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ABSTRACT

This paper follows Duan et al. (2005 Jumping Starting GARCH) that incorporating
jumps in pricing Kernel and correlated jumps in asset returns and volatilities. Since
barrier options is a path dependent derivatives, incorporating jumps in the underlying
assets should have some effects in it. Therefore, we investigate this issue in this paper,

and we’ll compare those models pricing performance.
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Introduction

In recent years, the GARCH model has been increasingly used to investigate
return time series and pricing options, such as Duan (1997), Hardle and Hafner (2000)
etc. However, it seems that incorporating jumps into volatility is getting more and
more important, since many empirical researches have showed that models which
incorporate jumps into not only returns but also volatilities gain some improvement
in explaining the return data on the S&P 500 index and Nasdag 100 index (Eraker,

Johannes and Polson, 2003).

Barrier options are widely traded these years by investor and hedger. However,
barrier options_are path dependent options, incorporating jumps in volatility may
have some effect in pricing barrier options. Since Duan et al. (2005). point out that
the GARCH-Jump models show a better fit of the European options than the
traditional GARCH models with normal innovations do, we use the same models
Duan et al. demved to price barrier options and hope: to have good pricing

performance on the barrier options.

In this paper, we employ the GARCH-Jump models and the corresponding
option pricing theory derived by Duan et al. (2005) to investigate the performance of
these models in pricing barrier options. We also compare the results to the closed
form solutions. This GARCH-Jump option pricing model is a generalization of the
typical GARCH option pricing model with normal innovations constructed by Duan
(1995). We test these models using Monte Carlo simulation and find that although

these models are good in pricing European options, they seem to have some bias in

" This paper can be found on http://www.rotman.utoronto.ca/~jcduan/
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pricing barrier options.

These new GARCH models are also interesting in their discrete time
approximations. Duan et al. (2005) have derived a variety of continuous time limiting
models base on the GARCH-Jump processes. When the GARCH process is curtailed,
but jumps allowed, the limiting model nests the jump-diffusion model of Merton
(1976). When the jumps are banned, both in return and volatilities, the limiting model
can be thought to converge to continuous time stochastic volatility model. Finally,
when jumps are permitted, the limiting models contain jumps and diffusive elements
in both return and volatilities ‘along the lines of Eraker, Johannes and Polson (2003)

and Duffie, Singleton and Pan (1999).

The paper proceeds as follows. First, we show some setup of the pricing kernel
and the dynamics of the underlying asset that derived by Duan (2005). We also show
the updating schemes. Second, we introduce the Barrier options, and collect some
closed form solutions of the Barrier Options shown by Paul Wilmott (1998) on
Quantitative Finance. Third,»we show some:-designs for pricing the barrier options.

Fourth, we examine the pricing performance and following a conclusion.

2. The GARCH-Jump Option Pricing Model

2.1. Some Setups

Considering a discrete-time economy in a period of [0, T], and assuming that the

dynamics of the asset price and the pricing kernel are:

mg

St—1 = EP[St |Feq] (D

mg—q



Where, m,is the marginal utility of consumption at date t, S,is the total payout

consisting of price and dividends, and F;is the filtration.

We followed Duan et. al.(2005) to assume that the pricing kernel, m, /m,.; is given by:

my a+b]t
—t —e 2
— 2)

Where J; is compounded Poisson random variable that is one standard normal random

variables plus a Poisson random sum of normally distribution variables. That is,

Jo = X0 + i X0 3)
Where
XY ~N(0,1)

XP~N(y,y2) forj=12..

N; is a Poisson random |variable with intensity A. The random variables are
independent for j=1.2,... and t=1,2,..."T.
We also follows Duan(2005) to assume the asset price S following the process:

St euety/NieTe (4)

St-1
Where, J; is a standard normal random variable pius a Poisson random sum of
normal random variables. That is,
=% +320 g0 (5)
Where
% ”~N(0,1)

K V~N(E¥?) forj=12...



Furthermore, for t=1,2....T:

M w0\ _ (p ifi=jandt=r1
C X7, X =
Orr( v ) {0 otherwise

and N is the same Poisson random variable as in the pricing kernel.

This is to mean that there are N; shocks in the day t, and each shocks scale is
determined by the Normal distribution. Therefore, given the k shocks in day t, the
pricing kernel consists of a draw from the sum of k + 1 normal distributions, and the

return of the asset areralso consists k + 1 correlated normal distributions.

We assume that the single period continuously compounded interest rate is constant.

Therefore, we can find some relationship between r and the pricing kernel:

p | Mg — T

EP [P = (6)
p[ mg S¢. o

E [mt—l St—1 Tt_l] o (7

These assumptions lead the dynamics of the asset price changed as the following
proposition.
Proposition 1:

Under measure P, the dynamics of the asset price can be expressed as:

Si = eflt"'\/h_tTt (8)
t-1
Where
at=r—%—ﬁbp+kK(1—Kt) 9)
he = F(he_j, Je—i + bp;i=1,2...) (10)



N¢
-y Z g0
i=1
%P ~N(,1) fort=12,..T

)?t(])"'N(FL'?Z) fort= 1,2,..T, andj =12, ..

1
K = exp (bu + Ebzyz)

_ N 1, _
Ke = exp(yhe(f + bpyy) + 2 het?) (11)
In order to price the derivatives in the risk neutral measure, we have to derive the

probability measure Q

dQ = efT 2L 4p (12)
my

Lemma 1:
(i) Qis aprobability measure.
(i) For any F; measurable random vairblae, X; :

Mg

Xe 1 = Y [Xt

Ao} = BOX A

t—1
Proposition 2:'

Under measure Q, the dynamics of the asset price can be expressed as:
St

—_ eavt+\/h_tj;:
St—l

Where Q is the local risk-neutral measure, and

G =r—2+1(1-K) (13)

" Proposition 1, Lemma 1 and Proposition 2 are derived by Duan (2005), and please
find their proof in Duan’s paper.



hy = F(he,Je—i + bp;i=1,2...) (14)
Ne
]: _ X't(o) _I_Z)'(t(])
=1
£ P~N@©,1) fort=1,2,..T

)’(t(j)NN(}_l + bp,yy'vz) fort=12,..T,andj=1,2,...

)'(t(j) are independent fort=1,2,..T,andj = 0,1,2 ...
N; has a Poisson distribution with parameter & = Ax
Where, K is the same as the equation (12).
However, under measure Q, the dynamics of the asset price have the similar form that
under the data generating measure P. Under measure Q, the mean of normal

distribution is shifted, but the variance 1s the same under both measures. The Poisson

random variables are also shifted under measure Q.

2.2 The Liocal Variance Of.the Compounded Poisson

By knowing the factor.that if W = YN X, where X; is a sequence of iid
random variables and W is a compounded Poisson random variable, then
E[etW] = exp [At(dpy(t) — 1] where ¢4 (t) is the moment generating function.
Therefore, we can derived that

E[W] = AE[X] and Var[W] = L E[X?]

Since XED is normal distribution, E[X?] = F + y_z, for the sake of convenience we
let

7= +7 (15)



Therefore, the local variance of the logarithm returns under measure P for date t
conditioning in t-1is hyVarP(J;) = h(1 + 33%).
Note that the expected mean of J; under measure Pis EP(Jp) = Al
where h is the local scaling factor which can be any predictable processes.
We use NGARCH and TGARCH here, and will be introduced later. However,
under measure Q, the local variance is become
hVarQ(Jp) = he(1 + A7) (16)
which is not equal to the local variance under measure P unless « = 1 and bpy = 0.
The expected value and the variance of J, under measure Q are:
E?(J0) = ML+ bpyy (17)

VarQ(J= 1+ 3§ (18)

2.3. Updating Schemes for the Scaling Factor

We follow the Duan (2005) to set the updating schemes to be NGARCH and

TGARCH.

2.3.1 The NGARCH Model
In some papers like Christoffersen and Jacobs (2004) found that NGARCH
models periormed the best among many GARCH opuon models with normal
distribution. Therefore, we choose it to be one of our updating scaling factor schemes
here. However, in the empirical tests GARCH (1, 1) is good enough to describe the
empirical stock price, so we use GARCH (1, 1) hereafter.

The NGARCH form:

-
he = By + Byhe_q + Bhe_y [P — ¢ (19)

/1+>ﬁ2



Where By is positive, B; and B, are nonnegative to insure that the unconditional mean
is positive. The unconditional mean of h; is equals to

Bo/[1—B, —B,(1+ c?)]. Therefore, the process is stationary if

B, —B,(1+c?)< 1. When A = 0 this model reduces to the NGARCH-Normal
process used by Duan (1995). Under measure Q the updating schemes can be written

to this way below.

* Jt—1—(n+bpyy %
hy = ﬁo + Blht—l + ﬁzht—l % —C (20)
1+35
* 1+7~O‘72
-0, () o

o c [14#85%+ A= 7(fi+ bpy7) —bp
: a (22)
[1+272

¥ =L+ bpyD? + 7 (23)

a
Il

Il

Je—1 = (Ai+bpyy)

142352

~N(0,1) under measure Q (24)

2.3.2 The TGARCH Model
In Hardle and Hanfer’s paper (2000) they found that simulated threshold
GARCH option prices are substantially closer to observed market price than
simulated GARCH prices and Black-Scholes prices, when a stock index series with a
pronounced leverage effect. Therefore, the second model we considered here is

TGARCH(1, 1) model:

Jee1—A Jee1 =\
b = By + By be_q + B, |BE=E| + B, max | — =2 o (25)

f1+X§'2 /1+X§r2




ht:q)%

When A = 0 this updating scheme reduces to the standard TGARCH model.

Under measure Q, this model becomes

Jio1 — (A + bpyy
Jeor — (AR pw)+q

de =B, + B, et + B,

1+ A7

_ Jema—Gitbpyp) 0

142352

+B; max

Where

ht:q)%

X 1+7f/2 .
B AT
e bp(T )+ —1)

q_
14272

(26)

Therefore, when the local scaling factor h follows either NGARCH or TGARCH,

under measure Q, the updating schemes translates into a similar NGARH or

TGARCH process.

2.4. Further Investigation of the Risk Premium

Under the physical data generating measure P, the expected total return on the



underlying assets can be regarded as:

St
St—l

EP — er+nt

Where the 1 is the risk premium and by Proposition 1 and the moment generating

function of the Compounded Poisson, we can show that:

_ 72h
M, = M1 — Ko — 4 (1 B e*lmTt) — /hebp 27)

The hihere is less than 10, so by the Taylor’s Expansion the 1, can be expressed as:

e = [1CL 9 — bp(1h Aoy - (1 = w)er
First, in order to have some intuition fo these pricing model, wellet k=1 and y =
0 to see what will ‘happened in the risk premium. In this case, the risk premium
reduces to —bp\/h_ , and jumps can’t atfect it-"This"is'to mean that the jump risk is
fully diversifiable, which is correspond to the assumption made by Merton (1976).

Second, when thei # 1 and v = 0 in the pricing kernel, the risk premium 7, is:

n, = [Mi(1= %) = bplyhe+27%(1 — K)%
The jump size y affects minimally in the risk premium, and Naik and Lee (1990)
who extends Merton’s model to this situation that the jump risk is not diversifiable
fully.

With k=1 and y>0, the risk premium is likely to be:

1, = —bpy/h; — bpry7y/hy

The risk premium here is uncertainty because of the jump size y and the intensity A.

Finally, when « is release from 1, the impact of the intensity of the process on

10



the risk premium becomes more complex.

The expected value of the pricing kernel which determined the interest rate fully
can be derived by equation (2) and the compounded Poisson’s moment generating

function:

mg
e’ = EP

7—"] _ ea+b72+x(1<—1)
| =

Mme—q
When k=1 (i.e., p = —by?/2), the effects of the jump in the pricing kernel will not

affect interest rate. For all other values of «, the jump process explicitly affects both

the interest rate and asset price.

2.5. Nested Models

The first model considering that k¥ = 1'and y = 0. In this case that the pricing
kernel is m, = —bp\/E and the jumps can’t affect the risk premium. According to

the risk premium, you can find that.the jump risks are fully diversifiable. With B; = B,
= 0 in the NGARCH updating scheme and [3; =f; = B3 = 0 in.the TGARCH updating
scheme the scaling factor remains constant. When the jump risk is fully diversifiable,
the local scaling factor is constant, and innovations, conditional on the number of
jumps are normal, the model here can be regarded as the discrete-time Merton model,

or MERTON, for short.

The second model considering the same model we just mentioned, but release «
from 1 and y from 0. In these kinds of setup here, it’s the same as the jump risk is not
been diversifiable and implies that the jump risk is been priced. We followed Duan et

al. calls the generalized Merton model, or G-MERTON, for short.

The third set of models considering here are models with no jumps (A=0), but

11



with scaling factor being GARCH processes®. In this setup, innovations are normal
random variables, and the risk premium is n, = —bp\/h_t . If the volatility forecast

scheme is NGARCH, the system is become NGARCH-Normal model. If the forecast
process is TGARCH, the system is called TGARCH-Normal model. According to the
Duan (1997), these two models, in the limit, give rise to an extended version of the

Hull and White (1997) and Heston (1993) stochastic volatility models, respectively.

The fourth set of models considering here are models where « = 1 and y = 0, but

the scaling factor are permitted to be GARCH processes and jumps are permitted. In
these models, jumpsirisk is diversifiable (n, = —bp\/h_t), volatility is stochastic and

innovations are . not normal. These two models are referred to as the

NGARCH-Restricted model and the TGARCH-Restricted model.

The final sets of models here are the'most general models where jump risk is
priced, scaling' factor are 'stochastic GARCH processes, jumps are allowed and
innovations are not-normal. These two models are referred to as the NGARCH-Full

and TGARCH-Full models.”

Therefore, we follow Duan et al. (2005) considering 8 models here, and

summarized in Table 1.

* The GARCH processes are NGARCH or TGARCH.
s Duan, Ritchken and Sun (2005) have investigated the limiting behavior of these models.
12



Table 1:
Taxonomy of models

Model Restrictions Condition
Jump models:
(1) Merton Bi=P=P3=0,x=1,y=0 J,JD,SC,IN
(2) G-Merton Bi =P =P =0 J,JP,SC,IN
Normal Models:
(3) NGARCH-Normal A=0 NJ,JD,SS,IN
(4) TGARCH-Normal A=0 NJ,JD,SS,IN
Restricted Models:
(5) NGARCH-Restricted k=1,y=0 J,JD,SS,1
(6) TGARCH-Restricted k=1,y=0 J,JD,SS,1
Full Models:
(7) NGARCH-Full JJR.SS.I
(8) TGARCH-Full JJP,SS.I
J : Jumps are allowed NJ: Not allowed Jumps JD: Jump risks are diversifiable
JP: Jump risks are priced SC: Scaling factor are constant SS: Scaling factors are stochastic

I: Innovations are not Normal  IN: Innovations are normal

3. Barrier Options

Barrier Options are path dependent options. Their payoffs are decided by the
barrier and the strike price. Take an up-and-out call option for an example, it pays the
payoff of max (S, K) if the stock price never higher than the barrier. If the stock
price is higher than the barrier, the barrier option worth nothing and you get a rebate.
Barrier Options are widely used in hedging and investing when the investor or hedger
thought that they sure the direction of the market. There are 8 kinds of barrier options,
including up-and-out call(put), up-and-in call(put), down-and-out call (put) and
down-and-in call (put). Figure 1 is the comparison between vanilla call option and
up-and-out call option. The closed form solutions of the 8 kinds of barrier options are
listed in the table 2. Most of them are derived by Reiner & Rubinstein (1991), others

are listed in Paul Wilmott (1998).

13



Figure 1:
The European Call Options vs Up-and-Out Call Options

European Call v.s Up-and-Out Call with k=500 H=575,T=180
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Table 2:
The Closed-form Solution of the Barrier Options
Barrier Option Closed Form Solution
Up-and-Out Call Se~a(T-0 (N(d1)=N(d3) = b(N(d6) — N(d8))) — Ke @~V (N(d2) = N(d4) — a(N(d5) — N(d7)) )
Up-and-Out Put ® K>B: Ke™™9(1 - N(d2)—a(N(d7) — N(d5)))= Se 4(T-9 (1 — N(d1)— b(N(dB)))

® K<B: Ke'(T-D (1 ~ N(d4) — a(N(d7))) e () (1 — N(d3) - b(N(d6)))

Up-and-In Call Se~a(T-v (N(d3) +b(N(d6) — N(ds))) =Ke 100 (N(d4) +a(N(d5)— N(d7)))

Up-and-In Put ® K>B: Ke"T"Y(N(d4) — N(d2).+a(N(d5))) — Se~1™D) (N(d3) —N@d1) + b(N(d6)))

® K<B: Ke (70 (1 — N(d4) — a(N(dS))) — gema(T-v (1 — N(d3) — b(N(d6)))

Down-and-Out Call  |® K>B: Se~d™0 (N(d1)=b(1=N(d8))) - Ke ™™ (N(d2) ~ a(1=N(d7)))

® K<B: Sed(T-V (N(d3) —b(1= N(d6))) — Ke™"T=9) (N(d4) — (1 N(d5)))

Down-and-Out Put  |[Ke™"™9 (N(d4) — N(d2) — a(N(d7) — N(d5))) ~Se 909 (N(d3) — N(d1) — b(N(d8) — N(d6)) )

Down-and-In Call  |® K>B: Se a("0 (b(l - N(d8))) — Ke™"(T-0 (a(l - N(d7)))

® K<B: Se~d(T-V (N(dl) — N(d3) +b(1 — N(d6))) — Ke~"(T-9) (N(d2) — N(d4) +a(1 - N(d5)))

Down-and-InPut  [Ke™ ™ (1 — N(d4) +a(N(d7) — N(d5))) — Se™9T9 (1 — N(d3) + b(N(d8) — N(d6)) )

Where S is the initial stock price, r is the risk free rate, q is the dividend yield, T is time to maturity, K is the strike price, B is the Barrier, o is the volatility a =

(B)_1+(( q) ()1+( 2(r— q))

S

dl—ln(i) ( —q+5 0)(T—t) dz_ln(%)+(r—q—%62)(T—t) d3_ln(]§) (r—q+1c)(T—t) d4_ln(%) ( q—lc)(T—t)
- s /(T—1) B 6 /(T—1) - D) B o /(T—0)

5 @) -(-a-gt)a-n  mE)-(-a-gt)a-n o m(GE)-(ma-get)a-o o n(E)-(r-a+ge’)T-y
B o /(T—1) B o /(T—1) - o /(T—1) - s J(T—1

14



4. Numerical Results

4.1. Parameters Estimation

We use the parameters that estimated by Duan et al. (2005), and these
parameters are shown in Appendix. The data used by Duan et al. (2005) is estimated

by MLE method covering 1991 January to 1994 December S&P 500 Index.

4.2. Pricing the Barrier Option

In this paper, we only foes' on the up-and-out call option, because it’s the
easiest path dependent derivatives. We use Monte Carlo. simulation to price the
options here . According to the Proposition 2 and Lemma I, we can simulate the
prices of underlying assets day by day, and.derive the options price easily. Actually,
as long as the Proposition 2 and Lemma 1 are correct, we can price any kinds of

options or exotic options.

4.3. Delta of the Barrier Option

In addition to gain some intuition of the up-and-out e¢all options payoff here, we
still want to know the results of delta in these 8 models. Since it’s too hard to have an

easy form of delta, we use the finite difference method to derive delta in this paper.

4.4. Results

As can be seen from Table 4 to Table 6, we show the up-and-out call options
payoff under different strike prices. According to these 3 tables, we find that prices of
the up-and-out call options seem to be different between these 8 models with
closed-form solution. As the time to maturity is longer and the up-and-out call option

price is close to the initial stock price, it seems to overprice the barrier options

™ The random number generator used here is Fog Agner (2004), www.agner.org/random.
15



comparing to the closed-form solution. Since it’s difficult to see the relationship
between the 8 models with closed form solution, we draw Figure 2 to find out their
relationship. According to Figure 2, we can find that when the time to maturity is 30
days and the barrier is higher than 525, the pricing performance of these 8 models are
closer to the closed-form solution. When the time to maturity is more than 90 days
and the barrier is closer to the initial stock price, these 8 models have higher pricing
errors in the barrier options price. An explanation here is that our volatility used to
simulate is 0.14 when the time to maturity is 30 days in this case, the underlying
assets have no chance to across the barrier and the up-and-out call reduce to the
vanilla call. Since these 8 models are good in pricing European options, it should

have similar price'in pricing vanilia calls.

Figure 3 shows the average bias comparing to the closed-form. solution and we
can find that Merton model is the closest to closed-form solution, and other models
are almost overpricing the up-and-out call options price comparing to the closed-form

solution.

However, we can find that almost all models under pricing the up-and-out call
options when the strike price is closer to the initial stock price under the European

options like condition.

Because the NGARCH models, NGARCH-Normal, NGARCH-Restricted and
NGARCH-full model, have similar results in pricing up-and-out call options and so
does TGARCH models, TGARCH-Normal, TGARCH-Restricted and TGARCH-full
model, we choose the full model, Merton and Gmerton models here to have some

further researches.
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First, we test their pricing performance on pricing vanilla call options. Figure 4
shows the vanilla call options payoff under different stock prices. We can find that
they are similar in pricing vanilla call options excepting TGARCH-full model in
pricing vanilla call options under some stock price. We test their performance on
pricing up-and-out call options next. Figure 5 shows the up-and-out call options
under different stock prices. Although the models we chose have similar results in
pricing vanilla call options, it shows a lot of differences in pricing up-and-out call
options. All these 4 models overprice the up-and-out call options, and TGARCH-full
model is higher than NGARCH-full model than Gmerton model followed by Merton

model.

Next, we test the sensitivity of .the jump in the TGARCH-full model.
Although it seems that TGARCH-full model over price the up-and-out call options,
TGARCH-full model’s assumption is closer to the real data in the market. Therefore,
we test TGARCH-full model’s sensitivity by changing its jump parameters. As can be
seen in Figure 6, while the jump parameter is getting larger, the up-and-out call
options prices are getting smaller. It’s a reasonable result, because when the jump
parameters become larger, the underlying assets should have more chance to across

the barrier.

Finally, we check their performance on the delta. Figure 7 shows the delta of the
up-and-out call options under different stock prices. When the time to maturity is 30
days, we find the similar delta between the 4 models, excepting the TGARCH full
model. When the time to maturity is higher than 90 days, we can find the full models
have large bias in delta. We can also find that the full models under-estimating the

delta at first than over-estimating the delta when the stock price is large. Although
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these 4 models show a lot of differences in pricing up-and-out call options, they show
similar delta excepting the full models. Therefore, we may use the simple models

such as MERTON or GMERTON to hedge our portfolio.

5. Conclusion

In this paper, we use Duan et al. (2005) Jumping Starting GARCH that
incorporates jumps in the pricing kernel and correlate jumps in returns and volatilities
to price up-and-out call options. We use the lemmas and propositions derived by
Duan et al. (2005) to simulate the payoff of the up-and-out call options, and found
that these models are not pricing well in up-and-out call options, a simplest path
dependent derivatives. At the same time, in their performance of estimating delta,
Merton and GMerton model shows similar results. Therefore, full models are not
adaptive to hedge the portfolio. Although using Duan’s model is good in pricing
vanilla call options, it shows some biases in pricing up-and-out call options. Our
results are similar to Hirsa (2002), -who found thatregardless of the closeness of the
vanilla fist to different models, prices of up-and-out call options differ noticeably.
Therefore, pricing the & path-dependent options..such as up-and-out call by

GARCH-Jump models will cause the model risk.
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Table 3:

The Up-and-Out Call Options Prices for Eight Models when T=30

The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate

the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price

1s 500, maturity is 30 days, barrier is 575, risk free rate is 0.057, volatility is 0. 14, and the strike prices are 450 to 550. The first value is the

barrier option’s price, and the second row is the average biases’’ that compared with the Closed-form solution.

Maturity T=30
Barrier Strike Closed-Form Merton G-Merton |NGARCH-Nor|NGARCH-Res NGARCH-FullTGARCH-Nor|TGARCH-Res|TGARCH-Full
575 450 52.0565 52.3085 52.2106 52.4824 52.4256 52.4606 52.3544 52.2948 52.3548
0.0048 0.003 0.0082 0.0071 0.0078 0.0057 0.0046 0.0057
475 27.9169 28.0035 27.6817 28.4128 28.3773 282113 27.4388 27.3406 27.3823
0.0031 -0.0084 0.0178 0.0165 0:0105 -0.0171 -0.0206 -0.0191
500 9.2252 9.1313 8.3725 8.9152 8.8427 8.3652 5.2126 4.4801 4.1831
-0.0102 -0.0924 -0.0336 -0.0415 -0.0932 -0.435 -0.5144 -0.5466
525 1.4084 1.3487 0.9988 0.89 0.8947 0.6846 0.0231 0.0076 0.003
-0.0424 0.2908 -0.3681 -0.3647 -0.5139 -0.9836 -0.9946 -0.9979
550 0.0728 0.0699 0.0381 0.0224 0.0282 0.0152 0 0 0
-0.0398 -0.4766 -0.6923 -0.6126 -0.7912 -1 -1 -1

™ The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution.
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Maturity T=30

Barrier Strike Closed-Form Merton G-Merton [ NGARCH-Nor | NGARCH-Res [ NGARCH-Full | TGARCH-Nor | TGARCH-Res | TGARCH-Full

550 450 49.8488 50.7137 51.2934 51.9101 51.7118 52.065 52.3536 52.2945 52.3548

0.0174 0.029 0:0414 0.0374 0.0445 0.0502 0.0491 0.0503

475 26.2627 26.7987 26.9886 27.9806 27.8612 27.9127 27.4382 27.3404 24.3823

0.0204 0.0276 0.0654 0.0609 0.0628 0.0448 0.041 -0.0716

500 8.1246 8.3164 7.90359 8.62316 8:49425 8.1634 5.21221 4.4799 4.18305

0.0236 -0.0272 0.0614 0.0455 0.0048 -0.3585 -0.4486 -0.4851

525 0.8602 0.9234 0.7539 0.7376 0.7132 0.5795 0.0228 0.0075 0.003

0.0735 -0.1236 -0.1425 -0.1709 -0.3263 -0.9735 -0.9913 -0.9965

525 450 32.857 36.1239 391322 39.6618 40.0183 42.074 51.7035 52.065 52.2534

0.0994 0.191 0:2071 0.218 0.2805 0.5736 0.5846 0.5903

475 15.0422 16.9994 18.7902 19.7165 19.9522 21.1637 26.9997 27.1858 27.3139

0.1301 0.2492 0.3107 0.3264 0.407 0.7949 0.8073 0.8158

500 2.6276 3.2863 3.6587 4.3243 4.3762 4.6443 4.9853 4.4002 4.1478

0.2507 0.3924 0.6457 0.6655 0.7675 0.8973 0.6746 0.5786
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Table 4:

he Up-and-Out Call Options Prices for Eight Models when T=90

The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate
the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price
1s 500, maturity is 90 days, barrier is 575, risk free rate is 0.057, volatility is 0. 14, and the strike prices are 450 to 550. The first value is the

barrier option’s price, and the second row is the average biases™ that compared with the Closed-form solution.

Maturity T=90
Barrier Strike Closed-Form Merton G-Merton |NGARCH-Nor [NGARCH-Res| NGARCH-Full TGARCH-Nor [ TGARCH-Res | TGARCH-Full

575 450 48.9952 50.7381 52.7505 55.3889 55.2972 56.4895 56.7679 57.0709 57.2355
0.0356 0.0766 0.1305 0.1286 0.153 0.1586 0.1648 0.1682
475 28.505 29.6824 30.7445 33.4526 33.3902 33.6952 33.5823 33.3629 33.1389

0.0413 0.0786 0.1736 0.1714 0.1821 0.1781 0.1704 0.1626
500 12.855 13.5353 13.712 15.626 15.5502 15.2093 14.5964 13.5835 12.7142

0.0529 0.0667 0.2156 0.2097 0.1831 0.1355 0.0567 -0.011

525 3.8457 4.1789 4.0462 4.7124 4.6385 4.0423 3.6611 2.701 1.9851

0.0866 0.0521 0.2254 0.2062 0.0511 -0.048 -0.2977 -0.4838

550 0.4737 0.5763 0.5302 0.605 0.5873 0.4381 0.345 0.1764 0.0842

0.2166 -0.0026 -0.0028 -0.0027 -0.0023 -0.002 -0.0014 -0.001

* The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution.
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Maturity T=90
Barrier Strike Closed-Form | Merton G-Merton | NGARCH-Nor | NGARCH-Res | NGARCH-Full | TGARCH-Nor | TGARCH-Res | TGARCH-Full

550 450 35.0238 37.4957 41.0641 43.4057 43.6727 47.745 49.5278 53.1675 55.2248
0.0706 0.1725 0.2393 0.2469 0.3632 0.4141 0.518 0.5768
475 18.2923 19.897 22.0488 24.4771 24.6869 27.1165 28.1342 30.4193 31.6212

0.0877 0.2054 0.3381 0.3496 0.4824 0.538 0.663 0.7287
500 6.3749 7.1898 8.0009 9.6455 9:7533 10.612 10.9385 11.5991 11.6896

0.1278 0.2551 0.513 0.53 0.6647 0.7159 0.8195 0.8337

525 0.8822 1.1202 1.2338 1.6554 1.6736 1.7561 1.7742 1.6699 1.4517

0.2698 0.3985 0.8764 0.8971 0.9906 1.0111 0.8929 0.6455
525 450 14.4125 16.6894 19.432 18.9635 19.301 23.0088 24.0195 29.0013 33.5756
0.158 0.3483 0.3158 0.3392 0.5964 0.6666 1.0122 1.3296

475 5.6046 6.7735 8.1633 8.4988 8.7177 10.7 11.2155 14.2173 17.0216

0.2086 0.4565 0.5164 8:5085 0.9091 1.0011 1.5367 2.0371

500 0.8482 1.1581 1.4446 1.712 1.7809 2.2554 2.3677 3.235 4.0782

0.3654 0.7031 1.0184 1.0996 1.659 1.7914 2.814 3.8081
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Table 5:
The Up-and-Out Call Options Prices for Eight Models when T=180
The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate
the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price
is 500, maturity is 180 days, barrier is 575, risk free rate is 0.057, volatility is 0.14, and the strike prices are 450 to 550. The first value is the

barrier option’s price, and the second row is the average biases'” that compared with the Closed-form solution.

Maturity T=180
Barrier Strike Closed-Form Merton G-Merton |NGARCH-Nor |[NGARCH-Res|NGARCH-Full| TGARCH-Nor [TGARCH-Res | TGARCH-Full

575 450 36.8678 39.5887 43.8064 46.3548 46.6499 52.4465 48.1346 53.0689 57.6044
0.0738 0.1882 0.2573 0.2653 0.4226 0.3056 0.4394 0.5625

475 21.6156 23.4652 26.1991 28.8344 29.0888 32.7949 29.7932 33.2098 36.2077

0.0856 0.212 0.334 0.3457 0.5172 0.3783 0.5364 0.6751

500 10.157 11.2499 12.6254 14.7048 14.8782 16.6574 15.0556 16.8834 18.2961

0.1076 0.243 0.4478 0.4648 0.64 0.4823 0.6622 0.8013

525 3.2562 3.7685 4.2306 5.2936 5.3754 5.8965 5.3492 5.9746 6.2917

0.1573 0.2992 0.6257 0.6508 0.8109 0.6428 0.8348 0.9322

550 0.429 0.5656 0.631 0.8675 0.8828 0.9437 0.8606 0.9498 0.9518

0.3184 0.4709 1.0221 1.0578 1.1998 1.0061 1.214 1.2186

% The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution.
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Maturity T=180
Barrier Strike Closed-Form Merton G-Merton |NGARCH-Nor [ NGARCH-Res|NGARCH-Full TGARCH-Nor|TGARCH-Res[TGARCH-Full
550 450 20.9424 23.2627 26.888 27.3836 27.6595 33.5707 28.9517 33.6653 39.3246
0.1108 0.2839 0.3076 0.3207 0.603 0.3824 0.6075 0.8778
475 10.4585 11.8694 14.0083 14.9973 152137 18.8218 15.7976 18.8756 22.5656
0.1349 0.3394 0.434 0:4547 0.7997 0.5105 0.8048 1.1576
500 3.5371 4.1946 5.0453 5.8618 5.9801 7.5226 6.1239 7.5487 9.2621
0.1859 0.4264 0.6572 0.6907 1:1268 0.7313 1.1341 1.6186
525 0.4831 0.6511 0.7876 1.0296 1.0604 1.3493 1.0661 1.357 1.7049
0.3478 0.6303 gkl 1.195 1.793 1.2068 1.8089 2.5291
525 450 6.7981 8.1258 9.7727 9.226 9.3663 120998 9.6186 11.3578 13.8339
0.1953 0.4376 0.3571 0:3778 0.7799 0.4149 0.6707 1.035
475 2.4002 3.0056 3.7246 3.7731 3.8607 5.1674 3.9065 4.8165 6.1219
0.2522 0.5518 0.572 0.6085 1.1529 0.6276 1.0067 1.5506
500 0.3379 0.4794 0.6068 0.6969 0.7184 0.9966 0.711 0.921 1.2349
0.4188 0.7958 1.0624 1.1261 1.9494 1.1042 1.7257 2.6546

24



Payoff

Payoff

Payoff

Figure 2:

The Up-and-Out Call Options payoff V.S. Strike Price
This Figure presents the up-and-out call options price under different strike price. The price here is
simulated by Monte Carlo Simulation with 50,000 sample paths. We use the same random variables in the
simulation between these 8 models. We assume that the initial stock price is 500, the risk free rate is 0.057,
and volatility is 0.14.
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The Average Bias V.S. Strike Price

Figure 3:

This Figure presents the up-and-out call options average bias that compare to the closed-form solution.

The price here is simulated by Monte Carlo Simulation with 50,000 sample paths. We use the same random

variables in the simulation between these 8 models. We assume that the initial stock price is 500, the risk free
rate is 0.057, and volatility is 0.14.
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Figure 4:
European Call Options Price V.S. Stock Price
The figure shows the European call options price under different stock prices. The price here is simulated by Monte Carlo simulation with
50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed form solution. We use the same random variables in

the simulation between the 4 models for the purpose of comparison. We assume the strike price is 500, risk free rate is 0.057, volatility is 0.14,
and time to maturity is 30, 90 and 180 days.
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Figure 5:
Up-and-Out Call Options Price V.S. Stock Price
The figure shows the up-and-out call options price under different stock prices. The price here is simulated by Monte Carlo simulation with
50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed form solution. We use the same random variables in

the simulation between the 4 models for the purpose of comparison. We assume the strike price is 500, risk free rate is 0.057, volatility is 0.14,
and time to maturity is 30, 90 and 180 days.
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Figure 6:
Price of Barrier Options under different parameter under TGARCH-Full Model H575,K=500,T=90
The figure shows the price of the up-and-out call options price under different stock prices. We simulate the up-and-out call options by Monte
Carlo simulation with 50,000 sample paths for the TGARCH-full model. We use the same random variables in the simulation for the purpose of

comparison. We assume the strike price is 500, risk free rate is 0.057, barrier is 575, volatility is 0.14, and time to maturity is 90 days.
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rate is 0.057, barrier is 575, volatility is 0.14., and time to maturity is 30, 90 and 180 days.

Delta of Barrier Options H575 K=500,T=30

Figure 7:
Up-and-Out Call Options Delta V.S. Stock Price
The figure shows the delta of up-and-out call options under different stock prices. We estimate the delta by the finite difference method . The
price is simulated by Monte Carlo simulation with 50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed
form solution. We use the same random variables in the simulation for the purpose of comparison. We assume the strike price is 500, risk free

Delta of Barrier|Options HE75, =500, T=20

GO0

2 T T T T T T T T T 1 T T T T T T T T T
1 L 4
0 | J
RS J
= 2 3 =
o o
= ES
[ fud
o gl i o
At J
— Closed Clozed
S oo Thull T S |t Tl ]
Gmerton Gmertan
B Merton B Mertan
— Mfull —— Miull
_? 1 1 1 1 1 1 1 1 1 _15 T T 1 1 1 1 1 1 1
400 420 440 450 430 500 520 540 560 5500 GO0 400 420 “440 0 480 4807 500 520 540 560 530
Stock price Stock price

ok

" delta =

85 _ S(4)-5(0)

ac

A

and we choose A=0.1 here. Where S(0) is the initial stock price.
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Appendix

Parameter

Bo
B
B2
Bs

< >

=

The Estimates for the Eight Models

These parameters are estimated by Duan et al. (2005)

Merton

6.41E-06

0.12941

Jump

G-Merton

6.41E-06

2.0705
0.12941
-0.02572

0.9818

1

Normal

1.83E-06

0.84795

0.07962

0.66425

NGARCH

Restricted
1.65E-07
0.84431

0.07560

0.77439

2.20226

2.09608

-0.0723

33

Full

1.65E-07

0.84431

0.07560

0.77139

2.20226

2.0968

0.0332

-0.01246

0.8513

1

TGARCH

Normal Restricted

-1.10E-04 -3.45E-05

0.95765 0.96597

2.56E-04 5.75E-05

5.09E-04 1.53E-04

- 2.1304

- 2.158

- 0.054841

-0.0293 -0.0950

- 1

- 0

Full

-3.45E-05

0.96597

5.75E-05

1.53E-04

2.1304

2.158

0.054841

-0.0162

0.9008
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