
國  立  交  通  大  學 

 
財 務 金 融 研 究 所 

 
碩 士 論 文 

 
 

考慮市場流動性不完全下之選擇權 
訂價與避險 

 
Pricing and Hedging Options under Illiquid Markets 

 

        .   研 究 生 :. 黃克鈞 

指導教授 :: 鍾惠民  博士 

 

 

中  華  民  國  九  十  六  年  七  月 

 
 



考慮市場流動性不完全下之選擇權訂價與避險 

 

Pricing and Hedging Options under Illiquid Markets 

 

研 究 生：黃克鈞                              Student：Ke-Chun Huang     

指導教授：鍾惠民  博士                        Advisor：Dr. Huimin Chung 

 

國 立 交 通 大 學 

財務金融研究所 

碩 士 論 文 

 
A Thesis 

Submitted to Graduate Institute of Finance 
College of Management 

National Chiao Tung University 
in partial Fulfillment of the Requirements 

for the Degree of 
Master 

of 
Science in Finance 

 
July 2007 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十六年七月



考慮市場流動性不完全下之選擇權訂價與避險 

 

研究生 : 黃克鈞                       指導教授 : 鍾惠民 博士 
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摘要 

本篇論文建構在 Frey 與 Patie 2002 年的模型上，考慮流動性為股價所控制

的函數。 Frey 在標準的 Black-Scholes 偏微分方程式中，加入流動性變數，用此

求取選擇權價格。本篇論文的目的為，改善 Frey 偏微分方程式中的人造條件，

使得此非線性偏微分方程更加穩定。因此，利用拔靴法求取波動度的上界，用其

取代原本不合理的波動度上界。數值理論部份，改善了希臘字母(Greeks)在流動

性不佳的情況下，不穩定的狀態。透過希臘字母的趨勢變化，可以幫助交易者更

了解回饋效果在不同流動性市場下的變化。實證部份，我們挑選了 CBOE 交易量

前 50 的股票選擇權當作標的物，且用上述的非線性偏微分方程去計算個別選擇

權的價格。結果顯示在不完全流動的市場下，改善後的偏微分方程，可提供更精

確的選擇權價格。 

 

關鍵字: 流動性、選擇權定價、非線性偏微分方程、拔靴法、希臘字母、回饋效

果、有限差分法 
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ABSTRACT 

In this paper we build on Frey and Patie’s literature (2002), where liquidity is a 

deterministic function of stock price. Frey implements an important factor, liquidity, 

into the standard Black-Scholes partial differential equation (PDE) to calculate the 

option price. The objective of our model is to improve an artificial pattern of Frey 

PDE to make the nonlinear PDE more reliable. Therefore, we choose bootstrap 

method to obtain the upper bound of volatility to replace the unreasonable setting. In 

numerical research, Greeks become smoother than before while using the bigger 

liquidity parameter. It helps traders to realize the variation of Feedback effect under 

different liquid markets. In empirical study, we choose the top 50 stock options of 

CBOE as underlying assets and use the PDE which contains liquidity parameter to 

solve each option price. The result shows that using the improved PDE offers more 

precise option prices in illiquid market. 

 

Keyword: Liquidity; Option Pricing; Nonlinear PDE; Bootstrap Method; Greek 

Letters; Feedback Effect; Finite Difference Method.  
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1. Introduction 

Since the Black-Scholes (BS) formula was innovated, this well-known formula 

has given traders a benchmark to trade option with appropriate price. Market 

participants initially take BS price as a standard and adopt hedging strategies to adjust 

their positions. However, investors gradually find that BS formula offers limited 

option price because of the restrictive BS assumptions. In order to release the 

assumptions to provide more reliable option prices, a number of new models have 

been developed for option valuation.  

In this paper, we would like to release a specific assumption that markets are 

assumed to be completely elastic (perfect liquid market). Specifically, the hypothesis 

assumes the price do not change no matter how large amounts of an asset are traded. 

If all of the market participants are small investors, their trading strategies do not 

influence market prices and the market is perfectly liquid in this scenario. However, 

many markets are not perfectly liquid due to the presence of large investors. Large 

investors’ trades have price impacts and thus they face illiquid market. According to 

Kyle(1985), large investors can use its market power to move prices in a certain 

direction. Based on Chan and Lakonishok (1995), large institutions with high 

proportion of trade tend to be associated with larger market impact. Therefore, it 

obviously violates the truth of reality and conveys an important message that markets 

are not perfectly liquid. 

The absence of liquidity leads markets to face serious problems, such as 

financial crisis. A well-known event of illiquid problem is Long-Term Capital 

Management (LTCM) crisis. That is a hedge fund which the company manager longs 

less liquid instruments and shorts more liquid instruments at the same time. This 

trading strategy with high leverage initially brings significance profit to LTCM but the 

 1



company’s manager does not anticipate that their high risk manipulations would result 

in financial crisis. When the Russian debt crisis occurs, most of market liquidity 

suddenly deteriorates. Consequently, the LTCM not only loses all of their properties 

in a short period but also causes an inevitable financial disaster. Hence, there are 

numbers of researchers probing into the cause of market illiquidity. 

In academic literature, there are three causes of illiquidity which are transaction 

costs, asymmetric information of asset and imperfect competition in asset market. In 

addition, another interesting theory causing market illiquidity is uncertainty. 

Uncertainty means that traders face a circumstance which they can not anticipate any 

changes and do not know how to management.  

Moreover, many scholars try to explain the financial meaning of liquidity. Kyle 

(1985) explains market liquidity from three aspects which are tightness, depth and 

resilience of the market. Tightness measures the cost between buying and selling a 

position in a short period. Depth refers to the size of a transaction required to change 

prices. Resilience measures the speed of prices recovering fundamental after a sudden 

event occurs.  

Schwartz (1988) explains that liquidity is the ability to trade immediately. 

Amihud and Mendelson (1989) divide the liquidity into two parts including price 

aspect and time aspect. In point of price aspect, if assets can be traded in specific time 

and minimize the concession from buyer and his counterparties, assets are more liquid. 

For time aspect, when buyer and his counterparties make acceptable concession, the 

less time used for transaction the more liquidity assets have. As I mentioned above, 

these ideas give us some concepts about market illiquidity. 

During recent years, risk management has become a popular issue in the field of 

finance. Three types of risks are market risk, credit risk and liquidity risk. Bielecki 

and Rutkowski (2002) have successfully made an exceptional summary regarding 
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market risk and credit risk. Meanwhile, for liquidity risk, Frey establishes an 

innovative nonlinear PDE to hedge portfolio perfectly. Frey and Patie (2002) continue 

this work and make an extension to describe the liquidity as the deterministic function 

of stock price. In addition, they offer some numerical results to show the illiquidity 

influence of hedging costs and Greeks’ derivatives.  

Furthermore, Esser and Moench (2003) generalize the liquidity model of Frey 

(2002) and incorporate the stochastic liquidity into stock process. In other words, they 

use their innovation to analyze the differences among large investors vary from 

market depth. Then, they make an observation of the variation of large investors’ 

hedging strategies related to stock prices in illiquid markets as well. In addition, they 

verify that stochastic liquidity setting is more suitable for financial markets. Overall, 

their contribution and research provide a flexible model of hedging strategies under 

illiquid market. 

From the above, we can easily say that there are more researchers investigating 

the modeling and hedging strategies while market illiquidity or large investors exist. 

In order to appreciate their contribution and dedication, we provide some further 

related references such as Kyle (1985), Jarrow (1994), Schonbucher and Willmott 

(2000) and Simona (2006). 

Thus, the core of our paper is to analyze the last type of risk, liquidity risk. We 

capture the notion of liquidity from Frey (2000) and our model builds on Frey and 

Patie (2002). We take liquidity as a deterministic function of price and implement it 

into nonlinear PDE. Using finite difference method (FDM), it helps to solve the 

problem of computing nonlinear PDE to obtain option prices. We choose least square 

method to estimate the liquidity. In order to make estimation more reliable, we use 

bootstrap method to calculate the upper bound of volatility of each asset to revise the 

artificial pattern. Moreover, Esser and Moench (2003) suggest the asymmetry 
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relationship between the stock price and liquidity should be removed. All of these 

approaches help us to obtain more precise option prices and apply to dynamic hedging 

strategy to minimize the tracking error. 

When it comes to trading strategy, we must mention feedback effect strategy. 

There are two types of feedback effect trading strategies. One is called positive 

feedback effect. For example, investors buy risky assets when the asset price is 

increasing and sell the risky asset when the asset price is declining. Similarly, there is 

a negative feedback effect. Its trading strategy is very similar to positive feedback. 

Large investors buy the risky asset while the asset price is declining and sell the risky 

asset while asset price is increasing. Those strategies are used to replicate convex 

payoff, long call, and concave payoff, short call, respectively. We would show these 

results in numerical section. 

The remainder of the paper is organized as follows: in section 2, we introduce 

the basic assumption of Frey model (2002) and make a description of how to derive 

the nonlinear PDE. Afterwards, we modify the artificial pattern mentioned in Frey and 

Patie (2002) and explain why it is not appropriate. In section 3, numerical results 

would help us to realize the feedback effect. In section 4, estimate option price using 

data of CBOE top 50 companies is applied to our empirical study. Finally, we 

summarize the discoveries in this context and offer our conclusions in section 5.  
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2. The Deterministic Liquidity Model 

Frey and Patie (2002) assume that financial markets trade between one riskless 

asset (bond) and one risky asset (stock or stock index). They consider bond markets as 

perfectly liquid markets. In other words, no matter how large shares of bonds are 

traded, it does not influence the bond prices. In this circumstance, large investors and 

small market participants have the same weight in bond markets. On the other hand, 

stock markets seem to be illiquid markets. For example, a significant trade would 

cause price impact. This phenomenon is in line with economy intuition that money 

markets are more liquid than the stock markets.  

The cause of the illiquid market is the presence of large investors. Their trading 

strategies lead to price motion and bring feedback effect to underlying assets. For 

example, the price of an asset increases (declines) when the institution investors buy 

(sell) the asset. This assumption is supported by Holthausen and Leftwich (1987) that 

large transactions are related to price impact. Therefore, Frey and Patie argue that 

large investors’ manipulations violate the assumption that market is perfectly liquid.  

In order to release the above assumption, Frey incorporates the liquidity parameter, 

ρ, in dynamic process of asset price. Initially, liquidity is treated as a constant which 

means that the liquidity of the asset does not change through time. Frey and Patie treat 

liquidity as the deterministic function of time and stock price. Our model builds on 

this concept and revises an artificial pattern of Black-Scholes PDE. 

In the following, we offer the basic assumptions and asset price dynamics of Frey 

and Patie (2002). First, we introduce the derivation of nonlinear PDE. Second, we 

provide some essential knowledge of trading strategy. Third, we use the introduction 

of the tracking error to investigate the performance between perfect and imperfect 

market liquidity hedging strategy. Finally, we take the advantage of numerical method 
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to solve the nonlinear PDE and revise the problems of the artificial pattern which may 

produce irrational volatility.  

2.1 Basic assumptions of the deterministic liquidity model 

   The core of the basic assumption explains the trading strategy which the large 

investors have followed. Instead of building on microeconomic equilibrium, Frey 

argues that the variation of asset price dynamics originates from large investor’s stock 

holdings or trading strategy ( )tα . Furthermore, Frey takes the influence of price 

impact as exogenous. Therefore, we illustrate some assumptions of asset trading 

strategies as follows: 

(A1) The stockholdings ( )t t
α are left-continuous (i.e. limt s

s t
α α

<
→

= ). 

(A2) The right-continuous processα + with limt
s t

sα α
<

+

→

= is a semimartingale. 

(A3) The downward-jumps of trading strategy are bounded: : 1t t t /α α α+ +Δ = − > − ρ  

for some 0ρ > . 

These three assumptions provide large investors’ trading strategy as a smooth function 

of the stock price. 

It is obvious that parameter ρ causes the fluctuation from the standard 

Black-Scholes model. When the parameter equals to zero or large investor maintains 

his stock holdings without changing (i.e. 0tα = ), the asset price dynamics follow the 

Black-Scholes model where volatility follows the famous Brownian motion. Then, we 

will provide the asset price dynamics with considering liquidity which is decided by 

large investor’s trading strategy tα depending on ( ),tS ρ α . 

(A4) If the trading strategy follows the previous assumptions, the stochastic 

differential equation is as follows: 

( )t t t t tdS S dW S S d tσ ρλ α+
− −= + −                 (2.1) 

 where implies the left limit lim t
s t

S
<
→
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In this stochastic differential equation, we assume σ  to be positive and λ  to be 

a continuous function. The parameter ρ must be greater than zero as the number of

ρ  increases, the less liquidity the market becomes. We use 1/( ( ) )t tS Sρλ − −  to 

represent the market depth at time t. From this equation, we realize how much shares 

could cause the asset price to move by one unit. According to the suggestion of Esser 

and Moench (2003), they indicate that continuous functionλ does not have significant 

influence to explain the liquidity tendency. Thus, we do not incorporateλ in our model 

for the following pages. We transfer the stochastic differential equation transfers to 

equation (2.2). 

t t t tdS S dW S d tσ ρ α+
− −= +                     (2.2) 

The following shows an example providing a better understanding of the asset 

price assumptions. First, we set up a scenario that large investors hold the specific 

asset of K shares which K must over zero and less than1/ ρ . There is still another 

limitation of asset price. When the asset price drops under S , large investors would 

sell all of the stock holdings. If there is no transaction obstacle (perfect liquid market), 

his portfolio value would be above or at least equals to K S .  

After the basic setting, we start to introduce a large investor trading strategy. The 

stopping time τ is set up as inf{ 0, }tt S Sτ = > < . The trading strategy α is set up 

as ,0   0 for t >t tK t andα τ α= ≤ ≤ = τ . It corresponds to the Assumption A1, A2 and A3. 

We can find out that α  is left continuous because ,0t K tα τ= ≤ ≤ and α +  has a 

bounded downward jumps ( )1/K ρ− > − . Then, we can derive the portfolio value at 

timeτ  in illiquid markets. When investor’s stock price becomes S S S K Sτ τ τ τρ− − −= − <  

his portfolio does not have the perfect protection, i.e. 2KS KS S K KSτ τ τρ τ− − −= − < .  

It is obvious that the difference between deterministic liquidity model and 

Black-Scholes model is whether implementing the liquidity pattern into the stochastic 
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differential equation or not. To make the deterministic liquidity model useable, we 

need to find out how to determine the parameterρ. As we known, there are two 

different avenues to determine theρ. In this article, our approach uses the observed 

data to calculate the implied liquidity. Then, we would mention how to estimate the 

implied liquidity later. 

2.2 Dynamic process of asset price 

In this part, we combine the underlying asset’s stochastic differential equation and 

the trading strategy α  by using the  formula. In addition, Frey and Patie 

assume that their stockholdings trading strategy is a smooth function 

'Ito s

φ  of time and 

the current asset price. This assumption plays an important role of replicating in 

option valuation.  

(A5) Trading strategyφ is a function of time and current asset. 

1,2[0, ]  is of class C ([0, ] ).T T+ +× → ×  

twhere (t,S ) tφ α=  

Moreover, ( , ) 1 for all ( , )  [0, ]sS t S t S Tρ φ +< ∈ ×   

In the sequel, we derive the asset price dynamics by stochastic differential 

equation (2.2) and assumption A5. First, we implement  formula into trading 

strategy to get the following  

'Ito s

2 21( , ) ( , ) ( , ) ( , )
2t s t t t t ss t t td t S dS t S t S t S Sα φ φ φ ν⎛ ⎞= + +⎜ ⎟

⎝ ⎠
dt          (2.3) 

Hoping to get more realistic asset dynamics, we add the risk free rate γ into 

equation (2.2). 

t t t t tdS rS dt S dW S d tσ ρ α+
− − −= + +                  (2.4) 

Then, the further step is to put the equation (2.3) into equation (2.4).  

2 21( , ) ( , ) ( , ) ( , )
2t t t t s t t t t t ss t t tdS rS dt S dW S t S dS S t S t S t S S dtσ ρ φ ρ φ φ ν⎛ ⎞= + + + +⎜ ⎟

⎝ ⎠
 (2.5) 

After arrangement, we obtain 
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2 21(1 ( , )) ( , ) ( , ) ( , )
2t s t t t t t t ss t t t tS t S dS S dW S t S t S t S S rS dρ φ σ ρ φ φ ν t⎡ ⎤⎛ ⎞− = + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 .(2.6) 

By dividing the coefficient (1 ( , ))t s tS t Sρ φ− , we get the new asset price dynamics. 

2 21( , ) ( , ) ( , )
2

(1 ( , )) (1 ( , ))

t t t ss t t t t
t

t
t s t t s t

S t S t S t S S rS
SdS dW dt

S t S S t S

ρ φ φ ν
σ

ρ φ ρ φ

⎡ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= +
− −

   .(2.7) 

In order to make the asset price dynamics more clearly, we take as the 

volatility term of underlying asset and use to represent the drift term of 

underlying asset. Finally, we derive the general form of the asset price process under 

market illiquidity. 

( , )tv t S

( , )tb t S

( , ) ( , )t t t t tdS v t S S dW b t S S dtt= +                   .(2.8) 

( , )
(1 ( , ))t

t s t

v t S
S t S
σ

ρ φ
=

−
                    (2.9) 

2 21( , ) ( , ) ( , ) ( , )
(1 ( , )) 2 (1 ( , ))t t t ss t t t

t s t t s t

rb t S t S t S t S S
S t S S t S
ρ φ φ ν

ρ φ ρ φ
⎛ ⎞= + +⎜ ⎟− −⎝ ⎠

(2.10) 

There is something interesting after we derive this innovative asset price 

dynamics. The volatility term has transferred from constant into a function which 

depends on time and asset price, i.e. . This transition results from large 

investors’ trading strategy. In trading markets, large investors have two general 

trading strategies, positive feedback strategy and contrarian strategy, to protect their 

position. When large investors follows positive feedback strategy (contrarian 

feedback strategy), their trading strategy is to buy (sell) additional shares of the assets 

while the asset price lifts up (drops down).  

( , )tv t S

In other words, the new volatility becomes greater than the constant volatility if 

the representative investor chose the positive feedback strategy, i.e. 

( , )  tv t S σ> if ( , ) 0s tt Sφ > . On the contrary, the new volatility is smaller than the 

constant volatility if the representative investor chose the contrarian feedback strategy, 

i.e. ( , )  tv t S σ< if ( , ) 0s tt Sφ < . 
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2.3 Derivatives with nonlinear PDE  

   The objection of this part is calculating the derivatives price. Having the new asset 

price dynamics helps us to replicate the derivatives such as call or put option. In 

recent research, there are at least three methods to estimate the value of derivatives 

including binomial tree, Monte Carol simulation and solving the partial differential 

equation (PDE). Each of approach has its own advantages and disadvantages. In this 

context, we choose PDE method as an instrument to estimate the price of derivatives 

in illiquid market.   

   In the beginning, we assume the derivative is path-independent and set its smooth 

payoff as . Before building up the new asset price dynamics (2.8), traders use 

the standard Black-Scholes strategy to hedge. However, Black-Scholes theory is only 

effective in perfectly liquid market. Consequently, traders would face a great loss 

when they adopt the Black-Scholes trading strategy to replicate the derivatives. Since 

Frey and Patie have built up the new theory considering market illiquidity, traders can 

obtain more reliable hedging strategy and value of derivatives by adopting the Frey 

and Patie theory. 

( )Th S

It is comparatively easy to understand the Frey and Patie PDE by introducing the 

Black-Scholes PDE at first because we are familiar with the classical theory. The 

Black-Scholes PDE is presented as follows: 

2 21( , ) ( , ) ( , ) ( , )
2t s ssu t S rSu t S S u t S ru t Sσ+ + =             (2.11) 

         where ( , ) is the derivative pice at time T, i.e. ( )Tu T S h S

To recall the equation (2.8), we find out the volatility term in equation (2.11) 

should be replaced as . Then, we obtain the extension of the Black-Scholes 

PDE as equation (2.12) 

( , )tv t S

2
2

2

1( , ) ( , ) ( , ) ( , )
2 (1 ( , ))t s ss

t ss t

u t S rSu t S S u t S ru t S
S u t S
σ

ρ
+ + =

−
       (2.12) 
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swhere ( , ) ( , )ss t tu t S t Sφ=  

From the above equation, the Black-Scholes PDE becomes the special case of the 

Frey and Patie PDE. The  is transferred into ( , )tv t S σ  while the parameter ρ  

equals zero in the Frey and Patie model. For this reason, the nonlinear PDE is the 

general form of the Black-Scholes PDE. 

The nonlinear PDE provides us an avenue to estimate the value of derivatives, but 

it is easily to tell that we could not solve it directly. We must take advantage of 

numerical method to solve the equation such as finite difference method. The 

numerical method would be presented in the latter part of this article. 

2.4 Basic concept of dynamic hedging 

In order to understand the performance of different model’s hedging strategy, 

traders must possess the fundamental knowledge of dynamic hedging. For this reason, 

it is essential to make detail explanations. We first assume that the representative 

hedger is a large investor and his initial stockholdings is α  and the share of bond is 

β . The hedger uses these two assets to replicate the derivative which the expiration 

date is . T

When the market is not perfectly liquid, the value of the hedger’s portfolio is hard 

to define. The hedger’s position has two kinds of values. One is mark-to-market value 

and the other is liquidation value. If the stock market liquidity is perfect, these two 

kinds of value are the same. In other situation, mark-to-market value is higher than 

liquidation value. Taking the limit order for example, once the stock price declines 

below S  the hedger sells all of his stockholdings. Theoretically, the value of this 

portfolio is ( , )M
t t tV S tα ρ α β= + , i.e. mark-to market value. However, the hedger only 

receives the value (liquidation value) less than the mark-to-market value when the 

hedger sells his position to the market. Although liquidation value is in line with the 

real value of the hedger’s position, it is difficult to define a precise liquidation cost. 
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Therefore, we adopt the mark-to-market value as the hedger’s position value to the 

following analysis. 

Corresponding to the stock price variation, the representative hedger adjusts his 

stockholdings and bonds to minimize the risk before the expiration date . At time t, 

the mark-to-market value is 

Τ

( , )M
t t tV S tα ρ α β= +  and the initial value is 0

MV . 

Generally speaking, delta hedging strategy is widely used in financial market. If there 

is no external finance to support the hedger, the process of relocation position is called 

self-financing. During the period ( )0 ~ T , the gains from relocation position are 

defined as 
0

( , )
T

t s sG dSα ρ α= ∫ . Throughout the self-financing strategy, the value of the 

portfolio at time T is 0 0 0
( , )

TM
T t s sV V G V dSα ρ α= + = + ∫ . 

2.5 Tracking error 

Tracking error is an instrument to measure the performance of the self-financing. 

In other words, the difference between the derivative’s payoff and the replication 

value at time T is called tracking error. The figure is positive when we made a loss 

from our hedging and vice versa. This instrument provides an easy understanding to 

capture whether the model we used is appropriate or not. Using the above hedging as 

an example, we define the tracking error ( as: )M
Te

( )( ) ( )( ) 0 0
, , (

TM M
T T T T s se h S V h S V dS ( , ))ρ α ρ α α= − = − + ∫ ρ α      (2.13) 

Therefore, we can compare the standard Black-Scholes hedging strategy and the 

innovative hedging strategy which considers the market is illiquid. If the former 

tracking error is greater than the latter, it proofs that the Frey and Patie model is a 

superior model. In the following proposition, we recall the nonlinear PDE (equation 

(2.12)) to proof the perfect hedging under market illiquidity. The tracking error equals 

to follows: 
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( ) ( ) 0 0
( (

TM M
T T T T s se h S V h S V dS , ))α ρ α= − = − + ∫            (2.14) 

By using the formula we can obtain 'Ito s

( )
T 2 2

0 0 0

( , )
1         (0, ) ( , ) + ( , ) ( , ) ( , )
2

T T

T

S t t t t SS t t t

h S u T S

u S u t S dS u t S u t S v t S S dt

=

= + +∫ ∫
  (2.15) 

We continuously transfer the left part pattern
T 2 2

0

1( , ) ( , ) ( , )
2t t SS t t tu t S u t S v t S S dt+∫  

into  by using the nonlinear Black-Scholes PDE and then we 

derive the tracking error: 

0
( , ) ( , )

T

sru t S rSu t S dt−∫

( ) 0 0

0 00 0 0

( ( , ))

    (0, ) ( , ) ( , ) ( , ) ( ( , ))

     = ( , ) ( , )

TM
T T s s

T T T

S t t s s s

T

s

e h S V dS

u S u t S dS ru t S rSu t S dt V dS

ru t S rSu t S dt

α ρ α

0

α ρ α

= − +

= + + − − +

−

∫
∫ ∫ ∫

∫

 (2.16) 

If we assume that the risk-free interest rate equals to zero, the hedger who adopts 

self-financing hedging leads the tracking error to be zero. In other words, using the 

hedging strategy derived by nonlinear Black-Scholes PDE makes the perfectly 

hedging in illiquid market. 

2.6 Numerical Method (Finite difference method) 

As we known, partial differential equation (PDE) plays an important role in 

financial engineering and becomes the essential instrument for option pricing. 

However, the analytical solution is not always available by using the PDE. Taking the 

nonlinear Black-Scholes PDE for example, it could not be solved analytically. 

Therefore, numerical method is needed to estimate the value of the derivatives. In this 

way, we adopt the finite difference method which is widely used in option valuation. 

When it comes to finite difference method, there are three kinds of approach such 

as explicit, implicit and Crank-Nicolson method. Explicit method uses the least time 

for computation, but it may face the instable problem. Implicit method is robustness 
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for option valuation and provides the precise option value. However, it does not have 

the problem of instability. Last, Crank-Nicoleson approach is the hybrid between 

explicit and implicit method. Because we hope to have a more precise and robust 

option price, the implicit would be the optimum choice. Therefore, our first step is to 

make the nonlinear PDE become discrete. Throughout the discreteness, the original 

equation is transferred as below: 

( )
( )

1 1 1 1 1 1
21 1 1 12 1

2

21
2 2

i i i i i i i
j j j j j j ji i

j j j j

U U U U U U U
rS S rU

t S S
ν

− − − − − −
+ − + − −− − − +

+ +
Δ Δ Δ

=     (2.17) 

 i is the mesh grid of time. i=0, t,2 t,...,N t=T
           j is the mesh grid of asset price. j=0, ,2 ,...,M =Smax
where

S S S
δ δ δ

δ δ δ
 

 

After arrangement, we have  

( ) ( )
( )

2 2 1 2 2
1

2 2 1
1

0.5* * * 0.5*( ) * * 1 ( ) * * *

        + -0.5*( ) * * 0.5* * *

i i i i 1i
j j j j

i i
j j

U r j t j t U j t r t

j t r j t U

ν ν

ν

jU− −
−

−
+

= Δ − Δ + + Δ + Δ

Δ − Δ
(2.18) 

 

That is equal to  

( )
(
( )

1 1 1
1 j 1

2 2

2 2

2 2
j

+c

0.5* * * 0.5*( ) * *

1 ( ) * * *

c -0.5*( ) * * 0.5* * *

i i i i
j j j j j j

i
j

i
j j

i
j

U a U b U U

a r j t j

b j t r t

j t r j t

ν

ν

ν

− − −
− += +

= Δ −

= + Δ + Δ

= Δ −

)
j tΔ

Δ

              (2.19) 

 

This equation means that we need the three previous option prices to get the present 

option price. There are M option prices which belongs to different stock price needed 

to be solved simultaneously. Then, we have to solve the tridiagonal matrix as below: 
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1 1

2 2 2

3 3 3

2 22

1 1

.. .

M MM

M M

b c
a b c

a b c
A

b ca
a b

− −−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟

)

                 (2.20) 

Since we have already known the terminal value, the previous option value can be 

derived by backward method. In addition, we also apply Thomas algorithm which is 

designed to solve the tridiagonal matrix. In addition, Frey and Patie (2002) set up an 

artificial pattern to smooth the volatility term. 

{ }(
2

2
0 2

1

0 1

max ,
1 min ,

 0.02,  0.85
SSSu

where

σν α
α ρ

α α

⎧ ⎫⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩

= =
⎭

                (2.21) 

After incorporating this smooth pattern, the derivatives’ payoff truly becomes smooth 

than before. However, it causes the volatility instable. If we assume that 0.4σ =  and 

1 SSSuα ρ> , the volatility will turn into 0.4 2.667
1 0.85

=
−

. It is definitely unreasonable for 

economic intuition. Consequently, we use bootstrap method to obtain the ninety-nine 

percentage of the volatility to control the volatility upper bound. 

{ }( )
2

2
0 99%2

1

0 1 99%

ˆmin max , ,
1 min ,

ˆ 0.02,  0.85,  is the 99% of the volatility distribution
SSSu

where

σν α σ
α ρ

α α σ

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= ⎨ ⎬
⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

= =

  (2.22) 

The conversion of the volatility makes the Greeks of derivatives more stable. In 

addition, it also provides a better performance of option valuation. All of the above 

numerical methods help us to estimate the option value more feasible and reliable. 
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3. Numerical Results 

In this section, we use a specific setting to show the hedging costs (option values) 

through different kinds of liquidity. From this experiment, we would show the 

tendency of hedging cost when the market liquidity is decreasing. In addition, we 

compare the Greeks of the derivative to show the difference between the Frey model 

and the improved Frey model which revises the volatility smooth function. Before 

analyzing, there is one thing needed to be informed that liquidity is the opposite of 

liquidity parameter. In other words, the higher (lower) the liquidity, the smaller 

(bigger) the liquidity parameter is.  

3.1 Hedging cost in illiquidity 

Six factors needed to estimate option values include the stock price, exercise price, 

risk free rate, maturity, sigma and liquidity. The underlying asset prices are between 0 

and 100. The exercise price, risk free rate, maturity and sigma are 50, 0.05, 0.25 and 

0.25 respectively. The range of the liquidity is among 0 ~ 1. 

From figure 3-1, the hedging costs of call options have increased obviously when 

the liquidity decreases. This phenomenon indicates that the representative hedger has 

to pay additional cost because the low liquidity enlarges the volatility. According to 

the understanding of standard Black-Scholes formula, the option price goes up when 

the volatility goes up. Therefore, the reason of raising hedging cost is the decreasing 

liquidity which results in higher volatility. In addition, the hedging cost around the 

exercise price is higher than any other price.  

[figure 3-1] 

On the other hand, we find hedging cost of put option in the same situation from 

figure 3-2. The put option’s hedging cost raises when the liquidity becomes worse. 

Consequently, the results show that the representative hedger has to pay more money 
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than they are in the perfect liquidity. 

[figure 3-2] 

3.2 Greek letters in illiquid market 

When it comes to dynamic hedging, the Greek letters are the most popular 

hedging strategies. Greek letters include delta, gamma, vega …etc. In this part, we are 

going show the influence of Greek letters resulting from various liquidities. 

Furthermore, we imply the volatility smooth function into the extension 

Black-Scholes PDE to get the steady Greek letters throughout the different liquidities. 

In the following subsection, we assume a situation when the representative hedger 

sells either a call or a put option. Using the simulation method observes the tendency 

and variation of Greek letters. 

Delta ratio measures the sensitivity of the option price corresponding to the 

variation of underlying asset price. In figure 3-3, the call delta is increasing from 0 to 

1. The representative hedger needs to buy additional shares of stock to protect his 

position while underlying asset price goes up. In particular, the call delta turns into 

flatness when the market becomes illiquid. 

[figure 3-3] 

In figure 3-4, the put delta is from -1 to 0 while the underlying asset price 

increases. The large investor could sell his shares of stock when the asset price is 

higher than strike price, and the put option would not be exercised. The put option 

turns into flatness when the market becomes illiquid. In other words, the illiquid 

underlying asset flattens the delta hedging strategy no matter what kinds of option are 

sold by the representative hedger. If the hedger does not adopt the correct liquidity 

parameter, he would face the over hedge or under hedge problem. 

[figure 3-4] 

Since the delta hedge plays an important role in dynamic hedging, investors use 
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Gamma hedging to measure the sensitivity of the delta ratio throughout the asset 

prices. Figure 3-5 and 3-6 represent call Gamma and put Gamma. Both of Gamma 

tendency shows that market liquidity lowers the height of Gamma and makes Gamma 

title to left. In the illiquid market, the representative hedger relocates stock shares 

before asset price approaches exercise price. 

[figure 3-5]、 [figure 3-6] 

If we use the original Frey model without improving the volatility function, the 

Gamma shows instability. Therefore, we implement the improved volatility smooth 

function into Frey model. Figure 3-7 and 3-8 shows that the delta ratio is originally 

stable in specific illiquidity (0-0.4). However, after we implement the smooth 

volatility function showing in figure 3-3 and 3-5, the delta and Gamma have become 

smooth and stable. After applying the improved volatility function, we release the 

limitation of liquidity to get the stable Gamma hedging and delta ratio.  

[figure 3-7]、 [figure 3-8] 

Vega is used to measure the sensitivity of sigma corresponding to asset price 

variation. According to equation (2.21), the volatility term increases because of the 

worse liquidity. The figure 3-9 is in line with the theory of volatility function. 

[figure 3-9] 
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4. Empirical Results 

The objection of this part is to investigate the performance of option valuation and 

dynamic hedging. We choose the standard Black-Sholes model as our benchmark and 

also compare the traditional Frey model.  

4.1 Data selection 

In order to select the representative data, we decide to use OptionMetrics as our 

database which belongs to Wharton university of USA. Because CBOE is famous for 

trading option, we choose the CBOE’s top 50 equity options ranked by volume to be 

the research data. The data period is from 2000/01/01 to 2004/12/31 and risk free rate 

is the three years treasure bill of America. Option price is the average of the bid and 

ask. We also take the implied volatility as daily volatility of each asset. Furthermore, 

underlying asset price is the close price. Throughout the arrangement, we use these 

data to verify the performance of option pricing and dynamic hedging. 

4.2 Least square method and loss function 

In the improved Frey model, the only unknown factor is the liquidity parameter. 

Since there is no general definition of liquidity, we follow Bakshi, Cao and Chen 

(1997) to use the least square method to estimate the liquidity for each trading day. 

Before introducing the estimation procedure, we set up the daily close option price as 

 which i is the ith option contract and j is the jth day. In addition, ,i jC C  represents 

the option value estimated by the improved Frey model. In the improved Frey model, 

the volatility smooth function needs a 99th of historical volatility to limit the upper 

bound of volatility. Therefore, we use the bootstrap method and repeat 100 times to 

calculate the volatility upper bound for each underlying asset.  
2

*
99, 0 1

1 1  option price price calculate from the improve Frey model

arg  min ( , , , , , , , , )
jMN

implied obs
thN j i j j j j initial i j

j i observedoption

C S K T r sigma C
ρ

ρ ρ α α
= =

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑∑ ,σ (4.1) 
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In equation (4.1), the first step is using all of the option contracts in the first day to 

estimate the appropriate liquidity parameter by least square method. The range of the 

initialρ  is from 0 to 1. Pattern search algorithm chooses initialρ  corresponding to the 

minimum value of least square automatically. The parameter N represents the length 

of moving window and n represents the length of date. In this article, we choose N  

equals to 1 as daily estimation. In the successive days, the initialρ  is replaced by the 

Tρ  as shown in equation 4.2. 

2

*
99, 1 0 1

1 1  option price price calculate from the improve Frey model

arg  min ( , , , , , , , , )

, 1, 2,......,

jMT
implied obs

thT j i j j j j T i j
j T N i observedoption

C S K T r sigma C

T N N N

ρ
ρ ρ α α−

= − + =

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

= + +

∑ ∑

{ }1n −

,σ
 (4.2) 

As a result, we obtain series of liquidity throughout n days. Having the liquidity 

time series helps to calculate the at-the-money option contracts. In order to compare 

the performance of option pricing between the Black-Sholes model and improved 

Frey model, we illustrate different kinds of loss function such as $MSE, %MSE and 

IVMSE. The definition of $MSE, %MSE and IVMSE are displayed in equation 4.3, 

4.4 and 4.5 respectively. 

( 2

1

1$
n

obs
i i

i

MSE C C
n =

= −∑ )                   .. (4.3) 

2

1

1%
obsn

i i
obs

i i

C CMSE
n C=

⎛ ⎞−
= ⎜⎜

⎝ ⎠
∑ ⎟⎟                   .(4.4) 

(
2

1

1 n

i i
i

IVMSE
n )σ σ

=

= −∑                     .(4.5) 

1

1

 and  are the implied volatility

( , , , , )

( , , , , )

i i

i i i i i i
obs

i i i i i i

where

BS C S K r T

BS C S K r T

σ σ

σ

σ

−

−

=

=
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4.3 The performance of option pricing model 

There are three tables comparing the performance of different models. Table 1 

takes $MSE as the loss function. In table 1, most of the assets in the improved Frey 

model have the smallest values, and only four option contracts do not fit well. This 

result seems that the improved Frey model is the best option pricing model in this 

inspection. However, table 2 exhibits the top 50 options’ %MSE, and the performance 

of improved Frey model do not defeat the traditional Frey model.  

[Table 1]、[Table 2] 

The difference between these two loss functions comes from the different criteria. 

In other words, we may have inconsistent solutions if we adopt the distinct loss 

function. According to Engle (1993), the choice of the loss function is important in 

model evaluation because it exits particular error structure. Taking $MSE for example, 

$MSE gives more weight for higher value option contracts such as in-the-money and 

long time-to-maturity contracts. On the other hand, %MSE also has the 

heteroskedastic error structure. Although %MSE has the advantage to give $1 error 

less weight in $100 option value than in $10 option value, it overcorrects the error 

structure. It faces the instable problem when the option contract is out-of-the money 

and short time-to-maturity. In Pan (2002), Pan takes IVMSE to instead of traditional 

loss functions. The advantage of IVMSE is that IVMSE does not have heteroskedastic 

error structure. Therefore, we apply IVMSE to investigate the performance of various 

models. 

Table 3 shows that the improved Frey model seems better than the original Frey 

model. There are ten option contracts are not over the 95% t test but all of the figures 

are smaller than the traditional Frey model. 

[Table 3] 
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4.4 Dynamic hedging 

As a representative hedger, the performance of dynamic hedging is as important as 

option valuation. Since we have already known how to estimate the option value, it is 

naturally to implement the improved Frey model into hedging manipulation. The 

tracking error is a powerful instrument to verify the difference between the estimated 

option value and the observed option value. The tracking error method is shown in 

equation (2.14) and then we also compare the performance of the Black-Scholes and 

the traditional Frey model. In equation (2.14), we adopt the self-financing strategy to 

calculate the option value at time T ( M
TV ). The below equation (4.6) shows the process 

of self-financing.  

( ) ( )( ) ( )( )1 11 1:  1 ( 1) 1M Frey Frey
i i ii i iV C C delta S i S i r i C delta S i t− −− −= + ∗ − − + − ∗ − ∗ − ∗Δ   ..(4.6) 

We also take the new pattern  to replace the observed option value . For 

this reason, we have the total tracking error of specific option contract which time to 

maturity is n.  

obs
iC ( Th S )

C( )
2 2

T T
M M obs

iT i i i
i

e h S V C
=

= − = −∑ ∑                  (4.7) 

Therefore, we choose top 20 option contracts to test the improved Frey model 

dynamic hedging ability. The maturity time is around one year which is from 

2000/01/01 to 2001/1/20. In particular, we only pick up the at-the-money option 

contracts to be our trading assets. As shown in table 4, the results of improved Frey 

model is better than Black-Scholes model in dynamic hedging. Through the statistic 

analysis, the difference between these two models is significant. 

[Table 4] 

From the above results, the improved Frey model not only provides more precise 

option values but also accurate dynamic hedging strategies. 
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5. Conclusion 

This article follows Frey and Patie’s (2002) research which incorporate the 

liquidity parameter into asset price dynamic process. The nonlinear PDE is derived 

from the stochastic process of underlying asset price. In order to solve the nonlinear 

partial difference equation, we adopt the finite difference method which is generally 

used to calculate the option price. Besides, due to the fact that Thomas algorithm is 

famous for tridiagonal computation, we apply it to reduce the computation time. 

The most significant difference between the traditional Frey model and the 

improved Frey model is the improved volatility smooth function. Without correcting 

the volatility upper bound, option volatility could be irrational. The irrational 

volatility results in inconsistent and instable Greek letters. Thus, we release the limit 

of liquidity range for Greek letters. Originally, the Greek letters was turned into 

instability while liquidity parameter is over 0.4. Since we have improved the volatility 

smooth function, the limited liquidity problem no longer exists.   

In empirical results, we use three different kinds of loss functions to investigate 

the performance of various models. The comparison shows that the improved Frey 

model is superior when we choose the reliable IVMSE as the loss function. On the 

other hand, tacking error exhibits the model’s hedging ability. The improved Frey 

model still has the outstanding hedging performance. 

In further research, we would use time series model to estimate the liquidity 

process. The time series of liquidity help market participants to forecast the market 

liquidity in advance. Therefore, option values are easily calculated by the improve 

Frey model. Investors take the estimated option value as the benchmark to deicide 

their trading strategy. Moreover, the exotic option value is also derived by the 

stochastic process of underlying asset.  
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Tables 

Table 1.  $MSE of top 50 option contracts 

 BS_$MSE Frey_$MSE SFrey_$MSE Std T statistic BS_$MSE Frey_$MSE SFrey_$MSE Std T statistic

BAC 0.6462  0.1028  0.0586 0.2585 6.0327 BGEN 0.2499 0.1920 0.1065 1.2797 2.1128 

CE 0.0799  0.0460  0.0054 0.4354 2.9986 CIEN 0.3258 0.3107 0.0190 2.0548 4.9374 

Citigroup 0.4749  0.0729  0.0514 0.0915 8.2656 CNXT 0.4773 0.4505 0.4154 4.2624 0.2637 

CSCO 0.1728  0.0925  0.0114 0.7412 3.8628 CY 0.0548 0.0427 0.0046 0.3131 4.3111 

DELL 0.1674  0.0306  0.0133 0.0658 9.2973 F 0.3221 0.2535 0.0614 1.7475 3.8721 

EP 0.1230  0.0226  0.0086 0.0708 6.9729 GLW 1.0047 0.5415 0.1921 3.3707 3.6430 

GE 0.3543  0.0343  0.0060 0.0884 11.3110 JDSU 0.4287 0.3933 0.1085 4.1517 2.4262 

GM 0.4106  0.0438  0.0222 0.1052 7.2409 JNPR 4.4466 2.2138 1.1251 7.0796 5.4415 

HPQ 0.1513  0.0968  0.0113 0.7791 3.8703 KO 0.4183 0.0616 0.0454 0.0967 5.9051 

IBM 1.4252  0.2776  0.1284 0.9060 5.8101 LSI 0.5545 0.1708 0.1189 0.3956 4.6454 

INTC 0.2007  0.0573  0.0079 0.3757 4.6343 MOT 0.2139 0.1609 0.0894 1.1449 2.2096 

JPM 0.2574  0.0426  0.0209 0.1501 5.0863 MRK 0.7456 0.1042 0.0777 0.3236 2.8984 

MO 0.4706  0.0666  0.0473 0.1136 6.0048 NOK 0.8593 0.1705 0.0591 1.3737 2.8710 

MSFT 0.9610  0.0917  0.0618 0.1469 7.1862 NT 1.5271 0.8537 0.7427 1.2478 3.0815 

ORCL 0.0799  0.0694  0.0114 0.4593 4.4566 NVLS 0.1029 0.0659 0.0130 0.2959 6.3384 

QCOM 0.3350  0.1899  0.0324 1.1130 4.9897 NXTL 0.3046 0.0864 0.0207 0.6391 3.6428 

TWX 0.2235  0.0408  0.0103 0.1483 7.2501 PALM 0.2100 0.1596 0.1160 4.9042 0.2998 

WMT 0.5858  0.1010  0.0667 0.1727 6.9888 PFE 0.3186 0.0431 0.0293 0.0623 7.8249 

XMSR 0.0371  0.0194  0.0112 0.0779 3.4163 Q 0.0476 0.0347 0.0261 0.4398 0.6861 

YHOO 1.3244  0.3440  0.0575 3.4969 2.8907 TMX 2.6397 2.2634 2.2261 3.4922 0.3700 

AMAT 0.1528  0.1426  0.0595 0.9712 3.0283 TXN 0.1566 0.1048 0.0143 0.8391 3.8169 

AMCC 0.9761  0.5449  0.1604 2.4070 5.5336 TYC 0.3295 0.1167 0.0861 0.4394 2.4659 

AMD 0.1044  0.0892  0.0071 0.7409 3.9249 VRTS 1.2432 1.1119 0.6541 3.8894 4.1632 

AMZN 0.5425  0.0840  0.0327 0.4201 4.3242 XLNX 0.1238 0.0920 0.0216 0.6157 4.0473 

BMY 0.2618  0.0510  0.0241 0.2786 3.4197 XRX 0.0307 0.0076 0.0030 0.0217 7.3817 
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Table 2.  %MSE of top 50 option contracts 

 BS_%MSE Frey_%MSE SFrey_%MSE Std T statistic BS_%MSE Frey_%MSE SFrey_%MSE Std T statistic

BAC 4.8578  0.9935  0.7814 1.7760 4.1370 BGEN 0.0636 0.0404 0.0105 0.3270 2.8962 

CE 0.6891  0.1548  0.0969 1.4218 1.3073 CIEN 1.3462 0.5409 0.4422 3.2971 1.0469 

Citigroup 2.2746  0.4884  0.4811 2.6146 0.0926 CNXT 3.0225 3.3146 3.2971 3.7965 0.1222 

CSCO 1.8752  0.2883  0.2521 2.4506 0.5184 CY 0.1997 0.0481 0.0135 0.3175 3.8589 

DELL 0.6919  0.0955  0.0837 0.9362 0.4483 F 7.6450 4.6748 4.5001 2.0530 2.1062 

EP 0.4258  0.0801  0.0373 0.4625 3.2608 GLW 3.9990 0.6790 0.1215 2.9232 6.7119 

GE 6.6343  1.3486  0.9224 11.4000 1.3224 JDSU 1.0806 0.5012 0.4213 0.4320 6.4038 

GM 0.9656  0.1390  0.1113 0.8188 1.1897 JNPR 1.7166 0.4091 0.0673 3.2655 3.7095 

HPQ 1.6184  0.2403  0.2271 1.7321 0.2644 KO 3.9112 0.5617 0.4310 4.0797 1.1379 

IBM 1.3129  0.2419  0.2213 1.7488 0.4125 LSI 13.4340 4.5765 1.6858 13.1750 7.7731 

INTC 0.7016  0.0594  0.0591 0.4783 0.0224 MOT 8.4932 6.3928 4.3343 18.0287 3.9553 

JPM 1.8600  0.3501  0.3024 2.7427 0.6099 MRK 2.3723 0.4813 0.2280 2.2138 4.0548 

MO 4.5312  0.7967  0.5740 7.2656 1.0847 NOK 11.0760 2.5643 0.1311 17.7740 4.8518 

MSFT 5.8402  1.3535  1.3390 7.2604 0.0651 NT 0.8694 0.3591 0.1399 1.5942 4.3812 

ORCL 0.4689  0.0764  0.0391 0.3342 3.9310 NVLS 0.1538 0.1207 0.0113 3.7652 1.0287 

QCOM 0.0178  0.0142  0.0104 0.1402 0.9576 NXTL 2.5488 0.3918 0.1085 3.2336 3.1064 

TWX 0.7891  0.1601  0.0961 1.7236 1.3079 PALM 5.4323 3.4556 3.0202 4.2098 3.5827 

WMT 5.4230  2.8050  2.6561 10.6040 0.4864 PFE 1.9348 0.3154 0.3110 1.1111 0.1326 

XMSR 0.1107  0.0430  0.0344 0.1114 2.4963 Q 0.5569 0.3315 0.2888 3.3644 0.4518 

YHOO 0.6596  0.0928  0.0235 0.6080 4.0264 TMX 3.5201 0.6696 0.5760 6.7867 0.4915 

AMAT 0.1764  0.0186  0.0082 0.0529 6.9188 TXN 0.3653 0.0376 0.0224 0.3972 1.3515 

AMCC 1.3001  1.1951  1.1161 6.1653 0.4591 TYC 19.2760 9.4093 7.9265 15.2347 3.3716 

AMD 0.0862  0.0398  0.0103 0.2283 4.5669 VRTS 1.3394 0.6759 0.6279 1.0503 1.5845 

AMZN 0.4214  0.0364  0.0236 0.1614 2.7968 XLNX 0.0851 0.0126 0.0045 0.0442 6.4591 

BMY 5.6361  0.9886  0.9101 6.1192 0.4585 XRX 0.5667 0.0957 0.0564 0.3518 3.9497 
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Table 3.  IVMSE of top 50 option contracts 

BS_IVMSE Frey_IVMSE SFrey_IVMSE Std T statistic BS_IVMSE Frey_IVMSE SFrey_IVMSE Std T statistic

BAC 0.0255  0.0038 0.0028 0.0040 8.5148 BGEN 0.0181 0.0061 0.0026 0.0202 5.5510 

CE 0.0202  0.0082 0.0021 0.0310 6.3222 CIEN 0.0461 0.0185 0.0050 0.0549 8.5637 

Citigroup 0.0313  0.0050 0.0039 0.0047 8.5596 CNXT 0.2317 0.0932 0.0764 0.8845 0.6726 

CSCO 0.0307  0.0071 0.0030 0.0171 8.5861 CY 0.0153 0.0058 0.0018 0.0162 8.7490 

DELL 0.0218  0.0038 0.0021 0.0060 10.4730 F 0.2148 0.1987 0.1063 0.6634 4.4998 

EP 0.0284  0.0113 0.0083 0.0671 1.5692 GLW 0.1453 0.0333 0.0271 0.1221 1.7969 

GE 0.4560  0.0387 0.0051 0.9117 1.2766 JDSU 0.1080 0.0243 0.0136 0.0758 5.3311 

GM 0.0254  0.0027 0.0020 0.0044 5.6405 JNPR 0.4542 0.3966 0.3228 0.4667 5.4778 

HPQ 0.0307  0.0052 0.0030 0.0090 8.4035 KO 0.0281 0.0041 0.0037 0.0033 4.4664 

IBM 0.0257  0.0042 0.0030 0.0054 7.7903 LSI 0.2597 0.0523 0.0122 0.0729 19.5150 

INTC 0.0234  0.0037 0.0016 0.0072 10.0160 MOT 0.0200 0.0076 0.0033 0.0382 3.9597 

JPM 0.0254  0.0037 0.0027 0.0071 5.1765 MRK 0.0446 0.0082 0.0041 0.0194 7.6500 

MO 0.0357  0.0052 0.0042 0.0065 5.4128 NOK 0.1493 0.0251 0.0042 0.0460 16.1130 

MSFT 0.0595  0.0093 0.0082 0.0056 6.9705 NT 0.2156 0.1864 0.1251 0.7437 2.8553 

ORCL 0.0249  0.0061 0.0030 0.0204 5.4018 NVLS 0.0121 0.0040 0.0016 0.0225 3.7463 

QCOM 0.3340  0.0589 0.0344 0.3259 2.6431 NXTL 0.0534 0.0101 0.0063 0.0369 3.6554 

TWX 0.0305  0.0051 0.0027 0.0141 5.9668 PALM 0.5290 0.4697 0.4594 0.3654 0.9765 

WMT 0.0339  0.0059 0.0049 0.0057 5.6724 PFE 0.0362 0.0051 0.0043 0.0038 6.9891 

XMSR 0.0731  0.0606 0.0466 0.1375 3.3046 Q 0.4222 0.2132 0.2107 1.0535 0.0771 

YHOO 0.0895  0.0070 0.0059 0.0235 1.5719 TMX 0.4910 0.4425 0.4269 0.4880 1.2062 

AMAT 0.0133  0.0038 0.0015 0.0097 8.6067 TXN 0.0180 0.0032 0.0011 0.0058 13.0120 

AMCC 0.0579  0.0401 0.0346 0.0915 2.1170 TYC 0.0437 0.0189 0.0169 0.1025 0.6955 

AMD 0.0159  0.0092 0.0047 0.0316 5.0388 VRTS 0.0343 0.0166 0.0138 0.0559 1.7829 

AMZN 0.0631  0.0104 0.0047 0.0290 6.9593 XLNX 0.0094 0.0038 0.0017 0.0223 3.4277 

BMY 0.0330  0.0059 0.0044 0.0182 2.9514 XRX 0.0277 0.0092 0.0065 0.0281 3.3986 
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 BS Improved_Frey Std T P   BS Improved_Frey Std T P 

BAC 0.5630 0.5541  0.0309 4.1085 0.00006  INTC 1.3557 1.3212  0.1558 3.5956 0.00039  

CE 0.2116 0.1128  0.3738 4.3070 0.00003  JPM 1.9558 1.9443  0.0505 3.7037 0.00026  

Citigroup 2.2183 2.2129  0.0181 4.7660 0.00000  MO 0.3734 0.3692  0.0172 3.9696 0.00009  

CSCO 5.2731 4.5691  2.3742 4.8261 0.00034  MSFT 0.9737 0.9448  0.1000 4.7002 0.00000  

DELL 0.6709 0.6486  0.0530 6.8437 0.00000  ORCL 6.6402 6.5256  0.3659 5.0891 0.00000  

EP 0.4940 0.4857  0.0260 5.1133 0.00000  QCOM 1.9295 1.6568  0.5394 8.2168 0.00000  

GE 1.1087 1.1042  0.0236 3.0769 0.00231  TWX 1.4726 1.3915  0.2329 5.5221 0.00000  

GM 0.8154 0.8102  0.0179 4.7172 0.00000  WMT 0.7225 0.7092  0.0383 5.6426 0.00000  

HPQ 1.6919 1.6312  0.1687 5.8378 0.00000  XMSR 0.3280 0.3131  0.0619 3.1040 0.00225  

IBM 1.2586 1.2374  0.1103 3.1343 0.00192  YHOO 2.9279 2.3269  1.6026 6.0930 0.00000  

Table 4. Hedging performances of top 20 option contracts 
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Figures 

 

[figure 3-1]  Call option prices under different illiquid markets 

 

 

[figure 3-2]  Put option prices under different illiquid markets 
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[figure 3-3]  Call option deltas under different illiquid markets 

 

 

[figure 3-4]  Put option deltas under different illiquid markets 
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[figure 3-5]  Call option Gammas under different illiquid markets 

 

 

[figure 3-6]  Put option Gammas under different illiquid markets 
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[figure 3-7]  Traditional option deltas under illiquid markets 

 

 

[figure 3-8]  Traditional option Gammas under illiquid markets 
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[figure 3-9]  Option Vegas under different illiquid markets 
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