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摘要摘要摘要摘要    

    

回歸平均在金融市場以很多不同的形式存在，且這些形式都符合於有效率的市

場。然而，投資者與學者意味的回歸平均定義始終缺乏。本文提出關於時間序列

回歸平均的定義且領悟平均隨時間變化的潛在意義。使用波動率指數、美國十年

公債的利率與布蘭特原油和西德州中級原油的價差之周資料，估計回歸平均的水

平與速度。結果顯示回歸平均的現象並非永續而是間斷性地存在，且不同的時間

週期導致不一致的結果。 

 

 

 

關鍵字：自我相關、卡方檢定、指數權重移動平均法、幾何布朗運動、最大概似

估計法、回歸平均、OU 隨機過程、定態隨機過程。 
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ABSTRACT 

 

Mean reversion exists in many different forms within financial markets, and none of 

these forms is necessarily inconsistent with efficient markets. However, there is a lack 

of precision in what many investment practitioners and scholars mean by the term 

“mean reversion”. In this paper, we propose a formal definition of what most 

investment practitioners and scholars seem to mean by “mean reversion”. In this paper, 

we recognize the potential significance of time variation in price reversion, and 

propose a time-dependent definition of mean reversion, which is based on the 

Ornstein-Uhlenbeck (O-U) process and the Geometric Brownian Motion (GBM). 

Using weekly data of VIX (Volatility Index) traded in CBOE from 1990 to 2007, 

interest rate of the United States Treasury Benchmark Bond 10-year from 1984 to 

2007 and the spread between Brent crude oil and West Texas Intermediate crude oil 

traded in NYMEX from 1997 to 2007 to estimate the level and speed of mean 

reversion, and we show that the mean reversion phenomenon is not persistent but 

recurring, and there are inconsistent results by using different time scales. 

 

 

Keywords: Autocorrelation, Chi-Square test, EWMA, GBM, Maximum Likelihood 

Estimation, Mean reversion, O-U process, Stationary.  
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I. Introduction  

  The theoretical significance of mean reversion of asset prices or returns in financial 

markets has long been recognized as crucial in discussions of predictive ability, 

arbitrage, hedging behavior, and derivative valuation. Many authors have examined 

the presence of mean reversion for the price spread between spot and future under 

arbitrage free condition. Negative correlation between the futures risk premium and 

spot prices is generally assumed. Many studies have also shown that the processes of 

financial asset prices can be characterized as mean-reverting. For example, 

Bessembinder, Coughenour, Seguin, and Smoller (1995) investigated serial 

correlations in agricultural, financial, and precious metal prices. MacKinlay and 

Ramaswamy (1988) found the mean reversion existed in the changes of the stock 

index futures basis. Significant mean-reverting behaviors are also found by Fama and 

French (1988b), who examine first-order autocorrelation coefficients of long-horizon 

real stock returns. More evidence can also be found in Lo and MacKinlay (1988); 

Poterba and Summers (1988); and Bonomo and Garcia (1994). 

  Mean reversion is generally cited as a property of a stochastic process that tends to 

revert back to some normal level over long time when it is away from the level. This 

normal level is often called the mean or trend of the variable underlying the stochastic 

process. However, there is indeed lack of precision in what the “mean reversion” is. 

Furthermore, empirical investigations concerning mean reversion to date almost focus 

on static examinations. Actually, mean reversion of a process might be 

time-dependent with different scales. In fact, Ahmet, Norman, and Tian (2001) 

recognize the potential significance of time variation in price reversion, and propose a 

time-dependent definition of mean reversion, which is based on the term-structure of 

prices.  

Generally, many mean-reverting behaviors are measured over long horizons or 

infinite time. But investment practitioners are often interested in how the prices 

change over short time horizons, not long horizons. And they are also interested in the 
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speed of mean reversion. A serious obstacle in detecting mean reversion is the absence 

of reliable long time series, especially because mean reversion, if it exists, is thought 

to be slow and can only picked up over long horizons. For example, Fama and French 

(1988a), and Poterba and Summers (1988) provide direct empirical evidence that 

mean reversion occurs in U.S. stock prices over long horizons. But Lo and MacKinlay 

(1988) find evidence against mean reversion in U.S. stock prices using weekly data. 

Richardson (1989) also shows that by ignoring the interdependence among measures 

of mean reversion at different time horizons, interpretations that focus on individual 

horizon statistics can be misleading. Thus, we will give a new definition of mean 

reversion, and infer the desired properties of mean reversion with different time 

scales.  

This paper is organized as follows. In Section II, we first review commonly used 

definitions for mean reversion. As we shall see, there is no existing universal measure 

of “mean reversion” and the definition that we believe investment professionals often 

struggle towards is not like some other standard definition of time series analysis 

(namely “stationary”). In Section III, three examples are used to illustrate if these 

definitions are compliant with the common intuition about mean reversion. In Section 

IV, from a statistical view of point, we try to propose a definition for mean reversion 

and illustrate how it works. Concluding remarks and extensions for future researches 

are presented in Section V.  

 

II. Definitions and Models 

2.1  Commonly Used Definitions 

  As discussed in the introduction, there are many possible definitions of mean 

reversion, which seems to mean different things to different people. Scholars discuss 

mean reversion by assuming that prices return to a fixed level or a trend path over 

infinite time. The most common definition is probably as follows: 

 

 



3  

Definition 1: An asset model is mean reverting if the prices tend to some constant in 

long-horizon time given information available now. 

 

  Many scholars used this property of mean reversion to propose more stochastic 

models. For example, the GARCH model proposed by Bollerslev (1986) also 

assumed that there is a long-term average variance rate. Using this definition, many 

analysts can convince themselves that volatilities obviously mean revert without 

violating the trivial market efficient and arbitrage free conditions. The problem with 

this definition is that the level of mean reversion may be time-varying. There can be 

found enormous number of examples for which a trend can be viewed as the target of 

mean reversion, for instance, the nondurable goods index discussed in Ramsay and 

Silverman (2002). 

Under finite time horizon and discrete observations, autocorrelation of prices or 

returns is a well-known attribute commonly referred to as “mean reverting”. This 

gives the second definition of mean reversion: 

 

Definition 2: An asset model is mean reverting if the returns or prices are negatively 

auto-correlated.  

 

The general autoregressive process of order p in discrete time can be expressed as 

follows: 

                 tptpttt RRRR εφφφµ +++++= −−− L2211             (1) 

where iφ ’s are autocorrelation coefficients on the i-th lagged term and tε ’s are 

standard normal innovations. However, with different values of iφ ’s, the process (1) 

does not necessarily converge. This means that a process can be negatively 

auto-correlated but diverges in long-horizon time, and so Definition 2 may be contrary 

to Definition 1. Therefore, the first-order autoregressive process AR(1) is popularly 

used in financial markets or academic researches. 
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 Then there comes to the sort of process discussed in Lee (1991):  

“Under this model, which has wide intuitive appeal, a below average price in one 

period is likely to be followed by “compensatory” above average prices in subsequent 

periods.” 

            ( ) ttt RR σεµφµ +−+= −1                     (2) 

where tR  is the return price in period t , µ  is the unconditional mean return in a 

single period, tε ’s are standard normal innovations, σ  is volatility, and φ  is 

positive coefficient that also means the negative autocorrelation coefficient. The 

middle term on the right-hand side, the mean reversion term, measures the deviation 

of this process from the mean in the previous period and adds the correction with 

weightφ . If the process was below the mean in the previous period, the process gets a 

φ -kick upward; if it was above the mean, downward. That is, equation (2) captures a 

concept of mean reversion that explicitly models negative autocorrelations. It has 

frequently been said for example that the fantastic returns achieved in the 1980s were 

really a catching up exercise to make up for the poor returns in the 1970s. Jegadeesh 

(1991) also found the evidence that the monthly returns on the equally weighted index 

of stocks traded on the NYSE exhibits mean reversion over the period 1926-1988, 

according as the series of returns is found to exhibits significant negative serial 

correlation. 

In order to assess the informal evidence for this form of mean reversion in equity 

markets, Exley, Mehta, and Smith (2004) looked at 100 years of equity return data in 

16 countries (the decennial Dimson, Marsh, and Staunton (2003) data set, split 

according to returns in each decade of the last century) and found no evidence that 

poor (good) returns in one decade are followed by good (poor) returns in the next. 

However, when the authors looked at the UK annual equity return data, they found 

that returns in a year are negatively correlated (-0.2) in the data set with returns in the 

subsequent two years. Lee’s definition refers to the 1980s “catching up” with the 

1970s, so the returns in these decades were negatively auto-correlated if we looked at 

discrete decades. But presumably if we had just looked at annual periods we would 
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have found that the returns in the 1980s were generally above average and all returns 

in the 1970s generally below average. This would seem to maybe suggest an element 

of positive autocorrelation if we change the time scales. So it seems that there is also 

some uncertainty as to whether mean reversion is a positive or negative auto- 

correlated phenomenon. 

Equation (2) for the asset price process is in fact an example of a called stationary 

process. It is sometimes confusing about the difference between stationary process 

and mean reversion. In fact, stationary indeed provides another view to the concept of 

mean reversion. 

 

Definition 3: An asset model is mean reverting if growth rates or volatilities are 

stationary. 

 

A stationary process has identical distributions over time, unconditional on the 

immediate past. Under suitable conditions, the sample distribution of observations 

over a very long time period will converge to the stationary distribution. If an 

observation falls high up in the tail of the stationary distribution, it is likely that the 

following observation will be nearer to the long term average. This can give the 

appearance of a force driving observations over time towards a long term mean. This 

mean reverting force is countered by the influence of random noise which pushes the 

process away from its current value. Stationary series have proved fruitful for 

analyzing economic quantities such as interest rate, or dividend yields because at first 

sight it is plausible that these have a natural long term mean level. Exley, Mehta, and 

Smith (2004) mentioned that there exists mean reversion phenomenon in equity risk 

premium by using a stationary drift (or growth rate) process. They found that the 

evidence for mean reversion in equity market return volatility is also strong by using 

the data for 3-month and 5-year implied volatilities on the FTSE 100 (approximately 

the last 10 years) and DJ Euro-Stoxx Indices (approximately the last 5 years). 

However the corresponding asset prices can already reflect either deterministic or 
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stochastic mean reversion in volatility so that we do not observe any associated mean 

reversion in prices. Asset prices may continue to describe a random walk despite the 

stationary of these associated processes. Another problem with this definition is that a 

stationary process has the same distribution at every point in time which means that 

the mean price is the same over all time period. But we discussed the various 

functions of the mean reversion at different time scales in the introduction. And it 

might be allowed that the mean reversion is simple dependent. 

  Before proposing our definition of mean reversion, we first discuss the implication 

of above three definitions. The Definition 1 does not imply the other two definitions 

because the long-term mean can not imply the negative auto-correlated and stationary 

processes. But the Definition 3 implies the Definition 1 because the prices are 

reverting to a stationary variable under the Definition 3, which means that the 

expectations are the same at any time and exist a long-term mean. And the Definition 

2 also implies the Definition 1 because if the process value was below the mean in the 

previous period, the process gets an upward; if it was above the mean, downward. 

This means that the process exist a long-term constant mean. However, we can not 

find out any implications between Definition 2 and 3. These three definitions are 

popularly used in finance about mean reverting, but they may be inconsistent whether 

the asset prices are mean reverting. 

 

2.2  Models Regarding Mean Reversion  

  Interest rates and volatilities of returns of assets are the quantities that are most 

frequently referred as mean reverting in finance. Traditionally there are models 

dedicated to describe them. 

The Ornstein-Uhlenbeck (O-U) process is a well-known stochastic process with an 

analytic solution of mean reversion. Vasicek (1977) uses it for describing the 

evolution of interest rates. The model specifies that the instantaneous interest rate 

follows the stochastic differential equation: 

                      ( ) ttt dWdtXdX σµκ +−=                       (3) 
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In equation (3), µ and κ are respectively the level and speed of mean reversion. Hull 

and White (1990) extended (3) with both µ and κ to be time dependent. 

  Another extension is the CIR (Cox, Ingersoll, and Ross, 1985) model that is also 

commonly used in describing interest rate. In a stochastic differential equation form, 

the model can be expressed as 

      ( ) tttt dWXdtXdX σµκ +−=                     (4) 

As the model yields the non-central 2χ distribution as its solution, each points of the 

process can be guaranteed to be positive almost surely. A broader class of models is 

the CEV (Constant Elasticity of Variance) model proposed by Cox and Ross (1976) 

which can be expressed as 

( ) tttt dWXdtXdX
2/βσµκ +−=                    (5) 

Similar to the CIR model, all values of the process are positive almost surely. 

  Besides for modeling interest rates, these models are also used for volatilities, for 

example Heston (1993). 

It is noted that all of these models describe mean reversion at a very short time 

horizon with the term ( )dtX t−µκ . This illustrate the very basic idea that the level of 

the process will always tend to be lower if it is higher than its level of mean reversion, 

and tend to higher if it is lower than its level of mean reversion. 

 

III. Desired Properties of Mean Reversion 

In this section, we illustrate the desired properties of mean reversion by 

investigating three processes, the Ornstein-Uhlenbeck (O-U) process, Brownian 

motion and simple harmonic motion (SHM). 

The O-U process is widely utilized in financial modeling, especially for interest rate. 

For example, Vasicek (1977) pioneered the application of such mean reverting 

stochastic processes for interest rate modeling. In fact, the O-U process can be viewed 

as a typical mean-reverting process since at every moment the process tends to move 

toward the level of mean reversion. 

Clearly the O-U process satisfies Definitions 1-3. For model (3), it is seen that the 
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long-term mean converges to µ, that is ( ) µ=Ω
∞→

tTt
T

XElim . As the process indeed 

arises from an AR(1) process, it is easy to derive that two consecutive segments 

1−− tt XX  and 21 −− − tt XX  are negatively correlated with coefficient of correlation 

t
e

κ−−1 . Furthermore, as ∞→t , the distribution converges to a normal distribution 

with mean µ and variance κσ 22 . 

The Brownian motion has totally different properties. As it diverges for very long 

horizon, neither the limit distribution nor the long-term mean exist. Consecutive 

segments are independent instead negatively correlated. Thus the Brownian motion 

can be viewed as a stereotype of processes that are not mean-reverting. 

Comparing with the O-U process and the Brownian motion, it is a little confusing 

that the simple harmonic motion (SHM) is mean reverting or not. Unlike the two 

counterparts, the SHM does not satisfy the above definitions, but it is always mean 

reverting to the mean level with a fixed frequency. 

Intuitively the SHM, say txt sin= , passes the zero (or any points between -1 and 1) 

infinitely often and thus there’s no doubt that SHM is mean-reverting. However, the 

SHM does not converge to any constant nor has an obvious asymptote. The serial 

dependence also counts on the sampling frequency. For example, as the samples are 

taken from the region ( )2,0 π  with very high frequency, the path rises persistently, 

so the coefficient of correlation must be positive. It is readily seen that the Definitions 

1 and 2 are not satisfied. 

To sum up, both the O-U process and the Brownian motion can be clearly shown to 

be mean reverting or not, but the simple harmonic motion may be suspicious. Indeed, 

it seems hard to provide a rigorous definition to identify the mean reversion properties 

of all processes. However, it seems possible and worth to investigate the mean 

reversion properties of discretely observed time series by extending Definition 2. 

  

IV. Statistical Inference for Mean Reversion of a Time Series 

  Among most of the above definitions and the commonly used models, the concept 

of mean reversion involves about the instantaneous behavior of the process or some 
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characteristics at an infinitely long time. However, in practical applications data are 

generally discretely observed and so only Definition 2 is feasible here. By extending 

Definition 2, we propose the following definition for the mean reversion of a time 

series. 

 

Definition 4: A time series tX , L,3,2,1=t , is mean reverting if there exists a 

function ( )tt XXt ,,, 0 Lµµ ≡  such that ( )ttt XE Ω+ |1  lies in ( )ttx µ,  if 

ttx µ< and in ( )tt x,µ  if ttx µ> . The quantity 
( )

tt

tt

t
X

XE

µ

µ
κ

−

−
−= +1log  is the speed 

of mean reversion at time t. 

 

 It is easy to see that the definition is compliant with the concept of mean reversion 

by the stochastic differential equations. Also an AR(1) process with a negative 

coefficient of correlation satisfies this definition. But processes satisfying this 

definition do not necessarily converge in distribution or have a mean for long time. 

 By this definition, level and speed of mean reversion are in a sense confounding. 

That is, each target of mean reversion tµ  corresponds to a different speed of mean 

reversion tκ . But such characteristics enable dealing with non-stationary processes. 

On analyzing time series with this approach, a class of tµ  can be taken into 

consideration as the candidates of the target of mean reversion, for example an 

EWMA (Exponentially Weighted Moving Average) predictor or some other nonlinear 

functions of observations.  

 

4.1  Estimating the Level of Mean Reversion 

  Next, we discuss how the historical data can be used to estimate of the levels of 

mean reversion. In many instances, authors assume that the mean is constant over all 

time period. As a consequence, in the forecast computations each observation carries 

the same weight. However, the assumption of a time invariant is restrictive, and it 

would be more reasonable to allow for a mean that moves slowly over time. 
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Heuristically, in such a case it would be reasonable to give more weight to the most 

recent observations and less to the observations in the distant past. The exponentially 

weighted moving average (EWMA) model is a particular case of the model where the 

weights decrease exponentially as we move back through time. In this paper, we will 

use the O-U stochastic process as mean reverting model. Using weekly data of VIX 

(Volatility Index) traded in CBOE from 1990 to 2007, interest rate of the United 

States Treasury Benchmark Bond 10-year from 1984 to 2007, and spread between 

Brent crude oil and West Texas Intermediate (WTI) crude oil traded in NYMEX from 

1997 to 2007 to investigate the phenomenon of mean reversion with different time 

scales.  

Continuous time models are useful for the theoretical properties, but in reality the 

trajectories of the process cannot be observed continuously, and the process must be 

sampled in discrete time. For estimation and testing purposes, a discrete time 

analogue of the continuous time model is required. First, we consider the locally 

constant mean model:  

n j n jX µ ε+ += +  

where µ  is a constant mean level and jn+ε  is a sequence of uncorrelated errors. If 

one chooses weights that decrease geometrically with the age of the observations, the 

forecast of the future observation at time n  can be calculated from 

                          ( ) 1
ˆ1ˆ

−+−= nnn X µωωµ                       (6) 

where tX  is the asset price, nµ̂ is the estimate of the mean price for time n , and the 

weightω  is a constant between zero and one. Equation (6) shows how the forecast 

can be updated after a new observation has become available and expresses the new 

forecast as a combination of the old forecast and the most recent observation. The 

coefficientω  depends on how fast the mean level changes. If ω  is small, more 

weight is given to the last observation and the information from previous periods is 

heavily discounted. If ω  is close to 1, a new observation will change the old forecast 

only very little. 

Through repeated application of Equation (6), we can see that nµ̂  is an 



11  

exponentially weighted average of previous observations, which can be shown that 

                      ∑
−

=

− +−=
1

0

0
ˆ)1(ˆ

n

t

n

tn

t

n X µωωωµ                     (7) 

Thus the influence of 0µ̂  on nµ  is negligible, provided n  is moderately large and 

ω  is smaller than 1. We take the available historical data 1X  as the initial estimate 

of 0µ̂ .  

  Second, we consider the locally linear trend mean model: 

tntn tX ++ ++= εβµ  

where µ  is the intercept and β  is the slope of the linear trend mean. Ordinary least 

squares leads to the following estimates at time 0: 
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             (8) 

where N  denotes the number of observations. We follow an approach originally 

used by Holt (1957) to introduce the updating equations. We assume a linear trend for 

the mean tµ  and write it in slightly different form ( )βµµ ntnt −+= . Then the mean 

at time 1+n  is be defined as βµµ +=+ nn 1 . An estimate of this mean can be found 

from two different sources: (1) from 1+nX , which represents the present estimator of 

1+nµ , and (2) from nn βµ ˆˆ + , which is the estimator of 1+nµ  from observations up to 

and including time n . Note that nβ̂  is the estimate of the slope at time n . Holt 

considers a linear combination of these estimates, 

( ) ( )nnnn X βµωωµ ˆˆ1ˆ
1111 ++−= ++  

where 11 1 ωα −=  is a smoothing constant that determines how quickly past 

information is discounted.  

  Similarly, information about slope comes from two sources: (1) from the difference 

of the mean estimators nn µµ ˆˆ
1 −+ , and (2) from the previous estimator of the slope nβ̂ . 

Again these estimates are linearly weighted to give  
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( )( ) nnnn βωµµωβ ˆˆˆ1ˆ
2121 +−−= ++  

Thus, the parameter estimates are updated according to  

                      
( ) ( )
( )( )

nnnn

nnnn X

βωµµωβ

βµωωµ

ˆˆˆ1ˆ

ˆˆ1ˆ

2121

1111

+−−=

++−=

++

++
                  (9) 

We define the two different smoothing coefficients as 2

1 ωω =  and ( )ωωω += 122  

where the coefficientω  depends on how fast the mean level changes. 

  Figure 1 shows how fast the mean level changes by using the weekly data of VIX, 

interest rate of the United States Treasury Benchmark Bond 10-year, and spread 

between Brent crude oil and West Texas Intermediate crude oil traded in NYMEX. If 

ω  is small, more weight is given to the last observation and the mean level is closer 

to the new observation. On the other way, if ω  is close to 1, a new observation will 

change the old forecast only very little and the mean level changes smoothly. Figure 1 

also shows that the locally constant mean model would be appropriate method for the 

data of VIX and spread of crude oil, and the locally downward linear trend mean 

would be appropriate method for the data of the United States Treasury Benchmark 

Bond 10-year. 
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Figure 1. Estimator for Level of Mean Reversion: Index series and mean level series with different 

weight of the VIX (top) and interest rate of the United States Treasury Benchmark Bond 10-year 
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(middle), and spread between Brent crude oil and West Texas Intermediate crude oil traded in NYMEX 

(bottom). The fact is that the mean level changes faster with 1.0=ω  than 9.0=ω . The weight 

9.0=ω  is better choice because we expect the mean level series changes smoothly which is 

suggested by Brown (1962). 

   

4.2  Hypothesis Testing about Mean Reversion 

  According to EWMA model with locally constant mean, we can calculate the 

estimate of the mean price for time n ( nµ̂ ) by historical data ( nXXX ,,, 21 L ), and 

l-step-ahead forecast of mean from time original n  by nln µµ ˆˆ =+ . The forecasts are 

the same for all l. Therefore, the distribution of the price tX  which follows the O-U 

process with constant mean is 
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where ( )κ

κ

σ
τ −−= e21

2

2
2 . We need to maximize the equation (10) to obtain estimators 

and test hypotheses. The Maximum Likelihood Estimators (MLE) of κ and 2σ  for 

the O-U process with constant mean are 
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If the price tX  follows the O-U process with linear trend mean, the distribution is 

( ) ( ) ( )







−−








+−++ −−−

−
κκκ

κ

σ
β

κ

β
µβ 2

2

1 1
2

  ,  1ˆ~ eeeXNX ntt  



15  

and the log likelihood function is given by 
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The Maximum Likelihood Estimators (MLE) of κ and 2σ  for the O-U process with 

linear trend mean are 
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  Figure 2 shows how the updated estimators for speeds of mean reversion change by 

using the weekly data of VIX, interest rate of the United States Treasury Benchmark 

Bond 10-year, and spread between Brent crude oil and West Texas Intermediate crude 

oil traded in NYMEX. We discuss three different time scales which are 6-month, 1- 

year, and 2-year respectively to estimate the speeds of mean reversion. The fact is that 

the less recent observations are considered which means the shorter time scale, the 

faster speed of mean reversion are reflected. 
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Figure 2. MLE for Speed of Mean Reversion: Estimators of the updated estimators for speeds of the 

mean reversion with different time scales by using the VIX series (top), interest rate series of the 

United States Treasury Benchmark Bond 10 years (middle), and spread between Brent crude oil and 
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West Texas Intermediate crude oil traded in NYMEX (bottom). The fact is that the speeds of mean 

reversion with shorter time scale are almost faster and than longer time scale. And the speed of mean 

reversion of VIX series and the spread of crude oil series are obviously faster than the interest rate 

series of the United States Treasury Benchmark Bond 10 years. In particular, the speeds are all zeroes 

which mean that there is no evidence for mean reversion since 1986 with shortest time scale. 

 

We utilize a Chi-Square test for the presence/absence of a mean reversion effect. 

The O-U process is no longer mean reverting when 0=κ . We wish to test precisely 

the null hypothesis of no mean reversion ( 0:0 =Η κ ) against the alternative of mean 

reversion ( 0:1 >Η κ ).The LR statistic ( )XΛ can be shown that  
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And the test statistic Λ− log2 will be asymptotically 2χ  distributed with degree of 

freedom equal to the difference in dimensionality of Θ and 0Θ . Therefore, 
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The log likelihood function for the O-U process with linear trend mean under the null 

hypothesis is 

( ) ( )1~loglog2 2

0 χLL −−



18  

               ( ) ( )
∑

=

− −−
−−=

n

t
l

ttll XXn
L

1
,2

0

2

1,2

00
2

log
2

constantlog
σ

β
σ         (13) 

and the MLE l,2

0σ̂ of l,2

0σ  under 0Η  is  

( )

n

XX
n

t

tt

l

∑
=

− −−

= 1

2

1

,2

0
ˆ

β

σ . 

By equations (11) and (13), we can obtain that  

( ) ( ) ( )[ ]

( )∑= −

−

−

−

















+−−








−+−

−
−

++−−−=−−

n

t

ntntl

MLE

l

MLE

l

MLE

l

MLE

lll

XeX
e

nenLL

l
MLE

l
MLE

l
MLE

1

2

1

ˆ

ˆ2,2

ˆ2,2,2

00

ˆˆ
1ˆ

ˆ2

ˆ2log1logˆlogˆlogloglog2

κ

β
µβ

κ

β
µ

σ

κ

κσσ

κ

κ

κ

 

 

 

 

 

 

 

 

 

 

 



19  

VIX_Chi-Square ValueVIX_Chi-Square ValueVIX_Chi-Square ValueVIX_Chi-Square Value

0000555510101010151515152020202025252525303030303535353540404040

Dec-91Dec-91Dec-91Dec-91 Dec-92Dec-92Dec-92Dec-92 Dec-93Dec-93Dec-93Dec-93 Dec-94Dec-94Dec-94Dec-94 Dec-95Dec-95Dec-95Dec-95 Dec-96Dec-96Dec-96Dec-96 Dec-97Dec-97Dec-97Dec-97 Dec-98Dec-98Dec-98Dec-98 Dec-99Dec-99Dec-99Dec-99 Dec-00Dec-00Dec-00Dec-00 Dec-01Dec-01Dec-01Dec-01 Dec-02Dec-02Dec-02Dec-02 Dec-03Dec-03Dec-03Dec-03 Dec-04Dec-04Dec-04Dec-04 Dec-05Dec-05Dec-05Dec-05 Dec-06Dec-06Dec-06Dec-062-year2-year2-year2-year 1-year1-year1-year1-year 6-month6-month6-month6-month 95% significant level95% significant level95% significant level95% significant level
 VIX_speedVIX_speedVIX_speedVIX_speed

00000.20.20.20.20.40.40.40.40.60.60.60.60.80.80.80.811111.21.21.21.21.41.41.41.4
Dec-91Dec-91Dec-91Dec-91 Dec-93Dec-93Dec-93Dec-93 Dec-95Dec-95Dec-95Dec-95 Dec-97Dec-97Dec-97Dec-97 Dec-99Dec-99Dec-99Dec-99 Dec-01Dec-01Dec-01Dec-01 Dec-03Dec-03Dec-03Dec-03 Dec-05Dec-05Dec-05Dec-052-year2-year2-year2-year 1-year1-year1-year1-year 6-month6-month6-month6-month

 

Figure 3. Chi-Square Test for VIX: Set the Chi-Square test for the presence of mean reversion effect 

with different time scales by using VIX weekly data from 1990 to 2007. The results show that mean 

reversion phenomenon is significant but the speeds of mean reversion are slower with longer time scale. 

And the mean reversion is not always significant, but recurring, and the speeds of mean reversion are 

also clearly faster with shorter time scale.  
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Figure 4. Chi-Square Test for Interest Rate of U.S. Treasury Bond 10-Year: Set the Chi-Square test 

for the presence of mean reversion effect with different time scales by using United States Treasury 

Benchmark Bond 10-year weekly data from 1984 to 2007. The results show that mean reversion is 

mostly higher significant but the speeds of mean reversion are slow, not exceeding 0.1, with longer 

time scale. On the contrast, the mean reversion phenomenon is mostly insignificant, but the speeds of 

mean reversion in 1986 is nearly eight times faster, about 0.8, with short time scale than which with 

longer time scale.  
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Figure 5. Chi-Square Test for Spread of Crude Oil between Brent and WTI: Set the Chi-Square 

Test for the presence of mean reversion effect with different time scales by using weekly data of spread 

between Brent crude oil and West Texas Intermediate crude oil from 1997 to 2007. The results are 

similar to the series of VIX, which also show that mean reversion phenomenon is mostly significant but 

the speeds of mean reversion are slower and smoother with longer time scale. And the mean reversion 

phenomenon is not always significant, but recurring and the speeds of mean reversion are also faster 

with shorter time scale. 
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V. Conclusions 

  The existence of various types of mean reverting features in asset yields or returns 

does not in any way contradict the assumption that markets are efficient. In this paper, 

we have discussed various other forms of mean reversion, proposed a formal 

definition of what most investment practitioners and scholar seem to mean by “mean 

reversion” and estimated the level and speed of mean reversion by using EWMA and 

MLE respectively. And we realize that the mean reversion is affected by various time 

scales. Many authors have investigated mean reversion based on the infinite time. 

Actually, investment practitioners are interested in a variation of underlying asset 

price at finite time, neither instantaneous nor infinite time. Therefore, we use three 

different finite time scales which are 6-month, 1-year, and 2-year to investigate the 

phenomenon of mean reversion. We find out that the speeds of mean reversion are 

faster with shorter time scale than longer time scale. There is strong evidence for 

mean reversion in VIX (Volatility Index) and spread between Brent crude oil and West 

Texas Intermediate (WTI) crude oil, and there are recurring periods where mean 

reversion is highly significant. However, for the data of USB10Y (United States 

Treasury Benchmark Bond 10-year), there is strong evidence for mean reversion with 

longer time scale, but weak evidence with shorter time scale.  

  In this paper, we only discuss the locally constant and linear trend mean models. 

Manzan (2005) analyzes the annual stock prices data from 1871 until 2003 to show 

that there is significant evidence to support a nonlinear model in which the speed of 

mean reversion increases when deviations get large. This confirms previous analysis 

using nonlinear adjustment models, such as Gallagher and Taylor (2001), Schaller and 

van Norden (2002), and Psaradakis et al. (2004). The issue of nonlinear mean 

reversion is worth investigating on future researches. 
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Extending the O-U process with linear trend mean, which is 
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