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ABSTRACT

In this paper we build on Frey and Patie’s literature (2002), where liguidity is a
deterministic function of stock price. Frey implements an important factor, liquidity,
into the standard Black-Scholes partial differential equation (PDE) to calculate the
option price. The objective of our model is to improve an artificial pattern of Frey
PDE to make the nonlinear. PDE more reliable. Therefore, we choose bootstrap
method to obtain the upper bound of volatility to replace the unreasonable setting. In
numerical research, Greeks become smoother than before while using the bigger
liquidity parameter. It helps traders to realize the variation of Feedback effect under
different liquid markets. In empirical study, we choose the top 50 stock options of
CBOE as underlying assets and use the PDE which contains liquidity parameter to
solve each option price. The result shows that using the improved PDE offers more

precise option prices in illiquid market.

Keyword: Liquidity; Option Pricing; Nonlinear PDE; Bootstrap Method; Greek

Letters; Feedback Effect; Finite Difference Method.
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1. Introduction

Since the Black-Scholes (BS) formula was innovated, this well-known formula
has given traders a benchmark to trade option with appropriate price. Market
participants initially take BS price as a standard and adopt hedging strategies to adjust
their positions. However, investors gradually find that BS formula offers limited
option price because of the restrictive BS assumptions. In order to release the
assumptions to provide more reliable option prices, a number of new models have
been developed for option valuation.

In this paper, we would like to release a specific assumption that markets are
assumed to be completely elastic (perfect liquid market). Specifically, the hypothesis
assumes the price do not.change no matter how large amounts of an asset are traded.
If all of the market participants are small investors, their trading strategies do not
influence market prices and the market is perfectly liquid in this scenario. However,
many markets are not perfectly: liquid due to the presence of large investors. Large
investors’ trades have price impacts and thus they face illiquid market. According to
Kyle(1985), large investors can use-its market power to move prices in a certain
direction. Based on Chan and Lakonishok (1995), large institutions with high
proportion of trade tend to be associated with larger market impact. Therefore, it
obviously violates the truth of reality and conveys an important message that markets
are not perfectly liquid.

The absence of liquidity leads markets to face serious problems, such as
financial crisis. A well-known event of illiquid problem is Long-Term Capital
Management (LTCM) crisis. That is a hedge fund which the company manager longs
less liquid instruments and shorts more liquid instruments at the same time. This

trading strategy with high leverage initially brings significance profit to LTCM but the



company’s manager does not anticipate that their high risk manipulations would result
in financial crisis. When the Russian debt crisis occurs, most of market liquidity
suddenly deteriorates. Consequently, the LTCM not only loses all of their properties
in a short period but also causes an inevitable financial disaster. Hence, there are
numbers of researchers probing into the cause of market illiquidity.

In academic literature, there are three causes of illiquidity which are transaction
costs, asymmetric information of asset and imperfect competition in asset market. In
addition, another interesting theory causing market illiquidity is uncertainty.
Uncertainty means that traders face a circumstance which they can not anticipate any
changes and do not know how to management.

Moreover, many scholars try to explain the financial meaning of liquidity. Kyle
(1985) explains market liquidity from- three aspects which are tightness, depth and
resilience of the market. Tightness measures the cost between buying and selling a
position in a short period. Depth refers to the size of a transaction required to change
prices. Resilience measures the speed of prices recovering fundamental after a sudden
event occurs.

Schwartz (1988) explains that liquidity is the ability to trade immediately.
Amihud and Mendelson (1989) divide the liquidity into two parts including price
aspect and time aspect. In point of price aspect, if assets can be traded in specific time
and minimize the concession from buyer and his counterparties, assets are more liquid.
For time aspect, when buyer and his counterparties make acceptable concession, the
less time used for transaction the more liquidity assets have. As | mentioned above,
these ideas give us some concepts about market illiquidity.

During recent years, risk management has become a popular issue in the field of
finance. Three types of risks are market risk, credit risk and liquidity risk. Bielecki

and Rutkowski (2002) have successfully made an exceptional summary regarding
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market risk and credit risk. Meanwhile, for liquidity risk, Frey establishes an
innovative nonlinear PDE to hedge portfolio perfectly. Frey and Patie (2002) continue
this work and make an extension to describe the liquidity as the deterministic function
of stock price. In addition, they offer some numerical results to show the illiquidity
influence of hedging costs and Greeks’ derivatives.

Furthermore, Esser and Moench (2003) generalize the liquidity model of Frey
(2002) and incorporate the stochastic liquidity into stock process. In other words, they
use their innovation to analyze the differences among large investors vary from
market depth. Then, they make an observation of the variation of large investors’
hedging strategies related to stock prices in illiquid markets as well. In addition, they
verify that stochastic liquidity setting is_ more suitable for financial markets. Overall,
their contribution and research provide a flexible model of hedging strategies under
illiquid market.

From the above, we can easily say that there are more researchers investigating
the modeling and hedging strategies while market illiquidity or large investors exist.
In order to appreciate their contribution and dedication; we provide some further
related references such as Kyle (1985), Jarrow (1994), Schonbucher and Willmott
(2000) and Simona (2006).

Thus, the core of our paper is to analyze the last type of risk, liquidity risk. We
capture the notion of liquidity from Frey (2000) and our model builds on Frey and
Patie (2002). We take liquidity as a deterministic function of price and implement it
into nonlinear PDE. Using finite difference method (FDM), it helps to solve the
problem of computing nonlinear PDE to obtain option prices. We choose least square
method to estimate the liquidity. In order to make estimation more reliable, we use
bootstrap method to calculate the upper bound of volatility of each asset to revise the

artificial pattern. Moreover, Esser and Moench (2003) suggest the asymmetry
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relationship between the stock price and liquidity should be removed. All of these
approaches help us to obtain more precise option prices and apply to dynamic hedging
strategy to minimize the tracking error.

When it comes to trading strategy, we must mention feedback effect strategy.
There are two types of feedback effect trading strategies. One is called positive
feedback effect. For example, investors buy risky assets when the asset price is
increasing and sell the risky asset when the asset price is declining. Similarly, there is
a negative feedback effect. Its trading strategy is very similar to positive feedback.
Large investors buy the risky asset while the asset price is declining and sell the risky
asset while asset price is increasing. Those strategies are used to replicate convex
payoff, long call, and concave payoff, short call, respectively. We would show these
results in numerical section.

The remainder of the paper is organized as follows: in section 2, we introduce
the basic assumption of Frey model (2002) and make a description of how to derive
the nonlinear PDE. Afterwards, we modify the artificial pattern mentioned in Frey and
Patie (2002) and explain why it is not appropriate. In section 3, numerical results
would help us to realize the feedback effect. In section 4, estimate option price using
data of CBOE top 50 companies is applied to our empirical study. Finally, we

summarize the discoveries in this context and offer our conclusions in section 5.



2. The Deterministic Liquidity Model

Frey and Patie (2002) assume that financial markets trade between one riskless
asset (bond) and one risky asset (stock or stock index). They consider bond markets as
perfectly liquid markets. In other words, no matter how large shares of bonds are
traded, it does not influence the bond prices. In this circumstance, large investors and
small market participants have the same weight in bond markets. On the other hand,
stock markets seem to be illiquid markets. For example, a significant trade would
cause price impact. This phenomenon is in line with economy intuition that money
markets are more liquid than the stock markets.

The cause of the illiquid market is the presence of large investors. Their trading
strategies lead to price motion and bring feedback effect to underlying assets. For
example, the price of an asset increases (declines) when the institution investors buy
(sell) the asset. This assumption is supported by Holthausen and Leftwich (1987) that
large transactions are related to price impact. Therefore, Frey and Patie argue that
large investors’ manipulations violate the assumption that market is perfectly liquid.

In order to release the above assumption, Frey incorporates the liquidity parameter,
o, in dynamic process of asset price. Initially, liquidity is treated as a constant which
means that the liquidity of the asset does not change through time. Frey and Patie treat
liquidity as the deterministic function of time and stock price. Our model builds on
this concept and revises an artificial pattern of Black-Scholes PDE.

In the following, we offer the basic assumptions and asset price dynamics of Frey
and Patie (2002). First, we introduce the derivation of nonlinear PDE. Second, we
provide some essential knowledge of trading strategy. Third, we use the introduction
of the tracking error to investigate the performance between perfect and imperfect

market liquidity hedging strategy. Finally, we take the advantage of numerical method



to solve the nonlinear PDE and revise the problems of the artificial pattern which may
produce irrational volatility.
2.1 Basic assumptions of the deterministic liquidity model

The core of the basic assumption explains the trading strategy which the large
investors have followed. Instead of building on microeconomic equilibrium, Frey
argues that the variation of asset price dynamics originates from large investor’s stock
holdings or trading strategy(c¢,). Furthermore, Frey takes the influence of price
impact as exogenous. Therefore, we illustrate some assumptions of asset trading
strategies as follows:

(A1) The stockholdings(«, ), are left-continuous (i.e.e, = lime, ).

s—t

(A2) The right-continuous process o with e, = lime, is a semimartingale.

s—t

(A3) The downward-jumps of trading strategy are'bounded: Ac’ =a; —a, >-1/p

for some p>0.
These three assumptions provide large investors’ trading strategy as a smooth function
of the stock price.

It is obvious that parameter o causes the fluctuation from the standard
Black-Scholes model. When the parameter equals to zero or large investor maintains
his stock holdings without changing (i.e.«, =0), the asset price dynamics follow the
Black-Scholes model where volatility follows the famous Brownian motion. Then, we
will provide the asset price dynamics with considering liquidity which is decided by
large investor’s trading strategy ¢, depending on S (p,).

(A4) If the trading strategy follows the previous assumptions, the stochastic
differential equation is as follows:
dS, = S,_dW, + pA(S_)S_de; (2.1)

where implies the left limit lim S,

st



In this stochastic differential equation, we assume o to be positive and 1 to be
a continuous function. The parameter o must be greater than zero as the number of
o increases, the less liquidity the market becomes. We use 1/(pA(S,)S,) to
represent the market depth at time t. From this equation, we realize how much shares
could cause the asset price to move by one unit. According to the suggestion of Esser
and Moench (2003), they indicate that continuous function 2 does not have significant
influence to explain the liquidity tendency. Thus, we do not incorporate 4 in our model
for the following pages. We transfer the stochastic differential equation transfers to
equation (2.2).
ds, = oS, dW, + pS, do, (2.2)
The following shows-an example providing a better understanding of the asset
price assumptions. First, we set up-a scenario that large investors hold the specific
asset of K shares which K must over zero and less than1/p . There is still another
limitation of asset price. When the asset price drops under S, large investors would
sell all of the stock holdings. If there is no transaction obstacle (perfect liquid market),
his portfolio value would be above or at least equals toK S -
After the basic setting, we start to introduce a large investor trading strategy. The
stopping time z is set up asr=inf{t>0,S,<S}. The trading strategy o is set up
asa, =K,0<t<rand a, =0 fort>z. It corresponds to the Assumption A1, A2 and A3.

We can find out that « is left continuous becauseq, =K,0<t<rand «" has a
bounded downward jumps (—K >—1//_3). Then, we can derive the portfolio value at

timez inilliquid markets. When investor’s stock price becomesS. =S_ - pS, K<S,_
his portfolio does not have the perfect protection, i.e. KS, =KS, —pS, K? <KS, .
It is obvious that the difference between deterministic liquidity model and

Black-Scholes model is whether implementing the liquidity pattern into the stochastic



differential equation or not. To make the deterministic liquidity model useable, we
need to find out how to determine the parameter o. As we known, there are two
different avenues to determine the o . In this article, our approach uses the observed
data to calculate the implied liquidity. Then, we would mention how to estimate the
implied liquidity later.
2.2 Dynamic process of asset price

In this part, we combine the underlying asset’s stochastic differential equation and

the trading strategy « by using the Ito's formula. In addition, Frey and Patie

assume that their stockholdings trading strategy is a smooth function ¢ of time and
the current asset price. This assumption plays an important role of replicating in
option valuation.
(A5) Trading strategy ¢ is a function of time and current asset.

[0,T]xR* - R isof class C**([0,T]xR").

where ¢(t,S,) = o,

Moreover, pS¢, (t,S)<1forall (t,S) € [0,T]xR*

In the sequel, we derive the asset price dynamics by stochastic differential

equation (2.2) and assumption A5. First, we implement Ito's formula into trading

strategy to get the following
de, =¢,(t,S,)dS, +(¢t(t,st)+%¢ss (t,St)vz(t,St)Stzjdt (2.3)
Hoping to get more realistic asset dynamics, we add the risk free ratey into
equation (2.2).
ds, =rS,_dt+ oS, dW, + pS, de,’ (2.4)
Then, the further step is to put the equation (2.3) into equation (2.4).
ds, =rS,dt +oS,dW + pS4,(t,S,)dS, + pS, (gﬁt (t,S,) +%¢SS (t, S)vA(t, St)sfjdt (2.5)

After arrangement, we obtain



(- pS4,(t,S,))dS, =S, dW + {pst (¢t (t.S,) +%¢ss (t,S)v*(t,S)S, ) + fSt}dt (2.6)
By dividing the coefficient (1-pS4,(t,S,)), we get the new asset price dynamics.
{pst (mt,st) vy (t,st)VZ(t,st)sf} rst}
oS, 2

S, = +
(1_pst¢s(t’st)) (l_pst¢s(tlst))

In order to make the asset price dynamics more clearly, we takev(t,S,)as the

it (27)

volatility term of underlying asset and useb(t,S,)to represent the drift term of
underlying asset. Finally, we derive the general form of the asset price process under

market illiquidity.

ds, = v(t, S,)S,dW, + b(t, S,)S,dt (2.8)

t,S,) = Z 2.9

A YY) @9

b(t,S,) = 2 (¢t(t,8t)+1¢ (t,St)vz(t,St)St2j+;(2.10)
(- pSi#(t,S,) P (- pSi4(t,S))

There is something 'interesting after we derive this innovative asset price
dynamics. The volatility term has transferred from constant into a function which
depends on time and asset price, 1.e.v(t,S,). This transition results from large
investors’ trading strategy.. In trading markets, large investors have two general
trading strategies, positive feedback: strategy and contrarian strategy, to protect their
position. When large investors follows positive feedback strategy (contrarian
feedback strategy), their trading strategy is to buy (sell) additional shares of the assets
while the asset price lifts up (drops down).

In other words, the new volatility becomes greater than the constant volatility if
the representative investor chose the positive feedback strategy, i.e.
v(t,S,)>o if¢.(t,S,)>0. On the contrary, the new volatility is smaller than the
constant volatility if the representative investor chose the contrarian feedback strategy,

ie. v(t,S)<o if 4(t,S,)<0.



2.3 Derivatives with nonlinear PDE

The objection of this part is calculating the derivatives price. Having the new asset
price dynamics helps us to replicate the derivatives such as call or put option. In
recent research, there are at least three methods to estimate the value of derivatives
including binomial tree, Monte Carol simulation and solving the partial differential
equation (PDE). Each of approach has its own advantages and disadvantages. In this
context, we choose PDE method as an instrument to estimate the price of derivatives
in illiquid market.

In the beginning, we assume the derivative is path-independent and set its smooth
payoff as h(S,) . Before building up the new asset price dynamics (2.8), traders use
the standard Black-Scholes strategy to hedge. However, Black-Scholes theory is only
effective in perfectly liquid market. Consequently, traders would face a great loss
when they adopt the Black-Scholes trading strategy to replicate the derivatives. Since
Frey and Patie have built up the new theory considering market illiquidity, traders can
obtain more reliable hedging strategy and value of derivatives by adopting the Frey
and Patie theory.

It is comparatively easy to understand the Frey and Patie PDE by introducing the
Black-Scholes PDE at first because we are familiar with the classical theory. The

Black-Scholes PDE is presented as follows:
ut(t,S)+rSuS(t,S)+%o-282uss(t,S)=ru(t,S) (2.11)
where u(T,S) is the derivative pice at time T, i.e. h(S;)
To recall the equation (2.8), we find out the volatility term in equation (2.11)
should be replaced as v(t,S,). Then, we obtain the extension of the Black-Scholes

PDE as equation (2.12)

2

ut(t,S)erSus(t,S)+1 i 5
2 (- pS,u(t,S,))

S%u (t,S) =ru(t,S) (2.12)

10



where ug(t,S,) =4.(t,S,)

From the above equation, the Black-Scholes PDE becomes the special case of the
Frey and Patie PDE. The v(t,S,) is transferred into o while the parameter p
equals zero in the Frey and Patie model. For this reason, the nonlinear PDE is the
general form of the Black-Scholes PDE.

The nonlinear PDE provides us an avenue to estimate the value of derivatives, but
it is easily to tell that we could not solve it directly. We must take advantage of
numerical method to solve the equation such as finite difference method. The
numerical method would be presented in the latter part of this article.

2.4 Basic concept of dynamic hedging

In order to understand. the performance of different model’s hedging strategy,
traders must possess the fundamental knowledge of dynamic hedging. For this reason,
it is essential to make detail explanations. We first assume that the representative
hedger is a large investor and his initial stockholdings is « and the share of bond is
S . The hedger uses these two assets to replicate the derivative which the expiration
dateis T .

When the market is not perfectly. liquid, the value of the hedger’s portfolio is hard
to define. The hedger’s position has two kinds of values. One is mark-to-market value
and the other is liquidation value. If the stock market liquidity is perfect, these two
kinds of value are the same. In other situation, mark-to-market value is higher than
liquidation value. Taking the limit order for example, once the stock price declines
below S the hedger sells all of his stockholdings. Theoretically, the value of this
portfolio is V," =a,S,(p0,a) + 3, i.e. mark-to market value. However, the hedger only
receives the value (liquidation value) less than the mark-to-market value when the
hedger sells his position to the market. Although liquidation value is in line with the

real value of the hedger’s position, it is difficult to define a precise liquidation cost.
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Therefore, we adopt the mark-to-market value as the hedger’s position value to the
following analysis.

Corresponding to the stock price variation, the representative hedger adjusts his
stockholdings and bonds to minimize the risk before the expiration date T. At time t,
the mark-to-market value is V" =S, (p,a)+ B and the initial value is V," .
Generally speaking, delta hedging strategy is widely used in financial market. If there

is no external finance to support the hedger, the process of relocation position is called

self-financing. During the period (0~T), the gains from relocation position are

defined as G, = fOT adS, (p,«) . Throughout the self-financing strategy, the value of the
. . . i
portfolio at time Tis V;" =\, 4G, =V, + | .dS,(p.a).

2.5 Tracking error

Tracking error is an instrument to measure the performance of the self-financing.
In other words, the difference between the derivative’s payoff and the replication
value at time T is called tracking error. The figure is positive'when we made a loss
from our hedging and vice versa. This instrument provides an easy understanding to
capture whether the model we used is appropriate or not. Using the above hedging as

an example, we define the tracking error (e\") as:
el =h(S; (p.@)) -V =h(S; (p.)) -V, + || @88, (p,0)) (2.13)
Therefore, we can compare the standard Black-Scholes hedging strategy and the
innovative hedging strategy which considers the market is illiquid. If the former
tracking error is greater than the latter, it proofs that the Frey and Patie model is a
superior model. In the following proposition, we recall the nonlinear PDE (equation

(2.12)) to proof the perfect hedging under market illiquidity. The tracking error equals

to follows:
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el =h(S;) -V =h(S;) - Vo + [ 88, (p,)) (2.14)

By using the Ito's formula we can obtain

h(s;)=u(T,S;)

T T 1 (2.15)
=u(0,8;) + [ s (t,S)dS,+ (1,5,)+ 5 Uss (6,8)v* (1,88t

We continuously transfer the left part pattern J'oTut(t,St)+%uss(t,st)v2(t,st)sfdt

intojoT ru(t,S)—rSu,(t,S)dt by using the nonlinear Black-Scholes PDE and then we

derive the tracking error:
el =N(S;)-(V, + || ,85,(p,))

=u(0,5,)+ [ U (t,5,)d, + [ ru(t, 8) = rsuy(t. S)dt - (v, + [ @, dS,(0.@)) (2.16)

:joT ru(t, S) — rsuy(t, S)dt

If we assume that the risk-free interest rate equals to zero, the hedger who adopts
self-financing hedging leads the tracking error to be zero. In other words, using the
hedging strategy derived by nonlinear Black-Scholes PDE makes the perfectly
hedging in illiquid market.

2.6 Numerical Method (Finite difference method)

As we known, partial differential equation (PDE) plays an important role in
financial engineering and becomes the essential instrument for option pricing.
However, the analytical solution is not always available by using the PDE. Taking the
nonlinear Black-Scholes PDE for example, it could not be solved analytically.
Therefore, numerical method is needed to estimate the value of the derivatives. In this
way, we adopt the finite difference method which is widely used in option valuation.

When it comes to finite difference method, there are three kinds of approach such
as explicit, implicit and Crank-Nicolson method. Explicit method uses the least time

for computation, but it may face the instable problem. Implicit method is robustness
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for option valuation and provides the precise option value. However, it does not have
the problem of instability. Last, Crank-Nicoleson approach is the hybrid between
explicit and implicit method. Because we hope to have a more precise and robust
option price, the implicit would be the optimum choice. Therefore, our first step is to
make the nonlinear PDE become discrete. Throughout the discreteness, the original

equation is transferred as below:

i i-1 i-1 i-1
Ui-Ui g YiaYin 1

stUH —2Ut+U
At "~ oas TS 2
(2)

i Hopyit (217)

where i is the mesh grid of time. i=0,6t,26t,...,NOt=T
J is the mesh grid of asset price. j=0,6S,25S,...,MdS=Smax

After arrangement, we have

Uj=(0.5%r* j*At—05%(v))** P AU +(14 (V)" * > *At+ r*At)U}*

_ : (2.18)
+(-0.5%(vj)* * [P *At—05*r* j*At)U;
That is equal to
Ui=aUi +bUi"+cU ]
a; =(0.5%r* j*At—05*(v))* * j* *At)
(2.19)

b =(1+(v})* * j* * At +r*At)
¢, =(-05%(v})* * j* *At—0.5%r* j* At)

This equation means that we need the three previous option prices to get the present
option price. There are M option prices which belongs to different stock price needed

to be solved simultaneously. Then, we have to solve the tridiagonal matrix as below:
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b ¢,

a,b,c,

Aol 3D G (2.20)

@y _o by, Cy
8y g by

Since we have already known the terminal value, the previous option value can be
derived by backward method. In addition, we also apply Thomas algorithm which is
designed to solve the tridiagonal matrix. In addition, Frey and Patie (2002) set up an

artificial pattern to smooth the volatility term.

2
v? =maxi a,, i
{ : (1—min{a1,pSuss})2} (2.21)
where &, =0.02, o, =0.85

After incorporating this.smooth pattern, the derivatives’ payoff truly becomes smooth

than before. However, it causes the volatility instable. If we assume that =0.4 and

a, > pSug, , the volatility will turn into =2.667 . It is definitely unreasonable for
1-0.85

economic intuition. Consequently, we use bootstrap method to obtain the ninety-nine

percentage of the volatility to control the volatility upper bound.

2
v? =min{ max| a,, g e
{ [ ’ (1—min{a1,pSuSS})2] 99/} (2.22)

where o, =0.02, «, =0.85,G,,,, is the 99% of the volatility distribution

The conversion of the volatility makes the Greeks of derivatives more stable. In
addition, it also provides a better performance of option valuation. All of the above

numerical methods help us to estimate the option value more feasible and reliable.
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3. Numerical Results

In this section, we use a specific setting to show the hedging costs (option values)
through different kinds of liquidity. From this experiment, we would show the
tendency of hedging cost when the market liquidity is decreasing. In addition, we
compare the Greeks of the derivative to show the difference between the Frey model
and the improved Frey model which revises the volatility smooth function. Before
analyzing, there is one thing needed to be informed that liquidity is the opposite of
liquidity parameter. In other words, the higher (lower) the liquidity, the smaller
(bigger) the liquidity parameter is.

3.1 Hedging cost in illiquidity

Six factors needed to'estimate option values include the stock price, exercise price,
risk free rate, maturity, sigma and liquidity. The underlying asset prices are between 0
and 100. The exercise price, risk free rate, maturity and sigma are 50, 0.05, 0.25 and
0.25 respectively. The'range of the liquidity isamong 0 ~ 1.

From figure 3-1, the hedging costs of call options have increased obviously when
the liquidity decreases. This phenomenon indicates that the representative hedger has
to pay additional cost because the low liquidity enlarges the volatility. According to
the understanding of standard Black-Scholes formula, the option price goes up when
the volatility goes up. Therefore, the reason of raising hedging cost is the decreasing
liquidity which results in higher volatility. In addition, the hedging cost around the
exercise price is higher than any other price.

[figure 3-1]

On the other hand, we find hedging cost of put option in the same situation from

figure 3-2. The put option’s hedging cost raises when the liquidity becomes worse.

Consequently, the results show that the representative hedger has to pay more money

16



than they are in the perfect liquidity.
[figure 3-2]
3.2 Greek letters in illiquid market

When it comes to dynamic hedging, the Greek letters are the most popular
hedging strategies. Greek letters include delta, gamma, vega ...etc. In this part, we are
going show the influence of Greek letters resulting from various liquidities.
Furthermore, we imply the volatility smooth function into the extension
Black-Scholes PDE to get the steady Greek letters throughout the different liquidities.
In the following subsection, we assume a situation when the representative hedger
sells either a call or a put option. Using the simulation method observes the tendency
and variation of Greek letters.

Delta ratio measures the sensitivity. of the option price. corresponding to the
variation of underlying asset price. In figure 3-3, the call delta is increasing from 0 to
1. The representative hedger needs to buy additional shares of stock to protect his
position while underlying asset, price goes up. In-particular, the call delta turns into
flatness when the market becomes illiquid.

[figure 3-3]

In figure 3-4, the put delta is from -1 to 0 while the underlying asset price
increases. The large investor could sell his shares of stock when the asset price is
higher than strike price, and the put option would not be exercised. The put option
turns into flatness when the market becomes illiquid. In other words, the illiquid
underlying asset flattens the delta hedging strategy no matter what kinds of option are
sold by the representative hedger. If the hedger does not adopt the correct liquidity
parameter, he would face the over hedge or under hedge problem.

[figure 3-4]
Since the delta hedge plays an important role in dynamic hedging, investors use
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Gamma hedging to measure the sensitivity of the delta ratio throughout the asset
prices. Figure 3-5 and 3-6 represent call Gamma and put Gamma. Both of Gamma
tendency shows that market liquidity lowers the height of Gamma and makes Gamma
title to left. In the illiquid market, the representative hedger relocates stock shares
before asset price approaches exercise price.

[figure 3-5] ~ [figure 3-6]

If we use the original Frey model without improving the volatility function, the
Gamma shows instability. Therefore, we implement the improved volatility smooth
function into Frey model. Figure 3-7 and 3-8 shows that the delta ratio is originally
stable in specific illiquidity (0-0.4). However, after we implement the smooth
volatility function showing-in figure 3-3 and 3-5, the delta.and Gamma have become
smooth and stable. After applying the improved volatility function, we release the
limitation of liquidityto get the stable Gamma hedging and delta ratio.

[figure 3-7] ~ [figure 3-8]

Vega is used to measure the sensitivity of sigma corresponding to asset price
variation. According to equation (2.21), the volatility term increases because of the
worse liquidity. The figure 3-9 is in line with the theory of volatility function.

[figure 3-9]
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4. Empirical Results

The objection of this part is to investigate the performance of option valuation and
dynamic hedging. We choose the standard Black-Sholes model as our benchmark and
also compare the traditional Frey model.

4.1 Data selection

In order to select the representative data, we decide to use OptionMetrics as our
database which belongs to Wharton university of USA. Because CBOE is famous for
trading option, we choose the CBOE’s top 50 equity options ranked by volume to be
the research data. The data period is from 2000/01/01 to 2004/12/31 and risk free rate
is the three years treasure bill.of America. Option price.is the average of the bid and
ask. We also take the implied volatility as daily volatility of each asset. Furthermore,
underlying asset price.is the close price. Throughout the arrangement, we use these
data to verify the performance of option pricing and dynamic hedging.

4.2 Least square method and loss function

In the improved Frey model, the only unknown factor is the liquidity parameter.
Since there is no general definition of liquidity, we follow Bakshi, Cao and Chen
(1997) to use the least square method to estimate the liquidity for each trading day.

Before introducing the estimation procedure, we set up the daily close option price as

C,; which i is the ith option contract and j is the jth day. In addition, C represents

the option value estimated by the improved Frey model. In the improved Frey model,
the volatility smooth function needs a 99" of historical volatility to limit the upper
bound of volatility. Therefore, we use the bootstrap method and repeat 100 times to

calculate the volatility upper bound for each underlying asset.

2
M;j

N ~
L =arg mlnz C(S r;,sigma™"™, p i o, @y, Oootn ) — Eﬁi (4.1)

IN l i ’ IN J !
=1 i=1 - N
] option price calculate from the improve Frey model observed option price
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In equation (4.1), the first step is using all of the option contracts in the first day to
estimate the appropriate liquidity parameter by least square method. The range of the
P 1S from 0 to 1. Pattern search algorithm chooses p, ., corresponding to the
minimum value of least square automatically. The parameter N represents the length
of moving window and n represents the length of date. In this article, we choose N
equals to 1 as daily estimation. In the successive days, the p, ... IS replaced by the

pr as shown in equation 4.2.

p; =arg min z z C(Sj'Ki,j'Tj'ri’Sigma'mp"ed,pT_l,ao,al,Gggm)— S)ij)s‘

i
j=T-N+1i=1 - - - - .
option price calculate from the improve Frey model observed option price

(4.2)

T:{N,N+1,N+2 ........ n—l}

As a result, we obtain series of liquidity throughout n days. Having the liquidity
time series helps to calculate the-at-the-money option contracts. In order to compare
the performance of option pricing between. the Black-Sholes model and improved
Frey model, we illustrate different kinds of loss function such-as $MSE, %MSE and
IVMSE. The definition of $MSE, %MSE and I\VMSE are displayed in equation 4.3,

4.4 and 4.5 respectively.

SMSE=<)](C—Cc™) (4.3)
i=1
oamise = L3 C=C” ) (4.4)
n< Ciobs
1& ~ 2
IVMSE == (07 - 03 (4.5)

i=1

where o, and o, are the implied volatility
o, =BS™(C,\S, K, T,)
0i = BS_l(CiODS’Si'Ki’ri’Ti)
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4.3 The performance of option pricing model

There are three tables comparing the performance of different models. Table 1
takes $SMSE as the loss function. In table 1, most of the assets in the improved Frey
model have the smallest values, and only four option contracts do not fit well. This
result seems that the improved Frey model is the best option pricing model in this
inspection. However, table 2 exhibits the top 50 options’ %MSE, and the performance
of improved Frey model do not defeat the traditional Frey model.

[Table 1] ~ [Table 2]

The difference between these two loss functions comes from the different criteria.
In other words, we may have.inconsistent solutions if we adopt the distinct loss
function. According to Engle (1993), the choice of the loss function is important in
model evaluation because it exits particular error structure. Taking $MSE for example,
$MSE gives more weight for higher value option contracts such as in-the-money and
long time-to-maturity contracts. On the other hand, %MSE also has the
heteroskedastic error structure. Although %MSE has the advantage to give $1 error
less weight in $100 option value than in $10 option value, it overcorrects the error
structure. It faces the instable problem when the option contract is out-of-the money
and short time-to-maturity. In Pan (2002), Pan takes IVMSE to instead of traditional
loss functions. The advantage of IVMSE is that IVMSE does not have heteroskedastic
error structure. Therefore, we apply IVMSE to investigate the performance of various
models.

Table 3 shows that the improved Frey model seems better than the original Frey
model. There are ten option contracts are not over the 95% t test but all of the figures
are smaller than the traditional Frey model.

[Table 3]
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4.4 Dynamic hedging

As a representative hedger, the performance of dynamic hedging is as important as
option valuation. Since we have already known how to estimate the option value, it is
naturally to implement the improved Frey model into hedging manipulation. The
tracking error is a powerful instrument to verify the difference between the estimated
option value and the observed option value. The tracking error method is shown in
equation (2.14) and then we also compare the performance of the Black-Scholes and
the traditional Frey model. In equation (2.14), we adopt the self-financing strategy to
calculate the option value at time T (V" ). The below equation (4.6) shows the process

of self-financing.

VARNGH =6i,1+de|taify*(S(i)—s(i—l))+r(i—1)*(6i,1—de|ta5;ev*s(i—l))*m (4.6)
We also take the new:pattern C* to replace the observed option value h(S;). For

this reason, we have the total tracking error of specific option contract which time to

maturity is n.

T T Ol

el =Y h(s;)-V" =) Cc*~Ci (4.7)
i=2 2

Therefore, we choose top 20 option contracts to test the improved Frey model
dynamic hedging ability. The maturity time is around one year which is from
2000/01/01 to 2001/1/20. In particular, we only pick up the at-the-money option
contracts to be our trading assets. As shown in table 4, the results of improved Frey
model is better than Black-Scholes model in dynamic hedging. Through the statistic
analysis, the difference between these two models is significant.

[Table 4]
From the above results, the improved Frey model not only provides more precise

option values but also accurate dynamic hedging strategies.
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5. Conclusion

This article follows Frey and Patie’s (2002) research which incorporate the
liquidity parameter into asset price dynamic process. The nonlinear PDE is derived
from the stochastic process of underlying asset price. In order to solve the nonlinear
partial difference equation, we adopt the finite difference method which is generally
used to calculate the option price. Besides, due to the fact that Thomas algorithm is
famous for tridiagonal computation, we apply it to reduce the computation time.

The most significant difference between the traditional Frey model and the
improved Frey model is the improved volatility smooth function. Without correcting
the volatility upper bound,option volatility could be irrational. The irrational
volatility results in inconsistent and instable Greek letters. Thus, we release the limit
of liquidity range for Greek letters. Originally, the Greek letters was turned into
instability while liquidity parameter is over 0.4. Since we have improved the volatility
smooth function, the limited liquidity problem no longer exists.

In empirical results, we use three different kinds of loss functions to investigate
the performance of various models. The comparison shows that the improved Frey
model is superior when we choose the reliable IVMSE as the loss function. On the
other hand, tacking error exhibits the model’s hedging ability. The improved Frey
model still has the outstanding hedging performance.

In further research, we would use time series model to estimate the liquidity
process. The time series of liquidity help market participants to forecast the market
liquidity in advance. Therefore, option values are easily calculated by the improve
Frey model. Investors take the estimated option value as the benchmark to deicide
their trading strategy. Moreover, the exotic option value is also derived by the

stochastic process of underlying asset.
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Tables

BAC
CE
Citigroup
CSCO
DELL
EP

GE
GM
HPQ
IBM
INTC
JPM
MO
MSFT
ORCL
QCOM
TWX
WMT
XMSR
YHOO
AMAT
AMCC
AMD
AMZN
BMY

Table 1. $MSE of top 50 option contracts

BS SMSE _ Frey SMSE  SFrey $MSE Std T statistic
0.6462 0.1028 0.0586 0.2585 6.0327
0.0799 0.0460 0.0054 0.4354 2.9986
0.4749 0.0729 0.0514 0.0915 8.2656
0.1728 0.0925 0.0114 0.7412 3.8628
0.1674 0.0306 0.0133 0.0658 Vg
0.1230 0.0226 0.0086 0.0708 6.9729
0.3543 0.0343 0.0060 0.0884 11,3110
0.4106 0.0438 0.0222 0.1052 7.2409
0.1513 0.0968 0.0113 0.7791 3.8703
1.4252 0.2776 0.1284 0.9060 5.8101
0.2007 0.0573 0.0079 0.3757 4.6343
0.2574 0.0426 0.0209 0.1501 5.0863
0.4706 0.0666 0.0473 0.1136 6.0048
0.9610 0.0917 0.0618 0.1469 7.1862
0.0799 0.0694 0.0114 0.4593 4.4566
0.3350 0.1899 0.0324 1.1130 4.9897
0.2235 0.0408 0.0103 0.1483 7.2501
0.5858 0.1010 0.0667 0.1727 6.9888
0.0371 0.0194 0.0112 0.0779 34163
1.3244 0.3440 0.0575 3.4969 2.8907
0.1528 0.1426 0.0595 0.9712 3.0283
0.9761 0.5449 0.1604 24070 5.5336
0.1044 0.0892 0.0071 0.7409 3.9249
0.5425 0.0840 0.0327 0.4201 4.3242
0.2618 0.0510 0.0241 0.2786 34197

BGEN
CIEN
CNXT
cY

GLW
IDSU
IJNPR
KO
LSI
MOT
MRK
NOK
NT
NVLS
NXTL
PALM
REE

TMX
TXN
TYC
VRTS
XLNX
XRX

26

BS $MSE Frey $MSE  SFrey $MSE Std T statistic
0.2499 0.1920 0.1065 1.2797 2.1128
0.3258 0.3107 0.0190 2.0548 4.9374
0.4773 0.4505 0.4154 4.2624 0.2637
0.0548 0.0427 0.0046 0.3131 43111
0.3221 0.2535 0.0614 1.7475 3.8721
1.0047 0.5415 0.1921 3.3707 3.6430
0.4287 0.3933 0.1085 4.1517 24262
4.4466 22138 1.1251 7.0796 5.4415
0.4183 0.0616 0.0454 0.0967 5.9051
0.5545 0.1708 0.1189 0.3956 4.6454
0.2139 0.1609 0.0894 1.1449 2.2096
0.7456 0.1042 0.0777 0.3236 2.8984
0.8593 0.1705 0.0591 1.3737 2.8710
1.5271 0.8537 0.7427 1.2478 3.0815
0.1029 0.0659 0.0130 0.2959 6.3384
0:3046 0.0864 0.0207 0.6391 3.6428
0.2100 0.1596 0.1160 4.9042 0.2998
0.3186 0.0431 0.0293 0.0623 7.8249
0.0476 0.0347 0.0261 0.4398 0.6861
2.6397 2.2634 2.2261 3.4922 0.3700
0.1566 0.1048 0.0143 0.8391 3.8169
0.3295 0.1167 0.0861 0.4394 24659
1.2432 1.1119 0.6541 3.8894 4.1632
0.1238 0.0920 0.0216 0.6157 4.0473
0.0307 0.0076 0.0030 0.0217 7.3817



BAC
CE
Citigroup
CSCO
DELL
EP

GE
GM
HPOQ
IBM
INTC
JPM
MO
MSFT
ORCL
QCOM
TWX
WMT
XMSR
YHOO
AMAT
AMCC
AMD
AMZN
BMY

Table 2.

BS %MSE__ Frey %MSE _ SFrey %MSE Std T statistic
4.8578 0.9935 0.7814 1.7760 4.1370
0.6891 0.1548 0.0969 1.4218 1.3073
2.2746 0.4884 0.4811 2.6146 0.0926
1.8752 0.2883 0.2521 2.4506 0.5184
0.6919 0.0955 0.0837 0.9362 0.4483
0.4258 0.0801 0.0373 0.4625 3.2608
6.6343 1.3486 0.9224 11.4000 1.3224
0.9656 0.1390 0.1113 0.8188 1.1897
1.6184 0.2403 0.2271 1.7321 0.2644
1.3129 0.2419 0.2213 1.7488 0.4125
0.7016 0.0594 0.0591 0.4783 0.0224
1.8600 0.3501 0.3024 2.7421 0.6099
4.5312 0.7967 0.5740 7.2656 1.0847
5.8402 1.3535 1.3390 7.2604 0.0651
0.4689 0.0764 0.0391 0.3342 3.9310
0.0178 0.0142 0.0104 0.1402 0.9576
0.7891 0.1601 0.0961 1.7236 1.3079
5.4230 2.8050 2.6561 10.6040 0.4864
0.1107 0.0430 0.0344 0.1114 2.4963
0.6596 0.0928 0.0235 0.6080 4.0264
0.1764 0.0186 0.0082 0.0529 6.9188
1.3001 1.1951 1.1161 6.1653 0.4591
0.0862 0.0398 0.0103 0.2283 4.5669
0.4214 0.0364 0.0236 0.1614 2.7968
5.6361 0.9886 0.9101 6.1192 0.4585

BGEN
CIEN
CNXT
CY

GLW
IDSU
INPR
KO
LSI
MOT
MRK
NOK
NT
NVLS
NXTL
PALM
PEE

T™MX
TXN
TYC
VRTS
XLNX
XRX
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%MSE of top 50 option contracts

BS_%MSE Frey %MSE __SFrey %MSE Std T statistic
0.0636 0.0404 0.0105 0.3270 2.8962
1.3462 0.5409 0.4422 3.2971 1.0469
3.0225 3.3146 3.2971 3.7965 0.1222
0.1997 0.0481 0.0135 0.3175 3.8589
7.6450 4.6748 4.5001 2.0530 2.1062
3.9990 0.6790 0.1215 29232 6.7119
1.0806 0.5012 04213 0.4320 6.4038
1.7166 0.4091 0.0673 3.2655 3.7095
39112 0.5617 0.4310 4.0797 1.1379
134340 4.5765 1.6858 13.1750 77131
8.4932 6.3928 4.3343 18.0287 3.9553
2.3723 0.4813 0.2280 2.2138 4.0548
11.0760 2.5643 0.1311 17.7740 4.8518
0.8694 0.3591 0.1399 1.5942 4.3812
0.1538 0.1207 0.0113 3.7652 1.0287
2.5488 0.3918 0.1085 3.2336 3.1064
5.4323 3.4556 3.0202 4.2098 3.5827
1.9348 0.3154 0.3110 11111 0.1326
0.5569 0.3315 0.2888 3.3644 0.4518
3.5201 0.6696 0.5760 6.7867 0.4915
0.3653 0.0376 0.0224 0.3972 1.3515
19.2760 9.4093 7.9265 15.2347 3.3716
1.3394 0.6759 0.6279 1.0503 1.5845
0.0851 0.0126 0.0045 0.0442 6.4591
0.5667 0.0957 0.0564 0.3518 3.9497



BAC
CE
Citigroup
CSCO
DELL
EP

GE
GM
HPOQ
IBM
INTC
JPM
MO
MSFT
ORCL
QCOM
TWX
WMT
XMSR
YHOO
AMAT
AMCC
AMD
AMZN
BMY

Table 3.

IVMSE of top 50 option contracts

BS IVMSE _Frey IVMSE SFrey IVMSE __ Std T statistic
0.0255 0.0038 0.0028 0.0040 8.5148
0.0202 0.0082 0.0021 0.0310  6.3222
0.0313 0.0050 0.0039 0.0047 8.5596
0.0307 0.0071 0.0030 0.0171 8.5861
0.0218 0.0038 0.0021 0.0060 "+ 10.4730
0.0284 0.0113 0.0083 0.0671 1.5692
0.4560 0.0387 0.0051 09117 1.2766
0.0254 0.0027 0.0020 0.0044 5.6405
0.0307 0.0052 0.0030 0.0090 8.4035
0.0257 0.0042 0.0030 0.0054  7.7903
0.0234 0.0037 0.0016 0.0072  10.0160
0.0254 0.0037 0.0027 0.0071 5.1765
0.0357 0.0052 0.0042 0.0065 5.4128
0.0595 0.0093 0.0082 0.0056  '6.9705
0.0249 0.0061 0.0030 0.0204. 54018
0.3340 0.0589 0.0344 0.3259 2.6431
0.0305 0.0051 0.0027 0.0141 5.9668
0.0339 0.0059 0.0049 0.0057 5.6724
0.0731 0.0606 0.0466 0.1375 3.3046
0.0895 0.0070 0.0059 0.0235 1.5719
0.0133 0.0038 0.0015 0.0097 8.6067
0.0579 0.0401 0.0346 0.0915 2.1170
0.0159 0.0092 0.0047 0.0316  5.0388
0.0631 0.0104 0.0047 0.0290  6.9593
0.0330 0.0059 0.0044 0.0182 29514
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BGEN
CIEN
CNXT
Y8

GLW
JDSU
JNPR
KO
LSI
MOT
MRK
NOK
NT
NVLS
NXTL
PALM
PFE

TMX
TXN
TYC
VRTS
XLNX
XRX

BS IVMSE _Frey IVMSE SHrey IVMSE __ Std T statistic
0.0181 0.0061 0.0026 0.0202 55510
0.0461 0.0185 0.0050 0.0549  8.5637
0.2317 0.0932 0.0764 0.8845  0.6726
0.0153 0.0058 0.0018 0.0162  8.7490
0.2148 0.1987 0.1063 0.6634  4.4998
0.1453 0.0333 0.0271 0.1221 1.7969
0.1080 0.0243 0.0136 0.0758 53311
0.4542 0.3966 0.3228 0.4667 54778
0.0281 0.0041 0.0037 0.0033  4.4664
0.2597 0.0523 0.0122 0.0729  19.5150
0.0200 0.0076 0.0033 0.0382  3.9597
0.0446 0.0082 0.0041 0.0194  7.6500
0.1493 0.0251 0.0042 0.0460  16.1130
0.2156 0.1864 0.1251 0.7437  2.8553
0.0121 0.0040 0.0016 0.0225  3.7463
0.0534 0.0101 0.0063 0.0369  3.6554
0.5290 0.4697 0.4594 03654 0.9765
0.0362 0.0051 0.0043 0.0038  6.9891
0.4222 0.2132 0.2107 1.0535  0.0771
0.4910 0.4425 0.4269 04880  1.2062
0.0180 0.0032 0.0011 0.0058  13.0120
0.0437 0.0189 0.0169 0.1025  0.6955
0.0343 0.0166 0.0138 0.0559  1.7829
0.0094 0.0038 0.0017 0.0223  3.4277
0.0277 0.0092 0.0065 0.0281  3.3986



BAC

CE
Citigroup
CSCO
DELL
EP

GE

GM
HPQ
IBM

Table 4. Hedging performances of top 20 option contracts

BS Improved_Frey Std T P
0.5630 0.5541 0.0309 4.1085 0.00006
0.2116 0.1128 0.3738 4.3070 _0.00003
2.2183 2.2129 0.0181 4.7660  0.00000
5.2731 4.5691 2.3742  4.8261 0.00034
0.6709 0.6486 0.0530 6.8437  0.00000
0.4940 0.4857 0.0260 5.1133 * 0.00000
1.1087 1.1042 0.0236  3.0769 0.00231
0.8154 0.8102 0.0179 4.7172 . 0.00000
1.6919 1.6312 0.1687  5.8378 0.00000
1.2586 1.2374 0.1103  3.1343. 0.00192

29

INTC
JPM
MO
MSET
ORCL
QCOM
TWX
WMT
XMSR
YHOO

BS Improved_Frey Std T P
1.3557 1.3212 0.1558 3.5956 0.00039
1.9558 1.9443 0.0505 3.7037  0.00026
0.3734 0.3692 0.0172  3.9696  0.00009
0.9737 0.9448 0.1000 4.7002  0.00000
6.6402 6.5256 0.3659  5.0891  0.00000
1.9295 1.6568 0.5394  8.2168  0.00000
1.4726 1.3915 0.2329 5.5221  0.00000
0.7225 0.7092 0.0383 5.6426  0.00000
0.3280 0.3131 0.0619 3.1040  0.00225
2.9279 2.3269 1.6026  6.0930  0.00000
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[figure 3-1] Call option prices under different illiquid markets
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[figure 3-2]

Put option prices under different illiquid markets
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[figure 3-3] ' Call option deltas under different
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[figure 3-4] Put option deltas under different illiquid markets
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[figure 3-5] Call option Gammas under different illiquid markets
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[figure 3-6] Put option Gammas under different illiquid markets
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[figure 3-7] ~Traditional option deltas under illiquid markets
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[figure 3-8] Traditional option Gammas under illiquid markets
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[figure 3-9] - Option-Vegas under different illiquid markets
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