means that
the mean price is the same over all time period. But we discussed the various
functions of the mean reversion at different time scales in the introduction. And it
might be allowed that the mean reversion is simple dependent.

Before proposing our definition of mean reversion, we first discuss the implication
of above three definitions. The Definition 1 does not imply the other two definitions
because the long-term mean can not imply the negative auto-correlated and stationary
processes. But the Definition 3 implies the Definition 1 because the prices are
reverting to a stationary variable under the Definition 3, which means that the
expectations are the same at any time and exist a long-term mean. And the Definition
2 also implies the Definition 1 because if the process value was below the mean in the
previous period, the process gets an upward; if it was above the mean, downward.
This means that the process exist a long-term constant mean. However, we can not
find out any implications between Definition 2 and 3. These three definitions are
popularly used in finance about mean reverting, but they may be inconsistent whether

the asset prices are mean reverting.

2.2 Models Regarding Mean Reversion

Interest rates and volatilities of returns of assets are the quantities that are most
frequently referred as mean reverting in finance. Traditionally there are models
dedicated to describe them.

The Ornstein-Uhlenbeck (O-U) process is a well-known stochastic process with an
analytic solution of mean reversion. Vasicek (1977) uses it for describing the
evolution of interest rates. The model specifies that the instantaneous interest rate

follows the stochastic differential equation:

dX, = k(u— X, )dt + cdW, (3)



In equation (3), # and « are respectively the level and speed of mean reversion. Hull
and White (1990) extended (3) with both & and xto be time dependent.

Another extension is the CIR (Cox, Ingersoll, and Ross, 1985) model that is also
commonly used in describing interest rate. In a stochastic differential equation form,
the model can be expressed as

dX, = x(p— X, )dt + o\ /X, dW, 4)
As the model yields the non-central ¥ distribution as its solution, each points of the
process can be guaranteed to be positive almost surely. A broader class of models is
the CEV (Constant Elasticity of Variance) model proposed by Cox and Ross (1976)
which can be expressed as
dX, = x(u—X,)dt +oXP*aw, 5)
Similar to the CIR model, all values of the process are positive almost surely.

Besides for modeling interest rates, these models are also used for volatilities, for
example Heston (1993).

It is noted that all of these models describe mean reversion at a very short time
horizon with the term #{— X, )dt . This illustrate the very basic idea that the level of
the process will always tend to be lower if it is higher than its level of mean reversion,

and tend to higher if it is lower than its level of mean reversion.

III.  Desired Properties of Mean Reversion

In this section, we illustrate the desired properties of mean reversion by
investigating three processes, the Ornstein-Uhlenbeck (O-U) process, Brownian
motion and simple harmonic motion (SHM).

The O-U process is widely utilized in financial modeling, especially for interest rate.
For example, Vasicek (1977) pioneered the application of such mean reverting
stochastic processes for interest rate modeling. In fact, the O-U process can be viewed
as a typical mean-reverting process since at every moment the process tends to move
toward the level of mean reversion.

Clearly the O-U process satisfies Definitions 1-3. For model (3), it is seen that the



long-term mean converges to 4, that is ;im E, (X T|Qt)= M. As the process indeed

arises from an AR(1) process, it is easy to derive that two consecutive segments
X,—-X,, and X, , —X, , are negatively correlated with coefficient of correlation
1—e™" . Furthermore, as t — oo, the distribution converges to a normal distribution
with mean 4 and variance &7/2x.

The Brownian motion has totally different properties. As it diverges for very long
horizon, neither the limit distribution nor the long-term mean exist. Consecutive
segments are independent instead negatively correlated. Thus the Brownian motion
can be viewed as a stereotype of processes that are not mean-reverting.

Comparing with the O-U process and the Brownian motion, it is a little confusing
that the simple harmonic motion (SHM) is mean reverting or not. Unlike the two
counterparts, the SHM does not satisfy the above definitions, but it is always mean
reverting to the mean level with a fixed frequency.

Intuitively the SHM, say x, =sint, passes the zero (or any points between -1 and 1)
infinitely often and thus there’s no doubt that SHM is mean-reverting. However, the
SHM does not converge to any constant nor has an obvious asymptote. The serial
dependence also counts on the sampling frequency. For example, as the samples are
taken from the region (0, z/ 2) with very high frequency, the path rises persistently,
so the coefficient of correlation must be positive. It is readily seen that the Definitions
1 and 2 are not satisfied.

To sum up, both the O-U process and the Brownian motion can be clearly shown to
be mean reverting or not, but the simple harmonic motion may be suspicious. Indeed,
it seems hard to provide a rigorous definition to identify the mean reversion properties
of all processes. However, it seems possible and worth to investigate the mean

reversion properties of discretely observed time series by extending Definition 2.

IV.  Statistical Inference for Mean Reversion of a Time Series
Among most of the above definitions and the commonly used models, the concept

of mean reversion involves about the instantaneous behavior of the process or some



characteristics at an infinitely long time. However, in practical applications data are
generally discretely observed and so only Definition 2 is feasible here. By extending
Definition 2, we propose the following definition for the mean reversion of a time

series.

Definition 4: A time series X,, r=123,---, is mean reverting if there exists a

function g, = u(t,X,,---,X,) such that E (X, 1Q,) lies in (x,z ) if

t+1

E(X
x, <gandin (u,,x,) if x, > g, . The quantity & =—log

is the speed
/ X —u p

of mean reversion at time ¢.

It is easy to see that the definition is compliant with the concept of mean reversion
by the stochastic differential equations. Also an AR(1) process with a negative
coefficient of correlation satisfies this definition. But processes satisfying this
definition do not necessarily converge in distribution or have a mean for long time.

By this definition, level and speed of mean reversion are in a sense confounding.
That is, each target of mean reversion g, corresponds to a different speed of mean
reversion k,. But such characteristics enable dealing with non-stationary processes.
On analyzing time series with this approach, a class of g can be taken into
consideration as the candidates of the target of mean reversion, for example an
EWMA (Exponentially Weighted Moving Average) predictor or some other nonlinear

functions of observations.

4.1 Estimating the Level of Mean Reversion

Next, we discuss how the historical data can be used to estimate of the levels of
mean reversion. In many instances, authors assume that the mean is constant over all
time period. As a consequence, in the forecast computations each observation carries
the same weight. However, the assumption of a time invariant is restrictive, and it

would be more reasonable to allow for a mean that moves slowly over time.



Heuristically, in such a case it would be reasonable to give more weight to the most
recent observations and less to the observations in the distant past. The exponentially
weighted moving average (EWMA) model is a particular case of the model where the
weights decrease exponentially as we move back through time. In this paper, we will
use the O-U stochastic process as mean reverting model. Using weekly data of VIX
(Volatility Index) traded in CBOE from 1990 to 2007, interest rate of the United
States Treasury Benchmark Bond 10-year from 1984 to 2007, and spread between
Brent crude oil and West Texas Intermediate (WTI) crude oil traded in NYMEX from
1997 to 2007 to investigate the phenomenon of mean reversion with different time
scales.

Continuous time models are useful for the theoretical properties, but in reality the
trajectories of the process cannot be observed continuously, and the process must be
sampled in discrete time. For estimation and testing purposes, a discrete time
analogue of the continuous time model is required. First, we consider the locally
constant mean model:

X, =HTE,;

where 4 is a constant mean level and ¢,,; is a sequence of uncorrelated errors. If
one chooses weights that decrease geometrically with the age of the observations, the
forecast of the future observation at time n can be calculated from

a,=(-0)X,+aol,, (6)
where X, is the asset price, /I, is the estimate of the mean price for timen, and the
weight @ is a constant between zero and one. Equation (6) shows how the forecast
can be updated after a new observation has become available and expresses the new
forecast as a combination of the old forecast and the most recent observation. The
coefficientw depends on how fast the mean level changes. If @ is small, more
weight is given to the last observation and the information from previous periods is
heavily discounted. If @ is close to 1, a new observation will change the old forecast
only very little.

Through repeated application of Equation (6), we can see that f, is an

10



exponentially weighted average of previous observations, which can be shown that
n—1

a,=(1- a));): WX, +o" i, (7)
Thus the influence of £, on u, is negligible, provided n is moderately large and
@ 1is smaller than 1. We take the available historical data X, as the initial estimate
of d,.

Second, we consider the locally linear trend mean model:
Xy =H+pre,,

where g is the intercept and S is the slope of the linear trend mean. Ordinary least

squares leads to the following estimates at time 0:

N N
Z(t—NHjX, IZZ(t—NHjX,
ﬁ _ =1 2 &t el 2
= —

N 2 N°>—-N
Z(Z_N”j ®)
= 2

N — ~ N+1

My = _130 )

where N denotes the number of observations. We follow an approach originally
used by Holt (1957) to introduce the updating equations. We assume a linear trend for
the mean 4, and write it in slightly different form g, = 1, + (t—n)B. Then the mean

at time n+1 is be defined asu,,, = £, + . An estimate of this mean can be found

n+l

from two different sources: (1) from X which represents the present estimator of

n+l >

M., and (2) from 2, + ,Bn, which is the estimator of 4, , from observations up to

n+l
and including timen. Note that ,Bn is the estimate of the slope at timen. Holt
considers a linear combination of these estimates,
H = (1_(01)Xn+1 +a)l(/:2n +Bn)
where «, =1-, 1s a smoothing constant that determines how quickly past
information is discounted.
Similarly, information about slope comes from two sources: (1) from the difference

of the mean estimators f,,, — /4, , and (2) from the previous estimator of the slope Bn.

n+l

Again these estimates are linearly weighted to give

11



A A

B =(- @), — 11,)+ @, 8,

Thus, the parameter estimates are updated according to
R =(-0)X,, + o0, +5,) o
B =(1-0,) 2. —2,)+ @,

We define the two different smoothing coefficients as @, = @* and @, = 2a/(1+ w)

where the coefficient @ depends on how fast the mean level changes.

Figure 1 shows how fast the mean level changes by using the weekly data of VIX,
interest rate of the United States Treasury Benchmark Bond 10-year, and spread
between Brent crude oil and West Texas Intermediate crude oil traded in NYMEX. If
w is small, more weight is given to the last observation and the mean level is closer
to the new observation. On the other way, if @ is close to 1, a new observation will
change the old forecast only very little and the mean level changes smoothly. Figure 1
also shows that the locally constant mean model would be appropriate method for the
data of VIX and spread of crude oil, and the locally downward linear trend mean

would be appropriate method for the data of the United States Treasury Benchmark

Bond 10-year.
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Figure 1. Estimator for Level of Mean Reversion: Index series and mean level series with different

weight of the VIX (top) and interest rate of the United States Treasury Benchmark Bond 10-year
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(middle), and spread between Brent crude oil and West Texas Intermediate crude oil traded in NYMEX
(bottom). The fact is that the mean level changes faster with @ = 0.1 than@ = 0.9 . The weight
@ =0.9 is better choice because we expect the mean level series changes smoothly which is

suggested by Brown (1962).

4.2 Hypothesis Testing about Mean Reversion
According to EWMA model with locally constant mean, we can calculate the
estimate of the mean price for timen (4, ) by historical data (X,,X,,---,X,), and

[-step-ahead forecast of mean from time original n by f ., = j, . The forecasts are

n+l

the same for all /. Therefore, the distribution of the price X, which follows the O-U

process with constant mean is
2
A —K ~ 2K
XI‘ ~ N(ﬂn t+e (Xr—l _ﬂn)’_(l_e )j

and the log likelihood function is given by

N —x ~ \|?
log L° = constant —%log(z'z)— [(X’ —A)=e (X, - )] (10)

2

o - . . . .
where 7° = B (1 —2e ’“). We need to maximize the equation (10) to obtain estimators
K

and test hypotheses. The Maximum Likelihood Estimators (MLE) of xand o’ for

the O-U process with constant mean are

KA‘MLE - log( )

where s = max| —— 0.

If the price X, follows the O-U process with linear trend mean, the distribution is
2
Xt ~ N((Xr—l +ﬁ)€_K +[lan —£+ﬁj(1—€_x) > 6_(1_6—2/())
K 2K

14



and the log likelihood function is given by

(e e£eiefoaet]

2
puy 2t

=

log ' = constant ——log( 2)- (11)

The Maximum Likelihood Estimators (MLE) of xand o’ for the O-U process with

linear trend mean are

KA‘MLE - 10g( )

2
A2 ZKMLE N l:( o )] -& A B
GMLE:T—)Z X =, +———f|-e™ | X -4, +—
n =1

1 _ e_ZKlMLE

(X, - i1, - BNX,, -2,

where s' = max| <=, 0

z (Xr—l -
=1

Figure 2 shows how the updated estimators for speeds of mean reversion change by

using the weekly data of VIX, interest rate of the United States Treasury Benchmark
Bond 10-year, and spread between Brent crude oil and West Texas Intermediate crude
oil traded in NYMEX. We discuss three different time scales which are 6-month, 1-
year, and 2-year respectively to estimate the speeds of mean reversion. The fact is that
the less recent observations are considered which means the shorter time scale, the

faster speed of mean reversion are reflected.
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Figure 2. MLE for Speed of Mean Reversion: Estimators of the updated estimators for speeds of the
mean reversion with different time scales by using the VIX series (top), interest rate series of the

United States Treasury Benchmark Bond 10 years (middle), and spread between Brent crude oil and
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West Texas Intermediate crude oil traded in NYMEX (bottom). The fact is that the speeds of mean
reversion with shorter time scale are almost faster and than longer time scale. And the speed of mean
reversion of VIX series and the spread of crude oil series are obviously faster than the interest rate
series of the United States Treasury Benchmark Bond 10 years. In particular, the speeds are all zeroes

which mean that there is no evidence for mean reversion since 1986 with shortest time scale.

We utilize a Chi-Square test for the presence/absence of a mean reversion effect.
The O-U process is no longer mean reverting when xk = 0. We wish to test precisely
the null hypothesis of no mean reversion (H, : k¥ = 0) against the alternative of mean
reversion (H, : &> 0).The LR statistic A(X )can be shown that

sup{L,(01x):6e ©,} suplL,(0?1x):0€0,} L, (621x)

A(X): suP{L(HIX):He e} SuPJlL(K' o’ |X) 066} L( PPN |X)'

And the test statistic —2logA will be asymptotically x* distributed with degree of

freedom equal to the difference in dimensionality of ® and ®,,. Therefore,
~2(log L, ~log L)~ 2*(1)

The log likelihood function for the O-U process with constant mean under the null

hypothesis is
n _ 2
log L, = constant — —log(c>* ) - M (12)
2 puy 20,°
and the MLE &;°of o, under H, is
Z (Xt - Xt—l )2
Of\.g L
n
By the equations (10) and (12), we can obtain that
- 2(10g L, —log L llog ~logé,, — log(l — ¢ Hins )+ log(ZI%leE )J+ n
2K-MLE —I(” ( ~ ?
- (- 4,)
Tl )

The log likelihood function for the O-U process with linear trend mean under the null

hypothesis is
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2,1)_ N (Xt — X, _:3)2

n
log I, = constant — —loglo
gLy > g( 0 L 20_;,1

and the MLE &'of o, under H, is

n

Z(Xt _Xt—l _IB)Z

~A20 _ 1=l
O, =

n

By equations (11) and (13), we can obtain that

—~ 2(10g L —logL')= nllog 6 —logbi . — log(l — ¢ e )+ log(2fcme )J+ n

2K L . &
g e |G R CA

Ovie =1
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Figure 3. Chi-Square Test for VIX: Set the Chi-Square test for the presence of mean reversion effect
with different time scales by using VIX weekly data from 1990 to 2007. The results show that mean
reversion phenomenon is significant but the speeds of mean reversion are slower with longer time scale.
And the mean reversion is not always significant, but recurring, and the speeds of mean reversion are

also clearly faster with shorter time scale.
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Figure 4. Chi-Square Test for Interest Rate of U.S. Treasury Bond 10-Year: Set the Chi-Square test
for the presence of mean reversion effect with different time scales by using United States Treasury
Benchmark Bond 10-year weekly data from 1984 to 2007. The results show that mean reversion is
mostly higher significant but the speeds of mean reversion are slow, not exceeding 0.1, with longer
time scale. On the contrast, the mean reversion phenomenon is mostly insignificant, but the speeds of
mean reversion in 1986 is nearly eight times faster, about 0.8, with short time scale than which with

longer time scale.
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Figure 5. Chi-Square Test for Spread of Crude Oil between Brent and WTI: Set the Chi-Square
Test for the presence of mean reversion effect with different time scales by using weekly data of spread
between Brent crude oil and West Texas Intermediate crude oil from 1997 to 2007. The results are
similar to the series of VIX, which also show that mean reversion phenomenon is mostly significant but
the speeds of mean reversion are slower and smoother with longer time scale. And the mean reversion
phenomenon is not always significant, but recurring and the speeds of mean reversion are also faster

with shorter time scale.
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V. Conclusions

The existence of various types of mean reverting features in asset yields or returns
does not in any way contradict the assumption that markets are efficient. In this paper,
we have discussed various other forms of mean reversion, proposed a formal
definition of what most investment practitioners and scholar seem to mean by “mean
reversion” and estimated the level and speed of mean reversion by using EWMA and
MLE respectively. And we realize that the mean reversion is affected by various time
scales. Many authors have investigated mean reversion based on the infinite time.
Actually, investment practitioners are interested in a variation of underlying asset
price at finite time, neither instantaneous nor infinite time. Therefore, we use three
different finite time scales which are 6-month, 1-year, and 2-year to investigate the
phenomenon of mean reversion. We find out that the speeds of mean reversion are
faster with shorter time scale than longer time scale. There is strong evidence for
mean reversion in VIX (Volatility Index) and spread between Brent crude oil and West
Texas Intermediate (WTI) crude oil, and there are recurring periods where mean
reversion is highly significant. However, for the data of USB10Y (United States
Treasury Benchmark Bond 10-year), there is strong evidence for mean reversion with
longer time scale, but weak evidence with shorter time scale.

In this paper, we only discuss the locally constant and linear trend mean models.
Manzan (2005) analyzes the annual stock prices data from 1871 until 2003 to show
that there is significant evidence to support a nonlinear model in which the speed of
mean reversion increases when deviations get large. This confirms previous analysis
using nonlinear adjustment models, such as Gallagher and Taylor (2001), Schaller and
van Norden (2002), and Psaradakis er al. (2004). The issue of nonlinear mean

reversion is worth investigating on future researches.
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Appendix

By equation (3), we let ¥, =" X, with the initial conditionY, = X, and get that

dY, = " X dt +e" dX,
= xe" X dt +e" [c(u— X, )dt + odW |
= ke" udt + e" odW,

Therefore,
E(Y,)=Y, +u re"ds
=Y, +ﬂ(e"’ —1)
S E(X,)=Xpe " +ull-e™)

X, ~ N(Xoe"" 1Bt ;—;(1— e )j

Extending the O-U process with linear trend mean, which is
dX, = xla+ pt— X, )dt + cdW,

we let Y, =e" X, with the initial condition Y, = X, and get that

dY, = " X dt +e" dX,
= xke" X dt +e" [xcla+ pr— X, )dt + odW, |
= xe" (a+ Bt)dt + e" cdW,

Therefore,
EY)=Y,+ j(: ke (a+ fBs)ds

=(v, +,Bt)+(a—€+,8tj(e’“ ~1)
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~E(X )= (X + Br)e™ +(Cl—€+ﬁlj(l—e_n)

X, ~ N((X0 + ft)e™ +[a—§+ﬁtj(l—e_”) , %(l—e‘“’)]
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