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摘要摘要摘要摘要    

    

        本篇論文是根據段教授2005年的論文,在評價核心加上跳躍，以及同一時間在

資產的報酬以及波動度的相關跳躍來評價障礙型的選擇權。 既然障礙型選擇權

是和資產的走勢有關，在資產上加上跳躍的影響必然會對於障礙型選擇權有所

影響。因此，本篇論文探討此一現象並且去比較段教授所推導出來的論文在評

價障礙型選擇權上的表現。 
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ABSTRACT 

 

This paper follows Duan et al. (2005 Jumping Starting GARCH) that incorporating 

jumps in pricing kernel and correlated jumps in asset returns and volatilities. Since 

barrier options is a path dependent derivatives, incorporating jumps in the underlying 

assets should have some effects in it. Therefore, we investigate this issue in this paper, 

and we’ll compare those models pricing performance. 
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1. Introduction 

 

In recent years, the GARCH model has been increasingly used to investigate 

return time series and pricing options, such as Duan (1997), Hardle and Hafner (2000) 

etc. However, it seems that incorporating jumps into volatility is getting more and 

more important, since many empirical researches have showed that models which 

incorporate jumps into not only returns but also volatilities gain some improvement 

in explaining the return data on the S&P 500 index and Nasdaq 100 index (Eraker, 

Johannes and Polson, 2003).  

 

    Barrier options are widely traded these years by investor and hedger. However, 

barrier options are path dependent options, incorporating jumps in volatility may 

have some effect in pricing barrier options. Since Duan et al. (2005)
*
  point out that 

the GARCH-Jump models show a better fit of the European options than the 

traditional GARCH models with normal innovations do, we use the same models 

Duan et al. derived to price barrier options and hope to have good pricing 

performance on the barrier options. 

 

In this paper, we employ the GARCH-Jump models and the corresponding 

option pricing theory derived by Duan et al. (2005) to investigate the performance of 

these models in pricing barrier options. We also compare the results to the closed 

form solutions. This GARCH-Jump option pricing model is a generalization of the 

typical GARCH option pricing model with normal innovations constructed by Duan 

(1995). We test these models using Monte Carlo simulation and find that although 

these models are good in pricing European options, they seem to have some bias in 

                                                      
*
 This paper can be found on http://www.rotman.utoronto.ca/~jcduan/ 
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pricing barrier options. 

    These new GARCH models are also interesting in their discrete time 

approximations. Duan et al. (2005) have derived a variety of continuous time limiting 

models base on the GARCH-Jump processes. When the GARCH process is curtailed, 

but jumps allowed, the limiting model nests the jump-diffusion model of Merton 

(1976). When the jumps are banned, both in return and volatilities, the limiting model 

can be thought to converge to continuous time stochastic volatility model. Finally, 

when jumps are permitted, the limiting models contain jumps and diffusive elements 

in both return and volatilities along the lines of Eraker, Johannes and Polson (2003) 

and Duffie, Singleton and Pan (1999). 

 

The paper proceeds as follows. First, we show some setup of the pricing kernel 

and the dynamics of the underlying asset that derived by Duan (2005). We also show 

the updating schemes. Second, we introduce the Barrier options, and collect some 

closed form solutions of the Barrier Options shown by Paul Wilmott (1998) on 

Quantitative Finance. Third, we show some designs for pricing the barrier options. 

Fourth, we examine the pricing performance and following a conclusion. 

 

2. The GARCH-Jump Option Pricing Model 

 

2.1. Some Setups 

Considering a discrete-time economy in a period of [0, T], and assuming that the 

dynamics of the asset price and the pricing kernel are: 

 

S��� � E��S� 	
	
�� |F����                                      (1) 
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Where, mt is the marginal utility of consumption at date t, St is the total payout 

consisting of price and dividends, and Ft is the filtration. 

 

We followed Duan et. al.(2005) to assume that the pricing kernel, mt /mt-1 is given by: 

	
  	
�� � e����
                                              (2) 

Where Jt is compounded Poisson random variable that is one standard normal random 

variables plus a Poisson random sum of normally distribution variables.  That is,  

 

 J� � X���� � ∑ X�����
���                                          (3) 

Where  

 X����~N�0,1�                              X����~N�µ, γ%�  for j � 1,2…. 
 

Nt is a Poisson random variable with intensity λ. The random variables are 

independent for j=1,2,… and t=1,2,…T. 

    We also follows Duan(2005) to assume the asset price St following the process: 

-
-
�� � eα
�./
 �
0                                            (4) 

Where, J1� is a standard normal random variable plus a Poisson random sum of 

normal random variables. That is, 

  J�0 � X�0 ��� � ∑ X�0 ����
���                                           (5) 

Where    

        X�0 ���~N�0,1�    

X�0 ���~N2µ,0 γ3%4  for j � 1,2….              
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Furthermore, for t=1,2….T: 

Corr 6X��7�, X8333���9 � :ρ    if i � j and t � τ0               otherwiseC                
 

and Nt is the same Poisson random variable as in the pricing kernel. 

   

    This is to mean that there are Nt shocks in the day t, and each shocks scale is 

determined by the Normal distribution. Therefore, given the k shocks in day t, the 

pricing kernel consists of a draw from the sum of k + 1 normal distributions, and the 

return of the asset are also consists k + 1 correlated normal distributions. 

 

We assume that the single period continuously compounded interest rate is constant. 

Therefore, we can find some relationship between r and the pricing kernel: 

E� D 	
	
�� EF���G � e�H                                         (6) 

E� D 	
	
�� -
-
�� EF���G � 1                                           (7) 

These assumptions lead the dynamics of the asset price changed as the following 

proposition. 

Proposition 1: 

Under measure P, the dynamics of the asset price can be expressed as: 

-
-
�� � eα
�./
�1
                                            (8) 

Where  

α� � r I /
% I .h�bρ� λκ�1 I K��                              (9) 

h� � F�h��7, J1��7 � bρ; i � 1,2… �                              (10) 
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  J�0 � X�0 ��� �MX�0 ����

���  

X�0 ���~N�0,1�  for t � 1,2, …T 

X�0 ���~N2µ3, γ3%4  for t � 1,2, …T, and j � 1,2, … 

κ � exp QRS � 12R%T%U         
 K� � exp2.h��µ3 � bργγ34 � �% h�γ3%�                            (11) 

In order to price the derivatives in the risk neutral measure, we have to derive the 

probability measure Q 

 

dQ � eHW 	X	Y dP                                            (12) 

Lemma 1: 

(i) Q is a probability measure. 

(ii) For any F� measurable random vairblae, X� ` 
X��� � E� aX� m�m��� bF���c � e�HEd�X�|F���� 

 

Proposition 2:
†
 

Under measure Q, the dynamics of the asset price can be expressed as: S�S��� � eαe
�./
�
f  

 

Where Q is the local risk-neutral measure, and 

αe� � r I /
% � λg�1 I K��                                     (13) 

                                                      
†
 Proposition 1, Lemma 1 and Proposition 2 are derived by Duan (2005), and please 

find their proof in Duan’s paper. 
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h� � F�h��7, Jh��7 � bρ; i � 1,2… �                             (14) 

J�f � X�f ��� �MX�f ����f

���  

X�f ���~N�0,1�  for t � 1,2, …T 

X�f ���~N2µ3 � bργγ3, γ3%4  for t � 1,2, …T, and j � 1,2, … 

 X�f ��� are independent    for t � 1,2, …T, and j � 0,1,2… 

N�i has a Poisson distribution with parameter λg � λκ 
Where, Kt is the same as the equation (12). 

However, under measure Q, the dynamics of the asset price have the similar form that 

under the data generating measure P. Under measure Q, the mean of normal 

distribution is shifted, but the variance is the same under both measures. The Poisson 

random variables are also shifted under measure Q. 

 

2.2 The Local Variance Of the Compounded Poisson 

 

    By knowing the factor that if W � ∑ X7�7��  where Xi is a sequence of iid 

random variables and W is a compounded Poisson random variable, then  

E�e�k� � exp �λt�lm�t� I 1�  where lm�t�  is the moment generating function. 

Therefore, we can derived that 

E�W� � λ E�X�               and            Var�W� � λ E�X%� 
Since X��o�33333

 is normal distribution, E�X%� � µ%333 � γ%0 , for the sake of convenience we 

let  

γp% � µ3% � γ3%                                              (15) 
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    Therefore, the local variance of the logarithm returns under measure P for date t 

conditioning in t-1 is h�Var��J�0� � h��1 � λγp%�. 
Note that the expected mean of J�0  under measure P is E��J�0� � λµ3 
where ht is the local scaling factor which can be any predictable processes.  

We use NGARCH and TGARCH here, and will be introduced later. However, 

under measure Q, the local variance is become 

h�Vard�J�f� � h��1 � λgγe%�                                   (16) 

which is not equal to the local variance under measure P unless κ = 1 and bργ = 0. 

The expected value and the variance of J�f under measure Q are: 

Ed�J�f� � λgµ3 � bργγ3                                        (17) 

Vard2J�f4 � 1 � λgγe%                                        (18) 

 

2.3. Updating Schemes for the Scaling Factor 

We follow the Duan (2005) to set the updating schemes to be NGARCH and 

TGARCH. 

 

2.3.1 The NGARCH Model 

In some papers like Christoffersen and Jacobs (2004) found that NGARCH 

models performed the best among many GARCH option models with normal 

distribution. Therefore, we choose it to be one of our updating scaling factor schemes 

here. However, in the empirical tests GARCH (1, 1) is good enough to describe the 

empirical stock price, so we use GARCH (1, 1) hereafter. 

The NGARCH form: 

h� � β� � β�h��� � β%h��� q�1
���λµ3r��λγps I cu
%
                       (19) 
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Where β0 is positive, β1 and β2 are nonnegative to insure that the unconditional mean 

is positive. The unconditional mean of ht is equals to  

 β�/�1 I β� I β%�1 � c%��. Therefore, the process is stationary if  

β� I β%�1 � c%� < 1. When λ = 0 this model reduces to the NGARCH-Normal 

process used by Duan (1995). Under measure Q the updating schemes can be written 

to this way below. 

h� � β� � β�h��� � β%wh��� q�h
����λgµ3��ργγ3�r��λgγes I cwu%                 (20) 

β%w � β% 6��λgγes��λγps9                                           (21) 

cw � xr��λγps�λµ3�λg�µ3��ργγ3���ρ
r��λgγes                                  (22) 

γe% � �µ3 � bργγ3�% � γ3%                                              (23) 

 

�h
����λgµ3��ργγ3�r��λgγes ~N�0,1�  under measure Q                           (24) 

 

2.3.2 The TGARCH Model 

In Hardle and Hanfer’s paper (2000) they found that simulated threshold 

GARCH option prices are substantially closer to observed market price than 

simulated GARCH prices and Black-Scholes prices, when a stock index series with a 

pronounced leverage effect. Therefore, the second model we considered here is 

TGARCH(1, 1) model: 

 

l� � β� � β�l��� � β% y�1
���λµ3r��λgγpsy � βzmax{I �1
���λµ3r��λgγps  , 0|          (25) 
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h� � l�% 

When λ = 0 this updating scheme reduces to the standard TGARCH model. 

Under measure Q, this model becomes 

 

l� � β� � β�l��� � β%w }}Jh��� I 2λgµ3 � bργγ34r1 � λgγe% � q}} 

�βzw max{I �h
����λgµ3��ργγ3�r��λgγes I q , 0|                             (26) 

 

 

Where 

h� � l�% 
 

β�w � β�r��λgγes��λγps , j=2, 3 

q � bρ�1 � γγ3� � µ3λ�κI 1�r1 � λgγe%  

 

Therefore, when the local scaling factor ht follows either NGARCH or TGARCH, 

under measure Q, the updating schemes translates into a similar NGARH or 

TGARCH process. 

 

2.4. Further Investigation of the Risk Premium 

 

Under the physical data generating measure P, the expected total return on the 
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underlying assets can be regarded as: 

 

E� a S�S���c � eH�η
  
 

Where the ηt is the risk premium and by Proposition 1 and the moment generating 

function of the Compounded Poisson, we can show that: 

 

η� � λκ�1 I K�� I λ�1 I eµ3./
�γ3s�
s � I .h�bρ                  (27) 

The ht here is less than 10
-6

, so by the Taylor’s Expansion the ηt can be expressed as: 

 

η� � �λµ3�1 I κ� I bρ�1 � λκγγ3��.h� � λγ3%�1 I κ� h�2  

First, in order to have some intuition to these pricing model, we let κ = 1 and γ = 

0 to see what will happened in the risk premium. In this case, the risk premium 

reduces to -bρ.h� , and jumps can’t affect it. This is to mean that the jump risk is 

fully diversifiable, which is correspond to the assumption made by Merton (1976). 

Second, when the κ ≠ 1 and γ = 0 in the pricing kernel, the risk premium η� is: 

η� � �λµ3�1 I κ� I bρ�.h� � λγ3%�1 I κ� h�2  

The jump size γ3 affects minimally in the risk premium, and Naik and Lee (1990) 

who extends Merton’s model to this situation that the jump risk is not diversifiable 

fully. 

    With κ=1 and γ>0, the risk premium is likely to be: 

η� � Ibρ.h� I bρλγγ3.h� 
The risk premium here is uncertainty because of the jump size γ3 and the intensity λ. 

Finally, when κ is release from 1, the impact of the intensity of the process on 
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the risk premium becomes more complex. 

 

The expected value of the pricing kernel which determined the interest rate fully 

can be derived by equation (2) and the compounded Poisson’s moment generating 

function: 

eH � E� a m�m��� bF�c � e���s% �λ�κ��� 
When κ=1 (i.e., µ � Ibγ%/2�, the effects of the jump in the pricing kernel will not 

affect interest rate. For all other values of κ, the jump process explicitly affects both 

the interest rate and asset price. 

2.5. Nested Models 

 

The first model considering that κ = 1 and γ = 0. In this case that the pricing 

kernel is η� � Ibρ.h� and the jumps can’t affect the risk premium. According to 

the risk premium, you can find that the jump risks are fully diversifiable. With β1 = β2 

= 0 in the NGARCH updating scheme and β1 = β2 = β3 = 0 in the TGARCH updating 

scheme the scaling factor remains constant. When the jump risk is fully diversifiable, 

the local scaling factor is constant, and innovations, conditional on the number of 

jumps are normal, the model here can be regarded as the discrete-time Merton model, 

or MERTON, for short. 

 

The second model considering the same model we just mentioned, but release κ 

from 1 and γ from 0. In these kinds of setup here, it’s the same as the jump risk is not 

been diversifiable and implies that the jump risk is been priced. We followed Duan et 

al. calls the generalized Merton model, or G-MERTON, for short. 

 

The third set of models considering here are models with no jumps (λ=0), but 
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with scaling factor being GARCH processes
‡
. In this setup, innovations are normal 

random variables, and the risk premium is η� � Ibρ.h� . If the volatility forecast 

scheme is NGARCH, the system is become NGARCH-Normal model. If the forecast 

process is TGARCH, the system is called TGARCH-Normal model. According to the 

Duan (1997), these two models, in the limit, give rise to an extended version of the 

Hull and White (1997) and Heston (1993) stochastic volatility models, respectively. 

 

The fourth set of models considering here are models where κ = 1 and γ = 0, but 

the scaling factor are permitted to be GARCH processes and jumps are permitted. In 

these models, jumps risk is diversifiable (η� � Ibρ.h�), volatility is stochastic and 

innovations are not normal. These two models are referred to as the 

NGARCH-Restricted model and the TGARCH-Restricted model. 

 

The final sets of models here are the most general models where jump risk is 

priced, scaling factor are stochastic GARCH processes, jumps are allowed and 

innovations are not normal. These two models are referred to as the NGARCH-Full 

and TGARCH-Full models.
§
 

 

Therefore, we follow Duan et al. (2005) considering 8 models here, and 

summarized in Table 1. 

 

 

 

 

 

                                                      
‡
 The GARCH processes are NGARCH or TGARCH. 

§
 Duan, Ritchken and Sun (2005) have investigated the limiting behavior of these models. 



 

13 

 

Table 1: 

Taxonomy of models 

Model Restrictions Condition 

Jump models: 

(1) Merton       

(2) G-Merton     

 

β1 = β2 = β3 = 0, κ = 1, γ = 0 

β1 = β2 = β3 = 0 

 

J,JD,SC,IN 

J,JP,SC,IN 

Normal Models: 

(3) NGARCH-Normal 

(4) TGARCH-Normal 

 

λ = 0 

λ = 0 

 

NJ,JD,SS,IN 

NJ,JD,SS,IN 

Restricted Models: 

(5) NGARCH-Restricted 

(6) TGARCH-Restricted 

 

κ = 1, γ = 0 

κ = 1, γ = 0 

 

J,JD,SS,I 

J,JD,SS,I 

Full Models: 

(7) NGARCH-Full 

(8) TGARCH-Full 

 

 

 

 

J,JP,SS,I 

J,JP,SS,I 

J : Jumps are allowed         NJ: Not allowed Jumps       JD: Jump risks are diversifiable  

JP: Jump risks are priced     SC: Scaling factor are constant SS: Scaling factors are stochastic       

I: Innovations are not Normal   IN: Innovations are normal      

 

3. Barrier Options 

    Barrier Options are path dependent options. Their payoffs are decided by the 

barrier and the strike price. Take an up-and-out call option for an example, it pays the 

payoff of max (ST, K) if the stock price never higher than the barrier. If the stock 

price is higher than the barrier, the barrier option worth nothing and you get a rebate. 

Barrier Options are widely used in hedging and investing when the investor or hedger 

thought that they sure the direction of the market. There are 8 kinds of barrier options, 

including up-and-out call(put), up-and-in call(put), down-and-out call (put) and 

down-and-in call (put). Figure 1 is the comparison between vanilla call option and 

up-and-out call option. The closed form solutions of the 8 kinds of barrier options are 

listed in the table 2. Most of them are derived by Reiner & Rubinstein (1991), others 

are listed in Paul Wilmott (1998). 
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Figure 1: 

The European Call Options vs Up-and-Out Call Options 

 

 

Table 2: 

The Closed-form Solution of the Barrier Options 

Barrier Option Closed Form Solution 

Up-and-Out Call Se���W��� 6N�d1� I N�d3� I b2N�d6� I N�d8�49 I Ke�H�W��� 6N�d2� I N�d4� I a2N�d5� I N�d7�49 
Up-and-Out Put � K>B :  Ke�H�W���21 I N�d2� I a�N�d7� I N�d5��4 I Se���W��� 61 I N�d1� I b2N�d8�49 

� K<B:  Ke�H�W��� 61 I N�d4� I a2N�d7�49 I Se���W��� 61 I N�d3� I b2N�d6�49 
Up-and-In Call Se���W��� 6N�d3� � b2N�d6� I N�d8�49 I Ke�H�W��� 6N�d4� � a2N�d5� I N�d7�49 
Up-and-In Put � K>B :  Ke�H�W���2N�d4� I N�d2� � a�N�d5��4 I Se���W��� 6N�d3� I N�d1� � b2N�d6�49 

� K<B:  Ke�H�W��� 61 I N�d4� I a2N�d5�49 I Se���W��� 61 I N�d3� I b2N�d6�49 
Down-and-Out Call 

 

� K>B :  Se���W��� 6N�d1� I b21 I N�d8�49 I Ke�H�W��� 6N�d2� I a21 I N�d7�49 
� K<B:  Se���W��� 6N�d3� I b21 I N�d6�49 I Ke�H�W��� 6N�d4� I a21 I N�d5�49 

Down-and-Out Put Ke�H�W��� 6N�d4� I N�d2� I a2N�d7� I N�d5�49 I Se���W��� 6N�d3� I N�d1� I b2N�d8� I N�d6�49 
Down-and-In Call � K>B :  Se���W��� 6b21 I N�d8�49 I Ke�H�W��� 6a21 I N�d7�49 

� K<B:  Se���W��� 6N�d1� I N�d3� � b21 I N�d6�49 I Ke�H�W��� 6N�d2� I N�d4� � a21 I N�d5�49 
Down-and-In Put Ke�H�W��� 61 I N�d4� � a2N�d7� I N�d5�49 I Se���W��� 61 I N�d3� � b2N�d8� I N�d6�49 
Where S is the initial stock price, r is the risk free rate, q is the dividend yield, T is time to maturity, K is the strike price, B is the Barrier, σ is the volatility a �
��-�����s�����σs �

      b � ��-����s�����σs �
 

  d1 � ln 6SK9 � 6r I q � 12 σ%9 �T I t� 
σ.�TI t�    d2 � ln 6SK9 � 6r I q I 12 σ%9 �T I t� 

σ.�TI t�   d3 � ln 6SB9 � 6r I q � 12 σ%9 �T I t� 
σ.�TI t�   d4 � ln 6SB9 � 6r I q I 12 σ%9 �T I t� 

σ.�T I t�  

d5 � ln 6SB9 I 6r I q I 12 σ%9 �T I t� 
σ.�TI t�    d6 � ln 6SB9 I 6r I q I 12 σ%9 �T I t� 

σ.�TI t�   d7 � ln 6S · EB% 9 I 6r I q I 12 σ%9 �T I t� 
σ.�TI t�   d8 � ln 6S · EB% 9 I 6r I q � 12 σ%9 �T I t� 

σ.�T I t�  
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4. Numerical Results 

4.1. Parameters Estimation 

 

We use the parameters that estimated by Duan et al. (2005), and these 

parameters are shown in Appendix. The data used by Duan et al. (2005) is estimated 

by MLE method covering 1991 January to 1994 December S&P 500 Index. 

 

4.2. Pricing the Barrier Option 

 

     In this paper, we only focs on the up-and-out call option, because it’s the 

easiest path dependent derivatives. We use Monte Carlo simulation to price the 

options here
**

. According to the Proposition 2 and Lemma 1, we can simulate the 

prices of underlying assets day by day, and derive the options price easily. Actually, 

as long as the Proposition 2 and Lemma 1 are correct, we can price any kinds of 

options or exotic options. 

4.3. Delta of the Barrier Option 

 

    In addition to gain some intuition of the up-and-out call options payoff here, we 

still want to know the results of delta in these 8 models. Since it’s too hard to have an 

easy form of delta, we use the finite difference method to derive delta in this paper. 

 

4.4. Results 

As can be seen from Table 4 to Table 6, we show the up-and-out call options 

payoff under different strike prices. According to these 3 tables, we find that prices of 

the up-and-out call options seem to be different between these 8 models with 

closed-form solution. As the time to maturity is longer and the up-and-out call option 

price is close to the initial stock price, it seems to overprice the barrier options 

                                                      
**

 The random number generator used here is Fog Agner (2004), www.agner.org/random. 
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comparing to the closed-form solution. Since it’s difficult to see the relationship 

between the 8 models with closed form solution, we draw Figure 2 to find out their 

relationship. According to Figure 2, we can find that when the time to maturity is 30 

days and the barrier is higher than 525, the pricing performance of these 8 models are 

closer to the closed-form solution. When the time to maturity is more than 90 days 

and the barrier is closer to the initial stock price, these 8 models have higher pricing 

errors in the barrier options price. An explanation here is that our volatility used to 

simulate is 0.14 when the time to maturity is 30 days in this case, the underlying 

assets have no chance to across the barrier and the up-and-out call reduce to the 

vanilla call. Since these 8 models are good in pricing European options, it should 

have similar price in pricing vanilla calls. 

 

Figure 3 shows the average bias comparing to the closed-form solution and we 

can find that Merton model is the closest to closed-form solution, and other models 

are almost overpricing the up-and-out call options price comparing to the closed-form 

solution. 

 

    However, we can find that almost all models under pricing the up-and-out call 

options when the strike price is closer to the initial stock price under the European 

options like condition. 

 

Because the NGARCH models, NGARCH-Normal, NGARCH-Restricted and 

NGARCH-full model, have similar results in pricing up-and-out call options and so 

does TGARCH models, TGARCH-Normal, TGARCH-Restricted and TGARCH-full 

model, we choose the full model, Merton and Gmerton models here to have some 

further researches. 

 



 

17 

 

    First, we test their pricing performance on pricing vanilla call options. Figure 4 

shows the vanilla call options payoff under different stock prices. We can find that 

they are similar in pricing vanilla call options excepting TGARCH-full model in 

pricing vanilla call options under some stock price. We test their performance on 

pricing up-and-out call options next. Figure 5 shows the up-and-out call options 

under different stock prices. Although the models we chose have similar results in 

pricing vanilla call options, it shows a lot of differences in pricing up-and-out call 

options. All these 4 models overprice the up-and-out call options, and TGARCH-full 

model is higher than NGARCH-full model than Gmerton model followed by Merton 

model.  

 

        Next, we test the sensitivity of the jump in the TGARCH-full model. 

Although it seems that TGARCH-full model over price the up-and-out call options, 

TGARCH-full model’s assumption is closer to the real data in the market. Therefore, 

we test TGARCH-full model’s sensitivity by changing its jump parameters. As can be 

seen in Figure 6, while the jump parameter is getting larger, the up-and-out call 

options prices are getting smaller. It’s a reasonable result, because when the jump 

parameters become larger, the underlying assets should have more chance to across 

the barrier. 

 

    Finally, we check their performance on the delta. Figure 7 shows the delta of the 

up-and-out call options under different stock prices. When the time to maturity is 30 

days, we find the similar delta between the 4 models, excepting the TGARCH full 

model. When the time to maturity is higher than 90 days, we can find the full models 

have large bias in delta. We can also find that the full models under-estimating the 

delta at first than over-estimating the delta when the stock price is large. Although 
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these 4 models show a lot of differences in pricing up-and-out call options, they show 

similar delta excepting the full models. Therefore, we may use the simple models 

such as MERTON or GMERTON to hedge our portfolio. 

 

5. Conclusion 

In this paper, we use Duan et al. (2005) Jumping Starting GARCH that 

incorporates jumps in the pricing kernel and correlate jumps in returns and volatilities 

to price up-and-out call options. We use the lemmas and propositions derived by 

Duan et al. (2005) to simulate the payoff of the up-and-out call options, and found 

that these models are not pricing well in up-and-out call options, a simplest path 

dependent derivatives. At the same time, in their performance of estimating delta, 

Merton and GMerton model shows similar results. Therefore, full models are not 

adaptive to hedge the portfolio. Although using Duan’s model is good in pricing 

vanilla call options, it shows some biases in pricing up-and-out call options. Our 

results are similar to Hirsa (2002), who found that regardless of the closeness of the 

vanilla fist to different models, prices of up-and-out call options differ noticeably. 

Therefore, pricing the path-dependent options such as up-and-out call by 

GARCH-Jump models will cause the model risk.  
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Table 3: 

The Up-and-Out Call Options Prices for Eight Models when T=30 

The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate 

the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price 

is 500, maturity is 30 days, barrier is 575, risk free rate is 0.057, volatility is 0.14, and the strike prices are 450 to 550. The first value is the 

barrier option’s price, and the second row is the average biases
††

 that compared with the Closed-form solution. 

 

Maturity T=30 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

575 450 52.0565 52.3085 52.2106 52.4824 52.4256 52.4606 52.3544 52.2948 52.3548 

0.0048 0.003 0.0082 0.0071 0.0078 0.0057 0.0046 0.0057 

475 27.9169 28.0035 27.6817 28.4128 28.3773 28.2113 27.4388 27.3406 27.3823 

0.0031 -0.0084 0.0178 0.0165 0.0105 -0.0171 -0.0206 -0.0191 

500 9.2252 9.1313 8.3725 8.9152 8.8427 8.3652 5.2126 4.4801 4.1831 

-0.0102 -0.0924 -0.0336 -0.0415 -0.0932 -0.435 -0.5144 -0.5466 

525 1.4084 1.3487 0.9988 0.89 0.8947 0.6846 0.0231 0.0076 0.003 

-0.0424 -0.2908 -0.3681 -0.3647 -0.5139 -0.9836 -0.9946 -0.9979 

550 0.0728 0.0699 0.0381 0.0224 0.0282 0.0152 0 0 0 

-0.0398 -0.4766 -0.6923 -0.6126 -0.7912 -1 -1 -1 

 

                                                      
††

 The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution. 
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Maturity T=30 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

550 450 49.8488 50.7137 51.2934 51.9101 51.7118 52.065 52.3536 52.2945 52.3548 

0.0174 0.029 0.0414 0.0374 0.0445 0.0502 0.0491 0.0503 

475 26.2627 26.7987 26.9886 27.9806 27.8612 27.9127 27.4382 27.3404 24.3823 

0.0204 0.0276 0.0654 0.0609 0.0628 0.0448 0.041 -0.0716 

500 8.1246 8.3164 7.90359 8.62316 8.49425 8.1634 5.21221 4.4799 4.18305 

0.0236 -0.0272 0.0614 0.0455 0.0048 -0.3585 -0.4486 -0.4851 

525 0.8602 0.9234 0.7539 0.7376 0.7132 0.5795 0.0228 0.0075 0.003 

0.0735 -0.1236 -0.1425 -0.1709 -0.3263 -0.9735 -0.9913 -0.9965 

525 450 32.857 36.1239 39.1322 39.6618 40.0183 42.074 51.7035 52.065 52.2534 

0.0994 0.191 0.2071 0.218 0.2805 0.5736 0.5846 0.5903 

475 15.0422 16.9994 18.7902 19.7165 19.9522 21.1637 26.9997 27.1858 27.3139 

0.1301 0.2492 0.3107 0.3264 0.407 0.7949 0.8073 0.8158 

500 2.6276 3.2863 3.6587 4.3243 4.3762 4.6443 4.9853 4.4002 4.1478 

0.2507 0.3924 0.6457 0.6655 0.7675 0.8973 0.6746 0.5786 
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Table 4: 

he Up-and-Out Call Options Prices for Eight Models when T=90 

The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate 

the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price 

is 500, maturity is 90 days, barrier is 575, risk free rate is 0.057, volatility is 0.14, and the strike prices are 450 to 550. The first value is the 

barrier option’s price, and the second row is the average biases
‡‡

 that compared with the Closed-form solution. 

 

Maturity T=90 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

575 450 48.9952 50.7381 52.7505 55.3889 55.2972 56.4895 56.7679 57.0709 57.2355 

0.0356 0.0766 0.1305 0.1286 0.153 0.1586 0.1648 0.1682 

475 28.505 29.6824 30.7445 33.4526 33.3902 33.6952 33.5823 33.3629 33.1389 

0.0413 0.0786 0.1736 0.1714 0.1821 0.1781 0.1704 0.1626 

500 12.855 13.5353 13.712 15.626 15.5502 15.2093 14.5964 13.5835 12.7142 

0.0529 0.0667 0.2156 0.2097 0.1831 0.1355 0.0567 -0.011 

525 3.8457 4.1789 4.0462 4.7124 4.6385 4.0423 3.6611 2.701 1.9851 

0.0866 0.0521 0.2254 0.2062 0.0511 -0.048 -0.2977 -0.4838 

550 0.4737 0.5763 0.5302 0.605 0.5873 0.4381 0.345 0.1764 0.0842 

0.2166 -0.0026 -0.0028 -0.0027 -0.0023 -0.002 -0.0014 -0.001 

 

                                                      
‡‡

 The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution. 
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Maturity T=90 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

550 450 35.0238 37.4957 41.0641 43.4057 43.6727 47.745 49.5278 53.1675 55.2248 

0.0706 0.1725 0.2393 0.2469 0.3632 0.4141 0.518 0.5768 

475 18.2923 19.897 22.0488 24.4771 24.6869 27.1165 28.1342 30.4193 31.6212 

0.0877 0.2054 0.3381 0.3496 0.4824 0.538 0.663 0.7287 

500 6.3749 7.1898 8.0009 9.6455 9.7533 10.612 10.9385 11.5991 11.6896 

0.1278 0.2551 0.513 0.53 0.6647 0.7159 0.8195 0.8337 

525 0.8822 1.1202 1.2338 1.6554 1.6736 1.7561 1.7742 1.6699 1.4517 

0.2698 0.3985 0.8764 0.8971 0.9906 1.0111 0.8929 0.6455 

525 450 14.4125 16.6894 19.432 18.9635 19.301 23.0088 24.0195 29.0013 33.5756 

0.158 0.3483 0.3158 0.3392 0.5964 0.6666 1.0122 1.3296 

475 5.6046 6.7735 8.1633 8.4988 8.7177 10.7 11.2155 14.2173 17.0216 

0.2086 0.4565 0.5164 0.5555 0.9091 1.0011 1.5367 2.0371 

500 0.8482 1.1581 1.4446 1.712 1.7809 2.2554 2.3677 3.235 4.0782 

0.3654 0.7031 1.0184 1.0996 1.659 1.7914 2.814 3.8081 
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Table 5: 

The Up-and-Out Call Options Prices for Eight Models when T=180 

The table shows the price of the up-and-out call options that is simulated by Monte Carlo simulation with 1,000,000 sample paths. We simulate 

the up-and-out call options by the same random variables between the 8 models for the purpose of comparison. We assume the initial stock price 

is 500, maturity is 180 days, barrier is 575, risk free rate is 0.057, volatility is 0.14, and the strike prices are 450 to 550. The first value is the 

barrier option’s price, and the second row is the average biases
§§

 that compared with the Closed-form solution. 

 

Maturity T=180 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

575 450 36.8678 39.5887 43.8064 46.3548 46.6499 52.4465 48.1346 53.0689 57.6044 

0.0738 0.1882 0.2573 0.2653 0.4226 0.3056 0.4394 0.5625 

475 21.6156 23.4652 26.1991 28.8344 29.0888 32.7949 29.7932 33.2098 36.2077 

0.0856 0.212 0.334 0.3457 0.5172 0.3783 0.5364 0.6751 

500 10.157 11.2499 12.6254 14.7048 14.8782 16.6574 15.0556 16.8834 18.2961 

0.1076 0.243 0.4478 0.4648 0.64 0.4823 0.6622 0.8013 

525 3.2562 3.7685 4.2306 5.2936 5.3754 5.8965 5.3492 5.9746 6.2917 

0.1573 0.2992 0.6257 0.6508 0.8109 0.6428 0.8348 0.9322 

550 0.429 0.5656 0.631 0.8675 0.8828 0.9437 0.8606 0.9498 0.9518 

0.3184 0.4709 1.0221 1.0578 1.1998 1.0061 1.214 1.2186 

 

                                                      
§§

 The average bias is defined as the model price minus the closed form solution and then divided by the closed form solution. 
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Maturity T=180 

Barrier Strike Closed-Form Merton G-Merton NGARCH-Nor NGARCH-Res NGARCH-Full TGARCH-Nor TGARCH-Res TGARCH-Full 

550 450 20.9424 23.2627 26.888 27.3836 27.6595 33.5707 28.9517 33.6653 39.3246 

0.1108 0.2839 0.3076 0.3207 0.603 0.3824 0.6075 0.8778 

475 10.4585 11.8694 14.0083 14.9973 15.2137 18.8218 15.7976 18.8756 22.5656 

0.1349 0.3394 0.434 0.4547 0.7997 0.5105 0.8048 1.1576 

500 3.5371 4.1946 5.0453 5.8618 5.9801 7.5226 6.1239 7.5487 9.2621 

0.1859 0.4264 0.6572 0.6907 1.1268 0.7313 1.1341 1.6186 

525 0.4831 0.6511 0.7876 1.0296 1.0604 1.3493 1.0661 1.357 1.7049 

0.3478 0.6303 1.1312 1.195 1.793 1.2068 1.8089 2.5291 

525 450 6.7981 8.1258 9.7727 9.226 9.3663 12.0998 9.6186 11.3578 13.8339 

0.1953 0.4376 0.3571 0.3778 0.7799 0.4149 0.6707 1.035 

475 2.4002 3.0056 3.7246 3.7731 3.8607 5.1674 3.9065 4.8165 6.1219 

0.2522 0.5518 0.572 0.6085 1.1529 0.6276 1.0067 1.5506 

500 0.3379 0.4794 0.6068 0.6969 0.7184 0.9966 0.711 0.921 1.2349 

0.4188 0.7958 1.0624 1.1261 1.9494 1.1042 1.7257 2.6546 
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Figure 2:

The Up-and-Out Call Options payoff V.S. Strike Price 

   This Figure presents the up-and-out call options price under different strike price. The price here is 

simulated by Monte Carlo Simulation with 50,000 sample paths. We use the same random variables in the 

simulation between these 8 models. We assume that the initial stock price is 500, the risk free rate is 0.057, 

and volatility is 0.14. 
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Figure 3:

The Average Bias V.S. Strike Price 

   This Figure presents the up-and-out call options average bias that compare to the closed-form solution. 

The price here is simulated by Monte Carlo Simulation with 50,000 sample paths. We use the same random 

variables in the simulation between these 8 models. We assume that the initial stock price is 500, the risk free 

rate is 0.057, and volatility is 0.14. 
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Figure 4: 

European Call Options Price V.S. Stock Price 

The figure shows the European call options price under different stock prices. The price here is simulated by Monte Carlo simulation with 

50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed form solution. We use the same random variables in 

the simulation between the 4 models for the purpose of comparison. We assume the strike price is 500, risk free rate is 0.057, volatility is 0.14, 

and time to maturity is 30, 90 and 180 days. 
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Figure 5: 

Up-and-Out Call Options Price V.S. Stock Price 

The figure shows the up-and-out call options price under different stock prices. The price here is simulated by Monte Carlo simulation with 

50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed form solution. We use the same random variables in 

the simulation between the 4 models for the purpose of comparison. We assume the strike price is 500, risk free rate is 0.057, volatility is 0.14, 

and time to maturity is 30, 90 and 180 days. 
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Figure 6: 

Price of Barrier Options under different parameter under TGARCH-Full Model H575,K=500,T=90  

The figure shows the price of the up-and-out call options price under different stock prices. We simulate the up-and-out call options by Monte 

Carlo simulation with 50,000 sample paths for the TGARCH-full model. We use the same random variables in the simulation for the purpose of 

comparison. We assume the strike price is 500, risk free rate is 0.057, barrier is 575, volatility is 0.14, and time to maturity is 90 days. 
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Figure 7: 

Up-and-Out Call Options Delta V.S. Stock Price 

The figure shows the delta of up-and-out call options under different stock prices. We estimate the delta by the finite difference method
***

. The 

price is simulated by Monte Carlo simulation with 50,000 sample paths for the Merton, Gmerton, TGARCH-full, NGARCH-full and the closed 

form solution. We use the same random variables in the simulation for the purpose of comparison. We assume the strike price is 500, risk free 

rate is 0.057, barrier is 575, volatility is 0.14, and time to maturity is 30, 90 and 180 days.  

 

 

                                                      
***

 delta � �-�� � -�∆��-���∆  and we choose Δ=0.1 here. Where S(0) is the initial stock price. 
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Appendix 

The Estimates for the Eight Models 

These parameters are estimated by Duan et al. (2005) 

 Jump NGARCH TGARCH 

Parameter 

β0 

Merton 

6.41E-06 

G-Merton 

6.41E-06 

Normal 

1.83E-06 

Restricted 

1.65E-07 

Full 

1.65E-07 

Normal 

-1.10E-04 

Restricted 

-3.45E-05 

Full 

-3.45E-05 

β1 

β2 

β3 

c 

λ 

�3 

�0 

- 

- 

- 

- 

1.4365 

2.0705 

0.12941 

 

 

 

 

1.4365 

2.0705 

0.12941 

0.84795 

0.07962 

- 

0.66425 

- 

- 

- 

0.84431 

0.07560 

- 

0.77139 

2.20226 

2.09608 

0.0332 

0.84431 

0.07560 

- 

0.77139 

2.20226 

2.0968 

0.0332 

0.95765 

2.56E-04 

5.09E-04 

- 

- 

- 

- 

0.96597 

5.75E-05 

1.53E-04 

- 

2.1304 

2.158 

0.054841 

0.96597 

5.75E-05 

1.53E-04 

- 

2.1304 

2.158 

0.054841 

bρ 

κ 

γ 

- 

- 

- 

-0.02572 

0.9818 

1 

- 

- 

- 

-0.0723 

1 

0 

-0.01246 

0.8513 

1 

-0.0293 

- 

- 

-0.0950 

1 

0 

-0.0162 

0.9008 

1 

 


